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ABSTRACT

Efficient management of large multidimensional datasets has attracted much attention

in the database research community. Such large multidimensional datasets are common

and efficient algorithms are needed for analyzing these datasets for a variety of applica-

tions. In this thesis, we focus our study on two very common classes of analysis: similarity

and skyline summarization. We first focus on similarity whenone of the dimensions in the

multidimensional dataset is temporal. We then develop algorithms for evaluating skyline

summaries effectively for both temporal and low-cardinality attribute domain datasets and

propose different methods for improving the effectivenessof the skyline summary opera-

tion.

This thesis begins by studying similarity measures for time-series datasets and efficient

algorithms for time-series similarity evaluation. The first contribution of this thesis is

a new algorithm, called the Fast Time Series Evaluation (FTSE) method, which can be

used to evaluate similarity methods whose matching criteria is bounded by a specifiedǫ

threshold value. We then show that FTSE can be used in a framework that can evaluate a

rich range ofǫ threshold-based scoring techniques which we call the Sequence Weighted

Alignment (Swale) method.

The second contribution of this thesis is the development ofa new time-interval skyline

operator, which continuously computes the current skylineover a data stream. We present

a new algorithm calledLookOutfor evaluating such queries efficiently, and empirically

demonstrate the scalability of this algorithm. In addition, we also examine the effect of

xiv



the underlying spatial index structure when evaluating skylines. Whereas previous work

on skyline computations have only considered using the R*-tree index structure, we show

that for skyline computations using an underlying quadtreehas significant performance

benefits over an R*-tree index.

Current skyline evaluation techniques follow a common paradigm that eliminates data

elements from skyline consideration by finding other elements in the dataset that dominate

them. The performance of such techniques is heavily influenced by the underlying data

distribution. The third contribution of this thesis is a novel technique called the Lattice

Skyline Algorithm (LS) that is built around a new paradigm for skyline evaluation on

datasets with attributes that are drawn from low-cardinality domains. LS continues to

apply even if one attribute has high cardinality.

The utility of the skyline as a data summarization techniqueis often diminished by the

shear volume of points in the skyline The final contribution of this thesis is a novel scheme

called the Skyline Point Ordering (SPO) which remedies the skyline volume problem by

ranking the elements of the skyline based on their importance to the skyline summary,

allowing for the most important skyline points to appear first in the skyline result set and

providing monotonic top-k skyline queries that simplify the skyline results. We describe

two new algorithms, the Skyline First (SF) and the Coverage First (CF), for ranking the

skyline points in a dataset based on their summarization importance.

Collectively, the techniques described in this thesis present efficient methods for two

common and computationally intensive analysis operationson large multidimensional

datasets.

xv



CHAPTER I

Introduction

Driven by many emerging applications, database managementsystems are increasingly

required to provide efficient methods for analyzing large multidimensional datasets. Ef-

ficient algorithms to query such datasets are important because the volume of data being

managed is typically very large and grows rapidly over time.Accurate techniques to mine

and summarize such datasets are also a necessity because themultidimensional nature of

the data makes analysis by humans difficult.

One special and common case of multidimensional datasets occurs when one or more

dimensions vary with time. For example, scientific datasetsare often very large and fit into

this multidimensional, time-varying category. As anotherexample, consider buoy sensor

data that is used to track ocean currents and obtain weather readings for locations on the

surface of the ocean. Yet another example is current hurricane tracking measurements

that can be compared with past storm movements to obtain accurate forcasts. In other

application areas, the GPS trails of moving objects vary in time and can also generate

large datasets. In all of these cases, identifying similar patterns between two time-varying

dataset examples is a critical operation. Central to the identification of similar patterns

are the similarity measures used to classify and cluster datasets and the methods used to

evaluate those similarity measures.

1
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Data summarization techniques have been studied in earnestin the realm of Relational

Database Management Systems. Common data summarization methods include finding

the minimum or maximum value from a dataset, finding a median value, or finding an

average over a set of values. Summarization methods are important for database systems

because the volume of data being managed is large. This data volume makes data summa-

rization a necessity.

A new data summarization technique that has recently emerged for multidimensional

datasets is theskyline operator. Unlike some other summary techniques that consider

each dimension of the data in isolation, the skyline concerns itself with multiattribute

summarization.

The skyline operator is an elegant summary method over multi-dimensional data sets [43].

Given a data setP containing data pointsp1, p2, ..., pn, the skyline ofP is the set of all

pi in P such that nopj dominatespi. A commonly cited example for the use of a sky-

line operator is assisting a tourist in choosing a set ofinterestinghotels from a larger set of

candidate hotels. Each hotel is identified by two attributes: a distance from a specific point

(such as a location on a beach), and the price for the hotel. Toassist a tourist in narrowing

down the choices, the skyline operator can be used to find the set of all hotels that are not

dominated by another hotel. Hotela dominateshotel b if a is at least as close asb and

at least as cheap asb, and offers either a better price, or is closer, or both compared tob.

Figure 1.1 shows an example data set and the corresponding skyline; the distance of the

hotel from the beach is shown on the x axis and the hotel price is plotted along the y axis.

The skyline is the set of pointsa, c, d, i,andj.

The skyline can be generalized to multi-dimensional space where a pointa dominates

another pointb if it is as good or better thanb in all dimensions, and is better thanb in

at least one dimension. Implicit in this definition of the skyline operation is the notion of
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Figure 1.1: Example data set and its skyline.

comparing thegoodnessalong each dimension. A common function for determining this

property is to use themin function. However, skyline computation can easily be extended

to consider other functions, such asmax.

The skyline operator is commonly called thePareto setor the set ofmaximal vectors

for a given dataset [24]. The interested reader will note that the three problems are iden-

tical to one another; finding the Pareto set of a dataset, finding its maximal vectors, and

finding its skyline summary are identical operations and thethree resulting data subsets

are identical to one another. In a database context, this summarization technique is called

the skyline [10].

Many of the application areas in which the skyline operator has proven effective also

vary in time in at least one dimension. For example, in onlinesettings the price of various

commodities changes at least daily. These changing data values form a time-series. This

necessitates finding not only efficient algorithms for the evaluation of skylines, but also

more efficient techinques for managing temporal and time-series data.

This thesis develops efficient algorithms for similarity measures for multidimensional

datasets that vary with time, and methods for processing andproducing effective skyline



4

summaries in multidimensional datasets that both vary in time and contain low-cardinality

attribute domains. This includes developing algorithms for both finding skylines effec-

tively in the presence of a temporal dimension and maintaining the skyline when data

values change over time.

1.1 Contributions

There are many applications for the classification and clustering of time-series, which

makes developing effective and efficient measures for the comparison of time-series very

important. Identifying similar patterns is a crucial operation in time-series datasets. For

example, consider the three time-series examples shown in Figure 1.2. These examples

come from the popular Cylinder-Bell-Funnel dataset [2]. Separating the examples of the

cylinder from the bell or the funnel for a human is a trivial (but expensive) task; automated

techniques have error rates that vary between 15 percent fora Euclidean distance metric

and 4 percent for the Dynamic Time Warping (DTW) technique [2]. Not surprisingly, the

more accurate techniques such as DTW are also more expensiveto evaluate. Our contribu-

tion to time-series clustering and classification is two-fold in chapter 2. First, we present

the Fast Time-Series Evaluation (FTSE) technique which canevaluate sophisticated tech-

niques quickly. Second, we present a novel scoring method called the Sequence Weighted

Alignment that can use FTSE to compare time-series both accurately and quickly.

In a number of emerging streaming applications, the data values that are produced have

an associated time interval for which they arevalid. A useful computation over such

streaming data is to produce a continuous and validskylinesummary. Previous work on

skyline algorithms have only focused on evaluating skylines over static data sets, and there

are no known algorithms for skyline computation in the continuous setting. In this paper,

we introduce thecontinuous time-interval skylineoperator, which continuously computes
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Figure 1.2: Three example time-series from the Cylinder-Bell-Funnel dataset, depicting (a) a bell, (b) a
cylinder, and (c) a funnel.

the current skyline over a data stream. We present a new algorithm calledLookOutfor

evaluating such queries efficiently, and empirically demonstrate the scalability of this al-

gorithm. In addition, we also examine the effect of the underlying spatial index structure

when evaluating skylines. Whereas previous work on skyline computations have only

considered using the R*-tree index structure, we show that for skyline computations using

an underlying quadtree has significant performance benefitsover an R*-tree index. The

details ofLookOut are provided in Chapter 2.
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The current generation of skyline evaluation methods, including the LookOut tech-

nique, follow a common paradigm that removes elements of a datasetD from temporal

skyline consideration by finding other elements inD that dominate them, both spatially

and with respect to the temporal dimension(s). The distribution of the underlying dataset

D heavily influences the performance of the methods that fall into this paradigm. The third

contribution of this thesis is a novel technique called the Lattice Skyline Algorithm (LS)

that uses a new paradigm to find the skyline for datasets with attributes that are drawn

from low-cardinality domains. We show that many temporal skyline applications have

such low-cardinality domain data characteristics, and previous skyline methods have not

exploited this property. We show that for typical dimensionalities, the complexity of LS

is linear in the number of input tuples. Furthermore, we showthat the performance of

LS is independent of the input data distribution. Finally, we demonstrate through exten-

sive experimentation on both real and synthetic datasets that LS can result in a significant

performance advantage over existing techniques.

The utility of the skyline as a data summarization techniqueis often diminished by

the shear volume of skyline points, particularly if the dataset is anti-correlated, of high

dimensionality, or both. The final contribution of this thesis is a novel scheme called the

Skyline Point Ordering (SPO) to rank the elements of the skyline based on their importance

to the skyline summary. Skyline point ranking is important for two main reasons. First, it

returns the most important skyline points first in the skyline result set, as opposed to other

methods that do not specify any ordering. Second, it allows for monotonic top-k skyline

queries that simplify the skyline results by only providingk results. We describe two new

algorithms, the Skyline First (SF) and the Coverage First (CF), for ranking the skyline

points in a dataset based on their summarization importanceand expand this discussion to

a ranking of temporal skyline data points.
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Collectively, this thesis provides efficient algorithms forsimilarity and skyline evalua-

tion on large multidimensional datasets. datasets In summary, the four main contributions

of the thesis are first, the FTSE and Swale methods for the similarity of multidimensional

time-series datasets, second, theLookOutalgorithm for evaluating skylines time-interval

continuous skylines, third, the LS method for finding skylines in datasets that have low-

cardinality attribute domains, and fourth, the SPO for producing a ranked skyline summary

set for multidimensional datasets.

1.2 Thesis Outline

The remainder of this thesis is organized as follows: ChapterII presents the descrip-

tion of the FTSE algorithm and the Sequence Weighted Alignment scoring method and

contains a detailed experimental study of these methods compared to other techniques.

Chapter III introduces the Time-Interval Continuous Skylineoperator and the LookOut

algorithm for evaluation of the tics operator on temporal datasets. Chapter IV presents

the Lattice Skyline algorithm for evaluation of the skylinefor datasets whose attributes

are drawn from low-cardinality domains. Chapter V presents the Skyline Point Ordering

for the ranking of skyline points, introduces two algorithms for the evaluation of the Sky-

line Point Ordering for datasets, and evaluates these techniques in a detailed experimental

study. Finally, Chapter VI presents our conclusions and directions for future work.



CHAPTER II

A Fast Time Series Evaluation Technique

2.1 Introduction

Techniques for evaluating the similarity between time series datasets have long been

of interest to the database community. New location-based applications that generate time

series location trails (called trajectories) have also fueled interest in this topic since time

series simularity methods can be used for computing trajectory similarity. One of the crit-

ical research issues with time series analysis is the choiceof distance function to capture

the notion of similarity between two sequences. Past research in this area has produced

a number of distance measures, which can be divided into two classes. The first class

includes functions based on the L1 and L2 norms. Examples of functions in this class are

Dynamic Time Warping (DTW) [8] and Edit Distance with Real Penalty (ERP) [17]. The

second class of distance functions includes methods that compute a similarity score based

on a matching thresholdǫ. Examples of this class of functions are the Longest Common

Subsequence (LCSS) [78], and the Edit Distance on Real Sequence (EDR) [18]. Previ-

ous research [18, 78] has demonstrated that this second class of methods is robust in the

presence of noise and time shifting.

All of the advanced similarity techniques mentioned above rely on dynamic program-

ming for their evaluation. Dynamic programming requires that each element of one time

8
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series be compared with each element of the other; this evaluation is slow. The research

community has thus developed indexing techniques such as [18, 21, 34, 38, 82] that use

an index to quickly produce a superset of the desired results. However, these indexing

techniques still require a refinement step that must performthe dynamic programming

evaluation on elements of the superset. Furthermore, time series clustering has also been

studied [18, 35, 78], and these clustering techniques require pairwise comparison ofall

time series in the dataset, which means that indexing methods cannot be used to speed up

clustering applications.

To address this problem, a number of techniques have been developed that impose

restrictions on the warping length of the dynamic programming evaluation. The Sakoe-

Chiba band, studied in [68], uses a sliding window of fixed length to narrow the number

of elements that are compared between two time series. The Itakura Parallelogram, stud-

ied in [31], also limits the number of comparisons to accomplish a similar effect as the

Sakoe-Chiba band. These techniques that constrain the warping factor are faster, but at the

expense of ignoring sequence matches that fall outside of the sliding window. If the best

sequence match between two time series falls outside of the restricted search area, then

these techniques will not find it.

In this chapter, we propose a novel technique to evaluate thesecond class of time series

comparison functions that compute a similarity score basedon anǫ matching threshold.

The popular LCSS and EDR comparison functions belong to this class and can directly

benefit from our new evaluation technique. This technique, called theFastTime Series

Evaluation (FTSE), is not based around the dynamic programming paradigm nor is it an

approximation (i.e. it computes the actual exact similarity measure). Using a number of

experiments on real datasets, we show that FTSE is nearly an order of magnitude faster

than the traditional dynamic programming-style of similarity computation. In addition, we
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show thatFTSE is also faster than popular warp-restricting techniques by a factor of 2-3,

while providing an exact answer.

We show that FTSE can evaluate a broader range ofǫ threshold-based scoring tech-

niques and not just LCSS and EDR. Motivated by FTSE’s broader ability, we propose the

SequenceWeightedAL ignmEnt (Swale) scoring model that extendsǫ threshold based

scoring techniques to include arbitrary match rewards and gap penalties. We also conduct

an extensive evaluation comparing Swale with popular existing methods, including DTW,

ERP, LCSS, and EDR and show thatSwale is generally more accurate than these existing

methods.

The remainder of this chapter is organized as follows: Section 2 discusses the termi-

nology that is used in the rest of the chapter. Section 3 discusses related work and Section

4 describes the FTSE algorithm. Section 5 introduces the Swale similarity scoring method

and Section 6 presents experimental results. Finally, Section 7 presents our conclusions.

2.2 Terminology

Existing similarity measures such as LCSS, DTW, and EDR assume that time is dis-

crete. For simplicity and without loss of generality, we make these same assumptions here.

Formally, the time series data typeT is defined as a sequence of pairsT = (p1, t1), (p2, t2),

... , (pn, tn), where eachpi is a data point in ad-dimensional data space, and eachti is the

time at whichpi occurs. Eachti is strictly greater than eachti−1, and the sampling rate of

any two time series is equivalent. Other symbols and definitions used in this chapter are

shown in Table 2.1.

Time series datasets are usually normalized before being compared. We follow the

normalization scheme for time series data described in [25]. Specifically, forS of length

n, let the mean of the data in dimensiond beµd and let the standard deviation beσd. Then,
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to obtain the normalized dataN(S), we can evaluate∀ i ∈ n : si,d = (si,d − µd)/σd on

all elements ofS. This process is repeated for all dimensions. In this chapter, all data is

normalized, and we useS to stand forN(S), unless stated otherwise.

2.3 Related Work

There are several existing techniques for measuring the similarity between different

time series. The Euclidean measure sums the Euclidean distance between points in each

time series. For example, in two dimensions the Euclidean distance is computed as:
√

∑n
i=1 ((ri,x − si,x)2 + (ri,y − si,y)2). This measure can be used only if the two time

series are of equal length, or if some length normalization technique is applied. More so-

phisticated similarity measures include Dynamic Time Warping (DTW) [8], Edit distance

with Real Penalty (ERP) [17], the Longest Common Subsequence (LCSS) [78], and Edit

Distance on Real sequences (EDR) [18]. These measures are summarized in Table 2.2.

DTW was first introduced to the database community in [8]. DTWbetween two time

series does not require the two series to be of the same length, and it allows for time

shifting between the two time series by repeating elements.ERP [17] createsg, a constant

value for the cost of a gap in the time series, and uses the L1 distance norm as the cost

between elements. The LCSS technique introduces a thresholdvalue,ǫ, that allows the

scoring technique to handle noise. If two data elements are within a distance ofǫ in each

dimension, then the two elements are considered to match, and are given a match reward

of 1. If they exceed theǫ threshold in some dimension, then they fail to match, and no

Symbol Definition
R, S Time series(r1, ..., rm) and(s1, ..., sn).
ri Theith element ofR.
Rest(R) R with the first element removed.
Md d dimensional MBR.
Md1, Md2 Lower and upper bounds ofM

Table 2.1: Symbols and definitions.
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Definition

DTW(R,S) =















0
∞
dist(r1, s1) + min{DTW (Rest(R), Rest(S)),
DTW (Rest(R), S),DTW (R,Rest(S))}

if m = n = 0
if m = 0 or n = 0

otherwise

ERP(R,S) =















∑n

1
dist(si, g),

∑m

1
dist(ri, g)

min{ERP (Rest(R), Rest(S)) + dist(r1, s1)
ERP (Rest(R), S) + dist(r1, g),
ERP (R,Rest(S)) + dist(s1, g)}

if m = 0, if n = 0

otherwise

LCSS(R,S) =







0
LCSS(Rest(R), Rest(S)) + 1
max{LCSS(Rest(R), S), LCSS(R,Rest(S))}

if m = 0 or n = 0
if ∀d, |rd,1 − sd,1| ≤ ǫ

otherwise

EDR(R,S) =







n, m

min{EDR(Rest(R), Rest(S))+subcost,
EDR(Rest(R), S) + 1, EDR(R,Rest(S)) + 1}

if m = 0, if n = 0
otherwise

Table 2.2: Distance Functions:dist(ri, si) = L1 or L2 norm; subcost= 0 if |r1,t−s1,t| ≤ ǫ, else subcost= 1.

reward is issued. The EDR [18] technique uses gap and mismatch penalties. It also seeks

to minimize the score (so that a score closer to 0 represents abetter match).

In [5], the authors use the Euclidean distance to measure similarity in time series

datasets. The Discrete Fourier Transform is used to producefeatures that are then indexed

in an R-tree. Dimensionality reduction is also studied in [15, 34, 38, 42, 63, 82]. Indexing

is also studied in [21], which proposes a generic method built around lower bounding to

guarantee no false dismissals. Indexing methods for DTW have been the focus of several

papers including [33, 39, 69, 83, 86]. Indexing for LCSS [77] and EDR [18] has also been

studied. In this chapter, our focus is not on specific indexing methods, but on the design

of robust similarity measures, and efficient evaluation of the similarity function. We note

that our work is complementary to these indexing methods, since the indexing methods

still need to perform a refinement step that must evaluate thesimilarity function. Tradi-

tionally, previous work has not focused on this refinement cost, which can be substantial.

Previous works employ a dynamic programming (DP) method forevaluating the similarity

function, which is expensive, especially for long sequences. In other words, FTSE can be

used to boost the performance of existing LCSS or EDR-based indexing methods since it
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is faster than traditional DP methods for the refinement step.

The Sakoe-Chiba Band [68] and Itakura Parallelogram [31] are both estimation tech-

niques for restricting the amount of time warping to estimate the DTW score between two

sequences. A restriction technique similar to the Sakoe-Chiba Band is described for LCSS

in [78] and the R-K Band estimate is described in [65].

Time series may be clustered using compression techniques [20, 36]. We do not com-

pare our algorithms with these techniques because of their inapplicability for clustering

short time series.

The FTSE algorithm that we propose bears similarity to the Hunt-Szymanski algo-

rithm [30,46] for finding the longest common subsequence between two sequences. How-

ever, Hunt-Syzmanski is only concerned with string sequences (and not time series), sup-

ports only a limited string edit-distance model, and does none of the grid matching that

FTSE does to identify matching elements between time series(see Section 2.4).

A more closely set of related work is concerned with clustering of trajectory datasets

(such as [18, 35, 78, 81]). In fact, a commonly established way of evaluating the effec-

tiveness of trajectory similarity measures is to use it for clustering, and then evaluate the

quality of the clusters that are generated [18,35,78]. Common clustering methods such as

complete linkage are often used for trajectory data analysis [18,35,78], and these methods

require that each trajectory in the dataset be compared to every other trajectory. Essen-

tially, for a dataset of sizes, this requires approximatelys2 comparisons. As we show in

this chapter for such problems, not only is the Swale scoringmethod more effective, but

the FTSE technique is also faster than the existing methods.
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Figure 2.1: Two time series examples of the cylinder class from the Cylinder-Bell-Funnel Dataset.

2.4 Fast Time Series Evaluation

In this section, we introduce the FTSE algorithm. In order tobetter understand why

FTSE is faster than dynamic programming, we first discuss dynamic programming and its

shortcomings for evaluatingǫ based comparison functions. We then provide an overview

of the FTSE algorithm. We also discuss its operation for LCSS and EDR, provide an

example for each, and analyze the cost for each.

2.4.1 Dynamic Programming Overview

Time series comparison techniques such as those shown in Table 2.2 are typically eval-

uated using dynamic programming. Two time seriesR andS of lengthm andn, respec-

tively, are compared using dynamic programming in the following way: First, anm x n

two dimensional arrayA is constructed. Next, each elementri of R is compared with each

elementsj of S for all 1 ≤ i ≤ m and1 ≤ j ≤ n. The result of the comparison ofri and

sj is added to the best cumulative score between(r1, ...,ri−1) and(s1, ...,sj−1) and stored

in A at position(i, j). Once all themn comparisons have been made and the elements of

A are filled in, the final score is stored inA(m,n).

For a concrete example, consider finding the LCSS score between the two time series
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shown in Figure 2.1. These two time series are from the popular Cylinder-Bell-Funnel

(CBF) synthetic dataset [35]. The CBF dataset consists of time series from three classes,

cylinders, bells, and funnels. Elements from the same classin the dataset are usually

similar to each other. The two time series shown in Figure 2.1are both from the cylinders

class.

The two dimensional array used by the dynamic programming method for the LCSS

comparison betweenR andS is shown in Figure 2.2a, where theǫ matching criteria is

chosen as one-quarter the standard deviation of the normalized time series (a common

ǫ value, also chosen in [18]). In Figure 2.2a, black entries inthe array at position(i, j)

indicate mismatches betweenri andsj. Gray entries in the array indicate matches between

ri andsj that do not contribute to the LCSS score ofR andS, and light gray colored entries

indicate matches betweenri andsj that are chosen by LCSS as the best alignment between

R andS. Notice that the light gray colored entries run approximately from (0, 0) to (m,n)

along the grid diagonal. This makes intuitive sense – the alignment between two similar

time series should match similar parts of each series (i.e. the front portion ofR should not

match the final portion ofS).

Shortcomings of Dynamic Programming

When evaluating the LCSS ofR andS, many of the comparisons made by dynamic

programming when filling in them × n two-dimensional array are between components

of R andS that do not match, and therefore cannot positively impact the score between

R andS. Much of the computation can be saved by finding only those elementsri andsj

of R andS that match. An example of the positive matches betweenR andS is given in

Figure 2.2b. This is the same two-dimensional array that is shown in Figure 2.2a, but the

mismatching portions are no longer shown in black. The number of squares in this figure

is much smaller than before. Since each square in the array represents work that must be
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No Match Match, not taken
Match, taken Cylinder1
Cylinder2

Match Cylinder1
Cylinder2

(a) (b)

Figure 2.2: (a) The dynamic programming computations necessary to evaluate LCSS between the two cylin-
der examples from Figure 2.1. The first time series is above the computation array and the second
time series is on its right. (b) The matching elements as determined by LCSS between the two
time series shown in Figure 2.1. This is what is needed by FTSEto perform the evaluation, in
contrast to the larger number of comparisons needed by dynamic programming.

done by the algorithm as well as space that must be used, the evaluation ofǫ threshold

scoring techniques can be made more efficient. The main observation that we make is

that if only those matches in Figure 2.2b are considered whencomparing two time series,

considerable computation can be saved since mismatching pairs are ignored.

2.4.2 Overview of FTSE

FTSE identifies the matching elementsri andsj between time seriesR andS without

using a large two-dimensional array, such as that shown in Figure 2.2a. This is done by

treatingR andS nonuniformly, rather than treating them in the same way as indynamic

programming. In dynamic programming, bothR andS are treated the same (each is lined

up on one edge of the two-dimensional array to be compared with the elements of the other

sequence).
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To find the matching pairs betweenR andS without comparing eachri with everysj,

FTSE indexes the elements ofR on-the-fly into a grid. Each element ofR is placed into a

grid cell. Now, to find the elements ofR thatsj matches, the grid is probed withsj. Only

the elements ofR that reside in the same grid cell assj need to be compared with it to see

if they match.

Once the matching pairs ofR andS are found, the score of LCSS, EDR, or of the more

general Swaleǫ scoring functions forR andS and the best alignment between them can

be found using only an array of sizen and a list containing the matching pairs between

the two sequences (in contrast to themn size array of dynamic programming). This is

accomplished by noting that the grid can be probed by order ofincreasingS position.

Hence, when the grid is probed withsj to find the matching pairs betweenR andsj, the

matching pairs between the precedingj−1 elements ofS with R have already been found.

Therefore, when considering previous matches between(s1, ..., sj−1) andR for the best

cumulative score for a match betweenri andsj, there is no restriction on the previous

matches fromsj. Any of the previous matches that contribute to the best cumulative score

for ri andsj simply must be between elements ofR before positioni because the previous

matches are inherently beforesj. Thus, high scores by position inR can be indexed into a

one dimensional array of sizen. The best alignment betweenR andS can be stored using

a list containing matching pairs of elements derived from the grid.

One crucial requirement must be met for the index strategy ofFTSE to win over the

dynamic programming paradigm: the number of cells in the grid must be less thanmn.

Since the data is normalized, most elements fall between -3σ and 3σ. If epsilon is chosen

as 0.5σ as is done in [77], then the grid contains 6/0.5=12 entries. Since time series are

not usually more than 2 dimensional and typically of length considerably greater than 12,

the grid size is typically much smaller thanmn.
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2.4.3 Finding Matches

In this section, we describe how the novel Fast Time Series Evaluation method finds

matching pairs between elements ofR and elements ofS. FTSE measures the similarity

between time seriesR andS with threshold valueǫ. Usingǫ, each pair of elementsri ∈ R

andsj ∈ S can be classified as either a match or a mismatch. The elementsri andsj are

said to match if|ri − sj| < ǫ in all dimensions. Otherwise, these two elements ofR andS

are a mismatch.

