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ABSTRACT

Efficient management of large multidimensional datasessati@acted much attention
in the database research community. Such large multidioeaisdatasets are common
and efficient algorithms are needed for analyzing these stdtafor a variety of applica-
tions. In this thesis, we focus our study on two very commasss of analysis: similarity
and skyline summarization. We first focus on similarity wioee of the dimensions in the
multidimensional dataset is temporal. We then developrdlgus for evaluating skyline
summaries effectively for both temporal and low-cardityadittribute domain datasets and
propose different methods for improving the effectiverngfsthe skyline summary opera-
tion.

This thesis begins by studying similarity measures for tgages datasets and efficient
algorithms for time-series similarity evaluation. The tficontribution of this thesis is
a new algorithm, called the Fast Time Series Evaluation ETi8ethod, which can be
used to evaluate similarity methods whose matching caitsribounded by a specified
threshold value. We then show that FTSE can be used in a frarkdhat can evaluate a
rich range ofe threshold-based scoring techniques which we call the Segué/eighted
Alignment (Swale) method.

The second contribution of this thesis is the developmeatraw time-interval skyline
operator, which continuously computes the current skydver a data stream. We present
a new algorithm called.ookOutfor evaluating such queries efficiently, and empirically

demonstrate the scalability of this algorithm. In additiare also examine the effect of

Xiv



the underlying spatial index structure when evaluatindiskg. Whereas previous work
on skyline computations have only considered using the &&-index structure, we show
that for skyline computations using an underlying quadirae significant performance
benefits over an R*-tree index.

Current skyline evaluation techniques follow a common pgradhat eliminates data
elements from skyline consideration by finding other eletmanthe dataset that dominate
them. The performance of such techniques is heavily infleéroy the underlying data
distribution. The third contribution of this thesis is a eb¥echnique called the Lattice
Skyline Algorithm (LS) that is built around a new paradignr &kyline evaluation on
datasets with attributes that are drawn from low-cardipalomains. LS continues to
apply even if one attribute has high cardinality.

The utility of the skyline as a data summarization technigugften diminished by the
shear volume of points in the skyline The final contributidthis thesis is a novel scheme
called the Skyline Point Ordering (SPO) which remedies Rydirgee volume problem by
ranking the elements of the skyline based on their impoganche skyline summary,
allowing for the most important skyline points to appeatrtfinsthe skyline result set and
providing monotonic top: skyline queries that simplify the skyline results. We déxser
two new algorithms, the Skyline First (SF) and the Coveragst FCF), for ranking the
skyline points in a dataset based on their summarizatiowoitapce.

Collectively, the techniques described in this thesis pres#icient methods for two
common and computationally intensive analysis operatmmdarge multidimensional

datasets.

XV



CHAPTER |

Introduction

Driven by many emerging applications, database managesysi&ms are increasingly
required to provide efficient methods for analyzing largdtidimensional datasets. Ef-
ficient algorithms to query such datasets are importantusecthe volume of data being
managed is typically very large and grows rapidly over tilkecurate techniques to mine
and summarize such datasets are also a necessity becaunsatidenensional nature of
the data makes analysis by humans difficult.

One special and common case of multidimensional datasets®when one or more
dimensions vary with time. For example, scientific dataastften very large and fit into
this multidimensional, time-varying category. As anotheample, consider buoy sensor
data that is used to track ocean currents and obtain weaheéings for locations on the
surface of the ocean. Yet another example is current hueiteacking measurements
that can be compared with past storm movements to obtairratectorcasts. In other
application areas, the GPS trails of moving objects varnyjinretand can also generate
large datasets. In all of these cases, identifying simidirgpons between two time-varying
dataset examples is a critical operation. Central to thetifttation of similar patterns
are the similarity measures used to classify and clustersdéd and the methods used to

evaluate those similarity measures.



Data summarization techniques have been studied in eannéstrealm of Relational
Database Management Systems. Common data summarizatibndsenclude finding
the minimum or maximum value from a dataset, finding a medeloey or finding an
average over a set of values. Summarization methods aretampéor database systems
because the volume of data being managed is large. This data® makes data summa-
rization a necessity.

A new data summarization technique that has recently erddayemultidimensional
datasets is thekyline operator Unlike some other summary techniques that consider
each dimension of the data in isolation, the skyline corsdiself with multiattribute
summarization.

The skyline operator is an elegant summary method over+dmitensional data sets [43].
Given a data seP containing data pointg;, p», ..., p,, the skyline ofP is the set of all
p; in P such that ng; dominates;. A commonly cited example for the use of a sky-
line operator is assisting a tourist in choosing a séttafrestinghotels from a larger set of
candidate hotels. Each hotel is identified by two attribusedistance from a specific point
(such as a location on a beach), and the price for the hotels3ist a tourist in narrowing
down the choices, the skyline operator can be used to fincethaf sll hotels that are not
dominated by another hotel. Hoteldominateshotelbs if a is at least as close @&sand
at least as cheap asand offers either a better price, or is closer, or both caegbéob.
Figure 1.1 shows an example data set and the correspondiligeskhe distance of the
hotel from the beach is shown on the x axis and the hotel psipéited along the y axis.
The skyline is the set of points c, d, i,and;.

The skyline can be generalized to multi-dimensional spdoer&va point. dominates
another poinb if it is as good or better thah in all dimensions, and is better thann

at least one dimension. Implicit in this definition of the Bkg operation is the notion of
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Figure 1.1: Example data set and its skyline.

comparing thegoodnesslong each dimension. A common function for determining thi
property is to use theminfunction. However, skyline computation can easily be edézh
to consider other functions, suchmasx

The skyline operator is commonly called tRareto setor the set oimaximal vectors
for a given dataset [24]. The interested reader will not¢ tthe three problems are iden-
tical to one another; finding the Pareto set of a datasetnignids maximal vectors, and
finding its skyline summary are identical operations andtkinee resulting data subsets
are identical to one another. In a database context, thisnsuization technique is called
the skyline [10].

Many of the application areas in which the skyline operat@s proven effective also
vary in time in at least one dimension. For example, in ondi@iings the price of various
commodities changes at least daily. These changing dataes&rm a time-series. This
necessitates finding not only efficient algorithms for thaleation of skylines, but also
more efficient techinques for managing temporal and timeselata.

This thesis develops efficient algorithms for similarityasares for multidimensional

datasets that vary with time, and methods for processingoardiicing effective skyline



summaries in multidimensional datasets that both varyre titnd contain low-cardinality
attribute domains. This includes developing algorithmskoth finding skylines effec-
tively in the presence of a temporal dimension and maintgirthe skyline when data

values change over time.

1.1 Contributions

There are many applications for the classification and etirgj of time-series, which
makes developing effective and efficient measures for thepeoison of time-series very
important. Identifying similar patterns is a crucial opgeya in time-series datasets. For
example, consider the three time-series examples showminmd=1.2. These examples
come from the popular Cylinder-Bell-Funnel dataset [2]. $afdag the examples of the
cylinder from the bell or the funnel for a human is a triviali{lexpensive) task; automated
techniques have error rates that vary between 15 perceatEoiclidean distance metric
and 4 percent for the Dynamic Time Warping (DTW) technique Nt surprisingly, the
more accurate techniques such as DTW are also more expémsivauate. Our contribu-
tion to time-series clustering and classification is twinHio chapter 2. First, we present
the Fast Time-Series Evaluation (FTSE) technique whichevafuate sophisticated tech-
niques quickly. Second, we present a novel scoring methiteidhe Sequence Weighted
Alignment that can use FTSE to compare time-series bothratsdy and quickly.

In a number of emerging streaming applications, the dataegahat are produced have
an associated time interval for which they amid. A useful computation over such
streaming data is to produce a continuous and \&tidinesummary. Previous work on
skyline algorithms have only focused on evaluating skyioeer static data sets, and there
are no known algorithms for skyline computation in the combus setting. In this paper,

we introduce theontinuous time-interval skylingperator, which continuously computes
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Figure 1.2: Three example time-series from the Cylinddi-Bennel dataset, depicting (a) a bell, (b) a
cylinder, and (c) a funnel.

the current skyline over a data stream. We present a newitliligocalledLookOutfor

evaluating such queries efficiently, and empirically destte the scalability of this al-
gorithm. In addition, we also examine the effect of the utyleg spatial index structure
when evaluating skylines. Whereas previous work on skylomputations have only
considered using the R*-tree index structure, we show thiaidgline computations using
an underlying quadtree has significant performance bermf@gsan R*-tree index. The

details of LookOut are provided in Chapter 2.



The current generation of skyline evaluation methods,uticlg the LookOut tech-
nique, follow a common paradigm that removes elements oftasdaD from temporal
skyline consideration by finding other elementsZinthat dominate them, both spatially
and with respect to the temporal dimension(s). The didiobwof the underlying dataset
D heavily influences the performance of the methods thatftilthis paradigm. The third
contribution of this thesis is a novel technique called tlagtice Skyline Algorithm (LS)
that uses a new paradigm to find the skyline for datasets \titibtes that are drawn
from low-cardinality domains. We show that many temporallisle applications have
such low-cardinality domain data characteristics, andiptes skyline methods have not
exploited this property. We show that for typical dimensilities, the complexity of LS
is linear in the number of input tuples. Furthermore, we shioat the performance of
LS is independent of the input data distribution. Finallg demonstrate through exten-
sive experimentation on both real and synthetic datasatd t can result in a significant
performance advantage over existing techniques.

The utility of the skyline as a data summarization technigueften diminished by
the shear volume of skyline points, particularly if the datais anti-correlated, of high
dimensionality, or both. The final contribution of this tiees a novel scheme called the
Skyline Point Ordering (SPO) to rank the elements of theiskyased on their importance
to the skyline summary. Skyline point ranking is importamttivo main reasons. First, it
returns the most important skyline points first in the skyliasult set, as opposed to other
methods that do not specify any ordering. Second, it allawsfonotonic topk skyline
gueries that simplify the skyline results by only providilhgesults. We describe two new
algorithms, the Skyline First (SF) and the Coverage First (@¥)ranking the skyline
points in a dataset based on their summarization importandexpand this discussion to

a ranking of temporal skyline data points.



Collectively, this thesis provides efficient algorithms gimilarity and skyline evalua-
tion on large multidimensional datasets. datasets In sugitige four main contributions
of the thesis are first, the FTSE and Swale methods for théssitgiof multidimensional
time-series datasets, second, tlwkOutalgorithm for evaluating skylines time-interval
continuous skylines, third, the LS method for finding skgbnn datasets that have low-
cardinality attribute domains, and fourth, the SPO for piodg a ranked skyline summary

set for multidimensional datasets.

1.2 Thesis Outline

The remainder of this thesis is organized as follows: Chdpiaresents the descrip-
tion of the FTSE algorithm and the Sequence Weighted Aligrtnseoring method and
contains a detailed experimental study of these methodpamd to other techniques.
Chapter Il introduces the Time-Interval Continuous Skyloperator and the LookOut
algorithm for evaluation of the tics operator on temporabdats. Chapter IV presents
the Lattice Skyline algorithm for evaluation of the skylifer datasets whose attributes
are drawn from low-cardinality domains. Chapter V presemsSkyline Point Ordering
for the ranking of skyline points, introduces two algorithfor the evaluation of the Sky-
line Point Ordering for datasets, and evaluates these itpodsin a detailed experimental

study. Finally, Chapter VI presents our conclusions andctoas for future work.



