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CHAPTER I

INTRODUCTION

Functional Magnetic Resonance Imaging (fMRI) refers to the use of a Magnetic

Resonance (MR) scanner to measure and map brain function by means of rapid

acquisition of brain state images. Just like the older Positron Emission Tomography

(PET) technique, fMRI is noninvasive and makes it possible to indirectly observe

brain activity while a subject performs particular task. However, unlike PET, fMRI

does not require injection of radioactive tracer and provides relatively good spatial

and temporal resolution. For these reasons, fMRI has proven to be an invaluable tool

for Neuroscientists and Psychologists to better understand human brain organization

and function.

Blood Oxygen Level Dependency (BOLD) fMRI is the dominant fMRI technique.

BOLD fMRI is based on the fact that the magnetic susceptibilities of oxyhemoglobin

and deoxyhemoglobin differ slightly, i.e., the signal decay rate of deoxyhemoglobin

is more rapid than its oxygenated counterpart. Following neural activation, oxygen

rich blood flows to the area of activation which leads to a local changes in the MR

decay parameter T ∗
2 . This subsequently leads to a local rise in the intensity of the

observed signal. The intensity rise can be detected [110] and used to generate a

BOLD-weighted image.
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The BOLD imaging described here is by no means the only way to image func-

tional activity. Other methods exist, e.g., Arterial Spin Labeling (ASL) which allows

for the weighting of the MR signal by cerebral blood flow. A detailed comparison of

BOLD and ASL is performed in [33].

It is important to keep in mind that the neural activity is indirectly observed

through the BOLD response. The details of this forward problem, i.e., the rela-

tionship between the stimulus, neural firing, and the BOLD response is still largely

unknown, see [108] for a diagram that summarizes the current knowledge.

The BOLD response is usually modeled as a hump like function that reaches

maximum in about 5 seconds and then dies out in 10 seconds [23]. On a practical

signal processing level it is typically assumed that it is related to the neural activity

through a Linear Translation Invariant (LTI) system. This assumption has been

shown to be accurate to first order [18, 161].It provides framework to solve the

inverse problem, i.e., infer about the neural activity by observing the BOLD response.

Buckner [19] discusses current advances and the limits of this inverse problem.

A small initial decrease or dip in the BOLD signal has been observed in some fMRI

experiments. These experiments suggest that the dip occurs close to the source

of neural activity which hints that higher spatial resolution can be obtained. For

example, a spatial map of the iso-orientation columns in the visual cortex requiring

sub-millimeter accuracy has been produced [155]. In comparison, the BOLD response

can provide 3-5 mm resolution. However, the existence of this dip is still controversial

due to lack of reproducibility of these experiments.

The main type of experimental design in fMRI is the so-called blocked experimen-

tal design. A typical blocked experiment usually consists of two states; the control

state and a functional state. The functional state could for example involve finger
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tapping or a visual fixation on a flickering image, while the rest state involves no

motor action or visual fixation on non-flickering image. The blocked experimental

design to detect activation is a heritage from a time when Single Photon Emission

Computed Tomography (SPECT) and PET were the dominant methods to do func-

tional studies. In those method a particular functional state had to be applied for up

to a minute to detect activation. In contrast, activation is detectable seconds after

a stimuli onset in fMRI. Therefore, there is an interest in event-related experiments

where a multiple brief stimulus is applied during a single experiment [123, 22].

Preprocessing of the data is necessary after the MR signal is recorded. It usually

involves solving number of ill-conditioned inverse problems. The first step is re-

construction which in the simplest setting is a two-dimensional Inverse Fast Fourier

Transform (IFFT). The result is a time series of brain images which generally consist

of complex numbers. The phase is almost always discarded in subsequent statisti-

cal analysis by taking the magnitude of the images. This is justified by the fact

that the Rician Random Variable (RV) resulting from taking the magnitude of a

complex Gaussian RV is very well approximated by a Gaussian RV for Signal to

Noise Ratio (SNR) greater than 2 [61]. This magnitude of SNR is much less than

commonly seen in fMRI, except outside the brain, and more importantly in regions

affected by signal dropout. With increasing spatial resolution, and consequently

decreasing SNR, methods that incorporate the phase will become important. An-

ticipating this, researchers have started to develop models for low SNR data; [125]

developed estimation method for complex data, and [139] developed an Expectation

Maximization (EM) algorithm for Rician distributed fMRI magnitude data.

Other standard preprocessing steps are: physio-correction to correct for cardio and

respiratory signals [58], which depends on the availability of external measurements
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of the signals; motion correction to correct for unexpected movement of the subject

during the experiment [47]; slice time correction that corrects for slice acquisition

error; spatial normalization to register brain images from different individuals into

a standard brain template, e.g., Talairach [146] or MNI [41]; and high pass filtering

[47]. Sometimes spatial smoothing is applied, however, this is often poorly motivated.

There are many issues related to preprocessing that are unanswered, for instance in

what order should they be performed. The correct approach would be to incorporate

them into a statistical model, but currently this seems computationally unfeasible.

The resulting sequence of images is four dimensional, three spatial dimensions

and time. A particular spatial location in a 3-D grid is called a voxel and a two

dimensional cross-sectional grid is called a brain slice. There are two plots that can

be used to visualize the data; the time series associated with a voxel, and an image

of a brain slice. Figure 1.1 shows an example of two voxel timeseries: activated, and

noisy. There are three things to notice here. Firstly, the y-axis is in arbitrary units,

i.e., the voxel timeseries do not have a physical meaning. Secondly, the SNR which is

defined by the ratio of the baseline amplitude to the noise Standard Deviation (STD)

is clearly very high. Thirdly, the so-called Contrast to Noise Ratio (CNS) which is

defined as the ratio between the amplitude of the activated signal (the square wave

looking signal on Figure I.1(a)) and noise STD is relatively low.

Figure 1.2 shows an example of a brain image slice at a particular time. This is a

horizontal slice (axial) where the back of the head is in the lower part of the image.

As with the voxel timeseries the voxel intensities are measured in arbitary units.

fMRI images are usually interpreted in relative terms, e.g., for our example voxels in

the grey matter of the brain are of higher intensity than white matter voxels. Voxels

outside the brain are of lowest intensity. The artifacts noticeable outside the brain
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Figure 1.1: Plots of timeseries observed at two different voxels.
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Figure 1.2: A picture of a brain slice observed at a particular time.

are due to the Fourier based reconstruction method used in this example.

Another important aspect of fMRI data is that the number of voxels greatly

exceeds the number of time points, e.g., a typical data set has for example 21 brain

slices, 64×64 voxels per brain slice, and 100 time points. The number of data points

is therefore 21 × 64 × 64 × 100 = 8601600 which is a very large number.

Even after preprocessing the fMRI data is extremely complex. For instance, Weis-

skoff [166] showed for a slice in the visual cortex, obtained by fast 7Hz sampling, that
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the spectra displayed white noise in white matter, cardiac noise in cerebrospinal fluid,

and cardiac, respiratory and low-frequency noise in grey matter. Slower sampling

rates mean that relatively high frequency processes such as the cardiac rhythm are

aliased, further adding to the complexity [90]. To complicate the story even further

the fMRI data is also spatially correlated, e.g., due to motion correction algorithms

and reconstruction. For these reasons no universally accepted model for fMRI data

currently exists.

An interesting feature of fMRI time series is the presence of a low frequency noise.

The underlying source is largely unknown. Its main characteristics are [109] 1) it

occurs without stimulus, 2) it can be differentiated from the cardiac and respiratory

signals, 3) and it can be altered by pharmacological and pathological conditions. An

especially interesting aspect of this is the investigation of functional connectivity of

resting state data [17, 60].

The two most common approaches to analyze fMRI data are univoxel and multi-

voxel methods. Univoxel approaches assume spatial independence and consequently

model each voxel separately. The voxels are assumed to comprise of BOLD response

and noise and possible some nuisance signals. On the other hand multivoxel ap-

proaches are generally exploratory and use all the voxels (or some subset) to produce

few spatial maps and corresponding temporal signals that (hopefully) capture the

essence of the data set well. They can be broadly divided into methods that do not

recognize stimulus such as Principal Component Analysis (PCA) [53], Independent

Component Analysis (ICA) [96], Self Organizing Maps (SOM) [113], and methods

that recognize stimulus such as Partial least squares (PLS) [95] and Canonical Cor-

relation Analysis (CCA) [50].

An underlying theme in this thesis is the realization that there is an underlying
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model behind PCA [81, 5], which we call the noisy PCA (nPCA), where the PCs can

be derived by the Maximum Likelihood (ML) method. This fact gives us an access

to a range of statistical machinery such as inference and model selection methods,

and a framework to build upon.

In this dissertation we develop three novel features

1. Chapter II develops two Noisy PCA (nPCA) based spatio-temporal models

that recognizes temporal smoothness and spatial localization of the fMRI data.

Unlike univoxel method these methods do not assume stationary noise. In

addition, we demonstrate how to construct a Likelihood ratio test statistic, and

importantly, show how to obtain a spatial decomposition of it. The tuning

parameters associated with these models are selected jointly by using the BIC

criterion.

2. In Chapter III we propose a new svPCA algorithm, which we call svnPCA.

Our method has several novel features. Firstly, it is based on a statistical

model. Secondly, it uses a penalized likelihood formulation that is able to zero

out variables rather than just loadings. Thirdly the optimization problems is

nonstandard because it involves an orthogonality constraint and we resolve this

by using the geodesic steepest descent and geodesic Newton algorithms. Finally,

to select the number of sparse principal components and the sparseness tuning

parameter, we propose to use a novel form of the BIC criterion. In addition, we

discuss an alternative svnPCA approach using the EM algorithm.

3. Chapter IV introduces a novel method to select the number of principal com-

ponents based on the nonlinear SURE technique with some help from Random

Matrix Theory (RMT). This method is able to handle the case where the num-
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ber of observations are of similar order as number of variables. For practical use

it is necessary to estimate the noise variance and we have developed a reliable

estimator based on RMT.

Chapter V draws conclusions and discusses possible future research directions.

1.1 Univoxel Methods

The goal of univoxel methods is to construct so-called activation maps from the

fMRI data. Activation maps are constructed by comparing the voxel timeseries to

the experimental stimulus. Voxels that correspond closely to the stimulus are consid-

ered to be activated. In univoxel modeling the voxels are considered separately and

assumed independent of each other. Spatial correlation is usually ignored, notable

exceptions are [136, 116].

In the following, to fix ideas imagine that y(v) is the signal depicted on Figure

I.1(a). An observed voxel timeseries (after preprocessing) at voxel number v is typi-

cally modeled as follows

y(v) = Z1γv + Z2δv + ηv (1.1)

= Xβv + ηv, v = 1, ...,M

where Z1 is a T × q1 matrix that accounts for the BOLD response, Z2 is a T × q2

matrix to account for nuisance parameters such as drift, X = [Z1, Z2], βv = [γT , δT ]T ,

and ηv ∼ N(0,Ωv) is a noise term.

1.1.1 The BOLD Response Model

The BOLD response is considered the part of the observed voxel timeseries that

reacts to the experimental stimulus. A good model for the BOLD response is neces-

sary in order to get a good tradeoff between bias and variance in the estimate. Too
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simple model will lead to a biased estimate and too complex model will lead to a

high variance estimate. The main issue concerning the construction of the BOLD re-

sponse model is the relationship of the experimental stimulus to the BOLD response.

The papers [56], [27] and [138] discuss the case where the stimulus is assumed to be

linearly related to the BOLD signal while e.g., [136] consider the non-linear case.

1.1.2 The Noise Model

Due to the relatively short length of the voxel timeseries the noise models usu-

ally require a low order stationary parametric models. The paper [20] uses AR(p)

model, i.e., the covariance matrix Ωv is a Toeplitz matrix. The paper [138] suggests

ARMA(1,1) model for the noise.

1.1.3 Estimation

The generalized least square estimate can be used to estimate the parameters βv.

It is given by

β̂v = (XT Ω−1
v X)−1XT Ω−1

v y(v), v = 1, ...,M.

The solution does require the covariance Ωv, which is generally not available, so an

estimate needs to be used. This complicates the problem since now βv and Ωv need

to be estimated jointly, which is usually done using iterative methods.

1.1.4 Inference and Activation maps

Activation maps are constructed by doing hypothesis test at each voxel. Lets

assume that βv = [β1,v, β2,v]
T , β1,v controls the baseline, and β2,v is the parameter that

controls the amplitude of the BOLD response signal, then an appropriate hypothesis
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test would be

H0 : β2,v = 0

H1 : β2,v 6= 0.

Assuming white noise (Ωv = σ2
vIT ), the Likelihood Ratio Test (LRT) [15] is given by

LRTv =
1

2
β2

2,v‖s‖2/σ̂2
v , v = 1, ...,M. (1.2)

where s is a vector modeling the BOLD response, and σ̂2
v is of course an estimate

of the noise variance. The LRTv is a very sensible quantity, measuring the signal to

noise ratio at voxel number v. Whether the voxel is activated or not is determined

from this number. Correlations, multiple comparison problems greatly complicate

the story in this section, but such issues are not discussed in this thesis.

1.2 Multivoxel Methods

1.2.1 Principal Component Analysis (PCA)

The best known multivoxel method is probably PCA [74]. It is based on finding

uncorrelated linear combinations of the data that maximize variance. Its classical use

in multivariate analysis is exploratory, i.e., to decompose relatively low dimensional

data set, where the number of observations greatly exceed the number of variables, in

hope that the PCs reveal something about the underlying process. References [74, 70]

include many good examples. More theoretical references include [79, 129, 6].

PCA is based on determining a M × 1 vector m, M × T matrices C and B that

solve the following minimization problem:

min
m,B,C

T
∑

t=1

‖yt −m− CBTyt‖2. (1.3)

Again to fix ideas imagine that yt is the brain image shown on Figure 1.2 stacked in

a vector, and that M > T .
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The solutions to (1.3) are given by [129]:

m̂ = ȳ =
1

T

T
∑

t=1

yt

C = B = Pr

Y − 1T ȳ
T = QL1/2P T .

The last expression is the Singular Value Decomposition (SVD) of the mean corrected

T ×M fMRI data matrix, Q = [q(1), q(2), ..., q(T )] is a T × T orthonormal matrix,

P = [p(1), p(2), ..., p(M)] is an M ×M orthonormal matrix, L1/2 is a T ×M diagonal

matrix of singular values l
1/2
1 , l

1/2
2 , .., l

1/2
T , and Pr = [p(1), p(2), ..., p(r)]. It is sometimes

useful to use these estimates and write the fMRI data matrix in the following way:

Y = 1T ȳ
T +QL1/2P T .

A little algebra shows that

Sy =
1

T
(Y T (IT − 1T 1T

T

T
)Y ) =

1

T
PLP T (1.4)

i.e., P contains the eigenvectors of the covariance matrix Sy of the voxel timeseries.

Since the columns p(1), ..., p(M) of the matrix P can be plotted spatially we call them

the eigenimages of Y . By similar argument we call the columns q(1), ..., q(T ) of Q the

eigentimeseries of Y .

There is another way to view PCA, namely by the following maximization prob-

lem:

max
p(i)∈RM

pT
(i)Syp(i) (1.5)

subject to

pT
(i)p(i) = 1, pT

(i)p(j) = 0, i < j, j ≥ 2.
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The first eigenimage p(1) can be interpreted as the direction in RM of maximum

variance. The second eigenimage is orthogonal to the first and points in the direction

in RM of second most variance and so on. If we plot an eigenimage p(j) spatially

then the spatial point of largest absolute amplitude represents the point of largest

variation when l
1/2
j qt,jp

T
(j) is observed as a movie over time. If the eigenimage has

high amplitude in the gray matter, e.g., in the motor cortex, it is of particular

interest and should be looked more closely at. It is also of interest to look at the

eigentimeseries q(j), which describe how the eigenimages evolve in time. For example

if a eigentimeseries looks like the stimulus signal we are on to something.

The most common exploratory use of PCA in fMRI and medical imaging is to an-

alyze functional connectivity. For example, if two brain regions show up highlighted

on the same eigenimage they are said to be functionally connected.

Probably the first use of PCA to investigate functional connectivity in medical

imaging was [53] which applied it to a PET data set coming from a verbal fluency

experiment, [54] describes a similar fMRI experiment, in both cases the two first

eigenimages explained most of the data variance and were biologically interpretable.

Bullmore et al. [21] performs PCA on fMRI data from a experiment involving visual

and sematic processing of words. They specialized to a Region Of Interest (ROI)

selected via univoxel analysis of the data. The results were interpreted in terms

of functional relationship between activated regions. Worsley et al. [170] compares

PCA to conventional correlation methods to detect functional connectivity.

Other notable papers on the use of PCA in fMRI are firstly Mitra et al. [102]

which advocates the use of spatio-frequency PCA, in addition the paper gives a

nice signal processing insight in medical image processing. Secondly, Behzadi et al.

[13] extracts PCs from regions of the brain in which neural activation is unlikely,
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such as in CSF and the white matter of the brain. These components are called

significant PCs and are subsequently used to act as nuisance parameter regressors in

SPM analysis. This method compared favorably to the RETROICOR method [58].

Finally, we point out the standard criticism of using PCA in fMRI. First, as

noted by many of the above mentioned papers, there is no guarantee that the PCs

are interpretable. In other words there is no biological reason why interesting brain

processes should be orthogonal, let alone of high variance. For example the activation

could be diffused over many components. Second, as noted by [170] there is still no

principled way to obtain p-values for the eigenimages.

1.2.2 Selection of the Number of PCs

A crucial problem is to design a rule to decide how many eigentimeseries/eigenimages

should be retained. To motivate this we write the fMRI data in the following way

Y = 1T ȳ +

r
∑

j=1

l
1/2
j q(j)p

T
(j) +N (1.6)

where r < T . In this case the 1T ȳ +
∑r

j=1 l
1/2
j q(j)p

T
(j) is considered the signal part

and the matrix of residual N is considered to be the noise part. So the selection of

the number of PCs is equivalent to selecting the r in Equation (1.6).

A popular ad hoc rule is to use the Scree plot [94], which plots the eigenvalues

l1, ..., lT in a decreasing order, and looks for an elbow where the signal eigenvalues

l1, ..., lr are on the left side and the noise eigenvalues lr+1, ..., lT are on the right.

Another approach is to compute the cumulative percentage of the total variation of

the PCs:
∑r

j=1 lj

tr(Sy)

and retain the number of PCs that represent, say 70% or 80%. A number of other

similar methods exist [74], that often work well in practice, but their disadvantage
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is that they need a subjective decision from the user. This decision is often hard to

make, e.g., there can be multiple elbows in the Scree plot.

More objective methods for choosing PCs have been proposed by several authors.

The references [168, 37], in different context than fMRI, propose cross-validation to

select the number of PCs so that a good prediction model is obtained. However,

for large data sets such as for fMRI, the computations for cross-validation become

prohibitive. Hansen et al. [63] split their fMRI data set into test and training

data and use the test set to select the number of PCs that minimize prediction

error. However, fMRI scanning time is expensive so it is questionable how useful

this method is. The remarkable [115] was way ahead of its time in applying Random

matrix theory (RMT) to PCA in the context of Meteorology and Oceanography. It

develops simple selection rule based on keeping all components that lie above the

95% level of the of the cumulative distribution function expected from RMT for all

noise data.

1.2.3 Rotated PCA

Starting from the SVD view of PCA Y = QrL
1/2
r P T

r it can be seen that this

representation is invariant to rotation by a r × r rotation matrix R, i.e.,

Y = AST +N

where

A = QrL
1/2
r R

S = PrR

where N is a matrix of residuals, A = [a(1), a(2), ..., a(r)] is a T × r matrix of rotated

eigentimeseries, and S = [s(1), s(2), ..., s(r)] is a M × r matrix of rotated eigenimages.
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In the case where PCA does not yield interpretable eigenimages p(1), p(2), ..., p(r) it

is sometimes possible to select a specific rotation matrix R to get more informative

results. A two step procedure that consists of first doing PCA and then determine

the rotation matrix is called rotated PCA. Perhaps the most well known approach

to do this is varimax procedure [76] that consists of maximizing the quantity

r
∑

j=1

T
∑

t=1

[sT
(j)(yty

T
t − Sy)s(j)]

2 (1.7)

subject to the orthogonality constraints STS = Ir. This can be interpreted as max-

imizing the time centered fourth moment of the eigenimages relative to the basis

S [115]. More intuitively, this procedure looks for eigenimages with heavy tailed

histogram, i.e., most voxels close to zero and a few larger ones. For an algorithm to

solve (1.7) see [91, 115].