The first step in the FTSE algorithm is to find all intersectingpairs between elements

of R and elements ofS. The technique used to obtain these intersecting pairs is shown in

Algorithm 1. First, a grid of dimensionalityd is constructed (line 4 of the algorithm). The

edge length of each element of the grid isǫ.

In lines 6 to 8 of the algorithm, a Minimum Bounding Rectangle (MBR) is constructed

for each elementri of R. This MBR has a side length of2ǫ in each dimension, and its

center is the pointri. This construction method ensures thatri overlaps with no more than

3d elements in the grid.

The MBR construction is illustrated in Figure 2.3 for one and two dimensions. In one

dimension, the MBR ofri is flattened into a line and intersects with 3 grid elements, as

shown in Figure 2.3a. In two dimensions, the MBR ofri intersects with 9 grid elements,

as shown in Figure 2.3b.

A FIFO queue is associated with each cellg of the grid. The queue for eachg is used

to maintain a reference to allri that are withinǫ of g, in order of increasingi. This is done

in line 9 of Algorithm 1.

The intersections betweenR andS are found in lines 11-18 of Algorithm 1. The grid

cell g that contains eachsj ∈ S is located. The elements ofR in the queue associated with

g are compared withsj to see if they are withinǫ of one another. For each elementrk of
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Algorithm 1 Build Intersection List.
1: Input: R, m, S, n, ǫ

2: Output: Intersection ListL
3: Local Variables: Grid G, MBR M

4: Initialize G: each grid element contains a queue that stores references to all intersecting elements.
5: for i = 1 tom do
6: for k = 1 tod do
7: Mk

i =(rk
i -ǫ, rk

i +ǫ)
8: end for
9: InsertMi into the queue associated with each grid squareg of G whichMi intersects.

10: end for
11: for i = 1 ton do
12: Obtain queueqg for grid squareg in whichsi lies.
13: for k ∈ qg do
14: if |si − rk| < ǫ in all dimensionsthen
15: insertk into Li

16: end if
17: end for
18: end for

R that is withinǫ of sj, the index ofrk, i.e. k, is inserted into the intersection listLj of sj.

The entries ofLj are also maintained in order of increasingk.

Note that the size of the grid is likely to be small for the following reason: Since data

is normalized with mean zero and standard deviationσ = 1, most data will fall between

-3 and 3. If theǫ value is not exceptionally small relative toσ (which is common – for

example, [77] uses0.5σ), the size of the grid is reasonably small. Outliers beyond -3 or 3

are rare and can be captured into an additional grid cell.

If the dimensionality is unusually high, the grid may be built on a subset of the overall

dimensions since, as is shown in the next section, the numberof matching pairs between

time seriesR andS decreases quickly as the dimensionality grows. This way, the tech-

nique can still be applicable in higher dimensional spaces.

Cost Analysis of Match Finding

The cost of finding the matches using the grid technique of FTSE is O(P + m + n),

whereP is the total number of comparison operations between the elements ofR and the

elements ofS made when probing the grid,m is the length ofR, andn is the length of

S. The cost to insert each element ofR into a grid isO(m), and the cost to probe the grid
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with each element ofS is O(n). There areO(P ) total comparisons betweenR andS.

The total number of probe comparisons betweenR andS will be similar to the total

number of matchesM , both of which are determined by the size ofǫ. (An element of

S will match all elements that are withinǫ in each dimension. It will be compared in

the probe phase with elements that are up to2ǫ away from it in each dimension, and on

average within1.5ǫ in each dimension, since the element will be mapped to 3 grid cells in

each dimension that are each of sizeǫ.) While this cost isO(mn) in the worst case, in the

general case,P will be much less thanmn for commonǫ values.

To obtain an average case analysis, we consider two 1 dimensional sequencesR andS

whose elements are chosen uniformly from the unit space in 1 dimension. OnceR andS

are normalized, they will be distributed normally with mean0 and variance 1. The con-

ditional density function of the standard normal random variableZ is provided in Equa-

tion 2.1. SinceS is normalized, the values of its elements follow a normal distribution and

we can consider the value ofsj to be a normal random variable. The probability that a

standard normal random variableZ lies between two valuesa andb, wherea < b, is given

by Equation 2.2. Hence, the probability that the normalizedvalue ofri, N(ri), lies within

ǫ of the normalized value ofsj, N(sj), is given in Equation 2.3.

Φ(z) =
1

2
√

2π

∫ z

−∞

e−u2/2 du(2.1)

P [a < Z ≤ b] = Φ(b) − Φ(a)(2.2)

P [N(ri) − ǫ < N(sj) ≤ N(ri) + ǫ]

= Φ(N(ri) + ǫ) − Φ(N(ri) − ǫ)(2.3)

The expected number of matchesM betweenri and then elements ofS is equal to the

probability that a particular element ofN(S) matches with a valueN(ri) multiplied byn.
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Figure 2.3: A depiction ofR sequence elements with MBRs mapped to a (a) one-dimensionaland (b) two-
dimensional grid.

This is shown in Equation 2.4. We can then find the expected number of matches between

R andS by summing over allm, in Equation 2.5. To obtain a solution in terms ofmn,

we can multiply by 1 (m/m) in Equation 2.6. We can approximate this summation (since

we want an estimate in terms ofmn) numerically by pickingm values uniformly from the

unit space for eachri. We use two values forǫ, 0.25σ and 0.50σ, which are commonly

usedǫ values in [18] and [77], respectively. Forǫ = 0.50, we obtain between0.26mn and

0.27mn matches betweenR andS, and forǫ = 0.25, we obtain about0.13mn matches

betweenR andS. This is approximately a 4-7X improvement over dynamic programming.

E[M |ri] = n(Φ(N(ri) + ǫ) − Φ(N(ri) − ǫ))(2.4)

E[M ] = n

m
∑

i=1

(Φ(N(ri) + ǫ) − Φ(N(ri) − ǫ))(2.5)

E[M ] = mn

m
∑

i=1

1

m
(Φ(N(ri) + ǫ) −

Φ(N(ri) − ǫ))(2.6)

The expected number of probesP can be found by replacingǫ in Equation 2.6 with

1.5ǫ, the average maximum distance away fromsj that elements inR can be and still be

compared withsj in the probe phase. Doing so produces about0.4mn probe compar-

isons whenǫ = 0.50 and about0.2mn probe comparisons whenǫ = 0.25. This is an
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improvement of 2.5-5X over dynamic programming.

To obtain the average case analysis for 2 dimensions, we consider 2 dimensional time

seriesR andS whose elements are drawn independently from the unit space.The analysis

then is similar to the analysis above. The main difference isthatN(ri) must matchN(sj)

in both dimensions. Since the values ofri andsj in each dimension are independent, we

can arrive at Equation 2.7 by performing the same analysis aswe did in the 1 dimensional

case. If we approximate the number of matches in two dimensions numerically, we obtain

between0.06mn and0.07mn matches whenǫ = 0.50 and about0.02mn matches when

ǫ = 0.25. This is about a 14-50X improvement over the dynamic programming, which

producesmn comparisons.

E[M ] = mn

m
∑

i=1

1

m
[(Φ(N(r1

i ) + ǫ) − Φ(N(r1
i ) − ǫ))

∗ (Φ(N(r2
i ) + ǫ) − Φ(N(r2

i ) − ǫ))](2.7)

The expected number of probesP in 2 dimensions can be found by replacingǫ in

Equation 2.7 with1.5ǫ, the average distance away fromsj that elements inR can be

and still be compared with it in each dimension in the probe phase. Doing so produces

about0.16mn probe comparisons forR andS whenǫ = 0.50 and about0.05mn probe

comparisons whenǫ = 0.25. This is an improvement of 6-20X over dynamic programming

for 2 dimensions.

2.4.4 Computing LCSS using FTSE

Once the intersections are found, the LCSS score for the pairR andS can be eval-

uated using Algorithm 2. An array calledmatches is maintained that stores at position

matches[i] the smallest valuek for which i matches exist between the elements ofS and

r1, ... ,rk (line 4).
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Algorithm 2 LCSS Computation.
1: Input: R, m, S, n, ǫ, IntersectionsL
2: Output: score

3: Local Variables: Array matches

4: Initialize matches[0] = 0 andmatches[1 to n] = m + 1.
5: max=0;
6: for j = 1 ton do
7: Let c, a pointer into thematches array, =0.
8: Let temp store an overwritten value frommatches.
9: temp=matches[0].

10: for k ∈ Lj do
11: if temp < k then
12: while matches[c] < k do
13: c = c + 1.
14: end while
15: temp=matches[c].
16: matches[c] = k.
17: if c > max then
18: max = c

19: end if
20: end if
21: end for
22: end for
23: score = max.

The values inmatches are filled by iterating through the elements ofS (line 6). Vari-

ablec is an index intomatches andtemp stores an overwritten value from matches. For

each of the intersections betweenrk andsj (line 10), k is checked against the value of

temp (line 11). Initially, temp is 0 (line 9), so the algorithm proceeds to line 12. Next,c is

incremented until the value ofmatches[c] is not less thank. This indicates that there are

c − 1 matches betweens1, ... ,sj−1 andr1, ...,rmatches[c−1]. Adding the match betweensj

andrk makesc matches.

The old value ofmatches[c] is stored totemp (line 15) andmatches[c] is updated to

k (line 16). The maximum possible number of matches is stored in max and updated

if c is greater than it (lines 17-19). The value oftemp is updated because subsequent

intersections betweenR andsj cannot make use of the intersection betweenrk andsj. This

is because theLCSS technique only allowssj to be paired with onerk so the previous

value is retained as a stand in for the oldmatches[c] for the next loop iteration. At the end

of the algorithm, theLCSS score is stored inmax (line 23).
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Example for LCSS

To demonstrate the operation of FTSE for LCSS, letR be r1 = 2.0, r2 = −0.5,

r3 = 1.0, r4 = −2.2, andr5 = −0.4, and letS be s1 = −0.4, s2 = −2.1, s3 = 1.4,

s4 = −1.8. Let ǫ = 0.5.

The matching phase of Algorithm 1 progresses by generating aone dimensional grid

in which each grid cell has a side length of 0.5 (theǫ value). Assume that grid boundaries

occur at−2.5, −2, −1.5, −1, −0.5, 0, 0.5, 1, 1.5, 2, and2.5 (line 4 of Algorithm 1). Next,

the algorithm generates MBRs for each element ofR (lines 5 to 8). The MBRs for eachri

are (1.5, 2.5) forr1, (-1, 0) forr2, (0.5, 1.5) forr3, (-2.7, -1.7) forr4, and (-0.9, 0.1) forr5,

Next, the algorithm inserts eachri into the grid (line 9). For example, the grid cell with

boundaries(−0.5, 0) contains bothr2 andr5. The grid is then probed with eachS value

(lines 11-18). First, the grid is probed withs1. The cell in which it lies, (-0.5,0), contains

two MBRs – namelyr2 andr5. Both elements ofR are compared withs1. Since they are

both withinǫ of s1, 2 and 5 are inserted into intersection listL1, in that order.

Then, the grid is probed withs2. The grid in which it is located, (−2,−2.5), contains

only one element,r4. Sincer4 ands2 are within0.5 of one another, 4 is inserted intoL2.

In a similar way, the grid is probed withs3 ands4 to produce a match withr3 for s3 and

with r4 for s4.

Next, the operation of Algorithm 2 progresses. The initial state of thematches array is

shown in Figure 2.4. The algorithm begins processing the intersection list ofs1. The first

value in the intersection list fors1 is 2 (line 10 of the algorithm), sinces1 intersects with

r2.

Sincematches[0] < 2 < matches[1] (lines 12-14), the greatest number of matches

possible so far is 1, so thec pointer is set to 1. Hence, the value oftemp is updated to

the old value ofmatches[1] (line 15), which is 6 andmatches[1] is updated to 2 (line 16).
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Figure 2.4: Thematches array during FTSE LCSS evaluation.

The value ofmax is updated to 1 (lines 17-18). The new status ofmatches is shown in

Figure 2.4. The next value in the intersection list fors1 is 5. Since 5 is less thantemp (line

11), this intersection cannot be used.

After the processing of thes1 intersection list,c andtemp are reset for the intersections

of s2 (lines 7-9). The first and only value in the intersection listfor s2 is 4 (line 10). Since

matches[1] < 4 < matches[2] (lines 12-14),c is set to 2. The value oftemp is updated to

matches[2] (line 15), andmatches[2] is updated to 4 (line 16). The value ofmax is also

updated to 2 (lines 17-18).

The intersection list fors3 is processed in the same way. Since its only match is with

r3, and becausematches[1] < 3 < matches[2], the value ofmatches[2] is overwritten

with 3 (see Figure 2.4). The intersection list ofs4 is also processed, and sinces4 intersects

with r4, andmatches[2] < 4 < matches[3], the value ofmatches[3] is updated to 4, and

the max value becomes 3.

Since all theS points have been processed, the algorithm terminates. The best possible

number of matches betweenR andS is stored inmax, which is 3. This is the LCSS score.

Cost Analysis of FTSE computing LCSS

The cost of FTSE for computing LCSS isO(M + Ln), whereM is the number of

matches (discussed in Section 2.4.3) andL is the length of the longest matching sequence
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betweenR andS (i.e. the LCSS score). The proof of this is straightforward and hence is

omitted (essentially, each matching pair is considered, and the length of the longest match

is stored in the array and is iterated over for each elementn of S). In the worst case, this

length will be equal to the length ofmin(m,n) (since the LCSS score cannot exceed the

length of either sequence), which could be as long asm, making the overall costO(mn).

However, this worst case occurs only when all elements ofR andS are matched in the

LCSS score, which is not expected to happen often, even for sequences that are quite

similar.

To obtain an average case analysis for the size ofL in 1 dimension, we again assume

time seriesR andS have their elements drawn uniformly from the unit space. We nu-

merically approximateL by generating one thousand random versions ofR andS, each

of length one thousand. We then measure the average, maximum, and minimum length

of L. For ǫ = 0.25, the average size ofL is 0.52m, the maximum size is0.54m, and the

minimum size is0.51m. For ǫ = 0.50, the average size ofL is 0.66m, the maximum size

is 0.68m, and the minimum size is0.64m. The small variation in the sizes ofL show that

this average case analysis produces repeatable results. Italso shows a 1.5-2X improvement

over dynamic programming’smn computation to find the best alignment ofR andS.

We obtain an average case analysis for 2 dimensions through numerical approximation

as well. Forǫ = 0.25, the average size ofL is 0.23m, the maximum size is0.24m, and

the minimum size is0.22m. For ǫ = 0.50, the average size ofL is 0.41m, the maximum

size is0.43m, and the minimum size is0.39m. The smaller size ofL in two dimensions

is becauseri must matchsj in two dimensions instead of just 1, which produces fewer

matches between eachri and the elements ofS (see Section 2.4.3). This analysis shows a

2.5-4X improvement over dynamic programming.
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Algorithm 3 EDR Computation.
1: Input: R, m, S, n, ǫ, IntersectionsL
2: Output: score

3: Local Variables: Array matches

4: Initialize matches[0] = 0 andmatches[1 to 2n] = m + 1.
5: max=0;
6: for j = 1 ton do
7: Let c, a pointer into thematches array, =0.
8: Let temp store an old value frommatches,=matches[0]
9: Let temp2 store an old value frommatches,=matches[0]

10: for k ∈ Lj do
11: if temp < k then
12: while matches[c] < k do
13: if temp < matches[c]− 1 andtemp < m− 1 then
14: temp2 = matches[c]
15: matches[c] = temp + 1
16: temp = temp2
17: else
18: temp = matches[c]
19: end if
20: c = c + 1.
21: end while
22: temp2=matches[c].
23: matches[c]=temp + 1.
24: temp=matches[c + 1].
25: if matches[c + 1] > k, then matches[c + 1] = k

26: if max < c + 1, then max = c + 1
27: c = c + 2.
28: else iftemp2 < k andk < matches[c] then
29: temp2 = temp

30: temp = matches[c]
31: matches[c] = k

32: if max < c, then max = c

33: c = c + 1
34: end if
35: end for
36: for j = c to max + 1 do
37: if temp < matches[j]− 1 andtemp < m− 1 then
38: temp2 = matches[j]
39: matches[j] = temp + 1
40: temp = temp2
41: if max < j, then max = j

42: else
43: temp = matches[j]
44: end if
45: end for
46: end for
47: score = max− (m + n).

2.4.5 Computing EDR using FTSE

Unlike LCSS, EDR does not reward matches, but rather penalizes gaps and mismatches,

so the FTSE algorithm changes slightly. The maximum possible score for EDR(R,S,ǫ) is 0
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if R andS are nearly identical. The worst possible score is−1∗ (m+n), if all m elements

of R and alln elements ofS incur a gap penalty. A mismatch penalty of -1 between

elementsri of R andsj of S can thus be viewed as a savings of 1 over two mismatches

(which together have a cost of -2 versus the -1 mismatch cost). A match betweenri and

sj has a score of 0, which is a savings of 2 over the gap penalty costs. FTSE for EDR

thus scores a match with a+2 reward and a mismatch with a+1 reward, and considers the

baseline score to be−1 ∗ (m + n) instead of zero.

The FTSE algorithm for EDR is presented in Algorithm 3. Thematches array is

initialized (line 4 of Algorithm 3) similar to Algorithm 2. Since match rewards are being

scored with a 2, the array needs to be twice as long. Variablesmax (line 5), c (line 7),

andtemp (line 8) are the same as before. Variabletemp2 stores an overwritten value of

thematches array, similar totemp. A second such temporary holder is needed because

match rewards are scored with a+2, hence two values can be overwritten on an iteration.

Most of FTSE for EDR is the same as FTSE for LCSS, such as iterating through the

elements ofS (line 6) and checking each element of the intersection list for the appropriate

matches value (lines 10-12).

Mismatches are handled by lines 13-19. Variabletemp stores the value ofmatches[c−

1]. Sincesj can obtain a mismatch with any element ofR, each value ofmatches must

be incremented (line 15). The overwritten value ofmatches is stored back intotemp

(lines 14, 16, 18). Line 13 checks that a previous element hasnot matched at positionc

of matches (producing a higher score than a potential mismatch) and that the length ofR

has not been exceeded.

Lines 22-27 handle a match. The previous value ofmatches[c] is stored intemp2 (line

22) sincematches[c] will be updated with a mismatch score (line 23);matches[c + 1]

is stored intemp (line 24) since a match is recorded atmatches[c + 1] (line 25). The
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Figure 2.5: Thematches array during FTSE EDR evaluation.

maximum score andc counter are updated in lines 26 and 27 respectively.

Lines 28-34 handle the case when the next matching element inintersection listLj is

greater than the previous element by exactly 1. For example,if sj matches elementsrk and

rk+1. In this case, the match withrk+1 will not necessarily exceedtemp, the previously

updatedc − 1 value, but might exceedtemp2, the previously updatedc − 2 value. The

update code is similar to lines 22-27 already described.

Lines 36-45 handle the case when eithersj has no matches inR or whensj matches

elements only near the beginning ofR. In this case,sj could obtain mismatch scores with

the remaining portions ofR. This section of Algorithm 3 is similar to the already described

lines 13-19.

Example for EDR

We show the operation of FTSE evaluating EDR with the same example as was used

for LCSS. Following the intersection list generation of Algorithm 1 already discussed,

Algorithm 3 begins by initializingmatches. This initialized state is seen in Figure 2.5.

The first match is obtained from the intersection list (line 10 of the algorithm). This is

the intersection betweenr2 ands1, hencek = 2. Sincematches[0] < 2 < matches[1], c

is set to 1 in lines 13-20.temp andtemp2 are both set to 11 (lines 22 and 24).matches[1]

is set to 1 becauses1 can mismatch withr1. matches[2] is set to 2 becauser2 matches

with s1. Nothing is done for the match betweenr5 ands1. The updatedmatches array is
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shown in Figure 2.5.

The intersection list fors1 is now empty, so FTSE proceeds to line 36.c is 3 and

max + 1 is 3, so the loop is taken exactly once. Theif condition at line 37 fails, so no

changes are made tomatches.

Next, the intersection betweenr4 ands2 is processed, sok = 4. Sincematches[2] <

4 < matches[3], c is set to3 by lines 12-20. No changes are made to thematches array

by lines 14-16. Hence, the else condition (line 18) is taken for both c = 1 and2 and

temp = 2. matches[3] is set totemp+1 = 3 (line 23) andmatches[4] is set to 4 (line 25)

sincek = 4. max is updated to 4 (line 26) andc is set to 5 (line 33). Again, lines 36-45

make no changes tomatches.

The intersection betweens3 andr3 is next considered. As shown in Figure 2.5, The

match betweens3 andr3 can use the match betweens1 andr2 at position 2 ofmatches.

So, the value ofk (3) is recorded at position 4 ofmatches. When processing fors3 reaches

line 36,temp is 4,c is 5, andmax is 4. Hence, lines 37-40 record a value of 5 in position

matches[5]. This is becauses3 builds upon ther4 ands2 match with a mismatch between

itself andr5.

Finally, the intersection betweenr4 ands4 is processed. Since the intersection between

r3 ands3 has resulted in amatch[4] value of 3, line 23 will setmatch[5] to 4, and line 25

will set match[6] to a value of 4. This means thatmax is also set to 6 (line 27). The final

score achieved (line 47) is−1 ∗ (5 + 4) + 6 = −3.

Cost Analysis of FTSE computing EDR

The cost of FTSE when evaluating EDR isO(M + Tn), whereM is the number of

matches betweenR andS, n is the length of time seriesS, andT is the value ofmax in

Algorithm 3. This complexity results from iterating over the matches array for each of

then elements ofS up tomax places in the array. The value ofmax is bounded between
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min(m,n) and2min(m,n). This is because the value ofmax is increased once for each

mismatch and two times for each match that occurs in the final alignment betweenR and

S. While this is stillO(mn) in the worst case, FTSE for EDR still achieves efficiencies

relative to dynamic programming since it only needs to storethe number of matching

elementsM betweenR andS. This leads to better performance, which is later quantified

experimentally in Section 2.6.2.

2.4.6 Maintaining the Best Matching Pairs

The FTSE algorithm for either LCSS or EDR can be easily modifiedto find not only

the best score between two time series, but also the best sequence of matching pairs that

produce that score. Maintaining the best sequence of matching pairs is useful for applica-

tions that seek to compute the best alignment between two time series. We now discuss

how to modify FTSE for LCSS; a similar discussion for EDR is omitted.

The matching pairs found in Algorithm 1 are maintained in a list of intersections. The

list element that contains a particular match can be linked to the previous best set of list

elements when the match is considered in line 10 of Algorithm2 since each match con-

tributes to the best score in at most one position. The best alignment can be found by

maintaining an array of the list elements that contain the matching pairs. Each array po-

sition corresponds to the last match in the sequence, with the remaining matches chained

out behind it.

The following three lines can be added to Algorithm 2 betweenlines 16 and 17 to

maintain the record of the best alignment (wherelk is the list element for matchk):

alignment[c] = lk.

if c > 0 then lk.next = alignment[c − 1].
else lk.next = 0.

The alignment array is of lengthn, similar to matches. It is initialized to all null

entries. At the end of the algorithm, the best sequence is maintained in thealignment
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array, and it can be returned to the user.

2.5 The Swale Scoring Model

The FTSE algorithm can be used to evaluate a broad class ofǫ threshold value based

scoring models, of which LCSS and EDR are two examples. This broader class of scoring

models includes a new Swale scoring model, which we present below. The Swale scoring

model improves over previous approaches in several ways. First, it allows for a sequence

similarity score to be based on both match rewards and mismatch penalties. Second, it

allows for the match reward and gap penalties to be weighted relative to one another. These

weights also allow a user or domain expert with particular knowledge of a certain area to

tune the distance function for optimal performance insteadof having only one technique

for all data domains. If the user has no such domain-specific knowledge, a training dataset

can be used to automatically learn the weights (as we do in allthe experiments presented

in this paper).

More formally, the Swale distance function is defined as:

Definition 2.5.1. Let R and S be two time series of length m and n, respectively. Let the

gap cost begapc and let the match reward berewardm. ThenSwale(R,S) =






























n ∗ gapc,

m ∗ gapc,

rewardm+
Swale(Rest(R), Rest(S)),

max{gapc + Swale(Rest(R), S),
gapc + Swale(R,Rest(S))}

if m = 0
if n = 0

if ∀d, |rd,1 − sd,1| ≤ ǫ

otherwise

Next we explain why Swale offers a better similarity measurecompared to the best

existingǫ methods, namely LCSS and EDR [18, 78]. For this illustration,consider the

sequences shown in Figure 2.6. SequenceA contains six elements. SequenceB has

the same six elements asA, but has three additional “noise” elements embedded in it.

SequenceC contains ten elements, and sequenceD has the same ten elements with three
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Figure 2.6: Time Series Examples

additional “noise” elements in it. Note that the number of mismatched elements between

C andD is the same as that betweenA andB.

Both EDR and LCSS lose some information when scoring these sequences. EDR scores

gaps and mismatches, but does not reward matches. In this sense, it only measures dissim-

ilarity between two sequences. For example,A andB receive the same score asC andD

even thoughC andD have nearly twice as many matching elements.

LCSS rewards matches, but does not capture any measure of dissimilarity between two

sequences. For example, the LCSS technique scoresC andD identically toC scored with

itself, which is not intuitive.

Swale is similar to LCSS because it rewards matches between sequences, but it also

captures a measure of their dissimilarity by penalizing gapelements. Swale allowsC and

D to obtain a higher score thanA andB because they have more matching elements while

still penalizing them for gap costs.

The Swale scoring function can be evaluated with the same FTSE algorithm described

for LCSS by simply changing the last line of Algorithm 2 toscore = max ∗ rewardm +

gapc ∗ (m + n − 2max).
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Method CM ASL CBF Trace
DTW 53.23 1.31 1.94 521.93
ERP 77.43 1.76 2.68 553.73
LCSS 42.74 0.93 1.41 386.09
EDR 43.69 1.01 1.41 390.87
SC-BDTW 10.55 0.78 0.71 104.91
SC-BLCSS 14.61 0.80 0.88 132.43
I-Par 15.44 0.86 0.90 141.05
FTSELCSS 5.13 0.78 0.74 80.80
FTSEEDR 6.27 0.82 0.85 99.17

Table 2.3: Time in seconds to cluster a given dataset, using techniques that compute the actual alignment.

2.6 Experiments

In this section, we experimentally evaluate the performance of FTSE, and the accuracy

of Swale.

2.6.1 FTSE Experimental Evaluation

In this section, we evaluate the effectiveness of the FTSE technique evaluating both

LCSS and EDR. Since Swale is evaluated with only a small modification to FTSE for

LCSS, its performance is identical to LCSS with FTSE. All experiments are run on a

machine with a 1.7 GHz Intel Xeon, with 512MB of memory and a 40GB Fujitsu SCSI

hard drive, running Debian Linux 2.6.0. We compare the performance of FTSE against

DTW, ERP, LCSS, and EDR. Each technique is evaluated using a traditional, iterative

dynamic programming-style algorithm.