CHAPTER I

A Fast Time Series Evaluation Technique

2.1 Introduction

Techniques for evaluating the similarity between timeesedatasets have long been
of interest to the database community. New location-bapptications that generate time
series location trails (called trajectories) have alsdeftienterest in this topic since time
series simularity methods can be used for computing tr@jgsimilarity. One of the crit-
ical research issues with time series analysis is the clofidestance function to capture
the notion of similarity between two sequences. Past rekdarthis area has produced
a number of distance measures, which can be divided into tasses. The first class
includes functions based on the L1 and L2 norms. Examplegnaitions in this class are
Dynamic Time Warping (DTW) [8] and Edit Distance with Real PGnéERP) [17]. The
second class of distance functions includes methods tinapete a similarity score based
on a matching threshold Examples of this class of functions are the Longest Common
Subsequence (LCSS) [78], and the Edit Distance on Real Seg(EDR) [18]. Previ-
ous research [18, 78] has demonstrated that this secorslaflasethods is robust in the
presence of noise and time shifting.

All of the advanced similarity techniques mentioned abalg on dynamic program-

ming for their evaluation. Dynamic programming requirestt®ach element of one time



series be compared with each element of the other; this &vatuis slow. The research
community has thus developed indexing techniques such&<21134, 38, 82] that use
an index to quickly produce a superset of the desired restitsvever, these indexing
techniques still require a refinement step that must perfilendynamic programming
evaluation on elements of the superset. Furthermore, messclustering has also been
studied [18, 35, 78], and these clustering techniques reqairwise comparison dll
time series in the dataset, which means that indexing metbaanot be used to speed up
clustering applications.

To address this problem, a number of techniques have beesloged that impose
restrictions on the warping length of the dynamic prograngrevaluation. The Sakoe-
Chiba band, studied in [68], uses a sliding window of fixed tartg narrow the number
of elements that are compared between two time series. &ker#t Parallelogram, stud-
ied in [31], also limits the number of comparisons to accagtph similar effect as the
Sakoe-Chiba band. These techniques that constrain thengdgamtor are faster, but at the
expense of ignoring sequence matches that fall outsideeddlitiing window. If the best
sequence match between two time series falls outside ofefteated search area, then
these techniques will not find it.

In this chapter, we propose a novel technique to evaluatedtend class of time series
comparison functions that compute a similarity score basedne matching threshold.
The popular LCSS and EDR comparison functions belong to tassand can directly
benefit from our new evaluation technique. This technigaded theFastTime Series
Evaluation ETSE), is not based around the dynamic programming paradigmsniban
approximation (i.e. it computes the actual exact simyamieasure). Using a number of
experiments on real datasets, we show that FTSE is nearlyden of magnitude faster

than the traditional dynamic programming-style of similacomputation. In addition, we
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show thatFTSE is also faster than popular warp-restricting technigjbg a factor of 2-3,
while providing an exact answer.

We show that FTSE can evaluate a broader rangetbfeshold-based scoring tech-
niques and not just LCSS and EDR. Motivated by FTSE’s broadétyalwve propose the
SequencéNeightedAL ignmEnt (Swale scoring model that extendsthreshold based
scoring techniques to include arbitrary match rewards apdpgnalties. We also conduct
an extensive evaluation comparing Swale with popular iejshethods, including DTW,
ERP, LCSS, and EDR and show tl&awvale is generally more accurate than these existing
methods

The remainder of this chapter is organized as follows: $r@idiscusses the termi-
nology that is used in the rest of the chapter. Section 3 desurelated work and Section
4 describes the FTSE algorithm. Section 5 introduces thdeSsirailarity scoring method

and Section 6 presents experimental results. Finallyj@ectpresents our conclusions.

2.2 Terminology

Existing similarity measures such as LCSS, DTW, and EDR asdhat time is dis-
crete. For simplicity and without loss of generality, we makese same assumptions here.
Formally, the time series data tyf&s defined as a sequence of pairs (p, t1), (p2, t2),

.., (on, tn), Where eaclp; is a data point in @-dimensional data space, and e#cis the
time at whichp; occurs. Each; is strictly greater than eadh ;, and the sampling rate of
any two time series is equivalent. Other symbols and defimstused in this chapter are
shown in Table 2.1.

Time series datasets are usually normalized before beimpamd. We follow the
normalization scheme for time series data described in [@pgcifically, forS of length

n, let the mean of the data in dimensi@be 1., and let the standard deviation bg Then,
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to obtain the normalized dafs(S), we can evaluaté i € n: s;q = (siqa — pta)/oq ON
all elements ofS. This process is repeated for all dimensions. In this cliapliedata is

normalized, and we us€ to stand forN (S), unless stated otherwise.
2.3 Related Work
There are several existing techniques for measuring thaasity between different

time series. The Euclidean measure sums the Euclideamcéstetween points in each

time series. For example, in two dimensions the Euclideatadce is computed as:

Voo (riw — 8i2)? + (riy — siy)?). This measure can be used only if the two time
series are of equal length, or if some length normalizagahmique is applied. More so-
phisticated similarity measures include Dynamic Time WaggDTW) [8], Edit distance
with Real Penalty (ERP) [17], the Longest Common Subsequer€8%). [78], and Edit
Distance on Real sequences (EDR) [18]. These measures areasizeuirin Table 2.2.
DTW was first introduced to the database community in [8]. Db&#wveen two time
series does not require the two series to be of the same |eagthit allows for time
shifting between the two time series by repeating elem&R$ [17] createg, a constant
value for the cost of a gap in the time series, and uses the dtdrdie norm as the cost
between elements. The LCSS technique introduces a threghlid, ¢, that allows the
scoring technique to handle noise. If two data elements @henwa distance ot in each
dimension, then the two elements are considered to matdhar@ngiven a match reward

of 1. If they exceed the threshold in some dimension, then they fail to match, and no

Symbol Definition

R, S Time serieqry, ..., 7,) and(sy, ..., s,).
r; Theit" element ofR.

Rest(R) R with the first element removed.
M4 d dimensional MBR.

M*, M9 | Lower and upper bounds aff

Table 2.1: Symbols and definitions.
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Definition
0 ifm=n=20
00 ifm=00rn=0
DTW(R.S) = dist(r1, s1) + min{ DTW (Rest(R), Rest(S)), otherwise
DTW (Rest(R),S), DTW (R, Rest(S))}
Sl dist(si,g), .| dist(ri,g) ifm=0,ifn=0
ERP(R.S) min{ ERP(Rest(R), Rest(S)) + dist(r1, s1)
' ERP(Rest(R),S) + dist(r1,9), otherwise
ERP(R, Rest(S)) + dist(s1,9)}
0 ifm=00rn=0
LCSS(R,S) = LCSS(Rest(R), Rest(S)) +1 if Vd, |rq1 — sa1| <e
max{LCSS(Rest(R),S), LCSS(R, Rest(S))} otherwise
n, m ifm=0,ifn=0
EDR(R,S) = min{ EDR(Rest(R), Rest(S))+subcost otherwise
EDR(Rest(R),S) + 1, EDR(R, Rest(S)) + 1}

Table 2.2: Distance Functiongist(r;, s;) = L1 or L2 norm; subcost 0if |r; ;—s1+| < ¢, else subcost 1.

reward is issued. The EDR [18] technique uses gap and mibrpattalties. It also seeks
to minimize the score (so that a score closer to 0 represdyger match).

In [5], the authors use the Euclidean distance to measurgasgim in time series
datasets. The Discrete Fourier Transform is used to pro@ateres that are then indexed
in an R-tree. Dimensionality reduction is also studied in, g 38,42, 63, 82]. Indexing
is also studied in [21], which proposes a generic method huilund lower bounding to
guarantee no false dismissals. Indexing methods for DTVé baen the focus of several
papers including [33, 39, 69, 83, 86]. Indexing for LCSS [7Adl&DR [18] has also been
studied. In this chapter, our focus is not on specific indgxirethods, but on the design
of robust similarity measures, and efficient evaluationhef similarity function. We note
that our work is complementary to these indexing methodgesthe indexing methods
still need to perform a refinement step that must evaluateithgarity function. Tradi-
tionally, previous work has not focused on this refinemest,a@hich can be substantial.
Previous works employ a dynamic programming (DP) methoévafuating the similarity
function, which is expensive, especially for long sequende other words, FTSE can be

used to boost the performance of existing LCSS or EDR-baseximgl methods since it



13

is faster than traditional DP methods for the refinement step

The Sakoe-Chiba Band [68] and Itakura Parallelogram [31] atk bstimation tech-
nigues for restricting the amount of time warping to esterthe DTW score between two
sequences. A restriction technique similar to the Sako&&CBand is described for LCSS
in [78] and the R-K Band estimate is described in [65].

Time series may be clustered using compression techni@@e8¢]. We do not com-
pare our algorithms with these techniques because of thappiicability for clustering
short time series.

The FTSE algorithm that we propose bears similarity to thetFezymanski algo-
rithm [30, 46] for finding the longest common subsequenceéen two sequences. How-
ever, Hunt-Syzmanski is only concerned with string seqgesifand not time series), sup-
ports only a limited string edit-distance model, and doesenof the grid matching that
FTSE does to identify matching elements between time sgy&ssSection 2.4).

A more closely set of related work is concerned with clusigiof trajectory datasets
(such as [18, 35, 78, 81]). In fact, a commonly establishey @feevaluating the effec-
tiveness of trajectory similarity measures is to use it fostering, and then evaluate the
guality of the clusters that are generated [18, 35, 78]. Comahastering methods such as
complete linkage are often used for trajectory data ama[{§, 35, 78], and these methods
require that each trajectory in the dataset be comparedeiy ®ther trajectory. Essen-
tially, for a dataset of size, this requires approximatel$ comparisons. As we show in
this chapter for such problems, not only is the Swale scamethod more effective, but

the FTSE technique is also faster than the existing methods.



14

140

Figure 2.1: Two time series examples of the cylinder classfthe Cylinder-Bell-Funnel Dataset.

2.4 Fast Time Series Evaluation

In this section, we introduce the FTSE algorithm. In ordebétter understand why
FTSE is faster than dynamic programming, we first discussuayo programming and its
shortcomings for evaluatingbased comparison functions. We then provide an overview
of the FTSE algorithm. We also discuss its operation for LC8& BDR, provide an

example for each, and analyze the cost for each.

2.4.1 Dynamic Programming Overview

Time series comparison techniques such as those shownleZZ&kare typically eval-
uated using dynamic programming. Two time setieand.S of lengthm andn, respec-
tively, are compared using dynamic programming in the filhg way: First, anm X n
two dimensional arrayl is constructed. Next, each elemenof R is compared with each
elements; of Sforall 1 <: <m andl < j < n. The result of the comparison ofand
s; is added to the best cumulative score between...,r;_;) and(sy, ..., s;_1) and stored
in A at position(i, j). Once all thenn comparisons have been made and the elements of
A are filled in, the final score is stored #{m, n).

For a concrete example, consider finding the LCSS score betthegwo time series
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shown in Figure 2.1. These two time series are from the popLyéinder-Bell-Funnel
(CBF) synthetic dataset [35]. The CBF dataset consists of timessiom three classes,
cylinders, bells, and funnels. Elements from the same cdlasise dataset are usually
similar to each other. The two time series shown in Figureagelboth from the cylinders
class.

The two dimensional array used by the dynamic programmintpodefor the LCSS
comparison betweeR and S is shown in Figure 2.2a, where tliematching criteria is
chosen as one-quarter the standard deviation of the naedalime series (a common
e value, also chosen in [18]). In Figure 2.2a, black entriethaarray at positiori, )
indicate mismatches betweerands;. Gray entries in the array indicate matches between
r; ands; that do not contribute to the LCSS scoredhndsS, and light gray colored entries
indicate matches betweepands; that are chosen by LCSS as the best alignment between
R andS. Notice that the light gray colored entries run approxiryat®m (0, 0) to (m, n)
along the grid diagonal. This makes intuitive sense — tignalent between two similar
time series should match similar parts of each series fieefront portion ofR should not

match the final portion of).