The increased interpretability of the rotated PCs comes at a cost. The rotated

eigentimeseries A lose their uncorrelatedness property. This is easily seen by com-

puting

STS = RT (ATA)R = RTLR

which is not diagonal.

Another class of methods that we briefly mention is so-called oblique rotation

PCA. In that case the rotation matrix R is not orthogonal but invertible. These

methods rotate each eigenimage individually and judge the interpretability either

by some cost function or by the eye. Examples of oblique rotation are the Promax

technique [83] which is based on the Procrustes transformation and the Projection

Pursuit [48] which is based on non-Gaussian projection where the non-Gaussianity

is measured by so-called projection indices.
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Notice that we have discussed these rotation methods in term of rotation of the

eigenimages. It is also possible to rotate the eigentimeseries instead. Same discussion

as above would follow.

There are a few examples of the use of rotated PCA in fMRI. Backfrieder et

al. [7] uses oblique rotation to search for components representing brain activation.

Andersen et al. [3] investigated projection pursuit in a fMRI experiment involving

pharmacological stimulation in primates and showed that it allowed for more inter-

pretable and lower dimensional representation of the data than PCA. Thomas et

al. [149] discussed how Independent Component Analysis (ICA) and PCA with and

without varimax rotation treat noise. PCA and rotated PCA were found to be better

in separating random noise from brain activation than ICA. On the other hand, ICA

was found to be better in separating structured noise from brain activation than the

PCA based methods.

There is a close connection between rotated PCA and the Fast ICA method [69]

that is worth mentioning since Fast ICA is very popular in fMRI research [25, 12].

Fast ICA looks for rotations of the PCs by optimizing the following cost function

r
∑

j=1

T
∑

t=1

G(sT
(j)yt) (1.8)

subject to STS = Ir, and G is called a contrast function. Note that the varimax

method is a special case of (1.8). The idea is that the contrast function is a measure

of the non-Gaussianity of the inner product sT
(j)yt. We do not want Gaussian random

variable since it has the largest entropy among all random variable of equal variance

[28] and therefore it is least structured. A popular contrast function in practice is

G(u) = log cosh(u).

For alternative contrast functions and further discussion about ICA see [68, 71].
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1.2.4 Kernel PCA

Kernel PCA (kPCA) [127] is a generalization of PCA where unlike PCA it used

nonlinear functional of the data. The fMRI data can be written in terms of the

orthogonal kPCs s(1), s(2), ..., s(r) in the following way:

Y = AST +N

=
r
∑

j=1

a(j)s
T
(j) +N.

The kPCs are obtained by diagonalizing a generalized M × M covariance matrix

SK = [d(y(i), y(j))], which is called the kernel matrix, where d() is some distance

norm such that SK is a positive definite matrix.

The paper [148] introduced kPCA into fMRI research, in that paper the kernel

matrix was chosen as

SK = [yT
(i)y(j)e

corr(y(i),y(j))−1

σd ],

where corr stands for correlation, and σd controls the amount of nonlinearity in the

kernel. For example σd → ∞ corresponds to the classical PCA, while decreasing σd

leads to more emphasis on highly correlated signals. An interesting consequence of

picking low σd is that negatively correlated timeseries are treated as almost orthog-

onal and therefore will most likely not appear on the same spatial map. This is in

sharp contrast with conventional PCA.

The temporal components are easily computed by linear regression from the kPCs

a(j) = Y s(j), j = 1, ..., r.

In fMRI the number M of voxels is usually very high, this poses a significant prac-

tical problem since this method requires a diagonalization of M ×M matrix. As a

17



remedy, Thirion [148] suggested to preselect interesting voxels, e.g., from thresholded

activation maps.

The parameters r and σd need to be selected. An independent identically distributed

(iid) regression framework was assumed in [148] and employed the BIC criterion to

select r. The selection of σd seems to be a significant problem. The kPC need to be

recomputed for different values of σd which is a huge task.

kPCA is a promising technique in fMRI but much more work has to go into how

to choose the kernel or equivalently the non-linear functionals, and how it relates

to the biological processes we are after. The paper [52] which focuses on non-linear

PCA could serve as a starting point.

1.2.5 Functional PCA

Functional PCA (fPCA) is a basic tool from Functional Data Analysis (FDA)

[119]. The basic premise of FDA and fPCA is that the observations are not random

vectors of independent observations but rather smooth functions. In the fMRI case,

we view the signal observed at voxel v, as a continuous function yv(t). The fPCA

finds an orthonormal set of eigenfunctions q(t) that optimally explain the variance

of the fMRI data set.

There are a few examples of the use of fPCA in fMRI. Solo et al. [140] and Long

et al. [87] use it in multisubject settings to estimate spatially varying non-stationary

noise covariance kernel. Viviani et al. [163] view the signals observed at each voxel

as continuous function and perform fPCA. They show that fPCA has advantage

over traditional PCA in capturing the BOLD response. Interestingly, they allow the

number of basis function to vary over voxels by using generalized cross-validation

[30] to select it at each voxel.

There are two basic ways to incorporate smoothness into the eigentimeseries. The
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first method is to express the original data as a linear combination of known basis

functions such as Fourier, B-splines, and wavelets [162, 144]. Now we discuss the

formulation.

Lets assume we have a basis φ and expand the voxel timecurves

y(t) = φT (t)C

where y(t) is 1 ×M vector, φT (t) is 1 × m vector of basis components, and C =

(ΦT Φ)−1/2ΦT (Y −1Tm
T ) is a m×M matrix of basis coefficients. The corresponding

time covariance kernel is given by

Sφ(s, t) = φT (s)CCTφ(t).

Lets further assume that the smooth eigenfunctions can be written in terms of the

basis as

q(t) = φT (t)B.

The eigenequation can be written as (cf. Equation (1.4))

∫

Sφ(s, t)q(t)dt = φT (s)CCTWB

= φT (s)BD

where W =
∫

φ(t)φ(t)Tdt. This holds for all s so the following matrix equation holds

CTCWB = BD.

Notice that if the basis is orthonormal then W = Im, and therefore the problem

reduces to doing a spectral decomposition on the smooth sample covariance

(ΦT Φ)−1/2ΦTSyΦ(ΦT Φ)−1/2.
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If the basis is not orthogonal an integration has to be performed to compute W .

This is usually done by numerical quadrature methods. An important problem is to

select the number of basis function and PCs. The most common methods used in

FDA context seem to be visualization and cross-validation.

The second method to enforce smoothness is to incorporate it into the PCA itself.

Since this method has not been applied in fMRI research we refer to Chapter 9 in

[119] for a detailed discussion.

1.3 Canonical Correlation Analysis

The idea behind CCA is to analyze the relationship between two vectors of vari-

ables. Suppose we have the observations of two zero mean random vectors, i.e., the

p dimensional vector x and the M dimensional vector y. The goal is then to find

linear combinations Xa and Y b such that they have the largest possible correlation

ρ(a, b) =
aTSxyb

√

aTSxabTSyb
.

That is

max
a,b

ρ(a, b) subject to aTSxa = bTSyb = 1.

where Sx and Sy are the sample covariance matrices of X and Y , Sxy is the cross-

covariance betweenX and Y . It is possible to find k pairs (a(j), b(j)), j = 1, ..., k, k =

min(M, p) of the canonical correlations vectors that satisfy the condition above given

that aT
(i)Sxa(j) = 0, i 6= j, and the same for the b vectors. The solutions of the

optimization problem above are called the canonical correlations. It can be shown

that [79] that the canonical correlation vectors can be found by first performing SVD

on the cross correlation matrix Rxy between X and Y

Rxy = S−1/2
x SxyS

−1/2
y = UDV T
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where D = diag(ρ1, ..., ρr) is a diagonal matrix of the canonical correlations. Then

the canonical correlation vectors a(1), ..., a(k), b(1), ..., b(k) can be found by

A = S−1/2
x V

B = S−1/2
y U

where A = [a(1), ..., a(k)] and B = [b(1), ..., b(k)]. If either Sx of Sy are singular then

the equations above can be modified by exchanging the generalized inverse [120] for

the inverse.

Similar to the other multivariate methods discussed above one hopes that only

few canonical variates Y B show effect of stimulus and the loading map B show where

the activation is.

CCA has only recently received attention in the fMRI literature. Friman et al [49]

uses CCA to extract temporal and spatial signals that are maximally autocorrelated

and claims that all signals of interest are autocorrelated. In [50] the x-set is a signal

subspace that contains for example a prototype of the BOLD-response and other

signals of interest. The y-set contains a voxel and its neighborhood, for example

9× 9 region around the pixel. Friston [55] uses CCA to develop test statistics about

the whole brain volume using the Wilks statistic [129].

1.4 Noisy PCA

Since fMRI data is spatio-temporal there are two possible nPCA models for it.

Firstly, temporal nPCA where we view the brain scans or images as independent

observations. Secondly, spatial nPCA where the voxels are viewed as independent

observations. Both formulations are important to this thesis. For instance, Chapter

3 focuses on the spatial model and Chapter 4 on the temporal model. In this section

we first develop temporal nPCA, then the spatial nPCA model is discussed.
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1.4.1 Temporal nPCA

Like previously discussed the traditional PCA is exploratory. Lawley [82] demon-

strated that there is a statistical model behind it which has the following sample

function description

yt = µt + ǫt (1.9)

= m+Gut + ǫt, t = 1, ..., T

where

yt : M × 1 brain image at time t

m : The mean brain image

G = (g(1), g(2), ..., g(r)) : M × r loading matrix

ut ∼ N(0, Ir) : r vector of nPCs

ǫt ∼ N(0, σ2IM) : Isotropic noise

ǫt, ut : Independent random vectors.

The problem is to estimate θ = (m,G, σ2). This model bears some resemblance with

the standard array processing model [78], except in array processing, the loading

matrix G is known except for few unknown parameters. So array processing methods

are of no help here.

The log-likelihood is given by

lθ(y) = −T
2

tr(SyΩ
−1) − T

2
log |Ω|

where Ω = GGT + σ2IM . If M is large this log-likelihood expression is not useful for

computation since a M ×M matrix has to be inverted. We proceed to simplify it.

By using the matrix inversion lemma we can write

Ω−1 =
1

σ2
(IM −GW−1GT )
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where W = GTG+ σ2Ir. By using the properties of the determinant we can write

log |Ω| = log |GGT + σ2IM |

= log |σ2M(
GTG

σ2
+ Ir)|

= (M − r) log σ2 + log |W |.

By using the above expressions we can write the log-likelihood in the following way

lθ(y) = − T

2σ2
trSy +

T

2σ2
tr(W−1GTSyG)

− T (M − r)

2
log σ2 − T

2
log |W |. (1.10)

The ML estimates [81, 147, 152] are given by (a derivation given in Appendix A for

completeness)

m̂ = ȳ =
1

T

T
∑

t=1

yt

Ĝ = Pr(Lr − σ̂2Ir)
1/2R

σ̂2 = σ̂2
r =

1

M − r

M
∑

j=r+1

lj . (1.11)

Here Lr = diag(l1, ..., lr), where l1 > l2 >, ..., > lr, contains the r largest eigenvalues

of the data covariance matrix Sy, R is an arbitrary orthogonal rotation matrix, and

Sy =
1

T

T
∑

t=1

(yt − ȳ)(yt − ȳ)T =
1

T
(Y T − ȳ1T )(Y − 1ȳT )

where 1 denotes an M-vector of 1’s, and the r columns of Pr are the corresponding

eigenvectors, so SyPr = PrLr. The rotation matrix in the ML estimate is basically

reflecting the important property that the log-likelihood is invariant to rotation of the

loading matrix G, i.e., the loading matrix is not identifiable. This is usually resolved

by imposing an identifiability constraint such as setting R = Ir. This particular

choice is very appealing since in this case the loading matrix is orthogonal and the
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sample principal components are uncorrelated (see Equation (1.12)). In fact one of

the defining properties of PCA is that the PCs are uncorrelated so it might be argued

that the constraint R = Ir is necessary.

Importantly, [147] proved that the ML estimates are the global optimizers of the

likelihood, this was rediscovered by [152]. Also note that the asymptotic distribution

of the ML estimators was derived in [4].

For given data and the ML estimate of θ, the estimated noisy principal components

have to be estimated. A good estimate of it is the Best Linear Unbiased Prediction

(BLUP) estimate [122], it and its associated covariance matrix is given by

ût = Eθ̂(ut|yt) = Ŵ−1ĜT (yt − m̂)

Sû = varθ̂(ut|yt) = σ̂2
rŴ

−1 (1.12)

Ŵ = ĜT Ĝ + σ̂2Ir

The estimate for µt in Equation (1.9) is given by

µ̂t = Ĝût = ȳ + ĜŴ−1ĜT (yt − ȳ)

= ȳ +
r
∑

j=1

p(j)
lj − σ̂2

lj
pT

(j)(yt − ȳ) (1.13)

this is a nonlinear function of yt.

1.4.2 Noisy PCA Model Selection

An issue that needs to be resolved is to determine how many nPCs should be

retained, i.e., r needs to be selected. The methods introduced Section 1.2.2 can of

course be used, but the ML framework suggests new techniques. The first solution

approach based on the ML framework was to use a nested sequence of hypothesis tests

to test if the smallest M−r eigenvalues are equal [10, 82]. Since the hypothesis testing

approach depends on subjective choice of a threshold, the paper [165] suggested to
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use methods based on the application of the information theoretic criteria such as

An Information Criterion (AIC) [1], Bayesian Information Criterion (BIC) [128], and

Minimum Description Length (MDL) [121]. They are given by (MDL=BIC in this

case)

AICr = −2lθ̂(y) + 2 dim(θ)

BICr = −lθ(y) +
1

2
dim(θ) logT

where (derived in Appendix B)

lθ̂(y) = −MT

2
− T

2

r
∑

j=1

log(lj) −
T (M − r)

2
log σ̂2

and dim(θ) is the degree of freedom in θ, i.e., number of parameters that can be

independently adjusted. It is given by

dim(θ) = Mr − r(r − 1)

2
+ 1 +M.

By discarding terms that do not depend on r, and using the fact that the sum of the

log of the eigenvalues is constant, the AIC criterion can be written as

AICr = −2 log

(

∏ρ
j=1 l

1/(M−r)
j

1
M−r

∑ρ
r=j+1 lj

)(M−r)T

+ 2 dim(θ)

where ρ is the number of non-zero eigenvalues. The BIC can of course be written

similarly. Interestingly, this formulation reveals that these criteria only depend on

the ρ− r smallest eigenvalues.

Both AIC and BIC have been found to be useful in practice. BIC penalizes

complex models more than AIC and therefore always selects fewer PCs. In addition,

it can be shown that AIC is not a consistent estimator of the true order [77].

Hansen [62] derived a criterion which is equivalent to the AIC presented here

and applied it to a fMRI data set [63]. Another notable paper that derives a

25



method closely related to BIC is [130]. Surprisingly, many authors incorrectly use

the AIC/BIC criteria presented here for other problems than nPCA. For instance,

the papers [24, 12] used them for selection of the number of independent components

in fMRI data; [165] for selection of the number of signals in array processing (that

paper, however, acknowledged the incorrect usage).

1.4.3 Spatial nPCA

Since spatial nPCA is very similar to the temporal nPCA we will only state the

model and give the ML solutions. There will also be some recycling of notation. The

model is given by

y(v) = mv1T +Guv + ǫv, v = 1, ...,M (1.14)

where mv is the baseline amplitude at voxel v, G is the T × r loading matrix,

and uv ∼ N(0, Ir) and ǫv ∼ N(0, σ2IT ) are independent random vectors. The ML

solutions are given by

m̂v = ȳv =
1

T

T
∑

t=1

yv,t

Ĝ = Qr(Lr − σ̂2
rIr)

1/2R

σ̂2 = σ̂2
r =

1

T − r

T
∑

j=r+1

lj . (1.15)

where Lr = diag(l1, ..., lr), l1 > l2 >, ..., > lr, contains the r largest eigenvalues of the

data covariance matrix Sy, R is an arbitrary orthogonal rotation matrix, and

Sy =
1

M

M
∑

v=1

(y(v) − ȳv)(y(v) − ȳv)
T

where the r columns of Qr are the eigenvectors, so SyQr = QrLr.

1.4.4 Deterministic PCA

There is another PCA model based on ML which is due to Whittle [167] that we

now briefly discuss. This model was also considered in Anderson [5] where it was
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called linear functional relationships. In addition Anderson compared it to nPCA

which he called structural linear relationships. The deterministic PCA model is given

by

yt = m+Gvt + ǫt, t = 1, ..., T.

Now vt is assumed to be deterministic and has to satisfy
∑T

t=1 vt = 0. The log-

likelihood is given by

lθ(y) = −TM
2

log σ2 − 1

2σ2

T
∑

t=1

‖yt −m−Gvt‖2.

The ML solutions are given by [5, 147]

Ĝ = Pr

v̂t = P T
r (yt − m̂), t = 1, ..., T

σ̂2 =
1

M

ρ
∑

j=r+1

lj.

Notice that if we assume that vt has been determined the log-likelihood to be op-

timized is equivalent to Equation (1.3). This model has not been used as much in

practice as nPCA, perhaps since theoretical analysis are more difficult, e.g., it is

harder to derive asymptotic results.
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CHAPTER II

TEMPORALLY SMOOTH AND SPATIALLY LOCAL

nPCA MODEL

As discussed in Section 1.1 the observed voxel timeseries are often modeled as a

sum of BOLD response, nuisance signals such as drift, and stationary noise. The

drift term is supposed to account for the low-frequency noise, head movement and

various other effects of physiological or hardware related origin. Since the drift term

is supposed to account for such wide variety of effects, researchers have not agreed

on a satisfactory model for it.

Probably the most common drift model is to use a linear combination of few low-

frequency terms from the discrete cosine set [51] or polynomials [169]. Meyer [99]

modeled the drift nonparametrically using wavelets within the framework of partial

linear models, Fadili et al. [43] further extended this method. Bazargani et al. [11]

suggested to model the drift nonparametrically using the so-called MDL denoising

principle [124].

In the following, we propose two models that recognize temporal smoothness and

allow for non-stationary noise model. The idea is to let the noise model, based on

nPCA, take care off the nuisance/drift signals. The first model models the noise

globally, while the second model relaxes the global assumption. Both models use

regression matrix to model the mean, which is supposed to account for the BOLD
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response and the baseline. The nPCA model is used to model the noise part. In the

first model a global nPCA model is used but in the second model local log-likelihood

is used to relax that assumption. Part of this chapter has previously been published

in our own conference papers [156, 157].

2.1 Temporally Smooth Global nPCA (XnPCA)

We propose a spatio-temporal model based on (spatial) nPCA which we call Xn-

PCA. Its main properties are that it 1) models the BOLD response deterministically

2) allows for temporal smoothness 3) is able to handle non-stationary noise. The

XnPCA model is given by

yt,v = xT
t βv + gT

t uv + ǫt,v, t = 1, ..., T, v = 1, ...,M. (2.1)

Here X = [xT
t ] is a T ×p regression matrix that includes the mean, and any standard

model for the BOLD response, and uv ∼ N(0, Ir), ǫv ∼ N(0, σ2IT ) orthogonal ran-

dom vectors, uv and ǫv are mutually independent, and gT
t is t-th row of the loading

matrix G.

Now we impose temporal smoothness on the loadings, gt, t = 1, ..., T . There are

two main ways to do that. Firstly, by imposing a roughness penalty on the loadings.

