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CHAPTER I

Introduction

The research in this dissertation focuses on the analysis of time to event data.

Chapter 2 considers weighted proportional hazards models in the presence of biased

sampling and estimated selection probabilities. Chapter 3 examines the degree of bias

corrected by the method proposed in Chapter 2 and proposes a method for evaluating

the performance of the model. Chapter 4 considers the study of recurrent events in

the presence of a terminating event. The proposed procedures involve modelling the

recurrent event rate and terminal event hazard sparately; then combining the models

to estimate the treatment effect on the recurrent event mean.

In biomedical studies, investigators often encounter data which are a potentially

biased (i.e., unrepresentative) sample of the target population. Of particular interest

is the two-stage sampling set-up. In the first stage, a representative sample of the tar-

get population is obtained with complete information on certain auxiliary variables.

In the second stage, a biased sample is selected from the representative sample and

the outcome (e.g., failure time) variable is missing for unselected subjects. Because

of the partially missing outcome, it is not possible to fit a model (e.g., a proportional

hazards model) to the representative sample and make unbiased inferences appli-

cable to the target population. The possibility for biased sampling makes fitting

1
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an unweighted proportional hazards model to the subjects with complete informa-

tion (complete-case analysis) potentially problematic. The estimated effect of the

covariate of interest would be biased if there exist variables which play the role of

“biasing factor”, where the term “biasing factor” refers to a variable correlated with

the covariate of interest which affects the failure time hazard and the second stage

selection probability. The observed relationship between the outcome and the factor

of interest among subjects selected at the second stage is systematically different

from that in the target population, since the effect of the biasing factor (not being

accounted for in the estimation procedure) on the outcome is partially reflected.

A general method for overcoming selection bias involves weighting each subject by

the inverse of their second-stage selection probability. This procedure was developed

by Horvitz and Thompson (1952) to estimate a population mean. Binder (1992)

extended the Horvitz-Thompson estimator for application to proportional hazards

models. The data structure of interest in the proposal by Binder (1992) has only

one selection step (from the target population to the biased sample) with known

selection probabilities; a very reasonable framework for survey studies or designed

experiments. After weighting each subject by the inverse of their selection probability

(pi), each subject in the observed sample represents 1/pi identical subjects in the

target population. As such, one can write out an appropriate partial likelihood and

corresponding score function which would apply to the target population.

Lin (2000) extended the one-step sampling framework in Binder’s paper (1992)

to two-stage sampling, in the sense that a representative sample was added between

the target population and the biased sample. The underlying target population

was assumed by Lin (2000) to be infinite. The selection probabilities at the second

stage were still assumed to be known. The weighted score equations in Lin (2000)
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had the same form as those in Binder (1992), and hence the regression coefficient

estimators were also the same. The difference in the estimator of Lin (2000) was that

additional variation was induced by the sampling step from the target population to

the representative sample. Correspondingly, the variance estimator proposed by Lin

(2000) had one extra component relative to that of Binder (1992) which accounted

for the extra variation introduced by the first-stage sampling mechanism.

Both Binder (1992) and Lin (2000) assumed that the selection probabilities for

each subject were known and hence could be treated as fixed. In observational

studies, it is common to encounter data structures with two-stage sampling and

unknown selection probabilities. That is, one observes the auxiliary information

for the representative sample and the complete information for the biased sample

without any foreknowledge of the selection probabilities. This data structure is the

subject of the weighted proportional hazards model in Chapter 2.

For two-stage sample data with unknown selection probabilities, we propose two-

stage methods to obtain appropriate parameter and variance estimates. In the first

stage, a logistic model is fitted to estimate the selection probability from the repre-

sentative sample to the biased sample, adjusting for auxiliary variables (assumed to

represent the biasing factors). At the second stage, a weighted proportional hazards

model is fitted using the inverse of the estimated selection probabilities as weights.

Under the assumption of consistent selection probability estimators, the regression

parameter and cumulative baseline hazard estimators are consistent for their respec-

tive true underlying values and hence converge to the same limiting values as their

predecessors with fixed weights. However, the proposed variance estimators are dif-

ferent from those of either Binder (1992) or Lin (2000) since the weights themselves

have variation. Large-sample properties of the proposed parameter estimators are de-
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rived and their applicability to finite samples is examined through simulation studies.

The proposed methods are then applied to a kidney transplant data set to estimate

the effects of expanded criteria donor (ECD) kidneys on the post-transplant graft

failure hazard. The increase in the hazard for patients receiving an ECD (relative

to non-ECD) kidney is found to be greatly underestimated in the existing literature

which has used the information from the transplanted ECD organs only.

There exist methods in the current literature which are related to those proposed

in Chapter 2, such as inverse-probability-of-treatment-weighting (IPTW) (Robins,

2000; Hernan et al., 2000; Hernan et al., 2001), and propensity scoring (Rosenbaum

and Rubin, 1983; Rosenbaum, 2002). These methods are either infeasible for our

real data setup or answer questions different from those of interest, as we describe

later in some detail.

In applying the method proposed in Chapter 2, a practical question to be answered

is whether or not the second stage sampling mechanism actually does generate bias.

The effect of interest has two true underlying values; one describing the relationship

between the factor under study and the outcome in the target population, the other

describing the corresponding relationship in a hypothetical population represented

by the potentially biased sample selected in the second sampling stage. These two

underlying parameters would be different if and only if biasing factors exist. The

same can be said of the baseline hazard. To identify cases where the two parame-

ters differ and an empirically weighted proportional hazards model is necessary, two

conceptually simple yet comprehensive tests are proposed in Chapter 3. For the re-

gression parameter and cumulative baseline hazard, test statistics are constructed as

the difference of the weighted estimates proposed in Chapter 2 and their unweighted

counterparts. The asymptotic distributions of each of the test statistics is derived
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and explicit variance estimators are proposed. The empirical significance level and

power are validated through simulation. Factors affecting the power are examined.

It is observed that as long as the size of the second stage sample is not too small (e.g.,

n ≥ 20), the achieved power is generally quite high. A similar test for the baseline

hazard function is proposed. Finally, both tests are applied to another renal failure

data set, from which we seek to draw inference for the wait-listed patients (target

population) and only observe transplanted patients (potential biased sample) with

hospitalization history serving as the assumed potential biasing factor.

In Chapter 4, we study recurrent events in the presence of a terminating event.

Several approaches to the analysis of recurrent event data exist in literature. If

the cumulative number of events are of interest, one can model the recurrent event

rate/mean; the rate being the derivative of mean function (e.g., Pepe and Cai, 1993;

Lawless and Nadeau, 1995; Lin, Wei, Yang and Ying, 2000). If the instantaneous

event occurrence probability given the event history is of interest, an intensity model

can be employed (e.g., Prentice et al., 1981; Andersen and Gill, 1982; Wei et al.,

1989; Lee et al., 1992). Depending on the form of covariate effects, the recurrent

event model can be either multiplicative or additive (e.g., Schaubel, Zeng and Cai,

2006).

Another characteristic of the data structure of interest is the coexistence of a

terminating event which is also affected by the treatment and adjustment covari-

ates. Commonly applied methods to handle the terminating event either model the

marginal number of the recurrent events averaging over living and deceased subjects

(e.g., Ghosh and Lin, 2000; Ghosh and Lin, 2002) or model the conditional recurrent

event rate given survival (e.g., Cook and Lawless, 1997; Lin et al., 2000). Both types

of methods have their own limitations. For the marginal method, the occurrence of
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more recurrent events in a treatment group could result from longer survival or a

higher recurrent event rate while subjects are alive, and it is difficult to differentiate

the two possible causes. For the conditional method, the cumulative treatment ef-

fects over time cannot be estimated by integrating the instantaneous rate over time,

since the integral is only interpretable in the unrealistic setting where subjects never

die.

We propose fitting a proportional hazards model for the terminating event and an

additive model for the recurrent event rate conditional on survival separately, then

integrating over time to estimate the cumulative recurrent event means. In this way,

the treatment effect is measured through a time varying process without assuming

a functional form for the treatment effect. Two measures are proposed along these

lines. The first compares the treatment effect on the recurrent events and factors

out differences in survival distributions between the groups. In order to isolate the

treatment effect on the recurrent events, a hypothetical scenario is considered in

which treatment-specific survival is equal. The second incorporates the potentially

distinct survival distributions in treatment groups and reflects the mean difference

in treatment-specific marginal recurrent event means, again computed by combining

the survival probability and the conditional recurrent event rate.

Asymptotic properties of the estimators for both measures are derived and eval-

uated in finite samples. In addition, these methods are found to perform reasonably

well under misspecified models. Finally the proposed methods are applied to kidney

transplantation data to study the difference between ECD and non-ECD transplan-

tation with respect to the cumulative number of post-transplant hospitalizations. In

spite of the fact that ECD recipients die significantly earlier, they experience signifi-

cantly more hospitalizations, accounting for the fact that death precludes subsequent
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admissions.



CHAPTER II

Proportional Hazards Models Based on Biased Samples and
Estimated Selection Probabilities

Abstract: In non-randomized biomedical studies using the proportional hazards

model, the observed data often constitute a biased (i.e., unrepresentative) sample

of the underlying target population, resulting in biased regression coefficients. The

bias can be avoided by weighting included subjects by the inverse of their respective

selection probabilities, as proposed by Horvitz & Thompson (1952) and extended to

the proportional hazards setting for use in surveys by Binder (1992) and Lin (2000).

The weights can be treated as fixed in cases where they are known (e.g., chosen by

the investigator) or based on voluminous data (e.g., a large-scale survey). However,

in many practical applications, the weights are estimated and must be treated as

such in order for the resulting inference to be accurate. We propose a two-stage

weighted proportional hazards model in which, at the first stage, weights are esti-

mated through a logistic regression model fitted to a representative sample from the

target population. At the second stage, a weighted Cox model is fitted to the biased

sample. We propose estimators for the regression parameter and cumulative baseline

hazard. Asymptotic properties of the parameter estimators are derived, accounting

for the difference in the variance introduced by the randomness of the weights. The

accuracy of the asymptotic approximations in finite samples is evaluated through

8
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simulation. Our method is illustrated in an analysis of renal transplant patients

using data obtained from the Scientific Registry of Transplant Recipients (SRTR).

Key words and phrases: Hazard regression; observational studies; selection bias;

survival analysis; weighted Cox model.

2.1 Introduction

Often in observational studies, the study population observed is a biased sample

of the target population. For example, if the importance of a certain characteris-

tic is of interest (e.g., diabetes), then the true effect of being diabetic (relative to

non-diabetic) in the target population may be greatly understated by a regression

model based on the study sample if the diabetics entered into the study are system-

atically healthier than those in the target population (i.e., in ways unmeasured by

the remaining model covariates). We propose a method for estimating the param-

eters in the Cox proportional hazards model (Cox 1972), for settings in which the

survival model is fitted to a biased sample. Unlike existing weighted versions of the

Cox model (Binder 1992; Lin 2000), the proposed method uses weights which are

estimated and treated as such in deriving the asymptotic properties of the parameter

estimators.

Our proposed method is motivated by the study of the use of “expanded criteria

donor” (ECD) organs by end-stage renal disease patients. Kidney transplantation

is the preferred method of renal replacement therapy (the alternative being dialy-

sis) in terms of patient survival (Schaubel et al. 1995; Wolfe et al. 1999). With

the increasing demand for donor organs, kidneys from ECDs are increasingly being

considered for patients on the wait-list, even though it has been demonstrated that

ECD organs are associated with a significantly increased risk of graft failure (Port et
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al. 2002), which is usually defined as the minimum of time of death and time when

the transplanted organ ceases to function.

Our objective is to accurately estimate the magnitude of the increase in the graft

failure hazard for ECD relative to non-ECD deceased-donor kidneys. Although the

fact that ECD kidneys have an increased risk of graft failure can already be concluded

based on previous reports (e.g., Port et al. 2002), the true magnitude of the increase

requires further investigation. It is necessary that an accurate estimate of the relative

hazard of graft failure of ECD organs be available. Because this estimate is targeted

to provide information for clinicians and wait-listed patients facing the choice of ac-

cepting or rejecting a procured kidney, inference should be based on the hypothetical

scenario where all procured kidneys (ECD or non-ECD) are transplanted. A Cox

model fitted to the post-transplant population is likely to underestimate the true

average ECD effect, since organs in the transplanted population represent a biased

sample of all the donor kidneys available for transplantation. Kidneys from younger

healthier ECDs have a higher chance of being transplanted, and donor’s health con-

ditions have a direct influence on the graft failure hazard. If we compare the survival

function of the “best” ECD kidneys to that of “average” non-ECD kidneys without

adjusting for selection bias, the negative effects of ECD organs on survival will be

attenuated. In reality, there will also be selection of non-ECD organs. But, it is

likely that a much greater fraction of ECD organs are discarded, reflecting a greater

degree of selection from the ECD organ pool.

A natural idea to generate consistent estimators of population parameters in

the presence of biased samples is to weight each subject by the reciprocal of their

probability of being sampled. In the context of the transplant data, subjects re-

fer to kidneys and selection probability refers to the probability of the organ be-
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ing transplanted, as opposed to discarded. Horvitz & Thompson (1952) proposed

such a method to provide an unbiased estimate of a population mean. The use

of inverse-probability-of-selection weighting was extended to the Cox proportional

hazards model by Binder (1992), then Lin (2000) and Boudreau & Lawless (2006).

Binder (1992) developed his method primarily for use in survey sampling, with the

weights being chosen by the investigator. Thus, the partial likelihood score equation

used weights based on inclusion probabilities which were treated as fixed, which is

reasonable when the sampling scheme is known or information of the whole target

population is collected (e.g., United States census). Lin (2000) further studied the

case when the biased sample is selected from a representative sample of the tar-

get population, resulting in extra variation in the parameter estimates. Boudreau

& Lawless (2006) proposed stratified proportional hazards models that account for

the fact that the data have been collected according to a complex survey design.

In many practical settings, inclusion probabilities are not known and must be esti-

mated empirically by auxiliary information from the representative sample. If the

weights are estimated consistently and treated as fixed, the Cox model parameter

estimates are still consistent. However, not accounting for the fact that the weights

are trained by the data leads to variance estimators which overestimate the true

variability, resulting in conservative confidence intervals and significance levels.

In this article, we propose a two-stage procedure for fitting a weighted proportional

hazards model. At the first stage, selection probabilities are estimated from a logistic

regression model applied to both selected and unselected subjects. The inverse of the

estimated selection probabilities are used as weights. At the second stage, a weighted

Cox model is fitted, with the randomness in the weight estimates accounted for in the

proposed inference procedures. In the causal inference literature, inverse-probability-
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of-treatment weighting (IPTW) (Robins 2000; Hernan, Brumback & Robins 2000;

Hernan, Brumback & Robins 2001) and pair-matching or stratification by propensity

scores (Rosenbaum & Rubin 1983; Rosenbaum 2002) are widely used methods for

biased samples. Differences between IPTW, propensity scoring and the proposed

method are explained in Section 2.

The remainder of this article is organized as follows. In Section 2, we describe the

proposed estimation procedure and its connection to existing methods. In Section 3,

the asymptotic properties of our parameter estimators are provided. In Section 4, the

applicability of the asymptotic properties in finite samples is evaluated by numerical

studies. In Section 5, the proposed method is applied to data from a national organ

failure registry. In Section 6, a discussion and some concluding remarks are provided.

Proofs of the main results listed in Section 3 are outlined in the Appendix.

2.2 Models And Methods

We begin by establishing the necessary notation. For subject i (i = 1, . . . , N) with

event time Ti and censoring time Ci, we define T̃i = min(Ti, Ci), ∆i = I(Ti≤Ci),

Yi(t) = I(T̃i≥t) and Ni(t) = I(T̃i≤t, ∆i = 1). There are a total of N subjects in the

representative sample, with a biased study sample of size n < N .

In analyzing time to event data, proportional hazards are often assumed, such

that the hazard function at time t for subject i with p × 1 covariate vector Zi(t) is

proportional to the baseline hazard function at time t,

λi(t) = λ0(t)e
β′0Zi(t),

where β0 is the true value of the regression parameter vector and the true baseline

hazard function λ0(t) is unspecified. Ordinarily, one would estimate β0 by β̂, the
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solution to the partial likelihood (Cox 1975) score equation

U(β) =
N∑

i=1

∫ τ

0

{Zi(t)− Z(β, t)}dNi(t) = 0,(2.1)

where dNi(t) = Ni(t + dt) − Ni(t), τ is a prespecified constant satisfying Pr(T̃i >

τ) > 0 and typically set to the end of the study to include all observed event times,

Z(β, t) =
S(1)(β, t)

S(0)(β, t)
,

S(0)(β, t) = n−1

n∑
i=1

Yi(t)e
β′Zi(t),

S(1)(β, t) = n−1

n∑
i=1

Yi(t)e
β′Zi(t)Zi(t).

Under mild conditions, Andersen & Gill (1982) proved that n1/2(β̂ − β0) converges

asymptotically to a zero-mean Gaussian process with covariance consistently esti-

mated by Â(β̂)−1 where Â(β̂) = −n−1∂U(β)/∂β|β=β̂.

In instances where subjects may have unequal probability of being sampled,

Binder (1992) & Lin (2000) proposed the weighted proportional hazards model. The

parameter β0 is estimated by incorporating weights into the score equation,

Uw
N(β) =

N∑
i=1

∫ τ

0

wi{Zi(t)− Zw(β, t)} dNi(t),(2.2)

where wi = Ii/pi, Ii is the indicator for the ith subject being sampled, pi = Pr(Ii = 1)

and

Zw(β, t) =
S

(1)
w (β, t)

S
(0)
w (β, t)

,

S(0)
w (β, t) = N−1

N∑
i=1

wiYi(t)e
β′Zi(t),

S(1)
w (β, t) = N−1

N∑
i=1

wiYi(t)e
β′Zi(t)Zi(t).

Lin (2000) proved that the solution to (3.4) is also asymptotically zero-mean

normal with an explicit covariance matrix expression. Both Binder (1992) and Lin
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(2000) studied the case when the weights are known and hence their estimating

functions have the same form. Binder’s method can be used when the biased study

sample is selected directly from the target population with fixed probabilities; Lin’s

proposal further studied the settings where the biased study sample is selected from a

representative sample of the underlying target population, with the target population

being considered infinite and referred to as a super-population. The difference lies

in the asymptotic variance of the parameter estimators. The proposed variance

estimator in Lin (2000) is larger than that proposed by Binder (1992), owing to the

additional variation attributable to the random selection of the representative sample

from the target population.

In existing weighted Cox models, wi is assumed known and treated as fixed. There

are many practical settings where inclusion probability is not known and must be

estimated empirically. We propose a two-stage method wherein the probabilities used

in the weighted Cox model are estimated from a logistic regression model based on

both selected and unselected subjects. Our proposed method uses the same setting as

in Lin (2000), but with selection probabilities that are not fixed and are empirically

estimated. We denote the true weight by:

wi(θ0) =
Ii

pi(θ0)
,

where θ0 is the true value of the q× 1 parameter vector in the logistic regression and

hence

pi(θ) =
eθ′Xi

1 + eθ′Xi
,

and Xi is the vector of covariates in the logistic regression model. Ideally, Xi is the

complete set of biasing factors. By biasing factors, we refer to factors predictive

of selection probability and survival time and correlate with the factor of interests.
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In the case of unmeasured biasing factors, consistent estimators of θ0 and hence β0

are unobtainable. The robustness of our estimators to unmeasured confounders is

examined through simulation in Section 4. Note that internal covariates governing

both pi and λi(t) would be included in both Xi and Zi. When the Zi covariate is

time-dependent (i.e., Zi(t)6=Zi(0)), it would make sense that Zi(0) be included in Xi,

but not Zi(t) for t > 0, since selection into the biased sample is determined at t = 0.

Through maximum likelihood, θ0 is estimated by θ̂, the solution to UL(θ) = 0,

with

UL(θ) =
N∑

i=1

ULi(θ),

ULi(θ) = Xi{Ii − pi(θ)}.

Having estimated θ0, β0 is estimated by β̂w, the solution to Uw
N(β, θ̂) = 0, where

Uw
N(β, θ) =

N∑
i=1

∫ τ

0

wi(θ){Zi(t)− Zw(β, θ, t)} dNi(t).

Having computed β̂w, the cumulative hazard function Λ0(t) can be consistently esti-

mated by Λ̂w
0 (β̂w, θ̂; t) where

Λ̂w
0 (β, θ; t) = N−1

N∑
i=1

∫ t

0

wi(θ)dNi(s)

S
(0)
w (β, θ; s)

.

We describe the asymptotic properties of the proposed parameter estimators in the

next section.

The proposed method is built around inverse probability of selection weighting

(IPSW), an idea related to but distinct from inverse probability of treatment weight-

ing (IPTW) (Robins & Greenland 1994; Robins, Greenland & Hu 1999; Robins 2000).

To avoid confusion, it is worth clarifying some of the differences between IPSW and

IPTW, and in doing so we restrict attention to the setting of interest; i.e., data

to estimate selection probability are available from a super-population. In IPSW,
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subjects are weighted by the inverse of their respective selection probabilities, which

is the transplantation probability per kidney in the motivating example. In IPTW,

subjects are weighted by the inverse of the probability they received their assigned

treatment, which would be probability of receiving an ECD kidney per recipient. The

purpose of IPSW is to mimic the composition of the representative sample, while the

IPTW method aims to obtain an unconfounded comparison between the treatments.

In IPSW, the logistic model uses information from all subjects in the representative

sample. In IPTW, the logistic model would be fitted to only the biased sample. Note

also that a logistic model would suffice for IPTW when the covariate of interest was

binary. However, it would appear that estimation of the weight would become cum-

bersome if the treatment covariate was continuous or, even worse, multi-dimensional.

In contrast, the IPSW weight is easily estimated, whether the weights are intended

to correct bias with respect to a single covariate (e.g., ECD) or several (e.g., ECD,

age, gender, race, diagnosis, etc).

It is also worth noting that, for the application of our interest in the current

study, IPTW does not apply and does not even make sense in principle. For the

kidney transplant data, the representative sample contains all kidneys recovered in

1999 − 2003, while the biased sample consists of kidneys which are actually trans-

planted. The factor of interest is ECD status, while selection probability represents

the probability that a recovered kidney is transplanted. For an IPTW analysis,

one would estimate the probability of a transplanted organ being its actual sta-

tus (ECD or non-ECD) given all donor characteristics, including those in the ECD

definition. As such, in attempting to apply IPTW, one would weight subjects by

Pr(Ei = z|Xi)
−1, where Ei is a binary indicator for ECD status and z is a realiza-

tion of Ei. Since Xi contains the components of the ECD definition, Pr(Ei = z|Xi)
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always equals 0 or 1.

The IPSW method is also related to but different from methods based on propen-

sity scores (Rosenbaum & Rubin 1983; Rosenbaum 2002), as the latter involves

scores constructed from the probability of being assigned the treatment (as opposed

to placebo), given all confounders used for pair-matching or stratification.

2.3 Asymptotic Properties

In this section, we describe the large-sample properties of the model parameter es-

timators. Proof sketches are provided in the Appendix. Note that since wi(θ) will

contain elements not in the filtration pertaining to the assumed Cox model, the Mar-

tingale Central Limit Theorem (Fleming & Harrington 1991; Kalbfleisch & Prentice

2002) is not applicable here. We assume the following regularity conditions:

(a) {Ti, Ci, Zi, Xi} are independent and identically distributed for i = 1, . . . , N .

(b) Pr(T̃i > τ) > 0.

(c)
∫ τ

0
dΛ0(t) < ∞ and Λ0(t) is differentiable over time.

(d) |Xik| < ∞; |Zik(0)| + ∫ τ

0
|Zik(s)|ds < ∞ almost surely, where the second sub-

script refers to the kth element.

(e) Positive-definiteness of the matrices, Aw(β, θ) and B(θ), where

Aw(β, θ) = E

[∫ τ

0

{Zi(t)− zw(β, θ; t)}⊗2wi(θ)Yi(t)e
β′Zi(t)dΛ0(t)

]
,

s(1)
w (β, θ; t) = lim

N→∞
S(1)

w (β, θ; t),

s(0)
w (β, θ; t) = lim

N→∞
S(0)

w (β, θ; t),

zw(β, θ; t) =
s
(1)
w (β, θ; t)

s
(0)
w (β, θ; t)

,

B(θ) = E[Xipi(θ){1− pi(θ)}X ′
i]
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with a⊗2 = aa′.

(f) There exists a δ such that pi(θ) > δ > 0 almost surely.