Shortcomings of Dynamic Programming

When evaluating the LCSS dt and S, many of the comparisons made by dynamic
programming when filling in then x n two-dimensional array are between components
of R and .S that do not match, and therefore cannot positively impagtsttore between
R andS. Much of the computation can be saved by finding only thoseefesr; ands;
of R andS that match. An example of the positive matches betweemd.S is given in
Figure 2.2b. This is the same two-dimensional array thatesve in Figure 2.2a, but the
mismatching portions are no longer shown in black. The nurobsquares in this figure

is much smaller than before. Since each square in the ampagsents work that must be
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Figure 2.2: (a) The dynamic programming computations reegggo evaluate LCSS between the two cylin-
der examples from Figure 2.1. The first time series is abavedmputation array and the second
time series is on its right. (b) The matching elements asraéted by LCSS between the two
time series shown in Figure 2.1. This is what is heeded by FbSterform the evaluation, in
contrast to the larger number of comparisons needed by dgnawgramming.

done by the algorithm as well as space that must be used, #hgagon ofe threshold
scoring techniques can be made more efficient. The main \aigsr that we make is
that if only those matches in Figure 2.2b are considered wberparing two time series,

considerable computation can be saved since mismatchirggre ignored.

2.4.2 Overview of FTSE

FTSE identifies the matching elementsands; between time serieB andS without
using a large two-dimensional array, such as that shownguargi2.2a. This is done by
treating R and.S nonuniformly, rather than treating them in the same way ayimamic
programming. In dynamic programming, bathandsS are treated the same (each is lined
up on one edge of the two-dimensional array to be comparddatelements of the other

sequence).
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To find the matching pairs betweéhand.S without comparing each; with everys;,
FTSE indexes the elements Bfon-the-fly into a grid. Each element &fis placed into a
grid cell. Now, to find the elements @t thats; matches, the grid is probed with. Only
the elements oR that reside in the same grid cell asneed to be compared with it to see
if they match.

Once the matching pairs & and.S are found, the score of LCSS, EDR, or of the more
general Swale scoring functions foiR and.S and the best alignment between them can
be found using only an array of sizeand a list containing the matching pairs between
the two sequences (in contrast to the size array of dynamic programming). This is
accomplished by noting that the grid can be probed by ordénareasingS position.
Hence, when the grid is probed with to find the matching pairs betweéhands;, the
matching pairs between the precedjingl elements of with R have already been found.
Therefore, when considering previous matches between.., s;_;) and R for the best
cumulative score for a match betweenand s;, there is no restriction on the previous
matches frons;. Any of the previous matches that contribute to the best ¢atine score
for r; ands; simply must be between elements/dbefore position because the previous
matches are inherently befosg Thus, high scores by position fit can be indexed into a
one dimensional array of size The best alignment betwedhandS can be stored using
a list containing matching pairs of elements derived froenghd.

One crucial requirement must be met for the index stratedyT@E to win over the
dynamic programming paradigm: the number of cells in thd grust be less thamn.
Since the data is normalized, most elements fall betweemr8 3. If epsilon is chosen
as 0.7 as is done in [77], then the grid contains 6/0.5=12 entriesceStime series are
not usually more than 2 dimensional and typically of lengithsiderably greater than 12,

the grid size is typically much smaller thaty..
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2.4.3 Finding Matches

In this section, we describe how the novel Fast Time Serieduation method finds
matching pairs between elements/find elements of. FTSE measures the similarity
between time serieB andS with threshold value. Usinge, each pair of elements € R
ands; € S can be classified as either a match or a mismatch. The elementds; are
said to match ifr; — s;| < e in all dimensions. Otherwise, these two element& @ind S
are a mismatch.

The first step in the FTSE algorithm is to find all intersectpairs between elements
of R and elements af. The technique used to obtain these intersecting pairisrsin
Algorithm 1. First, a grid of dimensionality is constructed (line 4 of the algorithm). The
edge length of each element of the grid.is

In lines 6 to 8 of the algorithm, a Minimum Bounding RectangleB[R) is constructed
for each element; of R. This MBR has a side length @k in each dimension, and its
center is the point;. This construction method ensures thabverlaps with no more than
3¢ elements in the grid.

The MBR construction is illustrated in Figure 2.3 for one awd timensions. In one
dimension, the MBR of; is flattened into a line and intersects with 3 grid elemenrds, a
shown in Figure 2.3a. In two dimensions, the MBRrpfntersects with 9 grid elements,
as shown in Figure 2.3b.

A FIFO queue is associated with each getif the grid. The queue for eaghis used
to maintain a reference to all that are withire of g, in order of increasing. This is done
in line 9 of Algorithm 1.

The intersections betwedn and S are found in lines 11-18 of Algorithm 1. The grid
cell g that contains each; € S is located. The elements &fin the queue associated with

g are compared with; to see if they are withir of one another. For each elemeptof
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Algorithm 1 Build Intersection List.
1: Input: R, m,S,n,e
. Output: Intersection List.
: Local Variables: Grid G, MBR M
. Initialize G: each grid element contains a queue that stores references to abatiregselements.
for : =1tom do
for k=1tod do
ME=(rF-¢, rf+e)
end for
9: Insert)M; into the queue associated with each grid squyaseG which M; intersects.
10: end for
11: for i =1ton do
12:  Obtain queugy, for grid squarey in which s; lies.
13: for k € ¢4 do

e A R

14: if |s; — rr| < ein all dimensionghen
15: insertk into L;

16: end if

17:  end for

18: end for

R that is withine of s;, the index ofr;, i.e. k, is inserted into the intersection list of s;.
The entries of_; are also maintained in order of increasing

Note that the size of the grid is likely to be small for the éaling reason: Since data
is normalized with mean zero and standard deviatioa 1, most data will fall between
-3 and 3. If thee value is not exceptionally small relative to(which is common — for
example, [77] useB.50), the size of the grid is reasonably small. Outliers beydhdr-3
are rare and can be captured into an additional grid cell.

If the dimensionality is unusually high, the grid may be bail a subset of the overall
dimensions since, as is shown in the next section, the nuofbeatching pairs between
time seriesk and.S decreases quickly as the dimensionality grows. This wagyteloh-

nique can still be applicable in higher dimensional spaces.

Cost Analysis of Match Finding

The cost of finding the matches using the grid technique ofEFiIBS)(P + m + n),
whereP is the total number of comparison operations between theezies of R and the
elements of5 made when probing the gridy is the length ofR, andn is the length of

S. The cost to insert each element®into a grid isO(m), and the cost to probe the grid



20

with each element of is O(n). There are)(P) total comparisons betwednands.

The total number of probe comparisons betwéeand .S will be similar to the total
number of matched/, both of which are determined by the sizeeof (An element of
S will match all elements that are withinin each dimension. It will be compared in
the probe phase with elements that are upet@away from it in each dimension, and on
average withinl.5¢ in each dimension, since the element will be mapped to 3 glid m
each dimension that are each of sizeWhile this cost isD(mn) in the worst case, in the
general case? will be much less thamn for commone values.

To obtain an average case analysis, we consider two 1 dior&isequenceB and.S
whose elements are chosen uniformly from the unit space imérmkion. Once? and.S
are normalized, they will be distributed normally with me&aand variance 1. The con-
ditional density function of the standard normal randomalae 7 is provided in Equa-
tion 2.1. SinceS is normalized, the values of its elements follow a normatitistion and
we can consider the value of to be a normal random variable. The probability that a
standard normal random varialitelies between two valuesandb, wherea < b, is given
by Equation 2.2. Hence, the probability that the normaliz@de ofr;, N (r;), lies within

e of the normalized value of;, N(s,), is given in Equation 2.3.

_ 1 : —u?/2
(2.1) d(z) = o /_OO e du
(2.2) Pla<Z<b = &) —P(a)

PIN(r;) —e < N(sj) < N(r;)+¢

(2.3) = O(N(r;) +€) — P(N(r;) —e€)

The expected number of match&sbetween-; and then elements of5 is equal to the

probability that a particular element 8f(.S) matches with a valu&/(r;) multiplied byn.
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MBR

() (b)

Figure 2.3: A depiction of? sequence elements with MBRs mapped to a (a) one-dimensiadgb) two-
dimensional grid.

This is shown in Equation 2.4. We can then find the expectedoeuwf matches between

R and S by summing over alin, in Equation 2.5. To obtain a solution in termsoh,

we can multiply by 14:/m) in Equation 2.6. We can approximate this summation (since
we want an estimate in termsofn) numerically by pickingn values uniformly from the
unit space for each;. We use two values far, 0.25 and 0.50-, which are commonly
usede values in [18] and [77], respectively. Fer= 0.50, we obtain betweef.26mn and
0.27mn matches betweeRr and S, and fore = 0.25, we obtain abou0.13mn matches

between andS. This is approximately a 4-7X improvement over dynamic paogming.

(2.4) EMlr] = n(®(N(r:) +€) = ®(N(ri) —€))

(2.5) E[M] = nZ@(N(ri)Jre)—cb(N(ri)—e))

(2.6) (N (ri) —€))

The expected number of probéscan be found by replacingin Equation 2.6 with
1.5¢, the average maximum distance away fronthat elements irkR can be and still be
compared withs; in the probe phase. Doing so produces alibditnn probe compar-

isons where = 0.50 and abou).2mn probe comparisons when= 0.25. This is an
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improvement of 2.5-5X over dynamic programming.

To obtain the average case analysis for 2 dimensions, wedssrsdimensional time
seriesk and.S whose elements are drawn independently from the unit sgdeanalysis
then is similar to the analysis above. The main differentbasN (r;) must matchV(s,)
in both dimensions. Since the valuesrpfinds; in each dimension are independent, we
can arrive at Equation 2.7 by performing the same analysigadid in the 1 dimensional
case. If we approximate the number of matches in two dimessiomerically, we obtain
between).06mn and0.07mn matches wher = 0.50 and about).02mn matches when
e = 0.25. This is about a 14-50X improvement over the dynamic prognarg, which

producesnn comparisons.

(2.7) x (R(N(r7) +€) — D(N(r7) —€))]

The expected number of probésin 2 dimensions can be found by replaciagn
Equation 2.7 withl.5¢, the average distance away fromthat elements inkR can be
and still be compared with it in each dimension in the probasgh Doing so produces
about0.16mn probe comparisons fak and.S whene = 0.50 and about).05mn probe
comparisons when= 0.25. This is an improvement of 6-20X over dynamic programming

for 2 dimensions.

2.4.4 Computing LCSS using FTSE

Once the intersections are found, the LCSS score for the/paind S can be eval-
uated using Algorithm 2. An array calledatches is maintained that stores at position
matches[i] the smallest valué for which i matches exist between the element$ @ind

r1, ... ,7% (line 4).
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Algorithm 2 LCSS Computation.
1: Input: R, m, S, n, €, Intersectiond.

2: Output: score

3: Local Variables: Array matches

4: Initialize matches[0] = 0 andmatches[1 ton] = m + 1.

5: max=0;

6:

7

8

for j =1ton do
Let ¢, a pointer into thenatches array, =0.
Let temp store an overwritten value fromatches.
9:  temp=matches|0].
10: for ke L;do

11: if temp < k then

12: while matches|c] < k do
13: c=c+ 1.

14: end while

15: temp=matches|c].
16: matches|c] = k.
17: if ¢ > max then
18: mazxr =c

19: end if

20: end if

21:  end for

22: end for

23: score =max.

The values immatches are filled by iterating through the elements©fline 6). Vari-
ablec is an index intonatches andtemyp stores an overwritten value from matches. For
each of the intersections betwegnands; (line 10), £ is checked against the value of
temp (line 11). Initially, temp is O (line 9), so the algorithm proceeds to line 12. Nexs,
incremented until the value ofiatches|c| is not less thark. This indicates that there are
c — 1 matches betwees, ... s;_; andry, ..., "mazchesic—1]- Adding the match betwees)
andr, makesc matches.