The performance of FTSE is dependant on theǫ value, since this value determines

which elements ofR andS are close enough to one another to be matched. The emphasis

of our work is not on describing how to pick anǫ value for either LCSS or EDR, but to

demonstrate the effectiveness of FTSE for reasonable choices ofǫ. Consequently, we show

results with anǫ value of0.5σ, whereσ is the standard deviation of the data (since we are

dealing with normalized data,σ is 1). We have chosen thisǫ value since it was shown to

produce good results in [77].
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Method CM ASL CBF Trace
DTW 35.23 1.20 1.78 329.17
LCSS 14.24 0.84 1.16 129.42
SC-BDTW 7.05 0.76 0.74 72.91
SC-BLCSS 6.40 0.74 0.72 66.95
FTSELCSS 2.69 0.72 0.61 48.28
FTSESC−B 2.26 0.70 0.60 40.74

Table 2.4: Time in seconds to cluster a given dataset, usingO(n) storage techniques that do not compute the
alignment.
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Figure 2.7: Cost of computing similarity scores v/s time series length. (CLIVAR dataset)

In our first experiment we show the average time to perform thesimilarity comparisons

for a complete linkage clustering evaluation. Complete linkage clustering of time series

was used in both [78] for LCSS and in [18] for EDR. For a dataset with k time series, each

clustering run involves computing approximatelyk× (k− 1) time series similarity scores.

To perform the complete linkage clustering, our evaluationuses the same datasets used

in [78] and in [18], which includes the Cameramouse (CM ) dataset [23] and the Aus-

tralian Sign Language (ASL) dataset from the UCI KDD archive [76]. Since both of these

datasets are two dimensional, we also experiment with the popular Cyliner-Bell-Funnel

(CBF) dataset of [35] and theTrace dataset of [65]. The CBF dataset contains three

classes (one each for the cylinder, bell, and funnel shapes)and is synthetically generated.

We use 10 examples from each class in the clustering. The Trace dataset is a four class
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Figure 2.9: Cost of computing similarity scores v/s time series length; comparison with methods that do not
compute the actual alignment. (CLIVAR dataset)

synthetic dataset that simulates instrument failures inside of a nuclear power plant. There

are fifty examples for each class.

The CM dataset consists of 15 different time series obtained from tracking the fingertips

of people in two dimensions as they write words. Three different people wrote out five

different words. This gives a total of five distinct class labels (one for each word) and

three members for each class.

The ASL dataset contains examples of Australian Sign Language signs. The dataset
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contains time series in two dimensions for words that are signed by the user, and each

word is signed five different times. We choose to use the same 10 word examples of [78].

This gives us a dataset with 10 classes with 5 time series per class.

We also compare with the Sakoe-Chiba Band (SC Band) and Itakura Parallelogram

techniques for warp-restricting DTW. A restriction value of 10 percent is used in [86], so

we also use this value. A similar technique to the SC Band for LCSS is described in [78],

which sets the restriction value to 20 percent. The Itakura Parallelogram is referred to as

(I-Par).

The results for the complete linkage clustering test is shown in Table 2.3. For the CM

data set, FTSE is faster than the dynamic programming methods by a factor of 7-8 and

faster than the warp-restricting techniques by a factor of 2-3. FTSE is faster than DP by

a factor of 4-5 and is nearly twice as fast as the SC Band evaluating LCSS for the Trace

dataset. FTSE also consistently performs better than dynamic programming on the other

datasets. Note that the performance advantage achieved using FTSE relative to the various

DP techniques is not as large for ASL and CBF as it is for the CM and Trace datasets.

This is because the average sequence length of the ASL and CBF sequences are 45 and

128 respectively, while the average length of the CM is 1151 and the Trace is 255. This

indicates that FTSE performs better than DP as length increases, which we also show in

the next experiment. The Trace dataset also takes longer to evaluate than others datasets

because it contains many more sequence examples (200) than CM(15), ASL (50), or CBF

(30).

We also show results for both the DP and SC Band techniques using O(n) storage

techniques that produce the best score but do not yield the best alignment between the two

sequences in Table 2.4. Essentially, since theith column of themn matrix depends only

on thei − 1th column, 2 column arrays can be used. Similarly, it is a simpleextension
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for FTSE to show that the list of intersections need not be materialized if an alignment

between the two time series is not required; we have also implemented this version of

FTSE (FTSELCSS in the table). FTSE can also be implemented with a warp-restriction

(in essence, to only consider matches in the same narrow bandas the SC Band technique).

We have also implemented this version with a restriction value of 20 percent to show that

FTSE (FTSESC−B in the table) can obtain the same score as the SC Band, if desired. In

these tests, we limit results to LCSS and DTW evaluation In these tests, FTSE is faster than

DP for LCSS by a factor of 7 and by more than 2X when restricting the warping window

for the 2 dimensional CM dataset and by a factor of 2.5 over exact DP for LCSS and by

a factor of 1.5 when restricting the warping window when evaluating the 1 dimensional

Trace dataset.

The second experiment evaluates the effectiveness of the FTSE algorithm as the time

series length varies. For this experiment, we use the CLIVAR-Surface Drifters trajectory

dataset from [58], which contains climate data obtained in 2003 from free-floating buoys

on the surface of the Pacific Ocean. This data contains the longitude and latitude coordi-

nates for each buoy. The time series in this data set vary in length from 4 to 7466 data

points.

From the CLIVAR-Surface Drifters dataset, subsets of data areproduced such that

each subset contains time series of similar length (all timeseries in a subset are within

10% of the average). For experimentation, subsets of 5 time series each are chosen with

the following average time series lengths: 349, 554, 826, 1079, 1739, 2142, and 3500. As

before, we report the time needed to performk × (k − 1) comparisons (the same as was

done in the clustering experiments). Since each subset contains 5 time series, this is the

time to perform 20 time series comparisons. The results for this experiment are shown in

Figures 2.7, 2.8, and 2.9.
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Figure 2.7 shows the results for FTSE evaluating LCSS (labeled FTSEL) and EDR (FT-

SEE). It also shows DTW, ERP, LCSS, and EDR evaluated using dynamic programming.

As can be seen in this figure, FTSE is nearly an order of magnitude faster than the dynamic

programming techniques. The figure also shows that the performance advantage of FTSE

over the DP techniques increases with sequence length.

Figure 2.8 presents results for FTSE and the Sakoe-Chiba Band (SCD evaluating DTW

and SCL evaluating LCSS) and Itakura Parallelogram (IPAR) warp-restricting techniques.

FTSE is about twice as fast as the Sakoe-Chiba Band and 2-3 timesfaster than the Itakura

Parallelogram technique. SC for LCSS is slower than for DTW because the warping re-

striction needed for good results (20%) for LCSS is larger than for DTW (10%).

Figure 2.9 presents results for theO(n) storage techniques already discussed. FTSE

(FTSEL in the figure) is generally about 3 times faster than the DP methods (LCSS and

DTW) and almost twice as fast when the warp-restricted version of FTSE (FTSESC) is

compared with the SC Band technique (SCL and SCD).

In summary, compared to existing methods that compute the actual alignment,FTSE is

up to 7-8 times faster than popular dynamic programming techniques for long sequences

and 2-3 faster than warp-restricting techniques, while providing an exact answer.

2.6.2 Experimental Cost Analysis of FTSE

The complexity and average case cost of FTSE have already been analyzed in Sec-

tions 2.4.3 and 2.4.4. In this section, we analyze the experimental cost of FTSE to show

why it performs better than the other techniques that produce the best alignment, using the

CM dataset as an example.

FTSE is more efficient for two reasons: it performs fewer operations than the competing

techniques and it requires less space, which improves the algorithm’s memory and cache

performance.
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The number of operations performed by FTSE is dependent on two principle com-

ponents: the number of matches between elements ofR and elements ofS obtained by

Algorithm 1 and the number of reads or writes to thematches array in Algorithm 2. For

the CM dataset, there are about 120 thousand matching pairs onaverage between any two

sequencesR andS (since the average length of each time series is 1151 elements, there are

a total possibility of1151 ∗ 1151 = 1.32 million) and about 300 thousand reads and writes

to thematches array. This means that FTSE performs about 420 thousand operations on

the CM dataset versus the 1.32 million for DP, which is less than one-third.

The amount of space used by FTSE is dependant on the number of matching pairs

generated by Algorithm 1. Thematches array and the grid (which contains fewer than

200 grid cells for CM) are of negligible size. For the CM dataset, the number of matching

pairs is approximately 120 thousand. The equivalent DP algorithm writes approximately

1.32 million elements.

To test that this considerable space difference actually results in cost savings, we mod-

ified Algorithm 2 by allocating an amount of space equivalentto that of the DP algorithm

and adding a line between lines 13 and 14 of Algorithm 2 that randomly writes to an ele-

ment of the allocated space. The new algorithm attains improved performance only from

the saved operations, not from memory or cache efficiency. The time this new FTSE takes

to cluster the CM dataset is 12.12 seconds (before it was 5.13). This is expected, since

DP for LCSS takes 42.74 seconds and the ratio of operations between FTSE and DP is

420/1320 and42.74 ∗ 420/1320 = 13.59 seconds.

2.6.3 Evaluation of the Swale Scoring Model

In this section, we evaluate the effectiveness of the Swale scoring model compared to

existing similarity models. For this evaluation, we test the ability of the model to produce

high-quality clusters. (Following well-established methodology [18,35,78].)
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For our evaluation, we used the Cameramouse (CM) dataset [23],and the Australian

Sign Language (ASL) dataset (as previously described). In addition, we also obtained

an additional dataset from the UCI KDD archive [76] called theHigh Quality ASL. This

dataset differs from the ASL dataset in the following way: Inthe ASL dataset, several

different subjects performed the signing, and lower quality test gloves were used. The

High Quality ASL (HASL) dataset consists of one person performing each sign 27 times

using higher quality test gloves. Details regarding these differences can be found at [76].

We do not provide detailed results for the Trace and CBF datasets because these datasets

have a small number of classes (4 and 3, respectively) and hence do not offer as much room

for differentiation as the ASL datasets (all techniques tested on Trace and CBF performed

nearly identically).

In the evaluation we perform hierarchical clustering usingSwale, DTW, ERP, LCSS,

and EDR. (We omit a comparison with the Euclidean distance, since it has been generally

shown to be less robust than DTW [18, 33, 78].) Following previous established meth-

ods [18,35,78], for each dataset, we take all possible pairsof classes and use the complete

linkage algorithm [32], which is shown in [78] to produce thebest clustering results.

Since DTW can be used with both the L1-norm [17] and the L2-norm [37] distances,

we implement and test both these approaches. The results forboth are similar. For brevity,

we present the L1-norm results.

The Swale match reward and mismatch penalty are computed using training datasets.

The ASL dataset in the UCI KDD archive contains time series datasets from several differ-

ent signers placed into directories labeled by the signer’sname and trial run number. We

selected the datasets labeled adam2, john3, john4, stephen2, and stephen4 for test datasets

1-5, respectively, and datasets andrew2 and john2 for training. For the HASL, each word

has 27 examples, so we are able to group them into 5 different collections of data, each
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1 2 3 4 5 total
DTW 40 32 34 37 41 184
ERP 38 32 39 40 41 190
LCSS 40 30 38 39 41 188
EDR 38 27 39 37 43 184
Swale 39 29 41 42 42 193

Table 2.5: Number of correct clusterings (each out of 45) forthe ASL dataset. The best performers are
highlighted in bold.

with 5 examples, with 2 examples left over. The first such dataset is used for training, and

the others are used for testing.

For the training algorithm, we use the random restart method[67]. Since the relative

weight of the match reward and gap cost is what is important (i.e. the ratio between them),

we fix the match reward to 50 and use the training method to pickvarious gap costs. The

computed mismatch cost for ASL is -8 and for HASL is -21.

The CM dataset does not have enough data to produce a training and a test set. We

therefore chose the ASL weight as the default. All techniques correctly clustered the

dataset (10 out of 10 correct).

The total number of correct clusterings for each of the five different ASL datasets (out

of 45 for each dataset) are shown in Table 2.5. As can be seen inthe table, Swale has

the overall best performance for the tests. There is a high degree of variability for all the

similarity functions from one ASL dataset to the next, but some general trends do emerge.

For example, all of the techniques perform well on dataset 5,averaging over 40 correct

clusterings out of 45 possible. All of the techniques do relatively poorly on dataset 2,

averaging only about 30 correct clusterings out of 45. Thesetwo datasets emphasize the

variability of data for multi-dimensional time series; twodatasets in the same ASL clus-

tering framework produce very different results for all of the tested similarity measures.

The results for the HASL datasets are shown in Table 2.6 and are once again out of a

possible 45 for each technique on each test. Overall, DTW, ERP, LCSS, EDR, and Swale
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1 2 3 4 total
DTW 8 8 2 5 23
ERP 9 5 4 7 25
LCSS 8 10 6 7 31
EDR 13 2 3 6 24
Swale 18 10 5 7 40

Table 2.6: Number of correct clusterings (each out of 45) forthe HASL dataset. The best performers are
highlighted in bold.

obtain fewer correct clusterings on the HASL datasets than they do on the ASL datasets.

There is also high variability in accuracy across the datasets, just as in the ASL data pre-

sented in Table 2.5. Swale performs much better on the classifications for the HASL

datasets than the alternative techniques, obtaining a total of 40 correct total classifications.

The closest competitor is the LCSS technique with 31. This dataset also highlights how

Swale leverages the combination of the match reward and gap penalty on real datasets for

improved accuracy. On HASL dataset 1, EDR, which also uses gappenalties, performs

much better than the LCSS technique. Swale also performs verywell on this dataset. On

HASL dataset 2, the LCSS technique performs better than EDR. Swale performs as well

as the LCSS technique on this dataset, and is thus able to obtain the best of both worlds -

it does well when EDR does well, and also does well when LCSS does well!

In summary, the results presented in this section demonstrate that Swale is consistently

a more effective similarity measuring method compared to existing methods.

2.7 Conclusions

In this chapter, we have presented a novel algorithm called FTSE to speed up the eval-

uation ofǫ threshold-based scoring functions for time series datasets. We have shown that

FTSE is faster than the traditionally used dynamic programming methods by a factor of

7-8, and is even faster than approximation techniques such as the Sakoe-Chiba Band by a

factor of 2-3. In addition, we also presented a flexible new scoring model for comparing

the similarity between time series. This new model, called Swale, combines the notions of
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gap penalties and match rewards of previous models, and alsoimproves on these models.

Using extensive experimental evaluation on a number of realdatasets, we show that Swale

is more accurate compared to existing methods. In the next chapter, we will begin our

discussion of temporal skyline evaluation.



CHAPTER III

The Time Interval Skyline

3.1 Introduction

In this chapter, we begin our detailed discussions of skyline computation which we will

discuss throughout the rest of this thesis, focusing on temporal skyline computation in this

chapter. In the introduction, we showed that the skyline operator is a useful summarization

technique for multi-attribute data sets [43]. We also showed that, if we are given a data

setP that contains pointsp1, p2, ..., pn, pi is said to be in the skyline ofP if no pj in P

dominatespi.

Most skyline algorithms to-date assume that the data set is static, i.e. the data has no

temporal element associated with it, or have dealt with temporal data only in a sliding

window context, i.e. the skyline is evaluated only over the most recentn data points.

In contrast, thecontinuous time-interval skylineoperation involves data points that are

continually being added or removed. Each data point has an arrival time and an expiration

time associated with it that defines a time interval for whichthe point is valid. The task for

the database then is tocontinuouslycompute a skyline for the data points that are valid at

any given time. The continuous time-interval model used in this chapter is a more general

one than the sliding window used in [49, 75], and hence the techniques discussed in this

chapter of the thesis may also be used to evaluate such sliding window queries.

45
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e 8 31
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j 19 45
k 20 40
l 21 37

Figure 3.1: The example data with arrival and expiration times. The continuous skyline is shown in transition
from time 20 to 23.

Figure 3.1 shows the difference between a conventional skyline query such as that seen

in Figure 1.1 and a continuous time-interval skyline over a similar data set. Each data

point has an arrival time and an expiration time, as shown in the table on the right hand

side of the figure. The figure displays the skyline as it transitions from time 20 to 23. At

time 20, the skyline is the same as that in Figure 1.1. The skyline changes at time 21 when

data pointl arrives. It is part of the new skyline. At time 22,c expires, and the skyline

must be modified to removec from both the data set and the skyline. Notice thatb is not

in the new skyline, sinceb is dominated by botha andl. At time 23, data pointi expires,

and the skyline is modified again, this time introducing a newpoint into the skyline, point

h.

There are a number of emerging streaming applications that require efficient evaluation
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of the continuous time-interval skyline. If we consider the familiar example of choos-

ing hotels, hoteliers routinely run competitive deals withbooking agencies such as price-

line.com. These hotel operators may wish to submit a bid for their rooms at a particular

price for some specified period of time. If bookings increase, they may wish to increase the

room cost, or conversely decrease it if bookings do not increase. A user interface on top of

the raw priceline data may wish to show the most competitive rooms (with respect to the

beach for a given price) to customers, while balancing bids from many hotel companies

that all may change with time. At any given time, there may be many continuous sky-

line queries active in the system, depending on a number of other user preferences (such

as distance from a customer-specific point of interest). In such a case, the server needs

to efficiently evaluate a large number of skyline queries continuously on data points with

arbitrary valid time ranges. Such an application could be useful for online hotel bookers,

such as orbitz.com [3].

Another example for the use of continuous skyline evaluation is in the realm of online

stock trading. Traders are interested not only in the trading price of a stock, but also in

the number of shares trading hands at a price. Since trades are temporal, traders may

only be interested in trades within the last hour. Hence, a mechanism for allowing trades

to age out of the system after an expiration time is needed. Insuch a scenario, traders

are interested in the skyline (price versus share volume) for many different stocks. Each

stock may require a different continuous time-interval skyline operator to keep track of the

latest developments. Note that in such applications there can be a large number of skyline

queries that the server may need to evaluate continuously, which demand time and space

efficient evaluation methods.

In this chapter, we present the first algorithm for efficiently evaluating the continuous

time-interval skyline operation. We show that this new algorithm, calledLookOut, is very
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scalable as it is both time and space efficient.LookOut outperforms an iterative algorithm

based on currently known methods by at least an order of magnitude in most cases!We

also compareLookoutwith thelazy andeager methods of [75], and show that it performs

better than either of these methods for anti-correlated data sets while evaluating a more

general time model than the sliding window queries.

The other contribution that we make in this chapter of the thesis is to explore the choice

of index structures for evaluating skyline operations (both in the static and the continuous

cases). All previous skyline algorithms that have used spatial indices have employed the R-

tree family of indices [26]. For example, the branch and bound algorithm (BBS) [59,60]

uses the R*-tree index [6]. We make an important observation that the MBR overlap

involved with the R*-tree’s partitioning dramatically increases the number of both index

non-leaf and leaf nodes that are examined during a skyline evaluation. In contrast, the

non-overlapping partitioning of a quadtree is far superiorfor computing skylines.

We note that an immediate question that arises with a quadtree index is that it is not

a balanced indexing structure. However, it has been shown tobe an effective disk-based in-

dex [22,28] and some commercial object-relational systemsalready support quadtrees [44].

The claim that we make and support is that if the speed of skyline computation is critical,

a quadtree is far more preferable than an R*-tree. In our skyline experiments,the quadtree

index significantly speeds up skyline computation by up to anorder of magnitude or more

in some cases, and is never slower than the R*-tree approach. Using the quadtree also

results in smaller memory consumption during the skyline computation. We note that the

issue of comparing the R-tree and quadtree for a wider range ofspatial operations is be-

yond the scope of this chapter. Our results show that in systems that support quadtrees,

using them is preferable for skyline computation.

It is also worth mentioning that the time-interval model that we use in this thesis is
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very flexible, and can easily accommodate more specialized streaming data models. For

example, our model can be used with data sets that have no expiration time by setting the

expiration time of the data in the model to infinity. Similarly, preexisting data or data that

does not have any implicit start time, can simply be treated as having a start time of zero.

In addition, data that does not have an explicit expiration time, but rather is valid fort

seconds from its arrival can simply be handled by noting its arrival time,a, and setting its

expiration time tot + a.

The remainder of this chapter is organized as follows: Related work is covered in

Section 2, and we present our new algorithm in Section 3. In section 4, we consider the

effect of the indexing structure for skyline computation. Experimental evaluations are

presented in Section 5, and finally Section 6 contains our conclusions.

3.2 Related Work

Now, we discuss work related to skylines both in general, which is also related to the

work done in the remaining chapters of the thesis, and specifically for temporal skyline

evaluation. We will further highlight some of this related work in the remaining chapters

when appropriate.

The skyline query is also referred to as the Pareto curve [61]or a maximum vector [45].

The skyline query is related to several other well-known problems that have been studied

in the literature. Nearest neighbor queries were proposed by [66] and studied in [27], top-N

were studied in [12], the contour problem in [56], convex hulls in [9,64], multidimensional

indexing [53,71,79], and multi-objective optimization in[61,72].

The skyline algorithm was first proposed by Kung et al. [45], which employs a divide-

and-conquer approach. Borzsonyi et al. [10] introduced theskyline operation in a database

context and showed how the standard indexing structures, B-trees and R-trees, could eval-
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uate skyline queries. Chomicki et al. [19] formulated a generic relational-based approach

to compute the skyline, based on the approach of [10]. An algorithm for high dimen-

sional skyline computation was proposed by Matousek [55], and a parallel algorithm was

proposed by Stojmenovic et al. [73].

An algorithm to obtain the skyline based on a nearest neighbors approach was intro-

duced by Kossmann et al. [43], which uses a divide-and-conquer scheme for data indexed

by an R-tree. Two algorithms were proposed in [74]. One is a bitmapped approach, and

the other is an indexed approach using B-trees.

The branch and bound technique for skyline computation (BBS) was proposed by

Papadias et al. in [59, 60]. It traverses an R*-tree using a best-first search paradigm, and

has been shown to be optimal with respect to R*-tree page accesses. Currently,BBS is

the most efficient skyline computation method, and in this paper we compare theLookOut

algorithm withBBS. BBS operates by inserting entries into a heap ordered by a specified

distance function. At each stage, the top heap entry is removed. If it is a R*-tree node,

its children are inserted into the heap. If it is a point, it istested for dominance by other

elements of the growing skyline and is either discarded or added to the skyline. This

algorithm requiresO(s · log (N)) R*-tree page accesses, wheres is the number of skyline

points andN is the data set cardinality. [60] also discusses skyline maintenance in the

presence of explicit updates, but does not discuss time-interval skylines on streams.

Lin et al. [49] focus on computing the skyline against the most recentn of N elements

in a data stream. Their approach indexes data in an R-tree and uses an interval tree to

determine when a point is no longer amongst the most recentN points. They also propose

a continuous skyline algorithm based around then of N model which, similar to our

algorithm, incorporates a heap to remove elements that haveslipped outside the working

window. But the similarities to our work end here. The window of sizen necessitates a
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limited scope of elements in the data set and thus in the skyline as well. Consequently,

there is not an explicit temporal element to the computationof the skyline. In the temporal

case, which we use in this paper, the number of points under consideration isnot restricted

by anyN , and at any given point in time new points may arrive, old points may expire, or

any combination of the two. Consequently, with our model, thetechnique proposed in [49]

cannot be directly applied. Data reduction in streaming environments is studied in [51].

Tao and Papadias [75] also studied sliding window skylines,focusing on data streaming

environments. Their work also focuses on the most recentn window of data points. This

is the most similar of the previous work to our work in this paper, and we compare the

performance of the two techniques,eager andlazy proposed in the paper withLookOut.

Huang et al. [29] studies continuous skyline queries for dynamic datasets. Here, the

data is moving in one or more dimensions. To efficiently evaluate continuous skyline

queries in the presence of moving data, a kinetic-based datastructure is developed. While

this work is similar to our work because it requires the continuous evaluation of the skyline

as the data changes, the data elements are moving as opposed to arriving at and expiring

from the dataset. Since the data model of [75] is closer to ourmodel, we compareLookOut

with its eager andlazy techniques.

This paper is a full-length version of the short poster paper[57].

3.2.1 BBS Example

We present the operation ofBBS on the dataset shown in Figure 3.2. This dataset

consists of 6 data points indexed by an R*-tree. Let us assume that each each internal

R*-tree node can hold up to three entries, and that each leaf node can also hold up to three

entries.

TheBBS algorithm begins by insertingR1 into the heap that is ordered by the min-

imum Manhattan distance. The contents of the heap at each stage of the algorithm are
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Figure 3.2: A sample dataset indexed by an R-tree used to illustrate the operation of theBBS algorithm.

shown in Table 3.1.R1 is popped off the heap and its children,R2 andR3, are inserted

back into the heap.R2 has a Manhattan distance of 3, whereasR3 has a distance of 6,

soR2 is popped off the heap and expanded first. The two children that compose its local

skyline,c anda, are inserted back into the heap. Note thatb need not be inserted back into

the heap, since it is dominated byc. Sincec is now at the top of the heap, it is popped

off and inserted into the set of skyline points. Next,R3 is expanded. Two of its children,

e andf , are not inserted back into the heap;e is dominated byc, andf is not part of the

local skyline ofR3. The heap now containsa andd. They are both popped off the heap

and inserted into the skyline. The heap is now empty, and theBBS algorithm terminates.

3.3 The LookOut Algorithm

In this section, we present our algorithm for efficiently evaluating time-interval contin-

uous skyline queries.
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Action Heap Contents (Skyline)
Expand R1 (R2, 3), (R3, 6) ∅
Expand R2 (c, 4), (R3, 6), (a, 7) ∅

Add c (R3, 6), (a, 7) {c}
Expand R3 (a, 7), (d, 9) {c}

Add a (d, 9) {a, c}
Add d Empty {a, c, d}

Table 3.1: Contents of the heap during an iteration of theBBSalgorithm for the example dataset shown in
Figure 3.2.

Algorithm 4 LookOut
1: Input: IndexTree, HeaptHeap, Current TimeTime

2: List Skyline, SetDSP , SetNSP , TimeEnd

3: while Time < End do
4: if ndp is a new data pointthen
5: insertndp into Tree

6: insertndp and expiration time intotHeap

7: if isSkyline(Tree, ndp) then
8: remove points fromSkyline dominated byndp

9: addndp to Skyline

10: end if
11: end if
12: while tHeap.top.expireT ime equalsTime do
13: deletetHeap.top from Tree

14: if tHeap.top is a skyline pointthen
15: addtHeap.top to DSP

16: end if
17: end while
18: for point ∈DSP do
19: NSP ←MINI( point, tree)
20: for t ∈ NSP do
21: if isSkyline(Tree, t) is true, addt to Skyline

22: end for
23: end for
24: updateTime to the current time.
25: end while

3.3.1 Overview

Each data point in the data set is associated with an intervalof time for which it is valid.

The interval consists of the arrival time of the point and an expiration time for the point.

The notation for the interval is (ta, te).

The skyline in the continuous case may change based on one of two events: namely,

a) some existing data pointi in the skyline may expire, or b) a new data pointj may be

introduced into the data set.
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In the case of an expiration, the data set must be checked for new skyline points that

may have previously been dominated byi. These points must then be added to the skyline

if they are not dominated by some other existing skyline points. In the case of insertion,

the skyline must be checked to see ifj is dominated by a point already in the skyline. If

not, j must be added to the skyline and existing skyline points checked to see if they are

dominated byj. If so, they must be removed.