Condition (a) is employed in the application of the Functional Central Limit The-

orem (Pollard 1990). Provided that the subjects are independent, the assumption

applies quite generally. Independence would be violated if, for example, subjects

are clustered by some factor related to the failure time of interest. Condition (b)

is a standard identifiability requirement. Condition (c) leads to the boundedness of

several quantities examined in the proofs of the theorems stated later in this section.

The bounded covariate condition, (d), is not required but simplifies proofs of the

asymptotic results and is applicable in most practical situations. Assumption (e)

essentially requires that there are no linear dependencies among the covariates in

either the survival or selection probability models. With respect to condition (f),

selection probability is non-zero for all subjects of interest in the underlying target

population, by definition. This condition guarantees that N and n go to ∞ at the

same rate, such that
√

n/N converges to a constant.

The proposed methods also assume implicitly that Zi ∪Xi consists of all factors

affecting λi(t); that is, the no-unmeasured confounders assumption. In addition, we

assume that Ci is conditionally independent of Ti; specifically,

lim
δ→0

1

δ
Pr(t ≤ Ti < t + δ|Ti ≥ t, Ci ≥ t, Zi, Xi) = lim

δ→0

1

δ
Pr(t ≤ Ti < t + δ|Ti ≥ t, Zi, Xi).

Theorem 1. Under conditions (a) to (f), β̂w converges almost surely to β0.

The proof of Theorem 1 is outlined in the Appendix. It proceeds through a Taylor

Series expansion, repeated application of the Strong Law of Large Numbers (SLLN),

followed by arguments from convex function theory.
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Theorem 2. Under conditions (a) to (f), N
1
2 (β̂w − β0) is asymptotically zero-mean

normal with covariance matrix Aw(β0, θ0)
−1Σw(β0, θ0)A

w(β0, θ0)
−1 as N →∞, where

Aw(β0, θ0) is as defined in condition (e),

Σw(β, θ) = E{ψw
i (β, θ)⊗2},

ψw
i (β, θ) =

∫ τ

0

wi(θ){Zi(t)− zw(β, θ; t)}dMi(t)−G(β, θ)B(θ)−1ULi,

G(β, θ) = E

[∫ τ

0

{Zi(t)− zw(β, θ; t)}X ′
ie
−θ′XidMi(β; t)

]

with dMi(β; t) = dNi(t)− Yi(t)e
β′ZidΛ0(t).

The matrix Σw(β0, θ0) can be consistently estimated by replacing β0, θ0 and all

expectations by their empirical estimates; that is,

Σ̂w(β̂w, θ̂) = N−1

N∑
i=1

[∫ τ

0

wi(θ̂){Zi(t)− Zw(β̂w, θ̂; t)}dM̂i(β̂, θ̂; t)− Ĝ(β̂w, θ̂)B̂(θ̂)−1ÛLi(θ̂)

]⊗2

,

where

dM̂i(β, θ; t) = dNi(t)− Yi(t)e
β′ZidΛ̂w

0 (β, θ; t),

Ĝ(β, θ) = N−1

N∑
i=1

∫ τ

0

{Zi(t)− Zw(β, θ; t)}X ′
ie
−θ′XidM̂i(β; t),

B̂(θ) = −N−1∂UL(θ)

∂θ′
= N−1

N∑
i=1

Xipi(θ){1− pi(θ)}X ′
i.

Similarly, the matrix Aw(β0, θ0) can be consistently estimated by Âw(β̂w, θ̂), where

Âw(β, θ) = N−1

N∑
i=1

∫ τ

0

{Zi(t)− Zw(β, θ; t)}⊗2wi(θ)Yi(t)e
β′Zi(t)dΛ̂w

0 (β, θ; t).(2.3)

Therefore, the covariance matrix for N
1
2 β̂w can be consistently estimated by

Âw(β̂w, θ̂)
−1

Σ̂w(β̂w, θ̂)Âw(β̂w, θ̂)
−1

. The asymptotic distribution of β̂w can be derived

by combining the Multivariate Central Limit Theorem (van der Vaart 2000) and
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results from empirical process theory (Pollard 1990; Wellner 1996; Bilias, Gu & Ying

1997).

If the weights are treated as fixed, the variance estimator differs from the proposed

one with respect to the ψw
i component. Under the setting of designed sampling over

the target population with fixed selection probability, the variance estimator also has

the sandwich form,

Âw(β̂w, θ̂)−1Σ̂f (β̂w, θ̂)Âw(β̂w, θ̂)−1,(2.4)

where Âw(β̂w, θ̂) is the same as that defined in (2.3) and

Σf (β) = E{ψf
i (β)⊗2},

ψf
i (β) =

∫ τ

0

wi(θ){Zi(t)− zw(β, θ; t)}dMi(t).

We summarize the essential asymptotic results for the baseline cumulative hazard

estimator in the following two theorems.

Theorem 3. Under conditions (a) to (f), Λ̂w
0 (β̂w, θ̂; t) converges uniformly to Λ0(t)

for t ∈ [0, τ ].

The proof of Theorem 3 involves decomposing {Λ̂w
0 (β̂w, θ̂; t)−Λ0(t)} into {Λ̂w

0 (β̂w, θ̂; t)−

Λ̂w
0 (β̂w, θ0; t)}, {Λ̂w

0 (β̂w, θ0; t)−Λ̂w
0 (β0, θ0; t)} and {Λ̂w

0 (β0, θ0; t)−Λ0(t)}, then applying

the Uniform SLLN and various empirical process results.

Theorem 4. Under conditions (a) to (f), N
1
2{Λ̂w

0 (β̂w, θ̂; t)−Λ0(t)} converges weakly

to a zero-mean Gaussian process with covariance function:

Ω(s, t) = E{φi(β0, θ0; s)φi(β0, θ0; t)},
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for (s, t) ∈ [0, τ ]× [0, τ ], where φi(β, θ; t) = φi1(β, θ; t)+φi2(β, θ; t)+φi3(β, θ; t), with

b(β, θ; t) = E{Xie
−θ′XiYi(t)e

β′Zi(t)},

k(β, θ; t) = −E

{∫ t

0

Xie
−θ′Xi

s
(0)
w (β, θ; s)

dNi(s)+

∫ t

0

wi(θ)b(β, θ; s)

s
(0)
w (β, θ; s)

2 dNi(s)

}
,

φi1(β, θ; t) = k′(β, θ; t)B(θ)−1ULi(θ),

h(β, θ; t) = −
∫ t

0

zw(β, θ; s)dΛ0(s),

φi2(β, θ; t) = h′(β, θ; t)Aw(β, θ)−1ψw
i (β, θ),

φi3(β, θ; t) =

∫ t

0

dMi(β, θ; s)

s
(0)
w (β, θ; s)

.

The proof involves applications of the Central Limit Theorem and empirical pro-

cess results. The quantity Ω(s, t) can be consistently estimated by replacing all

unknown quantities by their empirical counterparts.

2.4 Simulation Study

In our simulation settings, there are three covariates, with Zi = (Zi1, Zi2, Zi3)
′. The

covariate Zi1 is distributed as Bernoulli with equal probabilities of being 1 or 0;

Zi2 is normally distributed with mean zero and variance 25; Zi3 is uniformly dis-

tributed on (0, 4). Time to event, Ti, follows an exponential distribution with hazard

λi(t) = λ0e
β′0Zi , where λ0 = 0.02, and β′0 = (β1, β2, β3) = (0.5, 0.1, 1.0). The cen-

soring time, Ci, was generated as uniform on (0, 20) or (0, 40) to create data sets

with different percentages of censoring (denoted by C%); specifically 20% and 30%.

We create representative samples with three different sizes (500, 1000 or 5000) and

biased samples are created by selecting different percentages of subjects in each

Zi1 and Zi3 combination. Specifically, subjects with Zi1 = 0 are always included
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in the biased sample; for subjects with Zi1 = 1, probability of being included in

the biased sample depends on Zi3 with selection probability being constant across

[0, 1], (1, 2], (2, 3], (3, 4]. Each data configuration is replicated 1000 times.

Of primary interest are the marginal effects of Zi1 and Zi2, while Zi3 represents

a variable that affects λi(t) but is not incorporated in the Cox model. Hence the

Cox model fitted to each replicate is λi(t) = λ0(t)e
β1Zi1+β2Zi2 . The weights were

based on the logistic model, log{pi(θ)/(1− pi(θ))} = θ′Xi, where Xi = (Zi1, Zi3)
′. It

is worth noting that very few failure time distributions (e.g. positive stable frailty)

have proportional hazards for both the conditional and the marginal models. In cases

where the proportional hazards assumption does not hold perfectly, the β1 estimate

can be understood as a time-weighted average Zi1 effect; albeit with weights for which

no explicit form exists and which depend on the censoring distribution (Struthers &

Kalbfleisch, 1986).

Although in the representative sample Zi3 is independent of Zi1, in the biased

sample Zi3 distributes differently for Zi1 = 0 and Zi1 = 1. Therefore, the marginal

effects of Zi1 over Zi3 in the representative sample and in the biased sample are un-

equal. Thus, in the biased sample, omitting biasing factor Zi3 from the Cox model

results in biased estimator of β1 if we use an unweighted Cox model. The true β1 is

determined empirically by applying proportional hazards model to the representative

sample. Take the following data configuration as an example: selection probability

on the four increasing levels of Zi3 are 1, 0.5, 0.4 and 0.1, and the parameter esti-

mates from the representative sample is (β1, β2)
′ = (0.318, 0.064)′. Note that there

are two sets of true parameters for the representative sample here; the conditional

regression coefficients (β1, β2, β3)
′ = (0.5, 0.1, 1.0)′ and the marginal regression coeffi-

cients (β1, β2)
′ = (0.318, 0.064)′. Because our goal is to estimate the marginal effect,
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Pr(Ii = 1|Z1i = 1, Z3i) β̂1w

C%1 β̂1 wi(θ̂): fixed 2 wi(θ̂): estimated 3

N [0, 1] (1, 2] (2, 3] (3, 4] Bias Bias ESD ASE CP ASE CP

30 250 1.000 0.500 0.400 0.100 -0.47 -0.03 0.20 0.22 0.95 0.18 0.92
500 1.000 0.500 0.400 0.100 -0.47 -0.00 0.14 0.16 0.97 0.13 0.94
500 1.000 0.750 0.500 0.250 -0.34 -0.01 0.12 0.13 0.98 0.12 0.94
500 0.500 0.500 0.500 0.500 -0.00 -0.00 0.13 0.14 0.97 0.13 0.94
1000 0.500 0.250 0.200 0.050 -0.47 -0.01 0.11 0.14 0.99 0.11 0.94
5000 0.100 0.050 0.040 0.010 -0.47 -0.01 0.10 0.14 0.99 0.09 0.93
5000 0.200 0.100 0.075 0.025 -0.47 -0.01 0.07 0.09 1.00 0.07 0.95

20 250 1.000 0.500 0.400 0.100 -0.43 -0.03 0.18 0.19 0.96 0.16 0.93
500 1.000 0.500 0.400 0.100 -0.42 -0.01 0.11 0.14 0.98 0.11 0.95
500 1.000 0.750 0.500 0.250 -0.30 -0.01 0.11 0.12 0.95 0.11 0.95
500 0.500 0.500 0.500 0.500 -0.00 -0.00 0.12 0.13 0.96 0.12 0.95
1000 0.500 0.250 0.200 0.050 -0.42 -0.01 0.10 0.13 0.99 0.09 0.94
5000 0.100 0.050 0.040 0.010 -0.42 -0.01 0.08 0.12 0.99 0.08 0.94
5000 0.200 0.100 0.075 0.025 -0.42 -0.01 0.06 0.08 0.99 0.06 0.94

1 C% = Ê(I(Ci < Ti)) .
2 wi(θ̂): fixed : variance estimator which treats weights as fixed, as given in equation (2.4).
3 wi(θ̂): estimated : proposed variance estimator, which treats the weights as estimated and is
derived in Theorem 1.

Table 2.1: Simulation Results:Weighted and Unweighted Proportional Hazards Model.

(0.318, 0.064)′ are the target population parameters of interest. If we fit a propor-

tional hazards model to the selected sample without any weight adjustment, serious

bias is observed; the empirical mean of β̂1 across the 1, 000 replicates computed as

Ê(β̂1) = −0.152. Note that β̂2 is still approximately unbiased, with Ê(β̂2) = 0.067,

since Zi2 is not correlated with Zi3 and therefore not affected by the omission of Zi3

from the fitted Cox model.

Simulation results are listed in Table 1. For each data configuration, the bias of

the unweighted and weighted β1 estimates (denoted by β̂1 and β̂w1, respectively) are

compared. We also list side by side the average asymptotic standard error (ASE) for
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two different variance estimators; the first variance estimator treats the weights as

fixed and is given by (2.4), while the second is the proposed variance estimator based

on Theorem 1. In addition, both ASEs are compared to the empirical standard devi-

ation (ESD). The comparison between the two variance estimators is also made with

respect to empirical coverage probability (CP), which has nominal level 0.95. From

Table 1, the unweighted β1 estimates are obviously biased, while the corresponding

weighted estimates are approximately unbiased. Treating the weights as fixed leads

to over-estimation of SE(β̂w1), with coverage probability being considerably larger

than 95%. The proposed SE estimator is on average much closer to the ESD and

correspondingly has empirical coverage probability more closely approximating the

nominal 0.95.

Rather than increasing the variation of β̂w, our proposed variance estimator ac-

tually has smaller variance than the variance estimator which treats the weights as

fixed. The decrease in the variance can be understood heuristically by the fact that

the weights are “trained” by the data, since subjects used to fit the weighted Cox

model are also used to estimate θ0. In row 6 − 9, this difference in ASE and CP

remains the same with sample sizes increasing from 500 to 5000.

We also examined the setting where the selection probabilities and, hence, weights

were in fact known. In this case, with the weights appropriately treated as fixed in

estimating the variance, the β1 estimator is approximately unbiased, but with ESD

considerably larger than that of β̂w1 (data not tabulated).

Next, we examine the impact of misspecification of the selection probability model.

The overall criteria for model performance is to minimize the sum of bias square and

variance; that is, mean square error (MSE). The simulation results listed in Ta-

ble 1 are generated using a correct logistic model which includes all covariates that
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influence the selection probability, with each covariate modelled using its correct

functional form. Additional simulations aimed at assessing the MSE of our estima-

tor disclose that both bias and variance of β̂w increases with the degree to which

the selection probability model is misspecified. In the most extreme case of model

misspecification when the logistic model contains no covariates (i.e., an intercept-

only model), β̂w and ŜE(β̂w) equal those from the unweighted model. The impact

of misspecifying the selection probability model is exemplified in Table 2. In the

last row of Table 2, the correct selection probability model is fitted. Other rows

feature various degrees of model misspecification, with the misspecification generally

increasing from bottom to top. Comparing the ASEs computed using Theorem 1 to

the ESD, the proposed SE estimator agrees with the empirical SE even when the

selection probability model is misspecified. The more accurate the selection proba-

bility model, the smaller the bias and the greater the efficiency gain associated with

the proposed variance estimator relative to that which treats the weights as fixed.

2.5 Application

Of interest is the impact of Expanded Criteria Donor (ECD) kidneys on the graft

failure hazard for renal transplant recipients. The time of graft failure is defined as

the time between transplantation and the earliest of the time of death and the time

at which the transplanted kidney ceases to function. By the definition of Port et

al. (2002), ECDs are either (i) age ≥ 60, or (ii) age 50 − 59 and with at least two

of the following three characteristics: hypertensive, serum creatinine concentration

> 1.5mg/dl, or death due to stroke. To the nephrology community, ECD is a well-

accepted quality index for donated kidneys. In fact, patients who are willing to accept

an ECD organ are essentially placed on a separate waiting list. It is well-known that



26

Bias ASE

Covariates in Logistic Model β̂1 β̂1w wi(θ̂): fixed 4 wi(θ̂): estimated 5 ESD

various incorrect models:
no covariates −0.427 −0.427 0.101 0.101 0.100
categorical Z3 −0.423 −0.429 0.099 0.099 0.098
Z1 −0.427 −0.429 0.103 0.103 0.105
Z1, linear Z3 −0.423 −0.040 0.103 0.079 0.080
Z1, categorical Z3 −0.427 −0.015 0.120 0.077 0.081
correct model:
Z1, categorical Z3, interaction −0.428 −0.014 0.120 0.077 0.080
of categorical Z3 and Z1

4 wi(θ̂): fixed : variance estimator which treats weights as fixed, as given in equation (2.4).
5 wi(θ̂): estimated : proposed variance estimator, which treats the weights as estimated and is
derived in Theorem 1.

Table 2.2: Impact of selection probability model misspecification on bias and efficiency of proposed
variance estimator.

ECD kidneys have higher risk of graft failure or death. However, we hypothesize that

the magnitude of the increase is considerably greater than that currently reported

in the nephrology literature. Suppose that among the ECD kidneys procured, only

the “healthiest” are selected for transplantation (the remainder discarded). Suppose

also that the same sort of selection process occurs for non-ECD organs, but to a

much lesser extent. If we fit an unweighted model using transplanted kidneys only,

we would be comparing the healthiest ECD kidneys with a closer-to-representative

sample of non-ECD kidneys, and the negative impact of ECD on graft survival would

therefore be underestimated. In order to remove the effect of the biased sampling,

we apply the proposed weighted proportional hazards model. The covariate vector

includes terms for recipients (age, gender, race, years on ESRD and diabetic status)

and donor ECD status. Note that adjusting for the ECD components in the Cox

model is undesirable since the ECD parameter of interest cannot be identified in the
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presence of such adjustment.

Our treatment of the time axis warrants some discussion. First, since the time

origin is the time of transplant, all patients begin observation at t = 0, such that

left truncation does not occur. Second, there is the issue of length-biased sampling,

discussed by Wang (1999). That is, patients with longer time survived on the wait-

list would be over-represented in the data set. However, as previously indicated,

“time on dialysis prior to transplant” is an element of Zi. Finally, on a related

note, induced dependent censoring potentially resulting from correlation between

waitlist-to-transplant and transplant-to-death gap times (Schaubel & Cai 2004) is

also mitigated; i.e., the second gap time is, essentially, modelled as a function of the

first gap time.

The target population is all kidneys from deceased donors in U.S.. The repre-

sentative sample consists of all such kidneys with initial referral calls to their Organ

Procurement Organization (OPO) made during the 1999 to 2003 period. Demo-

graphic and clinical data on donors and recipients, dates of graft failure and death

where applicable, as well as various clinical measures, are obtained from the Scientific

Registry of Transplant Recipients (SRTR) and collected by the Organ Procurement

and Transplant Network (OPTN). Kidneys transplanted to recipients under age 18

are excluded. Each recipient was followed until graft failure, loss to follow up or

the conclusion of the observation period (December 31, 2004). In total, there were

57,213 donors with complete information. Of the 12, 673 ECD kidneys, 5, 830 (46%)

got transplanted. In contrast, of the 44, 540 non-ECD kidneys procured, 37, 227

(84%) were transplanted. Altogether 43, 057 (75%) out of the procured kidneys

got transplanted. Among the 43, 057 transplantations, 4, 452 had missing informa-

tion (transplantation date unknown), 29, 640 recipients were alive with a functioning
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transplant at the end of follow-up, and 8, 965 (23%) experienced graft failure (i.e.,

either died or had a transplant that stopped functioning) before the end of 2004.

Since the SRTR data include complete information of both transplanted and dis-

carded kidneys, we fit a logistic model to estimate each procured kidney’s trans-

plantation probability, adjusting for donor characteristics, including: demographics

(gender, age, race), cause of death (stroke, anoxia, tumor, others), lifestyle habits

(alcohol, smoking, cocaine, other drug), disease history (cancer, diabetes, hyperten-

sion), serology results (hepatitis B antibody, hepatitis C antibody, cytomegalovirus

antibody), cardiovascular disease, high creatinine level, blood urea nitrogen, presence

of protein in urine, clinical infection, and having tattoos. Among these variables,

donor age, hypertension history, high creatinine level, and stroke as cause of death

are used in the ECD definition. The weight assigned to each recipient is the inverse

of the estimated probability that their respective organ was transplanted as opposed

to discarded.

Selected parameters from the selection probability model are listed in Table 3.

All ECD-related variables have significant effects on the probability of being selected

for transplantation. The model appears to fit fairly well in a general sense, as the

proportion of concordant outcomes (C-statistic) equals 82%.

Comparison of the weighted and unweighted ECD coefficient estimates and dif-

ferent estimators for the standard error from the weighted Cox model is made in

Table 4. We observe a great difference between the unweighted and weighted ECD

coefficient estimates, with β̂ = 0.54 versus β̂w = 0.79. We can interpret these results

as follows: among the kidneys transplanted, patients getting an ECD kidney have

e0.54 = 1.72 times higher hazards for graft failure compared to patients getting a

non-ECD kidney; while among all the kidneys recovered for transplantation, ECD
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k Xik θ̂k ŜE(θ̂k) p eθ̂k

1 High creatinine -1.17 0.04 < 0.0001 0.31
2 Hypertension -0.47 0.03 < 0.0001 0.62
3 Cause of death = stroke -0.18 0.03 < 0.0001 0.84
4 Age 60 - 64 -0.58 0.06 < 0.0001 0.56
5 Age 65 - 69 -1.19 0.06 < 0.0001 0.31
6 Age ≥ 70 -2.59 0.07 < 0.0001 0.08

Table 2.3: Estimated regression parameter for ECD-related characteristics.

Quantity Estimate Formula Comment

β̂ 0.54 solution to (3.3) unweighted parameter estimator
eβ̂ 1.72 unweighted hazard ratio
β̂w 0.79 solution to (3.4) weighted parameter estimator
eβ̂w 2.20 weighted hazard ratio
ŜE 0.152 equation (2.4) treating wi(θ̂) as known
ŜE 0.149 Theorem 1 treating wi(θ̂) as estimated
p < 0.0001 based on proposed method

Table 2.4: Analysis of kidney transplant data estimated regression parameter and standard error
for ECD covariate.

status is associated with a e0.79 = 2.20 times higher graft failure hazard. If we treat

the weights as fixed, the estimator for the standard error of the ECD element of β̂w

is 0.152. Using the proposed variance estimator, the standard error is estimated at

0.149. In this example, whether we treat the weights either as fixed or as estimated,

the ECD indicator is highly significant (p < 0.0001). However, it is easy to envision

other cases where the overestimated SE leads to a deceptively large p value, a wider

confidence interval and perhaps a type I error.
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2.6 Discussion

Building on the weighted proportional hazards models proposed by Binder (1982),

Lin (2000) and Boudreau & Lawless (2006), this paper examines the setting where

weights are estimated from the data and thus should be treated as such for the

purposes of inference. The estimating equations for the parameter estimators are

similar to those of existing weighted Cox models, but the variance estimators have

a different form. We prove the consistency and derive the asymptotic distribution

of the proposed regression parameters and cumulative baseline hazard estimator.

Through simulation, the asymptotic results were found to be applicable to finite

samples. Finally, the proposed method was applied to a national kidney transplant

data set to evaluate the effect of expanded criteria donor organs on graft survival.

The proposed method depends on the availability of additional information of the

representative sample from which the biased sample is selected. If one can obtain

only the information on a biased sample, the probability of being selected into the

biased sample cannot be estimated and weights are unavailable. Survival information

for the unselected subjects in the representative sample is missing, such that a Cox

model based on the representative sample is inapplicable.

In our analysis of national kidney transplant data, the hazard ratio for ECD (ver-

sus non-ECD) was estimated at 2.20 based on the weighted Cox model and 1.72

based on the unweighted model. Thus, among the deceased-donor organs currently

transplanted, ECD kidneys are associated with a 72% increase in graft failure hazard

relative to non-ECDs. The 72% increase is quite consistent with the results of Port

et al. (2002), from which the ECD definition was derived. The results of Ojo et al.

(2001) indicate that the mortality hazard is lower for patients with an ECD trans-
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plant than those on the waiting list. Moreover, Schaubel, Wolfe & Port (2006) report

that, on average, patients have lower mortality if they accept an ECD compared to

“standard therapy” (foregoing an ECD with the possibility of subsequently receiving

a non-ECD transplant). In the interests of patients, current efforts to further expand

the kidney donor pool by discarding fewer ECDs must be tempered by the fact that

the results of Ojo et al. (2001) and Schaubel, Wolfe & Port (2006) are based not

on ECD kidneys, but on ECDs currently transplanted. In particular, the results

of Schaubel, Wolfe & Port (2006) demonstrate a mortality reduction (ECD versus

standard therapy) which is quite modest and hence could easily be eliminated by

utilizing ECD kidneys with a >2-fold increase in graft failure risk. The difference

between our weighted (reflecting ECDs generally; HR=2.20) and unweighted (re-

flecting ECDs selected for transplantation; HR=1.72) analyses underscore the value

of clinician judgement.