Secondly, by expanding the loadings in a smooth basis. We will focus on the second

method. Lets assume Φ = [φT
t ] is a predetermined basis, e.g., Discrete Fourier

Transform (DFT), Discrete Cosine Transform (DCT) or B-splines. We expand the

loadings in this basis

gt = φT
t B

where B is a m × r matrix of basis coefficients. By using this expression we can
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rewrite the XnPCA model in the following form

y(v) = Xβv + ΦBuv + ǫv, v = 1, ...,M. (2.2)

Now we proceed to show that this model does not assume (wide sense) stationary

noise. An equivalent stochastic description of the Model (2.2) is given by

y(v) ∼ N(Xβv,Ω)

where Ω = ΦBBT ΦT + σ2IM . Now notice that

Ωt,s = φT
t BB

Tφs + σ2.

But for the noise to be stationary we need Ω to be a Toeplitz matrix or equivalently

a diagonal-constant matrix, which is clearly not the case.

The log-likelihood function for the XnPCA model is given by

lθ(y) = −M
2

tr(SeΩ
−1) − M

2
log |Ω|

= − M

2σ2
tr(Se) +

M

2σ2
tr(W−1BT ΦTSeΦB)

− M(T − r)

2
log σ2 − M

2
log |W |

where W = BTB + σ2Ir and

Se =
1

M

M
∑

v=1

(y(v) −Xβv)(y(v) −Xβv)
T .

2.1.1 ML Estimation for XnPCA

The task at hand is to estimate θ = (β,B, σ2). Differentiating the likelihood and

solving the Euler equations leads to

β̂v = (XTΩ−1X)−1XT Ω−1y(v), v = 1, ...,M (2.3)

B̂ = Kr(Dr − σ̂2Ir)
1/2R (2.4)

σ̂2 =
tr(Se) − tr(Dr)

T − r
(2.5)
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where Kr is them×r matrix of unit eigenvectors of SΦ = (ΦT Φ)−1/2ΦTSeΦ(ΦT Φ)−1/2

,Dr = diag(d1, ..., dr), and R is an arbitrary rotation matrix. Now we make few

observations. The matrix SΦ is of rank less than or equal to m so m ≥ r. In

addition, since the maximal rank of Se is T − p we get the condition r ≤ T − p.

And finally, since the mean is always included in the regression matrix X it is not

included in Φ so Φ is of maximal rank m ≤ T − 1.

The Euler equations are linked nonlinearly together so the solution is not trivial.

We suggest the following cyclic ascent algorithm to maximize the likelihood

Algorithm II.1 (XnPCA). The XnPCA algorithm consists of the following steps,

where subscript 0 means current iteration index, and subscript 1, means new iteration

index.

1. Given B0, σ
2
0 compute lθ0(y).

2. Compute βv,1 via Equation (2.3).

3. Compute B1 and σ2
1 via Equations (2.4) and (2.5) (set R = Ir).

4. Compute lθ1(y).

5. If
lθ1 (y)−lθ0 (y)

lθ0 (y)
< k stop, else set θ0 = θ1 and return to step 1.

We can use the result of the algorithm to estimate the voxel time series at voxel

v

ŷ(v) = Xβ̂v + ΦB̂ûv (2.6)

where the sample nPCs and their corresponding covariance are given by

ûv = Ŵ−1B̂T ΦT (y(v) −Xβ̂)

Sû = σ̂2Ŵ−1.
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It can be shown that this cyclic descent algorithm is globally convergent. We refer

to Section 3.5.1 for a discussion.

2.1.2 Model Selection for XnPCA

To finish the model fitting we need to choose the number of basis functions m

and the number of PCs r. Here we present the BIC criterion, which was discussed in

Section 1.4.2. However, in this case the usage is unusual because we need to choose

two tuning parameters, i.e., the number of basis functions m, and the number of

principal components r. The BIC is a function of both tuning parameters and is

given by

BIC(m, r) =
MT

2
+
M(T − r)

2
log σ̂2 +

M

2

r
∑

j=1

log dj +
1

2
dim(θ) logM (2.7)

where θ̂ is the maximum likelihood estimate of the parameter vector θ, and dim(θ)

is the number of free parameters given by

dim(θ) = mr − r(r − 1)/2 + r + 1.

To select the tuning parameters m and r we look for a minimum of the BIC function.

We find it useful to be able to decompose BIC spatially in order to examine the local

fit of the voxel timeseries. The BIC can be spatially decomposed in the following

way

BIC(m, r) =

M
∑

v=1

BICv(m, r)

=
1

2

M
∑

v=1

(

1

σ̂2
(y(v) −Xβ̂v)

T (IT − ΦB̂Ŵ−1B̂T ΦT )(y(v) −Xβ̂v)

+ (T − r) log σ̂2 + log |Ŵ |
)

+
1

2
dim(θ) logM. (2.8)
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2.1.3 Likelihood Ratio Test (LRT)

To compare, for instance, two nPCA based models the ML framework provides a

nice way to do it, namely LRT [15]. Lets assume that H0: y(v) ∼ N(m,GGT +σ2IT )

and H1: y(v) ∼ N(m,G1G
T
1 + σ2

1IT ) represent two nPCA based models, respectively.

Then the LRT can be written as

LRT(θ, θ1) = −1

2
det|Ω| − 1

2
tr(SyΩ

−1) +
1

2
det|Ω1| +

1

2
tr(SyΩ

−1).

Just like Friston’s [55] CCA test statistic this LRT statistic can in current form only

be used to make inference about whole brain volumes, i.e., construction of activation

maps is not possible. However, a very important observation is that the LRT can be

decomposed spatially.

Spatial Decomposition of the Log-Likelihood:

LRT =
M
∑

v=1

LRTv

where

LRTv =
T

2σ2

r
∑

j=1

(ĝT
(j)(y(v) −m))2

gT
(j)g(j) + σ2

− T

2σ2
1

r
∑

j=1

(gT
(j),1(y(v) −m))2

gT
(j),1g(j),1 + σ2

1

.

The LRT can then be plotted spatially and tested.

2.2 Example: Temporally Smooth Global nPCA

Now we analyze the AFNI fMRI data set presented in Section 4.4.1. We focus

on brain slice number 5 which is known to include the motor cortex. Only voxels

inside the brain were considered. In addition, each voxel timeseries was normalized

to unit variance. For the BOLD response we assume a simple model due to Cohen
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Figure 2.1: The stimulus signal used in the example in Section 2.2 (dashed) and its corresponding
BOLD response. Stimulus equal to one means right hand finger thumb opposition, and
stimulus equal to zero means rest.

[27]. In this model it is assumed that the brain has fixed impulse response, so the

the BOLD response is a convolution between it and the right hand finger-thumb

opposition stimulus signal. Figure 2.1 shows the BOLD response (solid line) and

the corresponding stimulus signal (dashed line). The regression matrix X = [1T , s]

contains two columns; the BOLD response s that we just discussed, and a constant

signal 1T for the baseline. We chose the real harmonic Fourier basis for Φ which is

given by a T × T − 1 matrix

Φ = [sin(
2π

T
t), cos(

2π

T
t), ..., sin(k

2π

T
t), cos(k

2π

T
t), ..., cos(

T − 1

T
πt)], t = 1, ..., T.

Figure 2.2 shows the BIC plots for this example; (a) shows the two dimensional BIC

surface, (b) the minimum BIC profile for fixed r, (c) the minimum BIC profile for

fixed m. The BIC picked r = 6 principal components and m = 48 basis functions

which corresponded to the overall minimum of the BIC. Note that the BIC along the

r = 6 profile is rather flat between m = 25 and m = 50 so an alternative is to pick

m = 25. Figure 2.3 shows plots of XnPC loadings or the eigentimeseries, i.e., the

columns of the ΦB matrix, and Figure 2.4 shows a spatial plots of sample XnPCs or

the eigenimages, i.e. uv,j, v = 1, ...,M, j = 1, ..., 6. We see from the eigentimeseries
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Figure 2.2: The BIC plots for the example in Section 2.2.

that they are relatively low frequency signals. The first eigentimeseries is a drift signal

that increases with time, a phenomenon usually seen in fMRI timeseries. Eigenimage

2 is clearly strongly representing the saggital sinus. But perhaps the most important

takeaway point is that these eigentimeseries are probably not something that one

would a priori put in a regression matrix when doing standard univoxel analysis.

Figure 2.5 shows BIC plotted spatially using Equation (2.8). This plot gives us

interesting local information of the quality of fit. Specifically, the motor areas have

lowest BIC scores, and the white matter the highest. Interestingly, the voxels near

the edges of the brain and in the saggital sinus (see Figure 2.6 ) also seem to be

represented well. Figure 2.7 shows voxel timeseries along with their XnPCA fits
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(b) XnPC loadings #2.
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(c) XnPC loadings #3.
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(d) XnPC loadings #4.
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(e) XnPC loadings #5.

0 50 100 150 200
−0.3

−0.25

−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

0.2

Time [s]

A
U

(f) XnPC loadings #6.

Figure 2.3: Plots of the XnPC loadings (the columns of the ΦB matrix) for the example in Section
2.2.

(using Equation (2.6)) for four brain regions defined on Figure 2.6: MC for motor

cortex, SS for saggital sinus, EB for edge of brain, and WM for white matter. The

observed voxel timeseries are fitted very nicely, it seems that we are getting nice

tradeoff between bias and variance. Notice that the method does not appear to try

to fit the white matter voxel timeseries which is not surprising since we expect it

only to contain white noise.

2.2.1 LRT

Consider the hypothesis tests

H0 : β2,v = 0

H1 : β2,v 6= 0

where β2,v is the parameter that controls the amplitude of the BOLD response signal

s (see Figure 2.1) at voxel number v. The spatial decomposition of the LRT for this
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(a) XnPC eigenimage #1
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(b) XnPC eigenimage #2
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(c) XnPC eigenimage #3
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(d) XnPC eigenimage #4
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(e) XnPC eigenimage #5
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(f) XnPC eigenimage #6

Figure 2.4: Spatial plots of the XnPC eigenimages (the uv,j) for the example in Section 2.2.

hypothesis test is given by

LRT =
M
∑

v=1

LRTv

=
1

2

M
∑

v=1

β2
v,2(s

T Ω̂−1s)

=
1

2

M
∑

v=1

β2
v,2s

T (IT − ΦB̂Ŵ−1B̂T ΦT )

σ̂2
s. (2.9)

The Ω was only estimated under H1. Figure 2.8 shows a spatial plot of 2 · LRT

along with a standard univoxel activation plot (see Equation (1.2)). We see that the

XnPCA LRT test statistic reflects activation both in the primary and supplementary

motor cortices. It is slightly surprising that we seem to get activation in the both

sides of the brain since this was a right hand-finger tapping experiment.

2.3 Temporally Smooth and Spatially Local nPCA (XlnPCA)

In the XnPCA model described above the noise model is global, i.e., the covariance

matrix is the same for all voxels. Here we propose to relax that by developing a

spatial local approach by using the local log-likelihood [151]. For another example of
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Figure 2.5: The BIC statistic plotted spatially for the example in Section 2.2.

an application of local log-likelihood in fMRI see [136]. In this case the model which

we call XlPCA for voxel timeseries is given by

y(v) = Xβv + ΦvBvuv + ǫv, v = 1, ...,M. (2.10)

The difference from the model in previous section is that Φv, Bv and σ2
v and conse-

quently the covariance matrix are allowed to vary spatially. Notice that the same

basis Φv is used for all voxels, but the number of basis function can change.

2.3.1 Estimation for XlnPCA

The estimation is based on optimizing the local log-likelihood which is given by

lθv
(y) =

∑

u

Ku,v

(

−1

2
(y(u) −Xβv)

T Ω−1
v (y(u) −Xβv) −

1

2
log |Ωv|

)

where Ku,v is a spatial weighting kernel centered at v that sums to one. In this work

we pick uniform weighting

Ku,v =
1

k2
I(y(u) ∈ Lv)
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Figure 2.6: The brain regions used in the example in Section 2.2 defined.

where Lv is a kv ×kv window centered at voxel v. In this case the local log-likelihood

can be written as

lθv
(y) = −k

2

2
tr(Ω−1

v Se,v) −
k2

2
log |Ωv|

where Se,v = 1
k2

∑

u∈Lv
(y(u) −Xβv)(y(u) −Xβv)

T is the sample local covariance and

θv = (βv, Bv, σ
2
v) is a vector of the local parameters to be estimated. The local

log-likelihood is maximized when

β̂v = (XT Ω−1
v X)−1XT Ω−1

v ȳv

B̂v = Kr,v(Dr,v − σ̂2
vIr)

1/2R

σ̂2
v =

tr(Se,v) − tr(Dr)

T − r

whereKr,v is themv×rv matrix of unit eigenvectors of SΦ,v = (ΦT
v Φv)

−1/2ΦT
v Se,vΦv(Φ

T
v Φ)−1/2,

Dr,v is a rv × rv diagonal matrix that contains the corresponding eigenvalues, R is

an arbitrary rotation matrix, and ȳv is a average of voxel timeseries over the local

window Lv. As in the previous section the parameters are intertwined so we use

cyclic ascent to find their values.
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Figure 2.7: Voxel timeseries vs fitted timeseries for XnPCA for four different brain regions defined
on Figure 2.6 for the example in Section 2.2.

2.3.2 Model Selection for XlnPCA

As before we use the BIC criterion to complete the model fitting. In this case

we are selecting three tuning parameters for each voxel; number of local PC rv, the

number of basis functions mv, and the size of the ROI kv.

BICv(mv, rv) = −lθ̂v
(y) + dim(θ) log kv

where θ̂ is the MLE of the parameter vector θ, and dim(θ) is the number of free

parameters given by dim(θ) = mvrv − rv(rv − 1)/2+ rv +1. Notice that when rv = 0
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(a) The XnPCA test statistic
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(b) A standard univoxel test statistic

Figure 2.8: The XnPCA LRT statistic plotted spatially for the example in Section 2.2 along with
a standard univoxel LRT statistic.

the model (2.10) is simply

y(v) = Xβv + ǫv.

That is the standard (white noise) univoxel model.

2.4 Example: Temporally Smooth and Spatially Local nPCA

Here we use the XlnPCA model for the AFNI data, we use the same regression

matrixX, and the same basis of harmonic Fourier basis functions Φ as in the example

for XnPCA. However, in this case we do not normalize the voxels to unit variance.

Since the model selection is computationally demanding the activation signal was

regressed out from the data prior to model selection. This simplification cuts out

the cyclic descent step in the estimation algorithm. Empirical evidence suggests that

this does not change the final model in a significant way. Figure 2.9 is a spatial plot

of the size of ROI kv, v = 1, ...,M chosen by the BIC criterion over the set kv =

1, 3, 5, 7, 9. This reflects automatic smoothing since larger ROI size implies that the

method is pooling more voxels together to estimate parameters at a particular voxel.

Figure 2.10 depicts a spatial map of the number of basis functions mv, v = 1, ...,M .

Interestingly, there seems to be that voxels near the edges of the brain need the
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Figure 2.9: The size of ROI kv, v = 1, ..., M plotted spatially for the example in Section 2.4.

largest number of basis functions. Figure 2.11 shows a spatial map of the number of

local PCs rv, v = 1, ...,M . For most voxels the number of lPCs is from 2-6. Figure

2.12 shows a spatial map of the BIC statistic.

Figure 2.13 shows a spatial plot of the following LRT test statistic constructed

similarly to (2.9)

LRTv =
β̂T

2,v(X
T
2 (IT − ΦvB̂vŴ

−1B̂T
v ΦT )X2β̂2,v

σ̂2
v

.

This test statistic is much smoother that the one depicted on Figure 2.8. The acti-

vation in the motor cortices is still clearly apparent.
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Figure 2.10: The number of basis functions mv, v = 1, ..., M plotted spatially for the example in
Section 2.4.
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Figure 2.11: The number of local PCs rv, v = 1, ..., M plotted spatially for the example in Section
2.4.
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Figure 2.12: The BIC statistic plotted spatially for the example in Section 2.4.
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Figure 2.13: The activation test statistic plotted spatially for the example in Section 2.4.
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CHAPTER III

SPARSE VARIABLE nPCA USING GEODESIC

OPTIMIZATION METHODS

The nPCs are a linear combination of all the variables of the data set and the

loadings are usually nonzero. In many application, e.g., nPCA of imaging data sets

where pixels are regarded as variables, some of the variables measured are just noise.

It is then attractive to zero them out to get less noisy and more interpretable results.

A desirable way is to incorporate automatic thresholding into the estimation pro-

cess. This kind of automatic variable selection has been a very active research topic

in statistics and signal processing over the last decade in the form of penalized least

squares optimization where the penalty is nonlinear [2, 35, 150, 154, 172]. Especially

interesting is the paper by Alliney et al. [2] where they lay out the theory for this

kind of penalized optimization and use their methods to fit AR and ARMA models.

Basically, they anticipated the LASSO method, discussed below, by two years.

3.1 Sparse PCA

Sparse PCA (sPCA) is a newly introduced class of methods to get automatic

thresholding in the PCA context. It aims to zero out some of the loadings on some

of the variables. We identify two sub-classes; Sparse Loading PCA (slPCA) that

aims to zero out only some of the PC loadings associated with a variable, and Sparse
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Variable PCA (svPCA) that zeros out whole variables, i.e., zeros out all loadings

associated with a variable. To clarify this terminology, we look at traditional PCA

Y ≈
r
∑

j=1

l
1/2
j q(j)p

T
(j).

In the usual PCA terminology the rows of Y are called observations and the columns

are called variables, of course in the fMRI case, q(j) is eigentimeseries number j, and

p(j) is eigenimage number j. We can extract a vector of variables

y(v) ≈
r
∑

j=1

l
1/2
j q(j)pv,j

the pv,j , j = 1, ..., r are called the loadings for the variable v. If all the loadings

pv,j , j = 1, ..., r are zeroed out then the whole vector y(v) is in effect zeroed out. We

call this svPCA. If only some of the loadings pv,j , j = 1, ..., r are zeroed out we call

it slPCA.

Perhaps the first explicit slPCA method was Simplified Component Technique

LASSO (SCotLASS) introduced in Jolliffe et al. [75]. Later, Zou et al. [175] for-

mulated slPCA as a regression-type optimization problem and obtained sparse load-

ings by using the Least Absolute Shrinkage and Selection Operator (LASSO) [150].

D’Aspremont [31] presented a direct formulation for slPCA using semidefinite pro-

gramming. Johnstone et al. [72] proposed an svPCA method. In detail, his algorithm

first wavelet transforms the data. Then discards low variance variables and computes

reduced PCA based on the variables left over. Finally, we note that there is consid-

erable literature on variable selection methods for classical PCA [74], which can be

regarded as svPCA methods. All of the above mentioned methods have in common

that they are not based on a statistical model. Therefore, they do not have access

to the range of modeling and inferential tools that model based methods provide.

In this chapter, we propose a new svPCA algorithm, which we call svnPCA. Our
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method has several novel features. Firstly, it is based on a statistical model. Sec-

ondly, it uses an amplitude penalized likelihood formulation that is able to zero out

variables rather than just loadings. Thirdly, the optimization problem is nonstandard

because it involves an orthogonality constraint and we resolve this by using geodesic

descent algorithms. Fourthly, to select the number of svnPCs, and the sparseness

tuning parameter, we propose to use a novel form of the BIC criterion. Finally, we

discuss an alternative svnPCA based on the EM algorithm. An earlier version of

some of this work has previously been published in the conference paper [158] but

many details were omitted. A journal paper has been submitted [160].

3.1.1 The LASSO and The Elastic Net

The LASSO [150] was proposed as an estimation method for the standard regres-

sion model (1.2). The LASSO estimate is given by

βlasso = argmin
β∈Rp

T
∑

t=1

(yt − β1 −
p
∑

j=2

xtjβj)
2 + h1

p
∑

j=2

|βj |.

Notice that if we square the penalty term this LASSO reduces to ridge regression [64].

Although LASSO is a shrinkage method like ridge regression there is an important

difference. By setting the tuning parameter h1 high enough LASSO can produce an

exact zero solution. The LASSO solution can be efficiently computed by the Least

Angle Regression (LARS) algorithm [39].

Zou et al. [174] pointed out the following limitation for LASSO: a) When p > T ,

the LASSO selects at most T variables. b) If there is a group of variables among

which the pairwise correlation is very high, then the LASSO tends to select only

one variable from the group. c) For T > p situations, if there are high correlations

between predictors, the prediction performance of the LASSO is dominated by ridge

regression. Zou proposed the elastic net estimate as a remedy for these problem.
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The elastic net estimate is given by:

βen = (1 + h2)

{

argmin
β∈Rp

T
∑

t=1

(yt − β1 −
p
∑

j=2

xtjβj)
2 + h2

p
∑

j=2

|βj |2 + h1

p
∑

j=2

|βj |
}

.