The old value ofnatches|c| is stored talemp (line 15) andmatches|c| is updated to
k (line 16). The maximum possible number of matches is staneddx and updated
if ¢ is greater than it (lines 17-19). The value tefnp is updated because subsequent
intersections betweeR ands; cannot make use of the intersection betwegeands;. This
is because thé C'SS technique only allows; to be paired with one;, so the previous
value is retained as a stand in for the oldtches|c| for the next loop iteration. At the end

of the algorithm, the.C'S'S score is stored imax (line 23).
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Example for LCSS

To demonstrate the operation of FTSE for LCSS, Reber; = 2.0, o = —0.5,
rs = 1.0, r4 = —2.2, andrs; = —0.4, and letS bes; = —04, sy = —2.1, s3 = 1.4,
sy = —1.8. Lete = 0.5.

The matching phase of Algorithm 1 progresses by generatimgeadimensional grid
in which each grid cell has a side length of 0.5 (thalue). Assume that grid boundaries
occur at—2.5, —2, —1.5, —1, —0.5,0, 0.5, 1, 1.5, 2, and2.5 (line 4 of Algorithm 1). Next,
the algorithm generates MBRs for each elemenkdlines 5 to 8). The MBRs for each
are (1.5, 2.5) for, (-1, 0) forry, (0.5, 1.5) forrs, (-2.7, -1.7) forr,, and (-0.9, 0.1) fors,

Next, the algorithm inserts eachinto the grid (line 9). For example, the grid cell with
boundarieg—0.5,0) contains both, andr;. The grid is then probed with eachvalue
(lines 11-18). First, the grid is probed with. The cell in which it lies, (-0.5,0), contains
two MBRs — namely, andr;. Both elements of are compared with;. Since they are
both withine of s;, 2 and 5 are inserted into intersection list in that order.

Then, the grid is probed with,. The grid in which it is located,<2, —2.5), contains
only one element;,. Sincer, ands, are within0.5 of one another, 4 is inserted infg.

In a similar way, the grid is probed witfy ands, to produce a match with; for s; and
with r, for s4.

Next, the operation of Algorithm 2 progresses. The initiate of thematches array is
shown in Figure 2.4. The algorithm begins processing trexsetction list ofs;. The first
value in the intersection list for; is 2 (line 10 of the algorithm), sincg intersects with
T9.

Sincematches|0] < 2 < matches|1] (lines 12-14), the greatest number of matches
possible so far is 1, so thepointer is set to 1. Hence, the valueteinp is updated to

the old value ofnatches[1] (line 15), which is 6 andnatches|1] is updated to 2 (line 16).
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matches | 0|6 |6 |6 |6 | Initial
matches |0 |2 |6 |6 |6 | After (r ,.,5,)
matches [0]2]4a 66| | After(r,s))
matches [0]2 [3]6[6 | | After(rysy)
matches [0]2[3]afe ]| After(r,s),

Figure 2.4: Thenatches array during FTSE LCSS evaluation.

The value ofmax is updated to 1 (lines 17-18). The new statusraftches is shown in
Figure 2.4. The next value in the intersection list§ors 5. Since 5 is less thaamyp (line
11), this intersection cannot be used.

After the processing of the intersection list¢c andtemp are reset for the intersections
of s, (lines 7-9). The first and only value in the intersectionfists, is 4 (line 10). Since
matches[1] < 4 < matches|2] (lines 12-14)¢is set to 2. The value abmyp is updated to
matches|2] (line 15), andnatches|2] is updated to 4 (line 16). The value ofaz is also
updated to 2 (lines 17-18).

The intersection list fok; is processed in the same way. Since its only match is with
r3, and becausewatches[l] < 3 < matches|2], the value ofmatches|2] is overwritten
with 3 (see Figure 2.4). The intersection listsgfis also processed, and singentersects
with r4, andmatches|2] < 4 < matches[3], the value ofnatches[3] is updated to 4, and
the max value becomes 3.

Since all theS points have been processed, the algorithm terminates. 83tgbssible

number of matches betwedéhands is stored inmaz, which is 3. This is the LCSS score.

Cost Analysis of FTSE computing LCSS

The cost of FTSE for computing LCSS 3(M + Ln), whereM is the number of

matches (discussed in Section 2.4.3) &nd the length of the longest matching sequence



26

betweenk andS (i.e. the LCSS score). The proof of this is straightforward hence is
omitted (essentially, each matching pair is considered tla@ length of the longest match
is stored in the array and is iterated over for each elemaitS). In the worst case, this
length will be equal to the length aefin(m,n) (since the LCSS score cannot exceed the
length of either sequence), which could be as longramaking the overall cosD(mn).
However, this worst case occurs only when all element® @ind.S are matched in the
LCSS score, which is not expected to happen often, even faresegs that are quite
similar.

To obtain an average case analysis for the sizé of 1 dimension, we again assume
time seriesk and S have their elements drawn uniformly from the unit space. \ive n
merically approximatd. by generating one thousand random version& @nd.S, each
of length one thousand. We then measure the average, maxiendrminimum length
of L. Fore = 0.25, the average size df is 0.52m, the maximum size i8.54m, and the
minimum size i9.51m. Fore = 0.50, the average size df is 0.66m, the maximum size
is 0.68m, and the minimum size i8.64m. The small variation in the sizes éfshow that
this average case analysis produces repeatable resalso ghows a 1.5-2X improvement
over dynamic programming’&n computation to find the best alignment®fandsS.

We obtain an average case analysis for 2 dimensions thraugkenical approximation
as well. Fore = 0.25, the average size df is 0.23m, the maximum size i8.24m, and
the minimum size i$.22m. Fore = 0.50, the average size df is 0.41m, the maximum
size is0.43m, and the minimum size i8.39m. The smaller size of, in two dimensions
is because; must matchs; in two dimensions instead of just 1, which produces fewer
matches between eachand the elements ¢f (see Section 2.4.3). This analysis shows a

2.5-4X improvement over dynamic programming.
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Algorithm 3 EDR Computation.
1: Input: R, m, S, n, €, Intersectiond,

2: Output: score
3: Local Variables: Array matches
4: Initialize matches[0] = 0 andmatches[1 to 2n] = m + 1.
5: max=0;
6: for j=1tondo
7:  Letc, a pointer into thenatches array, =0.
8:  Lettemp store an old value frommatches,=matches|0]
9: Lettemp2 store an old value frommatches,=matches|0]
10: for ke L;do
11: if temp < k then
12: while matches|c] < k do
13: if temp < matches[c] — 1 andtemp < m — 1 then
14: temp2 = matches|c]
15: matches[c] = temp + 1
16: temp = temp?2
17: else
18: temp = matches|c]
19: end if
20: c=c+1.
21: end while
22: temp2=matches|c|.
23: matches|c]=temp + 1.
24: temp=matches|c + 1].
25: if matches|[c+ 1] > k, then matches[c + 1] = k
26: if mar <c+1,thenmaz =c+1
27: c=c+ 2.
28: else iftemp2 < k andk < matches|c| then
29: temp2 = temp
30: temp = matches|c]
3L matches(c] = k
32: if mazx < c,thenmaz = ¢
33: c=c+1
34: end if
35:  end for
36: for j =ctomazx + 1do
37 if temp < matches[j] — 1 andtemp < m — 1 then
38: temp2 = matches|j|
39: matches[j] = temp + 1
40: temp = temp?2
41: if max < j,thenmazx = j
42: else
43: temp = matches|j]
44: end if
45:  end for
46: end for

47: score =max — (m + n).

2.4.5 Computing EDR using FTSE

Unlike LCSS, EDR does not reward matches, but rather pesajags and mismatches,

so the FTSE algorithm changes slightly. The maximum possitbre for EDRR,S,¢) is O
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if R andS are nearly identical. The worst possible score is« (m +n), if all m elements

of R and alln elements ofS incur a gap penalty. A mismatch penalty of -1 between
elements-; of R ands; of S can thus be viewed as a savings of 1 over two mismatches
(which together have a cost of -2 versus the -1 mismatch.céstpatch betweem; and

s; has a score of 0, which is a savings of 2 over the gap penaltg.cé9 SE for EDR
thus scores a match with4a2 reward and a mismatch with-al reward, and considers the
baseline score to bel x (m + n) instead of zero.

The FTSE algorithm for EDR is presented in Algorithm 3. Thetches array is
initialized (line 4 of Algorithm 3) similar to Algorithm 2. i8ice match rewards are being
scored with a 2, the array needs to be twice as long. Variahles (line 5), ¢ (line 7),
andtemp (line 8) are the same as before. Variableip2 stores an overwritten value of
the matches array, similar totemp. A second such temporary holder is needed because
match rewards are scored witht&, hence two values can be overwritten on an iteration.

Most of FTSE for EDR is the same as FTSE for LCSS, such as igr#trough the
elements of (line 6) and checking each element of the intersectiondistife appropriate
matches value (lines 10-12).

Mismatches are handled by lines 13-19. Variablep stores the value ofiatches|c—

1]. Sinces; can obtain a mismatch with any element/feach value ofnatches must
be incremented (line 15). The overwritten valuemefitches is stored back intgemp
(lines 14, 16, 18). Line 13 checks that a previous elemennbasnatched at position
of matches (producing a higher score than a potential mismatch) artdhiedength ofR
has not been exceeded.

Lines 22-27 handle a match. The previous valugwatches|c| is stored inemp?2 (line
22) sincematches|c] will be updated with a mismatch score (line 28)utches|c + 1]

is stored intemp (line 24) since a match is recordedratitches|[c + 1] (line 25). The
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012 3 4 5¢6 7 8
matches |0 |11|ll|11|11 |11|11 |11 hl | Initial

matches |o | 1 |2 |11|11|11|11 |11 |11| After (r ,.s,)

matches | 0 | 1 |2 |3 |4 |11|11 |11 |11 | After (r 4‘32)

matches [0 |1 [2 [3[3 [5[11]iafua| | Atter ¢ s,

matches |01 [2 [3[3]a]4 irha] | After(r,s,)

Figure 2.5: Thenatches array during FTSE EDR evaluation.

maximum score andcounter are updated in lines 26 and 27 respectively.

Lines 28-34 handle the case when the next matching elemémieirsection listZ, is
greater than the previous element by exactly 1. For exanfiplematches elements and
rr+1. In this case, the match with,.; will not necessarily exceettmp, the previously
updatedc — 1 value, but might exceetkmp2, the previously updated — 2 value. The
update code is similar to lines 22-27 already described.

Lines 36-45 handle the case when eithghas no matches i or whens; matches
elements only near the beginning Bf In this cases; could obtain mismatch scores with
the remaining portions aR. This section of Algorithm 3 is similar to the already debed

lines 13-19.

Example for EDR

We show the operation of FTSE evaluating EDR with the samenpl@aas was used
for LCSS. Following the intersection list generation of Alglom 1 already discussed,
Algorithm 3 begins by initializingnatches. This initialized state is seen in Figure 2.5.

The first match is obtained from the intersection list (liect the algorithm). This is
the intersection between ands;, hencek = 2. Sincematches[0] < 2 < matches[1], ¢
is setto 1in lines 13-2Qemp andtemp?2 are both set to 11 (lines 22 and 24)atches|l]
is set to 1 because can mismatch with. matches[2] is set to 2 because matches

with s;. Nothing is done for the match betweenands;. The updatednatches array is
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shown in Figure 2.5.

The intersection list for; is now empty, so FTSE proceeds to line 36is 3 and
max + 1 is 3, so the loop is taken exactly once. Tifecondition at line 37 fails, so no
changes are made toatches.

Next, the intersection between ands, is processed, sb = 4. Sincematches[2] <
4 < matches[3], cis set to3 by lines 12-20. No changes are made toith&ches array
by lines 14-16. Hence, the else condition (line 18) is takenbbthc = 1 and2 and
temp = 2. matches[3] is settotemp+1 = 3 (line 23) andnatches[4] is set to 4 (line 25)
sincek = 4. max is updated to 4 (line 26) andis set to 5 (line 33). Again, lines 36-45
make no changes taatches.