The proposed method should have broad applicability in biomedical research,

particularly observational studies. For example, in liver transplant research, there is

interest in a recently developed Donor Risk Index (DRI) on the survival of recipients

(Feng et al. 2006). In this case, livers with high DRI values have higher probability

of being discarded, which may result in under-estimating the importance of DRI on

post-liver transplant outcomes.

Investigators may raise the question of whether using the weighted version of the

Cox model is required for their particular application. In certain cases, this issue

could be addressed indirectly without fitting the weighted model. That is, if there

are no covariates (not already included in the Cox model) which predict selection

probability, then the unweighted model should generate approximately the same

parameter estimates as the weighted model. However, as our simulation results indi-
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cate, weighting can improve efficiency (using the proposed variance estimator) even

when the selection probability model is mis-specified. Formal tests of the equality of

the weighted and unweighted parameters could prove very useful.

2.7 Appendix

Proof of Theorem 1. The weighted log partial likelihood is given by: `w
N(β) =

∑N
i=1

∫ τ

0
[β′Zi(t) − log{S(0)

w (β, θ̂; t)}]wi(θ̂)dNi(t). Setting Dw
N(β) = N−1{`w

N(β̂w) −

`w
N(β0)}, we write Dw

N(β) =
∑4

k=1 Dw
k:N(β), where

Dw
1:N(β) = N−1

N∑
i=1

∫ τ

0

{wi(θ̂)− wi(θ0)}(β − β0)
′Zi(t)dNi(t)

Dw
2:N(β) = N−1

N∑
i=1

∫ τ

0

wi(θ0)(β − β0)
′Zi(t)dNi(t)

Dw
3:N(β) = N−1

N∑
i=1

∫ τ

0

{wi(θ̂)− wi(θ0)} log

{
S

(0)
w (β0, θ̂; t)

S
(0)
w (β, θ̂; t)

}
dNi(t)

Dw
4:N(β) = N−1

N∑
i=1

∫ τ

0

wi(θ0) log

{
S

(0)
w (β0, θ̂; t)

S
(0)
w (β, θ̂; t)

}
dNi(t).

By assumption (d), Xi and Zi are bounded almost surely; the increment dNi(t)

is either zero or one. We restrict attention to β in a compact set, Br = {β :‖

β − β0 ‖≤ r}, with boundary ∂Br = {β :‖ β − β0 ‖= r}. Since θ̂ is the Maximum

Likelihood Estimator (MLE) of θ0, θ̂
a.s.−→ θ0 as N −→ ∞. Therefore, after applying

a Taylor Series expansion and the Strong Law of Large Numbers (SLLN), Dw
1:N(β) =

N−1
∑N

i=1

∫ τ

0
−Iie

−θ′0Xi(β − β0)
′Zi(t)dNi(t)X

′
i(θ̂ − θ0) + op(1) and converges almost

surely to zero as N −→∞.

Under the assumed conditions,

sup
t∈[0,τ ]

||S(d)
w (β, θ; t)− s(d)

w (β, θ; t)|| a.s.−→ 0,(2.5)

for d = 0, 1, or 2 and any β in a compact set. Using the strong consistency of θ̂ for

θ0, S
(d)
w (β, θ̂; t)

a.s.−→ s
(d)
w (β, θ0; t) by the continuous mapping theorem, with s

(0)
w (β, θ; t)
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bounded away from zero for all β and θ. Applying the continuous mapping theorem,

followed by arguments similar to those used for Dw
1:N(β), Dw

3:N(β)
a.s.−→ 0 as N −→∞.

Regarding Dw
2:N(β),

∫ τ

0
(β−β0)

′Zi(t)dNi(t) is bounded. By condition (f), pi(θ0) > 0

and hence wi(θ0) is also bounded. Using the SLLN, Dw
2:N(β)

a.s.−→ E
{∫ τ

0
wi(θ0)(β − β0)

′Zi(t)dNi(t)
}

≡ Dw
2 (β). Similarly, Dw

4:N(β)
a.s.−→ E

[∫ τ

0
wi(θ0) log{s(0)

w (β0, θ0; t)/s
(0)
w (β, θ0; t)}dNi(t)

]
≡

Dw
4 (β). Combining results given above regarding Dw

k:N(β) (k = 1, 2, 3, 4), Dw
N(β)

a.s.−→

Dw
2 (β) + Dw

4 (β) ≡ Dw(β), where

Dw(β) = E

[∫ τ

0

wi(θ0)

{
(β − β0)

′Zi(t) + log

(
s
(0)
w (β0, θ0; t)

s
(0)
w (β, θ0; t)

)}
dNi(t)

]
.

Since β falls in a compact set, Br, with Br specifically set such that it contains β0,

then Dw
N(β)

a.s.−→ Dw(β) uniformly on β ∈ Br. In addition, ∂Dw(β)/∂β |β=β0= 0p×1

and ∂2Dw(β)/∂β∂β′ = −Aw(β, θ) is negative definite by condition (e). Therefore,

Dw(β) has a unique maximizer and is maximized at β = β0. Since supβ∈Br
|Dw

N(β)−

Dw(β)| a.s.−→ 0, when N is large enough, Dw
N(β) will also have a unique maximizer.

Then, given that ∂Dw
N(β)/∂β|β=β̂w

= 0p×1, β̂w is the unique maximizer of Dw
N(β).

Setting r arbitrarily small, when N −→∞, β̂w
a.s.−→ β0.

Proof of Theorem 2. Using a Taylor expansion around β = β0, N
1
2 (β̂w − β0) =

Aw
N(β∗, θ̂)

−1
N− 1

2 Uw
N(β0, θ̂) where β∗ lies between β̂ and β0 in Rp. Using (2.5), the

fact that θ̂
a.s.−→ θ0 and β̂w

a.s.−→ β0, the continuous mapping theorem and the SLLN,

Âw(β̂w, θ̂)
a.s.−→ Aw(β0, θ0).(2.6)

Hence N
1
2 (β̂w − β0) = Aw

N(β0, θ0)
−1N− 1

2 Uw
N(β0, θ̂) + op(1). Through the definition of

S
(d)
w (β, θ; t) and with some basic algebra,

Uw
N(β, θ) =

N∑
i=1

∫ τ

0

wi(θ){Zi(t)− Zw(β, θ; t)}dMi(β, θ; t).
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We set Uw
N(β, θ) = Uw

1:N(β, θ) + Uw
2:N(β, θ), where

Uw
1:N(β, θ̂) =

N∑
i=1

∫ τ

0

wi(θ0){Zi(t)− Zw(β, θ̂; t)}dMi(β, θ̂; t)

Uw
2:N(β, θ̂) =

N∑
i=1

∫ τ

0

{
wi(θ̂)− wi(θ0)

}
{Zi(t)− Zw(β, θ̂; t)}dMi(β, θ̂; t).

By the continuous mapping theorem and the strong convergence of θ̂ to θ0,

N− 1
2 Uw

1:N(β0, θ0) = N− 1
2

N∑
i=1

∫ τ

0

wi(θ0){Zi(t)− zw(β0, θ0; t)}dMi(β0, θ0; t) + op(1),

using the fact that

∥∥∥∥∥N− 1
2

N∑
i=1

∫ τ

0

wi(θ0){Zw(β0, θ0; t)− zw(β0, θ0; t)}dMi(β0, θ0; t)

∥∥∥∥∥
P−→ 0p×1,

which can be demonstrated by employing various empirical process results. With re-

spect to Uw
2:N(β0), apply the delta method, use (2.5), followed by a Taylor expansion,

N
1
2 (θ̂ − θ0) = B(θ0)

−1N− 1
2 UL(θ0) + op(1),

Since, by the SLLN, B̂(θ)
a.s.−→ B(θ). Using arguments similar to those in the exam-

ination of N− 1
2 Uw

1:N(β0), replacing θ̂ with θ0 and Zw(β0, θ̂; t) with zw(β0, θ0; t), then

switching the order of summation,

N− 1
2 Uw

2:N(β0) = N− 1
2 Ĝ(β0, θ0)B(θ0)

−1

N∑
i=1

ULi(θ0) + op(1).

Again combining the SLLN and continuous mapping theorem, Ĝ(β0, θ0)
a.s.−→ G(β0, θ0).

Combining results for Uw
1:N(β0) and Uw

2:N(β0),

N− 1
2 Uw

N(β0, θ̂) = N− 1
2

N∑
i=1

ψw
i (β0, θ0) + op(1).

Essentially, Uw
N(β0, θ̂) behaves asymptotically like the sum of independently and iden-

tically distributed mean-zero random vectors, and by Multivariate Central Limit
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Theorem (van der Vaart, 2000), N− 1
2 Uw

N(β0, θ̂)
D−→ N(0p×1, Σw(β0, θ0)). Finally,

we combine the asymptotic distribution of Uw
N(β0, θ̂) and (2.6), through Slutsky’s

Theorem (Sen and Singer, 1993), to complete the proof of Theorem 2.

Proof of Theorem 3. The proof of uniform consistency begins by decomposing

αN(t) = Λ̂w
0 (β̂w, θ̂; t) − Λ0(t) into three parts, αN(t) = α1:N(t) + α2:N(t) + α3:N(t)

with

α1:N(t) = Λ̂w
0 (β̂w, θ̂; t)− Λ̂w

0 (β̂w, θ0; t)

α2:N(t) = Λ̂w
0 (β̂w, θ0; t)− Λ̂w

0 (β0, θ0; t)

α3:N(t) = Λ̂w
0 (β0, θ0; t)− Λ0(t).

Applying a Taylor expansion about θ0,

α1:N(t) = N−1

N∑
i=1

∫ t

0

{
−X ′

ie
−θ′∗Xi

S
(0)
w (β̂w, θ∗; s)

+
wi(θ∗)̂b′(β̂w, θ∗; s)

S
(0)
w (β̂w, θ∗; s)

2

}
dNi(s)(θ̂ − θ0),

where θ∗ lies between θ̂ and θ0 in Rq and b̂(β, θ; t) = N−1
∑N

i=1 Xie
−θ′XiYi(t)e

β′Zi(t).

Under assumptions (a) to (f), Xi, S
(0)
w (β, θ; s), wi(θ) and dNi(s) are all bounded

and S
(0)
w (β, θ; s) is bounded away from 0. Using these results, along with the strong

convergence of θ̂ to θ0, | α1:N(t) | a.s.−→ 0. Similarly, through a Taylor Series expansion

about β0,

α2:N(t) = −
∫ t

0

Z
′
w(β∗, θ0; s)dΛw

0 (β∗, θ0; s)(β̂ − β0),

where β∗ lies between β̂ and β0 inRp. Since the quantities Zw(β∗, θ0; s) and dΛw
0 (β∗, θ0; s)

are bounded, and since β̂w
a.s.−→ β0, applying the SLLN to α2:N(t), it follows that

| α2:N(t) | a.s.−→ 0.

The last component, α3:N(t), can be rewritten as

N−1
∑N

i=1

∫ t

0
S

(0)
w (β0, θ0; s)

−1
wi(θ0)dMi(β0, θ0; s). By the Uniform Strong Law of Large
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Numbers (USLLN; Pollard, 1990), N−1
∑N

i=1

∫ t

0
dMw

i (β0, θ0; s)
a.s.−→ 0 for t ∈ [0, τ ].

As N −→ ∞, S
(0)
w (β0, θ0; s)−→s

(0)
w (β0, θ0; s) which is bounded away from 0. There-

fore, | α3:N(t) | a.s.−→ 0. Combining results for α1:N(t), α2:N(t) and α3:N(t) and the

triangle inequality,

sup
t∈[0,τ ]

| Λ̂w
0 (β̂w, θ̂; t)− Λ0(t) | a.s.−→ 0.

Proof of Theorem 4. Using the SLLN and the almost sure convergence of b̂(β, θ; s)

to b(β, θ; s),

N−1

N∑
i=1

∫ t

0

{
−X ′

ie
−θ′XidNi(s)

S
(0)
w (β, θ; s)

+
wi(θ)dNi(s)̂b(β, θ; s)

S
(0)
w (β, θ; s)

2

}
a.s.−→ k(β, θ; s),

where k(β, θ; s) is as defined in Theorem 4. Then,

N
1
2 α1:N(t) = k′(β̂w, θ̂; t)N

1
2 (θ̂ − θ0) + op(1)

= N− 1
2

N∑
i=1

{
k′(β0, θ0; t)B(θ0)

−1ULi(θ0)
}

+ op(1).

Using arguments similiar to those in Theorem 3 for α2:N(t), − ∫ t

0
Zw(β, θ; s)dΛ̂w

0 (β, θ; s)
a.s.−→

h(β, θ; t) as N −→∞. Therefore, it can be shown that

N
1
2 α2:N(t) = h′(β∗, θ0; t)N

1
2 (θ̂ − θ0) + op(1)

= h′(β0, θ0; t)B(θ0)
−1N− 1

2

N∑
i=1

ψw
i (θ0) + op(1).

Regarding α3:N(t),

N
1
2 α3:N(t) = N− 1

2

N∑
i=1

∫ t

0

wi(θ0)dMi(β0, θ0; s)

S
(0)
w (β0, θ0; s)

= N− 1
2

N∑
i=1

∫ t

0

s(0)
w (β0, θ0; s)

−1
wi(θ0)dMi(β0, θ0; s) + op(1).

where the last equality can be shown using the strong convergence of S
(0)
w (β0, θ0; s)

to s
(0)
w (β0, θ0; s), the continuous mapping theorem and the USLLN.
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Combining the above results, N
1
2 αN(t) is the sum of independent identically dis-

tributed mean-zero random variables. When N is large, by Multivariate CLT, the

finite-dimensional distributions of N
1
2 αN(t) converge to those of a zero-mean mul-

tivariate normal with covariance Ω(s, t) = E{φi(β0, θ0; s)φi(β0, θ0; t)}. Through the

monotonicity of the various components of ψi(β0, θ0; t), it can be demonstrated that

the ψi(β0, θ0; t) are manageable (Pollard, 1990) and hence that N
1
2 αN(t) is tight.

Applying the Functional CLT (Pollard, 1990), N
1
2 αN(t) converges weakly to a zero-

mean Gaussian process with covariance function Ω(s, t).
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CHAPTER III

Evaluating Bias Correction in Weighted Proportional
Hazards Regression

Abstract: Often in observational studies of time to an event, the study population

is a biased (i.e., unrepresentative) sample of the target population. In the presence

of biased samples, it is common to weight subjects by the inverse of their respective

selection probabilities. Pan and Schaubel (2007) recently proposed inference proce-

dures for an inverse selection probability weighted (ISPW) Cox model, applicable

when selection probabilities are not treated as fixed but estimated empirically. The

proposed weighted regression parameter estimator is consistent for the target popu-

lation parameter, while the unweighted estimator converges to a modification of the

true value; the modification resulting from the potentially biased sampling mecha-

nism. Similar statements apply to the weighted and unweighted cumulative hazard

estimators. Although parameter estimation is consistent, computation is more in-

tensive than that for an unweighted model. In this article, we propose methods for

evaluating bias in the unweighted partial likelihood and Breslow-Aalen estimators.

Asymptotic properties of the proposed test statistics are derived. The finite-sample

significance level and power are evaluated through simulation. The proposed meth-

ods are then applied to data from a national organ failure registry to evaluate the

bias in a post kidney transplant survival model.
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Key words and phrases: Confidence bands; Inverse-selection-probability weights; Ob-

servational studies; Proportional hazards model; Selection bias; Wald test.

3.1 Introduction

In observational studies of time to an event, we often observe partial information.

That is, some information is unavailable for all subjects sampled from the target pop-

ulation. There are several possibilities for the estimation of covariate effects in this

setting. One method is a complete-case analysis, which assumes that the observed

subjects are a representative sample of the target population; “representative” in the

sense that the relationship of interest is not systematically distorted in the sample

compared to that in the target population. In survival analysis, if there exists some

auxiliary factor which is correlated with the covariate of interest and affects the haz-

ard function and selection probability, the coefficient estimates for the covariate of

interest (i.e., estimated without considering the auxiliary factor) will be systemat-

ically different in the selected sample and target population. Since our goal is to

estimate covariate effects in the target population, estimates obtained based on only

the selected sample are biased. We hereafter refer to a factor inducing such selection

bias as a biasing factor.

We consider the data structure where a potentially biased sample is selected from a

representative sample of the target population. In the presence of a biased sample, an

alternative to a complete-case analysis is to weight each subject by the inverse of their

probability of being selected into the sample, in order to reflect the composition of

the target population. The inverse-selection-probability-weighting (ISPW) method

was originally proposed by Horvitz and Thompson (1952). Binder (1992), Lin (2000)

and Boudreau and Lawless (2006) extended the Horvitz-Thompson method to the
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hazard regression setting in the context of large-scale surveys or designed experi-

ments, where selection probability for each subject is set beforehand and thus can

be treated as known. However, in many practical applications, the probability of be-

ing selected is not known. If appropriate auxiliary data are available (in particular,

pertaining to the biasing factor) for the representative sample, selection probability

may be estimated. Pan and Schaubel (2007) proposed a weighted proportional haz-

ards model with empirical ISPW. Specifically, selection probabilities are estimated

through a logistic model fitted to the representative sample of the underlying tar-

get population, assuming the availability of auxiliary data representing the biasing

factor. Parameter estimators are consistent for their corresponding underlying tar-

get population quantities. In addition, since the estimated weights are, essentially,

trained by the data, efficiency is gained relative to estimators obtained by treating

the weights as if they were known. The elimination of bias and increase in precision

come at the price of more complex modeling, longer computing time and the inability

to use commercially available software packages directly. The methods proposed in

Pan and Schaubel (2007) are necessary if and only if the potential biasing factors

are (i) correlated with the covariate of interest (ii) independently affect the hazard

function (iii) have conditional distributions (given the model covariates) which are

different in the selected sample and target population. In the absence of biased selec-

tion, practitioners would prefer the simpler unweighted method. Whether or not one

employs the weighted method depends on whether the criteria for biased selection

are satisfied and the degree of distortion in the relationships of interest in the biased

sample relative to that in the target population.

No method is currently available to identify cases where the IPSW method is

necessary and, hence, when its advantages outrun the price of computing. In this ar-
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ticle we propose statistics calculated as the scaled difference between the unweighted

and empirically weighted estimates to measure the degree of bias. A Wald-type test

is proposed for the regression parameter, while point-wise and process-based tests

are developed for the cumulative baseline hazard. The unweighted estimators de-

scribe the relationship under study in the possibly biased sample, while the ISPW

counterpart reflects the corresponding relationship applicable to the target popula-

tion. Using the proposed tests, practitioners can make informed choices between the

weighted and unweighted methods using formal procedures.

The proposed tests are motivated by kidney transplant data. At the time of this

report, work is well underway to restructure the kidney allocation system. Currently,

deceased-donor organs are allocated primarily by waiting time. Under a newly pro-

posed allocation system, organs would be allocated based on the difference between

predicted post-transplant and wait-list survival. Hence, there is great need for an

accurate post-transplant survival model. Note, however, that the model will be ap-

plied to wait-listed patients, not transplanted patients. That is, the model will be

used to predict the post-transplant lifetime of a wait-listed patient with a given co-

variate pattern; as opposed to patients with the same covariate pattern who were

already selected (possibly through a biased selection mechanism) for transplanta-

tion. Therefore, the target population includes patients on the wait-list, not patients

already selected off the wait-list to receive a transplant.

Naturally, not all wait-listed patients will receive a transplant. If we desire to

develop a model to apply to wait-listed candidates, post-transplant information is

missing for candidates who were not transplanted. The goal is to estimate the effects

of patient characteristics on the post-transplant hazard. Patients on the kidney wait-

ing list are not randomly selected for transplantation. Although patients on dialysis



46

who are not considered suitable candidates for transplantation are simply not placed

on the wait list, the screening process does not end with the decision of whether or

not to wait-list a patient. Certain patients are systematically bypassed on the list

since they are felt to be inferior candidates for kidney transplantation, often due to

the progression of concomitant illnesses which occur or further develop after the time

of wait-listing. Therefore, patients transplanted with a specific covariate pattern are

generally thought not to be representative of patients on the waiting list with the

same covariate pattern. Hospitalization data represent a rich source of auxiliary data

which could potentially account for the residual difference between patients selected

for transplantation and those left on the waiting list. At the Scientific Registry of

Transplant Recipients (SRTR), it is possible to merge the wait-list/transplant data

obtained from the United Network for Organ Sharing (UNOS) and the hospital-

ization data obtained from the Centers for Medicare and Medicaid Services (CMS).

Therefore, we are able to estimate selection probabilities, treating the hospitalization

information as the potential biasing factor. It is important to note that UNOS will

not have real-time access to hospitalization histories, meaning that a post-transplant

survival model which used hospitalization history as covariates would be of no value.

Our objective is to evaluate the degree of bias in a model which is intended to apply to

wait-listed patients but is fitted only to transplanted patients and has no adjustment

for the potentially biased selection. We can fit the estimated ISPW proportional

hazards model of Pan and Schaubel (2007), using hospitalization history to predict

transplant probabilities. The issue of whether or not the weighted model is necessary

will be addressed by our proposed tests.

The remainder of this report is organized as follows. In Section 2, we propose test

statistics for the regression parameter and cumulative baseline hazard and describe
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their asymptotic properties (proved in the Web Appendix). In Section 3, the em-

pirical significance level and power of the proposed test for the regression parameter

are evaluated by simulation studies. In Section 4, each of the proposed procedures

are applied to the kidney transplant data from a national organ failure registry. The

proposed methods are further discussed in Section 5.

3.2 Proposed Methods and Asymptotic Properties

3.2.1 Set-up and Notation

We start by establishing the necessary notation. First, there are N subjects in

the representative sample from the target population. We let Ii (0, 1) be a sampling

indicator; i.e., Ii = 1 if the ith subject is selected from the representative sample into

the possibly biased study sample. In total there are n =
∑N

i=1 Ii subjects selected.

For subject i with event time Ti and censoring time Ci, we define T̃i = min(Ti, Ci),

∆i = I(Ti≤Ci), Yi(t) = I(T̃i ≥ t), Ni(t) = I(T̃i ≤ t, ∆i = 1) =
∫ t

0
dNi(s); with

dNi(t) = Ni(t+dt)−Ni(t), where τ is a prespecified constant satisfying P (T̃i > τ) > 0

and usually set to the end of the study to include all event times. The proportional

hazards model applicable to the target population is as follows,

λiT (t) = λ0T (t)eβ′T Zi(t),(3.1)

where λ0T (t) is an unspecified baseline hazard and Zi(t) is a p× 1 covariate vector.

The proportional hazards model which applies to the selected sample is given by

λiS(t) = λ0S(t)eβ′SZi(t),(3.2)

where λ0S(t) and βS are the possibly biased version of the parameters of interest.

Note that proportionality is assumed for both model (4.1) and model (3.2), but the

constants of proportionality are potentially different, as too are the baseline hazards.
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The hypothesis tests of interest in this report are (i) H0: βT = βS vs H1: βT 6= βS

and (ii) H0: λ0T (t) = λ0S(t) vs H1: λ0T (t) 6= λ0S(t) for t ∈ [0, τ ].

The selection probabilities are estimated through a logistic model:

pi(θ0) =
eθ′0Xi

1 + eθ′0Xi
,

where θ0 is the true parameter vector and Xi is the corresponding q × 1 vector of

predictors. The weight is then given by wi(θ0) = Ii pi(θ0)
−1. Ideally, Xi is the set of

all biasing factors; that is, all factors that are predictive of selection probability and

survival time and correlate with the covariates of interests. If unmeasured biasing

factors exist, consistent estimators of θ0 and hence βT are unobtainable.

3.2.2 Estimation: βS and βT

In addition to the regularity conditions listed in the Web Appendix A, the ISPW

method also assumes that Zi ∪ Xi consists of all factors affecting λiT (t); that is,

the “no-unmeasured-confounders” assumption. In addition, we assume that Ci is

conditionally independent of Ti given Zi(t) and Xi; specifically,

lim
δ→0

1

δ
P (t ≤ Ti < t + δ|Ti ≥ t, Ci ≥ t, Zi(t), Xi) = lim

δ→0

1

δ
P (t ≤ Ti < t + δ|Ti ≥ t, Zi(t), Xi).