Zou showed that the LARS algorithm can be used to compute the elastic net esti-

mates efficiently.

3.1.2 Zou’s slPCA

Zou’s slPCA is based on solving the following optimization problem for M × r

matrices B = [b(1), ..., b(r)] and C = [c(1), ..., c(r)]:

min
B,C∈RM×r

T
∑

t=1

‖yt − CBT yt‖2 + h2

r
∑

j=1

‖b(j)‖2 +
r
∑

j=1

h1,j‖b(j)‖1 (3.1)

subject to CTC = Ir where h2 and h1,j are tuning parameters that need to be

selected. Notice that if h1 = 0 and h2,j = 0 then (3.1) reduces to the traditional

PCA cost function (1.3).

The estimation algorithm Zou proposes is a cyclic descent algorithm that alter-

nates between optimizing (3.1) with respect to B and C.

Algorithm III.1 (Zou’s slPCA). Zou’s algorithm is given by, where e.g., C0 means

estimate of C at current iteration, and C1 means new estimate of C.

1. At the very first step set C0 = Pr, where Y = QL1/2P T .

2. Optimization with respect to B keeping C fixed leads to the following elastic

net problems [174] for j = 1, ..., r:

b(j),1 = argmin
b(j)∈RM×1

bT(j)(Y
TY + h2)b(j) − 2cT(j),0Y

TY b(j) + h1,j‖b(j)‖1.

3. Optimization with respect to C keeping B fixed is equivalent to solving a reduced

rank Procrutes rotation [94]. To solve we do the SVD of Y TY B1 = UDV T , and

then update C1 = UV T .
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4. Repeat steps 2-3 until B converges.

5. Normalization:

v̂(j) =
b(j)

‖b(j)‖
, j = 1, ..., r.

The v̂(j) are the sparse loadings.

An important problem is how to choose the tuning parameters. Zou picked h1,j

which gave a good compromise between variance and sparsity. He did this by us-

ing plots of percentage of explained variance of the sparse loadings as a guideline.

However, the question of exactly what is a good compromise was left unanswered.

The choice of h2 was not considered as critical as its main purpose is to overcome

potential collinearity problems of Y .

When M >> T the computational cost of the above algorithm is very high. A

computationally more efficient algorithm is obtained by picking h = ∞. Then step

2 of the above algorithm reduces to soft-thresholding

b(j),1 =

(

|cT(j),0Y TY | − h1,j

2

)

+

sgn(cT(j),0Y
TY ).

3.1.3 Jolliffe’s SCOTLASS slPCA

Jolliffe’s SCotLASS [75] is based on the following optimization problem

argmax
a(i)∈RM×1

aT
(i)Sya(i) (3.2)

subject to

aT
(i)a(i) = 1, aT

(j)a(i) = 0, j < i, i ≥ 2

M
∑

k=1

|aik| ≤ h1 .
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In Jolliffe’s paper the problem was stated in terms of the correlation matrix instead

of the covariance matrix, but that does not change the algorithm. Notice that if we

drop the l1 constraint on the loadings the cost function reduces to the traditional

PCA cost function (1.5).

The tuning parameter h1 has to be selected by the user. Jolliffe does not give a

method to select it, but notes the following properties 1) h1 ≥
√
M yields traditional

PCA; 2) h1 < 1, there is no solution; 3) h1 = 1, there is exactly one nonzero aik

for each i. SCotLASS is not a convex optimization problem so it needs numerical

optimization and suffers from the problem of many local optima. In [75] a projected

gradient algorithm which required multiple runs from random initial starting points

to get globally optimal solution. Trendafilov [153] et al. later developed a globally

convergent algorithm. Despite of that, the lack of guidance for choosing h1 makes

SCotLASS an impractical solution.

3.1.4 Johnstone’s svPCA

Johnstone’s sparse variable PCA algorithm can be described by the following

steps:

1. Select a wavelet basis {ψ(i), i = 1, ...,M} for RM×1, compute coordinate ỹt,i for

each yt such that

yt,v =

M
∑

i=1

ỹt,iψv,i.

2. Compute the sample variances σ̂2
i = ˆvar(ỹt,i). Let Î denote the set of indices i

corresponding to the largest k variances.

3. Apply traditional PCA to the reduced data set {ỹt,i, i ∈ Î , t = 1, ..., T} obtaining

ρ̃ = [ρ̃i,j ], i = 1, ...,M, j = 1, ..., k.

4. Filter out noise in ρ̃i by hard thresholding yielding ρ̃∗i .
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5. Reconstruct: ρ̂v,j =
∑k

i=1 ρ̃
∗
i,jψv,i.

ρ̃(j), j = 1, ..., k are the sparse loadings.

3.2 Sparse Variable Noisy PCA Formulation

In this section we introduce our new svnPCA method. We change the model

slightly from what was presented in Section 1.4.1

yt = m+ Fut + ǫt, t = 1, ..., T. (3.3)

In this case, for reasons that will become clear below, we constrain F to be orthonor-

mal i.e., F TF = Ir and assume that ut ∼ N(0,Λ), where Λ = diag(λ1, ..., λr). In

this case, the log-likelihood is given by

lθ(y) = − 1

2σ2
tr(Sy) +

1

2σ2
tr(W−1F TSyF )

− (M − r)

2
log σ2 − 1

2
log |W | − 1

2
log |Λ|

where W = Ir + σ2Λ−1. The MLE are in this case

m̃ =
1

T

T
∑

t=1

yt

F̃ = Pr

σ̃2 =
tr(Sy) − tr(Lr)

M − r

Λ̃ = Lr − σ2Ir. (3.4)

Our svnPCA procedure is based on minimizing the following amplitude penalized

negative log-likelihood

Jθ(y) = − 1

M
lθ(y) + hρ(F )
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where F is orthonormal. We consider initially the class of lp, p ≥ 1 penalties

ρ(F ) =
1

M

M
∑

v=1

(

r
∑

u=1

|fv,u|p
)1/p

=
1

M

M
∑

v=1

‖fv‖p.

We think of this penalty and the log-likelihood as obtained by discretizing an integral;

this explains the normalization by 1/M . Notice that when r = 1 the penalty reduces

to the l1 penalty which is well known to produce a sparse solution [34]. Also note that

for p = 2, r ≥ 1 this type of penalty is well known in the total variation denoising

literature [126, 164]. But there it is used to regularize a gradient, whereas we are

regularizing amplitude. We do not suppose any spatial continuity with respect to v.

To clarify what we mean by a sparse solution we rewrite the nPCA model in the

following way

yt,v = mv + fT
v ut + ǫt,v, t = 1, ..., T, v = 1, ...,M.

By concatenating the values at a voxel v in a vector we can write

y(v) = mv1T + Ufv + ǫv, v = 1, ...,M

where U = [uT
t ] is a T × r matrix. From this expression we see that if the loadings

corresponding to variable v are zero, i.e., fv = 0 the variable y(v) can be dismissed

as only noise.

3.2.1 Properties of the lp Penalty

The properties of the penalty stem from the behavior of its gradient. We can

investigating this by calculating the derivative

∂‖fv‖p

∂fv,u
=















sgn(fv,u)|fv,u|p−1

(
Pr

u=1 |fv,u|p)
1−p , p > 1

sgn(fv,u), p = 1.
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We thus see that, when p = 1, the derivative is discontinuous with respect to each

component fv,1, ..., fv,r separately. This means that the l1 penalty is able to produce

zeroing of individual loadings [2, 150].

However, for p > 1, we see that the derivative is continuous (since |fv,u|p−1 → 0,

as fv,u → 0) unless all loadings are simultaneously 0, since then the denominator in

the derivative vanishes.

If we recalculate a directional derivative by setting fv,u = sgn(gv,u)g where g >

0 and letting g → 0 so all components simultaneously go to zero, although with

arbitrary sign, then we find

∂‖fv‖p

∂fv,u

∣

∣

∣

∣

fv,u=sgn(gv,u)g,g→0

= sgn(fv,u).

This shows that the directional derivative is discontinuous at the null r-vector (0, 0, ..., 0)T .

So for p > 1 the penalty can produce simultaneous zeroing of all loadings at a given

variable.

Consider a given set of loadings for variable v; fv,u, u = 1, ...r, and let fv,u∗ =

max1≤u≤r |fv,u|. Then

‖fv‖p =

(

r
∑

u=1

|fv,u|p
)1/p

= |fv,u∗|
(

r
∑

u=1

| fv,u

fv,u∗

|p
)1/p

.

But now for each u, |fv,u/fv,u∗| ≤ 1. Thus for p > p′ ≥ 1, |fv,u/fv,u∗|p ≤ |fv,u/fv,u∗|p′

so as p decreases to 1, the strength of the penalty weakens. On the other hand

l∞ thus provides the strongest penalty. In our earlier work [158], we used l∞ and

l4. Here we have chosen l2 partly for mathematical simplicity, but also because of

rotational invariance, i.e., if R is orthogonal then ‖fv‖p = ‖Rfv‖p only for p = 2.

We note that the l∞ penalty has been used in a regression setting [154], and a
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version of l2 in regression setting [172]. Of course, our problem setting here is totally

different to regression; our work [158] and here, was developed independently of these

references.

To explain the orthogonality constraint we drop it, and suppose F has SVD,

UΛV T . The penalty is

‖fv‖2 =

√

√

√

√

r
∑

u=1

u2
v,uλu

and so the components are unequally weighted by the eigenvalues. This does not

lead to useful results.

3.2.2 Identifiability of the svnPCA Model

The svnPCA cost function is identifiable iff Jθ1(y) = Jθ2(y) ⇔ θ1 = θ2 for all

θ1, θ2. To investigate identifiability we introduce a r × r orthonormal matrix R and

define

FR = FR

ΛR = RT ΛR.

We clearly have

ρ(F ) = ρ(FR).

Furthermore, note that the log-likelihood only depends on Ω. We have

Ω = FΛF T + σ2IM

= FRΛRF
T
R + σ2IM

where ΛR = RT ΛR has to be diagonal. Clearly it is only diagonal if R and Λ are

commutative

ΛR = RΛ.
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These matrices are commutative iff R is diagonal, and since it is orthonormal its

diagonal elements must be either equal to 1 or -1. In that case we have Λ = ΛR and

the columns of FR and F are equal up to a sign. Therefore we conclude that the

svnPCA cost function is identifiable up to the signs of the columns of the loading

matrix F .

3.2.3 Smoothed l2 Penalty

Since the penalty term ‖fv‖2 is not smoothly differentiable the classical optimiza-

tion theory does not apply. As a remedy, we propose to use the following smooth

approximation [135, 164]:

ργ(F ) =
1

M

M
∑

v=1

(

(‖fv‖2
2 + γ2)1/2 − γ

)

where γ is a small mollifier parameter. The papers [143, 145] list desirable properties

of smoothed penalty functions. The most important ones are convexity; symmetry;

allows discontinuity. The paper [135] pointed out that this penalty function obeys

all those properties. We now show that we can obtain a result arbitrarily close to

the γ = 0 solution. Let θ̂ be the minimizer of Jγ
θ (y) and θ̃ be the minimizer of Jθ(y)

then consider that

|Jθ̂(y) − Jθ̃(y)| = |(Jθ̂(y) − Jγ

θ̂
(y)) + (Jγ

θ̂
(y) − Jγ

θ̃
(y))

+ (Jγ

θ̃
(y) − Jθ̃(y))|

≤ 2 sup
θ

|Jγ
θ (y) − Jθ(y)|
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since the middle term is negative. Now consider that

|Jγ
θ (y) − Jθ(y)| =

h

M
|

M
∑

v=1

(

√

‖fv‖2
2 + γ2 − γ − ‖fv‖2

)

|

=
h

M
|

M
∑

v=1

‖fv‖2
2 + γ2 − (‖fv‖2 + γ)2

√

‖fv‖2
2 + γ2 + γ + ‖fv‖2

|

=
h

M
|

M
∑

v=1

−2γ‖fv‖2
√

‖fv‖2
2 + γ2 + γ + ‖fv‖2

|

≤ hγ.

We thus have

|Jθ̂(y) − Jθ̃(y)| ≤ hγ

which can be made arbitrarily small. Note in the following discussion we set

Jθ(y) = − 1

M
lθ(y) + ργ(F ).

3.3 Sparse Variable Noisy PCA

Due to the non-linear penalty term it is not possible to derive a closed form

expression for the MLE, so we resort to iterative algorithms. We propose to use

a cyclic descent algorithm for this problem. The basic idea behind cyclic descent

algorithms is split the parameter vector into blocks and then to minimize the cost

with respect to each of those blocks. The algorithm cycles through these block

optimizations until convergence. Now we state the svnPCA algorithm.

Algorithm III.2 (svnPCA). The svnPCA algorithm is given by, where subscript 0

denotes current iteration, and subscript 1 denotes next iteration.

Initialization:

We initialize the iteration at the nPCA MLE solutions (3.4).
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Cyclic Iteration:

F-step: Given Λ0, σ
2
0 get F1

F1 =











argmin
F∈RM×r J(F,Λ0,σ2

0)(y)

Subject to F TF = Ir.

(3.5)

This step is achieved by the geodesic steepest descent algorithm.

Λ-step: Given F1, get σ2
1, Λ1

σ2
1 =

tr(Sy) − tr(F T
1 SyF1)

M − r
(3.6)

Λ1 = dg(F T
1 SyF1) − σ2

1Ir (3.7)

where dg() sets the off-diagonal elements to zero and keeps the diagonal ele-

ments.

Stop Condition:

If

|Jθ0(y) − Jθ1(y)|
|Jθ0(y)|

< ǫ1

then stop, otherwise set θ0 = θ1 and return to cyclic iteration step.

Equations (3.6) and (3.7) are derived in Appendix F. By dropping all terms that

do not play a part in the optimization we substitute the cost function in Equation

(3.5) with

− 1

2Mσ2
0

tr(W−1
0 F TSyF ) + hργ(F ). (3.8)

Interestingly, the log-likelihood (left) term in this expression can be interpreted as

the trace of the covariance between yt and its prediction ŷt = Fu0,t. Moreover, notice

that if we let σ2
0 → 0 in (3.8), then it becomes

− 1

2M
tr(F TSyF ) + hργ(F ). (3.9)
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It is well known [129] that optimization of the left term subject to orthogonality

constraints yields traditional PCs. Now we discuss the geodesic steepest descent

step in more detail.

3.3.1 The Geodesic Steepest Descent Algorithm

To get the sparse loadings F , an optimization problem with orthogonality con-

straints has to be solved. Classical approaches to solve constrained optimization

problems are primal methods such as the gradient projection methods, and reduced

gradients methods, and dual methods that work with the Lagrangian [173, 89, 14].

Recently, there has been great interest in so-called geodesic algorithms that re-

formulate the constrained problem as an unconstrained optimization problem on the

constraint manifold. They are iterative algorithms that 1) guarantee that the update

at each step of the algorithm satisfies the constraint 2) the updates move along a

geodesic which is a path of shortest distance on the constraint surface.

The geodesic steepest descent algorithm was first suggested by Luenberger in [89].

That paper showed that to provide a guarantee for convergence for steepest descent

procedure on a manifold it was necessary to take descent steps along a geodesic.

Computational issues were not discussed.

A general geodesic steepest descent algorithm is very computationally demanding

since a nonlinear system of ordinary differential equation has to be solved, at each

iteration step, to compute the geodesic. However, the orthogonality constraint that

we are dealing with has received special attention, e.g., a Procrustes problem on the

Stiefel manifold is discussed in [40], optimization on the Stiefel manifold in the con-

text of blind source separation is considered in [36, 26, 46, 107]. These orthogonality
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constraints define the Stiefel manifold, which is defined as

St(M, r) = {F ∈ RM×r : h(F ) = F TF − Ir = 0}.

Associated with a point F 1 on the Stiefel manifold is a tangent space

T(F ) = {dF ∈ RM×r : dh(F ) = 0}

= {dF ∈ RM×r : dF TF + F TdF = 0}

which is an Mr − r(r + 1)/2 dimensional vector space. A tangent vector dF can be

written in the following forms:

dF = FA+ F⊥B (3.10)

= FA+ (IM − FF T )C

where A is r × r skew-symmetric matrix (AT = −A), B is (M − r) × r arbitrary

matrix, C is M × r arbitrary matrix, and F⊥ is any M × (M − r) matrix such that

FF T +F⊥F
T
⊥ = IM . The orthogonal complement of the tangent space is the normal

space which is a r(r + 1)/2 dimensional vector space and can be written as

N(F ) = {N ∈ RM×r : N = FS}

where S is r × r symmetric.

It is customary when working with the Stiefel manifold to assign the following

metric to each tangent space [38, 92]:

〈X1, X2〉 = tr(XT
1 (IM − 1

2
FF T )X2)

X1, X2 ∈ T(F ) , F ∈ St(M, r).

1Actually this is only true for regular points which are points F where the r2 × Mr Jacobian matrix Dh(F ) has
full row rank r2. It is easy to verify that all points on the Stiefel manifold satisfy this, and are therefore regular.
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A geodesic on St(M, r) is a smooth curve F̃ (t) ∈ St(M, r), 0 ≤ t ≤ s that minimizes

the functional

∫ s

0

‖dF̃ (t)

dt
‖dt

with respect to all other curves on St(M, r). The Stiefel gradient ∇̃FJθ(y) of the

function Jθ(y) at F is defined to be the tangent vector ∇̃FJθ(y) that satisfies

dJ(F̃ (t),Λ0,σ2
0)(y)

dt
|t=0 = 〈∇̃FJθ(y),∆〉

where ∆ = dF̃
dt

|t=0. Solving this yields

∇̃FJθ(y) =
∂Jθ(y)

∂F
− F

∂Jθ(y)

∂F T
F. (3.11)

where

∂Jθ(y)

∂F0
= −SyF0W

−1
0

σ2
0

+ hDγF0 (3.12)

and

Dγ = diag

(

(‖f1‖2 + γ2)−1/2

M
, ...,

(‖fM‖2 + γ2)−1/2

M

)

.

The important paper [38] worked out an explicit formula for the geodesic on the

Stiefel manifold and developed a Newton and a conjugate gradient procedure. The

formula requires a computation of the matrix exponential, a task that is known

to be numerically challenging [103]. However, since the matrix exponential is low

dimensional (2r × 2r) and skew-symmetric, this was not found to be a problem in

this work. A different approach is developed in [92].

There are four iteration steps associated with the geodesic descent algorithm which

we describe in the following, note that subscript 0 denotes current iteration, and 1

denotes next iteration:
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Direction:

Compute the Stiefel gradient ∇̃F0Jθ(y) by using Equation (3.11). We can rewrite

the Stiefel gradient ∇̃F0Jθ(y) in the following way

∇̃F0Jθ(y) = F0A + (IM − F0F
T
0 )C (3.13)

where

A =
W−1

0 F T
0 SyF0 − F T

0 SyF0W
−1
0

σ2
0

C = hDγF0 −
SyF0W

−1
0

σ2
0

.

showing that ∇̃F0Jθ(y) ∈ T(F0).

Geodesic:

Move along the geodesic on the Stiefel manifold emanating from F0 in direction

of −∇̃F0Jθ(y). The geodesic is given by [38]

F̃ (t) = F0M(t) +QN(t) (3.14)

where






M(t)

N(t)






= exp t







A −RT

R 0r













Ir

0r







QR = (IM − F0F
T
0 )∇̃F0Jθ(y)

where QR is computed using the compactQR decomposition. To compute the matrix

exponential we use the Pade approximation with scaling and squaring [59].

Linesearch:

The new estimate is taken as F1 = F̃ (t∗) where t∗ is the first local minimum of

J(F̃ (t),Λ0,σ2
0)(y), obtained by line search.
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Stop Condition:

If

|Jθ0(y) − J(F1,Λ0,σ2
0)(y)|

|Jθ0(y)|
< ǫ2

then stop, else set F0 = F1 and return to the Direction step.