The intersection betweesy andr; is next considered. As shown in Figure 2.5, The
match betweer; andr; can use the match betweenandr, at position 2 ofmatches.

So, the value of (3) is recorded at position 4 afatches. When processing for; reaches
line 36,temp is 4,cis 5, andmax is 4. Hence, lines 37-40 record a value of 5 in position
matches|5]. This is because; builds upon the, ands, match with a mismatch between
itself andrs.

Finally, the intersection betweetn ands, is processed. Since the intersection between
r3 ands; has resulted in aatch[4] value of 3, line 23 will setnatch[5] to 4, and line 25
will set match[6] to a value of 4. This means thataz is also set to 6 (line 27). The final

score achieved (line 47)isl * (5 +4) + 6 = —3.

Cost Analysis of FTSE computing EDR

The cost of FTSE when evaluating EDRGS M + Tn), where is the number of
matches betweeR and.S, n is the length of time serieS, andT is the value ofnax in
Algorithm 3. This complexity results from iterating overthatches array for each of

then elements of5 up tomax places in the array. The value ofaz is bounded between
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min(m,n) and2min(m,n). This is because the value ofax is increased once for each
mismatch and two times for each match that occurs in the fligadraent betweerR and

S. While this is stillO(mn) in the worst case, FTSE for EDR still achieves efficiencies
relative to dynamic programming since it only needs to stbeenumber of matching
elements)/ betweenR andS. This leads to better performance, which is later quantified

experimentally in Section 2.6.2.

2.4.6 Maintaining the Best Matching Pairs

The FTSE algorithm for either LCSS or EDR can be easily modifeefind not only
the best score between two time series, but also the bestrssgiof matching pairs that
produce that score. Maintaining the best sequence of nmatqtairs is useful for applica-
tions that seek to compute the best alignment between twe ggnies. We now discuss
how to modify FTSE for LCSS; a similar discussion for EDR is tied.

The matching pairs found in Algorithm 1 are maintained insadif intersections. The
list element that contains a particular match can be linkeithé previous best set of list
elements when the match is considered in line 10 of Algorithgince each match con-
tributes to the best score in at most one position. The ba&gtraént can be found by
maintaining an array of the list elements that contain th&chmag pairs. Each array po-
sition corresponds to the last match in the sequence, wéthetmaining matches chained
out behind it.

The following three lines can be added to Algorithm 2 betwkees 16 and 17 to

maintain the record of the best alignment (whires the list element for match):

alignment[c] = .
if ¢>0 then ly.next = alignment[c — 1].
else l.next = 0.

The alignment array is of lengthn, similar to matches. It is initialized to all null

entries. At the end of the algorithm, the best sequence istaiaed in thealignment
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array, and it can be returned to the user.

2.5 The Swale Scoring Model

The FTSE algorithm can be used to evaluate a broad clasthoéshold value based
scoring models, of which LCSS and EDR are two examples. Thoiad®r class of scoring
models includes a new Swale scoring model, which we presdoib The Swale scoring
model improves over previous approaches in several wayst, Eiallows for a sequence
similarity score to be based on both match rewards and mednm@nalties. Second, it
allows for the match reward and gap penalties to be weiglelative to one another. These
weights also allow a user or domain expert with particulaovidedge of a certain area to
tune the distance function for optimal performance instfdtaving only one technique
for all data domains. If the user has no such domain-specibevledge, a training dataset
can be used to automatically learn the weights (as we do thekxperiments presented
in this paper).

More formally, the Swale distance function is defined as:

Definition 2.5.1. Let R and S be two time series of length m and n, respectivelyhée

gap cost beyap. and let the match reward beoward,,. ThenSwale(R, S) =

n * gape, if m=0

m* gape, ifn=0

reward,,+ if Vd, |rg1 — sqq1| <€
Swale(Rest(R), Rest(S)),

max{gap. + Swale(Rest(R), S), otherwise

gap. + Swale(R, Rest(S))}

Next we explain why Swale offers a better similarity meastwenpared to the best
existinge methods, namely LCSS and EDR [18, 78]. For this illustratimonsider the
sequences shown in Figure 2.6. SequeHdceontains six elements. SequenBehas
the same six elements af but has three additional “noise” elements embedded in it.

Sequencé€’ contains ten elements, and sequehckas the same ten elements with three
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Figure 2.6: Time Series Examples

additional “noise” elements in it. Note that the number o§matched elements between
C andD is the same as that betwedrand B.

Both EDR and LCSS lose some information when scoring theseeseqa. EDR scores
gaps and mismatches, but does not reward matches. In tisis,seonly measures dissim-
ilarity between two sequences. For exampleand B receive the same score @sand D
even thouglC' and D have nearly twice as many matching elements.

LCSS rewards matches, but does not capture any measureiofitiigsy between two
sequences. For example, the LCSS technique sc¢bessl D identically toC' scored with
itself, which is not intuitive.

Swale is similar to LCSS because it rewards matches betwepresees, but it also
captures a measure of their dissimilarity by penalizing glaments. Swale allows and
D to obtain a higher score thahand B because they have more matching elements while
still penalizing them for gap costs.

The Swale scoring function can be evaluated with the samé&RI§rithm described
for LCSS by simply changing the last line of Algorithm 24ere = max * reward,, +

gape * (m +n — 2max).
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Method CM | ASL | CBF | Trace
DTW 53.23| 1.31| 1.94| 521.93
ERP 77.43| 1.76| 2.68| 553.73
LCSS 42.74| 0.93| 1.41| 386.09
EDR 43.69| 1.01| 1.41| 390.87

SC-Bprw | 10.55| 0.78| 0.71| 104.91
SC-Brcss | 14.61| 0.80| 0.88| 132.43
I-Par 15.44| 0.86| 0.90| 141.05
FTSE;css | 5.13| 0.78| 0.74| 80.80
FTSEppr | 6.27| 0.82| 0.85| 99.17

Table 2.3: Time in seconds to cluster a given dataset, ustighiques that compute the actual alignment.

2.6 Experiments

In this section, we experimentally evaluate the perforreanfd-TSE, and the accuracy

of Swalle.

2.6.1 FTSE Experimental Evaluation

In this section, we evaluate the effectiveness of the FT8Rnigue evaluating both
LCSS and EDR. Since Swale is evaluated with only a small motlificao FTSE for
LCSS, its performance is identical to LCSS with FTSE. All expents are run on a
machine with a 1.7 GHz Intel Xeon, with 512MB of memory and &80Fujitsu SCSI
hard drive, running Debian Linux 2.6.0. We compare the perémce of FTSE against
DTW, ERP, LCSS, and EDR. Each technique is evaluated using aidred, iterative
dynamic programming-style algorithm.

The performance of FTSE is dependant on ¢halue, since this value determines
which elements of? and S are close enough to one another to be matched. The emphasis
of our work is not on describing how to pick arnvalue for either LCSS or EDR, but to
demonstrate the effectiveness of FTSE for reasonableetofe. Consequently, we show
results with are value of0.50, whereo is the standard deviation of the data (since we are
dealing with normalized data, is 1). We have chosen thésvalue since it was shown to

produce good results in [77].
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Method CM | ASL | CBF | Trace
DTW 35.23| 1.20| 1.78| 329.17
LCSS 14.24| 0.84| 1.16| 129.42

SC-Bprw | 7.05| 0.76| 0.74| 72.91
SC-Brcss | 6.40| 0.74| 0.72| 66.95
FTSE;css | 2.69| 0.72| 0.61| 48.28
FTSEsc_p | 2.26| 0.70| 0.60| 40.74

Table 2.4: Time in seconds to cluster a given dataset, U3{(mng storage techniques that do not compute the
alignment.
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Figure 2.7: Cost of computing similarity scores v/s timéesetength. (CLIVAR dataset)

In our first experiment we show the average time to perfornstméarity comparisons
for a complete linkage clustering evaluation. Completedmsk clustering of time series
was used in both [78] for LCSS and in [18] for EDR. For a datas#t iwtime series, each
clustering run involves computing approximatély (k£ — 1) time series similarity scores.

To perform the complete linkage clustering, our evaluatises the same datasets used
in [78] and in [18], which includes the Cameramou§¥) dataset [23] and the Aus-
tralian Sign LanguageASL) dataset from the UCI KDD archive [76]. Since both of these
datasets are two dimensional, we also experiment with tipailpo Cyliner-Bell-Funnel
(CBF) dataset of [35] and th@race dataset of [65]. The CBF dataset contains three
classes (one each for the cylinder, bell, and funnel shapek)s synthetically generated.

We use 10 examples from each class in the clustering. Thee Tataset is a four class
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Figure 2.8: Cost of computing similarity scores v/s timeiesitength; comparison with warp-restricting
methods. (CLIVAR dataset)
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Figure 2.9: Cost of computing similarity scores v/s timdeselength; comparison with methods that do not
compute the actual alignment. (CLIVAR dataset)

synthetic dataset that simulates instrument failureslesf a nuclear power plant. There
are fifty examples for each class.

The CM dataset consists of 15 different time series obtaireed fracking the fingertips
of people in two dimensions as they write words. Three diffiépeople wrote out five
different words. This gives a total of five distinct classdib(one for each word) and
three members for each class.

The ASL dataset contains examples of Australian Sign Lageségns. The dataset
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contains time series in two dimensions for words that areezsighy the user, and each
word is signed five different times. We choose to use the sd@hweotd examples of [78].
This gives us a dataset with 10 classes with 5 time seried@&s.c

We also compare with the Sakoe-Chiba Band (SC Band) and Italaradlé?logram
techniques for warp-restricting DTW. A restriction valuel® percent is used in [86], so
we also use this value. A similar technique to the SC Band for& &Slescribed in [78],
which sets the restriction value to 20 percent. The Itakar@lRelogram is referred to as
(I-Par).

The results for the complete linkage clustering test is shmwlable 2.3. For the CM
data set, FTSE is faster than the dynamic programming methypd factor of 7-8 and
faster than the warp-restricting techniques by a factor-8f EFTSE is faster than DP by
a factor of 4-5 and is nearly twice as fast as the SC Band euaduaCSS for the Trace
dataset. FTSE also consistently performs better than dignarmgramming on the other
datasets. Note that the performance advantage achieveylRiBSE relative to the various
DP techniques is not as large for ASL and CBF as it is for the CM aadel datasets.
This is because the average sequence length of the ASL and CBEns®s are 45 and
128 respectively, while the average length of the CM is 115l the Trace is 255. This
indicates that FTSE performs better than DP as length isesgavhich we also show in
the next experiment. The Trace dataset also takes longeratoate than others datasets
because it contains many more sequence examples (200) thgh3}MSL (50), or CBF
(30).

We also show results for both the DP and SC Band techniqueg UXin) storage
techniques that produce the best score but do not yield gteabgnment between the two
sequences in Table 2.4. Essentially, sinceitheolumn of themn matrix depends only

on thei — 1** column, 2 column arrays can be used. Similarly, it is a singpfension
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for FTSE to show that the list of intersections need not beenelized if an alignment
between the two time series is not required; we have alsoeimg@hted this version of
FTSE (FTSELcss in the table). FTSE can also be implemented with a warpioéisin
(in essence, to only consider matches in the same narrowasatng SC Band technique).
We have also implemented this version with a restrictionealf 20 percent to show that
FTSE (FT'SEsc_p in the table) can obtain the same score as the SC Band, if desire
these tests, we limit results to LCSS and DTW evaluation Isghiests, FTSE is faster than
DP for LCSS by a factor of 7 and by more than 2X when restrictiregwarping window
for the 2 dimensional CM dataset and by a factor of 2.5 overteR&cfor LCSS and by
a factor of 1.5 when restricting the warping window when eatihg the 1 dimensional
Trace dataset.

The second experiment evaluates the effectiveness of tB& Flgorithm as the time
series length varies. For this experiment, we use the CLIVAR&Se Drifters trajectory
dataset from [58], which contains climate data obtainedd®3from free-floating buoys
on the surface of the Pacific Ocean. This data contains tlggtlate and latitude coordi-
nates for each buoy. The time series in this data set varyngthefrom 4 to 7466 data
points.