The regression parameter estimator for model (3.2), denoted by β̂S, is the solution

to the partial likelihood (Cox 1975) score equation U(β) = 0, where

U(β) =
N∑

i=1

∫ τ

0

Ii{Zi(t)− Z(t; β)}dNi(t).(3.3)

Andersen and Gill (1982) proved that n1/2(β̂S − βS) converges asymptotically to a

zero-mean Gaussian process with covariance consistently estimated by Â(β̂S)−1. In

addition, the cumulative baseline hazard, Λ0S(t) =
∫ t

0
λ0S(u)du, can be consistently

estimated by the Breslow-Aalen estimator,

Λ̂0S(t; β̂S) = n−1

N∑
i=1

∫ t

0

IiS
(0)(s; β̂S)

−1
dNi(s).
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The regression parameter estimator for the ISPW proportional hazards model is

the root of the weighted score equation, Uw(β, θ̂) = 0, where

Uw(β, θ) =
N∑

i=1

∫ τ

0

wi(θ){Zi(t)− Zw(t; β, θ)} dNi(t).(3.4)

As proved in Pan and Schaubel (2007), the weighted estimator β̂T is strongly consis-

tent for βT , while N
1
2 (β̂T −βT ) follows an asymptotic zero-mean normal distribution

with a covariance matrix that can be consistently estimated by Âw(β̂T , θ̂)
−1

Σ̂w(β̂T , θ̂)Âw(β̂T , θ̂)
−1

,

where

Âw(β, θ) = N−1

N∑
i=1

∫ τ

0

{Zi(t)− Zw(t; β, θ)}⊗2wi(θ)Yi(t)e
β′Zi(t)dΛ̂w

0 (t; β, θ)

Σ̂w(β̂T , θ̂) = N−1

N∑
i=1

ψ̂w
i (β̂T , θ̂)

⊗2

ψ̂w
i (β, θ) =

∫ τ

0

wi(θ){Zi(t)− Zw(t; β, θ)}dM̂i(t; β, θ)− Ĝ(β, θ)B̂(θ)−1ÛLi(θ)

dM̂i(t; β, θ) = dNi(t)− Yi(t)e
β′ZidΛ̂w

0 (t; β, θ)

Ĝ(β, θ) = N−1

N∑
i=1

∫ τ

0

{Zi(t)− Zw(t; β, θ)}X ′
ie
−θ′XidM̂i(t; β)

B̂(θ) = −N−1∂UL(θ)

∂θ′
= N−1

N∑
i=1

pi(θ){1− pi(θ)}X⊗2
i ,

where a⊗2 = aa′.

3.2.3 Test: Regression Parameter

The null hypotheses of interest are that the parameter estimators based on the

potentially biased sampling design have the same limiting value as the corresponding

values in the target population. These two effects will be different and hence the un-

weighted estimator will be biased if and only if the following conditions hold. First,

there exists some biasing factor correlated with the effect of interest and not included

in the proportional hazards model. Second, this factor affects the hazard function.
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Third, the biasing factor affects selection probability. Testing the simultaneous exis-

tence of above three conditions is generally complicated and may in practice be quite

tedious. For example, let Xi = (X ′
i1, X

′
i2)

′, where Xi1 is captured by Zi in the fitted

Cox model and Xi2 is not. Correspondingly, we partition θ0 as (θ′01, θ
′
02)

′. To test

each component of the biasing mechanism, one would test (i) θ01 = 0, (ii) β2 = 0

in the model λi(t) = λ0T (t)eβ′T Zi+β′2Xi2 and (iii) test the hypothesis of zero pairwise

association between each element of Zi and each element of Xi2. It is possible that

several of the hypotheses in (i), (ii) or (iii) could be rejected, but that the actual bias

in β̂S is negligible. Conversely, it is also possible that only a small minority of the

hypotheses are rejected, but that bias in at least some elements of β̂S is substantial.

The bottom line is that explicitly testing the conditions under which bias in β̂S can

occur is cumbersome and impractical if even a moderate number of covariates are

involved. Similar arguments could apply to testing H0: Λ0T (t) = Λ0S(t) for t ∈ (0, τ ],

if testing were to proceed through first principles. Moreover, additional steps would

be needed to calculate the overall significance level of the three sets of tests.

Here, we propose a single statistic to examine the degree of bias in β̂S without

appealing to first principles. The proposed statistic is based on the quantity,

Dj = c′j(βT − βS),

where cj is a p× 1 vector with p− 1 elements equal to 0 and the jth element equal

to 1. The quantity Dj reflects the degree of selection bias in the jth element of β̂S.

Typically, the null hypothesis would be given by H0: Dj = 0 with alternative H1:

Dj 6= 0, although a one-sided alternative hypothesis may be indicated depending on

the nature of the specific application. The test statistic is given by D̂2
j/V̂ar(D̂j), or by

D̂j/ŜE(D̂j) for single-sided H1. In the remainder of this subsection, we demonstrate

that D̂j/ŜE(D̂j) follows a standard normal distribution asymptotically. As such,
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D̂2
j/V̂ar(D̂j) would follow a χ2

1 distribution as n → ∞. Further, if it was desired to

test two or more elements of βS for bias simultaneously, one could use a modification

of the proposed statistic D = C ′(βT − βS), where C is a p×h matrix of constants

(typically 0’s and 1’s) defined to extract the specific contrasts of interest. Each of

the h columns for C is a vector for one parameter being tested simultaneously. For

example, if we want to test the ith and jth parameter at the same time, C = ci||cj,

where || denotes horizontal concatenation. The test statistics could be given by

D̂′V̂ar(D̂)−1D̂, which follows a χ2
h distribution under the null as n →∞.

In order to derive the large-sample properties of D̂, we assume the regularity

conditions listed in the Web Appendix A.

Theorem 1. Under conditions (a) to (f), D̂j is a consistent estimator of D; that is,

D̂j
a.s.−→ Dj, while n

1
2 (D̂j −Dj) is asymptotically zero-mean normal with covariance

matrix

pc′jA
w(βT , θ0)

−1Σw(βT , θ0)A
w(βT , θ0)

−1cj + c′jA(βS)−1Σ(βS)A(βS)−1cj

− 2pc′jA(βS)−1Σβ(βS, βT , θ0)A
w(βT , θ0)

−1cj, where p≡E(n/N).

The consistency of D̂j is proved using the consistency of β̂S (Andersen and Gill

1982) and βT (Pan and Schaubel 2007) along with the continuous mapping theorem.

To derive the covariance matrix of n
1
2 (D̂j − Dj), the difference is decomposed into

two parts,

n
1
2 (D̂j −Dj) = p

1
2 N

1
2 c′j(β̂T − βT )− n

1
2 c′j(β̂S − βS).(3.5)

Note that, because we assume pi(θ) > 0 for i = 1, . . . , N , the average sampling

probability, p, converges to a constant between 0 and 1 and n, N go to∞ at the same

rate. The variances of N
1
2 c′jβ̂T and n

1
2 c′jβ̂S are the same as those of N

1
2 c′j(β̂T−βT ) and

n
1
2 c′j(β̂S − βS), and were derived by Pan and Schaubel (2007), along with consistent
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estimators. The covariance between N
1
2 c′jβ̂T and n

1
2 c′jβ̂S can be written out in terms

of the covariance between N− 1
2 c′jA

w(βT , θ0)
−1Uw(βT , θ0) and n−

1
2 c′jA(βS)−1U(βS).

Specifically,

Cov(N
1
2 c′jβ̂T , n

1
2 c′jβ̂S) = p

1
2 c′jA(βS)−1Σβ(βS, βT , θ0)A

w(βT , θ0)
−1cj,

where

Σβ(β1, β2, θ) = E{ψi(β1)ψ
w
i (β2, θ)

′}.

Here, A(βS), Aw(βT , θ0), ψi(βS) and ψw
i (βT , θ0) are defined in the calculation of the

covariance matrix of β̂S and β̂T . They can each be estimated by replacing βS, βT ,

Λ0S, Λ0T and θ0 with their sample estimates. The quantity c′jΣβ(βS, βT , θ0)cj equals

the covariance between N− 1
2 c′jUw(βT , θ0) and n−

1
2 c′jU(βS). The (j, k) element in the

matrix Σβ(βS, βT , θ0) is the covariance between the jth element of N− 1
2 Uw(βT , θ0)

and the kth element of n−
1
2 U(βS). Both the weighted (3.4) and unweighted score

functions (3.3) are zero at the estimated parameter values β̂S, β̂T and θ̂. Furthermore,

when N →∞, each can be written as a sum of independent contributions from each

subject of the selected sample. As such, an estimator of the covariance between the

elements of N− 1
2 Uw(βT , θ0) and the elements of n−

1
2 U(βS) is the average of the outer

product of the subject-specific contributions to the weighted score (3.4) function and

unweighted score function (3.3). As such, the matrix Σβ(βS, βT , θ0) can hence be

consistently estimated as

Σ̂β(β̂S, β̂T , θ̂) = n−1

N∑
i=1

Iiψ̂i(β̂S)ψ̂w
i (β̂T , θ̂)′.

3.2.4 Estimation: Λ0S(t) and Λ0T (t)

Another quality of interest is the baseline hazard function, which is best viewed

as a process over time. We use Λ0T (t) to denote the baseline hazard function in the
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target population, which is consistently estimated by Λ̂w
0 (t; β̂T , θ̂), where

Λ̂w
0 (t; β, θ) = N−1

∑N
i=1

∫ t

0
wi(θ)S

(0)
w (s; β, θ)

−1
dNi(s). A modified version of Λ0T (t) is

Λ0S(t) with the modification resulting from the potentially biased sampling mecha-

nism.

The unweighted version of the baseline hazard function estimator is Λ̂0(t; β̂S)

where

Λ̂0(t; β) = n−1

N∑
i=1

Ii

∫ t

0

S(0)(s; β)
−1

dNi(s).

In the absence of biasing factors, Λ̂0(t)
a.s.−→ Λ0T (t) uniformly in t ∈ [0, τ ] (Fleming

and Harrington, 1991). In the presence of biasing factors, Λ̂0(t)
a.s.−→ Λ0S(t) 6= Λ0T (t).

3.2.5 Test: Cumulative Baseline Hazard

The quantity ∆(t) = Λw
0 (t) − Λ0(t) reflects the magnitude of the bias in the un-

weighted baseline hazard function estimator. We summarize the essential asymptotic

properties of an estimator of this quantity, ∆̂(t) = Λ̂w
0 (t) − Λ̂0(t), in the following

two theorems.

Theorem 3. Under conditions (a) to (f), ∆̂(t) converges uniformly to ∆(t) as n →∞

for t ∈ [0, τ ].

The consistency of Λ̂0(t; β̂S) to Λ0S(t) for t ∈ (0, τ ] can be demonstrated by

combining the Uniform Strong Law of Large Numbers (USLLN) and the Martin-

gale Central Limit Theorem (Fleming and Harrington 1991). The consistency of

Λ̂w
0 (t; β̂T , θ̂) for Λ0T (t) is proved in Pan and Schaubel (2007) through the USLLN

and various empirical process results.

Theorem 4. Under conditions (a) to (f), n
1
2{∆̂(t) − ∆(t)} converges weakly to a
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zero-mean Gaussian process with covariance function:

pE{φw
i (s; βT , θ0)φ

w
i (t; βT , θ0)}+ E{φi(s; βS)φi(t; βS)}

− pCov{N 1
2 Λ̂w

0 (s; β̂T , θ̂), n
1
2 Λ̂0(t; β̂S)} − pCov{N 1

2 Λ̂w
0 (t; β̂T , θ̂), n

1
2 Λ̂0(s; β̂S)},

for (s, t) ∈ (0, τ ]× (0, τ ]

Since p = E(n/N), it would be exchangeable if we put N
1
2 as the scale factor

instead of n
1
2 . The proof is similar to that of Theorem 2, in the sense that we

decompose n
1
2{∆̂(t) − ∆(t)} into p

1
2 N

1
2{Λ̂w

0 (t; β̂T , θ̂) − Λ0T (t)} and n
1
2{Λ̂0(t; β̂S) −

Λ0S(t)}. Through the Martingale Central Limit Theorem (Andersen and Gill 1982,

Fleming and Harrington 1991), we obtain

Cov(n
1
2 Λ̂0(s; β̂S), n

1
2 Λ̂0(t; β̂S)) = E{φi(s; βS)φi(t; βS)},

where

φi(t; β) = −
∫ t

0

z′(s; β)dΛ0S(s)(t; β)A(β)−1ψi(β) +

∫ t

0

dMi(s; β, θ)

s
(0)
w (s; β, θ)

.

It is proved in Pan and Schaubel (2007) that

Cov(N
1
2 Λ̂w

0 (s; β̂T , θ̂), N
1
2 Λ̂w

0 (t; β̂T , θ̂)) = E{φw
i (s; βT , θ0)φ

w
i (t; βT , θ0)}.

The covariance between N
1
2 Λ̂w

0 (s; β̂T , θ̂) and n
1
2 Λ̂0(s; β̂S) results from the subject-

specific contributions to each of the weighted and unweighted cumulative baseline

hazard functions such that

Cov(N
1
2 Λ̂w

0 (s; β̂T , θ̂), n
1
2 Λ̂0(t; β̂S)) = p

1
2 E{φw

i (s; βT , θ0)φi(s; βS)}.

This covariance function can be consistently estimated by replacing all the unknown

quantities by their empirical counterparts.
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To address the question of whether or not the two samples are different in terms

of the baseline hazards at a pre-specified time point, t0, a pointwise confidence in-

terval for ∆(t0) can be calculated using the previously derived variance estimators.

This interval is useful strictly when there are pre-specified time points of particular

clinical interest. Another more general question is whether or not the two baseline

hazard functions are equal over the entire follow up period; i.e., H0 : Λ0T (t) = Λ0S(t)

for t ∈ (0, τ ], implying the construction of a confidence band. Lin, Fleming and

Wei (1994) provide a simulation-based method to estimate a confidence band for

Ŝ0(t; β̂) = exp{−Λ̂0(t; β̂)} based on an unweighted Cox model. We extend this gen-

eral approach to our setting to generate the distribution of δ̂ ≡ supt∈[0,τ ] |n
1
2{∆̂(t)−

∆(t)}Y (t)|. We weight the δ̂ values at each time point by Y (t) =
∑N

i=1 IiYi(t), the

number of subjects at risk. Essentially, a zero-mean Gaussian process with the same

covariance function as n
1
2 ∆̂(t) is simulated to approximate the distribution of n

1
2 ∆̂(t).

Specifically, we replace (n/N)
1
2 N− 1

2 ψ̂w
i (t; β̂T , θ) − n−

1
2 ψ̂i(t; β̂S), the contribution to

n
1
2{∆̂(t)−∆(t)} from each subject, with {(n/N)

1
2 N− 1

2 ψ̂w
i (t; β̂T , θ)−n−

1
2 ψ̂i(t; β̂S)}Hi,

where Hi (i = 1, · · · , N) are independent standard normal variables. The simu-

lated {(n/N)
1
2 N− 1

2 ψ̂w
i (t; β̂T , θ)−n−

1
2 ψ̂i(t; β̂S)}Hi are still asymptotically independent

among all subjects. Taking the sum of all subjects at each time point, we obtain

n
1
2{∆̃(t)−∆(t)} = (n/N)

1
2 N− 1

2

N∑
i=1

ψ̂w
i (t; β̂T , θ)Hi − n−

1
2

N∑
i=1

Iiψ̂i(t; β̂S)Hi

empirically. The aggregate difference in the baseline hazard estimators,

δ̃ = supt∈[0,τ ] |n
1
2{∆̃(t) − ∆(t)}Y (t)|, has the same covariance matrix as the one

proposed for δ̂ on [0, τ ]. The supremum is taken over all time points at which an

event is observed since δ̃ doesn’t change between observed event times. The above

simulation, with different sets of Hi (i = 1, · · · , N), is iterated a large number of

times (e.g. 500). The obtained set of 500 δ̃ values, one from each iteration, form
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an empirical sample of δ̃’s distribution. Finally, an approximate (1 − α) confidence

band for ∆(t) on [0, τ ] is ∆̂(t)±n−
1
2 q̂α/Y (t), where q̂α denotes the empirical 100(1−

α) quantile satisfying P{δ̃ > q̂α} = α. The applicability of this confidence band

procedure in finite samples has been validated in the unweighted proportional hazards

setting through numerical studies by Lin, Fleming and Wei (1994).

3.3 Simulation Study

We simulated three covariates Zi1, Zi2 and Zi3, where Zi1 is distributed as Bernoulli(0.5),

Zi2 is distributed as N(0, 25) and Zi3 is distributed as Uniform(0, 4). The event time,

Ti, follows an exponential distribution with hazard λi(t) = λ0e
β′0Zi , where λ0 = 0.02

and the vector of coefficients is β′0 = (β1, β2, β3) = (0.5, 0.1, 1.0). The censoring time,

Ci, is uniform on (0, 40) such that the corresponding censoring percentage is approx-

imately 20%. The representative samples (before selection) have sizes ranging from

N = 100 to N = 1000, while the biased samples are created by selecting various

percentages of subjects from the various Zi1 and Zi3 combinations. Specifically, sub-

jects with Zi1 = 0 are always selected; for subjects with Zi1 = 1, probability of being

included in the study sample depends on Zi3 with constant selection probabilities

across [0, 1], (1, 2], (2, 3], (3, 4]. Each data configuration is iterated 1, 000 times.

Our goal is to estimate the regression coefficients when we fit a model with Zi1 and

Zi2 only, such that the Cox model of interest is given by λi(t) = λ0(t)e
β1Zi1+β2Zi2 . The

weights are estimated through the following logistic model, log{pi(θ0)/(1−pi(θ0))} =

θ′0Xi, where Xi = (Zi1, Zi3)
′. Here, Zi3 works as a biasing factor, and the marginal

effects of Zi1 over Zi3 in the target population and in the selected sample will be

different in the presence of biasing factors. Thus, fitting an unweighted Cox model

without Zi3 could potentially introduce bias in estimating the marginal regression
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coefficients for Zi13. The proposed difference D̂1 is calculated by taking difference

between β̂1T and β̂1S from the weighted and unweighted proportional hazards models,

respectively. The variance of D̂1 is estimated using the formula derived in Theorem 3

and the proposed test statistic is computed. The hypothesis H0: βT1 = βS1 is tested

against H1: βT1 6= βS1.

The performance of the D̂ statistic under H0 is evaluated in Table 1. The quantity

E(n) is the expected sample size after selection from the representative sample of size

N . Selection probability is equal across all levels of Zi3. That is, all subjects with

Zi1 = 0 have selection probability of 1; all subjects with Zi1 = 1, regardless of Zi3

values, have selection probability of 0.25 in row 1, 4 and 7; 0.5 in rows 2, 5, 8; 0.75 in

rows 3, 6, 9. Although Zi3 affects λi(t), it is not correlated with the factor of interest,

Zi1, nor does it predict selection probability. Therefore, the regression coefficient,

β1T , from the target population and β1S from the selected sample are equal. For

each data configuration, the unweighted and weighted β1 estimates are obtained,

with their average difference, Ê(D̂1), listed in column 5. We also list the empirical

standard deviation (ESD) of D̂ in column 6. Two sets of variance estimators are

calculated. In column 7 and 8, the estimated weights are inappropriately treated as

fixed. Ignoring the extra variance induced by the estimation of the weights leads to

incorrect asymptotic standard errors (ASE) and empirical significance levels (ESL)

(i.e., artificially low ASEs and high ESLs). In columns 8 and 9, the variance estimator

is based on Theorem 2. The ASEs using our proposed variance estimators are very

close to the corresponding ESDs and the ESLs are always close to the nominal level

of 5%, even when a relatively low percentage of subjects gets sampled.

We also evaluated the power of the proposed test under various departures from

H0: β1T = β1S. We set up different sampling percentages for subjects with different
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wi(θ̂) treated wi(θ̂) treated
as estimated as fixed

row N pi(θ0) E(n) Ê(D̂) ESD ASE ESL ASE ESL

1 100 0.25 62.5 -0.008 0.224 0.201 2.1% 0.112 28.4%
2 0.50 75 0.001 0.119 0.118 3.1% 0.051 38.3%
3 0.75 87.5 -0.003 0.064 0.065 3.4% 0.024 50.2%

4 500 0.25 312.5 -0.003 0.085 0.087 3.6% 0.029 55.3%
5 0.50 375 -0.001 0.047 0.046 4.0% 0.011 66.0%
6 0.75 437.5 0.000 0.026 0.026 4.8% 0.005 77.4%

7 1000 0.25 625 0.000 0.058 0.059 4.3% 0.015 63.5%
8 0.50 750 -0.001 0.032 0.033 4.4% 0.006 72.6%
9 0.75 875 -0.000 0.018 0.019 3.8% 0.002 80.0%

pi(θ0) = P (Ii = 1|Zi1 = 1, Zi3 ∈ (0, 4])

ESD = empirical standard deviation

ASE = average asymptotic standard error

ESL = empirical significance level.

Table 3.1: Simulation Results: Performance of test for regression parameter under the null

Zi3 levels. The power is consistently high (and near 100%) for settings with moderate-

size selected sample. The high power of the test, in part, results from the high

correlation between β̂T and β̂S, since the same data set is used in calculating both

estimators.

An important factor that affects the power of our proposed test is the size of the

selected sample. The power is poor when the representative sample before selection

is small or when the representative sample is moderate-size but the biased sample is

small. Figure 1 shows the power when the expected sample size of the potentially

biased sample increases from 10 to 90 with the same sampling scheme. With mod-

erate sampling probabilities (0.4, 0.2, 0.16, and 0.04 for increasing Zi3 levels), the

power increases from 13.5% with original sample size 100 to 95.7% when the size

before sampling is 500 and plateaus close to 100% thereafter.

Covariate measurement error reduces the power of the proposed test to detect

selection bias, as shown by our simulation results. In the data configuration described

in Section 4 with biased selection for different levels of Zi3 (pi(θ0) = 1, 0.5, 0.4, 0.1
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Figure 3.1: Simulation Results: Power of proposed test of H0: β1T = β1S ; note n =
∑N

i=1 Ii.
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Figure 3.2: Simulation Results: Effect of measurement error on power of proposed test of H0:
β1T = β1S .

for increasing Zi3 levels), independent Normal(0, 3) random errors are added to some

Zi3 while all Zi3 values with or without errors remain bounded within [0, 4]. When

the percentage of Zi3 with measurement errors increases, the power of our proposed

test drops from 100% to 15.9% (Figure 2).

3.4 Application to Kidney Transplant Data

The target population consists of all patients wait-listed for primary kidney trans-

plantation in the U.S.. Naturally, this hypothetical population is infinite. A repre-

sentative sample was obtained by selecting a cross-section of all patients active on

the wait-list as of January 1, 2000. In total, there were 13, 627 candidates on the
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waiting list that day. Candidates under age 18 are excluded. A five-year time period

(01/01/2000 − 12/31/2004) was chosen over which kidney transplants among the

cross-section subjects were observed. The decision for using a duration of five years

can be justified by the plot of the cumulative incidence of transplantation (Web Fig-

ure 1), treating death and removal from the wait-list as competing risks (Kalbfleisch

and Prentice 2002); Since the curve plateaus after approximately five years. On

December 31, 2004, each patient had potential observation time on wait-list of at

least five years. Those who did not receive a transplant either died or were removed

from the waiting list due to illness or recovery of native renal function. Among the

representative sample of 13, 627 patients, 6, 425 (47%) received a kidney transplant.

The transplanted patients form the selected and potentially biased sample.

Demographic and clinical data on donors and recipients, dates of graft failure

and death where applicable, as well as various clinical measures, were obtained from

the Scientific Registry of Transplant Recipients (SRTR) and collected by the Organ

Procurement and Transplant Network (OPTN). The potential biasing factors under

consideration are represented in aggregate by the hospitalization history. For exam-

ple, it is suspected that patients with fewer hospitalizations are preferred candidates

for kidney transplantation, even after conditioning on all the covariates included in

the proportional hazards model. The frequency and length of hospitalization is also

correlated with many patient comorbidities, as well as the post-transplant mortality

hazard.

Note that adjusting for hospitalization history through covariates in the post-

transplant model is not an attractive option based on practical considerations. Specif-

ically, hospitalization information on transplant candidates will not be available to

UNOS at the time when an organ is to be allocated and hence when candidates

must be ranked. The SRTR has access to both the OPTN (wait-list and transplant)

and CMS (hospitalization history) databases and can link the sources by patient for

those who pay for their health care expenses via Medicare. However, UNOS will not

have access to updated CMS data for the purposes of ranking candidates.