Under weak conditions [89] proved that the geodesic steepest descent algorithm

is globally convergent to a point where the Stiefel gradient vanishes.

It is of interest to know the behavior of the geodesic and in particular to know

if it is periodic. Observe that the argument U =







A −RT

R 0r






of the exponential

matrix is a skew symmetric matrix. We can write

exp(tU) = Ir2 +

r
∑

j=1

(sin(θit)Ui + (1 − cos(θit))U
2
i )

where {θ1, ..., θr} is the set of the distinct positive square roots of the 2r positive

eigenvalues of −1/4(U − UT )2 and U1, ..., , Ur are skew symmetric matrices that can

be uniquely determined from U [57]. From this we see that the geodesic is a matrix

polynomial weighted by sinusoids at frequencies {θ1, ..., θr}. Thus, the geodesic is

periodic if and only if θi/θj is a rational number for 1 ≤ i, j ≤ r.

3.4 The Geodesic Newton Algorithm

In this section we derive a Newton algorithm on the Stiefel manifold. The differ-

ence between the Newton algorithm and the geodesic steepest descent from previous

section is that the direction is not determined by the negative of the Stiefel gradient

∇̃FJθ(y) but the Newton direction X which is a tangent vector that solves

min
X∈T

1

2
Hess(X,X) + 〈∇̃FJθ(y), X〉 (3.15)
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where Hess is the Stiefel Hessian defined by

Hess(X,X) =
d2

dt2
J(F̃ (t),Λ0,σ2

0)(y) |t=0 (3.16)

where F̃ (t) is a geodesic with dF̃ (t)
dt

= X. Now we proceed to work out an explicit

formula for the Newton direction X, and this requires few steps. The main difficulty

we are facing is that X needs to lie in a tangent space.

First we rewrite the Stiefel Hessian in more convenient form [38]:

Hess(X,X) = JFF (X,X) + tr

(

∂Jθ(y)

∂F T
XF TX

)

− tr

(

F T ∂Jθ(y)

∂F
XT (IM − FF T )X

)

(3.17)

where JFF (X,X) is the second differential of the svnPCA cost function given by

JFF (X,X) = tr(− 1

σ2
0

W−1
0 XTSyX + hXTDγX

+ hF T D̃γ [FX
T ⊙ IM ]X)

where

D̃γ = diag

(

−(‖f1‖2 + γ2)−3/2

M
, ...,−(‖fM‖2 + γ2)−3/2

M

)

and ⊙ denotes the Hadamard product or a point-wise product of matrix elements.

We need to ensure that the Newton direction X lies in the tangent space, otherwise,

F̃ would step of the manifold. Therefore we write

X = FAX + F⊥BX . (3.18)

Substituting (3.18) into (3.17) yields

Hess(X,X) = Ψ̃11(Ax, Ax) + Ψ̃21(Ax, Bx) + Ψ̃12(Ax, Bx) + Ψ̃22(Bx, Bx). (3.19)
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Now we work out an expression for each term in (3.19) starting with the first term

Ψ̃11(Ax, Ax) = tr(−W
−1
0 AT

xF
TSyFAx

σ2
0

+ hAT
xF

TDγFAx

+ hAT
xF

T D̃γ[FA
T
xF

T ⊙ IM ]FAx +
∂Jθ(y)

∂F T
FAxF

TFAx

− ∂Jθ(y)

∂F T
FAT

xF
T (IM − FF T )FAx).

Since FATF has zero diagonal, term number 3 of this expression is zero, and therefore

FATF ⊗ IM = 0. Furthermore, the last term is zero since F T (IM −FF T ) = 0. Now

use the expression for ∂Jθ

∂F
given in Equation (3.12) and get

Ψ̃11(Ax, Ax) = tr(−W
−1
0 AT

xF
TSyFAx

σ2
0

+ hAT
xF

TDγFAx

− W−1
0 F TSyFAxAx

σ2
0

+ hF TDγFAxAx)

= tr(−AxW
−1
0 (AT

xF
TSyF − F TSyFA

T
x )

σ2
0

). (3.20)

To get the last expression the cyclic property of the trace (tr(AB) = tr(BA)) and

AT
x = −Ax was used. Now we write the above expression in more standard quadratic

form

Ψ̃(Ax, Ax) = aT
x Ψ̃11ax (3.21)

where ax = vec(Ax) is a r2 × 1 vector constructed by stacking the columns of Ax

above each other. This is readily accomplished by applying the well known identity

tr(ABCD) = vecT (D)A⊗ CT vec(BT ) (3.22)

on (3.20). This yields

Ψ̃11 =
−F TSyF ⊗W−1

0

σ2
0

+
Ir ⊗W−1

0 F TSyF

σ2
0

.

The quadratic form (3.21) needs to be simplified more since the vector ax is not

freely adjustable. We follow a method presented in [40].
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A skew-symmetric matrix can be written in the form A = AL − AT
L where AL is

a strictly lower triangular matrix with [AL]ij = Aij for i > j. This fact yields

ax = (Ir2 −Kr)aLx

where Kr is the commutation matrix [91] (Krvec(A) = vec(AT )). Since ALx is

strictly lower triangular, aLx has at most r(r − 1)/2 nonzero elements. Now define

the r2 × r(r − 1)/2 matrix

E = [e2, e3, · · · , er, er+3, · · · , e2r, e2r+4, · · · ].

Then the vector

ãx = ETaLx

contains the nonzero elements of aLx. We now have

Ψ̃11(Ax) = ãT
x Ψ11ãx

where

Ψ11 = ET (Ir2 −Kr)Ψ̃11(Ir2 −Kr)E.

The elements of ãx are unconstrained which is what we wanted.

Now we turn our attention to the second term of Equation (3.19). We have

Ψ̃21(Ax, Bx) = tr(
−W−1

0 AT
xF

TSyF⊥Bx

σ2
0

+ hAT
xF

TDγF⊥Bx

+ hF T D̃γ[FA
T
xF ⊙ IM ]F⊥Bx +

∂Jθ

∂F T
FAxF

TF⊥Bx

− ∂Jθ

∂F T
FAT

xF
T (IM − FF T )F⊥Bx)

= tr(
−W−1

0 AT
xF

TSyF⊥Bx

σ2
0

+ hAT
xF

TDγF⊥Bx).
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We see that terms 4 and 5 in the first expression are clearly equal to zero, term 4 is

zero since F TF⊥ = 0. This term can be rewritten as

Ψ̃21(Ax, Bx) = bTx Ψ21ãx (3.23)

= bTx Ψ̃21(I
2
r −Kr)Eãx

where bx = vec(Bx), and

Ψ̃21 =
−W−1

0 ⊗ F T
⊥SyF

σ2
0

+ hIr ⊗ F T
⊥DγF.

Similarly we get that Ψ12 = ΨT
21. Finally,

Ψ̃22(Bx) = tr(− 1

σ2
0

W−1
0 BT

x F
T
⊥SyF⊥Bx

+ νBT
xBx + hBT

x F
T
⊥DγF⊥Bx

+ hF T D̃γ [FB
T
x F

T
⊥ ⊙ IM ]F⊥Bx).

= bTx Ψ22bx

Ψ22 =
−W−1

0 ⊗ F T
⊥SyF⊥

σ2
0

+ ν ⊗ IM−r

+ hIr ⊗ F T
⊥DγF⊥ + h(F T D̃γ ⊗ F T

⊥ )diag(vec(IM))(F ⊗ F⊥)

ν =
1

σ2
F TSyFW

−1
0 − hF TDγF.

To derive the last term of Ψ22 we use Equation (3.22), and the identities

vec(A⊙ B) = diag(vec(A))vec(B)

vec(ABC) = CT ⊗ Avec(B).

Now we are able to write Equation (3.19) in an useful form:

Hess(X,X) =

(

ãT
x bTx

)

Ψ







ãx

bx







=

(

ãT
x bTx

)







Ψ11 ΨT
21

Ψ21 Ψ22













ãx

bx






.
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Now return to Equation (3.15) which defines the Newton step. Define

∇̃FJθ(y) = FAh + F⊥Bh

h = vec(∇̃FJθ(y))

and simplify the right side term of Equation (3.15) in the following way

〈−∇̃FJθ(y), X〉 = −tr(HT (IM − FF T )X)

= −1

2
tr(AT

hAx) + tr(BT
hBx)

= −
(

1
2
aT

h bTh

)







ax

bx







= −
(

1
2
aT

h (Ir2 −Kr)E bTh

)







ãx

bx






.

We can rewrite Equation (3.15) in the following way

min
ãx,bx

1

2

(

ãT
x bTx

)

Ψ







ãx

bx






+

(

1
2
aT

h (Ir2 −Kr)E bTh

)







ãx

bx






.

This is a standard unconstrained quadratic problem which has solution






ãx

bx






= Ψ−1







1
2
ET (Ir2 −Kr)ah

bh






.

What remains to be done is to get the Newton direction X from ãx and bx. We have

ax = (I2
r −Kr)Eãx

and finally

X = FAx + F⊥Bx.

As we will see in simulations below the geodesic Newton method is very effective for

small data sets. But it is impractical for large fMRI data sets since we need to invert
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a very large matrix Ψ at each iteration step; note that Edelman et al. [38] suggested

to use the conjugate gradient algorithm to invert, but that is still computationally

expensive, and one needs to worry about the positive definiteness of the matrix. For

large data sets we can alternatively use a diagonal approximation to the geodesic

Newton method, i.e., force the matrix Ψ to be diagonal. In that case the inversion

is trivial. The diagonal elements of Ψ22 are given by

Ψ22(k, k) = − 1

σ2
0

fT
⊥(i)Syf⊥(i)[W0]

−1
jj + νjj + fT

⊥(i)Dγf⊥(i)

+ hfT
⊥(i)dg(IM ⊙ f⊥(i)f

T
(j))D̃γf(j)

k = (M − r)(j − 1) + i, j = 1, ..., r, i = 1, ...,M − r.

Since Ψ11 is a small matrix we can simply compute the whole matrix and pick out

the diagonal elements.

3.5 F -step: Conditions for a Minimum

In this section, we work out conditions for the solution to be a minimum point.

The geodesic descent algorithm is guaranteed to converge to a point where the Stiefel

gradient is equal to zero, i.e.,

d

dt
J(G̃(t),Λ0,σ2

0)(y) |t=0= 0.

We are interested to know whether this point represents local minimum. From

elementary calculus, we have that sufficient condition for local minimum given by

Hess(X,X) =
d2

dt2
J(F̃ (t),Λ0,σ2

0)(y) |t=0≥ 0

i.e., the second differential of the Hessian for all perturbations in the tangent subspace

is greater or equal to zero. This is equivalent to

Ψ ≥ 0
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which can be checked by verifying that all the eigenvalues of Ψ are greater or equal

to zero.

3.5.1 Global Convergence of the svnPCA Algorithm

While conditions for the global convergence of cyclic descent algorithms have been

provided by [173, 88, 14] they are not straightforward to check. Instead we modify

(to handle constraints) the following result of [141], which builds on results from

[100, 80]. Let α = F , β = (Λ, σ2), ∇βJθ(y) = (∂Jθ(y)
∂Λ

, ∂Jθ(y)
∂σ2 ), and introduce the

assumptions

(A1): Jθ(y), θ = (α, β) is bounded for θ ∈ Θ a subset of d-dimensional Euclidian

space.

(A2): ∇̃αJθ(y) and ∇βJθ(y) are continuous in θ for θ ∈ Θ.

(A3): {θm} is bounded uniformly, m is an iteration index.

(A4): J(αm,βm)(y) < J(αm−1,βm−1)(y) if θm = (αm, βm) is not a stationary point.

Theorem III.3. Consider the cyclic descent minimization of Jθ(y), θ = (α, β) and

denote the m−th iterate by θm. Suppose A1-A4 hold. Then

1. All limit points of {θm} are stationary points, i.e., satisfy ∇̃αJθ(y) = 0 and

∇βJθ(y) = 0.

2. The {θm} sequence converges to a compact connected subset of the set of sta-

tionary points. Note that the subsets could be isolated.

3. If the set of stationary points is discrete the {θm} → θ∞ is an isolated stationary

point.

Proof. See Appendix H.
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For the svnPCA algorithm assumptions A1 and A2 hold trivially. A3 holds since

the F iterates are constrained F TF = Ir while σ2
1 ≤ tr(Sy)/(M − r) and Λ1 ≤

tr(Sy)Ir.

Now we verify condition A4. First assume that αm−1 is a stationary point but

βm−1 is not, then

J(αm,βm)(y) < J(αm,βm−1)(y) ≤ J(αm−1,βm−1)(y).

This follows from the following; the Λ-step is a convex optimization problem (See

Appendix F); the optimization problem in the F -step is globally convergent [89].

When βm−1 is a stationary point but αm−1 is not, we get

J(αm,βm)(y) < J(αm−1,βm)(y) ≤ J(αm−1,βm−1)(y).

When neither αm−1 or βm−1 are stationary we get

J(αm,βm)(y) < J(αm−1,βm)(y) < J(αm−1,βm−1)(y).

Thus, we conclude that assumption A4 hold. Thus, the svnPCA algorithm is globally

convergent. Finally, we note that since the parameters are identified up to the sign

of the columns of F the set of stationary points is discrete. Thus, according to item

3 in Theorem III.3, the svnPCA algorithm converges to an isolated stationary point.

3.6 Model Selection for svnPCA

There are two tuning parameters that need to be selected; the number of sparse

PCs r, and h which controls sparseness. Due to the fact we have a ML based

procedure we propose to use the BIC criterion to select them. But it is not at all

obvious how to do this since h is a continuous parameter while traditional BIC can

only handle integer parameters. However, we can overcome this problem with a
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crucial observation. After solving the optimization problem for a given h we can

count the number of variables M = Mh left. This allows us to calculate the penalty

term. This is unusual because traditional BIC would require analytic expression for

Mh. Thus the criterion becomes

BIC(r, h) = −2lθ̂(y) +
dim(θ) log(T )

T

where dim(θ) is the dimension of the parameter space given by dim(θ) = Mhr −

r(r − 1)/2 + 1. In principle, the h and r that minimize the BIC should be chosen,

but we note that the BIC should be used as a guide, and all local minimums, and

values close to minimums should be looked at [86]. Notice that to decide whether a

variable number v is zeroed out we use the following rule

max
u

(|fv,u|) ≤ ǫ3.

3.7 Results for svnPCA

The algorithm was applied on a simulated and a real data sets.

3.7.1 Simulation 1

The purpose of this simulation is to visualize the geodesic F̃ (t) given in Equation

(3.14). A loading matrix F ∈ R3×2 was generated randomly and then orthogonalized.

The corresponding noise parameters where set at λ1 = 200, λ2 = 50 and σ2 = 2.

On Figure 3.1 we visualize the geodesic by plotting f̃(1)(t) and f̃(2)(t) on the unit

sphere in R3×1. We can see that the f̃(1)(t) and f̃(2)(t) trace small circles of the

sphere. Of course, at a particular t, the vectors are that trace the small circles

are orthonormal. Figure 3.2 shows the Sparse Variable Noisy PCA (svnPCA) cost

function evaluated on the geodesic. We see that the cost function looks periodic, and

it has multiple minima and maxima.
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Figure 3.1: The geodesic in Simulation 1 visualized.

0 0.5 1 1.5 2 2.5 3
18.5

19

19.5

20

20.5

21

21.5

t

J

Figure 3.2: The svnPCA cost function evaluated on the geodesic in Simulation 1.

3.7.2 Simulation 2

The purpose of this simulation is to demonstrate the model selection method, and

to show that the algorithm is able to zero out variables. For the simulation T = 50

samples from the model given in Equation (3.3) were generated with

F T =







0.5 0.5 0 0 0.5 0.5 0 0 0 0

0 0 0 0 0 0 0 0 0.71 0.71







Λ =







300 0

0 50







σ2 = 2.
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Figure 3.3: The BIC result for Simulation 3.7.2 with σ2 = 2.
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Figure 3.4: The BIC r = 2 profile for Simulation 3.7.2 with σ2 = 2.

To run the simulation we set ǫ1 = ǫ2 = ǫ3 = 1 · 10−6, γ = 1 · 10−4, and BIC was

computed on a grid for r = 1, ..., 7 and h for 20 points on the interval [0, 10].

Fig. 3.3 shows the BIC result for the simulation, and Fig. 3.4 shows the BIC
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profile for r = 2. The BIC selects h = 5.3 and r = 2 which yields

F̂ =

































































0.5086 0.0675

0.4876 0.0777

−0.0000 0.0000

0.0000 −0.0000

0.4881 0.0594

0.5052 −0.0075

−0.0000 −0.0000

−0.0000 −0.0000

0.0548 −0.6949

0.0837 −0.7091

































































Λ̂ =







300.1116 0.0000

0.0000 51.8971







σ̂2 = 2.0193.
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For comparison, we display the nPCA solution h = 0, r = 2:

F̃ =

































































−0.5078 0.0672

−0.4878 0.0779

0.0105 0.0069

−0.0041 0.0069

−0.4885 0.0592

−0.5050 −0.0094

0.0150 −0.0294

0.0157 −0.0323

−0.0549 −0.6947

−0.0834 −0.7080

































































Λ̃ =







300.3254 0.0000

0.0000 52.0380







σ̃2 = 1.9838.

Notice that the svnPCA solution accurately zeros out variables 2,3,7, and 8. To

check whether this solution represents minimum point we compute the eigenvalues

of the Hessian of the Lagrangian restricted to the tangent space, i.e., the matrix Φ

75



from Section 3.4. They are given by



















































































































5.2638 · 104

5.1963 · 104

5.0688 · 104

4.7655 · 104

4.7002 · 104

4.6449 · 104

3.8582 · 104

3.7017 · 104

0.0145 · 104

0.0137 · 104

0.0137 · 104

0.0137 · 104

0.0028 · 104

0.0027 · 104

0.0027 · 104

0.0017 · 104

0.0004 · 104



















































































































All eigenvalues are greater than zero. Thus, the restricted Hessian is positive definite

and the solution point represents minimum.

We also performed the same simulation for σ2 = 35. Figures 3.5 and 3.6 show the
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Figure 3.5: The BIC result for Simulation 3.7.2 with σ2 = 35.
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Figure 3.6: The BIC profile r = 2 for Simulation 3.7.2 with σ2 = 35.

corresponding BIC plots. The BIC picked r = 2, h = 1.05 which corresponds to

F̂ =

































































−0.5533 0.2222

−0.4306 0.1867

0.0000 0.0000

−0.0000 −0.0000

−0.4437 0.1033

−0.5329 −0.2181

−0.0000 −0.0000

−0.0000 −0.0000

−0.0339 −0.6077

−0.1634 −0.6987
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and

Λ̂ =







300.2472 0.0000

0.0000 52.7734







σ̂2 = 34.7463

For comparison, we display the nPCA solution (h = 0, r = 2)

F̃ =

































































−0.5347 0.2089

−0.4367 0.1913

0.0457 −0.0427

−0.0027 −0.0674

−0.4562 0.1024

−0.5247 −0.2371

0.0538 −0.1186

0.0794 −0.1068

−0.0387 −0.6081

−0.1648 −0.6719

































































Λ̃ =







300.1773 0.0000

0.0000 52.7868







σ̃2 = 34.7523.

By looking at the nPCA loadings F̃ we see that it is hard to judge whether the

noise variables are noise or not. But the svnPCA again correctly zeros out the noisy

variables.

The svnPCA algorithm converged very quickly for this simulation, and in fact for

every example we have tried it on. Convergence was usually attained after < 5 cyclic

iteration. However, the F -step takes longer to converge. This is apparent, for this
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example, from looking at the eigenvalues of the restricted Hessian matrix for reasons

we now describe. If we call A and a the largest and smallest eigenvalues of the

restricted Hessian matrix, respectively. Then the references [89, 88] show that (close

to the solution) the sequence of objective values converges to the solution linearly

with ratio no greater than

(

A− a

A+ a

)2

which in this case is equal to 0.9997 which is rather slow. Below we look at some

convergence plots for the case where σ2 = 2.

Figure 3.7 shows a plot of the relative difference of the cost function between

adjacent iteration steps for h and r that corresponded to the minimum of the BIC.