The LookOut algorithm takes advantage of these observations to evaluate the time-

interval continuous skyline. Since the skyline can change only when either a new point

arrives or an old point expires,LookOut maintains the current skylineS. A data pointp

is inserted into a spatial index at timeta. This point is checked to see if it is in the skyline,

and if so,S is updated. Ifp is dominated, no changes are made toS. Whente arrives,p

is removed from the dataset and deleted from the spatial index. At this time, the dataset is

checked to see if any of the points dominated byp are now elements of the skyline. If so,

these points are added toS.

LookOut takes advantage of two important properties of hierarchical spatial indices,

such as the R-tree family of indices and the quadtree.

1. If p dominates the all corners of a nodeo (and hence dominates the entire region

bounded by the node), thenp dominates all of the points contained ino and its chil-

dren.

2. If all of the corners of a nodeo dominates a pointp (and hence the entire region

bounded by the node dominatesp), then all of the points contained ino and its chil-

dren dominatep.

These two observations are later used to prune nodes of the index and to discard new

points from skyline consideration byLookOut.
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Algorithm 5 IsSkyline
1: Input: PointPnew, Index nodeTree

2: insertTree into a heapBHeap, with distance 0.
3: while BHeap isn’t emptydo
4: Tree← pop ofBHeap

5: if Tree is a leaf nodethen
6: check if one of the entries ofTree dominatesPnew

7: if so, return false. Otherwise, continue
8: else
9: for Child ∈ the non-empty children ofTree do

10: if minimum corner ofChild does not dominatePnew then
11: continue
12: else
13: if maximum corner ofChild dominatesPnew then
14: return false
15: else
16: insertChild into BHeap

17: end if
18: end if
19: end for
20: end if
21: end while
22: return true

3.3.2 Algorithm Description

LookOut may be used with any underlying data-partitioning scheme. In our implemen-

tation, we chose to use and evaluate both the R-tree [6] and a disk-based PR quadtree [70].

We use the R-tree because of its ubiquity in multidimensionalindexing and its use in

other static-data skyline algorithms such as [59]. The quadtree index uses a regular non-

overlapping partitioning of the underlying space, and is more effective in pruning portions

of the index that need not be traversed for skyline computation (a discussion of these

tradeoffs is presented in Section 3.4).

TheLookOut algorithm is presented in Algorithm 4. As seen in line 4, whena new

data point arrives,LookOut first stores the item into the spatial index. Each data element

is also inserted into a binary heap (line 6) that is ordered onthe expiration time. This

heap is used so that data can be removed from the system when itexpires. The element

is then checked to see if it is a skyline point by theisSkyline algorithm (line 7), which

will be explained shortly. If so, the new point is added to theskyline and those skyline
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points it dominates are removed. As time passes, the minimumentry in the binary heap is

checked to see if its expiration time has arrived (line 12) and, if it has, it is deleted from the

index. The skyline points themselves are maintained in a list, so that they may be returned

immediately in the event of a skyline query over the data set.(The skyline points can also

be stored in an index, but the skyline is small in size and the index overhead often mitigates

the benefits of using the index.) A separate heap, ordered on the expiration time, is also

maintained for the skyline points so that an expired skylinepoint may be quickly removed.

Those points that have been removed from the skyline (line 18) leave possible gaps that

need to be filled by currently available data. TheMINI algorithm finds the mini-skyline

of points that were dominated by a deleted skyline point and effectively plugs a hole left

by a deleted skyline point. Some and possibly all of the points found byMINI may be

dominated by some other skyline point. Before adding them to the skyline,LookOut tests

if each is in fact a new skyline point withisSkyline (line 21).
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Figure 3.3: An R-tree depicting the data set in Figure 1.1.

TheisSkyline algorithm is shown in Algorithm 5. It uses a best-first searchparadigm,

which is also used inBBS. The index nodes are inserted into a heap based on distance

from the origin. When expanding a node in the heap (line 4 of Algorithm 5), theisSkyline
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Algorithm 6 MINI
1: Input: PointPsky, Index nodeTree

2: Output: skylineminiSkyline

3: insertTree into heapBHeap, with distance 0.
4: while BHeap isn’t emptydo
5: if BHeap.top is a pointthen
6: point← popBHeap

7: pIsDominated← FALSE

8: for each elementa in miniSkyline do
9: if a dominatespoint then

10: pIsDominated← TRUE

11: end if
12: end for
13: if pIsDominated is FALSE then
14: insertpoint into miniSkyline

15: end if
16: else
17: Tree← pop ofBHeap

18: if Psky dominates the maximum corner ofTree then
19: if Tree is a leaf nodethen
20: find the local skyline of justTree

21: for point ∈ the local skyline ofTree do
22: if Psky dominatespoint then
23: insertpoint into BHeap.
24: end if
25: end for
26: else
27: for Child ∈ the non-empty children ofTree do
28: insertChild andChild’s distance intoBHeap

29: end for
30: end if
31: end if
32: end if
33: end while

algorithm discards any child noden whose lower left corner does not dominatePnew (line

10). This is because any data point in any suchn cannot possibly dominatePnew, so

for the purposes of skyline testing, it can be discarded. If the upper right corner of the

child node (which isn’t empty) dominatesPnew, the algorithm can terminate and answer

false (line 14). If the node is a leaf (line 5), the elements are compared againstPnew for

dominance. If any such element dominatesPnew, the algorithm terminates and answers

false. If the heap ordered on the minimum distance from the origin is ever empty, the

algorithm answerstrue.

MINI, seen in Algorithm 6, is also a best-first search algorithm and maintains a binary

heap. It takes as input a deleted skyline pointPold, which must dominate all points under
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Figure 3.4: An R-tree following the changes made to the data set in Figure 3.1 up to time 22.

consideration. It operates by popping the top element off the heap and inserting its children

back into the heap, provided they are not dominated by the growing skyline. It has the extra

caveat that all elements it inserts into the heap must be dominated byPold. The algorithm

begins by checking if the top heap element is a point (line 5).If the point is dominated by

the growing mini skyline, it is ignored; else, it is added to the mini skyline (lines 8-15).

If the upper right corner of any internal node is not dominated by Pold, then it may be

discarded (line 18). If the top of the heap is a leaf (line 19),its local skyline is added to

the heap (line 23). If the top is an internal node, those elements which have their upper

right corner dominated byPold are inserted back into the heap.MINI terminates when

the heap is empty.

3.3.3 Example

We now consider an example execution of theLookOut algorithm on the data set

shown in Figure 3.1. Figure 3.1 depicts the example data set beginning at time 20; at

this time, the data points in an R-tree might resemble Figure 3.3. Let us assume that each

internal R-tree node can hold up to three entries, and that each leaf can also hold three.

When l arrives at time 21, theisSkyline algorithm is run to determine ifl is a skyline
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point. First, the root node of theR tree is accessed, andR5 is inserted into the heap, with a

Manhattan distance (from the origin) of 6.R6 is not placed into the heap because its lower

left corner does not dominatel. Thus, it may be ignored for the purposes ofisSkyline.

The top of the heap is then popped and processed.R5 contains two child nodes,R1 and

R2, but since the lower left corner of neither of these dominates l, they are both discarded.

Since the heap is empty,l is added to the skyline. The new node must also be inserted into

the R-tree as well.

Action Heap Contents (MINI Skyline)
access root (R5, 6), (R6, 6) ∅
Expand R5 (R6, 6), (R1, 8) ∅
Expand R6 (R1, 8), (R3, 12) ∅
Expand R1 (R3, 12), (b, 13) ∅
Expand R3 (b, 13), (e, 13), (f, 16) ∅

Add b (e, 13), (f, 16) {b}
Add e (f, 16) {b, e}

remove f Empty {b, e}

Table 3.2: Contents of the heap during an iteration of theMINI algorithm.

At time 22,c expires, and must be removed from the data set. Following itsremoval

from the index, the R-tree appears as shown in Figure 3.4. The heap element identifies

c as a skyline point. Sincec is a skyline point, its removal may mean that preexisting

data points must be added to the skyline, so theMINI algorithm is run. The contents

of MINI ’s heap are depicted in Table 3.2.MINI begins by accessing the R-tree root.

It addsR5 to its heap along with its Manhattan distance (6) andR6 with its Manhattan

distance (6). NodeR5 is removed and expanded; the only child ofR5 that is added to the

heap isR1, since the upper right corner ofR2 is not dominated byc. R6 is next expanded,

since its Manhattan distance is the smallest of any point or node in the heap, andR3 is

added with a distance of 12. Next,R1 is expanded andb is added to the heap. None of the

other children ofR1 are added since they are not dominated byc. R3 is expanded ande

andf are added to the heap. This ultimately producesb ande as theMINI skyline for
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entryc. Note thatf is not included, since it is dominated bye. TheisSkyline algorithm

must now be called for bothb ande to test if they are in fact skyline points. Neither one

is; e is dominated byd andb is dominated byl. Therefore, no skyline change is required

with the deletion ofc.

3.3.4 Analysis ofLookOut in Comparison to BBS

In this section, we examine the quantitative cost ofLookOutand compare it against the

cost of an iteration of theBBS algorithm. Note that since there are no current algorithms

for continuous skyline evaluation, repeatedly runningBBS can be considered to be the

best alternative toLookOut. We observe that the only operations that can affect the skyline

(and hence the cost ofLookOut), are either an insert operation or a delete operation.

During time intervals when one of these two operations do notoccur, the skyline remains

the same andLookOut performs no work. During this analysis, we consider indexing with

an R-tree.

To determine the cost of an insertion, the costs of several operations need to be eval-

uated. These operations are: a) the cost of adding an entry tothe expiration-time heap,

b) the cost of adding an entry to the indexing structure, and c) the cost of running the

isSkyline algorithm, to determine if the new point is in the skyline.

The costs of both adding an entry to the heap and of inserting an entry into an index

structure are identical for bothLookOut andBBS. Consequently, neither one of these

operations makeLookOut perform either better or worse thanBBS. The real difference

between the two lies in the cost savings thatisSkyline obtains overBBS.

First, we consider the worst case cost ofBBS relative to the worst case cost ofisSkyline

for a signle insertion operation. ForBBS, the worst case occurs if all data points are in the

skyline. In this case, all of the leaf and non-leaf nodes of the R-tree are inserted into the

heap thatBBS uses to order elements based on their minimum L1-norm distances. Each
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data point is also inserted into this heap when their respective leaf nodes are expanded.

SinceBBS checks each element removed from the heap relative to the growing skyline,

this worst case cost isO(n2).

The worst case forisSkyline for a single insertion occurs if the new data pointp that

has been inserted overlaps with all leaf and non-leaf nodes of the R-tree. If this occurs,

all of the leaf and non-leaf nodes of the R-tree are inserted into the heap ordered on the

minimum distances to the origin. Each non-leaf or leaf node is inserted into the heap only

once, based on the distance of the node from the origin. For example, the root node of

the tree is inserted into the heap, and then expanded. Its children are then inserted into the

heap. The root node is never considered by the algorithm again. Each of the nodes in the

heap are expanded exactly once and only once, resulting in their children being inserted

into the heap. When each leaf node is expanded, the entries in it are compared with the

new data point. Each non-leaf or leaf node and each data pointare compared in the worst

case at most once with the new data pointp. In the worst case, all of the entries in the data

set are compared with this new point, producing a worst case cost ofO(n) comparisons.

For example, consider the case when alln data points are elements of the skyline and

the new data point overlaps with the leaf level nodes of the tree that contain these points.

Then, to determine if the new data point is in the skyline, alln nodes in the dataset will be

compared with the new data point.

Second, we compare the average case cost ofBBS to the average case cost ofisSkyline.

SinceisSkyline only tests whether a single point is dominated by an existingpoint or not,

whereasBBS computes an entire skyline from scratch, the cost savings isdependant on

the number of elements in the skyline thatBBS evaluates. If this number of skyline points

is s, then the average case cost ofisSkyline relative to that ofBBS is approximately1/s.

To determine the cost of a single deletion operation, the costs of the following opera-
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tions must be evaluated: a) the cost of removing an entry fromthe expiration-time heap,

b) the cost of removing an entry from the indexing structure,and c) the cost of running the

MINI algorithm, to determine if alternate points must be added tothe skyline.

The costs of both removing an entry from the heap and of removing an entry from the

index structure are identical costs, regardless of whetherLookOut or BBS is computing

the skyline. Consequently, neither one of these operations makeLookOut perform either

better or worse thanBBS. The real difference between the two for a deletion lies in the

cost savings thatMINI obtains overBBS.

Next, we consider the worst case cost ofBBS relative to the worst case cost ofMINI

for a single deletion. ForBBS, the worst case for a deletion is the same as it was in the

case of an insertion and occurs if all data points are in the skyline. This worst case cost is

O(n2).

The worst case cost forMINI occurs if the deleted data point is the only element in

the skyline. In this case,MINI must evaluate a completely new skyline from scratch. The

worst case forMINI then is the same as the worst case cost ofBBS, which isO(n2).

Next, we compare the average case cost ofBBS to the average case cost ofMINI.

SinceMINI evaluates the skyline relative to a removed skyline point, the cost savings is

dependant on the number of elements in the new skyline that were previously dominated

by the removed skyline point. If this number of skyline points iss′ and the total number

of skyline points iss, then the cost ofMINI relative to that ofBBS is s′/s.

Therefore, the qualitative cost of usingLookOut is less than that of iteratively running

theBBS algorithm for continuous skyline computation.
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Figure 3.5: Quadtree (a) and R*-tree (b) nodes with local skylines. Distances to each represented by dashed
lines.

3.4 Choice of Indexing Structure

In this section, we examine how the choice of the index can impact the performance

of both static and continuous time-interval skyline performance. This section examines

some of the differences between the ubiquitous R*-tree whichhas been used for a number

of the previously proposed skyline algorithms [43, 59], andthe quadtree, which is more

efficient for computing skylines. The quadtree has the following two advantages over

the R*-tree for evaluating continuous time-interval skylines: 1) Insertion into a quadtree

is faster than into a R*-tree, and 2) The quadtree-based traversal reduces the maximum

number of heap elements during the best-first search. (The second advantage also applies

to skyline computation over static data sets.)

The rationale behind the first point involves the complex node split operation of the

R*-tree that involves various sorting and grouping operations on index entries. In contrast,

the split operation of the quadtree is much simpler, and merely divides the node in each

dimension in half. For point data, such as that managed in skyline queries, the superior

performance of the quadtree on inserts and updates has been noted in a study of a com-

mercial DBMS [44]. This study of Oracle Spatial shows that quadtrees are significantly

faster for index creation and updates of point data.

The intuition driving the second point above is as follows: First, each time the R*-tree
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splits, its children are likely to overlap. No dominance relationship can be established

between two overlapping leaf or non-leaf nodes, so neither will be able to prune the other

from future consideration. Hence, both will be inserted into the heap. Contrast this with

the node split of the quadtree, where no overlap exists, and at least one child is auto-

matically dominated (and pruned) each time a split is performed1. Second, nodes in the

quadtree will produce quite different distances from the origin for their internal data. This

is because each quad occupies a region of space derived only from the structure of the

quadtree, and not from the data as in the case of the R*-tree. This means that the children

of one quad will be fully expanded and mostly removed from theheap before the data

contained in neighboring leaf and non-leaf nodes is enteredinto the heap.

To understand the heap size reduction benefit of quadtrees, consider the example shown

in Figure 3.5a. NodesA, B, andC are inserted into the heap when their parent node is

expanded.D is not inserted, because it is automatically dominated byB. B is the first

node popped from the heap, and its local skyline points are inserted back into the heap

and ordered by the distance function. The distance thatA andC are from the origin is

represented by the quarter circle. Note that most of the areaof B lies within this quarter

circle. Any entries inB that lie within this circle are processed and removed from the

heap before eitherA or C is expanded, thus resulting in a smaller heap. Contrast this to

the worst case performance of the R*-tree, seen in Figure 3.5b. A, B, C, andD are added

to the heap with similar distances. Hence, each is expanded in sequence before any of

their individual data elements are processed.
1A question that a reader may ask is why not consider an R+-tree instead of a quadtree. While a full exploration of this issue is

beyond the scope of this paper, the quick answer is that the R+-tree does not guarantee the pruning property of the quadtree, which is
critical to the efficiency for skyline computation. The R+-tree only addresses the non-overlapping problem of the R*-tree, but at the
expense of lower page occupancy.
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3.5 Experimental Evaluation

In this section, we present experimental results comparingLookOut with BBS, the

best known method for computing skylines. We compre the quadtree with the R*-tree [6],

a variant of the R-tree. We first present results showing that for static skylines, using the

quadtree significantly improves the performance over usingan R*-tree. We also show that

the heap size is smaller when using the quadtree compared to the R*-tree, implying that a

smaller amount of memory is needed for computing skylines with the quadtree approach.

(A low memory consumption is critical in streaming environments in which the system is

evaluating multiple skylines concurrently.) We then present results forLookOut with the

time-interval continuous skyline model.

3.5.1 Experimental Study Goal

In this study, our goal is to compare the performance of the R*-tree and the quadtree for

skyline query evaluation. The R*-tree is chosen because indexed skyline query algorithms

discussed previously have focused exclusively on the R-treefamily of indices. Quadtrees

have been shown to manage point data more effectively than the R-tree family in several

notable experimental studies [40, 44]. Since skyline queries deal exclusively with point

data, it is for this reason we have chosen the quadtree as the best alternative. For a broader

comparison beyond the scope of skyline queries for indices in the R-tree family and the

quadtree, the interested reader may consult [40,44].

3.5.2 Data Sets and Experimental Setup

The choice of data sets for experimental evaluation is always a challenging task. While

the use of real data sets is preferable, a few selected real data sets don’t necessarily bring

out the effect of a range of data distributions. Luckily for skyline methods, it has been

recognized that there are three critical types of data distributions that stress the effective-
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Figure 3.6: Two dimensional examples of (a) correlated data, (b) independent data, and (c) anti-correlated
data.

ness of skyline methods [10]. These three distributions areindependent, correlated, and

anti-correlated. The correlated data set is considered theeasiest case for skyline compu-

tation since a single point close to the origin can quickly beused to prune all but a small

portion of the data from consideration. The anti-correlated data set is considered the most

challenging of the three for skyline computation. This is because points in the skyline

dominate only a small portion of the entire data set. Larger numbers of skyline points

exist for anti-correlated data for a given cardinality relative to either the independent or

correlated cases.

To begin the discussion, first consider the different types of data distributions and the

varying effects that these distributions have on the cost ofcomputing the skyline opera-

tion. The two dimensional case for each of the common data distributions that have been

extensively considered in previous work are shown in Figures 3.6 a, b, and c. Only a small

portion of the data (and hence only a small part of the data in the index) will be considered

during the skyline evaluation of the correlated and independent cases, since each has a

data point or points near the origin for sufficiently large cardinality values. These points

will dominate all or most of the remaining points in the dataset, quickly pruning away the

majority of the data from skyline consideration. The anti-correlated data set is more chal-

lenging for skyline algorithms because it produces more skyline points for a given dataset
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cardinality (on average) than the other distributions. Hence, a greater number of points are

considered for inclusion in the skyline, which means that more leaf-level nodes and inner

nodes of a spatial index must be traversed by a skyline algorithm. While real datasets may

have distributions that differ from these benchmarks, these three distributions present a

wide and diverse range of distributions to test the performance of skyline algorithms.

Following well established methodology set by previous research on skyline algo-

rithms [49, 59], we choose to use these three data distributions. We also test our methods

on a variety of other data set parameters such as data cardinality and dimensionality. For

generating these synthetic data sets, we use the skyline generator generously provided by

the authors of [10]; using this, we created a number of data sets varying in cardinalities

from 100K to 5M in two dimensions, for the three distributions already mentioned. We

also created data sets varying the dimensionality between 2and 5 while holding the car-

dinality fixed at 1M entries. We test with these dimensionalities because they have been

commonly tested elsewhere for indexed skyline operations [59,75].

Our experimental platform is built on top of the SHORE storagemanager [11], which

provides support for R*-trees. We also implemented a quadtree indexing method in SHORE.

Our quadtree implementation uses a simple mapping of the quadtree nodes to disk pages.

Each leaf level quadtree node is one page in size. Non-leaf nodes are simply implemented

as SHORE objects, that are packed into pages in the order of creation.

We implemented bothBBS and LookOut on top of the SHORE R*-tree and our

quadtree index implementation in SHORE. To maintain consistency with the previous

approach by Papadias et al. [59], and for ease of comparison,we set the R*-tree node size

at 4KB for both leaf and non-leaf nodes. This results in R*-tree leaf node capacities of

between 330 and 165 data entries for dimensions 2 and 5, respectively. The linear split-

ting algorithm is choosen for the nodes of the R*-tree. The non-leaf node capacities vary
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between 110 for 2 dimensions and 66 for 5 dimensions. We also used a 4KB page size for

our quadtree implementation, resulting in leaf node capacities that varied between 424 for

2 dimensions to 131 in 5 dimensions. The leaf node utilization for the R*-tree is 71 percent

for 2 dimensional data for both the independent and anti-correlated datasets and 74 and 73

percent for 5 dimensional data for the independent and anti-correlated datasets, respec-

tively. The leaf node utilization for the quadtree is 61 and 53 percent for 2 dimensional

data for the independent and anti-correlated datasets, respectively, and 30 and 13 percent

for 5 dimensional data for the independent and anti-correlated datasets, respectively. We

use a buffer pool size of 128 MB. For theBBS implementation, we followed the algorithm

described in [59], and added the local skyline optimizations described in [60].

All experiments were run on a machine with a 1.7GHz Intel Xeonprocessor, with

512MB of memory and a a 40GB Fujitsu SCSI hard drive, running Debian Linux 2.6.0.

3.5.3 Anti-Correlated Datasets ind Dimensions

The anti-correlated datasets used throughout the experimental section of this chapter as

well as later chapters of this thesis are generated using thetechnique of [10]. This method

used to generate these datasets is shown in Algorithm 7.

This method first chooses a valuev drawn from a normal distribution, with mean 0.5

and variance 0.25 (line 2 of Algorithm 7). The closest distance thatv is from either extreme

of the universe, either 0 or 1 depending on which is closer, isdetermined in lines 3-7 and

stored inq. The value of the generated point in each dimension is initialized to v (line

8). Next, uniformly distributed random values are chosen from the interval(−q, q), one

for each dimensiond (lines 9-13). For a particular dimensiondm, one such uniformly

distributed random value is added top[dm] and subtracted fromp[dm+1].

This results in attribute values that are chosen so that eachpair of consecutive dimen-

sions are anti-correlated with respect to each other. In practice, this results in consecutive
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Algorithm 7 Anti-Correlated Dataset Generation.
1: Output: Anti-correlated pointp
2: v = RandomNormal(0.5,0.25)
3: if v < 0.5 then
4: q = v

5: else
6: q = 1 - v

7: end if
8: Initialize p[d] = v for all d ∈ Dimensions;
9: for d < Dimensions do

10: h = RandomEqual(-q,q)
11: p[d] += h

12: p[(d + 1) mod Dimensions] -= h
13: end for
14: if p[d] < 0 or p[d] > 1 for anyd ∈ Dimensions, repeat.

dimensionsdm anddm+1 having a correlation coefficient of approximately -0.48, while

dm anddm+2 have a correlation coefficient that is typically less than|0.03|.

In summary, an anti-correlated dataset chosen in this way will hence have anti-correlated

pairs of consecutive attributes, while nonconsecutive attributes will be nearly uncorrelated.

3.5.4 R*-tree v/s Quadtree for Skyline Computation

In this section, we examine the effect of the underlying index structure on the perfor-

mance ofstatic skyline computation. In other words, we show the effect of the choice

of index on theBBS algorithm [59, 60]. We focus on two different properties that affect

skyline query performance: the data set dimensionality andcardinality. This methodol-

ogy is consistent with the performance study of [59]. In the interest of space, we only

present results for the anti-correlated and independent cases, which is also consistent with

previous studies [59,60].

We measure the number of page accesses in our experiments instead of the disk access

cost (DAC) [54] because the DAC is a measure of the number of allnodes of a tree that are

read during a query. For members of the R-tree family, this closely matches the number

of page accesses, since R-tree nodes are mapped directly to pages. For inner nodes of a

packed quadtree, this is not the case since many inner nodes can be mapped to one single
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page. Hence, we measure page accesses as a more fair comparison for the work done by

both data structures.
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Figure 3.7: Experimental results for the independent data distribution in 2 dimensions for varying cardinal-
ity. Graphs show (a) the execution time, (b) the page accesses, and (c) the maximum heap size.
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Figure 3.8: Experimental results for the anti-correlated data distribution in 2 dimensions for varying cardi-
nality. Graphs show (a) the execution time, (b) the page accesses, and (c) the maximum heap
size.

Effect of Cardinality

In this experiment, we explore the effect of the data cardinality. Following the approach

in [59], we fix the dimensionality at 2, and vary the cardinality between 100K and 5M. As

in [59], we report three different graphs for each experimental setting: the CPU time vs.

cardinality, the maximum size of the heap vs. cardinality, and the number of page accesses

vs. cardinality. The results for this experiment are shown in Figures 3.7 a, b, and c.

Figures 3.7a and 3.8a present the execution times for varying cardinality. In the inde-

pendent case (Figure 3.7a), both the R*-tree and quadtree based methods are comparable
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until the data set size is over one million entries; for the larger data sizes, the quadtree

approach is significantly faster. For the anti-correlated data set (Figure 3.8a) the quadtree

approach is significantly faster, and its relative performance improves as the data cardi-

nality increases – for the 5000K data it is two orders of magnitude faster than the R*-tree

approach. This difference occurs because of the lower page accesses for the quadtree and

smaller maximum heap size.

In Figure 3.7b, we notice that the number of page accesses forthe independent case for

the R*-tree is 2-4 times that of the quadtree for the 2M and 5M data file sizes. For these two

file sizes, the quadtree outperforms the R*-tree by significant amounts (see Figure 3.7b).

From Figure 3.8b, we observe that the R*-tree performs about an order of magnitude

more page accesses than the quadtree. These increased page accesses are attributable to

the better pruning techniques of the quadtree caused by the node overlaps of the R*-tree

(as discussed in Section 3.4). The quadtree accesses fewer leaf and non-leaf nodes than

the R*-tree because it can prune away more nodes that are dominated by the discovered

skyline points. As a side note, for the 100K data size the quadtree approach actually

performs a few more reads (31 versus 21), which is attributable to a larger tree height for

the quadtree (5 versus 3) relative to the R*-tree index, and the relatively simple packing of

quadtree nodes in our implementation.

The maximum heap sizes in Figure 3.7c and Figure 3.8c show a large improvement

for the quadtree method for all file sizes, since the quadtreeis accessing fewer leaf and

non-leaf nodes than the R*-tree due to its non-overlapping space partition. In addition,

the nodes that it does access are processed much more serially than the R*-tree, whose

overlapping leaf and non-leaf nodes are expanded into the heap at similar times because

they have similar distances from the origin. This results inthe fewer page accesses and the

smaller maximum heap size for the quadtree (see Section 3.4 for the detailed analysis).
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Figure 3.9: Experimental results for the independent data distribution with fixed dataset cardinality (1M
tuples) for varying dimensionality. Graphs show (a) the execution time, (b) the page accesses,
and (c) the maximum heap size.
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Figure 3.10: Experimental results for the anti-correlateddata distribution with fixed dataset cardinality (1M
tuples) for varying dimensionality. Graphs show (a) the execution time, (b) the page accesses,
and (c) the maximum heap size.