We model the probability of being selected to receive a kidney transplant using
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a binary end point: transplanted within five years (0, 1). Implicitly, we assume that

the θ̂ estimated through this approach converges to the θ0 which governs transplant

probability. In addition to hospitalization frequencies and total days hospitalized,

other covariates adjusted for in the selection probability model include candidate

demographics (gender, age, race), years with end stage renal dialysis (ESRD), vari-

ous disease conditions (drug treated chronic obstructive pulminary disease (COPD),

angina), primary diagnosis at time of listing (polycystic kidneys, diabetes, hyper-

tension), functional status (from fully active daily living to severely disabled), and

various interactions among these covariates. Most terms in the logistic model are

significant predictors of transplant probability at the 0.05 level (Table 2). For each

incidence of hospitalization, the covariate-adjusted odds of getting a transplant drops

4%, while the odds of receiving a transplant drops 1% for each additional day hospi-

talized holding all other factors constant (including number of hospitalizations). Of

the 3, 369 patients with no previous hospitalization, 1, 974 (59%) got transplanted.

In contrast, of the 10, 258 candidates with at least one hospitalization, 4, 451(43%)

got transplants.

For the 6, 425 patients who received a transplant, each recipient was followed until

death, loss to follow up or the conclusion of the observation period (06/30/2006).

Among the 6, 425 transplant recipients, 5, 025 were alive at the end of follow-up,

while 1, 400 (22%) died.

The predicted selection probabilities from the logistic model could get very close

to zero and hence lead to unrealistically large weight values. These large values are

very influential on Var(β̂T ). Bounding weights at an arbitrary upper limit, u, reduces

Var{β̂T (u)} at the price of larger bias. An optimal upper bound for weights should

minimize mean square error (MSE) of β̂T (u), defined as the sum of diag[Var{β̂T (u)}]
and diag[{β̂T (u)− β̂T}⊗2], where diag(A) is a vector consisting of the main diagonal

of A. In our real data analysis, the weights range from 1.21 to 54.22. Web Figure 2

shows the U-shape curve of the MSE for various upper bounds. For our application,

we estimate that the minimum MSE is achieved when weights are bounded at 20.

Both weighted and unweighted proportional hazards models were fitted, adjusting
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Covariate, Xik θ̂k ŜE(θ̂k) p eθ̂k

Hospitalization frequency -0.03 0.008 < 0.0001 0.97

Days hospitalized -0.007 0.001 < 0.0001 0.99

Female -0.30 0.05 < 0.0001 0.74

Age 18 - 24 0.63 0.13 < 0.0001 1.87

Age 25 - 34 0.57 0.07 < 0.0001 1.77

Age 35 - 44 0.27 0.06 < 0.0001 1.31

Age 55 - 64 -0.26 0.05 < 0.0001 0.77

Age 65 - 70 -0.27 0.09 0.0021 0.76

Age ≥ 70 -0.69 0.11 < 0.0001 0.50

African American vs. Caucasian -0.10 0.04 0.02 0.90

COPD -0.35 0.17 0.04 0.70

Angina -0.24 0.06 < 0.0001 0.78

Polycystic kidneys 0.29 0.09 0.0008 1.34

Diabetes -1.17 0.21 < 0.0001 0.31

Hypertension -0.11 0.05 0.02 0.90

Years on ESRD -0.01 0.01 0.17 0.99

Functional status: minor disability -0.16 0.07 0.02 0.85

Female×Hospitalization frequency 0.02 0.01 0.02 1.02

Age 65-70×Hospitalization frequency -0.06 0.02 0.0006 0.94

Age×Diabetes 0.01 0.004 0.0092 1.01

Table 3.2: Analysis of SRTR Data Estimated Regression Parameters from Selection Probability
Model
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for the same set of covariates: expanded criteria donor (ECD), recipients demograph-

ics (age, race, gender), years on ESRD prior to wait-listing, hepatitis C antibody

(HCV) status, Chronic obstructive pulmonary disease (COPD), angina, primary re-

nal diagnosis, functional status, and stay in the intensive care unit (ICU) at the time

of wait-listing. All covariates had significant effects on the post-transplant mortality

hazard.

Table 3 lists the difference between each of the weighted and unweighted regression

coefficient estimates, as well as its corresponding standard error, Chi-square test

statistic, and P-value. For almost all covariates, significant differences between the

weighted and unweighted covariate effects are not detected. Age 35− 44 (compared

to age 45− 54), years on ESRD and COPD (yes vs. no) have significantly different

effects in the representative sample and in the selected sample. The hazard ratio

for COPD is 2.40 in the representative sample and 1.55 in the transplanted sample

(P= 0.008). For each additional year on ESRD, the post-transplant death hazard

increases by a multiplier of 1.03 for the transplanted population and by a multiplier

of 1.05 for the wait-listed population (P= 0.046). The hazard for age group 35− 44

is 0.79 times of that for the reference group 45 − 54 using the weighted estimate,

while the hazard ratio decreases to 0.67 with the unweighted estimate (P= 0.029).

Survival function estimates based on the proportional hazards model are calcu-

lated for both the representative sample and the transplanted sample, as well as

estimated cumulative baseline hazard functions. The weighted and unweighted sur-

vival curves are plotted in Web Figure 3. Both the 95% pointwise confidence interval

and confidence bands of the difference of the two estimated baseline hazards func-

tions are calculated based on results from Theorem 4 and are together in Figure 3.

It is clear from the figure that at most of the 0− 5 year post-transplant time inter-

val, the point estimate of the baseline hazards for the wait-listed patients and that

for the transplanted patients are significantly different on a 0.05 significance level.

However, carrying out joint inference of the process across the follow up period, the

two baseline functions appear not to be different.
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Covariate, Zik β̂T β̂S D̂ ŜE(D̂) Chi-square P-value

Drug-treated-COPD 0.87 0.44 0.43 0.16 6.96 0.008

Years on ESRD 0.05 0.03 0.02 0.01 3.98 0.046

Age 18 to 24 -1.10 -1.13 0.03 0.20 0.02 0.883

Age 25 to 34 -0.56 -0.73 0.16 0.20 0.63 0.426

Age 35 to 44 -0.24 -0.40 0.17 0.08 4.77 0.029

Age 55 to 64 0.51 0.49 0.02 0.05 0.12 0.730

Age 65 to 70 0.71 0.73 -0.02 0.05 0.13 0.721

Age 70 up 1.08 1.01 0.07 0.08 0.69 0.405

HCV Positive 0.25 0.28 -0.02 0.11 0.09 0.770

In ICU 1.42 1.47 -0.05 0.15 0.11 0.737

Female -0.06 -0.07 0.01 0.04 0.06 0.800

Angina 0.37 0.30 0.07 0.06 1.33 0.249

Polycystic kidney -0.40 -0.32 -0.08 0.07 1.49 0.222

Diabetes 0.48 0.52 -0.03 0.04 0.53 0.465

Functional status: minor disability 0.26 0.21 0.05 0.10 0.26 0.613

Table 3.3: Analysis of SRTR Data Tests of Differences between Regression Coefficients estimated
through models fitted to Wait-Listed Candidates (β̂T ) and Transplant Recipients (β̂S)
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Figure 3.3: Analysis of SRTR data: Test of H0: Λ0T (t) = Λ0S(t). Middle line: Λ̂0T (t; β̂T , θ̂) −
Λ̂0S(t; β̂S); Outer lines: 95% confidence band.
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3.5 Discussion

Weighted proportional hazards models are an attractive option in survival analysis

targeted at a larger underlying population, for the setting where only a possibly bi-

ased sample is observed. Pan and Schaubel proposed an inverse selection probability

weighting proportional hazards model for the setting wherein sampling probabilities

are unknown. In the presence of biasing factors, the weighted proportional hazards

model with estimated ISPW yields parameter estimators which are consistent and

which have reduced variance relative to those which would be estimated by treating

the weights as fixed. These properties come at the expense of increased complexity

and computing time. To identify cases where ISPW is required for a proportional

hazards model, we propose tests for estimating the bias in the unweighted regres-

sion parameter and cumulative hazard estimators. The asymptotic properties of the

proposed statistics are derived. The finite sample performance of a Wald test based

on the proposed statistic is examined through simulation studies with various data

configurations. In the case of no biasing factors, the empirical significance level is

close to 0.05. In the presence of biasing factors, the proposed test is quite powerful.

In cases where the size of the selected sample is insufficient (e.g., n = 20), the power

drops to very low levels (e.g., 14%). A method for evaluating the difference between

the baseline cumulative hazard functions, for the target population and that for the

selected sample is also proposed, with the pertinent asymptotic distributions derived.

The application of the proposed test is very general. When practitioners encounter

data with potential biasing factors, practitioners would be interested in quantifying

the impact of the weighting on bias reduction. In the absence of such a test, choosing

between the weighted and unweighted methods would be ad-hoc. The proposed

testing methods can be used to formalize the decision to use a weighted or unweighted

hazard regression model. The test proposed in this paper works as a statistical tool

to decide which model (weighted or unweighted) to apply in fitting a proportional

hazards model to a potentially biased sample. Similar tests could be derived for the

data structures considered by Binder (1992), Lin (2000) and Boudreau and Lawless
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(2006).

The proposed procedures are applied to national kidney transplant data, where

hospitalization history represents the potential biasing factor. Age 35 − 44, years

on ESRD and COPD were each found to have significantly different regression co-

efficients for the representative sample of all wait-listed patients and the potentially

biased sample of transplant recipients. The pointwise confidence interval for ∆(t)

deviates from zero at some time points, but the confidence bands obtained by taking

the supremum over all follow up period had the zero-difference line included through-

out, indicating no significant difference. The test of H0: βT = βS is powerful in part

due to the high correlation between β̂T and β̂S. The correlation between Λ̂w
0 (t; β̂T )

and Λ̂0(t; β̂S) can thus also be expected to be very high and, by extension, ∆̂(t1)

and ∆̂(t2) would be expected to be highly correlated. For this reason, the set of

point-wise confidence intervals could give a misleading representation of the process

{∆̂(t); t ∈ [0, τ ]} since the interpretation of sets of point-wise confidence intervals

makes sense only if ∆̂(t1) is uncorrelated with ∆̂(t2) for t1 6=t2, which is clearly not

the case.

Recently there is great interest in reconstructing the organ allocation system for

various organs, including kidney. A newly proposed criterion by which to rank can-

didates for an available donor kidney is the difference between predicted median life

with a transplant and that without a transplant. It is therefore of great value to

obtain an accurate post-transplant survival model applicable to the patients which

require ranking; namely patients wait-listed for a kidney transplant. An ISPW pro-

portional hazards model results in estimators applicable to all wait-listed patients,

but at the expense of increased computation and complexity. Based on the proposed

test, the unweighted model appears to be sufficient. Among the twenty-one covari-

ates, only three were found to be significantly different: age 35− 44, years on ESRD

and presence of COPD. The majority of wait-listed patients are at least age 45 and

are free of COPD. Moreover, no difference was detected with respect to the target

and sample baseline cumulative hazard function.

The practicality of the proposed ISPW method depends on the availability of
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information from a representative sample of the target population, as well as the

availability of data on the potential biasing factors. Since the statistics, D̂ and ∆̂(t)

are constructed by taking the difference between the ISPW parameter estimators

and their unweighted counterparts, the same restriction applies to the test proposed

in this chapter. If we are unable to fit a model to estimate selection probability,

neither β̂T , D̂ or ∆̂(t) are obtainable. In addition, appropriate upper bound can be

set for the estimated weights, intended to achieve the weighted regression parameter

with minimum MSE.

Although our simulation studies demonstrate high power for the proposed test, we

only detect three covariates with significant differences in our real example of kidney

transplant analysis. There are three possible reasons leading to the low detection

number. First, we examine twenty-one recipient and donor characteristics in total.

If we had information on more covariates affecting the post-transplant mortality

hazard, it is quite possible that we would detect more covariates with significantly

different effects for the representative sample and the transplanted sample. That is,

more complete covariate adjustment may result in increased precision and, hence,

power. Second, although the SRTR is an invaluable source of information on U.S.

kidney transplant patients, covariate measurement error is unavoidable due to inac-

curate recall on the part of the patients supplying the information and/or inaccurate

interpretation or recording of information. From our simulation results (Figure 2),

the power of the proposed tests drops in the presence of measurement error. Further

study taking measurement error into account could be an interesting and valuable

extension of our current work. Finally, the representative sample is assembled by

taking a cross section on a single day, other random sampling methods might be

applied to achieve a larger representative sample and thus a larger selected sample.

With more subjects in our models, the power of the proposed test would increase

and some parameter differences with borderline P-values could attain statistical sig-

nificance (e.g., angina, initial diagnosis as polycystic kidney). Furthermore, if strong

empirical or clinical prior knowledge exists to decide the direction of the difference

between βT and βS, a one-sided test can be used. For example, if the effects of a
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given comorbidity in the wait-listed population is always larger in magnitude than

that in the transplanted population (e.g., since the selection among patients with

the comorbidity is more stringent), then one would employ the one-sided alternative

hypothesis, H1: Dj > 0.
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CHAPTER IV

Modeling Additive Treatment Effects on the Recurrent
Event Mean in the Presence of a Terminating Event

Abstract: In this chapter, we study the situation where the event of interest can occur

repeatedly for the same subject (i.e., a recurrent event; e.g., hospitalization) and may

be ended by a terminating event (e.g., death). Methods in the existing literature for

comparing treatment-specific event occurrences in the presence of a terminating event

generally fall into one of two broad categories. Marginal methods compare the mean

number of events, averaging over the survival experience; while conditional methods

compare the conditional recurrent event rate given survival. Often, the difference

between treatment-specific recurrent event means will not be constant over time,

particularly when treatment-specific differences in survival exist. In such cases, it

makes more sense to quantify treatment effect based on differences in the recurrent

event (cumulative) means, as opposed to the (instantaneous) rate. We propose two

methods that compare treatments by separately estimating the survival probabilities

and recurrent event rate given survival, then integrating to get the mean number

of events. Both methods combine an additive model for the conditional recurrent

event rate and a proportional hazards model for the terminating event hazard. The

first method factors out differences in the treatment-specific survival distributions

by employing a common survival distribution (intended to serve as a standard) for

both treatment groups. The second proposed method features treatment-specific

survival distributions and generates an estimated difference in treatment-specific

means. The example which motivates this research is the repeated occurrence of

72
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hospitalization among kidney transplant recipients, where the effect of Expanded

Criteria Donor (ECD) compared to non-ECD kidney transplantation on the mean

number of hospitalizations is of interest.

Key words and phrases: Additive rates model, Competing risks, Marginal mean,

Proportional hazards model, Recurrent event, Terminating event.

4.1 Introduction

Recurrent events are frequently of interest in clinical and epidemiologic studies.

Examples include repeated infections among HIV patients and multiple hospital-

izations in a health services utilization study. A large variety of semiparametric

recurrent event models exist in the literature. These methods can generally be

classified as intensity models or mean/rate models. Intensity models consider the

instantaneous probability of event occurrence conditional on the event history (e.g.,

Prentice, Williams and Peterson, 1981; Andersen and Gill, 1982), while mean/rate

(the rate being the derivative of mean) models consider the marginal mean number

of events (e.g., Pepe and Cai, 1993; Lawless and Nadeau, 1995; Lin, Wei, Yang and

Ying, 2000). Depending on the assumed form of the covariate effects, recurrent event

models can be classified as multiplicative or additive. Proportional means/rates mod-

els assume covariate effects on a multiplicative scale, while additive models assume

them on an additive scale.

Often in biomedical applications, the recurrent event sequence can be stopped

permanently by a terminating event (e.g., death). Various approaches have been

proposed for modelling recurrent events in the presence of a terminating event (e.g.,

Li and Lagakos, 1997; Cook and Lawless, 1997; Ghosh and Lin, 2000; Ghosh and

Lin, 2002), and this area has attracted much attention recently (e.g., Liu, Wolfe

and Huang, 2004; Huang and Wang, 2004; Ye, Kalbfleisch and Schaubel, 2007).

The existing approaches generally fall into one of three categories. First, there are

methods for modelling the marginal mean number of events (e.g., Ghosh and Lin,

2000; Ghosh and Lin, 2002). In this case, the mean averages over surviving and

deceased subjects. In the second category of methods, one models the conditional
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recurrent event rate given survival. This is among the approaches suggested by Cook

and Lawless (1997), and was mentioned by Lin et al. (2000). This method has been

applied quite frequently (e.g., Schaubel and Cai, 2005). A variation of this approach

employs a latent (frailty) variable (e.g., Liu et al., 2004; Ye et al., 2007), conditional

on which the recurrent and terminal events are assumed independent. The marginal

and conditional methods explicitly acknowledge the fact that subjects no longer

experience recurrent events after death and that time to death may differ between

the treatment and placebo groups. The third approach considers the recurrent events

to be a latent process, unobservable after death (e.g., Ghosh and Lin, 2003; Huang

and Wang, 2004). Unlike the previously described marginal and conditional methods,

the latent process approach does not explicitly acknowledge that a subject can not

experience recurrent events subsequent to experiencing the terminating event.

In the application of the Wei, Lin and Weissfeld (WLW; 1989) model to recur-

rent event data, a separate proportional hazards model is fitted for each recurrent

event number, k (k = 1, · · · , K), with the regression parameters and baseline hazard

being k-specific. Li and Lagakos (1997) applied the WLW method to the recur-

rent/terminal event setting. The authors proposed various methods for handling

death. One procedure treats death as a censoring of the recurrent event sequence,

in which case the estimated intensity function was interpreted as conditional on the

subject being alive. In another scenario, death was treated the same as a recurrent

event; in which case the estimated treatment effects reflect the combined effects on

both the recurrent event and death processes.

Cook and Lawless (1997) also studied the estimation of covariate effects on the

recurrent event process conditional on survival. They modeled the recurrent event

rates and means at time t conditional on either the death time equal time t or the

death time no less than time t. Essentially, the comparison of treatment-specific

recurrent event rates or means at time t considers subsets of subjects alive up to

time t.

Ghosh and Lin (2000) proposed nonparametric tests for treatment-specific differ-

ences with respect to the marginal mean number of recurrent events. The Kaplan-
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Meier estimator for survival probabilities and a Nelson-Aalen estimator of the con-

ditional recurrent event rate function given survival are integrated to calculate the

recurrent event means. Ghosh and Lin (2002) later proposed a semiparametric pro-

portional means model for the marginal cumulative number of recurrent events. The

recurrent event rate after death was still taken to be zero, and the marginal rates in

the outcome are implicitly averaged over the recurrent event rates of living and de-

ceased subjects. The authors modeled the same marginal mean as in Ghosh and Lin

(2000), but allowed for covariate adjustment through a semiparametric proportional

means model.

Often investigators are more interested in the absolute difference between re-

current event means (as opposed to their ratio) which implies an additive model.

Schaubel, Zeng and Cai (2006) extended the method of Lin and Ying (1994) to de-

velop an additive rates model, but it was not designed to handle terminating events.

One could develop an extension of Schaubel et al. (2006) to accommodate termi-

nating events, as did in Ghosh and Lin (2002) for the proportional means setting.

However, treatment-specific differences in mean number of events are often not con-

stant over time, particularly when the treatment-specific survival functions differ.

That is, as follow-up time, t, increases, due to subjects dying, the composition of the

study population will shift and the pattern of the shift will be treatment-specific if

treatment affects survival. Therefore, treatment effects on the recurrent event mean

would not be expected to be constant over time in the presence of treatment effects

on survival. In cases where the treatment effect is not constant over time, the cu-

mulative effect is of much greater interest for patient decision-making at time t = 0

than the instantaneous effect.

In this article, we propose two novel semiparametric methods for comparing

treatment-specific recurrent event mean functions in the presence of a terminating

event. Both methods estimate the treatment effect as a process over time and, in

doing so, assume no functional form for the effect. The proposed methods combine

a proportional hazards model for the terminating event and an additive model for

the conditional recurrent event rate given survival. The first proposed method (here-
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after referred to as Method I) employs a common survival distribution in computing

treatment-specific recurrent event means, such that the treatment-specific differences

in survival are factored out. The second method (Method II) employs treatment-

specific survival functions, with the treatment effects measured by differences in

treatment-specific means.

Under a marginal approach, an increase in the event mean could be due to patients

surviving longer, or could be due to patients experiencing events at an increased rate

while they survive, and there is no convenient way to distinguish these two phenom-

ena. In an attempt to factor out differences in survival, Method I estimates what

the difference in the recurrent event means would be if treatment-specific survival

were equal. It measures treatment effects through a standardized difference in the

marginal recurrent event means. That is, applying a standard survival distribution

to compare treatment-specific expected numbers of recurrent events. The measure

proposed in Method I is a hypothetical quantity. There may be occasions when

investigators are interested in a difference in means which would directly incorpo-

rate (rather than factor out) treatment-specific difference in survival. Motivated by

this consideration, we also propose Method II which features treatment-specific sur-

vival distributions and measures treatment effects through the estimated difference

in treatment-specific marginal recurrent event means.

The remainder of this chapter is organized as follows. Section 4.2 explains how the

proposed measures are estimated. The asymptotic properties of the estimators are

listed in Section 4.3, while Section 4.4 evaluates the performance of the asymptotic

results in moderate size samples. We compare mean numbers of hospitalizations

among kidney transplant recipients using our methods in Section 4.5. A discussion

and some concluding remarks are contained in Section 4.6.

4.2 Proposed Methods

In this section, we describe the proposed methods, after establishing notation and

explaining the data structure of interest.
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4.2.1 Notation and Set-up

We begin by setting up necessary notation. For the ith subject (i = 1, · · · , n), Zi

and Xi denote the vector of covariates for the terminating event model and recurrent

event model respectively. We set Zi = (Zi1, Z
′
i2)

′, Xi = (Xi1, X
′
i2)

′ where Zi1, Xi1

are (1/0) indicators for the treatment/placebo and Zi2 and Xi2 represent adjustment

covariates. Correspondingly, we let β0 = (β01, β
′
02)

′ and θ0 = (θ01, θ
′
02)

′ represent the

regression coefficients for Zi and Xi. In addition, for convenience we devote the co-

variate vectors for a treated subject by Z1
i = (1, Z ′

i2)
′ and X1

i = (1, X ′
i2)

′. Similarly,

for a placebo subject, Z0
i = (0, Z ′

i2)
′ and X0

i = (0, X ′
i2)

′. We use Di for the time

of the terminating event (e.g., death), and Ci for the censoring time. The counting

process for the terminating event, is represented by ND
i (t) = I(Di ≤ t,Di < Ci).

We let Yi(t) = I(Ci ∧ Di ≥ t) be the at risk indicator for subject i at time t, and

set π̂(t) = n−1
∑n

i=1 Yi(t). The number of recurrent events as of time t is repre-

sented by NR∗
i (t) =

∫ t

0
dNR∗

i (s), where dNR∗
i (s) = NR∗

i (s) − NR∗
i (s−). In the data

structure under consideration, NR∗
i (t) = NR∗

i (t∧Di); that is, recurrent events can

not occur after death. What we observe is a quantity subject to right censoring,

NR
i (t) = NR

i (t∧Di∧Ci). The outcome being modeled is the mean number of re-

current events E{NR∗
i (t)|Zi}, which is the integral of recurrent event rate function

over time E{NR∗
i (t)|Zi} =

∫ t

0
E{dNR∗

i (t)|Zi}. It should be mentioned that we are

not modeling the recurrent event intensity function, E{dNR∗
i (t)|Zi,NR∗

i (t)}, where

NR∗
i (t) = {NR∗

i (s); s ∈ (0, t)}, representing the event history up to time t, an ap-

proach considered for example by Andersen and Gill (1982).

As described in Section 4.1, in the presence of a terminating event, the recurrent

event mean is a function of survival probability and the conditional recurrent event

rate given survival. In estimating the mean function, it is natural to consider these

two entities separately. We denote the conditional recurrent event rate given survival

by

dRi(t) = E{dNR∗
i (t) | Di > t}.
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The recurrent event mean function is then given by

µi(t) =

∫ t

0

Si(u
−)dRi(u),

where Si(t
−) = Pr(Di ≥ t). We assume that the terminating event hazard function

follows a proportional hazards model,

dΛi(t) = dΛ(t | Zi) = dΛ0(t)e
β′0Zi ,(4.1)

where dΛ0(t) is the unspecified baseline hazard function and the vector β0 represents

the true value of the regression coefficients. The parameter β0 is estimated by β̂, the

solution to the partial likelihood score function, UD(β) = 0, where

UD(β) =
n∑

i=1

∫ τ

0

{Zi − Z(t; β)}dND
i (t)

Z(β; t) =
S(1)(t; β)

S(0)(t; β)

S(k)(t; β) =
n∑

i=1

Yi(t)e
β′ZiZ⊗k

i ,

with Z⊗0
i = 1, Z⊗1

i = Zi and Z⊗2
i = ZiZ

′
i. The Breslow-Aalen baseline hazard

estimator, Λ̂0(t; β̂), is employed, where

Λ̂0(t; β) = n−1

n∑
i=1

∫ t

0

S(0)(s; β)−1dND
i (s).