From the CLIVAR-Surface Drifters dataset, subsets of datapaneluced such that
each subset contains time series of similar length (all Ser@es in a subset are within
10% of the average). For experimentation, subsets of 5 tariesseach are chosen with
the following average time series lengths: 349, 554, 828910739, 2142, and 3500. As
before, we report the time needed to perfatrm (k£ — 1) comparisons (the same as was
done in the clustering experiments). Since each subsegiosr time series, this is the
time to perform 20 time series comparisons. The resultshisrexperiment are shown in

Figures 2.7, 2.8, and 2.9.
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Figure 2.7 shows the results for FTSE evaluating LCSS (laldeél&SEL) and EDR (FT-
SEE). It also shows DTW, ERP, LCSS, and EDR evaluated usingnaignarogramming.
As can be seen in this figure, FTSE is nearly an order of madmiaster than the dynamic
programming techniques. The figure also shows that the ipeaitce advantage of FTSE
over the DP techniques increases with sequence length.

Figure 2.8 presents results for FTSE and the Sakoe-Chiba Bid évaluating DTW
and SCL evaluating LCSS) and Itakura Parallelogram (IPAR) weasfricting techniques.
FTSE is about twice as fast as the Sakoe-Chiba Band and 2-3fastes than the Itakura
Parallelogram technique. SC for LCSS is slower than for DT\dalise the warping re-
striction needed for good results (20%) for LCSS is largen tioa DTW (10%).

Figure 2.9 presents results for th¥n) storage techniques already discussed. FTSE
(FTSEL in the figure) is generally about 3 times faster than@ methods (LCSS and
DTW) and almost twice as fast when the warp-restricted varefoFTSE (FTSESC) is
compared with the SC Band technique (SCL and SCD).

In summary, compared to existing methods that compute thialealignmentFTSE is
up to 7-8 times faster than popular dynamic programming riepires for long sequences

and 2-3 faster than warp-restricting techniques, while pdawy an exact answer

2.6.2 Experimental Cost Analysis of FTSE

The complexity and average case cost of FTSE have already dredyzed in Sec-
tions 2.4.3 and 2.4.4. In this section, we analyze the exparial cost of FTSE to show
why it performs better than the other techniques that predie best alignment, using the
CM dataset as an example.

FTSE is more efficient for two reasons: it performs fewer afiens than the competing
techniques and it requires less space, which improves gjogiddm’s memory and cache

performance.
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The number of operations performed by FTSE is dependent orptimciple com-
ponents: the number of matches between elements aid elements of obtained by
Algorithm 1 and the number of reads or writes to thetches array in Algorithm 2. For
the CM dataset, there are about 120 thousand matching pasgeoage between any two
sequence& andS (since the average length of each time series is 1151 elenbate are
a total possibility ofl 151 %« 1151 = 1.32 million) and about 300 thousand reads and writes
to thematches array. This means that FTSE performs about 420 thousanatipes on
the CM dataset versus the 1.32 million for DP, which is lesa thae-third.

The amount of space used by FTSE is dependant on the numbeatofing pairs
generated by Algorithm 1. Thewatches array and the grid (which contains fewer than
200 grid cells for CM) are of negligible size. For the CM datatet number of matching
pairs is approximately 120 thousand. The equivalent DPrilgo writes approximately
1.32 million elements.

To test that this considerable space difference actuallyli®in cost savings, we mod-
ified Algorithm 2 by allocating an amount of space equivaterthat of the DP algorithm
and adding a line between lines 13 and 14 of Algorithm 2 thadoanly writes to an ele-
ment of the allocated space. The new algorithm attains ivgat@erformance only from
the saved operations, not from memory or cache efficienog.tifime this new FTSE takes
to cluster the CM dataset is 12.12 seconds (before it was .58} is expected, since
DP for LCSS takes 42.74 seconds and the ratio of operatiomgebatFTSE and DP is

420/1320 and42.74 % 420,/1320 = 13.59 seconds.
2.6.3 Evaluation of the Swale Scoring Model
In this section, we evaluate the effectiveness of the Swaddargg model compared to

existing similarity models. For this evaluation, we tes #bility of the model to produce

high-quality clusters. (Following well-established madblogy [18, 35, 78].)
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For our evaluation, we used the Cameramouse (CM) datasetd@8]the Australian
Sign Language (ASL) dataset (as previously described).dthtian, we also obtained
an additional dataset from the UCI KDD archive [76] called igh Quality ASL. This
dataset differs from the ASL dataset in the following way:the ASL dataset, several
different subjects performed the signing, and lower qudést gloves were used. The
High Quality ASL (HASL) dataset consists of one person peniag each sign 27 times
using higher quality test gloves. Details regarding theBerdnces can be found at [76].
We do not provide detailed results for the Trace and CBF datdsstause these datasets
have a small number of classes (4 and 3, respectively) armltemot offer as much room
for differentiation as the ASL datasets (all techniquetetdsn Trace and CBF performed
nearly identically).

In the evaluation we perform hierarchical clustering usswgale, DTW, ERP, LCSS,
and EDR. (We omit a comparison with the Euclidean distanoegest has been generally
shown to be less robust than DTW [18, 33, 78].) Following pes established meth-
ods [18, 35, 78], for each dataset, we take all possible patksses and use the complete
linkage algorithm [32], which is shown in [78] to produce thest clustering results.

Since DTW can be used with both the L1-norm [17] and the L2m[87] distances,
we implement and test both these approaches. The resulistfoare similar. For brevity,
we present the L1-norm results.

The Swale match reward and mismatch penalty are computad trsining datasets.
The ASL dataset in the UCI KDD archive contains time serieaskds from several differ-
ent signers placed into directories labeled by the sigmarse and trial run number. We
selected the datasets labeled adam2, john3, john4, s2pdeshstephen4 for test datasets
1-5, respectively, and datasets andrew2 and john2 forinigid-or the HASL, each word

has 27 examples, so we are able to group them into 5 diffemdigictions of data, each
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1| 2| 3| 4| 5] total
DTW |40 (32|34 |37 |41 | 184
ERP [38|32|39|40| 41| 190
LCSS | 40| 30|38 (39|41 | 188
EDR [38|27|39|37|43| 184
Swale | 39 | 29| 41 | 42| 42| 193

Table 2.5: Number of correct clusterings (each out of 45)tfier ASL dataset. The best performers are
highlighted in bold.

with 5 examples, with 2 examples left over. The first suchskttes used for training, and
the others are used for testing.

For the training algorithm, we use the random restart mef@fl Since the relative
weight of the match reward and gap cost is what is importaat {fie ratio between them),
we fix the match reward to 50 and use the training method toy@acdlous gap costs. The
computed mismatch cost for ASL is -8 and for HASL is -21.

The CM dataset does not have enough data to produce a traimihg test set. We
therefore chose the ASL weight as the default. All techrsqoerrectly clustered the
dataset (10 out of 10 correct).

The total number of correct clusterings for each of the fisiedint ASL datasets (out
of 45 for each dataset) are shown in Table 2.5. As can be sethe itable, Swale has
the overall best performance for the tests. There is a highegeof variability for all the
similarity functions from one ASL dataset to the next, buhgaoyeneral trends do emerge.
For example, all of the techniques perform well on datasetvéraging over 40 correct
clusterings out of 45 possible. All of the techniques dotnetdy poorly on dataset 2,
averaging only about 30 correct clusterings out of 45. Thesedatasets emphasize the
variability of data for multi-dimensional time series; twlatasets in the same ASL clus-
tering framework produce very different results for all loéttested similarity measures.

The results for the HASL datasets are shown in Table 2.6 amdraze again out of a

possible 45 for each technique on each test. Overall, DTW, EEB8S, EDR, and Swale



1| 2| 3| 4] total
DTW 8| 8/2]|5 23
ERP 9| 547 25
LCSS 81106 |7 31
EDR 13| 2|131|6 24
Swale | 18| 10| 5| 7 40

Table 2.6: Number of correct clusterings (each out of 45)tiier HASL dataset. The best performers are
highlighted in bold.

obtain fewer correct clusterings on the HASL datasets thay tlo on the ASL datasets.
There is also high variability in accuracy across the daésagest as in the ASL data pre-
sented in Table 2.5. Swale performs much better on the Gtzggins for the HASL
datasets than the alternative techniques, obtaining leafot@ correct total classifications.
The closest competitor is the LCSS technique with 31. Thias#talso highlights how
Swale leverages the combination of the match reward and gjagity on real datasets for
improved accuracy. On HASL dataset 1, EDR, which also useggaglties, performs
much better than the LCSS technique. Swale also performsweion this dataset. On
HASL dataset 2, the LCSS technique performs better than EDRIeSyerforms as well
as the LCSS technique on this dataset, and is thus able tonab&abest of both worlds -
it does well when EDR does well, and also does well when LCSS ded!

In summary, the results presented in this section demdesdtrat Swale is consistently

a more effective similarity measuring method compared istiag methods.

2.7 Conclusions

In this chapter, we have presented a novel algorithm call&sE+o speed up the eval-
uation ofe threshold-based scoring functions for time series data¥ét have shown that
FTSE is faster than the traditionally used dynamic programgrmethods by a factor of
7-8, and is even faster than approximation techniques ssitieeSakoe-Chiba Band by a
factor of 2-3. In addition, we also presented a flexible neariag model for comparing

the similarity between time series. This new model, calledls, combines the notions of
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gap penalties and match rewards of previous models, andnafgsoves on these models.
Using extensive experimental evaluation on a number ofdai@sets, we show that Swale
iS more accurate compared to existing methods. In the neafiteh we will begin our

discussion of temporal skyline evaluation.



CHAPTER IlI

The Time Interval Skyline

3.1 Introduction

In this chapter, we begin our detailed discussions of skydimmputation which we will
discuss throughout the rest of this thesis, focusing on ¢teatigkyline computation in this
chapter. In the introduction, we showed that the skylingaipe is a useful summarization
technique for multi-attribute data sets [43]. We also stbiwvt, if we are given a data
set P that contains pointg,, ps, ..., p,, p; iS said to be in the skyline af if no p, in P
dominate;.

Most skyline algorithms to-date assume that the data séati€,si.e. the data has no
temporal element associated with it, or have dealt with @nalpdata only in a sliding
window context, i.e. the skyline is evaluated only over thestirecentn data points.
In contrast, thecontinuous time-interval skylineperation involves data points that are
continually being added or removed. Each data point hasramlaime and an expiration
time associated with it that defines a time interval for whiedpoint is valid. The task for
the database then is tontinuouslycompute a skyline for the data points that are valid at
any given time. The continuous time-interval model usedhis thapter is a more general
one than the sliding window used in [49, 75], and hence thlenigecies discussed in this

chapter of the thesis may also be used to evaluate suchgsWdindow queries.

45
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Figure 3.1: The example data with arrival and expiratioresmr he continuous skyline is shown in transition
from time 20 to 23.

Figure 3.1 shows the difference between a conventionairskgluery such as that seen
in Figure 1.1 and a continuous time-interval skyline oveirailar data set. Each data
point has an arrival time and an expiration time, as showméntéble on the right hand
side of the figure. The figure displays the skyline as it ttzmss from time 20 to 23. At
time 20, the skyline is the same as that in Figure 1.1. Therskghanges at time 21 when
data point/ arrives. It is part of the new skyline. At time 22 expires, and the skyline
must be modified to remowefrom both the data set and the skyline. Notice thi not
in the new skyline, sincéis dominated by both and/. At time 23, data point expires,
and the skyline is modified again, this time introducing a pemt into the skyline, point
h.