We see that a relatively quick convergence is followed by a slow convergence phase

from iteration step 100. Figure 3.8 shows a plot of the norm of the projected gradient.

The oscillations seen on this plot are intriguing. However, the reason for them is

unknown. Figure 3.9 shows a plot of the norm of the difference between F1 and F0.

A considerable increase in convergence speed can be obtained by using the Newton

direction instead of the steepest gradient direction at the cost of increased compu-

tation load at each iteration. Figure 3.10 shows a convergence plot corresponding

to Figure 3.10 for the Newton algorithm. Figure 3.11 shows the plot of the corre-

sponding norm of the Stiefel gradient, and Figure 3.12 shows the norm between the

difference between F1 and F0. These plots show significant increase in convergence

speed, under 10 iteration compared to over 700 iteration for the geodesic steepest

descent.

3.7.3 Real data

The algorithm was applied on the AFNI fMRI data introduced in Section 4.4.1.
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Figure 3.7: A plot of the (log10) relative difference of the cost for the geodesic steepest descent for
Simulation 3.7.2.
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Figure 3.8: A plot of the norm of the Stiefel gradient for the geodesic steepest descent for Simulation
3.7.2.
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Figure 3.9: A plot of the norm of the log difference F1 − F0 for the geodesic steepest descent for
Simulation 3.7.2.
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Figure 3.10: A plot of the (log10) relative difference of the cost for the geodesic Newton for Simu-
lation 3.7.2.
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Figure 3.11: A plot of the norm of the Stiefel gradient for the geodesic Newton for Simulation 3.7.2.
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Figure 3.12: A plot of the norm of the log difference F1−F0 for the geodesic Newton for Simulation
3.7.2.
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Figure 3.13: The svnPCA BIC result for the AFNI fMRI data
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Figure 3.14: The svnPCA BIC r = 5 profile.

BIC was computed on a grid for r = {1, ..., 8} and 50 points sampled uniformly on

the interval h = [0, 20]. We set k1 = k2 = 1 · 10−5, k3 = 5 · 10−4, and γ = 1 · 10−4.

Figure 3.13 shows the BIC result for the data. The minimum BIC occurred at

r = 5 svnPCs profile which is shown on Figure 3.14. We picked h = 5.92 which was

close to this minimum and corresponded to Mh = 669 voxels. Figure 3.15 depicts

the loadings (columns of F ) of the 5 svnPCs plotted spatially. Sparse variable nPC

#2 has high loadings in the motor cortex clearly capturing motor activity. Figure

3.16 shows the corresponding 5 svnPCA timeseries (ut,j, t = 1, ..., T, j = 1, ..., 5).

Figures 3.17 to 3.19 show convergence plots for the geodesic steepest descent method.
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(b) svnPC loadings #2.
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(c) svnPC loadings #3.
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(d) svnPC loadings #4.
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(e) svnPC loadings #5.

Figure 3.15: The svnPCA sparse loadings (columns of F ) plotted spatially.

Figure 3.20 to 3.22 show convergence plots for the diagonal geodesic Newton method,

illustrating quicker convergence.

3.8 Other svnPCA Approaches

In this section, we investigate other approach to the svnPCA problem. We op-

timize a different cost function that is based on the l0 penalty. By using the EM
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(b) svnPCA time series #2.
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(e) svnPCA time series #5.

Figure 3.16: The svnPCA time series ( ut,j).

algorithm, which we present below, we show that we do not need to make smooth ap-

proximation to the penalty. Other notable difference is that we allow the penalty to

depend on σ2. But, as we point out later, we do not have a global convergence theory

for this EM algorithm so the following results should be considered preliminary.
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Figure 3.17: A plot of the (log10) relative difference of the cost for the geodesic steepest descent
for the real fMRI data.
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Figure 3.18: A plot of the norm of the Stiefel gradient for the geodesic steepest descent for the real
fMRI data.
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Figure 3.19: A plot of the norm of the log difference F1 − F0 for the geodesic steepest descent for
the real fMRI data.
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Figure 3.20: A plot of the (log10) relative difference of the cost for the diagonal geodesic Newton
for real fMRI data.
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Figure 3.21: A plot of the norm of the Stiefel gradient for the diagonal geodesic Newton for the real
fMRI data.

3.9 The EM Algorithm

The Expectation-Maximization (EM) algorithm [32] is an iterative algorithm to

maximize a likelihood. It has proven to be extremely useful in dealing with signal

processing problems like demonstrated with a wealth of examples in [104, 97].

The EM algorithm has many nice properties, e.g., unlike the more conventional

steepest descent or Newton algorithm there is no need to select step size. In addition,

the implementation is usually very simple. On the negative side, the EM algorithm

is known, for some applications, to have a slow convergence rate. But there are ways
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Figure 3.22: A plot of the norm of the log difference F1 − F0 for the diagonal geodesic Newton for
the real fMRI data.

to accelerate it, e.g., [98].

Neal et al. [105] showed that the EM algorithm can be viewed as a cyclic ascent

algorithm, albeit an unusual one since one of the quantities being optimized is infinite

dimensional. A typical scenario is that we wish to estimate a parameter vector θ

by maximizing a likelihood pθ(y) which is a complex nonlinear function of θ. Many

practical statistical models include a latent variable u, that if observed, the parameter

θ could be more easily estimated by maximizing the so-called complete likelihood

pθ(y, u).

Instead of maximizing the log-likelihood directly, the EM algorithm works with a

properly constructed surrogate function and maximizes that instead. Below we will

present this surrogate function, and illustrate that maximizing it leads to the ML

solution. We will derive the EM algorithm for the case where the log-likelihood is

penalized by some penalty ρ(θ).

Given a marginal density π(u) of u the EM algorithm maximizes the functional

J(θ, π) =

∫

log

(

pθ(y, u) exp(−ρ(θ))
π(u)

)

π(u)du (3.24)

by using the following cyclic ascent algorithm
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1. Given θ0 get π0 = argmaxπJ(θ0, π).

2. Get θ1 = argmaxθJ(θ, π0).

In the first step of the cyclic ascent, we fix θ0, and optimize J(θ0, π). To facilitate

optimization we rewrite the function in the following form

J(θ0, π) =

∫

log

(

pθ0(y, u) exp(ρ(−θ0))
π(u)

)

π(u)du

=

∫

log

(

pθ0(u|y)pθ0(y) exp(ρ(−θ0))
π(u)

)

π(u)du

= log pθ0(y) − ρ(θ0) +

∫

π(u) log

(

pθ0(u|y)
π(u)

)

du

= log pθ0(y) − ρ(θ0) + KL(pθ0(·|y), π(·)) (3.25)

where KL(f, g) =
∫

g(x) ln f(x)
g(x)

dx is the Kullback-Leibler distance. Now we introduce

the information inequality [28], which states that KL(f, g) ≤ 0 with equality if and

only if f(x) = g(x) almost everywhere. By observing that the first two terms of

(3.25) do not depend on π and using the information inequality we get

J(θ0, π) ≤ J(θ0, π0) = J(θ0, pθ0(·|y)) = log pθ0(y) − ρ(θ0). (3.26)

That is π0(u) = pθ0(u|y) maximizes (3.25).

In the second step of the cyclic ascent algorithm, we fix π0(u), and optimize with

respect to θ. The function to optimize is given by

J(θ, π0) =

∫

log

(

pθ(y, u) exp(−ρ(θ))
π0(u)

)

π0(u)du

=

∫

log

(

pθ(y, u) exp(−ρ(θ))
pθ0(u|y)

)

pθ0(u|y)du

=

∫

log (pθ(y, u) exp(−ρ(θ))) pθ0(u|y)du−
∫

log (pθ0(u|y))pθ0(u|y)du

=

∫

log (pθ(y, u)) pθ0(u|y)du−
∫

ρ(θ)pθ0(u|y)du−
∫

log (pθ0(u|y))pθ0(u|y)du

= Eθ0[log pθ(y, u)|y]− ρ(θ) −Eθ0 [log pθ0(y, u)|y].
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Only the first two terms which we call the penalized EM functional depend on θ. So

to carry out the cyclic ascent maximization of (3.24) we need to 1) Construct the

penalized EM functional 2) Maximize the penalized EM functional. In the usual EM

terminology 1) is called the E-step and 2) is called the M-step. The usual form of

the EM algorithm is given by

1. The E-step involves taking a conditional expectation to construct the EM func-

tional

EM(θ0, θ) = Eθ0 [log pθ0(y, u)|y]

2. The M-step involves maximizing the penalized EM functional

θ1 = argmaxEM(θ0, θ) − ρ(θ)

The cyclic ascent algorithm produces a sequence

J(θ0, π0) ≤ J(θ1, π0) ≤ J(θ1, π1).

From this and (3.26) we get

log pθ0(y) − ρ(θ0) ≤ log pθ1(y) − ρ(θ1)

so the penalized likelihood does not decrease between EM iterations. As we have

seen the EM algorithm is simply a cyclic descent algorithm. So the convergence

theory in Section 3.5.1 applies. Convergence issues relating to the EM algorithm are

also discussed by Wu [171] and Lange [80].

3.10 svnPCA with l0 Penalty

With the l0 penalty the penalized negative log-likelihood takes the form

Jθ(y) = −lθ(y) +
hT

2σ2

M
∑

v=1

I(gv 6= 0).
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where

lθ(y) = − T

2σ2
trSy +

T

2σ2
tr(W−1GTSyG)

− T (M − r)

2
log σ2 − T

2
log |W | (3.27)

W = GTG + σ2Ir, and gv is the v-th row of G. The l0 penalty is sometimes called

complexity penalty and was analyzed in relation to image denoising in [85]. This

penalty is often used in wavelet analysis where it leads to hard thresholding [34].

The penalty works in the following way. If gv 6= 0 then a penalty of hT
2σ2 is added to

the negative log-likelihood but if gv = 0 no penalty is added. Another interesting

feature of this penalty is that it depends on the noise variance σ2. This simplifies

the EM algorithm as we see below.

3.10.1 Estimation

We maximize the criterion with the EM algorithm. Notice, that in the estimation

we do not impose the orthogonality constraint GTG = Ir. First we construct, the

penalized complete likelihood

Jθ(y, u) = lθ(y, u)−
hT

2σ2

M
∑

v=1

I(gv 6= 0)

where the complete log-likelihood is given by

lθ(y, u) =

T
∑

t=1

(

−M
2

log σ2 − ‖yt −m−Gut‖2

2σ2

− 1

2
uT

t ut

)

− hT

2σ2

M
∑

v=1

I(gv 6= 0).

In the E-step we compute the penalized EM functional

EMp(θ0, θ) = EM(θ0, θ) −
hT

2σ2

M
∑

v=1

I(gv 6= 0)
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where the EM functional is given by

EM(θ0, θ) = Eθ0(lθ(yt, ut)|yt).

= − 1

2σ2
tr(Sy) +

1

σ2
tr(GBT

0 ) − 1

2σ2
tr(GA0G

T )

− M

2
log σ2 − h

2σ2

M
∑

v=1

I(gv 6= 0)

where

A0 =
1

T

T
∑

t=1

Eθ0 [utu
T
t |yt]

= σ2
0W

−1
0 +W−1

0 GT
0 SyG0W

−1
0

,

B0 =
1

T

T
∑

t=1

ytE
T
θ0

[ut|yt]

= SyG0W
−1
0

and W0 = GT
0G0 + σ2

0Ir. A0 and B0 are derived in Appendix E.

We maximize the penalized EM functional in the M-step. First we maximize with

respect to G, this is equivalent to minimizing

J1(G) =

M
∑

v=1

J(gv)

=

M
∑

v=1

(

1

2
gT

v A0gv − gT
v bv,0 +

h

2
I(gv 6= 0)

)

.

Importantly, J1 is a separable function since it is a sum of functions of the gv’s. This

means that we can optimize J1 by optimizing J . The function J is not differentiable

at zero, so to optimize J we need to compare two solution; the zero solution gv = 0,

and the nonzero solution gv that minimizes J . Assume that gv 6= 0 and differentiate

J and set to zero. We get

gv = A−1
0 bv,0, v = 1, ...,M.
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Now compare this solution to the gv = 0 solution

J(gv) − J(0) = −1

2
bTv,0A

−1
0 bv,0 +

h

2
≥ 0

so we pick the gv = 0 solution if

h ≥ bTv,0A
−1
0 bv,0.

Therefore the minimizer is given by

gv,1 = A−1
0 bv,0I(h < bTv,0A

−1
0 bv,0), v = 1, ...,M.

Optimization of the penalized EM functional with respect to σ2 gives

σ2
1 =

1

M

[

tr(A0G
T
1G1) − 2tr(BT

0 G1) + tr(Sy)
]

+
h

M

M
∑

v=1

I(gv,1 6= 0).

We can simplify this using the Euler equations and get

σ2
1 =

tr(Sy)

M
− 1

M

M
∑

v=1

(bTv,0A
−1
0 bv,0 − h)I(bTv,0A

−1
0 bv,0 > h)

=
tr(Sy)

M
− 1

M

M
∑

v=1

bv,0A
−1
0 bv,0I(b

T
v,0A

−1
0 bv,0 > h) + h

Mh

M
.

3.10.2 The EM Algorithm for svnPCA l0

To sum up, the EM algorithm is based on performing the following steps until

convergence:

Algorithm III.4 (EM algorithm for svnPCA l0).

W0 = GT
0G0 + σ2

0Ir

A0 = σ2
0W

−1
0 +W−1

0 GT
0 SyG0W

−1
0

B0 = SyG0W
−1
0

gv,1 = A−1
0 bv,0I(b

T
v,0A

−1
0 bv,0 > h), v = 1, ...,M

σ2
1 =

tr(Sy)

M
− 1

M

M
∑

v=1

bv,0A
−1
0 bv,0I(b

T
v,0A

−1
0 bv,0 > h) + h

Mh

M

92



3.10.3 Analysis of Stationary Points for svnPCA with l0 Penalty

In this section, we analyze the solution obtained by the EM algorithm if it con-

verges to a stationary point. At a stationary point (∂J1(G)
∂G

= 0) we have

SyΩ̂
−1Ĝ = Ĝ

now Ĝ has only Mh non-zero rows so we cannot proceed as we did for the nPCA in

Appendix A. But we can if we consider the Mh × r matrix G̃ which consists of the

non-zero data of Ĝ. Using the SVD G̃ = P̃ Λ̃1/2R̃T and denote S̃y as the reduced

data covariance matrix we arrive to

S̃yP̃ = P̃ (σ̂2Ir + Λ̃)

By using the same arguments as in Appendix A we get that the unique ML solution

is given by

Λ̃ = L̃r − σ̂2Ir

G̃ = P̃r(L̃r − σ̂2Ir)
1/2R̃T

where P̃r and L̃r are the r largest eigenvectors/eigenvalues of the reduced data co-

variance matrix S̃y and R̃ arbitrary rotation matrix. Notice that the EM algorithm

will convergence to an arbitrary value of the rotation matrix R̃. So at convergence

we do a SVD on the resulting loading matrix, i.e., G1 = ĜΛ̂1/2R̃T and pick out Ĝ

and Λ̂ as our final solution.

Remark III.5 (Global Convergence for svnPCA l0). The l0 penalty is not continu-

ously differentiable so assumption A2 in Section 3.5.1 does not hold. Although the

algorithm produces useful results a global convergence theory should be developed.
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Figure 3.23: The svnPCA l0 BIC result for the simulation in Section 3.11.1.

3.11 Results for svnPCA based on the l0 Penalty

3.11.1 Simulation

To illustrate the svnPCA based on L0 penalty method we use the simulation setup

presented in Section 3.7.2 for the σ2 = 2 case. To compute the BIC we sampled 50

points uniformly on the interval [0, 1]. Figure 3.23 shows the BIC result for the

simulation. If we look at Figure III.23(b) we see interesting structure. The sequence

of local minimums we see for low values of h correspond to the values where the

variables are zeroed out. So when a noise variable is zeroed out there is a drop in

BIC and then it increases until another noise variable is zeroed out. The BIC selects
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r = 2 and h = 0.28 which gives

Ĝ =
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Λ̂ =







300.0526 0.1135

0.1135 51.7901







σ̂2 = 2.1267

Note that the loadings for the noisy variables 3,4,7 and 8 are nulled out as expected.

Of course this agrees with the simulation result presented in Section 3.7.2.

3.11.2 Real fMRI Data

Again we use the AFNI fMRI data introduced in Section 4.4.1 to illustrate our

algorithm. In this case the BIC was computed for 50 values of h uniformly sampled

on the interval [0, 75] and for r = 1, .., 8. Figure 3.24 shows the BIC result for the

data. The minimum BIC occurred at r = 6 svnPCs profile for h = 42.9 which

corresponds to Mh = 578 voxels. Figure 3.25 depicts the 6 loadings (columns of G)

of the svnPCs plotted spatially. Sparse variable nPC #2 has high loadings in the

motor cortex clearly capturing motor activity. The other svnPCs are not so easily
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Figure 3.24: The svnPCA l0 BIC result for the fMRI data.

identified. Figure 3.26 shows the 6 svnPCA timeseries (ut,j, t = 1, ..., T, j = 1, ..., 6).
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(c) svnPC l0 loadings #3.
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(d) svnPC l0 loadings #4.
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(e) svnPC l0 loadings #5.
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Figure 3.25: The svnPCA l0 sparse loadings (columns of G) plotted spatially.
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Figure 3.26: The svnPCA l0 timeseries (ut,j).
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CHAPTER IV

SURE AND RANDOM MATRIX THEORY FOR nPCA

MODEL SELECTION

In this section, we revisit the problem of choosing the number of nPCs or equiva-

lently the rank of the nPC loading matrix. The problem with most method reviewed

in Section 1.2.2 on PCA was the need for a subjective decision from the user. The

ML based methods such as AIC and BIC that are discussed in Section 1.4.2 are more

objective. However, they are based on a asymptotic argument that do not hold for

modern data set which are often very high dimensional with T and M of comparable

sizes, i.e., low γ = T/M ratio. Examples of such data sets can be found in Meteorol-

ogy and Oceanography [115]; functional data analysis [118], financial data analysis

and of course fMRI.

Very few examples exist about selection methods specifically designed to deal

with such data sets for nPCA. Minka [101] develops a Bayesian model selection

method, which we call the Laplace method, based on the Laplace approximation,

and shows that it performs very well in cases where T and M are of comparable

sizes. Furthermore, in simulations, it compares well against cross-validation, and

other similar Bayesian methods [117, 16, 42]. Beckmann et al. [12] employs the

Laplace criterion for fMRI data, and in addition he makes use of RMT to modify it.

It is worth noting that Ferre [44] develops a method for comparable T and M for the
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deterministic PCA model (see Section 1.4.4), and compares it with other methods

in [45]. Another interesting paper is by Hoff [65]. However, his method is developed

for a model different from nPCA. In addition, this method is very computationally

intensive.

In this chapter, we propose to use SURE [142] to choose the nPCs. SURE was

originally not designed for model selection, but following [35, 67] Solo realized [134]

that it could be used as a general purpose tool for tuning parameter selection in non-

linear ill-conditioned inverse problems. Applications of SURE for model selection

include: [35] for choosing the threshold in wavelet estimation; [136] to choose when

to stop the iteration in anisotropic diffusion signal reconstruction; [106] for choosing

the neighborhood size in optical flow estimation; [135] for selection of regularization

parameters for total variation de-noising; [131] for selection of smoothing parameter

in optical flow estimation; and [137] for selection of tuning parameter for support

vector machines.

The advantages of our SURE based selection method are: 1) it is computationally

simple, i.e., does not require much more computation than that needed to obtain the

PCs, 2) it has an unbiasedness property even for non-linear problems 3) it is exact,

i.e., no approximations are needed. To implement SURE in practice it is necessary

to estimate a noise variance, and we develop a novel method based on RMT to do

that. Part of the material in this chapter has been submitted for publication [159].

4.1 Model Selection for nPCA Revisited

In this section, we first review the Laplace method, and then introduce our SURE

method. We chose the Laplace method since it is the only method we know of

that shows good performance in low sample framework. The BIC is chosen as a
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surrogate for all methods that assume a large sample framework. We will work with

the temporal nPCA model given by Equation (1.9) to derive our methods.