The subject-specific survival function is then estimated by

Ŝi(t) = exp{−Λ̂i(t)}.

Both multiplicative and additive models have been used in modeling the recurrent

event mean. For certain outcomes such as costs or number of hospitalizations, inves-

tigators are typically more interested in the absolute (as opposed to relative) dollar

amount or hospital admission numbers. Here we use an additive model to estimate

the recurrent event rates among surviving subjects,

dRi(t) = dR(t | Xi) = dR0(t) + θ′0Xidt,(4.2)
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where dR0(t) is the baseline recurrent event rate function and the vector θ0 represents

the true additive effects of the corresponding covariate vector Xi. Usually, there are

common covariates besides Xi1 and Zi1 affecting both the terminating event hazard

and recurrent event rates. As such, the covariate vectors Zi and Xi usually overlap

and will often be identical. Adapting the model of Schaubel et al. (2006) to the

recurrent/terminal events setting, we estimate θ0 as follows:

θ̂ = B̂−1UR

B̂ =
n∑

i=1

∫ τ

0

Yi(s){Xi −X(s)}⊗2ds

X(s) = π(s)−1n−1

n∑
i=1

Yi(s)Xi

UR =
n∑

i=1

∫ τ

0

{Xi −X(t)}dNR
i (t).

Our notation is separately listed in Table 4.1.

4.2.2 Method I: Survival-Adjusted Difference in Means

Of interest in this method is the effect of treatment on the mean number of

recurrent events, factoring out the differences in survival distributions for different

treatment groups. We propose a semiparametric method to estimate the additive

treatment effects on the cumulative number of recurrent events given a standard

survival distribution to be applied to each treatment group. Specifically, the following

process is proposed to represent the treatment effect

φ(t) =

∫ t

0

S(u−|Zi1 = 0)d{R(u|Xi1 = 1)−R(u|Xi1 = 0)},

In the presence of adjustment covariates, Zi2 and Xi2, it is useful to formulate the

measure as

φ(t) = E[E[φ(t)|Zi2, Xi2]]

= E

[∫ t

0

S(u−|Z0
i )d{R(u|X1

i )−R(u|X0
i )}

]
,
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Function Terminating event Recurrent event

Event time Di -

Censoring time Ci Ci

Risk set indicator Yi(t) = I(Ci ∧Di ≥ t) Yi(t) = I(Ci ∧Di ≥ t)

Counting process for event dND
i (t) dNR

i (t)

Residual dMD
i (t) dMR

i (t)

Covariate vector Zi Xi

Treatment indicator Zi1 Xi1

Adjusted covariate vector Zi2 Xi2

Regression coefficient vector β0 = (β01, β
′
02)

′ θ0 = (θ01, θ
′
02)

′

Regression coefficient for treatment β01 θ01

Regression coefficient for adjusted covariates β02 θ02

Covariate vector, treated subject Z1
i = (1, Z ′i2)

′ X1
i = (1, X ′

i2)
′

Covariate vector, placebo subject Z0
i = (0, Z ′i2)

′ X0
i = (0, X ′

i2)
′

Information matrix A(β) B

Baseline hazard/rate dΛ0(t) dR0(t)

Hazard/rate dΛi(t) = dΛ0(t) exp(β′0Zi) dRi(t) = dR0(t) + θ′0Xidt

Table 4.1: Notation
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which we propose estimating by

φ̂(t) =
1

n

n∑
i=1

∫ t

0

Ŝ(u−|Z0
i )d{R̂(u|X1

i )− R̂(u|X0
i )},

where R̂(t | Xi) = R̂0(t) + θ̂′Xit and R̂0(t) = n−1
∑n

i=1

∫ t

0
π̂(s)−1Yi(s){dNR

i (s) −
θ̂′Xids}. After some reorganization, the proposed estimator reduces to

φ̂(t) = θ̂ n−1

n∑
i=1

∫ t

0

Ŝ(u−|Z0
i )du.(4.3)

This measure represents the average difference in the mean number of events between

treatment categories while factoring out differences in treatment-specific survival.

The motivation for the proposed estimator is as follows. Typically, a cumulative

effect measure, such as the mean number of events is more meaningful to investiga-

tors than the effect on an instantaneous quantity such as the rate. This is especially

true if the treatment has a time-dependent effect, which is suspected in the moti-

vating example, to be described in Section 4.5. If we compare the marginal means,

we will not know if an estimated treatment effect is resulting from treatment-specific

differences in the survival distribution, or from treatment-specific differences in the

conditional event rate while subjects survive. For example, the marginal recurrent

event mean could be greater for treated patients than placebo patients because ei-

ther (i) conditional on survival the event rates are equal, but treated subjects live

longer; or (ii) treated and placebo subjects have approximately equal survival, but

dR(t|X1
i ) > dR(t|X0

i ). If we conduct a fully conditional analysis, then integrate in an

attempt to obtain a cumulative effect measure, R(t) =
∫ t

0
dRi(u) is only interpretable

as the mean number of events in the unrealistic setting where death was impossi-

ble. The integrated conditional rate has no straightforward interpretation. We are

attempting to obtain a meaningful cumulative effect estimator which appropriately

acknowledges the occurrence of death, but is not affected by treatment-specific dif-

ferences in survival. The estimator represents a form of standardization, and the

quantity S(t) is intended to represent the survival “average” or “overall” survival.

In keeping with the standardization in objective, one could replace S(t) with the sur-
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vival for one of the treatment groups since, whatever is used to represent Pr(D > t),

the multiplier of dR(t) will be equal across treatment groups.

The proposed procedure to estimate φ(t) consists of three steps. At the first step,

S(t) is estimated. The Kaplan-Meier estimator could be used, but other possibilities

include Ŝ(t|Zj
i ) for either j = 0 or j = 1, in which case a proportional hazards model

would be fitted. The second step involves fitting the conditional rate model. We

do not need to estimate dR0(t), only the regression coefficient, θ0, since the baseline

rate cancels out. In the third step, φ(t) is computed as in (4.3).

Note that neither the adjustment covariate effects nor the baseline rate are in-

volved in φ(t). The quantity is the product of the rate model treatment effect and

the placebo group truncated life expectancy (restricted survival time mean). This is

the mean difference in the treatment-specific recurrent events, in the scenario where

the treatment and placebo survival were equal. Ordinarily, the treatment effect is

interpreted as “all other covariates being equal”, while here, the interpretation is “all

other covariates and survival being equal”.

Models for the conditional event rate, dRi(t), and the terminating event hazard,

dΛi(t), assume covariate effects which are constant over time, t. Two points are

important in this regard. First, unlike µi(t), covariate effects on both dRi(t) and

dΛi(t) will often be constant over time in practice. In a sense, it is preferable to

model dRi(t) and dΛi(t) separately, since the quantities are more mechanistic than

a measure which integrates over their product. The model dΛi(t) is a standard

Cox model frequently employed in biomedical studies, while the quantity dRi(t) is

analogous to the cause-specific hazard in competing risk studies. Second, models

(4.1) and (4.2) could always be extended to allow for time-varying effects, and the

procedures proposed in this Chapter would still be applicable.
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4.2.3 Method II: Difference in Treatment-Specific Means

We now propose a treatment effect measure which is the difference in treatment-

specific marginal recurrent event means. The means are given by

µ1(t) = E
[
NR

i (t)|Zi1 = 1
]

µ0(t) = E
[
NR

i (t)|Zi1 = 0
]
.

As in method I, we model dRi(t) and dΛi(t) separately and average over the observed

adjustment covariates. From this perspective, it is useful to write the treatment-

specific marginal means as

µj(t) = E
[
E[NR

i (t)|Zj
i , X

j
i ]

]

= E

[∫ t

0

S(r−|Zj
i )dR(r|Xj

i )

]
,

for j = 0, 1, where the outer expectation is taken with respect to the distribution of

other adjustment covariates besides the treatment, Zi2. By substituting in survival

and conditional rate function estimators, we obtain the proposed treatment-specific

mean estimators:

µ̂1(t) = n−1

n∑
i=1

∫ t

0

Ŝ(r−|Z1
i ){dR̂0(r) + (θ̂1 + X ′

i2θ̂2)dr}

µ̂0(t) = n−1

n∑
i=1

∫ t

0

Ŝ(r−|Z0
i ){dR̂0(r) + X ′

i2θ̂2dr}.

The actual treatment effect (as opposed to standardized) on recurrent event numbers

can be measured by

ψ(t) = µ1(t)− µ0(t).

which can be estimated as

ψ̂(t) = µ̂1(t)− µ̂0(t)

for t ∈ (0, τ ] using Ŝ(t|Zi) from the proportional hazards model and dR̂(t|Xi) from

the additive conditional rates model.
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Method I measures the treatment effects on the recurrent event number if the sur-

vival distribution was unaffected by the treatment. Under this hypothetical scenario,

the treatment effect on recurrent events is isolated. Method II estimates the true dif-

ference in treatment-specific means, while incorporating (rather than factoring out)

treatment-specific differences in survival. Thus, ψ(t) combines the actual survival

probabilities and recurrent event rates for the treatment and placebo respectively and

reflects the difference in marginal recurrent event numbers which would be observed

between treatment and placebo patients with the same adjustment covariates.

4.3 Asymptotic Properties

In this section, we describe the essential asymptotic properties of the proposed

estimators. We begin by listing the assumed regularity conditions, for i = 1, . . . , n.

(a) {NR∗
i (·), Di, Ci, Zi, Xi} are independent and identically distributed.

(b) E[dNR∗
i (t)|Di > t, Ci > t, Xi] = E[dNR∗

i (t)|Di > t, Xi].

(c) limδ→0
1
δ
Pr{t ≤ Di < t + δ|Di > t, Ci > t, Zi} =

limδ→0
1
δ
Pr{t ≤ Di < t + δ|Di > t, Zi}.

(d) Pr(Yi(τ) = 1) > 0.

(e)
∫ τ

0
dΛ0(t) < ∞,

∫ τ

0
dR0(t) < ∞ and NR

i (τ) < ∞.

(f) Elements of Zi2 and Xi2 are bounded almost surely.

(g) Positive-definiteness of the matrices, A(β) and B, where

A(β) = E

[∫ τ

0

{Zi − z(t; β)}⊗2Yi(t)e
β′ZidΛ0(t)

]

Z(t; β)
a.s.−→ z(t; β)

B = E

[∫ τ

0

Yi(s){Xi − x(s)}⊗2ds

]

X(t)
a.s.−→ x(t).

Item (a) is the basis for Central Limit Theorem and is usually satisfied; an ex-

ception would be clustered data. Conditions (b) and (c) correspond to independent
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censoring assumptions for the recurrent and terminating event processes, respectively.

Item (d) is a standard identifiability condition.

We assume that there are no unmeasured factors which predict both dRi(t) and

dΛi(t). This assumption is stronger than the no-unmeasured confounders assumption

typically applied in regression analysis. We evaluate the impact of violations of the

no-unmeasured-predictors assumption in Section 4.5.

We now describe the essential asymptotic results for the proposed estimators. The

proof of each theorem is outlined in the Appendix.

Theorem 1. Under conditions (a) to (g), φ̂(t) converges almost surely to φ(t) for t ∈
(0, τ ]. The proof of Theorem 1 proceeds through a Taylor Series expansion, followed

by repeated application of the Uniform Strong Law of Large Numbers (USLLN).

Theorem 2. Under conditions (a) to (g), n
1
2{φ̂(t) − φ(t)} is converges weakly to

a zero-mean Gaussian process with covariance function E[γi(s; β0, θ0)γi(t; β0, θ0)],

where

γi(t; β, θ) = γi1(t; β, θ) + γi2(t; β, θ) + γi3(t; β, θ)

γi1(t; β, θ) = −θ1E

[
eβ′Z0

k

∫ t

0

S(u−|Z0
k)

∫ u

0

{Z0
k − z(r; β)}′dΛ0(r)du

]
A(β)−1UD

i (β)

γi2(t; β, θ) = E[e(u−|Z0
k)]{B−1UR

i (θ)}1,1

γi3(t; β, θ) = −θ01

∫ t

0

E[eβ′Z0
k{e(t|Z0

k)− e(r|Z0
k)}]dMD

i (r; β)

s(0)(r; β)
,

with k indexing a hypothetical subject and with asymptotic score combinations given

by

UD
i (β) =

∫ τ

0

{Zi − z(t; β)}dMD
i (t; β)

dMD
i (t; β) = dND

i (t)− Yi(t)e
β′ZidΛ0(t)

s(k)(t; β) = lim
n→∞

S(k)(t; β),

for k = 0, 1, 2, with the truncated mean lifetime denoted by e(t|Z0
k) =

∫ t

0
S(r|Z0

k)dr,

and where {C}1,1 denotes the (1, 1)th element of the matrix C.

The proof is done by decomposing n
1
2{φ̂(t) − φ(t)} into three parts and dealing

with each part separately. Taylor series expansions are applied, along with several
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applications of the Strong Law of Large Numbers (Sen and Singer 1993). Results from

each of the three parts are combined to show that n
1
2{φ̂(t)− φ(t)} is asymptotically

equivalent to n−
1
2

∑n
i=1 γi(t; β0, θ0), which can be shown to converge to a zero-mean

Normal distribution for fixed t by the Central Limit Theorem. A demonstration

of tightness completes the proof of weak convergence using results from empirical

process theory (Pollard, 1990; Van derr Vaart and Wellner, 1996). The covariance

function can be consistently estimated by replacing all limiting quantities with their

empirical counterparts, then averaging across Z12, · · · , Zn2.

Theorem 3. Under conditions (a) to (g), ψ̂ is a consistent estimator of ψ; that is,

ψ̂(t)
a.s.−→ ψ(t) for t ∈ (0, τ ]. The proof is similar to that of Theorem 1, at least with

respect to the major tools, Taylor Series expansions and the USLLN.

Theorem 4. Under conditions (a) to (g), n
1
2 (ψ̂−ψ) converges weakly to a zero-mean

Gaussian process with covariance function E[{ξi1·(s; β0, θ0)−ξi0·(s; β0, θ0)}{ξi1·(t; β0, θ0)−
ξi0·(t; β0, θ0)}], where

ξij·(t; β, θ) = ξi11(t; β, θ) + ξi12(t; β, θ) + ξi13(t; β, θ) + ξi14(t; β, θ)

ξij1(t; β, θ) = −E

[
eβ′Z0

k

∫ t

0

S(u−|Z0
k)

∫ u

0

{Z0
k − z(r; β)}′dΛ0(r)dR(u|Xj

k)

]
A(β)−1UD

i (β)

ξij2(t; β, θ) = E

[∫ t

0

S(u−|Zj
i ){Xj

i − x(u)}′du

]
B−1UR

i (θ)

ξij3(t; β, θ) =

∫ t

0

E{S(u−|Zj
i )}π(u)−1dMR

i (u; θ)

ξij4(t; β, θ) = −
∫ t

0

E
[
eβ′Zj

i {µ(t|Zj
i , X

j
i )− µ(r|Zj

i , X
j
i )}

] dMD
i (r; β)

s(0)(r; β)
.

Here

UR
i (θ) =

∫ t

0

{Xi − x(u)}dMR
i (u; θ)

MR
i (t; θ) = NR

i (t)−
∫ t

0

Yi(u){dR0(u) + θ′Xidu}.
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Since n
1
2 (ψ̂−ψ) = n

1
2 (µ̂1−µ1)−n

1
2 (µ̂0−µ0), we work on n

1
2 (µ̂1−µ1) and n

1
2 (µ̂0−µ0)

separately as follows:

n
1
2{µ̂j(t; β̂, θ̂)− µj(t)} = n

1
2{µ̂j(t; β̂, θ̂)− µ̂j(t; β0, θ̂)}

+n
1
2{µ̂j(t; β0, θ̂)− µ̂j(t; β0, θ0)}

+n−
1
2

n∑
i=1

∫ t

0

Ŝ(r−|Zj
i ){dR̂0(r; θ0)− dR0(r)}

+n−
1
2

n∑
i=1

∫ t

0

{Ŝ(r−; β0|Zj
i )− S(r−|Zj

i )}{dR0(r) + θ′0X
j
i dr}.

for j = 0, 1. The major steps of the proof are then similar to those of the proof of

Theorem 2, although there are several more steps. The ξij·(s; β0, θ0) quantities can be

consistently estimated by replacing all limiting values by their empirical counterparts,

then averaging across i = 1, · · · , n.

4.4 Simulation Study

For each data configuration, we generated n = 200 independent and identically

distributed subjects with both terminating and recurrent events. The terminating

event hazard follows the following proportional hazards model,

dΛ(t | Zi) = dΛ0e
β1Zi1+β2Zi2 ,

where Zi1 (treatment) is distributed as Bernoulli (0.5), the adjustment covariate Zi2

follows a Uniform (0, 10) distribution and λ0 = 0.04. We set the coefficient β1 at 0.5

and 1, to examine scenarios of low or high treatment effect on survival. Censoring

is uniformly distributed on (0, 20) which leads to an average censoring percentage of

approximately 42%. The recurrent events follow a Poisson process, with rate function

dR(t | Xi, Qi) = dR0 + Qidt + θ′Xidt,

where Qi follows a Gamma distribution with mean 0.25 and a variance of 0.5 and 1.

The Qi variate represents a frailty term shared by all the recurrent event times for

the same subject and may be thought of as an unmeasured predictor. Note that the
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assumptions of our proposed methods hold under this set-up. The above model was

simulated by generating gap time between events as:

Ti,j+1 = Ti,j − log(Uij){dR0 + Qi + θ′Xi}−1,

for j = 0, · · · , 50, where Uij ∼ Unif(0, 1), Xi = Zi1 and Ti,0 ≡ 0. We varied the

baseline recurrent event rate from 0.125 to 0.25. The covariate Xi is the same as Zi1

in the proportional hazards model for the terminating event, both representing the

treatment or exposure of interest. The regression coefficient for Xi is set at θ = 0.5.

Table 4.2 lists the performance of our proposed estimators ψ̂(t) and φ̂(t) in eight

scenarios of different β1, V (Qi) and dR0 combinations. The average observed num-

ber of recurrent events per subject ranges from 3.0 to 4.4. Three evenly spaced time

points 5, 10 and 15 are picked to examine the performance of the estimators at early,

middle and late follow-up times. In all the tested conditions, ψ̂(t) and φ̂(t) are very

close to their true values (obtained by numerical integration), and average asymptotic

standard errors (ASE) agree well with empirical standard deviations (ESD). Corre-

spondingly, empirical coverage probabilities (CP) are close to the nominal value of

0.95. Overall, the consistency, asymptotic normality and variance estimator appear

to work very well in moderate size samples.

Next, we evaluated the sensitivity of our proposed methods to the no-unmeasured-

predictors assumption. Specifically, we set up a model with the gamma frailty, Qi,

affecting both dΛi(t) and dRi(t), in violation of our underlying assumptions. The

simulated proportional hazards model (4.1) and the additive recurrent rate model

(4.2) change to

dΛ(t | Zi) = Qie
β′ZidΛ0

dR(t | Xi) = dR0 + (Qi + θ′Xi)dt,

respectively. In addition to the scenarios examined in the simulation study of the

correct model, an extreme case where V (Qi) = 2, which is 8 times E(Qi), was also

examined to assess the impact of highly variable frailty terms on the performance of

ψ̂(t) and φ̂(t).
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Method I: φ̂(t) Method II: ψ̂(t)

β1 V (Qi) dR0 t φ(t) bias ESD ASE CP ψ(t) bias ESD ASE CP

1 0.5 0.25 5 2.12 0.03 0.38 0.38 0.96 1.16 0.02 0.34 0.34 0.95
10 3.64 0.04 0.66 0.65 0.96 1.01 0.05 0.57 0.56 0.95
15 4.73 0.07 0.87 0.85 0.96 0.53 0.06 0.74 0.74 0.95

0.125 5 2.12 -0.00 0.38 0.37 0.95 1.28 0.01 0.34 0.33 0.95
10 3.64 -0.01 0.66 0.64 0.95 1.34 0.02 0.54 0.54 0.95
15 4.73 0.01 0.87 0.84 0.95 1.05 0.04 0.70 0.71 0.95

1 0.25 5 2.12 0.01 0.50 0.48 0.95 1.16 -0.01 0.45 0.43 0.95
10 3.64 0.02 0.87 0.83 0.95 1.01 0.00 0.74 0.710 0.94
15 4.73 0.04 1.14 1.08 0.95 0.53 0.03 0.96 0.91 0.94

0.125 5 2.12 0.04 0.47 0.47 0.96 1.28 0.00 0.44 0.43 0.96
10 3.64 0.06 0.81 0.82 0.95 1.34 0.02 0.71 0.69 0.95
15 4.73 0.09 1.07 1.07 0.96 1.05 0.05 0.89 0.89 0.95

0.5 0.5 0.25 5 2.12 0.00 0.36 0.36 0.96 1.71 -0.02 0.36 0.35 0.96
10 3.64 -0.00 0.61 0.63 0.96 2.42 -0.03 0.62 0.61 0.96
15 4.73 0.01 0.81 0.82 0.96 2.65 -0.03 0.83 0.84 0.97

0.125 5 2.12 0.00 0.35 0.35 0.95 1.76 -0.02 0.33 0.34 0.96
10 3.64 0.00 0.61 0.61 0.94 2.58 -0.04 0.58 0.59 0.96
15 4.73 0.01 0.81 0.80 0.95 2.91 -0.03 0.77 0.80 0.97

1 0.25 5 2.12 -0.00 0.47 0.46 0.96 1.71 0.02 0.47 0.45 0.95
10 3.64 -0.00 0.80 0.79 0.96 2.42 0.03 0.80 0.77 0.95
15 4.73 0.01 1.06 1.03 0.96 2.65 0.05 1.04 1.02 0.95

0.125 5 2.12 -0.00 0.47 0.46 0.96 1.76 -0.03 0.47 0.44 0.95
10 3.64 0.01 0.81 0.78 0.96 2.58 -0.05 0.80 0.75 0.95
15 4.73 0.01 1.06 1.03 0.96 2.91 -0.04 1.05 0.99 0.95

ESD = empirical standard deviation

ASE = average asymptotic standard error

CP = coverage probability.

Table 4.2: Simulation Results: Performance of Proposed Estimators
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Method I: φ̂(t) Method II: ψ̂(t)

V (Qi) β1 dR0 φ(t) bias ESD ASE CP ψ(t) bias ESD ASE CP

2 1 0.25 4.42 -0.04 0.35 0.35 0.93 4.18 0.01 0.39 0.38 0.95
0.125 4.42 -0.06 0.31 0.31 0.95 4.22 0.01 0.33 0.33 0.94

0.5 0.25 4.41 -0.01 0.35 0.35 0.94 4.30 0.00 0.37 0.38 0.94
0.125 4.42 -0.00 0.32 0.31 0.95 4.31 0.01 0.33 0.32 0.94

1 1 0.25 4.09 -0.09 0.35 0.35 0.94 3.65 0.04 0.43 0.41 0.94
0.125 4.08 -0.08 0.32 0.33 0.93 3.71 0.03 0.35 0.34 0.95

0.5 0.25 4.09 -0.06 0.37 0.36 0.94 3.86 0.03 0.41 0.40 0.95
0.125 4.08 -0.03 0.33 0.33 0.95 3.88 0.05 0.34 0.34 0.96

0.5 1 0.25 3.62 -0.11 0.37 0.36 0.93 2.91 0.01 0.44 0.43 0.94
0.125 3.62 -0.12 0.33 0.34 0.93 3.01 0.04 0.37 0.36 0.94

0.5 0.25 3.61 -0.05 0.37 0.36 0.94 3.25 0.01 0.43 0.42 0.94
0.125 3.62 -0.08 0.35 0.34 0.93 3.30 -0.01 0.35 0.35 0.96

Estimators are evaluated at t = 10, the mean of the censoring distribution.

Table 4.3: Simulation Results:Robustness of Proposed Estimators under a Misspecified Model

Table 4.3 demonstrates the robustness of our estimators under this misspecified

model. The estimators are slightly biased, while the proposed robust standard error

estimators are close to the empirical standard deviations and hence coverage proba-

bilities are still close to 0.95. In summary, the proposed methods appear fairly robust

to the no-unmeasured-predictors assumption.