The Effect of Dimensionality

In this experiment, we examine the effect of data dimensionality. As in [59], we fix the

data cardinality at 1 million tuples, and vary the dimensionality from 2 to 5. The results

for this experiment are shown in Figures 3.9 and 3.10.

The execution time graphs for increasing dimensionality are seen in Figure 3.9a for

the independent and Figure 3.10a for the anti-correlated data sets. For the independent

case (Figure 3.9a), the quadtree is about 2-4 times faster when dimensionality is higher

than 2. For the anti-correlated data set (Figure 3.10a), thequadtree is more than an order

of magnitude faster than the R*-tree when the dimensionalityis lower than five. These

benefits are because the quadtree approach incurs significantly fewer pages accesses and
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has fewer entries in the heap.

In Figure 3.9b, the number of page accesses for the independent case for the R*-tree

is similar for 2 dimensions. As seen in the previous section,the quadtree and R*-tree

had comparable performance for 2 dimensions when the cardinality was less than 2M.

For higher dimensionality, the quadtree obtains cost savings of about 2-3 times. This is

attributable to the higher chance for dead space and overlapamongst R*-tree nodes as di-

mensionality increases, which exposes the relative superior pruning of the quadtree, lead-

ing to more page accesses and heap accesses for the R*-tree (asdiscussed in Section 3.4).

In Figure 3.10b, the R*-tree performs about an order of magnitude more page accesses

than the quadtree in two and three dimensions, about three times more page accesses in

four dimensions, and about twice as many page accesses in fivedimensions. There are

two competing factors at work here. First, the superior pruning of the quadtree results in a

lower number of page accesses, relative to the R*-tree. Second, the increasing dimension-

ality means that more skyline points exist for the anti-correlated data set and the quadtree

has to access more data pages to find them all. The R*-tree accesses slightly more pages

as well (about twice as many in five dimensions as in two), but the fact that it was already

accessing so many in two dimensions means that the increase in the rate of page access

with dimensionality is not as remarkable as that of the quadtree.

The maximum heap size in Figure 3.9c shows a savings of about an order of magnitude

for the quadtree over the R*-tree. This is again attributableto the pruning techniques of

the quadtree, as previously discussed.

Figure 3.10c shows a similar trend for heap size as dimensionality increases as was

witnessed for the number of page accesses. The same two competing factors are causing

this. First, the superior pruning of the quadtree gives riseto a smaller maximum heap size.

Second, the increasing rate of page accesses with dimensionality means more pages will
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have similar distances as the data set fans out. Thus, more pages will be expanded and

insert their entries into the heap at about the same time (seeSection 3.4 for details).

Summary

In summary the quadtree index is a much more efficient indexing structure than the

R*-tree for computing skylines. The benefits of using a quadtree are generally higher for

larger data sets, and for lower dimensionality. In many cases, the quadtree approach is

more than an order of magnitude faster than the R*-tree approach. The benefits are the

most significant for the anti-correlated data set. In addition to being fast, the quadtree

approach also results in a significantly smaller maximum heap size.

3.5.5 The Continuous Time-Interval Skyline

In this section, we examine the performance ofLookOutrelative to a naive method of

executing theBBS algorithm to compute the skyline whenever anything changes. This

method is referred to asCBBS, and can be considered the best alternative method for

computing continuous skylines.

For this experiment, the data structures are entirely memory resident, to mimic the

application of continuous skyline in streaming applications where such main memory as-

sumptions are common and often the preferred environment (for example [49] also as-

sumes that there is enough main memory). In the naı̈ve CBBS case, a binary heap or-

dered on data point expiration time is maintained, so that when a point expires, it can be

deleted and theBBS skyline algorithm run to reevaluate the skyline. Whenever a data en-

try arrives, it is inserted into both the heap and the R*-tree,and the skyline is reevaluated

by rerunningBBS.

As before, we used synthetic data sets and vary both the cardinality and the dimension-

ality. For the dimensionality tests, we varyd between 2 and 5 and fix the cardinality at
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10K entries. For the cardinality test, we fixd at 2 and vary the data set cardinality from

10K to 50K.
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Figure 3.11: Experimental results for the time-interval continuous skyline with random time interval length
in 2 dimensions with varying cardinality. Graphs show (a) the anti-correlated, (b) the indepen-
dent, and (c) the correlated cases.
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Figure 3.12: Experimental results for the time-interval continuous skyline with 1-10 % time interval length in
2 dimensions with varying cardinality. Graphs show (a) the anti-correlated, (b) the independent,
and (c) the correlated cases.

Two different techniques are used to assign data points an arrival and an expiration time,

and results for both techniques are presented. For the first technique, we randomly pick

an arrival time between 0 and 100K. Then, we pick the departure time randomly between

the arrival time and 100K. For the second technique, data points are again assigned an

arrival time between 0 and 100K, but the expiration time is chosen randomly between 1

and 10 percent of the total time interval, i.e. between 1000 and 10000 time points later

than the arrival time. The data generated using the first technique is used to evaluate the

performance ofLookOut when the time interval varies widely; the second data generation
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Table 3.3: Delays in processing inserts and deletes for LookOut, varying cardinality, with 2 dim. data.
Delays in ms.

Card- Max Max Avg Avg

inality Anti-Corr. Indep. Anti-Corr Indep.

in K Delay Delay Delay Delay

10 1.21 1.55 0.0291 0.0273
20 1.42 1.72 0.0250 0.0235
30 3.31 2.99 0.0236 0.0223
50 3.41 4.57 0.0221 0.0214

technique is used to evaluate the effect on performance whenthe time-intervals have a

constrained size.

The results that we present are generated by running each data set from time 0 to

100,001. During this time, each data point will arrive and bedeleted following its ex-

piration. The skyline is continuously updated over the course of the 0 to 100,000 time

interval. We present results indicating the throughput inelements per second (eps)that

can be achieved byLookOut. Note that this metric reflects the time to insert or delete an

element as it arrives or expires, plus the time to update the continuous skyline. For each ex-

periment, we consider the implementation ofCBBS andLookOut using the R*-tree and

the quadtree. ForCBBS we use the labelCBBS-R andCBBS-Q for the R*-tree and

the quadtree index implementations respectively. Similarly LookOut - R andLookOut -

Q refer to the R*-tree and quadtree implementation ofLookOut, respectively. They axis

in all figures uses a log scale to show the workload execution time.

Cardinality

In this test, we vary the data cardinality from 10K to 50K. Theresults of this experiment

using data generated with the first technique (expiration times randomly chosen between

the arrival time and 100K) are shown in Figure 3.11, for the three data distributions. In

these figures, we observe that the execution time forLookOut with a quadtree relative
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to CBBS is more than two orders of magnitude better.LookOut with the R*-tree is

between 2 and 6 times faster thanCBBS in the anticorrelated case and almost twice as

fast in the independent case for data set cardinalities greater than 20K. In the correlated

case,LookOut with the R*-tree achieves only a small improvement overCBBS with an

R*-tree. The superior performance ofLookOut with respect toCBBS irrespective of

the underlying data structure is expected due to the efficiencies ofLookOut in updating

the skyline with each new insertion or deletion instead of recomputing it from scratch as

CBBS does. There is a more marked improvement inLookOut relative to theCBBS

algorithm with the quadtree than with the R*-tree because of the improvements of the

quadtree over the R*-tree for skyline evaluation already mentioned and because the inser-

tions and deletions with the quadtree are very fast. The overhead of the R*-tree limits the

amount of performance improvement thatLookOut can achieve.

The results of the experiment using data generated with the second technique (expira-

tion times randomly chosen between 1 and 10 percent of the total time interval) are shown

in Figure 3.12, for the three data distributions. The trendsin the data are similar, with

LookOut with the quadtree again outperformingLookOut with the R*-tree andCBBS,

regardless of indexing structure by at least an order of magnitude. LookOut − R also

outperformsCBBS − R by a factor of 2-3 in the anti-correlated case.

Table 3.3 presents data on the maximum and average processing delays forLookOut

for this experiment. These results indicate thatLookOut can process about 45,248 eps

for the anti-correlated data set, and about 46,728 eps for the independent data set. (Note

1000/0.0221 = 45,248.)

Dimensionality

The results for the data set dimensionality tests using datagenerated with the first tech-

nique (expiration times randomly chosen between the arrival and 100K) are presented in
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Figure 3.13. We observe that the execution time forLookOut with an R*-tree relative to

CBBS with an R*-tree is about twice as fast for the independent casefor each dimen-

sionality, and between 2 and 9 times better for the anti-correlated case, depending on the

dimensionality. The best algorithm is againLookOut with the quadtree, as it only in-

crementally recomputes the skyline on inserts and deletes,and uses the faster inserts and

deletes methods of the quadtree. It is an order of magnitude better thanCBBS with an

underlying quadtree for all data distributions for all dimensionalities and is more than 2 or-

ders of magnitude better in high dimensionality for the anticorrelated case. The results of

the experiment using data generated with the second technique (expiration times randomly

chosen between 1 and 10 percent of the total time interval) are shown in Figure 3.14.

From these figures we observe that the execution time forLookOut is less thanCBBS

with each respective data structure. With the quadtree,LookOut is more than an order of

magnitude faster thanCBBS with the quadtree. With the R*-tree,LookOut is faster on

average by a factor of 2 to 3. In the anti-correlated case, therate of increase for theCBBS

algorithm is higher asd increases than it is forLookOut, indicating thatLookOutscales

better for increasingd.

In Table 3.4, we present the maximum and average processing delays for theLookOut

algorithm. These results indicate thatLookOut can support a throughput rate of about

36,630 eps and 34,364 eps for the independent and anti-correlated cases, respectively, at

a dimensionality of 2. For dimensionality 5, the throughputrates are about 3,849 eps and

2,950 eps for the independent and anti-correlated cases.

3.5.6 Comparison with the eager and lazy techniques

In this section, we compare the performance ofLookOut with that of theeager and

lazy techniques of [75]. The code for these techniques was obtained from the first author’s

website and compiled for Linux. Following the approach of [75], we experiment with



79

T
im

e 
in

 s
ec

on
ds

 (
lo

g 
sc

al
e)

.1

1

10

100

1000

10000

Dimensionality
  2   3   4   5

CBBS−Q
LookOut−Q

CBBS−R
LookOut−R

T
im

e 
in

 s
ec

on
ds

 (
lo

g 
sc

al
e)

.1

1

10

100

1000

10000

Dimensionality
  2   3   4   5

CBBS−Q
LookOut−Q

CBBS−R
LookOut−R

T
im

e 
in

 s
ec

on
ds

 (
lo

g 
sc

al
e)

.1

1

10

100

1000

10000

Dimensionality
  2   3   4   5

CBBS−Q
LookOut−Q

CBBS−R
LookOut−R

Figure 3.13: Experimental results for the time-interval continuous skyline with random time interval length
with fixed cardinality (10K tuples) and varying dimensionality. Graphs show (a) the anti-
correlated, (b) the independent, and (c) the correlated cases.
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Figure 3.14: Experimental results for the time-interval continuous skyline with 1-10 % time interval length
with fixed cardinality (10K tuples) and varying cardinality. Graphs show (a) the anti-correlated,
(b) the independent, and (c) the correlated cases.

dimensions 2, 3, and 4, windows of size 200, 400, 800, and 1600tuples, and report back the

per tuple processing times in milliseconds. The independent and anti-correlated data sets

were generated with the data set generator also provided from the first author’s website.

Each data set was modified forLookOut by assigning each tuple an expiration time equal

to the arrival time plus a number of time units equal to the size of the window. This

means that bothLookOut andlazy andeager have the exact same data points available

for inclusion in the skyline at any one time and produce the same skyline results. The

results for varying dimensionality with a fixed 800 tuple window size are presented in

Figure 3.15a for independent data and in Figure 3.15b for anti-correlated data. The results

for 3 dimensionals with a varying tuple window size are presented in Figure 3.16a for
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Table 3.4: Delays in processing inserts and deletes for LookOut, for varying dim., 10K cardinality. Delays
in ms.

Dimen- Max Anti- Max Avg Anti- Avg

sion- Corr. Indep. Corr. Indep.

ality Delay Delay Delay Delay

2 1.21 1.55 0.0291 0.0273
3 1.54 5.65 0.0613 0.0499
4 3.26 9.40 0.1297 0.0959
5 4.45 14.80 0.3390 0.2598
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Figure 3.15: The per tuple processing costs for varying dimensionality and a fixed window of size 800 for
(a) independent and (b) anti-correlated data.

independent data and in Figure 3.16b for anti-correlated data.

In Figures 3.15a and 3.15b,LookOut using the quadtree performs better than theeager

technique for the independent data set and about an order of magnitude better than either

eager or lazy for the anti-correlated data set for dimensionality 3 and 4,while handling

the more general expiration time model. It achieves similarresults for all window sizes in

Figures 3.16a and 3.16b. The performance advantage is largely due to the better update

performance of the quadtree in these experiments, sinceLookOut with the R*-tree was

much slower, particularly for the independent data set.LookOut does not perform as well

as thelazy technique for the independent dataset. This is because the size of the skyline

is much smaller than in the anti-correlated case, so the benefits of using the quadtree is

much reduced. The important observation from these experiments is that the performance
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Figure 3.16: The per tuple processing costs for 3 dimensional data and a varying window size for (a) inde-
pendent and (b) anti-correlated data.

of LookOut is better thaneager in all cases and better thanlazy in the anti-correlated

case even when handling the more restricted time model.

3.6 Conclusions

In this chapter, we have introduced the continuous time-interval skyline operation. This

operation continuously evaluates a skyline over multidimensional data in which each ele-

ment is valid for a particular time range. We have also presentedLookOut, an algorithm

for efficiently evaluating continuous time-interval skyline queries. Detailed experimental

evaluation shows that this new algorithm is usually more than an order of magnitude faster

than existing methods for continuous skyline evaluation.

We have also exposed several inherent problems with using the R*-tree index for eval-

uating a skyline. The primary reason for the inefficiency of the R*-tree for skyline com-

putation is the overlap of the bounding box keys, which results in poor subtree pruning of

the index non-leaf and leaf nodes that are examined during the skyline computation. We

have shown that the quadtree index is a much more efficient index structure for evaluat-

ing skylines. The non-overlapping partitioning characteristics of the quadtree leads to a

natural decomposition of space that can more effectively prune the index nodes that must
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be searched. An extensive experimental evaluation shows that using a quadtree can result

in a continuous skyline evaluation method that can achieve high throughput and can also

dramatically speed up traditional static skyline computation.

In the next chapter, we will develop algorithms to find the skyline for datasets in the

presence of low-cardinality attribute domains that is far more efficient and effective than

the more general techniques discussed in this chapter.



CHAPTER IV

Computing Skylines Using Lattices

4.1 Introduction

In the thesis introduction, we observed that the skyline operator has emerged as an im-

portant summarization technique for multi-dimensional datasets. Recall that for a dataset

D consisting of data pointsp1, p2, ..., pn, the skylineS is the set of allpi such that there

is nopj that dominatespi. pi is said to dominatepj if pi is better other dimensions, for a

defined comparison function.

In the previous chapter, we developed methods for evaluating the skyline in the pres-

ence of temporal data using theLookOut algorithm. While the temporal dimensions of

data in this context are assumed to follow the time interval continuous model,LookOut

makes no assumptions about the dataset attributes that are not temporal. In this chapter,

we introduce the Lattice Skyline algorithm, that can evaluate static skylines more effi-

ciently than other techniques if all of the dataset attributes are drawn from low-cardinality

domains.

An example of the skyline operator in a hotel room selection application is shown in

Table 4.1. In this example, various hotels in a particular city list guest amenities that

they contain, such as whether or not they have parking facilities, a swimming pool, and

a workout facility for guests. The hotels also list the number of stars that they are rated,

83
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Hotel Parking Swim. Workout Star
Name Available Pool Center Rating Price
Slumber Well F F F ⋆ 80
Soporific Inn F T F ⋆⋆ 65
Drowsy Hotel F F T ⋆⋆ 110
Celestial Sleep T T F ⋆ ⋆ ⋆ 101
Nap Motel F T F ⋆⋆ 101

Table 4.1:A sample hotels dataset.

and the average price of a room. In this example, a traveler wants to maximize the star

rating and boolean-valued amenities of the hotel while minimizing the price. The skyline

of this dataset consists of the Soporific Inn, the Drowsy Hotel, and the Celestial Sleep.

The Slumber Well is not in the skyline since it has no client amenities and it has a lower

rating and costs more than the Soporific Inn. The Nap Motel is not in the skyline because

the Soporific Inn also contains a swimming pool, has the same number of stars as the Nap

Motel, and costs less.

In this example, the skyline is being computed over a number of domains that have low

cardinalities, and only one domain that is unconstrained (thePrice attribute in Table 4.1).

This dataset characteristic is common in many real applications for several reasons. First,

many applications naturally have low cardinality attributes. For example, used car pur-

chase applications often involve the user exploring tradeoffs between the car price (an

unconstrained attribute) and several additional attributes with low-cardinality or boolean-

valued domains, including the number of doors and the presence or absence of airbags.

Second, even seemingly continuous attribute are often naturally searched using a mapping

to a low cardinality domain. For example, the car mileage is often mapped to a small

number of mileage ranges.

Existing skyline evaluation methods are not designed to exploit the low-cardinality

characteristics of such applications, and as a result, are not efficient when used in these

cases. The focus of this chapter of the thesis is on developing an efficient skyline algorithm
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for such applications.

We propose an algorithm called the Lattice Skyline algorithm (LS) that is built around

a new paradigm for skyline evaluation. We show that the partial order imposed by the

skyline operator over such low-cardinality domains constitutes alattice. We then develop

an algorithm that exploits this property and computes the skyline based on the structure

of this lattice. The algorithm is very efficient, and for typical dimensionalities has an

asymptotic complexity that is linear in the number of input tuples, which can be a big

improvement over other techniques. Detailed experimentalevaluation comparing LS with

existing methods on both real and synthetic datasets shows that in practice LS is indeed

significantly more efficient than existing methods.

An additional interesting property of the new lattice-based skyline computation paradigm

is that the performance of LS is independent of the underlying data distribution. To under-

stand this property, consider the paradigm used by previousskyline evaluation techniques,

such as Block Nested Loops [10] and Sort-First Skyline [19]. These algorithms eliminate

data elements from consideration in the skyline by finding other elements in the dataset

that dominate them. The performance of this class of algorithm varies greatly depend-

ing on the underlying data distribution; specifically, the performance of these algorithms

degrades if the distribution tends towards an anti-correlated distribution. Note that many

skyline applications involve datasets in which there is a tradeoff in relative values, which

often naturally results in datasets that tend to be anti-correlated. In contrast, LS uses a

lattice-structure that is dependent only on the underlyingdomain characteristics which re-

sults in performance that is both predictable and independent of the underlying distribution

of the dataset. This property is very desirable, not only from a stability perspective, but

also when using the skyline operator in a complex application in which estimates of com-

putational costs can be useful in shaping the user experience (for example in providing
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progress indicators [16, 52] for complex queries, which hasreceived a lot of attention in

recent years).

We acknowledge that previous skyline algorithms which havebeen designed to be

largely independent of the underlying domain characteristics are more general than LS.

The generality of these methods implies that they can be applied in any setting. However,

we have observed that many skyline applications involve domains with small cardinalities

– these cardinalities are either inherently small (such as star ratings for hotels), or can nat-

urally be mapped to low-cardinality domains (such as mileage on a used car). We show

that LS produces substantial performance gains for this important class of applications.

The main contributions of this chapter are as follows:

1. We develop a new paradigm for skyline computation that is based on constructing

a lattice over the underlying domains. We then develop an efficient algorithm that

exploits this lattice structure to compute skylines over low-cardinality domains.

2. We show that this method can easily accommodate one unconstrained domain by

modifying the lattice-based computation.

3. We show that for low-cardinality datasets of typical skyline dimensionality, the sky-

line using LS can be evaluated in linear time!

4. We conduct an extensive performance evaluation using both real and synthetic datasets

and compare our method with the SFS technique [19] with the LESS optimiza-

tions [24], which is currently considered to be the most efficient skyline method

that does not require indexing or preprocessing. Our evaluations shows that LS is

significantly faster than SFS with the LESS optimizations.

The remainder of this chapter is organized as follows: Section 2 discusses related
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work. In Section 3, we show that the skyline operator over thespace of vectors over

low-cardinality domains is a lattice, and develop an algorithm for computing skylines us-

ing this lattice. In Section 4 we extend the algorithm to accommodate one attribute over

an unrestricted domain and discuss extensions of LS for evaluating temporal skylines. In

Section 5 we discuss properties of LS and Section 6 presents experimental results. Section

7 discusses applications of LS for discretized attribute domains, and Section 8 contains

our concluding remarks.

4.2 Terminology and Further Related Work

In this section, we discuss terminology used in this chapterof the thesis, and also further

highlight work related to skyline computation over low-cardinality attribute domains.

4.2.1 Terminology

An attribute domain is said to below-cardinality if its value is drawn from a set

S={s1, s2, ..., sm} such that the set cardinalitym is small. A low-cardinality attribute

domain is said to betotally orderedif s1 < s2 < ... < sm. Skylines usually involve totally

ordered attribute domains. Boolean-valued attributes are aspecial case of totally ordered,

low-cardinality attributes. Henceforth, we refer to low-cardinality domains and implicitly

assume that they are totally ordered.

4.2.2 Related Work

The Sort-First Skyline algorithm is proposed in [19], and itis a variant of the BNL

algorithm. This technique requires the data to be sorted by ascoring function. Once

the data is sorted, the comparison between tuples is simplified since the buffer pool is

guaranteed to contain only skyline points. The technique isrefined in [24] by eliminating

some tuples during the first sort pass with comparisons to a small collection of tuples that
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fall early in the sort order and combining the final pass of thesort with the first filter pass

of the skyline computation. The refined version of the algorithm is called LESS.

Two progressive techniques were proposed in [74]: the Bitmapand the Index tech-

niques. The Bitmap technique operates on skylines over low-cardinality domains, similar

to the LS algorithm. The Bitmap technique does not allow one ofthe attributes to be

over an unrestricted domain, so the scope of applications inwhich Bitmap is applicable

is more narrow. Bitmap also requires preprocessing, since Bitmap indices are required.

The Bitmap technique was also shown to be generally less efficient than the Index tech-

nique. Since we are proposing an unindexed technique, we do not compare with either of

these indexed techniques; we further discuss our rational for selecting SFS with LESS for

comparison in Section 4.6.

Techniques to evaluate skylines in subspaces have been proposed in [84] and [62].

These consider the lattice of dimensional subspaces for skyline evaluation; in contrast,

our work views the discrete, well-ordered data space as a lattice and uses that lattice to

evaluate the skyline.

In [48], a data cube for the dominance relationship is proposed. It uses a lattice structure

to develop the D*-tree, which in turn is used to answer several types of dominance queries.

However, the dominance relationship is a very different analysis operation than the skyline

operation. Also, LS uses a lattice structure on-the-fly to answer skyline queries, as opposed

to indexing to evaluate the dominance of a specific point.

4.3 Skyline Computation for Low-Cardinality Attributes

Throughout this chapter, and without loss of generality, weconsider the skyline with

the max operator for all attributes. This means that the value T dominates the valueF

in the boolean case and that larger values dominate smaller ones for low-cardinality and
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Figure 4.1: (a) A Boolean Lattice and (b) the Boolean Latticewith arrows to explicitly indicate the domi-
nance relationship.

unrestricted attributes.

In this section, we first show that the skyline operator over the space ofd-dimensional

vectors over low-cardinality domains is a lattice. We then show how this lattice property

can be used to develop an efficient skyline algorithm (the Lattice Skyline algorithm). We

also give an example of its use and analyze its complexity.

4.3.1 Skyline and the Low-Cardinality Lattice

The dominance operator ‘≺’ over a dataset defines a partial ordering. (This is easy to

see in the dataset in Table 4.1. The Celestial Sleep dominatesthe Slumber Well, and hence

Celestial Sleep≺ Slumber Well. The ordering is not total since the Celestial Sleep neither

dominates nor is dominated by the Soporific Inn).

In this subsection, we show that the partial order that the skyline operator imposes over

the space ofd dimensional vectors over low-cardinality domainsB is a lattice. We letB

denote the space ofd-dimensional vectors over low-cardinality domains throughout the

rest of the chapter.

We use the following definition for the lattice of a partiallyordered set.

Definition 4.3.1. A partially ordered setS with operator ’≺’ is a lattice if ∀ a, b ∈ S, the

set{a, b} has a least upper bound and a greatest lower bound inS.
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We can now use Definition 4.3.1 to show that the space of vectors B with the skyline

operator is a lattice.

Theorem 4.3.2.The space of boolean valued vectorsB with the skyline operator ’≺’ is a

lattice.

Proof. To show thatB with the skyline operator ’≺’ is a lattice, we must show that each

pair{x, y} wherex, y ∈ B has (1) a greatest lower bound inB and (2) a least upper bound

in B.

Showing (1) involves proving two cases - the case (a) in whichx dominatesy (or y

dominatesx) and the case (b) in whichx andy are not comparable by the skyline operator.

• CASE 1.a: Ifx dominatesy (y dominatesx), then trivially the greatest lower boundq

betweenx andy is y (x).

• CASE 1.b: Ifx andy are not comparable in the partial order≺, then the greatest lower

boundq betweenx andy is obtained by taking the min betweenx andy on all dimensions.

q is now a lower bound betweenx andy since in any dimensioni, q has a value smaller

than or equal to both that ofx or y in dimensioni, and henceq is dominated by bothx and

y. q is a greatest lower bound since increasing the value of any attributeai on dimension

i would no longer result in a lower bound, since the new value ofq in dimensioni would

now be larger than one or both ofx or y in that dimension.

Showing (2) also involves proving two cases - (a) in whichx dominatesy (or y domi-

natesx) and the case (b) in whichx andy are not comparable by the skyline operator. This

part can be proved in a similar way as above, and is omitted in the interest of space.

SinceB and the skyline operator are a lattice, we can draw the Hasse diagram for the

lattice. The Hasse diagram ofB for d = 3 in which each low-cardinality attribute is
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Figure 4.2: A two-dimensional lattice in which each attribute is drawn from the domain{0,1,2}.

boolean-valued is presented in Figure 4.1a. In this Figure,the valueTTT dominates all

other values, so it is at the top of the diagram and it is the upper bound of the set.FFF is

dominated by all values so it is the lower bound.

The dominance relationship between elements ofB can be further illustrated by adding

arrows to the Hasse diagram as shown in Figure 4.1b. For example,TTF dominatesTFF ,

FTF , andFFF . These are the values in the graph in Figure 4.1b that are reachable from

TTF .