4.1.1 The Laplace Method

The Laplace method is derived from a Bayesian framework and is based on max-

imizing the evidence that the nPCA model consists of r PCs. Minka [101] used

approximated the evidence using the Laplace method yielding (using the notation

from Section 1.4.1, except now σ̂2 = σ̂2
r)

− log p(y|r) = −lθ̂(y) − log p(P ) − dim(θ) −M − 1

2
log 2π

+
1

2
log |Az| +

r

2
logT

where

dim(θ) = Mr − r(r − 1)/2 + 1 +M

p(P ) = 2−r
r
∏

i=1

Γ((M − i+ 1)/2)π−(M−i+1)/2

|Az| = T

r
∏

i=1

M
∏

j=i+1

(l̃−1
j − l̃−1

i )(li − lj)

where p(P ) is a noninformative prior distribution for P , l̃j is equal to lj when j ≤ r

and equal to σ̂2
r when j > r, and

−lθ̂(y) =
T

2

r
∑

j=1

log lj +
T

2
(M − r) log σ̂2

r .

The r that minimizes − log p(y|r) is picked as the number of nPCs.

4.1.2 The SURE Method

SURE is based on the following considerations. Ideally, we would like to choose

the value of r that minimizes the risk, (see Equation (1.13) for definition of µ̂)

Rr = E‖µ− µ̂‖2.
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We generally do not know the true signal, so we cannot compute the risk. But

the idea is to try to find a computable unbiased estimator of it and minimize that

instead. Indeed, remarkably Stein [142] showed how to construct such an estimator

under Gaussian assumptions. For completeness, we have provided an ”engineering”

derivation of Stein’s result in Appendix C (Stein’s original derivation is not intuitive).

SURE is given by

R̂r =
1

T

T
∑

t=1

‖nt‖2 + 2σ2 1

T

T
∑

t=1

tr(
∂µ̂t

∂yT
t

) −Mσ2 (4.1)

where our estimator of µ is given by (assuming ȳ = 0)

µ̂t = Ĝût =
r
∑

j=1

p(j)
lj − σ̂2

r

lj
pT

(j)yt (4.2)

and nt = yt − µ̂t. The idea behind SURE as a tuning parameter selector is that [134]

since it is an unbiased estimator of the risk then on average one can hope that its

minimizer is an unbiased estimator of the minimizer of the risk.

In order to compute SURE, the main task is to compute the derivative of the

signal estimate with respect to the data

∂µ̂t

∂yT
t

=

r
∑

j=1

(

∂p(j)

∂yT
t

lj − σ̂2
r

lj
pT

(j)yt

+ p(j)
∂

∂yT
t

(
lj − σ̂2

r

lj
)pT

(j)yt

+ p(j)
lj − σ̂2

r

lj
pT

(j)

+ p(j)
lj − σ̂2

r

lj
yT

t

∂p(j)

∂yT
t

)

. (4.3)

To compute these derivatives we make use of the following theorem from [91].

Theorem IV.1. Let Sy be a real symmetric M×M matrix. Let p(j) be a normalized

eigenvector associated with a simple eigenvalue lj of Sy. Then the differentials of p(j)
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and lj at Sy are given by

dp(j) = (λjIM − Sy)
+(dSy)p(j) (4.4)

dlj = pT
(j)(dSy)p(j) (4.5)

respectively.

For subsequent calculations we rewrite (4.4) as:

dp(j) = (ljIM − Sy)
+dSyp(j)

= (P (ljIM − L)P T )+dSyp(j)

=
∑

i6=j

pi(lj − li)
−1pT

i dSypj. (4.6)

To proceed, we need to express perturbation of Sy induced by perturbation of yt,v.

Let d̃ denote perturbation induced by perturbation in yt,v:

d̃Sy =
1

T
d̃Y TY

=
1

T
(d̃(Y T )Y + Y T d̃Y )

=
1

T
(evy

T
t + yte

T
v )dyt,v. (4.7)

We see that perturbation in yt,v induces perturbation in row v and column v of Sy.

Equations (4.6) and (4.7) yield:

∂p(j)

∂yT
t

=
1

T

∑

i6=j

p(i)(lj − li)
−1(yT

t p(j)p
T
(i) + yT

t p(i)p
T
(j)). (4.8)

We also need
∂lj
∂yT

t

. Starting from (4.5):

d̃lj = pT
(j)d̃Syp(j)

=
1

T
pT

(j)(d̃(Y
T )Y + Y T d̃Y )p(j)

=
2

T
pT

(j)ytpv,jdyt,v.
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From this we get

∂lj
∂yT

t

=
2

T
(pT

(j)yt)p
T
(j). (4.9)

Now we use (4.8) and (4.9) and compute the trace of the terms in (4.3) one by one.

The trace of the first term, where dj =
lj−σ̂2

r

lj
, is given by

tr(

r
∑

j=1

∂p(j)

∂yT
t

djp
T
(j)yt) =

1

T

r
∑

j=1

∑

i6=j

dj(lj − li)
−1(pT

(j)yt)
2

=
r
∑

j=1

∑

i6=j

(lj − σ2
r )(lj − li)

−1q2
t,j

where we have used the singular value decomposition Y = 1√
T
QL−1/2P T . The trace

of the second term is given by

tr

(

r
∑

j=1

p(j)
∂

∂yT
t

djp
T
(j)yt

)

=
2

T

r
∑

j=1

1

λj
(1 − dj)(p

T
(j)yt)

2

= 2

r
∑

j=1

σ̂2
r

lj
q2
t,j

The trace of the third term is given by

tr(

r
∑

j=1

p(j)
lj − σ̂2

r

lj
pT

(j)) =

r
∑

j=1

lj − σ̂2
r

lj
.

The trace of the fourth term is given by

tr

(

r
∑

j=1

p(j)djy
T
t

∂p(j)

∂yT
t

)

=
1

T

r
∑

j=1

dj(lj − li)
−1(yT

t p(i))
2

=

r
∑

j=1

∑

i6=j

dj(lj − li)
−1liq

2
t,i.

Finally we note that using (4.2) we can write

1

T

T
∑

t=1

‖nt‖2 = (M − r)σ̂2
r +

r
∑

j=1

σ̂4
r

lj
(4.10)
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Putting all these expressions into the SURE formula (4.1) and dropping a constant

term that does not depend on r yields

R̂r = (M − r)σ̂2
r + σ̂4

r

r
∑

j=1

1

lj
+ 2σ2r

− 2σ2σ̂2
r

r
∑

j=1

1

lj
+

4σ2σ̂2
r

T

r
∑

j=1

1

lj
+ C (4.11)

C =
2σ2

T

r
∑

j=1

(1 − σ̂2
r

lj
)
∑

i6=j

lj + li
lj − li

.

We can simplify further the last term of the expression, which we call the interaction

term (see Appendix D).

C =
4σ2

T

r
∑

j=1

M
∑

i=r+1

lj − σ̂2
r

lj − li
+

2σ2

T
r(r − 1)

− 2σ2

T
(M − 1)

r
∑

j=1

(1 − σ̂2
r

lj
).

It would be nice to obtain distributional properties of SURE but that would

require limiting results on bivariate functions of sample eigenvalues. So far only

results for univariate functions are available [8].

The noise variance σ2 is assumed known in the SURE formula. A natural choice

for it is σ̂2
r but that does not work well in practice. And finding a reliable estimator

turns out to be a non-trivial issue which we now pursue.

4.2 Estimation of σ2 via Random matrix Theory

We seek an estimator of σ2 that does not require a good estimate of r. Our idea

is to use the tail end of the eigenvalue spectrum to estimate σ2. We do this by

’flattening’ the Empirical Cumulative Distribution (ECD) of the sample eigenvalues

by using RMT.

105



4.2.1 Random Matrix Theory

RMT is defined by a scenario in which T → ∞, M → ∞ while T/M = γ 6= 0, γ <

∞. This differs from the classical PCA asymptotic where M is fixed and T → ∞ [5].

In this RMT case, the eigenvalues of the sample covariance matrix do not converge

in probability to the true values. Rather the empirical distribution converges to a

limit called the Marchenko-Pastur (MP) distribution and is described in a seminal

paper [93].

Theorem IV.2. Given a T ×M data matrix Y , with independent zero mean and

unit variance entries, and T,M → ∞, such that T/M → γ ≥ 1. Then the ECD

function is given by

F̂γ(x) =
1

M

M
∑

i=1

I(lM−i+1 ≤ x) (4.12)

of the eigenvalues associated with the covariance matrix Sy converges almost surely

to the MP distribution

F̂γ(x) → Fγ(x)

where [115],p205 (with a correction of a typographical error)

Fγ(x) =
1

2
+

γ

2π

[

√

(x− a)(b− x)

+
√
ab arcsin

(

(a+ b)x− 2ab

x(a− b)

)

− 1

2
(a+ b) arcsin

(

a+ b− 2x

b− a

)]

, a ≤ x ≤ b

and the associated MP density is given by [73, 93]

fγ(x) = F ′
γ(x) =

γ

2πx

√

(b− x)(x− a), a ≤ x ≤ b

where a = (1 − γ−1/2)2 and b = (1 + γ−1/2)2.
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Figure 4.1: The MP density and distribution for γ = 2.

Figure 4.1 show the MP density and distribution for γ = 2.

If γ < 1 the above formulas have to be modified. In that case γ′ = γ−1 takes

place of γ in the above formulation and there will be some probability mass at zero.

An explicit formulation for that case is given in [132].

Although this result is stated for the case where T and M go to infinity in fixed

ratio there is empirical evidence [73, 42] and [115],p.237-252 that it is a good approx-

imation for very low values of T and M , e.g., T = M = 10. For the case of non-unit

noise variance σ2, the distribution simply scales up and is given by Fγ(σ
2x) [133].

The case of nPCA where there are few leading signal eigenvalues and many equal

valued noise eigenvalues is called the spiked model [73], i.e., noise model spiked with

few significant eigenvalues. It has long been known that the MP result still holds [93]

for this case, except that there may be some eigenvalues outside the MP support.

Two recent papers [9, 112] give theoretical discussion of the asymptotic behavior of

those eigenvalues. We present a simplified version of a theorem proved in [9]:

Theorem IV.3. Given a T ×M data matrix Y , with independent zero mean and

unit variance entries, and T,M → ∞ with T
M

→ γ > 1. Further assume that the
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population eigenvalues of the associated covariance matrix are given by α1 > α2 >

αr > 1; and αi = 1, r < i ≤M . Let r0 be the number of j′s such that αj > 1+γ−1/2.

Then for each 1 ≥ j ≥ r0

lj → αj +
γ−1αj

αj − 1
, a.s.

lM0+1 → (1 + γ−1/2)2, a.s.

Theorem 2 applies for the r0 − r eigenvalues.

Similar version of this theorems for the case where γ < 1 and γ = 1 are given in

[9]. From this theorem we see that signal eigenvalues behave differently when close

to the noise eigenvalues than when far away. This fact is called the phase transition

phenomenon.

4.2.2 RMT Noise Variance σ2 Estimation Method

The spiked model and the scaling property of the MP distribution lead to the

following idea for estimating the noise variance.

Algorithm IV.4 (RMT noise variance estimation). Given a sample covariance ma-

trix Sy.

1. Compute the eigenvalues l1 > l2 >, ..., > lM of Sy.

2. Compute the corrected eigenvalues

l̃
(1)
j =

lj

F−1
γ (F̂γ(lj))

=
lj

F−1
γ (M−j+1

M
)
, j = 1, ...,M

where F−1
γ is the quantile function associated with Fγ, and F̂γ is the ECD

function (4.12). We expect that F̂γ(lj) ≈ Fγ(
lj
σ2 ) so l̃

(1)
j ≈ σ2.

3. A rough estimate of σ2 is then given by

σ̃2
RMT = 25th percentile of l̃(1).
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4. Normalize eigenvalues

l̃j =
lj

σ̃2
RMT

, j = 1, ...,M.

5. Get a crude estimate of the number of signal eigenvalues using the upper support

limit of the MP density

r = argmin(l̃
(1)
j − b), l̃

(1)
j − b > 0.

6. Construct the ECD function for the noise eigenvalues such that

F̃γ(x) =
1

M − r

M
∑

i=M−r

I(lM−i+1 ≤ x).

7. Recompute the corrected eigenvalue

l̃
(2)
j =

lj

F−1
γ (F̃γ(lj))

=
lj

F−1
γ (M−j+1

M−r
)
, j = M − r, ...,M.

8. The final estimate of the noise variance is given by

σ̂2
RMT = 25th percentile of l̃(2).

Note that we are implicitly assuming that the 25th percentile of l̃ is a noise

eigenvalue. An inspection of the Scree plot is recommended.

Now we make few remarks about the algorithm:

Remark IV.5. Notice that this noise variance estimation method also includes a crude

estimate for r. This method is far from competitive with SURE but helps provide a

good estimate for σ2.

Remark IV.6. The essence of the algorithm is captured in steps 1-3, steps 4-8 refine

the noise variance estimate obtained in step 3.

109



Remark IV.7. In steps 3 and 8 we choose the 25th percentile of the corrected eigen-

values as an estimate for the noise variance. There is nothing special about the

25th percentile, we could have chosen the 30th percentile or the median instead, like

Figure 4.3 below illustrates.

4.3 Simulation Result

In this section, we present a simulation study, where we compare the SURE with

the Laplace method, BIC. The BIC and Laplace methods were implemented using

formulas from Sections 4.1.1 and 1.4.2. We simulated the data according to Equation

(1.9), with the following parameters:

• M = 64

• T = [64, 96, 128, 160]

• λ = l − σ2 = [(r + 1)2, r2, ..., 32, λr]

• λr = [1.5, 2]

• r = [5, 10, 15, 30]

• σ2 = 1.

So for each method this gives rise to 5 × 2 × 4 = 40 different simulation settings.

The loading matrix was simulated by generating M × r matrix of unit variance

Gaussian random variables. It was then orthonormalized. All simulations were

repeated Nrep = 1500 times, and it was recorded how many times each method

choose the correct dimensionality.

First we compare the performance of the RMT noise estimation method to the

ML estimator (1.15) for the noise variance. Table 4.1 shows bias, variance and Mean
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Table 4.1: Comparison of noise variance estimators for the λr = 2 case

T = 64 RMT method ML method
r bias variance MSE bias variance MSE

5 0.0278 0.0024 0.0032 -0.1062 0.0005 0.0118
10 -0.0357 0.0019 0.0032 -0.1850 0.0005 0.0347
15 -0.1067 0.0018 0.0132 -0.2648 0.0004 0.0705
30 -0.2478 0.0027 0.0640 -0.4988 0.0004 0.2493

T = 96 bias variance MSE bias variance MSE
5 -0.0023 0.0013 0.0013 -0.0708 0.0003 0.0053
10 -0.0149 0.0010 0.0012 -0.1227 0.0003 0.0154
15 -0.0394 0.0008 0.0023 -0.1762 0.0004 0.0314
30 -0.1216 0.0011 0.0156 -0.3331 0.0004 0.1114

T = 128 bias variance MSE bias variance MSE
5 0.0054 0.0007 0.0007 -0.0528 0.0002 0.0030
10 0.0005 0.0007 0.0007 -0.0921 0.0003 0.0087
15 -0.0081 0.0006 0.0007 -0.1312 0.0003 0.0175
30 -0.0585 0.0006 0.0041 -0.2489 0.0003 0.0622

T = 160 bias variance MSE bias variance MSE
5 0.01041 0.0005 0.0006 -0.0418 0.0002 0.0020
10 0.0040 0.0004 0.0005 -0.0743 0.0002 0.0057
15 0.0000 0.0005 0.0005 -0.1054 0.0002 0.0114
30 -0.0281 0.0005 0.0013 -0.2000 0.0003 0.0402

Square Error (MSE) for both methods for the case of λr = 2. The case of λr = 1.5

is not presented here since the results are very similar. In terms of MSE, the RMT

estimator shows superior performance over the ML estimator. The RMT estimator

has higher variance, but much lower bias in all cases.

Figure 4.2 shows sample Scree plots from one of the replicates with r = 5 and

λr = 2, the noise variance level σ2 is indicated by a horizontal line. It can be seen

that for this simulation setting it is sometimes rather easy for the eye to determine

the correct dimensionality, e.g., Figure 4.2(b,d). But sometimes rather hard Figure

4.2(a,c).

Figure 4.3 shows the corrected Scree plots. The noise eigenvalues fall nicely on the

horizontal noise variance line, so almost any of them could be used as an estimate

for σ2.
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Figure 4.2: Simulation: Sample Scree plots with r = 5 and λr = 2.

Table 4.2 shows the percentage of correct selection of PCs for SURE, Laplace,

and BIC methods for the case of λr = 1.5. The bold face entries indicate which

method performs best according to the 95% significant level. It can be seen that

SURE performs best in almost all of the cases, sometimes by a wide margin. Even

in the cases where SURE does not perform best it is a close contender. BIC does

not perform well in any of the cases presented, which is not surprising since BIC is

based on an asymptotic argument which does not hold. Especially interesting is how

well SURE performs in low T and M cases.

Table 4.3 shows the percentage of correct selection of PCs for SURE, Laplace,

and BIC methods for the case of λr = 2. Basically, the same conclusions can be

112



0 20 40 60
0

5

10

15

j

l̃(
1
)

j

(a) T = 64

0 20 40 60
0

5

10

15

j

l̃(
1
)

j

(b) T = 96

0 20 40 60
0

5

10

15

j

l̃(
1
)

j

(c) T = 128

0 20 40 60
0

5

10

15

j

l̃(
1
)

j

(d) T = 160

Figure 4.3: Simulation. Corrected Scree Plot (Corresponding to Figure 4.2)

drawn as for the case of λr = 1.5 except the results are a little better for all the

methods due to the higher SNR. Note that in both Tables 4.2 and 4.3, include the

selection result for the true risk. As expected it generally works well, but somewhat

surprisingly SURE outperforms it sometimes. The reason for this is not known, but

a possible explanation is that SURE has access to the RMT noise variance estimator

while risk has not.

Finally, Figure 4.9-4.11 shows a histogram of the number of PC chosen by the

considered methods for r = 5, 10, 15, 30, λr = 2, and T = 64, 96, 128, 160. And

4.5-4.7 shows histograms for the λr = 1.5 case.
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Figure 4.4: Simulation: Histogram of number of nPCs, where r = 5 and λr = 1.5. First column is
SURE, second is Laplace, and third is BIC. The rows represent T = 64, 96, 128, 160.

4.4 Real Data Results

In this section, we apply the SURE criterion on a high dimensional fMRI data

set.

4.4.1 The fMRI Data Set

Selection of the number of PCs is very important in fMRI analysis, both for

dimensionality reduction [63], and as a preprocessing step for further analysis.The
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Figure 4.5: Simulation: Histogram of number of nPCs, where r = 10 and λr = 1.5. First column is
SURE, second is Laplace, and third is BIC. The rows represent T = 64, 96, 128, 160.

data set, which we will refer to as the AFNI data set is freely available on the Internet

[29], comes from a combined visual-motor experiment. A human subject performed

finger-thumb opposition, and looked at visual patterns, while being scanned. One

hundred T = 100 observations on 21 brain slices were recorded with TR=2s sampling

interval at 3 Tesla using Echo Planar Imaging (EPI). The stimuli in this experiment

are, right hand finger thumb opposition, annular 8Hz checkerboard, and anti-annular

8Hz checkerboard. Figure 4.12 depicts the stimulus signals.
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Figure 4.6: Simulation: Histogram of number of nPCs, where r = 15 and λr = 2. First column is
SURE, second is Laplace, and third is BIC. The rows represent T = 64, 96, 128, 160.

Since the fMRI data set is a time series of brain images it is not obvious whether

to let the brain images or the pixels play the role of independent observations. We

call the former approach temporal nPCA and the second approach spatial nPCA. In

this section we choose the temporal nPCA approach.

Figure 4.13 shows both the Scree plot and the corrected Scree plot for the fMRI

brain slice number 5. The correction clearly flattens out the noise tail validating our

noise variance estimation scheme. The two last eigenvalues are zero, the reason for
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Figure 4.7: Simulation: Histogram of number of nPCs, where r = 30 and λr = 1.5. First column is
SURE, second is Laplace, and third is BIC. The rows represent T = 64, 96, 128, 160.

that is that the baseline and the drift were regressed out at each pixel. This is a

common practice in fMRI analysis.