4.5 Application

We applied our two proposed estimators to the study of renal transplant pa-

tients. The goal of our study is to compare the mean number of hospitalizations for

transplant recipients with an Expanded Criteria Donor (ECD) kidney and patients

transplanted with a non-ECD kidney. An ECD is defined as a deceased donor either

(i) age ≥ 60, or (ii) age 50 − 59 and with at least two of the following three char-

acteristics: hypertensive, serum creatinine concentration > 1.5mg/dl, or death due

to stroke (Port et al., 2002). The ECD (0, 1) classification is a well-accepted quality

index for donated kidneys in the nephrology community. In fact, wait-listed patients

willing to accept an ECD kidney are essentially listed separately and generally have
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reduced waiting time until transplant. The relative frequency of ECD transplantation

has increased over time, and several authors have examined the impact of an ECD

on the post-transplant death hazard. Our analysis targets the impact of ECD trans-

plantation on the mean number of post-transplant hospitalizations. Hospitalization

is a composite index of patients’ health status and resource utilization, and therefore

serves as a concrete and objective measure of the post-transplant performance.

Patients began follow-up (t = 0) at the time of kidney transplant. Some received

an ECD transplant, while others got a non-ECD kidney. Patients who receive a kid-

ney transplant are subject to a greatly increased mortality hazard and hospitalization

rate in the weeks immediately following the transplant, due to the risk of surgical

complications, which are suspected to be more serious in ECD recipients. From

a public health perspective, it is of interest to compare ECD and non-ECD trans-

planted patients with respect to mean number of hospitalizations. Due to the strong

time-dependence in the effect of ECD kidney transplantation, the instantaneous ef-

fect on the hospitalization rate is generally of less interest than the cumulative effect.

Moreover, survival probabilities are known to be reduced for ECD relative to non-

ECD recipients (Port et al., 2002). Given these facts, proportionality or additivity

is not expected to hold with respect to the mean function, meaning that estimating

the ECD effect by fitting a multiplicative or additive model to the hospitalization

mean directly would be inappropriate.

The goals of the investigators exemplify some of the limitations in the existing

methods for analyzing recurrent/terminal event data. For example, in comparing

the mean number of events (averaging across the survival experience), it is possible

that non-ECD transplant recipients experience more hospitalizations than ECD pa-

tients simply because they survive much longer than ECD patients. If we were to

compare the conditional hospitalization rate given survival, as did in Schaubel and

Cai (2005), the transplant effect on the rate function, dRi(t), can be determined.

However,
∫ t

0
dRi(s) can only be interpreted as the mean number of events in the

setting where death were impossible. Using the proposed method, we can obtain the

difference between the number of hospitalizations for ECD and non-ECD recipients
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either considering the true different survival distributions in each type of transplant

or factoring out differences in survival between the two transplant types.

We combine demographic, clinical and mortality data from the Scientific Registry

of Transplant Recipients (SRTR) and hospitalization history information from Cen-

ters for Medicare and Medicaid Services (CMS). The study population is restricted

to patients whose primary payer was Medicare. To increase homogeneity, we also

exclude from our target population repeat and multi-organ transplant recipients.

All Medicare patients age ≥ 18 who received a kidney transplant from a deceased

donor in year 2000 were included in our study sample. In total, 3, 816 recipients

with follow-up and complete covariate information were included and tracked from

the time of transplant until death, loss to follow-up, or at the end of the observation

period (December 31, 2005). Among the 3, 816 patients, 970 (25.42%) were observed

to die during the 6-year follow-up period, with the remaining 2, 846 (74.58%) recipi-

ents censored, either due to loss to follow-up or administratively at 12/31/2005. On

average, each recipient experienced 0.85 hospitalizations during the follow-up period.

As stated, the treatment of interest is donor source: ECD (Zi1 = 1) or non-ECD

(Zi1 = 0). We adjusted the same set of covariates in the proportional hazards and ad-

ditive rates models: candidate demographics (gender, age, race), pre-transplant years

on dialysis, various comorbid conditions (drug treated chronic obstructive pulmonary

disease (COPD), angina, symptomatic cerebral vascular disease, symptomatic pe-

ripheral vascular disease, pretransplant malignancy), primary diagnosis (polycystic

kidney disease, diabetes, hypertension), functional status (fully active to severely

disabled), and stay in the intensive care unit (ICU).

Hazard ratios and recurrent event rate differences for each covariate are listed in

Table 4.4, as well as their corresponding p-values. Recipients of an ECD kidney have

a 1.3 times higher hazard of death compared to non-ECD recipients. At the same

time, ECD kidney recipients experienced 84.4 more hospital admissions per 1,000

patients per year survived. Lower survival probabilities for ECD patients could lead

to a reduced mean number of hospitalizations, since hospitalizations are terminated

by death. However, ECD patients also experience a significantly elevated conditional
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Covariate, Zik = Xik eβ̂k p θ̂k ŜE(θ̂k) p

ECD 1.28 0.002 84.4 29.4 0.004

Female 1.00 0.951 -6.6 19.2 0.732

Age 18 - 24 0.34 0.003 -80.7 41.1 0.045
Age 25 - 34 0.55 0.0001 -87.6 29.0 0.003
Age 35 - 44 0.83 0.092 -56.2 26.4 0.033
Age 45 - 54 1 - 0 - -
Age 55 - 64 1.62 < 0.0001 50.3 28.9 0.082
Age 65 - 70 2.12 < 0.0001 109.5 40.9 0.007
Age ≥ 70 2.88 < 0.0001 146.5 47.8 0.002

African American (vs. Caucasian) 0.99 0.908 5.7 24.3 0.813

COPD 1.25 0.457 7.1 136.5 0.960
Angina 1.40 0.0002 71.1 39.5 0.072
Pretransplant Malignancy 2.67 0.092 750.7 517.9 0.147
Cerebral vascular disease 1.19 0.323 95.4 71.5 0.182
Peripheral vascular disease 1.03 0.848 31.7 56.1 0.571

Polycystic kidneys 0.56 0.0006 -138.7 22.7 < 0.001
Diabetes 1.59 < 0.0001 123.3 32.2 < 0.001
Hypertension 1.19 0.067 16.5 24.3 0.500

Years on dialysis 1.04 0.002 -0.3 3.0 0.932
Functional status: minor disability 0.31 < 0.0001 -114.2 106.3 0.282
Intensive Care Unit 1.24 0.631 -220.1 136.2 0.106

θ: additional hospitalizations per 1,000 per year survived.

Table 4.4: Analysis of SRTR Data Estimated Regression Parameters from Proportional Hazards
and Additive Rates Models

hospitalization rate given survival. The combination of these two effects results in

the marginal effect of ECD on mean hospitalizations.

Based on Method II, ECD recipients on average experience 79 more hospital ad-

missions per 1000 persons compared to a non-ECD recipients regardless the survival

status at the end of one year. This difference increased with more post-transplant

years and reaches 318 per 1, 000 patients at the end of five years. At each time point,

the difference between ECD transplant patients and non-ECD transplant patients is

highly significant. The isolated ECD effect on hospitalization numbers are 81, 158,

233, 304, 372 per 1, 000 patients at the end of one to five years. Take five years
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Method I Method II

t φ̂(t) ŜE{φ̂(t)} p ψ̂(t) ŜE{ψ̂(t)} p

1 year 0.081 0.028 0.004 0.079 0.028 0.005
2 year 0.158 0.055 0.004 0.153 0.054 0.005
3 year 0.233 0.081 0.004 0.217 0.079 0.006
4 year 0.304 0.106 0.004 0.270 0.104 0.010
5 year 0.372 0.130 0.004 0.318 0.128 0.014

Table 4.5: Analysis of Kidney Transplant Data (ECD vs. non-ECD) Difference in Mean Numbers
of Hospitalizations

as an example, factoring out the differences between ECD and non-ECD survival,

an ECD recipient would experience 0.372 more hospitalizations in five years after

transplant. All the differences at the selected time points are highly significant.

In summary, receiving an ECD kidney leads to significantly higher hospitalizations

post-transplant.

The difference in average hospitalization numbers for an ECD recipient compared

to a non-ECD recipient with the same covariates pattern (i.e., ψ̂(t) ) is plotted in

Figure 4.1. We can see that ECD recipients have more hospitalizations immediately

after transplant. The difference keeps increasing with time and reaches 363 hospital

admissions per 1,000 patients at the end of the 5-year follow-up period. The increase

in hospitalization rate due to ECD dominates the decrease in survival probability

for ECD recipients and leads to positive ECD effects on mean hospitalizations. As

Figures 4.1 and 4.2 illustrate, this positive difference accumulates over time.

It would be possible to set up a procedure to compute 95% confidence bands anal-

ogous to that proposed by Lin, Wei and Fleming (1994). However, due to the number

of patients and event times, such a procedure is computationally inconvenient. As

such, we propose a bootstrap method for calculating simultaneous confidence bands

for the difference ψ over time. First, a bootstrap sample of the same size (n = 3, 816)

is selected by random sampling with replacement. Second, the difference ψ̃(t) is cal-
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linear trend: The dashed lines in Figure 1-2 represents the difference in means which would result if the difference

across the (0, 400] day interval persisted across the (400, 1825] day interval.

Figure 4.1: ECD Effects on Mean Number of Hospitalizations - Method I
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linear trend: The dashed lines in Figure 1-2 represents the difference in means which would result if the difference

across the (0, 400] day interval persisted across the (400, 1825] day interval.

Figure 4.2: ECD Effects on Mean Number of Hospitalizations - Method II
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culated for each day of the follow-up period because the cumulative hospitalization

rate changes by day and survival probability drops at each death time. Third, find

η = sup(|ψ̃(t) − ψ(t)|). Here, ψ(t) is estimated by ψ̂(t) from the original data set.

Then, the same procedure is repeated for 200 times and an empirical distribution

of the η is obtained. Finally, the 95th quantile of η, q̃0.95, is computed through this

empirical distribution, following which confidence bands are calculated as ψ̂(t)±q̃0.95.

¿From Figure 4.3 and 4.4, confidence bands are wider than the pointwise confi-

dence interval since confidence bands represent the variation of the supremum over

five years of follow up. Also by comparing Figure 4.3 and 4.4, φ̂(t) from Method I

has better precision and narrower confidence bands possibly because estimator φ̂(t)

employs a standard survival distribution, dR̂0(u) and θ̂′i2Zi2 cancel out in taking the

difference of
∫ t

0
Ŝ(u; β̂|Z0

i )dR̂i(u; θ̂|X1
i ) and

∫ t

0
Ŝ(u; β̂|Z0

i )dR̂i(u; θ̂|X0
i ). The isolated

treatment effect on hospitalization means is highly significant at the end of 1 − 5

years. But the process φ̂(t) is not significantly different from zero in the first 39

months post transplant, and the difference becomes significant after the 39th month.

In Method II, although post-transplant hospitalization means in ECD and non-ECD

transplant patients, µ̂1(t) and µ̂0(t), differ significantly pointwise, the process ψ̂(t) is

not significantly different from zero over five years post transplant.

4.6 Discussion

We propose semiparametric methods to compare marginal treatment-specific mean

number of recurrent events in the presence of a terminating event. The proposed

methods involve modeling terminating event survival probability and the conditional

recurrent event rate given survival separately, then integrating to estimate treatment-

specific marginal recurrent event means. Two different effect measures are proposed,

with their asymptotic properties derived and evaluated in moderate size samples.

We demonstrate that these two estimators work reasonably well under misspecified

models; that is, models failing to incorporate unmeasured predictors of both the

terminating event hazard function and conditional recurrent event rate. Both esti-

mators are applied to national kidney transplant data to study the effect of ECD
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The two outside lines are 95% confidence bands for the year 0-5 interval.

The five vertical bars represent 95% pointwise confidence intervals at the end of year 1, · · · , 5.

Figure 4.3: 95% Confidence Bands and Pointwise Confidence Intervals for the Difference between
ECD and non-ECD recipients in Hospitalization Means by Method I
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The two outside lines are 95% confidence bands for the year 0-5 interval.

The five vertical bars represent 95% pointwise confidence intervals at the end of year 1, · · · , 5.

Figure 4.4: 95% Confidence Bands and Pointwise Confidence Intervals for the Difference between
ECD and non-ECD recipients in Hospitalization Means by Method II
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transplantation on post-transplant hospitalization admission numbers. ECD recipi-

ents are found to have consistently more hospitalizations during the whole follow-up

period, with the difference between ECD and non-ECD recipients increasing with

time.

There are several possible variations to the proposed methods; for example, a

multiplicative recurrent event rate model, or nonparametric estimators for the ter-

minating event survival probabilities. In practice, the appropriateness of the chosen

models depends on the degree to which its assumptions suit the data and its inter-

pretation answers the question of interest. Our choice of the proportional hazards

and additive rates models is a combination of appropriate model and straightforward

interpretation.

Both proposed estimators, φ̂(t) and ψ̂(t), are asymptotically normal, with ex-

plicit variance estimators, and one can construct point-wise confidence intervals and

simultaneous confidence bands for each. However, φ̂(t) and ψ̂(t) have different in-

terpretations and are answering different questions. For investigators interested in

the actual difference between group-specific recurrent event means, ψ̂(t) would be

preferred. On occasions where investigators wish to isolate the treatment effect

on the recurrent events, φ̂(t) provides a standardized difference between treatment-

specific recurrent event means, since it factors out the treatment-specific differences

in survival probabilities. Although such a comparison is hypothetical, standardized

comparisons are widely used, with the common objective of describing a single effect

in a hypothetical setting wherein all other factors are equal.

Our strongest assumption is that there are no unmeasured predictors of both the

terminating event hazard and conditional event rate. In observational settings, this

assumption will fail frequently. Several issues are important in this regard. First, the

unmeasured predictor must be a risk factor for both the terminating and recurrent

event conditional on all measured covariates. If the most important predictors are in-

cluded in the adjustment covariate vector, bias may be minimized and the estimated

treatment effect may be a good approximation to the reality. Second, the most pop-

ular alternative to a no-unmeasured-predictor assumption is to incorporate a frailty.
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However, most frailty approaches for recurrent event data employed assume that the

events follow a Poisson process, which is restrictive in its own right. To the best of

our knowledge, there is only one method (Ye, Kalbfleisch and Schaubel; unpublished

manuscript) which employs a frailty in the absence of the Poisson-process assump-

tion, and that method does not propose cumulative effect measures. Third, our

sensitivity analysis reveals that if an unmeasured frailty affects both the terminating

event hazard and conditional rate, bias is quite low.

4.7 Appendix

Proof of Theorem 1 : Under conditions (a) to (g), we have essentially the same

framework as the additive rates model of Schaubel et al. (2006), with the at risk

indicators redefined. As such, the almost sure convergence of θ̂ to θ0 holds from

Theorem 2 of Schaubel et al. (2006). Therefore, by the Cramer-Wold Theorem (Sen

and Singer, 1993), the first element of θ̂, denoted by θ̂1, is a consistent estimator for

θ01.

Since β̂
a.s.−→ β0 and Λ̂0(t)

a.s.−→ Λ0(t) for all t ∈ (0, τ ] (Andersen and Gill, 1982), by

the continuous mapping theorem, Ŝ(u−|Zi)
a.s.−→ S(u−|Zi) and hence φ̂(t; θ̂, β̂)

a.s.−→
φ̂(t; θ0, β0). Finally, the empirical average taken in φ̂(t) converges to its expectation

for t ∈ (0, τ ] by the Uniform Strong Law of Large Numbers (USLLN; Pollard, 1990).

Proof of Theorem 2 : We can decompose n
1
2{φ̂(t; β̂, θ̂) − φ(t)} into three parts as

follows

n
1
2{φ̂(t; β̂, θ̂)− φ(t)} = n

1
2{φ̂(t; β̂, θ̂)− φ̂(t; β0, θ̂)}

+n
1
2{φ̂(t; β0, θ̂)− φ̂(t; β0, θ0)}

+n
1
2{φ̂(t; β0, θ0)− φ0(t)}.(4.4)
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For the first part of (4.4), applying a Taylor expansion around β0, we get

n
1
2{φ̂(t; β̂, θ̂)− φ̂(t; β0, θ̂)} = θ̂1n

−1

n∑
i=1

∫ t

0

∂S(u−; β, θ̂|Z0
i )

∂β′

∣∣∣∣∣
β=β∗

n
1
2 (β̂ − β0)du

= −θ̂1E

[∫ t

0

S(u−|Z0
i )eβ̂′Z0

i

∫ u

o

{Z0
i − z(s)}dΛ0(s)

]
n

1
2 (β̂ − β0)du(4.5)

as n → ∞, where ND(u) =
∑n

1 ND
i (u). Furthermore, through another Taylor

expansion,

n
1
2 (β̂ − β0) = A(β0)

−1n−
1
2

n∑
i=1

UD
i (β0).(4.6)

as n →∞. Combining (4.5) and (4.6),

n
1
2{φ̂(t; β̂, θ̂)− φ̂(t; β0, θ̂)} = n−

1
2

n∑
i=1

γi1(t; β0, θ0)(4.7)

as n →∞.

For the second term of (4.4),

n
1
2{φ̂(t; β0, θ̂)− φ̂(t; β0, θ0)} = n−1

n∑
i=1

∫ t

0

Ŝ(u−|Z0
i )du n

1
2 (θ̂1 − θ01).

The difference between θ̂ and θ0 can be expressed as sum of independent identical

contributions from each subject (Schaubel et al. 2006). When n →∞ ,

n
1
2 (θ̂ − θ0) = B−1n−

1
2

n∑
i=1

UR
i (θ0),

while n
1
2 (θ̂1 − θ01) corresponds to the first element of n

1
2 (θ̂ − θ0); that is,

n
1
2 (θ̂1 − θ01) = {B−1n−

1
2

n∑
i=1

UR
i (θ0)}1,1(4.8)

as n →∞. By continuous mapping, Ŝ(u−|Z0
i )

a.s.−→ S(u−|Z0
i ). Through the USLLN,

n−1

n∑
i=1

∫ t

0

Ŝ(u−|Z0
i )du

a.s.−→ E[

∫ t

0

S(u−|Z0
i )du].(4.9)

Combining (4.8) and (4.9), we get

n
1
2{φ̂(t; β0, θ̂)− φ̂(t; β0, θ0)} = n−

1
2

n∑
i=1

γi2(t; β0, θ0)(4.10)
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as n →∞.

For the third term of (4.4), as n →∞ ,

n
1
2 φ̂(t; β0, θ0)− φ0(t) = θ01 n−

1
2

n∑
i=1

∫ t

0

{Ŝ(u−; β0|Z0
i )− S(u−|Z0

i )}du

= θ01 n−
1
2

n∑
i=1

∫ t

0

[exp{−Λ̂0(u; β0)e
β′0Z0

i } − exp{−Λ0(u)eβ′0Z0
i }]du

= θ01 n−
1
2

n∑
i=1

∫ t

0

−S(u−|Z0
i )eβ′0Z0

i {Λ̂0(u; β0)− Λ0(u)}du

= −θ01n
−1

n∑
i=1

∫ t

0

{S(u|Z0
i )eβ′0Z0

i }n 1
2{Λ̂0(u; β0)− Λ0(u)}du.

while

n
1
2{Λ̂0(u; β0)− Λ0(u)} = n

1
2

{∫ u

0

∑n
i=1 dND

i (r; β0)∑n
i=1 Yi(r)eβ′0Zi

− Λ0(u)

}

= n−
1
2

n∑
i=1

∫ u

0

dMD
i (r; β0)

S(0)(r; β0)

= n−
1
2

n∑
i=1

∫ t

0

dMD
i (r; β0)

s(0)(r; β0)

+n−
1
2

n∑
i=1

∫ t

0

[S(0)(r; β0)
−1 − s(0)(r; β0)

−1]dMD
i (r; β0).

The second term in the summation converges to zero, which can be shown by the

strong convergence of S(0)(r; β0) to s(0)(r; β0), the continuous mapping theorem and

the USLLN. Thus,

n
1
2{Λ̂(u; β0)− Λ(u)} = n−

1
2

n∑
i=1

∫ u

0

dMD
i (r; β0)

s(0)(r; β0)
(4.11)

as n →∞.

In summary, combining (4.7), (4.10) and (4.11)

n
1
2{φ̂(t; β̂, θ̂)− φ̂(t; β0, θ̂)} = n−

1
2

n∑
i=1

γi1(t; β0, θ0)

n
1
2{φ̂(t; β0, θ̂)− φ̂(t; β0, θ0)} = n−

1
2

n∑
i=1

γi2(t; β0, θ0)

n
1
2{φ̂(t; β0, θ0)− φ0(t)} = n−

1
2

n∑
i=1

γi3(t; β0, θ0),
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as n →∞ , such that

n
1
2{φ̂(t; β̂, θ̂)− φ0(t)} = n−

1
2

n∑
i=1

γi(t; β0, θ0),

as n →∞ , and hence n
1
2{φ̂(t; β̂, θ̂)−φ0(t)} behaves asymptotically as a scaled sum

of independent and identically distributed zero mean variables.

The quantity γi(t; β0, θ0) can shown asymptotically to be martingale (Fleming

and Harrington, 1990), meaning that n−
1
2

∑n
i=1 γi(t; β0, θ0) is tight, which combined

with the normality results completes the weak convergence proof. The covariance

function for n
1
2{φ̂(t; β̂, θ̂)−φ(t)}, Φ(s, t) = E[γi(s; β0, θ0)γi(t; β0, θ0)], can be obtained

through the Multivariate Central Limit Theorem (Sen and Singer 1993), and can be

consistently estimated by

Φ̂(s, t) = n−1

n∑
i=1

γ̂i(s; β̂, θ̂)γ̂i(t; β̂, θ̂).

Proof of Theorem 3 :

We prove the consistency of µ̂1(t; β̂, θ̂) and µ̂0(t; β̂, θ̂) separately, following which

the consistency of ψ̂(t; β̂, θ̂) is directly obtained.

We estimate ψ(t) by plugging in the corresponding empirical estimates for all the

quantities,

ψ̂(t) = n−1

n∑
i=1

∫ t

0

[Ŝ(r−|Z1
i ){dR̂0(r) + (θ̂1 + X ′

i2θ̂2)dr}

−Ŝ(r−|Z0
i ){dR̂0(r) + X ′

i2θ̂2dr}].

As stated in the proof of Theorem 1, θ̂
a.s.−→ θ0, β̂

a.s.−→ β0, Λ̂0(t)
a.s.−→ Λ0(t), and

Ŝ(u−|Zi)
a.s.−→ S(u−|Zi), for all t ∈ (0, τ ]. Therefore, by the Continuous Mapping

Theorem,

µ̂1(t; θ̂, β̂)
a.s.−→ µ̂1(t; θ0, β0),

for all t ∈ (0, τ ].
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Finally, applying the USLLN (Pollard, 1990) to µ̂1(t; θ0, β0) = n−1
∑n

i=1 µ1(t; θ0, β0|Zi, Xi),

we obtain n−1
∑n

i=1 µ1(t; θ0, β0|Zi, Xi)
a.s.−→ E{µ1(t; θ0, β0|Zi, Xi)}, which is essen-

tially µ1(t). Similar arguments can be applied to µ̂0(t; θ̂, β̂).

Proof of Theorem 4 :

We describe here the distribution of n
1
2{µ̂1(t; β̂, θ̂)−µ1(t)}. A similar development

applies to n
1
2{µ̂0(t; β̂, θ̂) − µ0(t)}. First, n

1
2{µ̂1(t; β̂, θ̂) − µ1(t)} is decomposed into

four parts as follows:

n
1
2{µ̂1(t; β̂, θ̂)− µ1(t)} = n

1
2{µ̂1(t; β̂, θ̂)− µ̂1(t; β0, θ̂)}

+n
1
2{µ̂1(t; β0, θ̂)− µ̂1(t; β0, θ0)}

+n
1
2

∫ t

0

n−1

n∑
i=1

Ŝ(r−|Z1
i ){dR̂0(r; θ0)− dR0(r)}

+n
1
2

∫ t

0

n−1

n∑
i=1

{Ŝ(r−; β0|Z1
i )− S(r−|Z1

i )}{dR0(r) + θ′0X
j
i dr}.(4.12)

For the first part of (4.12) , we apply a Taylor expansion around β0 to obtain

n
1
2{µ̂1(t; β̂, θ̂)− µ̂1(t; β0, θ̂)} = n−1

n∑
i=1

∫ t

0

∂S(r−; β, θ̂|Z1
i )

∂β′

∣∣∣∣∣
β=β∗

n
1
2 (β̂ − β0)

{dR̂0(r) + (θ̂1 + X ′
i2θ̂2)dr}

= −n−1

n∑
i=1

∫ t

0

[
{exp{−eβ∗′Z1

i Λ̂0(r) + β∗
′Z1

i }Z1
i Λ̂0(r)

− exp{−eβ∗′Z1
i Λ̂0(r) + β∗

′Z1
i }

∫ r

0

S(1)(u; β∗)
n{S(0)(u; β∗)}2

dN(u)

}

{dR̂0(r) + (θ̂1 + X ′
i2θ̂2)dr}

]
n

1
2 (β̂ − β0)

= −E

[
eβ′Z0

k

∫ t

0

S(u−|Z0
k)

∫ u

0

{Z0
k − z(r; β)}′dΛ0(r)dR(u|Xj

k)

]

n
1
2 (β̂ − β0),

as n → ∞ , where β∗ lies between β̂ and β0 in Rp. Furthermore, given (4.7), when

n →∞ ,

n
1
2{µ̂1(t; β̂, θ̂)− µ̂1(t; β0, θ̂)} = n−

1
2

n∑
i=1

ξi11(t; β, θ).(4.13)
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.