There are a number of emerging streaming applicationselaine efficient evaluation
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of the continuous time-interval skylinelf we consider the familiar example of choos-
ing hotels, hoteliers routinely run competitive deals withoking agencies such as price-
line.com. These hotel operators may wish to submit a bidHeirtrooms at a particular
price for some specified period of time. If bookings increésey may wish to increase the
room cost, or conversely decrease it if bookings do not as®eA user interface on top of
the raw priceline data may wish to show the most competitiaems (with respect to the
beach for a given price) to customers, while balancing hidsifmany hotel companies
that all may change with time. At any given time, there may @myncontinuous sky-
line queries active in the system, depending on a numberhef aiser preferences (such
as distance from a customer-specific point of interest).ubhsa case, the server needs
to efficiently evaluate a large number of skyline queriestiomously on data points with
arbitrary valid time ranges. Such an application could efuldor online hotel bookers,
such as orbitz.com [3].

Another example for the use of continuous skyline evaluadn the realm of online
stock trading. Traders are interested not only in the tgagince of a stock, but also in
the number of shares trading hands at a price. Since tradetem@poral, traders may
only be interested in trades within the last hour. Hence, ehaueism for allowing trades
to age out of the system after an expiration time is neededsudh a scenario, traders
are interested in the skyline (price versus share volumentmy different stocks. Each
stock may require a different continuous time-intervallisig/operator to keep track of the
latest developments. Note that in such applications themebe a large number of skyline
gueries that the server may need to evaluate continuoukighvdemand time and space
efficient evaluation methods.

In this chapter, we present the first algorithm for efficigmvaluating the continuous

time-interval skyline operation. We show that this new alkiipon, calledLookOut is very
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scalable as it is both time and space efficidimokOut outperforms an iterative algorithm
based on currently known methods by at least an order of magmiin most casesiVe
also comparéookoutwith thelazy andeager methods of [75], and show that it performs
better than either of these methods for anti-correlated dats while evaluating a more
general time model than the sliding window queries.

The other contribution that we make in this chapter of theithis to explore the choice
of index structures for evaluating skyline operations ljdatthe static and the continuous
cases). All previous skyline algorithms that have usedaigatices have employed the R-
tree family of indices [26]. For example, the branch and lbalgorithm B BS) [59, 60]
uses the R*-tree index [6]. We make an important observatian the MBR overlap
involved with the R*-tree’s partitioning dramatically ireases the number of both index
non-leaf and leaf nodes that are examined during a skyliaiation. In contrast, the
non-overlapping partitioning of a quadtree is far supefi@orcomputing skylines.

We note that an immediate question that arises with a quadidex is that it is not
a balanced indexing structure. However, it has been sholve ém effective disk-based in-
dex [22,28] and some commercial object-relational systneady support quadtrees [44].
The claim that we make and support is that if the speed ofs&ydomputation is critical,
a quadtree is far more preferable than an R*-tree. In ours&gkperimentghe quadtree
index significantly speeds up skyline computation by up torder of magnitude or more
in some cases, and is never slower than the R*-tree approbiding the quadtree also
results in smaller memory consumption during the skylin@gotation. We note that the
issue of comparing the R-tree and quadtree for a wider rangpaifal operations is be-
yond the scope of this chapter. Our results show that in systbat support quadtrees,
using them is preferable for skyline computation.

It is also worth mentioning that the time-interval modelttiage use in this thesis is
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very flexible, and can easily accommodate more specializedraing data models. For
example, our model can be used with data sets that have n@agapitime by setting the
expiration time of the data in the model to infinity. Similgnbreexisting data or data that
does not have any implicit start time, can simply be treatedawing a start time of zero.
In addition, data that does not have an explicit expiratioret but rather is valid fot
seconds from its arrival can simply be handled by notingrtsa time, a, and setting its
expiration time ta + a.

The remainder of this chapter is organized as follows: Relaterk is covered in
Section 2, and we present our new algorithm in Section 3. ¢ticse4, we consider the
effect of the indexing structure for skyline computationxpErimental evaluations are

presented in Section 5, and finally Section 6 contains ouclosions.

3.2 Related Work

Now, we discuss work related to skylines both in generalclis also related to the
work done in the remaining chapters of the thesis, and spaltyfifor temporal skyline
evaluation. We will further highlight some of this relatednk in the remaining chapters
when appropriate.

The skyline query is also referred to as the Pareto curved6d jmaximum vector [45].
The skyline query is related to several other well-knowrbfgms that have been studied
in the literature. Nearest neighbor queries were propog§d) and studied in [27], top-N
were studied in [12], the contour problem in [56], convexiud [9,64], multidimensional
indexing [53, 71, 79], and multi-objective optimization[B1, 72].

The skyline algorithm was first proposed by Kung et al. [43)jekh employs a divide-
and-conquer approach. Borzsonyi et al. [10] introducediyé&ne operation in a database

context and showed how the standard indexing structuregdd-tand R-trees, could eval-
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uate skyline queries. Chomicki et al. [19] formulated a genelational-based approach
to compute the skyline, based on the approach of [10]. Anrdlgo for high dimen-
sional skyline computation was proposed by Matousek [5%],aparallel algorithm was
proposed by Stojmenovic et al. [73].

An algorithm to obtain the skyline based on a nearest neighépproach was intro-
duced by Kossmann et al. [43], which uses a divide-and-censgheme for data indexed
by an R-tree. Two algorithms were proposed in [74]. One is aldpped approach, and
the other is an indexed approach using B-trees.

The branch and bound technique for skyline computatiBi§) was proposed by
Papadias et al. in [59, 60]. It traverses an R*-tree using &fivessearch paradigm, and
has been shown to be optimal with respect to R*-tree page sese€urrentlyBBS is
the most efficient skyline computation method, and in thjggpave compare theookOut
algorithm withBBS. BB.S operates by inserting entries into a heap ordered by a sgecifi
distance function. At each stage, the top heap entry is retholf it is a R*-tree node,
its children are inserted into the heap. If it is a point, itdsted for dominance by other
elements of the growing skyline and is either discarded aleddo the skyline. This
algorithm require®)(s - log (IV)) R*-tree page accesses, whers the number of skyline
points andN is the data set cardinality. [60] also discusses skylinenteaance in the
presence of explicit updates, but does not discuss tineevialt skylines on streams.

Lin et al. [49] focus on computing the skyline against the tmesentn of IV elements
in a data stream. Their approach indexes data in an R-tree s®lan interval tree to
determine when a point is no longer amongst the most re€guuints. They also propose
a continuous skyline algorithm based around thef N model which, similar to our
algorithm, incorporates a heap to remove elements that $igymed outside the working

window. But the similarities to our work end here. The windofasize n necessitates a
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limited scope of elements in the data set and thus in therskgs well. Consequently,
there is not an explicit temporal element to the computatidhe skyline. In the temporal
case, which we use in this paper, the number of points undesideration is1otrestricted
by any NV, and at any given point in time new points may arrive, old p®may expire, or
any combination of the two. Consequently, with our modelj#mtinique proposed in [49]
cannot be directly applied. Data reduction in streamingrenments is studied in [51].

Tao and Papadias [75] also studied sliding window skylifees)sing on data streaming
environments. Their work also focuses on the most reecemihdow of data points. This
is the most similar of the previous work to our work in this pgpand we compare the
performance of the two techniquesger andlazy proposed in the paper withookOut.

Huang et al. [29] studies continuous skyline queries foragyit datasets. Here, the
data is moving in one or more dimensions. To efficiently exesducontinuous skyline
gueries in the presence of moving data, a kinetic-basedstiatzture is developed. While
this work is similar to our work because it requires the amndius evaluation of the skyline
as the data changes, the data elements are moving as oppa@seilihg at and expiring
from the dataset. Since the data model of [75] is closer tormdel, we comparéookOut
with its eager andlazy techniques.

This paper is a full-length version of the short poster p#pé}.

3.2.1 BBS Example

We present the operation é&fBS on the dataset shown in Figure 3.2. This dataset
consists of 6 data points indexed by an R*-tree. Let us asshateeach each internal
R*-tree node can hold up to three entries, and that each |ekg#f can also hold up to three
entries.

The BBS algorithm begins by inserting1 into the heap that is ordered by the min-

imum Manhattan distance. The contents of the heap at eagh efahe algorithm are
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Figure 3.2: A sample dataset indexed by an R-tree used tirdiie the operation of thB B.S algorithm.

shown in Table 3.1 R1 is popped off the heap and its childreR? and R3, are inserted
back into the heapR2 has a Manhattan distance of 3, wherégshas a distance of 6,
so R2 is popped off the heap and expanded first. The two childretctirapose its local
skyline,c anda, are inserted back into the heap. Note thaeed not be inserted back into
the heap, since it is dominated by Sincec is now at the top of the heap, it is popped
off and inserted into the set of skyline points. Ne&g is expanded. Two of its children,
e and f, are not inserted back into the heaps dominated by, and f is not part of the
local skyline of R3. The heap now containsandd. They are both popped off the heap

and inserted into the skyline. The heap is now empty, andtBé algorithm terminates.

3.3 The LookOut Algorithm

In this section, we present our algorithm for efficiently lexzing time-interval contin-

uous skyline queries.
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Action Heap Contents (Skyline)
Expand R1| (R2,3), (R3, 6) [}
Expand R2| (c, 4), (R3, 6), (a, 7) 0

Add ¢ (R3; 6)! (a! 7) {C}
Expand R3 (@ 7),(d,9) {c}

Add a (d,9) {a,c}

Add d Empty {a,c,d}

Table 3.1: Contents of the heap during an iteration ofBB&algorithm for the example dataset shown in
Figure 3.2.

Algorithm 4 LookOut
1: Input: IndexT'ree, Heapt Heap, Current Timelime
2: List Skyline, SetDSP, SetN SP, Time End

3: while Time < End do
4:  if ndpis a new data poirthen
5: insertndp into T'ree
6: insertndp and expiration time intoH eap
7 if isSkyline(C'ree, ndp) then
8: remove points fronbkyline dominated byhdp
9: addndp to Skyline
10: end if
11:  endif
12:  while t Heap.top.expireTime equalsTime do
13: deletet Heap.top from Tree
14: if tHeap.top is a skyline pointhen
15: addtHeap.topto DSP
16: end if

17:  end while
18:  for point € DSP do

19: NSP «— MINI( point, tree)

20: for t € NSP do

21: if isSkyline(Tree, t) is true, addt to Skyline
22: end for

23:  end for

24: updateT'ime to the current time.

25: end while

3.3.1 Overview

Each data point in the data set is associated with an inteftahe for which it is valid.
The interval consists of the arrival time of the point and gpigtion time for the point.
The notation for the interval i3 {, t.).

The skyline in the continuous case may change based on omedents: namely,
a) some existing data pointin the skyline may expire, or b) a new data pojninay be

introduced into the data set.
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In the case of an expiration, the data set must be checkedeWiskyline points that
may have previously been dominated:by hese points must then be added to the skyline
if they are not dominated by some other existing skyline {®oiin the case of insertion,
the skyline must be checked to seg it dominated by a point already in the skyline. If
not, j must be added to the skyline and existing skyline points i ¢to see if they are
dominated by;. If so, they must be removed.

The LookOut algorithm takes advantage of these observations to eeathattime-
interval continuous skyline. Since the skyline can changg when either a new point
arrives or an old point expireg,ookOut maintains the current skyling. A data pointp
is inserted into a spatial index at timg This point is checked to see if it is in the skyline,
and if so,S is updated. Ifp is dominated, no changes are mad&tdNhent, arrives,p
is removed from the dataset and deleted from the spatiakin&lehis time, the dataset is
checked to see if any of the points dominatedtare now elements of the skyline. If so,
these points are added $0

LookOut takes advantage of two important properties of hierarttsipatial indices,

such as the R-tree family of indices and the quadtree.

1. If p dominates the all corners of a noddand hence dominates the entire region
bounded by the node), thendominates all of the points containeddrand its chil-

dren.