An example Hasse Diagram for a lattice over a two dimensionalspace in which attribute

a1 is an element of{0, 1, 2} and attributea2 is also an element of{0, 1, 2} is shown in

Figure 4.2a. In Figure 4.2b, arrows have been added to show the dominance relationship

between elements of the lattice.

We now define the concept of animmediate dominatorof an element of a lattice over

B. We letf(q.ai) denote the number of attribute values in theith attribute domain that

ai dominates forq ∈ B. For example, in the domain{0, 1, 2}, value1 dominates one

element.

Definition 4.3.3. Let q and q′ be elements fromB. q is an immediate dominator ofq′ if

and only ifq dominatesq′ and
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∑d
i=1 f(q.ai) =

∑d
i=1 f(q′.ai) + 1.

For example, the immediate dominators of lattice element (1,1) in Figure 4.2b are (2,1)

and (1,2). In this case,f(1, 1) = 2 andf(2, 1) = f(1, 2) = 3. In general, an element

will have d or fewer immediate dominators since an element can only have1 immediate

dominator per dimension. This property of the immediate dominators is used later in the

cost analysis of the algorithm.

4.3.2 Skyline Computation using the Lattice

A datasetD overd low-cardinality attributes does not necessarily contain representa-

tives for each lattice element. For example, the three boolean attributes (Parking Available,

Swimming Pool, and Workout Center) in the dataset in Table 4.1contains aFTF entry

(the Soporific Inn and Nap Motel), but contains noTFF entry.

The method to obtain the skyline of a datasetD consisting of elements ofB can be

visualized using the Hasse diagram ofB. The elements ofD that compose the skyline are

those in the Hasse diagram that have no path leading to them from another element present

in D. For example, consider the case in whichB is the space of 3 boolean attribute vectors

andD consists of four tuples,TTF , FTF , FFT , FFF . FTF is not a skyline value since

it is reachable in the diagram in Figure 4.1b from valueTTF ∈ D. Similarly, FFF is

reachable fromTTF , FTF , andFFT . TTF andFFT are not reachable from any of the

values inD, and they are the skyline values.

We can use these observations to develop the LS-B algorithm to find the skyline of a

dataset over the space of vectors drawn from low-cardinality domains. Initially, all ele-

ments of the lattice ofB are marked asnot presentin the dataset. The algorithm then

iterates through each tuplet of the datasetD. The element of the lattice that corresponds

to t will be marked aspresent(and not yet dominated) in the dataset. After all tuples
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Algorithm 8 LS-B: The Skyline for Datasets over Low-Cardinality Domain Attributes.
1: Input: DatasetD with n tuples overd low-cardinality attributes, VectorV of sized whereVi is the cardinality of

dimensioni.
2: Output: A set of skyline points.
3: Let size be the number of entries in the lattice= V1 ∗ V2 ∗ ... ∗ Vd.
4: Let the set ofdesignatorsbe{not present, present, dominated}.
5: Let a be an array ofdesignatorsof sizesize, initialized tonot present.
6: Let F (j) be the one-to-one mapping ofj ∈ B to a position ina.
7: for eachs ∈ D do
8: Let ls be the low-cardinality attribute values ofs.
9: Seta[F (ls)] to present.

10: end for
11: for t = size− 1 to 0 do
12: for Eachg ∈ immediate dominators ofa[t] do
13: if a[g] = (presentor dominated) then
14: a[t] =dominated
15: end if
16: end for
17: end for
18: for eachs ∈ D do
19: Let ls be the low-cardinality attribute values ofs.
20: if a[F (ls)] = presentthen
21: outputs as a skyline point.
22: end if
23: end for

have been processed, the elements of the lattice that are marked aspresentand which are

not reachable by the dominance relationship from any otherpresentelement of the lattice

represent the skyline values. Elements that are present butare reachable by the dominance

relationship, and hence are not skyline values, are markeddominatedto distinguish them

from presentskyline values. The tuples that representpresentskyline values can then be

output with another iterative pass over the dataset. We callthe present, not present,or

dominatedvalue of each lattice position thedesignatorof that element.

4.3.3 The LS-B Algorithm

The LS-B algorithm, shown in Algorithm 8, computes the skyline on a datasetD with

low-cardinality attribute spaceB.

In lines 3-5, the algorithm begins by initializing all elements of the arraya to not

present. The size of this array is equal to the product of the domain cardinalities. Each

element of the array represents one element of the lattice for B and stores adesignator.
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We letF (q) denote the one-to-one mapping of an elementq ∈ B to a position of the

array in line 6. In the boolean case, we can use the binary value of the boolean attributes

to determine the array position. For example, ifd = 3, then elementTFT ∈ D is

represented by position 5 of the arraya, since the binary equivalent ofTFT is 101 = 5. In

the low-cardinality case in our implementation, we chooseF (q) to be a linearization of the

elements of the lattice, i.e. the ordering becomes(2, 2), (2, 1), (2, 0), (1, 2), etc. In lines

7-10, the algorithm iterates over each tuple inD and sets the position ina represented by

the value ofq ∈ D to present.

In lines 11-17, the LS-B algorithm iterates through each element of the lattice. If one of

the immediate dominators of a lattice position in the Hasse diagram is marked aspresent

or dominated, indicating that either it is in the skyline or it is dominated by a skyline

value, this position ina is marked asdominated. The algorithm proceeds through the

array beginning at the top of the lattice and ending at the bottom, guaranteeing that the

immediate dominators of any element are checked before it.

In lines 18-23, the elements ofD are iterated through again, and if the position ofa for

the boolean-valued attributes of a particular tuple is equal to present, then that tuple is a

skyline tuple.

4.3.4 Example

As an example, suppose a traveler wants to find the skyline of hotels for the boolean

valued attributes (availability of parking, swimming pool, and workout center) for the

dataset from Table 4.1. Specifically, the example data is displayed in Table 4.2.

The lattice element for each element ofB is initially marked asnot present. The LS-B

algorithm iterates through each tuple in the input. The lattice positiondesignatorof each

tuple is set topresent. For example,t1 is the first tuple considered in the dataset. The

designatorof its boolean attributes,FFF , is set topresent. The lattice with each lattice
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Figure 4.3: (a) The Boolean Lattice from the example, with present [p] and not present [np] elements
marked. (b) The lattice with dominated values marked as dominated [d]. Skyline values are
those marked [p].

value following these actions is displayed in Figure 4.3a.

Following this, the positions in the lattice that are skyline values are evaluated. The

algorithm iterates through the possible values that the space of 3 boolean vectors can ob-

tain. It begins with array position 7 (TTT ) and finishes with array position 0 (FFF ). For

each position, the immediate dominators are checked. The actions for each lattice posi-

tion, progressing from step 1 to step 8, are shown in Table 4.3. The lattice following the

skyline value evaluation, with each lattice element markedasnp=not present, p=present,

or d=dominatedis shown in Figure 4.3b. The skyline values are those latticepositions

marked asp.

The only positions of the lattice that are marked aspresentnow are positionsTTF and

FFT . These tuples are now output as the skyline with another passthrough the data.

4.3.5 Analysis

We now analyze the complexity of the LS-B algorithm for attributes with low-cardinality

domains.

Tuple Name Boolean Attribute Values
t1 Slumber Well FFF

t2 Soporific Inn FTF

t3 Drowsy Hotel FFT

t4 Celestial Sleep TTF

t5 Nap Motel FTF

Table 4.2:The hotels from the example dataset of Table 4.1 with the values of their three boolean-valued
attributes (parking availability, swimming pool, and workout center).
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Theorem 4.3.4.The complexity of the LS algorithm over a set of low-cardinality attributes

is O(dV + dn), whered is the dimensionality,n is the number of data tuples, andV is the

product of the cardinalities of thed low-cardinality domains from which the attributes are

drawn.

Proof. The algorithm makes an initial pass through alln tuples of the data in lines 7-10 of

the algorithm. For each tuple, LS-B marks a position in an array aspresentbased on the

attribute value for each dimension. Since array accesses are O(1), this pass through the

data isO(dn).

There areV elements in the lattice. Each is initialized in line 5 of the algorithm. In

lines 11-17, each element of the lattice is compared with itsimmediate dominators, of

which there are at mostd. We note further that the individual operations in the algorithm

are very simple, and that the actual complexity is somewhat better than the asymptotic

would suggest. For instance, element(2, 1) of the lattice depicted in Figure 4.2b has only

1 immediate dominator instead of 2. In short, we expect the algorithm to be efficient in

practice, as we show in Section 4.6. Since there areV total entries in the lattice, each

compared with at mostd entries, this step isO(dV ).

LS-B makes a final pass through the data in lines 19-23, which output the skyline. For

each tuple, the algorithm checks an array position based on the attribute value for each

Lattice Old/New
Step Pos D1 (Value) D2 (Value) D3 (Value) Value

1 TTT n/a n/a n/a np / np
2 TTF TTT (np) n/a n/a p / p
3 TFT TTT (np) n/a n/a np / np
4 TFF TTF (p) TFT (np) n/a np / d
5 FTT TTT (np) n/a n/a np / np
6 FTF TTF (p) FTT (np) n/a p / d
7 FFT TFT (np) FTT (np) n/a p / p
8 FFF TFF (d) FTF (d) FFT (p) p / d

Table 4.3:The actions taken during the example, wherep=present, np=not present, andd=dominated. D1,
D2, and D3 are the dominators of each position in the example.The value of each such immediate
dominator is given in parenthesis.
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dimension to see if its value ispresent. This stage isO(dn). This produces an overall

complexity ofO(dV + dn) for the algorithm.

Analysis: This analysis shows that ifn is larger thanV , the product of the domain

cardinalities of each low-cardinality domain attribute, then the algorithm is linear inn. We

expectn to be significantly larger thand for typical skyline datasets (past work has usually

experimented with 5-7 dimensions). We also give several examples in Section 4.6 of low-

cardinality datasets in which both skyline computation is important andV is smaller than

n. In such cases, the skyline can be evaluated in linear time!

4.4 Extending LS to Handle One Unrestricted Attribute

In this section, we show how to expand the LS-B algorithm to accommodate one at-

tribute u drawn from an unrestricted domain producing the general case LS algorithm.

(For example, the domain ofu may be the real numbers.)

4.4.1 Overview

The LS-B algorithm presented in Algorithm 8 marks each lattice position aspresent,

not present, or dominatedand uses these designations to find the skyline values. To ac-

commodate an unrestricted domain attribute, in addition tostoring thedesignator, each

lattice position also stores the bestu value in the dataset for that lattice element. For ex-

ample, if tuples with the lattice valueTFF haveu attribute values5, 6, and7, then the

lattice element could store7 in addition to thepresent designator. In this case, we call7

the locally optimal value (lov) of lattice positionTFF .

Definition 4.4.1. The locally optimal value (lov) of an elementq ∈ B is the maximum

value of the unrestricted attributeu for any element of a dataset whose low-cardinality
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attributes areq.

In the LS-B algorithm presented in the previous section, a lattice element that is marked

presentis in the skyline if none of the lattice positions dominatingit are marked aspresent.

Now, a lattice element with alov u is in the skyline if none of the lattice positions domi-

nating it have alov u′ that is better than or equal tou. For example, ifTFF has alov 7

stored in the lattice andTTF has alov 8, theTFF value is dominated and hence it will

not appear in the skyline. In this case,TFF can be marked as dominated. We call the

maximumlov contained in an elementq ∈ B and in the elements inB that dominateq the

dominant lattice value (dlv).

Definition 4.4.2. Let A be the set consisting of the locally optimal value of an element

q ∈ B and of the locally optimal values of allq′ ∈ B that dominateq. The dominant

lattice value (dlv) of q is the maximum value inA.

Now, a tupleti with low-cardinality attribute valuesq is a skyline value ifq is marked

presentandti.u is equal to thedlv of q in the lattice. If thedesignatorof q is dominated,

some other lattice entry that dominatesq has anlov that is better than or equal to that of

q. We can now modify the LS-B algorithm to (1) store thelov for each element ofB, (2)

find thedlv for each elementq of B, and then (3) compare each tuple’su value with the

dlv to determine if the tuple is in the skyline.

4.4.2 The Extended LS Algorithm

Algorithm 9 shows the general LS algorithm, which is an extension of the LS-B Algo-

rithm. Most aspects of the algorithm remain unchanged. The only difference between the

two is the values stored for each element of the lattice are different (no longer just storing

thedesignatoras in the boolean case, but also a value for the unrestricted domain). This

information for each lattice element is stored in an array ofa defined typeL in lines 4
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through 6. Each array position stores two pieces of information: (1) thedesignatorand

(2) thelov of the lattice element.

Each element of the lattice is initialized tonot presentin line 6 of the LS algorithm. In

lines 7-15, the algorithm iterates through the elements of the datasetD. If the lattice entry

is markednot presentor thelov is smaller thanu, the lattice entry is markedpresentand

the lov is updated tou. For example, suppose a dataset consists of data elements over 3

boolean attributes and 1 unrestricted attribute and that the first two data elements of the

input are(T, F, F, 3.2) and(T, F, F, 4.9). TheTFF lattice position is initiallynot present,

indicating that no elements with boolean valueTFF have yet been seen in the data. After

processing input element(T, F, F, 3.2), TFF is marked aspresentand 3.2 is stored as

the lov. After processing(T, F, F, 4.9), the lov is set to 4.9, since 4.9 is the best value for

boolean valueTFF so far seen.

Now, LS must find thedlv for each element of the lattice. This is done in lines 16-25 of

the algorithm. It does this by iterating over the elements ofthe lattice starting at the top of

the lattice and ending with the bottom element. For each suchlattice elementq, LS checks

thedlv values of the immediate dominators ofq. Thedlv value ofq becomes the maximum

of the dlv values of the immediate dominators ofq marked aspresentor dominatedand

the lov of q. If any of thedlv values of the immediate dominators ofq marked aspresent

or dominatedare greater than or equal to thelov of q, q is marked as dominated.

Following this operation, the skyline tuples are those whose low-cardinality value is

marked aspresentand have adlv equal to theiru value. In lines 26-31, LS iterates over

the elements ofD. For each element ofD, LS compares the value ofu to thedlv for the

lattice element. If they are the same and the lattice elementis markedpresent, the tuple is

an element of the skyline.
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Algorithm 9 LS: The Low-Cardinality Domain Skyline with 1 Unrestricted Attribute Value.
1: Input: DatasetD with n tuples overd low-cardinality attributes and 1 unrestricted attribute, VectorV of sized

whereVi is the cardinality of dimensioni.
2: Output: A set of skyline points.
3: Let size be the number of entries in the lattice= V1 ∗ V2 ∗ ... ∗ Vd.
4: Let the set ofdesignatorsbe{not present, present, dominated}.
5: Let L be a defined type that containsv, the locally optimal value, ande, an element from the set ofdesignators.
6: Let a be an array of typeL of sizesize, initialized tonot present.
7: for eachs ∈ D do
8: Let F (j) be the one-to-one mapping ofj ∈ B to a position ina.
9: Let ls be the low-cardinality attribute values ofs.

10: Let pos = F (ls).
11: if a[pos].e =not presentor a[pos].v < s.u then
12: Seta[pos].v to u.
13: Seta[pos].e to present.
14: end if
15: end for
16: for t = size− 1 to 0 do
17: for Eachg ∈ immediate dominators ofa[t] do
18: if a[g].e = (presentor dominated) then
19: if a[t].e =not presentor a[t].v ≤ a[g].v then
20: a[t].v = a[g].v
21: a[t].e =dominated
22: end if
23: end if
24: end for
25: end for
26: for eachs ∈ D do
27: Let ls be the low-cardinality attribute values ofs.
28: if a[F (ls)].e = presentanda[F (ls)].v = s.u then
29: outputs as a skyline point.
30: end if
31: end for

4.4.3 Example

Suppose a traveler is interested in finding the skyline of hotels with regard to the three

boolean-valued attributes and the price for the data from Table 4.1. For this example, we

transform the price attribute via a simple flipping functionto200−price so that we are only

considering computing the skyline using themaxoperator. Note that this transformation is

necessary only to make the example easier to follow by consistent use of themaxoperator.

Our method can easily be adapted to compute the skyline usingan arbitrary combination

of maxandmin operators. The data used in the example with the price transformation is

shown in Table 4.4. We refer to the200 − price value asu.

The lattice consists of eight entries, one for each boolean value, and each is initialized
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Figure 4.4: (a) The Boolean Lattice from the example, with [p] present and [np] not present elements marked
with their locally optimal values; – means the lattice element is not updated. (b) The lattice with
dlvs for each element and with dominated values marked [d]. Skyline values are those marked
[p].

to not present. The LS algorithm now iterates through the input and updatesthe lattice

position for each tuple to the bestu value so far present in the data. For example, when

LS processes tuplet1, the lov of FFF is set to 120. Since tuplest2 andt5 both contain

boolean valued attributesFTF , thelov of FTF is set to 135 (the bestu value of eithert2

or t5). The lattice following these actions is displayed in Figure 4.4a.

Now, each position in the lattice stores thelov for each lattice element, i.e. the best

value that is present in the datafor that element of the lattice. For example, botht2 and

t5 have boolean valueFTF , but thelov stores only the best value (135) forFTF . LS

now finds thedlv for each element of the lattice. For example,FTF has alov equal to

135, which is better than thelov of FFF . Hence, theFTF element dominates theFFF

element, andFFF is marked asdominatedand itsdlv is set to 135.

To find these dominating values, the algorithm iterates through the possible values that

the space of 3 boolean vectors can obtain. It begins withTTT and ends withFFF . For

Tuple Name Boolean Value u (200-price) Value
t1 Slumber Well FFF 120
t2 Soporific Inn FTF 135
t3 Drowsy Hotel FFT 90
t4 Celestial Sleep TTF 99
t5 Nap Motel FTF 99

Table 4.4:Example data tuples.
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Old/New
Step Position Imm. Dom. (Value) Value

1 TTT n/a [np] – / [np] –
2 TTF TTT ([np] –) [p] 99 / [p] 99
3 TFT TTT ([np] –) [np] – / [np] –
4 TFF TTF ([p] 99), TFT ([np] –) [np] – / [d] 99
5 FTT TTT ([np] –) [np] – / [np] –
6 FTF TTF ([p] 99), FTT ([np] –) [p] 135 / [p] 135
7 FFT TFT ([np] –), FTT ([np] –) [p] 90 / [p] 90

8 FFF
TFF ([d] 99), FTF ([p] 135),

[p] 120 / [d] 135
FFT ([p] 90)

Table 4.5:Example LS actions to find thedlv for each lattice position. Each lattice position is marked
[p]=present, [np]=not present, or [d]=dominated with thedlv next to it.

each position, the immediate dominators are checked. The actions for each lattice position

are shown in Table 4.5.

The skyline tuples can now be found by iterating over the dataset again. Each tuple

t1-t5 is compared with its lattice position. If theu value for each tuple is equal to thedlv

of the lattice position and that position is markedpresent, that tuple is in the skyline. If

the values are not equal or the position is markeddominated, then the tuple is not in the

skyline. For example,t2.u is equal to 135 and thedlv of lattice positionFTF is 135.

FTF is also marked aspresent. Hence,t2 is in the skyline. However,t1.u is equal to 120

and the value ofFFF ’s dlv is 135. Moreover,FFF is marked asdominated, sot1 is not

in the skyline. The skyline in this example ist2, t3 andt4.

4.4.4 Analysis

The LS algorithm performs the same sequence of operations asLS-B, with minor dif-

ferences in the specifics that do not impact the complexity. Hence, the complexity of the

LS algorithm for one unrestricted attribute is identical tothat of the LS-B algorithm. We

omit a formal proof since it is similar to the one presented inSection 4.3.
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4.5 Properties of LS

In the previous section, we showed that LS can have a significant asymptotic complex-

ity advantage over other techniques. In this section, we discuss two properties of LS that

are desirable for skyline computation.

1. The performance of LS does not depend on the ordering of theelements of the input.

2. The performance of LS does not depend on the distribution of the input.

The first property is desirable because we want a skyline computation technique to

have good performance irrespective of the order of the inputelements. For example, the

performance of the BNL algorithm of [10] improves significantly if skyline tuples that

dominate a large number of data points are present early in the dataset, since this allows

BNL to eliminate most of these points in the first elimination pass. On the other hand,

if skyline tuples come very late in the dataset order, many passes are needed to eliminate

non-skyline points from consideration. SFS [19] addressesthis issue by first sorting the

data, but requires an expensive sorting operation.

LS achieves the first property because it is intrinsically insensitive to the ordering of

the input. No additional costs are incurred such as sorting.For each input element, LS

simply reads and writes an element of the lattice. Accessingeach element of the lattice

has the same fixed cost (an array access), so LS is not sensitive to reorderings of the input

elements.

The second property is desirable because we want skyline algorithms to have good per-

formance regardless of whether the input data is correlated, independent, or anti-correlated.

Algorithms such as SFS and BNL tend to perform much worse if theinput is anti-correlated.

The performance of LS does not depend on the input distribution, since finding the skyline

values involves the same comparisons with immediate dominators for each element of the
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lattice irrespective of the dataset distribution. More skyline points may be found if the

dataset is anti-correlated, but this also does not result ina difference in performance. This

is because during the second pass through the data, each input element is checked with

thedlv of the corresponding lattice element to determine if the input element is a skyline

point.

4.6 Experimental Evaluation

In this section we presents results from an experimental study designed to compare the

performance of LS with the best existing method. We have implemented two algorithms:

a) our LS algorithm and b) the SFS algorithm [19] with the LESSoptimizations described

in [24]. Throughout this section, we refer to these algorithms simply as LS and LESS,

respectively. All methods are implemented in C++. A buffer pool of size 500 pages is

used by both implementations for the experiments, and all page requests go through this

buffer pool. Page size is set to 4KB for both methods. All experiments are performed on

a 1.7GHz Xeon machine running Debian Linux 2.6.

In all experiments, the tuple size is 100 bytes. This tuple size is also used in [24] for

their experiments. If the amount of space needed to store theattribute values that the sky-

line is evaluated over is less than 100 bytes, a random sequence of bits is added to the tuple

for padding. This more closely resembles a real database setting in which a projection is

applied to the tuples of the skyline that seek information such as that contained in a text

field or some other information in addition to the multidimensional skyline values.

The reader will notice that LS requires two scans of the dataset to output the skyline,

the first to mark positions in a lattice structure and a secondto output skyline points from

values derived from the lattice. Our implementation does both of these passes through the

dataset for LS, i.e. our LS implementation is outputting notjust skyline values but the 100
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byte values associated with each skyline tuple. Hence, our comparison with LESS is a fair

comparison.

The reason for choosing the LESS algorithm is as follows: LS is a skyline evaluation

technique that does not require an index, such as BBS that requires an underlyingR-tree,

or some other multidimensional index. SFS with the LESS optimizations is currently

the best general skyline evaluation technique that also does not require an index to be

preconstructed on the data.

Both LS and LESS do not require preprocessing or indexing, which makes them very

appealing when the skyline operation is part of a complex query (for example computing

the skyline over a subset of the base relation). On the other hand, indexed techniques

require precomputing an index, or building an index on-the-fly if an index does not exist,

which is expensive. To confirm this, we have also considered bulk loading an R-tree index

on the fly using the R-tree bulk loading technique of [47] and then running BBS [59]. For

the datasets that we use in this section, the index construction time itself is often greater

by more than an order of magnitude compared to the LS evaluation time. In the interest of

space, we omit these results.

4.6.1 Datasets

For the datasets, we use both synthetic and real datasets. The use of synthetic datasets

allows us to carefully explore the effect of various data characteristics, and is commonly

used for skyline evaluation. We generate the synthetic datasets with correlated (CO), in-

dependent (IN) and anti-correlated (AC) distributions using the popular skyline dataset

generator of [10]. We have modified the generator to generate(a) datasets withd attributes

each from low-cardinality domains with domain size ofc, and (b) datasets withd − 1 at-

tributes from low-cardinality domains and 1 attribute fromthe domain of all real numbers

between 0 and 100K.
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Parameter Settings
d 5, 6, 7
c 4, 6,8, 10, 12
n 100K, 250K,500K, 750K, 1M

Table 4.6:Parameter settings used for varying the dimensionality (d), attribute cardinality (c), and dataset
cardinality (n) for the synthetic data experiments, with default parameters shown in bold.

Domain
Description Type Values Cardinality
# of Bedrooms Low-card. Integer 7
# of Bathrooms Low-card. Nearest 1/2 Bath 4
# of Floors Low-card. Integer 3
Total Rooms Low-card. Integer 10
Contains Garage Boolean Yes or No 2
Asphalt Roof Boolean Yes or No 2
Colonial Arch. Boolean Yes or No 2
Estimated Price Continuous Dollar value nearly 160K

Table 4.7:Attributes in the Zillow house-price dataset.

We generate a number of synthetic datasets by varying three parameters: (1) the data

cardinality n, (2) the data dimensionalityd, and (3) the number of distinct values for

each low-cardinality attribute domainc. Datasets are generated for the CO, IN, and AC

distributions by holding two of these three parameters fixedat a default value and varying

the third parameter. The parameter settings used for these three parameters are shown in

Table 4.6, with default parameter settings shown in bold. (The default value ofn = 500K

is also used in [24]).

We also use two real datasets for our experiments. The first dataset is a house-price

information dataset that is obtained from Zillow.com [4]. Zillow lists the number of bed-

rooms, the number of bathrooms, the estimated price, and other information about houses

all over the United States. We obtained a dataset containingmore than 160K entries for

the local regional area between Yonkers, NY and Stamford, CT.This region corresponds

to the area that a New York City commuter might live in north of the city. The dataset

contains 8 attributes which are summarized in Table 4.7. In this dataset, the house price is

an unconstrained attribute.

The second real dataset is taken from the Internet Movie Database (IMDB) [1], which
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Domain
Description Type Values Cardinality
Rating Low-card. 1/10 Increments 101
Color Boolean Color or B&W 2
Year Low-card. Integer 99
No. of Reviewers Continuous # of voters 217K

Table 4.8:Attributes in the IMDB movie dataset.
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Figure 4.5: Results for 1 unrestricted and d-1 low-cardinality attributes with varying dimensionality for (a)
the CO, (b) the IN, and (c) the AC distributions. (n=500K, c=8) The number of skyline points in
each dataset is shown in (d).

contains information about movies and television shows, and ratings of these by actual

users. From the IMDB, we have produced a dataset that containsover 161K entries and

four attributes. The four attributes are summarized in Table 4.8. In this dataset, the rating

attribute is a value between 0.0 and 10.0 with 1 decimal precision, and the number of

reviewers is an unconstrained attribute of the dataset witha range from 0 to 217K.
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Figure 4.6: Results for 1 unrestricted and d-1 low-cardinality attributes with varying attribute cardinality for
(a) the CO, (b) the IN, and (c) the AC distributions. (n=500K,d=6) The number of skyline points
in each dataset is shown in (d).

4.6.2 Experimental Setup

A buffer pool size of 500 pages is used in all the experiments.For LS, 499 buffer

pages are used to store the lattice element entries in an array and 1 page is used to read

in the data set. The 499 buffer pool pages are enough for the lattice structure to fit into

memory for all tests. For example, for either the CO, IN, or AC synthetic datasets with the

default parameters (d = 6, c = 6) the lattice structure size is85 = 32768 lattice entries.