For the second part of (4.12), when n →∞ ,

n
1
2{µ̂1(t; β0, θ̂)− µ̂1(t; β0, θ0)} = n−1

n∑
i=1

∫ t

0

Ŝ(r−|Z1
i ){∂dR̂0(r)

∂θ′
+ X ′

idr}n 1
2 (θ̂ − θ0)

= n−1

n∑
i=1

∫ t

0

Ŝ(r−|Z1
i )(−X

′
(r) + X1

i
′
)dr{B−1n−

1
2

n∑
i=1

UR
i }

= E

[∫ t

0

S(u−|Zj
i ){(Xj

i )
′ − x′(u)}du

]
{B−1n−

1
2

n∑
i=1

UR
i },(4.14)

by the USLLN and the results of Schaubel et al. (2006) for θ̂.

For the third part of (4.12), when n →∞ ,

n
1
2

∫ t

0

n−1

n∑
i=1

{Ŝ(r−|Z1
i )}{dR̂0(r; θ0)− dR0(r)} =

∫ t

0

E{S(r−|Z1
i )}n 1

2{dR̂0(r; θ0)− dR0(r)}

=

∫ t

0

E{S(r−|Z1
i )}n− 1

2

n∑
i=1

π(r)−1dMR
i (r).(4.15)

For the fourth part of (4.12), when n →∞ ,

n
1
2{ψ̂(t; β0, θ0)− ψ0(t)} = n−1

n∑
i=1

∫ t

0

n
1
2{Ŝ(u−; β0|Z1

i )− Si(u
−|Z1

i )}

{dR0(u) + (θ1 + X ′
i2θ2)du}

= n−1

n∑
i=1

∫ t

0

n
1
2 [exp{−Λ̂0(u; β0)e

β′0Z0
i } − exp{−Λ0(u)eβ′0Z0

i }]

{dR0(u) + (θ1 + X ′
i2θ2)du}

= −n−1

n∑
i=1

∫ t

0

exp{−Λ0(u)eβ′0Z0
i }(eβ′0Z0

i )n
1
2{Λ̂0(u; β0)− Λ0(u)}

{dR0(u) + (θ1 + X ′
i2θ2)du}

= −
∫ t

0

n−1

n∑
i=1

{e−Λ0(u)eβ′0Z0
i eβ′0Z0

i }{dR0(u) + (θ1 + X ′
i2θ2)du}

n
1
2{Λ̂0(u; β0)− Λ0(u)}

= −
∫ t

0

E[eβ′0Z0
i S(u−|Z1

i )dR(u|X1
i )]n

1
2{Λ̂0(u; β0)− Λ0(u)},(4.16)

while n
1
2{Λ̂0(u; β0)− Λ0(u)} is derived in (4.11).
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In summary, combining (4.13), (4.14), (4.15) and (4.16), when n →∞ ,

n
1
2{µ̂1(t; β̂, θ̂)− µ1(t)} = n−

1
2

n∑
i=1

ξi1·(t; β, θ)

n
1
2{µ̂1(t; β̂, θ̂)− µ̂1(t; β0, θ̂)} = n−

1
2

n∑
i=1

ξi11(t; β, θ)

n
1
2{µ̂1(t; β0, θ̂)− µ̂1(t; β0, θ0)} = n−

1
2

n∑
i=1

ξi12(t; β, θ)

n
1
2

∫ t

0

n−1

n∑
i=1

Ŝ(r−|Z1
i ){dR̂0(r; θ0)− dR0(r)} = n−

1
2

n∑
i=1

ξi13(t; β, θ)

n
1
2

∫ t

0

n−1

n∑
i=1

{Ŝ(r−; β0|Z1
i )− S(r−|Z1

i )}{dR0(r) + θ′0X
j
i dr} = n−

1
2

n∑
i=1

ξi14(t; β, θ).

Therefore n
1
2{µ̂1(t; β̂, θ̂)−µ1(t)} is asymptotically n−

1
2 times sum of independent

and identically distributed terms. The tightness of n
1
2{µ̂1(t; β̂, θ̂) − µ1(t)} can be

proved by examining each component of µ̂1(t; β̂, θ̂) so that n
1
2{µ̂1(t; β̂, θ̂) − µ1(t)}

can be written as sum of monotone bounded functions. Through similar proofs,

n
1
2{µ̂1(t; β̂, θ̂) − µ1(t)} can be written as scaled sum of contributions from each of

the independent and identically distributed subject. After expressing the difference,

n
1
2{µ̂1(t; β̂, θ̂)−µ1(t)}−n

1
2{µ̂0(t; β̂, θ̂)−µ0(t)}, at the subject level, weak convergence

to a Gaussian process follows from the application of various tools from empirical

process theory (Pollard, 1990; Van der Vaart and Wellner, 1996). The covariance

function for n
1
2{µ̂1(t; β̂, θ̂)− µ̂0(t; β̂, θ̂)} is given by

Φ(s, t) = E[{ξi1·(s; β0, θ0)− ξi0·(s; β0, θ0)}{ξi1·(t; β0, θ0)− ξi0·(t; β0, θ0)}],

which can be estimated by replacing limiting values with their empirical counterparts,

then averaging over the sample.
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CHAPTER V

Conclusion

This dissertation proposes three novel survival analysis methods for use in ob-

servational studies, each motivated by real problems in applying the classic survival

analysis techniques. A common aspect of the three papers is that they were mo-

tivated by specific needs in applying statistical models to real research questions.

Hence, the contribution of this research are of clinical, in addition to biostatistical,

significance. Specifically, Chapter 2 addresses the problem of fitting a proportional

hazards model when subjects have different probabilities of being sampled/observed.

Chapter 3 proposes testing procedures with considerable statistical power to formally

evaluate the degree of selection bias. Chapter 4 considers estimating the treatment

effect on the recurrent event mean, in the presence of a terminating event.

Chapters 2 and 3 feature the idea of “inverse-selection-probability-weighting”, in

which each subject is weighted by the inverse of their selection probability. Under

this approach, inference is valid for the target population before selection. Chapter

3 proposes, as a test statistic, the difference between parameters before and after

selection. Chapter 4 starts from the idea of separately estimating the terminating

event survival probability and recurrent event conditional rate given survival. A

proportional hazards model and an additive rates model are fitted. When we inte-

grate the estimated survival probability and conditional recurrent event rate, we can

choose either a “standard” survival distribution for both groups, or the treatment-

specific survival distribution for the corresponding group. The choice between the

two measures (which have different interpretations) will depend on the goals of the

111
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investigator.

As stated in the beginning of this chapter, each method proposed in this disser-

tation was applied to address an existing medical research question. In Chapter 2,

we determined that Expanded Criteria Donor (ECD) kidneys are associated with a

much higher increase in transplant failure when inference pertains to all procured

kidneys instead of all transplanted kidneys. Inference applicable to all procured kid-

neys has more relevance since wait-listed patients are offered procured kidneys, not

kidneys already transplanted. Previous results based on only transplanted kidneys

underestimate the ECD effect. In Chapter 3, we are interested in the effect of wait-

listed patients’ characteristics on post transplant survival for the purpose of ranking

candidates by predicted “survival benefit”. Selection bias occurs since transplanted

patients are not a representative sample of all wait listed patients, for whom we want

to make inference. The potential biasing factor, morbidity history, could not be ad-

justed at time of ranking. Through the proposed test statistic, chronic obstructive

pulmonary disease (COPD), age 35 to 44 and years on dialysis have significantly dif-

ferent impact on post transplant survival in the transplant candidate and recipient

populations. Chapter 4 continues our interest in ECD transplantation. It is discov-

ered that ECD transplant recipients have higher post-transplant death hazard and

that patients have a higher hospitalization rate while they survive. Overall, ECD

patients have more hospitalizations, despite the fact that they also have significantly

lower survival than non-ECD transplant recipients over the whole post-transplant

follow-up period. Each of these findings is important information for kidney trans-

plantation surgeons and patients, as well as policy makers, in addressing questions

such as how restrictive patients should be with respect to accepting lower quality

organs.



CHAPTER VI

Supplementary Materials for “Evaluating Bias Correction in
Weighted Proportional Hazards Regression”

6.1 Appendix A

We assume the following regularity conditions:

(a) {Ti, Ci, Zi, Ii, Xi} are independent and identically distributed for i = 1, . . . , N .

(b) P (T̃i > τ) > 0.

(c)
∫ τ

0
λ0S(t)dt < ∞ and

∫ τ

0
λ0T (t)dt < ∞.

(d) |Xik| < ∞; |Zik(0)| + ∫ τ

0
|Zik(s)|ds < ∞ almost surely, where the second sub-

script refers to vector element.

(e) Positive-definiteness of the matrices, A(β0), Aw(β0, θ0) and B(θ0), where, for

the quantities applicable to the possibly biased sample,

A(β) = E

[∫ τ

0

{Zi(t)− z(t; β)}⊗2Yi(t)e
β′Zi(t)λ0S(t)dt

]

S(k)(t; β) = n−1

N∑
i=1

IiYi(t)e
β′Zi(t)Zi(t)

⊗k, k = 0, 1, 2

Z(t; β) =
S(1)(t; β)

S(0)(t; β)

s(k)(t; β) = lim
N→∞

S(k)(t; β), k = 0, 1, 2

z(t; β) =
s(1)(t; β)

s(0)(t; β)
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and for the quantities applicable to the target population,

Aw(β, θ) = E

[∫ τ

0

{Zi(t)− zw(β, θ; t)}⊗2wi(θ)Yi(t)e
β′Zi(t)λ0T (t)dt

]

S(k)
w (t; β, θ) = N−1

N∑
i=1

wi(θ)Yi(t)e
β′Zi(t)Zi(t)

⊗k, k = 0, 1, 2

Zw(t; β, θ) =
S

(1)
w (t; β, θ)

S
(0)
w (t; β, θ)

s(k)
w (t; β, θ) = lim

N→∞
S(k)

w (t; β, θ), k = 0, 1, 2

zw(t; β, θ) =
s
(1)
w (t; β, θ)

s
(0)
w (t; β, θ)

B(θ) = E[Xipi(θ){1− pi(θ)}X ′
i]

with a⊗0 = 1, a⊗1 = a and a⊗2 = aa′.

(f) There exists a δ such that pi(θ) > δ > 0 almost surely.

6.2 Appendix B

Proof of Theorem 1 : The strong consistency of β̂S was demonstrated by Andersen

and Gill (1982).

The consistency of the weighted parameter estimate, β̂T , for the true parameter

values applicable to the target population, βT , is proved in Theorem 1 of Pan and

Schaubel (2007).

Combining these two results, as a linear combination of the difference of β̂S and

β̂T , D̂j
a.s.−→ Dj by the continuous mapping theorem.

Through a Taylor expansion around β = βS,

U(β̂S)− U(βS) =
∂U(β)

∂β′

∣∣∣∣
β=β∗S

(β̂S − βS),

where β∗S lies between β̂S and βS in Rp. Define

Â(β) = −n−1∂U(β)

∂β′
= −n−1

N∑
i=1

∫ τ

0

Ii

[
S(2)(t; β)

S(0)(t; β)
− Z(t; β)⊗2

]
dNi(t).

Then, we have

n
1
2 (β̂S − βS) = Â(β∗S)

−1
n−

1
2 U(βS)
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since U(β̂S) = 0. Under the assumed conditions,

sup
t∈[0,τ ]

||S(d)(t; β)− s(d)(t; β)|| a.s.−→ 0,

for d = 0, 1, or 2 and any β in a compact set. Since β̂S
a.s.−→ βS and ‖ β∗ − βS ‖≤

‖ β̂S − βS ‖, β∗S
a.s.−→ βS. Using the continuous mapping theorem, S(d)(t; β∗S)

a.s.−→
s(d)(t; βS), with s(0)(t; β) bounded away from zero for all β and t ∈ [0, τ ]. Using

the almost sure convergence of S(d)(t; β∗S) to s(d)(t; βS) and the continuous mapping

theorem, we get

S(2)(t; β∗S)

S
(0)
w (t; β∗S)

− Z(t; β∗S)⊗2 −→ s(2)(t; βS)

s(0)(t; βS)
− z(t; βS)⊗2 ≡ v(t; βS)

uniformly in t ∈ (0, τ ]. Using the Strong Law of Large Numbers (SLLN) and the

continuous mapping theorem,

Â(β∗S)
a.s.−→ A(βS),

where A(β) ≡ E
[∫ τ

0
v(t; β)dNi(t)

]
, as defined in condition (e). Hence

n
1
2 (β̂S − βS) = A(βS)−1n−

1
2 UN(βS) + op(1).(6.1)

Through the definition of S(d)(t; β) and with some basic algebra,

U(β) =
N∑

i=1

∫ τ

0

Ii[Zi(t)− Z(t; β)]dMi(t; β).

Furthermore, we can write

n−
1
2 U(βS) = n−

1
2

N∑
i=1

∫ τ

0

Iiψi(βS) + op(1),(6.2)

where ψi(β) = [Zi(t) − Z(t; β)]dMi(t; β) = [Zi(t) − z(t; β)]dMi(t; β), using the fact

that
∥∥∥∥∥n−

1
2

N∑
i=1

∫ τ

0

Ii[Zw(t; βS)− z(t; βS)]dMi(t; βS)

∥∥∥∥∥
P−→ 0p×1.

which can be demonstrated by employing various empirical process results (van der

Vaart 2000) and results from empirical process theory (Pollard 1990, van der Vaart
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1996, Bilias, Gu and Ying 1997). Combining (6.1) and (6.2), we get

n
1
2 (β̂S − βS) = A(βS)−1n−

1
2

N∑
i=1

∫ τ

0

Iiψi(βS) + op(1).(6.3)

Pan and Schaubel (2007) demonstrated that

N
1
2 (β̂T − βT ) = Aw(βT , θ0)

−1N− 1
2

N∑
i=1

ψw
i (βT , θ0) + op(1),(6.4)

where

ψw
i (β, θ) =

∫ τ

0

wi(θ){Zi(t)− zw(t; β, θ)}dMi(t)−G(β, θ)B(θ)−1ULi

G(β, θ) = E

[∫ τ

0

{Zi(t)− zw(t; β, θ)}X ′
ie
−θ′XidMi(t; β)

]
,

ULi(θ) = Xi{Ii − pi(θ)}.

Combining (6.3) and (6.4),

n
1
2 (D̂ −D) = p

1
2 c′jA

w(βT , θ0)
−1N− 1

2

N∑
i=1

ψw
i (βT , θ0)− c′jA(βS)−1n−

1
2

N∑
i=1

∫ τ

0

Iiψi(βS).

We now define

D1 = p
1
2 c′jA

w(βT , θ0)
−1N− 1

2

N∑
i=1

ψw
i (βT , θ0)

D2 = c′jA(βS)−1n−
1
2

N∑
i=1

∫ τ

0

Iiψi(βS),

Such that

Var(n
1
2 (D̂ −D)) = Var(D1) + Var(D2)− 2Cov(D1, D2).(6.5)

For D1, p
1
2 converges to a constant between 0 and 1, indicator vector cj is pre-

specified and the asymptotic information matrix for the weighted Cox regression

Aw(βT , θ0)
−1 is also fixed. Hence the variance of D1 is the product of several constants

and the variance of N− 1
2

∑N
i=1 ψw

i (βT , θ0), namely Σw(βT , θ0) = E{ψw
i (βT , θ0)

⊗2},
which was derived by Pan and Schaubel through the Multivariate Central Limit

Theorem. Therefore

Var(D1) = pc′jA
w(βT , θ0)

−1Σw(βT , θ0)A
w(βT , θ0)

−1cj.(6.6)
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Similar arguments can be applied to Var(D2). The matrix A(βS) is the limiting

value for Â(β̂S) and hence can be treated as constant matrix. The variance of

n−
1
2

∑N
i=1

∫ τ

0
Iiψi(βS) can be derived through the Martingale Central Limit Theorem

(Andersen and Gill 1982). That is, Σ(βS) = E{ψi(βS)⊗2}, such that

Var(D2) = c′jA(βS)−1Σ(βS)A(βS)−1cj.(6.7)

In terms of Cov(D1, D2), the quantities cj, Aw(βT , θ0)
−1 and A(βS) are fixed.

For the covariance between N− 1
2

∑N
i=1 ψw

i (βT , θ0) and n−
1
2

∑N
i=1

∫ τ

0
Iiψi(βS), we con-

sider the three possible scenarios for the combination of subject i and j. If i 6= j,

Cov{ψw
i (βT , θ0), Ijψj(βS)} = Cov(ψw

j (βT , θ0), Iiψi(βS)) = 0 since subjects are all

independent from each other. If i = j and Ii = 0, Cov(ψw
i (βT , θ0), Ijψj(βS)) =

Cov(ψw
i (βT , θ0), 0) = 0 because subject i does not contribute to the estimation of

βS. If i = j and Ii 6= 0, Cov{ψw
i (βT , θ0), Ijψj(βS)} = E{ψi(βS)ψw

i (βT , θ0)
′} because

both ψi(βS) and ψw
i (βT , θ0) have expectation zero. Summing up the three types of

covariances,

Cov

{
N− 1

2

N∑
i=1

ψw
i (βT , θ0), n

− 1
2

N∑
i=1

∫ τ

0

Iiψi(βS)

}
= (Nn)−

1
2 nΣβ(βS, βT , θ0)

where

Σβ(β1, β2, θ) = E{ψi(β1)ψ
w
i (β2, θ)

′}.

Combining the above results, we obtain

Cov(D1, D2) = p
1
2 c′jA(βS)−1Σβ(βS, βT , θ0)A

w(βT , θ0)
−1cj.(6.8)

Combining (6.5), (6.6), (6.7) and (6.8), the variance of n
1
2 (D̂ −D) in Theorem 1 is

proved.

6.3 Appendix C

Proof of Theorem 2 : The proof of uniform consistency of of Λ̂0(t; β̂S) to Λ0S(t) for

t ∈ (0, τ ] begins by decomposing α(t) = Λ̂0(t; β̂S) − Λ0S(t) into two parts, α(t) =
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α1(t) + α2(t) with

α1(t) = Λ̂0(t; β̂S)− Λ̂0(t; βS)

α2(t) = Λ̂0(t; βS)− Λ0S(t)

Applying a Taylor expansion about βS,

α1(t) = N−1

N∑
i=1

∫ t

0

∂

∂β′
[S(0)(s; β)]

∣∣∣∣
β=β∗

dNi(s)(β̂S − βS)

= −N−1

N∑
i=1

∫ t

0

S(1)(s; β)

S(0)(s; β)
2

∣∣∣∣∣
β=β∗

dNi(s)(β̂S − βS)

= −
∫ t

0

Z
′
(s; β∗)dΛ̂0(s; β∗)(β̂S − βS),

where β∗ lies between β̂S and βS in Rp. Since the quantities Z(s; β∗) and dΛ̂0(s; β∗)

are bounded, along with β̂S
a.s.−→ βS, | α1(t) | a.s.−→ 0.

The second component, α2(t), can be rewritten as n−1
∑N

i=1

∫ t

0
IiS

(0)(s; βS)
−1

dMi(s; βS).

By the Uniform Strong Law of Large Numbers (USLLN; Pollard 1990), n−1
∑N

i=1

∫ t

0
IidMi(s; βS)

a.s.−→
0 for t ∈ [0, τ ]. As n −→∞, S(0)(s; βS)−→s(0)(s; βS) which is bounded away from 0.

Therefore, | α2(t) | a.s.−→ 0.

Combining results for α1(t) and α2(t) and the triangle inequality,

sup
t∈[0,τ ]

| α(t) | ≤ sup
t∈[0,τ ]

| α1(t) | + sup
t∈[0,τ ]

| α2(t) |,

yields the required result,

sup
t∈[0,τ ]

| Λ̂0(t; β̂S)− Λ0S(t) | a.s.−→ 0.(6.9)

Combining (6.9) and the convergence of Λ̂w
0 (t; β̂T , θ̂) for Λ0T (t) (Pan and Schaubel

2007), ∆̂(t; β̂S, β̂T , θ̂) converges uniformly to ∆(t) for t ∈ [0, τ ] by continuous mapping

theorem.

6.4 Appendix D

Proof of Theorem 3 : First, we decompose

n
1
2{∆̂(t; β̂S, β̂T , θ̂)−∆(t)} = p

1
2 N

1
2{Λ̂w

0 (t; β̂T , θ̂)− Λ0T (t)} − n
1
2{Λ̂0(t; β̂S)− Λ0S(t)}

= ∆1(t)−∆2(t).



119

As shown by Pan and Schaubel,

∆1(t) = p
1
2 N− 1

2

N∑
i=1

φw
i (t; βT , θ0) + op(1),

where

b(t; β, θ) = E{Xie
−θ′XiYi(t)e

β′Zi(t)}

k(t; β, θ) = −E

{∫ t

0

Xie
−θ′Xi

s
(0)
w (s; β, θ)

dNi(s)+

∫ t

0

wi(θ)b(s; β, θ)

s
(0)
w (s; β, θ)

2 dNi(s)

}

h(t; β, θ) = −
∫ t

0

zw(s; β, θ)dΛ0(s)

φw
i (t; β, θ) = k′(t; β, θ)B(θ)−1ULi + h′(t; β, θ)Aw(β, θ)−1ψw

i (β, θ) +

∫ t

0

wi(θ)dMi(s; β, θ)

s
(0)
w (s; β, θ)

.

Through a similar derivation,

∆2(t) = n−
1
2

N∑
i=1

Iiφi(t; βS) + op(1),

where

φi(t; β) = −
∫ t

0

z′(s; β)dΛ0S(s)(t; β)A(β)−1ψi(β) +

∫ t

0

dMi(s; β, θ)

s
(0)
w (s; β, θ)

.

Asymptotic normality extends to any finite set of time points. Finally, weak

convergence to a Gaussian process follows from the tightness of n
1
2{∆̂(t) − ∆(t)},

which follows from the manageability of both φw
i (t; βT , θ0) and φi(t; βS). See Pan

and Schaubel (2007) for pertinent details. For two time points (s, t) ∈ (0, τ ]× (0, τ ],

Cov(n
1
2{∆̂(s; β̂S, β̂T , θ̂)−∆(t)}, n 1

2{∆̂(t; β̂S, β̂T , θ̂)−∆(t)})
= Cov(∆1(s), ∆1(t)) + Cov(∆2(s), ∆2(t))− Cov(∆1(s), ∆2(t))− Cov(∆2(s), ∆1(t))

where

Cov(∆1(s), ∆1(t)) = pE{φw
i (s; βT , θ0)φ

w
i (t; βT , θ0))}

Cov(∆2(s), ∆2(t)) = E{φi(s; βS)φi(t; βS)}
Cov(∆1(s), ∆2(t)) = pE{φw

i (s; βT , θ0)φi(t; βS)}
Cov(∆2(s), ∆1(t)) = pE{φi(s; βS)φw

i (t; βT , θ0)}.

through arguments similar to the derivation for Cov(D1, D2) and the Functional CLT

(Pollard 1990).
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Figure 6.1: Analysis of SRTR data: Cumulative incidence of kidney transplantation
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Figure 6.2: Analysis of SRTR data: Effect of bounding wi(θ̂) on MSE{β̂T (u)}, where MSE=mean
square error and β̂T (u) is the estimate of βT with upper bound, u.
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Figure 6.3: Analysis of SRTR data: Plot of estimated survival functions, exp{−Λ̂0T (t; β̂T , θ̂)} (solid
line) and exp{−Λ̂0S(t; β̂S)} (dotted line).