Figure 4.14 displays SURE plot for brain slice number 5 along with its components.

It selects r = 9 PCs, it is interesting that in this case there is an intriguing jump in

the interaction term at r = 31. The reason is that the interaction term has a dividing

term of lj − li, and it turns that the smallest difference between the eigenvalues is

0.0208 between eigenvalue 31 and 32 therefore causing the jump. For comparison,
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Figure 4.8: Simulation: Histogram of number of nPCs, where r = 5 and λr = 2. First column is
SURE, second is Laplace, and third is BIC. The rows represent T = 64, 96, 128, 160.

Figure 4.15 shows the Laplace and the BIC plots. The Laplace criterion picks r = 11

components. But the BIC is more complex. We believe the fall-off it at high values

of r is due to the RMT scenario and that the appropriate choice of r should be based

on the first minimum of the BIC which is r = 5. This differs a lot from the choice of

SURE and Laplace. The BIC example brings up an important point advocated by

[84, 86] that in cases of multiple local minimums of the model selection criterion one

should not select the global minimum blindly but look at all them before making
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Figure 4.9: Simulation: Histogram of number of nPCs, where r = 10 and λr = 2. First column is
SURE, second is Laplace, and third is BIC. The rows represent T = 64, 96, 128, 160.

final decision.

Table 4.4 shows selection result for all the brain slices. The difference in selection

between the Laplace method and SURE is 0-3 components. But the BIC result is

very different it generally selects much fewer components than the other methods.

Notice that all of the methods we looked at assume that the observations, in this

case brain slices, are independent. This is generally not true for fMRI data. An

obvious improvement to SURE would be to take this fact into account.
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Figure 4.10: Simulation: Histogram of number of nPCs, where r = 15 and λr = 2. First column is
SURE, second is Laplace, and third is BIC. The rows represent T = 64, 96, 128, 160.
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Figure 4.11: Simulation: Histogram of number of nPCs, where r = 30 and λr = 2. First column is
SURE, second is Laplace, and third is BIC. The rows represent T = 64, 96, 128, 160.
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Figure 4.12: The AFNI stimulus signals.
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Table 4.2: Percentage of correct selection for λr = 1.5. Bold face entries represent the best per-
forming method

T = 64
r SURE Laplace BIC RISK

5 0.169 0.074 0 0.022
10 0.279 0.031 0 0.025
15 0.373 0.014 0 0.032
30 0.205 0.003 0.043 0.068

T = 96 SURE Laplace BIC RISK

5 0.268 0.263 0 0.187
10 0.333 0.198 0 0.219
15 0.422 0.142 0 0.277
30 0.671 0.100 0.0353 0.442

T = 128 SURE Laplace BIC RISK

5 0.521 0.552 0 0.504
10 0.538 0.469 0 0.583
15 0.636 0.451 0 0.643
30 0.830 0.423 0.039 0.823

T = 160 SURE Laplace BIC RISK

5 0.711 0.742 0 0.815
10 0.749 0.725 0 0.865
15 0.802 0.700 0 0.897
30 0.923 0.729 0.062 0.967

Table 4.3: Percentage of correct selection for λr = 2. Bold face entries represent the best performing
method.

T = 64
r SURE Laplace BIC RISK

5 0.425 0.285 0 0.226
10 0.536 0.175 0 0.257
15 0.577 0.092 0.005 0.244
30 0.242 0.015 0.117 0.323

T = 96 SURE Laplace BIC RISK

5 0.671 0.661 0 0.726
10 0.718 0.571 0 0.735
15 0.775 0.498 0.010 0.777
30 0.825 0.353 0.185 0.846

T = 128 SURE Laplace BIC RISK

5 0.886 0.899 0 0.957
10 0.901 0.883 0.005 0.955
15 0.930 0.840 0.022 0.958
30 0.956 0.833 0.299 0.991

T = 160 SURE Laplace BIC RISK

5 0.965 0.970 0.009 0.991
10 0.977 0.975 0.015 0.993
15 0.981 0.965 0.062 0.998
30 0.983 0.973 0.473 1.000
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Table 4.4: Number of nPCs for the AFNI fMRI data set

Slice nr. M SURE Laplace BIC
1 368 14 14 7
2 622 9 10 6
3 843 9 9 5
4 1024 9 11 5
5 1185 9 11 5
6 1329 9 10 5
7 1462 9 10 5
8 1574 9 10 5
9 1656 10 11 4
10 1719 10 11 4
11 1761 10 11 4
12 1794 13 13 5
13 1809 14 14 5
14 1767 16 16 7
15 1691 18 17 6
16 1542 16 16 6
17 1312 19 19 9
18 1257 24 21 11
19 1122 20 19 11
20 1000 19 19 8
21 798 17 17 10
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Figure 4.13: The Scree plot and the corrected Scree plot for the fMRI data.
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CHAPTER V

CONCLUSIONS AND FUTURE WORK

Traditionally, there are two main paths to analyze fMRI data; firstly univoxel

methods, and secondly multivoxel methods. Univoxel methods have more solid sta-

tistical grounding than multivoxel methods which are usually exploratory, i.e., not

based on a statistical model. In this thesis, we have demonstrated that the model

based nPCA is a very useful tool for analysis of fMRI data.

In Chapter 2, we introduced two nPCA based models which extends the nPCA

model so it recognizes temporal smoothness, and also demonstrated how to make it

spatially local. The BIC criterion was used in a novel way to select three parameter

simultaneously, i.e., the number of nPCA, the degree of smoothness and spatial

localization. We showed that by using temporally smoothed nPCA to model the

noise we are able to handle non-stationary noise. Which is something that univoxel

methods are incapable of doing. In addition, we showed that it is possible to construct

a likelihood ratio test statistic for the nPCA based models, and very importantly

decompose it spatially.

In Chapter 3, we introduced a new model based sparse variable PCA. The main

method we presented is based on optimizing a penalized log-likelihood where the

penalty is specially designed to allow for sparseness. We developed a practical algo-
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rithms based on geodesic descent methods. In addition, we also presented alternative

approach based on the EM algorithm. These methods are a valuable addition to a

class of sparse PCA methods that have been developed recently in statistics since

those methods are not based on a statistical model so model selection and inference is

problematic. Moreover, we introduced a new terminology that distinguished between

whether the methods zero out just few loadings of a variable or the whole variable.

Finally, we exhibited how to select the number of svnPCs and the sparseness tuning

parameter by using BIC.

In Chapter 4, we presented a new method to select the number of noisy principal

component based on the nonlinear SURE technique with some help from Random

matrix theory. We have the scenario where the number of time points and voxels

are in the realms of RMT. This scenario causes significant problem for most other

selection methods. For practical use, it is necessary to estimate the noise variance

and we have developed a reliable estimator based on RMT. In simulations we have

shown that BIC fails badly and our new method outperforms the Laplace method,

especially in cases where T and M are low.

5.1 Future Work

The thesis provides quite a few interesting future research directions:

• Develop SURE to select the number of nPCA and the sparseness tuning param-

eter for svnPCA.

• Further development of the spatial decomposition of the Likelihood ratio test in

relation to both the temporally smooth and spatially local models in Chapter

2 and in terms of svnPCA. The specification of the null hypothesis and the

alternative to get good detection of the activation is far from trivial. Moreover, it
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would be interesting to analyze the distributional properties of the LRT statistic.

• Development of convergence theory for the EM algorithm that can deal with

the l0 penalty is an interesting topic.

• The simplicity of the l0 penalty EM algorithm for svnPCA is very appealing.

The zeroing out of variables was done by a simple hard thresholding operation.

Development of an EM algorithm for the l2 penalty is an interesting topic.

• In the svnPCA framework we assume that svnPCs ut, t = 1, ..., T are inde-

pendent. It is of interest to investigate how to deal with temporal correlation.

A good starting point would be the paper by Pham [114] which uses discrete

Fourier transform to decorrelate the signals, and [66] that uses autocorrelation

models. These papers deal with ICA, but the ideas are applicable for nPCA.

• Independent component analysis and canonical correlation analysis have been

successfully applied in fMRI research. Up to this point the use has been ex-

ploratory. An interesting research direction would be to develop a statistical

framework for those method in a similar manner as was done for PCA in this

thesis.

• Although the methods in this thesis were designed with application to fMRI

in mind they are more generally applicable. We will seek collaboration with

researcher in other fields.
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A Derivation of the nPCA ML Estimates

The log-likelihood is given by

lθ(y) = −T
2

tr(SyΩ
−1) − T

2
log |Ω|.

By using the identities

dΩ−1 = −Ω−1dΩΩ−1

d log |Ω| = tr(Ω−1dΩ)

we get that the first differential of the log-likelihood is given by

dlθ = −T
2

tr[(Ω−1SyΩ
−1 − Ω−1)dΩ].

The differential of Ω w.r.t. G is given by

dΩ = (dG)GT +G(dGT ).

We set the first differential of dlθ to zero and obtain the Euler equations for stationary

points

SyΩ
−1G = G.

Now use the matrix inversion lemma

Sy(IM −G(GTG+ σ2Ir)
−1GT )G = σ2G

SyG(Ir − (Ir + σ2(GTG)−1)−1) = σ2G.

Now write G = KrD
1/2
r RT in terms of its SVD

SyKrD
1/2
r [Ir − (Ir + σ2D−1

r )−1] = σ2KrD
1/2
r

SyKrD
1/2
r (Dr + σ2Ir)

−1 = KrD
1/2
r

SyKr = Kr(Dr + σ2Ir). (A.1)
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From Equation (A.1) we see thatKr contains r eigenvectors of Sy (not necessarily the

the largest ones) and Dr + σ2Ir contains the corresponding r eigenvalues. Therefore

we get

Ĝ = Kr(Dr − σ̂2Ir)
1/2RT . (A.2)

Now optimize in terms of σ2. Computing ∂lθ
∂σ2 and solving the Euler equation

yields (very similar computation can be found in Appendix F)

σ̂2 =
tr(Sy) − tr(Dr)

M − r
. (A.3)

Solution (A.3) and (A.2) represent the stationary points of the log-likelihood. To

determine whether those point represent maximum, minimum or saddle points on

the likelihood surface we have to look at the second differential and use the following

fact. If

d2lθ ≤ 0

for all perturbations at the stationary point, then the point is a local maximum

(for a more careful statement of this fact and a proof see [91]). By considering

perturbation to a column vector ĝi of the form pj , where pj is a eigenvector of Sy,

Tipping [152] demonstrated that all the stationary points represent saddle points

except the one where Kr is equal to the r largest eigenvectors of Sy which represents

global maximum. Hence, the MLE is given by

Λ̂ = Lr − σ̂2Ir

Ĝ = Pr(Lr − σ̂2Ir)
1/2RT .
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B The nPCA Maximum Likelihood

In this section, we obtain an expression for the ML. Application of the matrix

inversion lemma easily gives

tr(Ω̂−1Sy) = M (B.1)

and

log |Ω| =
r
∑

j=1

log(lj) + (M − r) log σ̂2.

Using this we obtain an expression for the maximum log-likelihood

lθ̂(y) = −T
2

tr(Ω̂−1Sy) −
T

2
log |Ω̂|

= −MT

2
− T

2

r
∑

j=1

log(lj) −
T (M − r)

2
log σ̂2. (B.2)

C The SURE Criterion

In this section, we derive the SURE criterion in a more straightforward manner

than [142]. Let µ̂ = µ̂r(y) be a differentiable function of the data y. We would like

to choose r to minimize the risk

Rr = E‖µ− µ̂‖2.

By adding and subtracting the true signal we can get an expression in terms of the

error signal n

Rr = E‖y − µ̂− (y − µ)‖2

= E‖n− ǫ‖2

= E‖n‖2 − 2E(nT ǫ) + E‖ǫ‖2

= E‖n‖2 − 2E(nT ǫ) +Mσ2.
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To make progress we need an expression for the cross-covariance between the error

and the noise:

E(nT ǫ) =

∫

nT ǫp(ǫ)dǫ

=

∫

nT (y − µ)p(y − µ)dy. (C.1)

The data y follows Gaussian distribution

p(y − µ) =
1

(2πσ2)M/2
n− ‖y−µ‖2

2σ2

and this leads to the key observation ∂p
∂y

= −1
σ2 p(y − µ). Which we now use in (C.1)

E(nT ǫ) = −σ2

∫

nT ∂p

∂y
dy

= −σ2

∫

(

M
∑

v=1

nv
∂p

∂yv
)dy.

Integrating by parts gives

E(nT ǫ) = σ2

∫

(

M
∑

v=1

∂nv

∂yv
)pdy

= σ2Etr(
∂n

∂yT
)

= Mσ2 − σ2Etr
∂µ̂

∂yT
.

We finally get

Rr = E‖n‖2 + σ2Etr
∂µ̂

∂yT
−Mσ2.

We exchange the expectation operator E for the sample average and get the SURE

criterion which is thus unbiased.

D The Interaction Term in the SURE Formula

The interaction term is given by

C =
2σ2

T

r
∑

j=1

(1 − σ̂2
r

lj
)
∑

i6=j

lj + li
lj − li

. (D.1)
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We can write

∑

i6=j

lj + li
lj − li

=
∑

i6=j

2lj + li − lj
lj − li

= 2lj
∑

i6=j

1

lj − li
− (M − 1). (D.2)

Equations (D.1) and (D.2) together give

C =
4σ2

T

r
∑

i=1

∑

i6=j

lj − σ̂2
r

lj − li
− σ2

T

r
∑

j=1

(1 − σ̂2
r

lj
)(M − 1) (D.3)

but

r
∑

j=1

∑

i6=j

lj − σ̂2
r

lj − li
=

r
∑

j=1

(

r
∑

j=1
i6=j

lj − σ̂2
r

lj − li
+

M
∑

i=r+1

lj − σ̂2
r

lj − li
)

=
r(r − 1)

2
+

r
∑

j=1

M
∑

i=r+1

lj − σ̂2
r

lj − li
)

where we used that

r
∑

j=1
i6=j

lj − σ̂2
r

lj − li
=

1

2

r
∑

j=1
i6=j

(

lj − σ̂2
r

lj − li
+
lj − σ̂2

r

lj − li

)

=
1

2

r
∑

j=1
i6=j

lj − li
lj − li

=
r(r − 1)

2
.

Using this in Equation (D.3) gives the final expression for the interaction term

C =
4σ2

T

r
∑

j=1

M
∑

i=r+1

lj − σ̂2
r

lj − li
+

2σ2

T
r(r − 1)

− 2σ2

T
(M − 1)

r
∑

j=1

(1 − σ̂2
r

lj
).
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E Conditional Expectation for the M-step of the EM Algorithm in Sec-
tion 3.10.2

In this section, we compute the conditional expectation needed to do the M-step

of the EM algorithm in Chapter III. According to Model (1.9) we have







y

u






∼













0

0
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Ω21 Ω22













= N













0

0






,







GGT + σ2IM G

GT Ir












.

From normal distribution theory [94] [p.63,Thm. 3.2.4] we have

u|y ∼ N(Ω21Ω
−1
11 y,Ω22 − Ω21Ω

−1
11 Ω12).

We use this expression and compute

E(u|y) = GT (GΛGT + σ2IM)−1y

=
1

σ2
(Ir − (Ir + σ2(GTG)−1)−1)GTy

= (GTG+ σ2Ir)
−1GTy (E.1)

= W−1GTy.

To get to Equation (E.1) we used the matrix inversion lemma backwards. Now we

compute B0

B0 =
1

T

T
∑

t=1

ytE
T
θ0

[ut|yt]

=
1

T

T
∑

t=1

yty
T
t G0W

−1
0

= SyG0W
−1
0 .
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Now compute the variance of ut given yt

var(u|y) = Ir −GT (GGT + σ2IM)−1G

= Ir − (GTG+ σ2Ir)
−1GTG

= Ir − (Ir + σ2(GTG)−1)−1

= σ2W−1.

Finally we compute A0

A0 =
1

T

T
∑

t=1

Eθ0 [utu
T
t |yt]

= var(ut|yt) +
1

T

T
∑

t=1

Eθ0 [ut|yt]Eθ0 [ut|yt]
T

= σ2
0W

−1
0 +W−1

0 GT
0 SyG0W

−1
0 .

F svnPCA Λ-step: Estimation of Λ and σ2.

Given F1 and the fact that F T
1 F1 = Ir we find that Jθ(y) diagonalizes to become

(with tr(Sy) = τy; Vi = (F T
1 SyF1)ii)

Jθ(y) = − τy
2σ2

+
1

2σ2

r
∑

i=1

Vi

1 + σ2/λi

− M − r

2
log(σ2) − 1

2

r
∑

i=1

log(λi + σ2)

= Ja(σ
2) + Jb(d) (F.2)

where

di = λi + σ2

Ja(σ
2) = − 1

2σ2
(τy −

r
∑

i=1

Vi) −
M − r

2
log(σ2)

Jb(d) = −1

2

r
∑

i=1

Vi

di
− 1

2

r
∑

i=1

log(di).
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Thus Jθ(y) is convex in σ2, d and so has a unique minimum which by elementary

calculus is

σ̂2 =
1

M − r
(τy −

r
∑

i=1

Vi)

λi = Vi − σ̂2.

G A Derivation of the Stiefel Gradient

The Stiefel gradient is a tangent vector at F that satisfies

tr(
∂J

∂F T
∆) = 〈∇̃FJθ(y),∆〉

for all tangent vectors ∆. This is equivalent to

tr([
∂J

∂F T
− ∇̃FJθ(y)

T +
1

2
∇̃FJθ(y)

TFF T ]∆) = 0.

Since ∆ is an arbitrary tangent vector, the quantity inside the bracket needs to be a

normal vector, which can be represented as

∂J

∂F
− ∇̃FJθ(y) +

1

2
FF T ∇̃FJθ(y) = FS (G.3)

where S is a r× r symmetric matrix. Transposing (G.3) and multiplying by F from

the left yields

S =
∂J

∂F T
F − 1

2
∇̃FJθ(y)

TF. (G.4)

Now Equations (G.3), (G.4) and ∇̃FJθ(y)
TF = −F T ∇̃FJθ(y) yield

∇̃FJθ(y) =
∂Jθ(y)

∂F
− F

∂Jθ(y)

∂F T
F. (G.5)

H The Proof of the Cyclic Descent Convergence Theorem

In this section, we present the proof of the cyclic descent convergence theorem 1.

Below we use (A4) to show that ‖θm+1 − θm‖ → 0. Since {θm} is bounded we can
1The proof has been slightly modified from [141] to handle the constraints.
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find a subsequence {θmk
} converging to a limit point θ∗. From the cyclic descent

algorithm we have

∇βJ(αm−1,βm)(y) = 0, ∇̃αJ(αm,βm)(y) = 0 (H.6)

and from continuity we find ∇̃αJθ∗(y) = 0. But also then

(αmk
, βmk+1) = (αmk

, βmk
) + (0, βmk+1 − βmk

) → θ∗.

So from (H.6) via continuity ∇βJθ∗(y) = 0. So θ∗ is a stationary point.

Next we appeal to Ostrowski’s theorem [111], i.e., ‖θm‖ uniformly bounded,

‖θm+1 − θm‖ → 0 implies that the set of limit points is a compact connected set.

And the results are established.

Suppose now ‖θm+1 − θm‖ 9 0. Then by boundedness there is a subsequence

{θmk
} with {θmk

} → θ′, {θmk+1} → θ
′′

and ‖θ′ − θ
′′‖ > 0. If θmk

is a stationary

point there is nothing to prove. On the other hand by (A4), Jθmk+1(y) > Jθmk
(y) and

continuity (A2) gives Jθ′(y) > Jθ′′ (y). Continuing, on the other hand Jm = Jθm
(y) is

a bounded nondecreasing sequence and so has a limit J∗ and so Jm − Jm−1 → 0 ⇒

Jθmk+1(y) − Jθmk
(y) → 0, which, via continuity, gives Jθ′(y) − Jθ′′ (y) = 0, which is a

contradiction. So, indeed ‖θm+1 − θm‖ → 0.
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