Each lattice entry uses 34 bits (4 bytes to store the6th attribute which may be either low-

cardinality or from an unrestricted domain, and 2 bits to store thedesignator). Hence, the

lattice structure in this case uses 136K of memory (32768*34/8). Note that the buffer pool

is of size 500*4K=2000K. Note also that the largest the size of the lattice reaches in these

experiments is86*34/8=1088K.
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Figure 4.7: Results for 1 unrestricted and d-1 low-cardinality attributes with varying dataset cardinality for
(a) the CO, (b) the IN, and (c) the AC distributions. (c=8, d=6) The number of skyline points in
each dataset is shown in (d).

In [24], the authors state that no increase in performance isnoticed when setting the

EF window size to more than 5 pages. We observed this also in our experiments and

even noticed a decrease in performance for some larger EF window sizes. Hence, the EF

window size is set to 5 pages in our experiments, which is alsodone in [24].

4.6.3 Performance on Synthetic datasets

d-1 Low-Cardinality Attributes and One Continuous Attribu te

In this experiment, we evaluate the two algorithms on both correlated, independent, and

anti-correlated datasets. In these tests, one attribute isdrawn from an unrestricted domain

consisting of the set of all real numbers between 0 and 100K and the remainingd − 1

attributes are are drawn from low-cardinality domains. In the first test, we vary the dimen-

sionality between 5 and 7 (similar to the performance study of [24]). The results are shown

in Figures 4.5a, 4.5b, and 4.5c for the correlated, independent, and anti-correlated datasets,



110

T
im

e 
(s

)
0

1

2

3

Total Dimensions
5 6 7

LESS
LS

T
im

e 
(s

)

0

1

2

3

4

5

Total Dimensions
5 6 7

LESS
LS

(a) (b)

T
im

e 
(s

)

0

4

8

12

Total Dimensions
5 6 7

LESS
LS

# 
of

 S
ky

lin
e 

P
oi

nt
s

1

10

100

1000

10000

Total Dimensions
5 6 7

P
er

ce
nt

 o
f T

ot
al

 P
oi

nt
s

.01

.1

1

4

Corr
Ind
Anti

(c) (d)

Figure 4.8: Results for d low-cardinality attributes with varying dimensionality for (a) the CO, (b) the IN,
and (c) the AC distributions. (n=500K, c=8) The number of skyline points in each dataset is
shown in (d).

respectively. Figure 4.5d, shows the number of skyline points for each distribution.

From Figure 4.5c we observe that LS is an order of magnitude faster than LESS in

the AC case. LS is also faster in the independent case for 6 dimensions (about 3X), 7

dimensions (about 4X), and a small advantage for 5 dimensions. In the correlated case, the

algorithms perform almost identically for lower dimensions (5 and 6). LESS does achieve

an advantage over LS for 7 dimensions in the CO case. Notice that the performance of

LS is not varying across distributions, which is expected (see Section 4.5 for details). The

time curve for LS is identical for the CO, IN, and AC distributions, only the scaling in the

three graphs is changing. LESS’s performance varies with the number of skyline points.

The number of skyline points for each distribution is shown in Figure 4.5d. When the

number of skyline points is small (near 10), as in the CO case, LESS performs as well or
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Figure 4.9: Results for d low-cardinality attributes with varying attribute cardinality for (a) the CO, (b) the
IN, and (c) the AC distributions. (n=500K, d=6) The number ofskyline points in each dataset is
shown in (d).

better than LS. However, when the number of skyline points increases and as the dataset

becomes more anti-correlated, LESS requires more computation time as expected. LS has

a bigger advantage in the AC case because LESS is not able to eliminate as many tuples

with its sort-filter pass as in the IN case. Hence, LESS must perform more comparisons in

the AC case.

It is worth noting that the number of skyline points for the 1 unrestricted andd − 1

low-cardinality domains in Figure 4.5d never climbs above 4percent of the 500K dataset

size for any of the dimensionalities or distributions. In all other experiments, the number

of skyline points for each test is a small percentage of the data (also always less than 4

percent of the dataset size). In other words, low-cardinality domains do not produce a

catastrophic case in which nearly the whole dataset is in theskyline.
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Figure 4.10: Results for d low-cardinality attributes withvarying dataset cardinality for (a) the CO, (b) the
IN, and (c) the AC distributions. (c=8, d=6) The number of skyline points in each dataset is
shown in (d).

In the second test, we vary the attribute cardinality between 4 and 12. The results are

presented in Figures 4.6 a, b, and c for the CO, IN, and AC distributions, respectively.

Similar to the dimensionality results already presented, LS outperforms LESS by more

than an order of magnitude for the AC distribution. For the INdistribution, the perfor-

mance advantage of LS relative to LESS rises as the domain cardinalities (and hence also

the number of skyline points present in the dataset) increases, varying from between 1.5X

better when each of thed−1 low-cardinality domains has cardinality 4 to about 2.5X better

when the cardinality is 12. For the correlated case, LS and LESS perform about the same

when the domain cardinalities are between 4 and 10 while LESSachieves a performance

advantage when the domain cardinality reaches 12. This is because the small number of

skyline points (similar to the dimensionality tests, about10 total data points) present in the

data for the correlated case means that LESS can be very efficient. The number of skyline
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points for each distribution is shown in Figure 4.6d. The performance of LESS degrades

for the other data distributions as the number of skyline points rises. The performance

of LS varies with the sizes of the low-cardinality domains, since larger sizes mean more

elements in the lattice. The performance of LS does not vary with the data distribution,

but remains constant across each of the three distributions.

In the third test, we vary the input data cardinality between100K and 1M data tuples.

The results for the CO, IN, and AC distribution are presented in Figures 4.7 a, b, and c,

respectively. LS is faster than LESS by an order of magnitudeor better for the AC dis-

tribution, and about 3X better than LESS on the IN distribution. LS and LESS perform

similarly on the CO dataset. The performance of LS decreases approximately linearly asn

increases, since the size ofn exceeds the cost of the lattice comparisons (d− 1)*V =164K.

for all data sizes except 100K. The performance of LESS degrades faster for the AC dis-

tribution because the number of skyline points is greatest for this distribution (see Fig-

ure 4.7d).

d Low-Cardinality Attributes

In this section, we evaluate the performance of LS on datasets that containd attributes

drawn from low-cardinality domains. We again compare LS with LESS and test with

synthetically generated datasets from the CO, IN, and AC distributions.

For these experiments, we build the lattice usingd− 1 of the low-cardinality attributes.

This allows us to use Algorithm 9 for the skyline evaluation,storing the value of thedth

attribute in the lattice. The skyline evaluation using thistechnique is correct. This results

in better performance than building the lattice over alld attributes since the size of the

lattice is smaller.

The skyline sizes for the datasets are presented in Figures 4.8d, 4.9d, and 4.10d for vary-

ing dimensionality, attribute cardinality, and dataset cardinality, respectively. The reader
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may notice when observing this data for the correlated and independent data distributions

that the number of skyline points decreases asc or d gets larger, which seems counter-

intuitive. This occurs because, for these parameter choices, there are a large number of

duplicates of the maximal tuple. This repetition occurs because in these cases, the size of

the dataspace is smaller than the dataset size. Skyline algorithms cannot simply discard

such duplicate skyline values because the skyline query very often is requesting informa-

tion beyond just skyline values (for example, the name of a hotel) that is unique to each

tuple. These duplicates can occur in real datasets. For example, many hotels could offer

a workout center, a pool, and free parking. A skyline query for these attributes could then

return multiple hotels offering the same features.

In the first test, we vary the dimensionality between 5 and 7 (as in the performance

comparison in [24]). The results are shown in Figures 4.8 a, b, and c for the correlated,

independent, and anti-correlated datasets, respectively. LS performs better than LESS

by a factor of 5-6X for the AC dataset. On the IN dataset, LS also outperforms LESS

when the dimensionality is 6 or 7 (nearly 2X). LS performs about the same as LESS for

the correlated dataset for dimensionalities of 5 and 6 and LESS performs better than LS

for the correlated dimensionality of 7. The performance advantage for LS for thed low-

cardinality attributes is not as great as was achieved in Section 4.6.3 because the number

of skyline points is smaller. As is described in Section 4.6.1, there is a smaller number

of skyline points for the correlated case because the numberof values expected to be

located at the maximum point decreases as the dimensionality increases (500K/85 = 15

vs. 500K/87 > 1). This trend accounts for the shape of the lines for the number of skyline

points in Figure 4.8d.

In the next experiment, we vary the low-dimensionality cardinalities. The results for

this experiment are shown in Figures 4.9 a, b, and c for the CO, IN, and AC datasets,
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respectively. LS is faster in the anti-correlated case by nearly an order of magnitude for

c ≥ 6 and is about 4X faster whenc = 4. LS is faster for the independent case by about 2X

whenc ≥ 8 and about1.5X whenc = 4 or 6. The performance of LESS for the correlated

case is better forc ≥ 6 versusc = 4 because the number of skyline points forc = 4 is

much greater than the other cases. This is because the smaller data space results in more

duplicate values (see Section 4.6.1 for details). Essentially, the performance of LESS for

the CO case closely follows the trend set by the skyline size, shown in Figure 4.9d.

In the third test, we vary the number of data points in each dataset between 100K and

1M. The results are shown in Figures 4.10 a, b, and c for the CO, IN, and AC datasets

respectively. LS is better by nearly an order of magnitude for the AC distribution and by

nearly 2X for the IN distribution for cardinalities greaterthan or equal to 500K. The per-

formance of LESS and LS is similar for the correlated case, for reasons already discussed.

4.6.4 Performance on Real Datasets

First, we evaluate the performance of LS and LESS on the Zillow dataset. The Zillow

dataset contains 8 attributes (see Table 4.7), and our queries compute the skyline with

respect to the max operator for the first seven attributes, since these attributes represent

home features that a home buyer may want to maximize. We take the skyline with respect

to the min operator for the estimated price of the house.

Using this 8 dimensional dataset, we obtain 5, 6, and 7 dimensional subsets to be used

for testing in the following way: for 5 dimensions, we randomly select 4 of the first 7

attributes along with the price attribute (the unrestricted attribute) to obtain 5 attributes

in total. We do this 10 times to obtain 10 unique 5 dimensionaldatasets whose query

times are then averaged and reported in this section. A similar operation is done for 6

dimensions. For 7 dimensions, there are seven possible selections of six of the first seven

attributes. Each of these seven possible attribute selections, along with the price attribute,
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make up the 7 dimension attribute subsets.

The performance on the Zillow dataset is shown in Figure 4.11a. Here, we see that

LS outperforms LESS by about an order of magnitude. This behavior is due to the anti-

correlated nature of the price attribute with respect to thenumber of features (bedrooms,

bathrooms, etc.) offered by each house. Intuitively speaking, as the number of features

rises, the cost of the house also rises. This produces an advantage for LS since its perfor-

mance is independent of the dataset distribution.

We also evaluate the performance of LS on the IMDB movie dataset. There are four

different skyline queries that different users may want to use with this dataset: (1) a query

for classic movies that are in black and white,CBW (e.g. “Casablanca”), (2) a query for

classic movies that are in color,CC (e.g. “The Wizard of Oz”), (3) for new movies that are

black and white,NBW (e.g. “Schindler’s List”), and (4) for new movies in color,NC. All

queries maximize the movie rating and number of reviewers attributes when performing

the skyline, to find highly rated movies that have been reviewed by as many voters as pos-

sible. Each query either minimizes or maximizes the year andcolor attributes, depending

on whether it is a classic or new movie query for films in color or in black and white. The

performance on the IMDB dataset for these four queries is shown in Figure 4.11b. The

performance of LS is about 2X faster than LESS for theCBWandCC queries and about

1.7X faster on theNBWquery. LS achieves a modest improvement for theNC query. The

reason why LESS performs relatively better for theNC movie query is that the movie en-

titled “The Shawshank Redemption” has the largest number of reviews (more than 217K),

and one of the best ratings. It, and a few similar movies, dominate a large number of the

other entries. Hence, the skyline filter pass of LESS is very effective. There is no similar

effect for the other queries. which means that LESS does morework for these. LS per-

forms the same irrespective of the input. It is also worth noting that the “low” cardinality
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Figure 4.11: Performance of LS and LESS on (a) the Zillow house-price information dataset, and (b) the
IMDB Movie Ratings Dataset.

domains in this example each had cardinalities of approximately 100. Even for this large

c value, LS outperforms LESS.

4.6.5 Performance Summary:

The performance results can be summarized as follows:

• LS typically performs between 5X and an order of magnitude better than LESS on anti-

correlated datasets.

• LS performs between about 1.5X and 4X better than LESS on independent datasets.

• LS and LESS perform similarly for the synthetic correlated datasets, with LESS achiev-

ing an advantage whend = 7 or c ≥ 10.

• For the real Zillow dataset LS outperforms LESS by an order ofmagnitude and for the

lower dimensional IMDB movie database LS outperforms LESS by up to 2X.

4.7 Discretized Skylines

In many applications, it may be appropriate to discretize attributes that are over continuous-

value domains at coarse granularity. For example, considerthe hotel dataset already used

as a running example (see Table 4.1). Now consider what happens if Celestial Sleep were

to reduce the price of a room to 66 dollars. The tuples for the Celestial Sleep and Soporific
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Inn are as follows:

Hotel Parking Swim. Workout Star
Name Available Pool Center Rating Price
Soporific Inn F T F ⋆⋆ 65
Celestial Sleep T T F ⋆ ⋆ ⋆ 66

The Celestial Sleep does not dominate the Soporific Inn since it is still more expensive.

Although the Soporific Inn is still in the skyline, includingit there in the skyline adds

little value since most travelers would prefer to stay at thehigher-rated Celestial Sleep for

only one extra dollar. This characteristic feature is present in a number of real skyline

applications.

As another example, consider the typical car purchase application in which users ex-

plore the tradeoffs in price and several additional attributes with low-cardinality or boolean-

valued domains. A mileage attribute that may be over a continuous domain can be dis-

cretized into a low-cardinality domain. For example, mileage categories might include

30,000-40,000 miles, 40,000-50,000 miles, etc. (Websitessuch as autotrader.com already

allow you to search for cars with mileage under certain increments such as under 75,000).

This sort of coarse discretization is often appropriate forcontinuous valued attributes in

many skyline applications because the purpose of skyline computations is often to find

candidates for further consideration, and small differences in the value of a continuous

attribute can sometimes be ignored.

Definition: We may formally define the discretized skyline if we letg(q.ai) denote the

value of theith attribute ofq in the discretized space.

Definition 4.7.1. Elementq ∈ D is said to dominateq′ ∈ D in the discretized space with

respect to preference function≺i if ∀i ∈ d,g(q.ai) ≺i g(q′.ai). The discretized skylineA

for datasetD is the set of allp ∈ D such thatp is not dominated by any otherq ∈ D in

the discretized space.
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This formulation weakens the dominance condition for two purposes. First, it observes

that a small advantage in dimensioni for q over q′ does not necessarily makeq more

interesting thanq′ (such as in the case of the Soporific Inn and Celestial Sleep). Second,

the overall number of skyline points may be reduced, and thisis usually desirable.

LS is applicable only to problems with low-cardinality domains, with at most one un-

constrained domain. When discretization is appropriate, any continuous attribute can be

converted into a low-cardinality attribute. LS can then be applied after such discretization.

4.8 Conclusions

In this chapter, we have proposed the Lattice Skyline algorithm that is built around a

new paradigm for skyline evaluation of datasets whose attributes are drawn from low-

cardinality domains. Other skyline evaluation techniquesare built around a common

paradigm that eliminates points from consideration in the skyline by finding some other

dataset element that dominates it. LS uses the structure of the lattice imposed by the

skyline operator on the data space of the low cardinality attributes to identify skyline

points. This allows LS to have a complexity (for typical skyline dimensionalities and

low-cardinality domains) that is linear in the size of the input. It also means that the per-

formance of LS is independent of the data distribution, an important result since the per-

formance of other skyline algorithms typically degrades asthe dataset attributes become

anti-correlated.

We have shown that LS is applicable to skyline evaluation forthree important classes

of applications: those in which all attributes come from low-cardinality domains (such as

the discretized skyline), those in which attribute domainscan be naturally mapped to low-

cardinality domains, and those in which one attribute is from an unrestricted domain and

all other attributes are from low-cardinality domains. Forthese applications, LS is also
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usually significantly faster than existing skyline evaluation methods.

In the next chapter, we discuss the Skyline Point Order, a newway to rank skyline

points. By identifying those points that are most valueable to the skyline summary, the

technique increases the utility of the skyline operator andmakes using the skyline easier

in cases when the number of skyline points in a dataset is verylarge.



CHAPTER V

Measuring Skyline Point Utility

5.1 Introduction

In the previous two chapters, we described skyline evaluation in the presence of tem-

poral data using theLookOut algorithm and over low-cardinality attribute domains using

the Lattice Skyline algorithm. The utility of the skyline produced in either of these con-

texts and in the most general, static context as a meaningfuldata summarization technique

is heavily influenced by the number of data elements in the skyline. The cardinality of

the skyline of a dataset is often very large, particularly ifthe dimensionality of the data

is large or the data set elements are anti-correlated. Even when the dataset attributes are

independent of one another, the number of elements in the skyline has been shown to be

Θ(logd−1 n) in expectation in [7]. In such cases, the number of data points in the skyline is

on the order of the number of data points in the dataset itselfand, in such cases, the value

of the skyline as a summary technique is lost.

The potential for skylines with large cardinalities has been noted before [43, 60, 84].

Some techniques to try to reduce the number of skyline pointshave previously been pro-

posed. For example, some methods consider the skyline in a subset of the dimensionality

such as the skyline frequency [14] or in thek-dominant skyline [15] setting. However,

these techniques do not guarantee a reduction of skyline points to any particular number,

121
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Figure 5.1: An example skyline with five skyline points.

nor does it address the problem in the general case, i.e. whenthe user is interested in

points in alld dimensions. Techniques such as the Approximately Dominating Represen-

tatives [41] and thek most representative skyline operator [50] do reduce the skyline to a

fixed size, but these lack a monotonic property, which we showis desirable, and they do

not rank the elements of the skyline in any particular order,which is the primary focus of

this chapter.

Ordering points places the most significant points at the beginning of the skyline re-

sult set. Intuitively speaking, not all points in the skyline are equally useful as summary

points. For instance, consider the common hotel price versus distance example shown in

Figure 5.1. In this example, pointsb, c, andd in all dominate approximately the same set

of points and are all very close to one another. Someone choosing hotelc is likely also

to be satisfied with hotelb or d. Hence, someone seeking a condensed skyline summary

is likely to satisfied with one such point. Hotelsa ande both possess values which are

different from any other skyline point. However,a does not dominate any other hotels

while e dominates hotelsj, k, andl. Thus,e seems like a better summary point thana.

In this chapter, we quantify these intuitive ideas to develop a measure of the importance

of each point to the skyline of a dataset. We develop two summarization properites, the

dataset summarization and the spatial summarization, for skyline points in datasets and de-



123

velop a method, called the Skyline Point Ordering (SPO), that quantifies these properties

to rank skyline points. Using this method, the skyline points are ranked in order of sum-

marization importance to the skyline so that the most important skyline points are returned

to a user first for consideration. A ranked skyline can naturally be extended to a top-k

skyline result set by selecting only the firstk elements of the ranked skyline. To assess

the accuracy of different top-k skyline result sets, we also introduce the Hypperarea Dif-

ference and Pareto spread metrics developed in the engineering community to assess the

optimality of Pareto sets as methods to measure the summarization accuracy of different

top-k skyline sets.

We further propose two different algorithms to evaluate theSkyline Point Ordering.

The first, called the Coverage First Algorithm, evaluates theSPO using only the multi-

dimensional dataset as input, while the second, called the Skyline First Algorithm, uses

both the dataset and the set of skyline points as input.

The rest of this chapter is organized as follows: Section 2 discusses related work. Sec-

tion 3 describes the HyperArea Distance and Pareto spread measures for top-k skyline

accuracy. Section 4 introduces the Skyline Point Ordering and section 5 describes the

Coverage First and Skyline First Algorithms. Section 6 contains our experiments and

Section 7 concludes.

5.2 Related Work

Methods to reduce the number of skyline points have been proposed. Reductions for

high dimensional skylines include the skyline frequency [14], strong skyline points [85],

and the k-dominant skyline [13]. These methods do not rank skyline points nor do they

guarantee a reduction to any specific number. The skylines inthese cases can still be very

large.
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Several top-k skyline techniques exist, including Approximately Dominating Repre-

sentatives [41] (ADR) and thek most representative skyline operator [50]. The ADR of a

dataset is obtained by postprocessing the skyline by boosting a skyline point by a factorǫ

in each dimension and removing skyline points dominated by the new point until onlyk

skyline points remain in the new set. The problem is shown to be NP-hard and approxi-

mation algorithms are developed. Thek most representative skyline operator selects thek

points in the skyline set that collectively dominate the largest number of other points in the

dataset. This problem is also shown in [50] to be NP-hard. We compare our techniques

to the FMG technique developed for approximating thek most representative skyline op-

erator. These techniques do not rank skyline points, which is the focus of our work, but

top-k skyline methods are similar to our Skyline Point Ordering because the firstk ranked

skyline points could be treated as the top-k points.

5.3 Motivation and Summary Quality Measures

One of the drawbacks of using the skyline as a summary mechanism for a dataset is

the shear volume of data that the skyline may contain. A largevolume of data decreases

the usefulness of the skyline as a summary. Summarizing the skyline with some smaller

number of skyline points is advantageous if the number of skyline points is very large.

Once we decide to summarize the skyline, we must find a good wayto obtain summary

points for the points in the Pareto set. A number of methods toevaluate the effective

summary measure for Pareto sets have been developed in the Engineering community. We

will summarize the Hyperarea Difference measure here that is appropriate for measuring

the summary accuracy of a top-k skyline (see [80] for more details).

The Hyperarea Difference (HD) metric is a quantitative evaluation of the difference

between the size of the dominated spaces of the true (complete) Pareto setPc and an
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observed (summary) Pareto setPs. If we let HD(Pc, Ps) denote the hyperarea difference

quantity, then:

HD(Pc, Ps) = space(Pc) − space(Ps)

Here, the term space refers to the area covered by the dominance set of the skyline in 2

dimensions and the volume in 3 or more dimensions.

The hyperarea difference can be quantified as the space difference between the com-

plete skyline, which may contain too many points to be usefulas a summary but which

still captures the unique optimal values with respect to thedominance relationship, and a

potential candidate skyline summary. In [80], the authors note that the better the space of

an observed (summary) Pareto set approximates the space of the true (complete) Pareto

set, the better the observed (summary) Pareto set approximates the true (complete) Pareto

set.

The hyperarea difference measure is one way of accessing theeffectiveness of a skyline

summary. In the next section, we develop methods to effectively summarize skyline points

that try to obtain good spatial summarization as well as dataset summarization.

5.4 Skyline Point Ranking

In this section, we discuss skyline point qualities that should be measure when ranking

skyline points. We then discuss quantitative measures for these qualities. Finally, we

develop an overall measure of the importance of a skyline point to the overall skyline.

5.4.1 Qualities for Skyline Measure

Any measure that is to rank the relative importance of skyline points to the overall

skyline must consider the following two properties of skyline points.
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1. Dataset Summarization:Since the skylineS is a summary of the larger datasetD,

elementss ∈ S that dominate other points inD add summary value to the skyline.

If a point s ∈ S dominatesp ∈ D, then the value ofs is preferred to that ofp. The

more points thats dominates, the better its summary value.

2. Spatial Summarization: The points in the skyline are also values that are not domi-

nated in the partial order imposed by the skyline. Each such skyline element occupies

a point in space whose importance to the skyline can be measured by how unique a

value it is relative to other points in the skyline. A skylinepoint p that is very near

to another skyline pointq is not adding much additional summary value; a user inter-

ested in the approximate location ofp on the skyline can substituteq at little cost.

To see why these two properties of skyline points are important for ranking, consider

as an example the dataset shown in Figure 5.1. Data pointa does not dominate any other

point, i.e. there is no other data pointp in D that would prefera to p. Therefore, the

utility of this point for dataset summarization purposes isvery low. However, the value of

a is very unique since no other point is near it. Hence, the utility of this point for spatial

summarization is very high.

These measures are relativistic, meaning that the summary and uniqueness importance

of a pointp varies depending on the dataset (on the nonskyline points that are dominated

by p and on the nearness of other skyline points top).

5.4.2 Dataset Summarization Measure

In this subsection, we propose a novel measure called the Point Dominance Set of

a skyline point as a measure of its dataset summarization properties with respect to the

dataset.

Definition 5.4.1. Point Dominance Set (PDS): The point dominance set of a skyline point
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s of a datasetD is the set of allp ∈ D such thats dominatesp.

PDS(s,D) = {p ∈ Ds.t.s ≺ p} ∪ s

The point dominance set for each skyline point measures its summarization for ele-

ments ofD. For example, in Figure 5.1, the point dominance set of pointb is {b, g, h, i, j}.

The PDS ofe is {e, l, k}.

We require a numeric measure of the PDS in order to rank skyline elements relative to

one another. We can obtain such a measure by normalizing the cardinality of the PDS by

the size of the dataset. We call this measure the Normalized Point Dominance of a skyline

point.

Definition 5.4.2. Normalized Point Dominance (NPD): The normalized point dominance

of a skyline points of a datasetD is the cardinality of the PDS ofs divided by the total

cardinality ofD.

NPD(s,D) =
|PDS(s,D)|

|D|

As an example, consider again Figure 5.1. In the figure, the value of the NPD forb is

|{b, f, g, h, i, j}|/|D|=6/12=0.5.

5.4.3 Spatial Summarization Measure

In this subsection, we develop a technique called the Nearest Metadominant Distance

as a measure of the spatial summarization properites of a skyline element.

Definition 5.4.3. Nearest Metadominant Distance (NMD): The nearest metadominant dis-

tance of a skyline points of a datasetD is the distance to the nearest skyline point inD

that dominates more points thans dominates.
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NMD(s,D) = min dist(s, p ∈ S) s. t.

NPD(p) > NPD(s)

If no pointp has a largerNPD than a points, thenNMD(s,D) = |U |, whereU is

the universe.

The Nearest Metadominant Distance measures the distance from a skyline points only

to those skyline points in the dataset that dominate more points thans dominates. This

prevents all skyline points in a cluster from being low-rated do to their spatial similar-

ity. At least one of these points should be highly rated. For example, in Figure 5.1, the

three skyline pointsb, c, andd are all close in space and dominate the same set of points

{f, g, h, i, j}, with the exception ofd which also dominates pointl. For this reason, the

NMD distances ofb andc will be small (their distances to pointd), while that ofd will be

the size ofU .

If two points have the sameNPD, we can adopt the tie-breaking convention to rate

points with equalNPD scores based on the value in a particular dimension.

We now introduce the Normalized Nearest Metadominant Distance to normalize the

interpoint distances by the size of the universe.

Definition 5.4.4. Normalized Nearest Metadominant Distance (NNMD): The normalized

nearest metadominant distance of a skyline points of a datasetD is the nearest meta-

dominant distance ofs divided by the size of the universeU in which elements ofD are

drawn.

NNMD(s,D) =
|NMD(s,D)|

|U |
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5.4.4 Complete Ordering

In this subsection, we define the Skyline Point Ordering for aset of skyline points as a

combination of the Normalized Point Dominance and the Normalized Nearest Metadom-

inant Distance, thus capturing a combination of the datasetand spatial summarization of

each skyline point.

Definition 5.4.5. Skyline Point Ordering:

SPO(s,D) = NNMD(s,D) ∗ NPD(s,D)

The skyline point which dominates the largest number of points in D will always be

the highest ranked skyline point. This is because it will have the largest Point Dominance

Set of any skyline point and its Nearest Metadominant Distance will be the size of the

Universe.

5.4.5 Using the Skyline Point Ranking to find the Top K Skyline

As we have already discussed, ranking skyline points is important to present users with

the most important skyline summary points first in the event that the number of skyline

points. It can also be used as a convenient measure of the topk skyline points, wherek is

an integer between 1 and the cardinality of the skyline. We first define the topk skyline

operator using theSPO developed in the previous section.

Definition 5.4.6. Top-K Skyline: a skyline points is said to be a top-k skyline point if

there does not existk or more skyline points that have a greater SPO thans.

This definition takes the firstk points in the ranking of theSPO for the top-k. This

definition has one very important advantage over the covering definition used in [50] or the

ADR used in [41] that are discussed in the related work section and that is its monotonicity.
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Figure 5.2: An example skyline with three skyline points.

5.4.6 Monotonicity Property

In this section, we discuss the monotonic property for top-k skyline queries. A top-k

skyline definition is monotonic if the set of top-k skyline points is a superset of the top-

k − 1 skyline points. In other words, the topk skyline points should be equal to the top

k − 1 skyline points with one additional skyline point that is notin the top-k − 1 skyline

points. This can be written asTk = Tk−1 + s whereTk is the top-k skyline points,Tk−1 is

the top-k − 1 skyline points, ands is a skyline point not inTk−1.

To understand why monotonicity is desireable for the top-k skyline, consider the top-k

skyline definition used by the authors of []: The top-k skyline of a datasetD is the set of

k skyline points which dominate the largest possible number of points inD.

For example, consider the dataset in Figure 5.2. In this figure, three data elements are

in the skyline:a, b, andc. The dominance sets of each point are shown in Table 5.1.

Skyline Point Dominance Set
a d, e, f, g
b f, g, h, i, j
c h, i, k, l

Table 5.1:The skyline points from Figure 5.2 with their dominance sets.

The top-k points using the set coverage definition ifk = 1 is b, sinceb has the largest

coverage set. Ifk = 2, the top-k skyline isa andc. This seems unintuitive to a user – the
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best point isb, but the two best points do not contain the best point.

5.5 Top K Skyline Algorithms

In this section, we propose two different algorithms for evaluating theSPO. The first of

these algorithms, called the Coverage First Algorithm, evalautes the skyline of the dataset

and the Point Dominance Set of each skyline point at the same time. The second of these

algorithms, called the Skyline First Algorithm, evaluatesthe skyline of a dataset using any

known skyline algorithm, then uses the skyline to find the Point Dominance Set.

5.5.1 Coverage First Algorithm

The first algorithm we propose is called theCoverage First Algorithm(CF) which si-

multaneously evaluates the cardinality of thePDS of a data point and determines whether

or not that point is a skyline point.

The algorithm maintains two sets of data points. The first setconsists of those data

points that have not yet been dominated by any other data points. This set is called the

Skyline Candidate (SC) set. The second set consists of those data points that have been

dominated by some other data point and hence cannot be skyline points. This set is referred

to as theDominated Points (DP) set. These sets are mutually exclusive (SC
⋃

DP = D

andSC
⋂

DP = emptyset).

The CF algorithm is presented in Algorithm 10. The algorithm begins with all elements

of the datasetD in SC and no data points inDP (lines 3-5 of the algorithm). Each element

of SC is compared with every other element ofSC to determine dominance (lines 6-18).

If a point in SC is dominated, it is added to the set of dominated points (lines 15 and 24

of Algorithm 10). If a point is not dominated and is hence a skyline point, it is compared

with the set of dominated points (lines 19-23) to determine the size of thePDS for the

point. The temporary setRP is used to hold dominated points removed fromSC which
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are later added toDP to prevent them from being considered twice (lines 24-25).

Once the skyline has been found and thePDS cardinality of each point is known, the

skyline set is sorted on thePDS cardinalities (line 27). Now, theNMD of each skyline

point is found in lines 28-36. First, theNMD is initialized to the size of the universe,

where the size of the universe is the L-norm distance from thelower-left (least) corner

to the upper-right (greatest) corner in the universe. This is the maximum value of the

NMD for any point. Next, each skyline points is compared with all other points in the

skyline (lines 30-34). If a skyline pointq has a larger point dominance set than another

skyline pointp and the euclidean distance fromp to q is less than the nearest metadominant

distance ofp, thenmd of p is set equal to the distance betweenp andq.

Once a pointp has been compared with all other skyline points, itsspo can be found

(line 35). The skyline points are then sorted on thespo (line 37), which completes the

ranking.

5.5.2 Skyline First Algorithm

The second algorithm we propose is called theSkyline First Algorithm(SF) which first

evaluates the skyline of the dataset before evaluating the cardinality of the coverage set of

each skyline point. The Skyline First algorithm is shown in Algorithm 11.

The algorithm begins by first evaluating the skyline using any previously proposed

skyline evaluation algorithm. In our implementation, we use the SFS technique of [19]

with the LESS [24] optimizations. The set of skyline pointsS and the remaining points in

the datasetD are inputs to SF (line 1). In lines 4-10, the size of thepds set for each skyline

point is determined by comparing each element of the skylineset with each element ofD.

The remainder of the SF algorithm (lines 11-21) is similar tothe CF algorithm (lines

27-37) in how it evaluates thespo of each skyline point.
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Algorithm 10 Coverage First Algorithm.
1: Input: D

2: Output: Ranked Skyline SetSC.
3: SC = D.
4: DP = ∅.
5: RP = ∅.
6: for all i ∈ SC do
7: for all j ∈ SC andj 6= i do
8: if i dominatesj then
9: SC = SC - j.

10: RP = RP + j.
11: i.pds++.
12: end if
13: if j dominatesi then
14: SC = SC - i.
15: DP = DP + i.
16: break.
17: end if
18: end for
19: for all n ∈DP do
20: if i dominatesn then
21: i.pds++.
22: end if
23: end for
24: DP = DP + RP .
25: RP = ∅.
26: end for
27: sortSC by pds size.
28: for all m ∈ SC do
29: m.nmd = size ofU .
30: for all n ∈ SC, m 6= n do
31: if n.pds < m.pds anddist(m, n) < m.nmd then
32: m.nmd = dist(m, n).
33: end if
34: end for
35: m.spo = m.pds/| D | * m.nmd/| U |.
36: end for
37: sortSC onspo.

5.5.3 Algorithm Comparison

We expect the SF algorithm to outperform the CF algorithm whenthe size of the skyline

is small. This is because the CF algorithm performs a block-nested loop computation that

is avoided by SF in which points have the cardinalities of their dominance sets determined.

Since many of these points end up being dominated, some extracomputation is performed

during this step. The SF algorithm, in contrast, separates the two steps. The skyline can be

found without the expensive block-nested loops calculation, and comparing only skyline

points with the dominated set is more efficient than the CF algorithm.
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Algorithm 11 Skyline First Algorithm.
1: Input: datasetD, skylineS

2: Output: Ranked Skyline SetSC.
3: SC = ∅.
4: for i ∈ SC do
5: for j ∈D do
6: if i dominatesj then
7: i.pds++.
8: end if
9: end for

10: end for
11: sortSC by pds size.
12: for all m ∈ SC do
13: m.nmd = size ofU .
14: for all n ∈ SC, m 6= n do
15: if n.pds < m.pds anddist(m, n) < m.nmd then
16: m.nmd = dist(m, n).
17: end if
18: end for
19: m.spo = m.pds/| D | * m.nmd/| U |.
20: end for
21: sortSC onspo.

We expect the CF algorithm to outperform the SF algorithm whenthe size of the skyline

is large. This occurs when the size of the skyline approachesthe size of the dataset. In

this case, finding the skyline and the size of the dominance set in one combined step as is

done by CF saves computation that is split up into two steps by the SF algorithm. This is

because every point needs to be compared with every other point when (nearly) all points

are in the skyline. The size of the skyline will approach the size of the dataset in general

when the dataset is anti-correlated and the dimensionalityof the dataset is high.

5.5.4 Complexity

The complexity of both algorithms isO(n2). For the interest of space, we omit a formal

proof but give the intuition here. The worst case for both algorithms occurs if all dataset

elements are in the skyline. For CF, finding the dominance set for each element (lines

6-26) isO(n2) since the step then involves comparing each element to alln − 1 other

dataset elements. The computation of thespo (lines 28-36) also takesO(n2) time since

each element ofSC is compared with all other elements inSC. For SF, finding the skyline
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in the initial step is anO(n2) operation if all elements are in the skyline. Finding thespo

(lines 12-20) isO(n2) also for the same reasons as for CF.

5.6 Experiments

In this section, we study the performance of the SF and CF algorithms for evaluating the

SPO. We then measure the effectiveness of theSPO for summarization of skyline sets. In

the performance study, we also compare the SF and CF algorithms to the performance of

the FMG algorithm of [50], because the FMG algorithm is used to find the top-k skyline

and is the most similar technique to our work. The compiled executables for the Linux

operating system for FMG were graciously provided to us by the authors of [50]. The

SF and CF algorithms have been implemented in C++. All experiments are performed on

a PC running Debian Linux with kernel 2.6.0, a 1.70 GHz Intel Xeon CPU, 512 MB of

memory, and a 40 GB Fujitsu SCSI hard drive.

The Coverage First and Skyline First algorithms are implemented in C/C++. Each uses

a buffer pool to access data with a buffer pool size of 128 pages with a page size of 4KB,

and reads and writes of data pages are modeled using reads andwrites to the file system.

The FMG binary files work for datasets varying in dimensionality between 2 and 5. The

FMG technique requires that a spatial indexing structure first be bult. We do not count the

time to build the indexing structure in the query results reported here; all indices for the

FMG technique are prebuilt. The SF and CF techniques introduced in this chapter require

no indexing.

The FMG technique returns the top-k skyline points, instead of a ranking of all skyline

points as is done by our techniques. The query results reported here are for the FMG

algorithm run for the topk = 10 skyline points. The algorithm does require more time for

largerk values. The FMG algorithm also has a parameter which deals with how closely
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the algorithm approximates the NP hardk dominating representatives definition. This

parameter is set to the fastest, least accuracte value (2) for the performance study and to

the most accurate, slowest value (32) possible for the accuracy experiments so that the

results in both cases are the best possible for FMG.

In this performance experimental study, we first describe the datasets used, including

both real and synthetic, then discuss results for low-dimensionality synthetic datasets with

dimensions between 2 and 5, which allows for direct comparison between the SF and CF

techniques and the FMG method. We then perform higher dimensionality comparisons for

SF and CF and finally show results on real datasets. We then conduct accuracy experiments

on the top-k results which we later describe.

5.6.1 Datasets

We experiment with both real and synthetic datasets. For theperformance study, we

use synthetic datasets generated with the dataset generator of [10]. These datasets are cor-

related, independent, and anti-correlated, and are widelyused to evaluate the effectiveness

of skyline algorithms because they represent many different types of real datasets in which

skyline algorithms are useful. In the first set of experiments, we generate datasets with di-

mensionalities varying between 2 and 5, because the compiled executables provided for

the FM algorithm operate on data with between 2 and 5 dimensions.

In the second set of experiments, we evaluate the performance of SF and CF on higher

dimensionality datasets. The compiled binaries for the FMGtechnique is not applicable

for these dimensionalities. For these experiments, we generate datasets with dimensional-

ities between 6 and 8.

We also experiment with two the real datasets. The first real dataset is the NBA players

dataset1. This dataset has been used previously to evaluate the effectiveness of skyline
1www.basketballreference.com
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Figure 5.3: Performance results for varying dataset cardinality with fixed dimensionality of 2 for the (a)
anti-correlated, (b) independent, and (c) correlated datadistributions.

algorithms [13]. It consists of various statistics for NBA players for a season, such as the

number of points, the number of rebounds, and the number of free throws that players

obtain as single season totals. The dataset contains player-season row entries, so certain

players have multiple entries in the dataset, depending on how many seasons they played

in the NBA. For example, Michael Jordan has 15 entries in the dataset, corresponding to

the 15 seasons he played in the NBA. This dataset contains more than 19 thousand entries.

The second real dataset we use is taken from the Internet Movie Database (IMDB). This

dataset contains information about movies and television shows and ratings information

from real users about each movie or television show and contains three attributes and more

than 160 thousand entries. The three attributes for each tuple are the number of raters for

each movie or TV show, the rating, and the year of production.

5.6.2 Low Dimensionality Performance

In this section, we present results for dataset dimensionalities varying between 2 and 5.

These are the dimensions for which the FMG algorithm operates, and hence allows for a

direct comparison between FMG and the CF and SF algorithms.

We show the results for 2 dimensions in Figure 5.3 a, b, and c for the anticorrelated,

independent, and correlated cases, respectively. In all cases, SF performs better than the

CF technqiue by nearly an order of magnitude. This is because the skyline is small for
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Figure 5.4: Performance results for varying dataset cardinality with fixed dimensionality of 5 for the (a)
anti-correlated, (b) independent, and (c) correlated datadistributions.

these two dimensional cases, and it can be found quickly using the SFS skyline algorithm,

which improves the performance of SF over CF because CF loops iteratively through the

complete dataset. SF also performs better than FMG for the anti-correlated (about 50%

faster) and the independent (about 2X faster). This is because the performance of SF im-

proves from the anti-correlated to the independent datasets because of the smaller number

of skyline points in the independent case, while the performance of FMG does not improve

much. In the correlated case, the performance is nearly identical.

We present the results for each dataset for 5 dimensions in Figure 5.4 a, b, and c for the

anticorrelated, independent, and correlated cases, respectively. As in the 2 dimensional

case, SF is the best performing technique. SF performs better than CF by 3-10X. SF

outperforms FMG by a factor of 4-10X in the anti-correlated and independent cases. Small

efficiencies are also obtained in the correlated case. CF alsooutperforms FMG in the anti-

correlated case by 2-4X and achieves small efficiencies in the independent case. FMG is

faster than CF in the correlated case by nearly an order of magnitude.

The results for varying the dimensionality for fixed 500 tuple dataset cardinalities are

shown in Figure 5.5 a, b, and c for the anti-correlated, independent, and correlated cases,

respectively. SF is faster than CF in all cases by 5-10X. Sf is faster than FMG by 2-

10X in the anti-correlated case, 2-4X in the independent case, and the two perform nearly
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Figure 5.6: Performance results for fixed dataset cardinality of 100K with varying high dimensionality for
the (a) anti-correlated, (b) independent, and (c) correlated data distributions.

identically in the correlated case. CF does outperform FMG for the 4 and 5 dimensional

cases in the anti-correlated case and the two perform nearlyidentically in the independent

case. In all other cases, FMG performs better than CF by 2-10X.

5.6.3 Higher Dimension Performance

In the previous section, we compared the performance of the CFand SF algorithms

with that of the FMG technique. Because the FMG technique requires an index to be con-

structed first, the dimensionality in the previous section of the datasets tested was lower.

We use smaller dataset cardinalities in these experiments than before because the larger

dimensionalities produce higher running times than before. We use 100 K datasets when

varying the dimensionality between 6 and 8 and vary the dataset cardinality between 20

and 100 K for the 8 dimensional dataset tests.
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Figure 5.7: Performance results for varying dataset cardinality with fixed dimensionality of 8 for the (a)
anti-correlated, (b) independent, and (c) correlated datadistributions.

In this section, we evaluate the performance of the CF and SF algorithms on datasets

having higher dimensionality. Specifically, we experimentwith 6-8 dimensional synthetic

datasets using the correlated, independent, and anti-correlated distributions discussed in

the datasets section.

The results for varying the dataset dimensionality between6 and 8 dimensions are

presented in Figures 5.6 a, b, and c for the anti-correlated,independent, and correlated

distributions, respectively. The SF technique still performs better than the CF dataset in

these experiments as was the case for the 2-5 dimensional datsets. However, the perfor-

mance advantage is smaller because the number of skyline points is greater for the higher

dimensionality. This results in the skyline computation used by the SF technique taking

a greater amount of time than for the smaller dimensionalities, lowering the advantage

relative to CF.

The results for varying the dataset cardinality for 8 dimensions are presented in Fig-

ures 5.7 a, b, and c for the anti-correlated, independent, and correlated distributions, re-

spectively. As for the dimensionality experiments just discussed, the SF algorithm still

performs better than the CF technique, but the performance advantage for the larger di-

mensionalities is smaller than before because of the largernumber of skyline points in the

datasets.
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5.6.4 Real Datasets

In this section, we compare the performance of CF, SF, and the FMG algorithms on

the two real datasets discussed in Section 5.6.1, the NBA players dataset and the IMDB

dataset. From the NBA players dataset, we randomly select 5 dimensional subsets from

the overall dataset and average the results for 10 such subsets. The results for both the

NBA and the IMDB datasets are shown in Figure 5.8.

For both datasets, the performance of SF is the best of the three methods. It is more

than a factor of 2 better than the FMG algorithm for the NBA players dataset and 3 times

better on the IMDB dataset and SF is also more than an order of magnitude faster than the

CF algorithm on both datasets for reasons already mentioned previously in Section 5.6.2.
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Figure 5.8: Performance results for the NBA players and IMDBdatasets.

5.6.5 Accuracy

Next, we measure the overall accuracy of the results returned using the Skyline Point

Ordering (SPO) method and compare this to the top-k skyline of FMG. We use two mea-

sures of accuracy for these experiments. The first is the Hyperarea Difference (HD) mea-

sure discussed in Section 3 that measures the spatial volumeof a Pareto set. The second is

the number of points in each dataset that are dominated by thetop rankedk skyline points

for each method (DOM).
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Figure 5.9: Hyperarea Difference accuracy measure for the (a) NBA players, (b) IMDB, and (c) synthetic 5
dimensional anti-correlated datasets for the FMG and Skyline Point Order techniques.

We again use the NBA players and IMDB real datasets and a synthetic 5 dimensional

anti-correlated dataset with 500K data points (5A). The three datasets contain 22, 79,

and 4079 skyline points for the IMDB, NBA players, and 5A datasets, respectively. We

measure the topk=3, 5, 10, and 20 skyline points for each dataset.

The results for the Hyperarea Difference are presented in Figure 5.9 a, b, and c for the

NBA players, IMDB, and 5A datasets, respectively. Here, we normalize the volumes by

the largest result (typically whenk is 20 for the SPO) so that results are represented as

a percentage of this best result. In Figure 5.9 a and b, the SPOis covers slightly more

volume than the results of FMG whenk is 10 and 20 and the two have identical results

whenk is 3. Whenk is 10, the SPO results do cover a significantly larger volume.For the

results in Figure 5.9 c, the SPO achieves significantly better volume coverage.

The results for the number of points dominated are presentedin Figure 5.10 a, b, and

c for the NBA players, IMDB, and 5A datasets, respectively. The DOM results are very

similar for the IMDB dataset in Figure 5.10. For the NBA dataset, the top-k SPO results

do achieve better results than that of the FMG. The top-k SPO results are significantly

better for the 5A synthetic data.
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Figure 5.10: The number of dominated points for the (a) NBA players, (b) IMDB, and (c) synthetic 5 di-
mensional anti-correlated datasets for the FMG and SkylinePoint Order techniques.

5.6.6 Summary

We have shown that the Skyline Point Order is generally more accurate than the top-

k results of FMG as measured by the HD and DOM methods and that the SPO can be

evaluated using the SF algorithm as quickly as the FMG methodon correlated datasets

and 2-3 times faster on other datasets.

5.7 Discussion

This work is currently the leading research on skyline pointranking. Hence, there

are many potential future research opportunities in this area of work. In this section,

we discuss a few open questions related to the SPO ranking methodology and point to

directions for potential future work in this area. We also discuss the robustness of the SF

and CF algorithms which evaluate the SPO.

The SPO method is sensitive to the placement of nonskyline points, which means that

moving nonskyline points can result in a new ranking of the elements of the skyline. Con-

sider the example shown in Figure 5.11. This is the same dataset as is shown in Figure 5.2,

in which pointd has the largest dominance set of any point. In Figure 5.11, points f and

h are slightly perturbed, so that they are no longer dominatedby pointd. Now, pointb has

the largest dominance set of any point in the dataset, and hence it will outrankd.
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Figure 5.11: The skyline shown in Figure 5.2 with points
f andh perturbed.

The ranking of the skyline elements in this case has changed.Pointb is a better sum-

mary point thand now that it has a larger dominance set. This sensitivity to the placement

of nonskyline points is one potential weakness of the Skyline Point Order ranking method.

We can define a robust top-k ranked skyline point to be one that remains a top-k skyline

point despite perturbing the underlying dataset.

Definition 5.7.1. A robust top-k skyline point is one that remains a top-k skyline point

when nondominant skyline points are perturbed by up toǫ in any dimension.

In this chapter, we have discussed the SPO as a method to rank skyline points, as well

as a set covering definition for the top-k skyline points developed by [50]. Another method

to find important skyline points is to consider which layer ofthe skyline they might reside.

The skyline layers are indicated in Figure 5.12 for the example dataset first discussed in

Figure 5.2. In Figure 5.12, there are four skyline layers. Each layer is indicated by how

many skyline layers would have to be removed for points in that layer to be on the skyline.

Those points in lower numbered layers are closer to the skyline than are points in higher

numbered skyline layers. Exploring the potentials of the skyline layers is another area for

future work.
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Figure 5.12: The skyline shown in Figure 5.2 with the first
through fourth skyline layers indicated.

5.7.1 Cost Analysis for Modifying the SPO

In this subsection, we discuss the cost of the SF and CF algorithms for making mod-

ifications to the SPO. The Skyline Point Order is one method torank skyline points, but

modifications to the ranking can be made and still evaluated using the SF or CF algorithms.

For example, introducing a log factor to the NNMD or NPD termswill produce a different

ordering of the skyline points. For example:

SPO(s,D) = logk1(NNMD(s,D)) ∗ logk2(NPD(s,D))

This modification will not produce a change in the cost of either the SF or CF al-

gorithms and each method will remain unchanged, except for the final line of each that

computes the SPO from the NNMD and NPD values. In general, thealgorithms remain

unchanged for any SPO that is a function of the NNMD and NPD values that are evaluated

by each algorithm.

5.8 Conclusion

The skyline operation as a summary method suffers when the number of skyline points

is large. We have proposed the novel Skyline Point Order as a method to rank skyline



146

points so that the most important points in the skyline summary appear first in the skyline

order, in contrast to other methods that return skyline setsunordered. We have further

proposed the hyperarea difference metric as a quantitativemeasure of the summary value

of skyline points. We have also shown that a top-k summary set produced using the Skyline

Point Order is more effective summary set than one using an approximation to thek most

representative skyline operator of [50] using both the hyperarea difference and the total

number of points dominated criteria.

We have proposed two algorithms, the Coverage First and the Skyline First, to evaluate

the Skyline Point Order and have shown that the Skyline Firstapproach is more efficient

than the nearest competing technique on experiments involving both synthetic and real

datasets.



CHAPTER VI

Future Work and Conclusions

6.1 Conclusions

The analysis of large multidimensional datasets is increasing important for database

systems. This is because the volume of data for such datasetsis very large, and the ap-

plications that use and generate multidimensional datasets are plentiful. This necessitates

efficient algorithms to mine and summarize these datasets.

In this thesis, we have described efficient algorithms for evaluating time-series similar-

ity and for evaluating skyline sets. In Chapter 2, we have presented the FTSE algorithm for

evaluation of time-series similarity measures that are based around anǫ threshold-based

scoring function. We showed that this technique is significantly faster than traditional

evaluation measures such as dynamic programming. We have also presented the Swale

scoring model that combines the notions of gap penalties andmatch rewards of previous

models for comparing the similarity between time-series datasets. We have shown Swale

to be more accurate compared to other existing measures using extensive experimental

evaluation.

In Chapter 3, we have presented an algorithm for the efficient evaluation of continuous

time-interval skyline queries, calledLookOut. TheLookOutalgorithm continuously eval-

uates the skyline operator for temporal datasets in which data elements are valid for certain

147
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time ranges. This algorithm is shown to be more than an order of magnitude faster than

existing techniques. In Chapter 3, we have also studied the performance of the quadtree

for skyline evaluation and determined it to be a superior indexing structure to the R*-tree

for skyline queries, both in the static and continuous time-interval contexts.

In Chapter 4, we have examined skyline computation for datasets whose attributes

are drawn from low-cardinality domains and described the Lattice Skyline algorithm as

a method to find skylines in this context. The Lattice Skylinealgorithm differs from pre-

existing measures because it does not use the familiar paradigm that eliminates points from

skyline consideration by comparison with other points in the dataset. Rather, it uses the

structure of the lattice defined by the low-cardinality attribute domains to identify skyline

values. Skyline points can then be identified by comparison with the appropriate lattice

entry. This gives LS an improved complexity result over other techniques and performance

that is independent of the dataset attribute distributions.

The skyline operation as a summary method suffers when the number of skyline points

is large. In Chapter 5, we have described a method to rank skyline points called the Skyline

Point Order technique. The SPO returns the most important points to the skyline summary

first in the skyline order, as opposed to other techniques that return them in an unspecified

ordering. We have shown the top-k skyline result of the SPO method to be more accurate

a summary than thek most representative skyline method. We have described the Cov-

erage First and the Skyline First algorithms for evaluationof the SPO and have shown

experimentally that the SF technique is more effective thancompeting techniques.

6.2 Future Research Directions

We would like to explore research opportunities in both traditional database research

areas such as spatial and temporal data management as well asin interdisciplinary areas.
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Spatial: We are interested in storage, indexing, and querying new types of spatial data

including moving data, biomedical data types, and scientific data. We are also interested in

researching new ways to obtain improved performance for spatial data including using new

types of hardware. As we reach the limits of Moore’s Law, new types of hardware includ-

ing dual cores and commodity GPUs offer new alternatives forimproving the efficiency

of spatial data processing. We are also interested in pursuing new research directions that

can result from the skyline and its varients.

Temporal: We are interested in a broad scope of research issues pertaining to the effec-

tive querying of temporal data. This thesis has focused on speeding up time-series com-

parison, and we are interested in pursuing new and faster comparison techniques further.

One such direction is to use dictionary-based compression techniques such as Lempel-Ziv

to search sequence data for motifs by examining common patterns found in the dictionary

after compression. The Swale measure that is developed heretreats all time-series datasets

the same. We are also interested in classifying different types of time-series datasets based

on underlying data characteristics. Designing similaritymeasures to focus on specific data

classes offers new opportunities for improved accuracy.
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