2. If all of the corners of a node dominates a poinp (and hence the entire region
bounded by the node dominategs then all of the points contained inand its chil-

dren dominate.

These two observations are later used to prune nodes ofdeg and to discard new

points from skyline consideration byookOut.
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Algorithm 5 1sSkyline
1: Input: Point Py, Index nodel'ree
2: insertTree into a heapB H eap, with distance 0.
3: while BHeap isn’t emptydo

4:  Tree < pop of BHeap
5. if Treeis aleaf noddghen
6: check if one of the entries @free dominatesP,,c.,
7 if so, return false. Otherwise, continue
8. else
9: for Child € the non-empty children dfree do
10: if minimum corner ofC'hild does not dominaté®,,.., then
11: continue
12: else
13: if maximum corner ohild dominatesP, .., then
14: return false
15: else
16: insertC'hild into BHeap
17: end if
18: end if
19: end for
20: endif
21: end while

22: return true

3.3.2  Algorithm Description

LookOut may be used with any underlying data-partitioning schemeur implemen-
tation, we chose to use and evaluate both the R-tree [6] arskébdsed PR quadtree [70].
We use the R-tree because of its ubiquity in multidimensiomaéxing and its use in
other static-data skyline algorithms such as [59]. The treadndex uses a regular non-
overlapping partitioning of the underlying space, and iseredfective in pruning portions
of the index that need not be traversed for skyline comparafa discussion of these
tradeoffs is presented in Section 3.4).

The LookOut algorithm is presented in Algorithm 4. As seen in line 4, wiaenew
data point arrivesLookOut first stores the item into the spatial index. Each data elémen
is also inserted into a binary heap (line 6) that is orderedhenexpiration time. This
heap is used so that data can be removed from the system wigpirigs. The element
is then checked to see if it is a skyline point by th&'kyline algorithm (line 7), which

will be explained shortly. If so, the new point is added to shgline and those skyline
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points it dominates are removed. As time passes, the miniening in the binary heap is
checked to see if its expiration time has arrived (line 12), &t has, it is deleted from the
index. The skyline points themselves are maintained irt sslisthat they may be returned
immediately in the event of a skyline query over the data(Jdte skyline points can also
be stored in an index, but the skyline is small in size andrilex overhead often mitigates
the benefits of using the index.) A separate heap, orderedeoaxpiration time, is also
maintained for the skyline points so that an expired skytiomt may be quickly removed.
Those points that have been removed from the skyline (lindeke possible gaps that
need to be filled by currently available data. ThWe NI algorithm finds the mini-skyline
of points that were dominated by a deleted skyline point dfettvely plugs a hole left
by a deleted skyline point. Some and possibly all of the gdiotind byM I N T may be
dominated by some other skyline point. Before adding therhdéskyline,LookOut tests

if each is in fact a new skyline point wits Skyline (line 21).
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Figure 3.3: An R-tree depicting the data set in Figure 1.1.

TheisSkyline algorithm is shown in Algorithm 5. It uses a best-first segraradigm,
which is also used itlBBS. The index nodes are inserted into a heap based on distance

from the origin. When expanding a node in the heap (line 4 obAtgm 5), theisSkyline
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Algorithm 6 MINI
1: Input: Point Psy, Index nodel'ree
2: Output: skylineminiSkyline
3: insertT'ree into heapB H eap, with distance 0.
4: while BHeap isn’t emptydo

5: if BHeap.top is a pointthen
6: point < pop BHeap
7: plsDominated — FALSE
8: for each element in miniSkyline do
9: if a dominatepoint then
10: plsDominated < TRUFE
11 end if
12: end for
13: if pIsDominated is FALSE then
14: insertpoint into miniSkyline
15: end if
16: else
17: Tree «— pop of BHeap
18: if Psi, dominates the maximum corner Bf-ee then
19: if Tree is a leaf nodehen
20: find the local skyline of jus'ree
21: for point € the local skyline ofl'ree do
22: if Psry dominategpoint then
23: insertpoint into BH eap.
24: end if
25: end for
26: else
27: for C'hild € the non-empty children di'ree do
28: insertC'hild andChild’s distance intaB H eap
29: end for
30: end if
31: end if
32:  endif
33: end while

algorithm discards any child nodewhose lower left corner does not dominatg,, (line
10). This is because any data point in any sucbannot possibly dominaté,..,, so
for the purposes of skyline testing, it can be discardedhdfupper right corner of the
child node (which isn't empty) dominatés,..,, the algorithm can terminate and answer
false (line 14). If the node is a leaf (line 5), the elements are carag againsb,..,, for
dominance. If any such element dominafes,,, the algorithm terminates and answers
false. If the heap ordered on the minimum distance from the origiavier empty, the
algorithm answersrue.

MINI, seenin Algorithm 6, is also a best-first search algorithchraaintains a binary

heap. It takes as input a deleted skyline pdtyy, which must dominate all points under
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Figure 3.4: An R-tree following the changes made to the dettang=igure 3.1 up to time 22.
consideration. It operates by popping the top element effiittap and inserting its children
back into the heap, provided they are not dominated by th&iggoskyline. It has the extra
caveat that all elements it inserts into the heap must bertaied byP,,;. The algorithm
begins by checking if the top heap element is a point (lindf3he point is dominated by
the growing mini skyline, it is ignored; else, it is added e tmini skyline (lines 8-15).
If the upper right corner of any internal node is not domidatg P,,;, then it may be
discarded (line 18). If the top of the heap is a leaf (line 18)|ocal skyline is added to
the heap (line 23). If the top is an internal node, those etesnehich have their upper
right corner dominated by, are inserted back into the heap// NI terminates when
the heap is empty.

3.3.3 Example

We now consider an example execution of theokOut algorithm on the data set
shown in Figure 3.1. Figure 3.1 depicts the example dataegihbing at time 20; at
this time, the data points in an R-tree might resemble FigiBel3®t us assume that each
internal R-tree node can hold up to three entries, and thét lea¢ can also hold three.

When! arrives at time 21, thesSkyline algorithm is run to determine fis a skyline
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point. First, the root node of the tree is accessed, aiith is inserted into the heap, with a
Manhattan distance (from the origin) of B6 is not placed into the heap because its lower
left corner does not dominate Thus, it may be ignored for the purposesia$kyline.
The top of the heap is then popped and proces&&dcontains two child nodedz1 and

R2, but since the lower left corner of neither of these domisgtthey are both discarded.
Since the heap is emptyis added to the skyline. The new node must also be inserted int

the R-tree as well.

Action Heap Contents (MINI Skyline)
accessroof  (R5, 6), (R6, 6) 0
Expand R5 (R6, 6), (R1, 8) 0
Expand R6|  (R1, 8), (R3, 12) 0
Expand R1|  (R3, 12), (b, 13) 0
Expand R3| (b, 13), (e, 13), (f, 16) 0

Add b (e, 13), (f, 16) {b}

Add e (f, 16) {b, e}

remove f Empty {b, e}

Table 3.2: Contents of the heap during an iteration of\tid| algorithm.

At time 22, ¢ expires, and must be removed from the data set. Followingitsval
from the index, the R-tree appears as shown in Figure 3.4. €hp bBlement identifies
c as a skyline point. Since is a skyline point, its removal may mean that preexisting
data points must be added to the skyline, soMhéN I algorithm is run. The contents
of MINI's heap are depicted in Table 3.2/ NI begins by accessing the R-tree root.
It adds RR5 to its heap along with its Manhattan distance (6) dtdwith its Manhattan
distance (6). Nodé?5 is removed and expanded; the only childFif that is added to the
heap isR1, since the upper right corner &2 is not dominated by. R6 is next expanded,
since its Manhattan distance is the smallest of any pointodern the heap, an&3 is
added with a distance of 12. Next| is expanded antlis added to the heap. None of the
other children ofR1 are added since they are not dominated:byr3 is expanded and

and f are added to the heap. This ultimately producesde as theM I NI skyline for
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entry c. Note thatf is not included, since it is dominated by TheisSkyline algorithm
must now be called for bothande to test if they are in fact skyline points. Neither one
is; e is dominated byl andb is dominated by. Therefore, no skyline change is required

with the deletion of-.

3.3.4 Analysis ofLookOut in Comparison to BBS

In this section, we examine the quantitative codt@bkOutand compare it against the
cost of an iteration of thé& B.S algorithm. Note that since there are no current algorithms
for continuous skyline evaluation, repeatedly runniag.S can be considered to be the
best alternative td.ookOut. We observe that the only operations that can affect thersky!|
(and hence the cost dfookOut), are either an insert operation or a delete operation.
During time intervals when one of these two operations daogotir, the skyline remains
the same andookOut performs no work. During this analysis, we consider indgxiith
an R-tree.

To determine the cost of an insertion, the costs of severabipns need to be eval-
uated. These operations are: a) the cost of adding an enthe texpiration-time heap,

b) the cost of adding an entry to the indexing structure, gnthe cost of running the
1sSkyline algorithm, to determine if the new point is in the skyline.

The costs of both adding an entry to the heap and of insertingné&ry into an index
structure are identical for bothookOut and BBS. Consequently, neither one of these
operations maké.ookOut perform either better or worse thahB.S. The real difference
between the two lies in the cost savings thetkyline obtains ovelBBS.

First, we consider the worst case costiB S relative to the worst case costieiSkyline
for a signle insertion operation. F&B.S, the worst case occurs if all data points are in the
skyline. In this case, all of the leaf and non-leaf nodes efRhtree are inserted into the

heap thatB B.S uses to order elements based on their minimum L1-norm aistarEach
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data point is also inserted into this heap when their regmeltaf nodes are expanded.
Since BBS checks each element removed from the heap relative to thargyskyline,
this worst case cost i9(n?).

The worst case foisSkyline for a single insertion occurs if the new data pgirthat
has been inserted overlaps with all leaf and non-leaf nofldsedR-tree. If this occurs,
all of the leaf and non-leaf nodes of the R-tree are insertedtire heap ordered on the
minimum distances to the origin. Each non-leaf or leaf n@daserted into the heap only
once, based on the distance of the node from the origin. Fampbe, the root node of
the tree is inserted into the heap, and then expanded. lts@hiare then inserted into the
heap. The root node is never considered by the algorithrmagaich of the nodes in the
heap are expanded exactly once and only once, resultingindhildren being inserted
into the heap. When each leaf node is expanded, the entriesii@ compared with the
new data point. Each non-leaf or leaf node and each data a@rmompared in the worst
case at most once with the new data p@inin the worst case, all of the entries in the data
set are compared with this new point, producing a worst caseafO(n) comparisons.
For example, consider the case whenralilata points are elements of the skyline and
the new data point overlaps with the leaf level nodes of tbe that contain these points.
Then, to determine if the new data point is in the skylinepalbdes in the dataset will be
compared with the new data point.

Second, we compare the average case cd3fi2f to the average case costiebkyline.
SinceisSkyline only tests whether a single point is dominated by an exigioigt or not,
whereasBBS computes an entire skyline from scratch, the cost savingepgndant on
the number of elements in the skyline tiaB.S evaluates. If this number of skyline points
is s, then the average case cosiofkyline relative to that ofBBS is approximatelyt /s.

To determine the cost of a single deletion operation, thésaafsthe following opera-
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tions must be evaluated: a) the cost of removing an entry th@rexpiration-time heap,
b) the cost of removing an entry from the indexing structarej c) the cost of running the
MINT algorithm, to determine if alternate points must be adddteckyline.

The costs of both removing an entry from the heap and of remgoan entry from the
index structure are identical costs, regardless of whethekOut or BBS is computing
the skyline. Consequently, neither one of these operati@ie vokOut perform either
better or worse tha® BS. The real difference between the two for a deletion lies & th
cost savings that/ I NI obtains ovelBBS.

Next, we consider the worst case costaB S relative to the worst case costbf I N/
for a single deletion. FoBBS, the worst case for a deletion is the same as it was in the
case of an insertion and occurs if all data points are in tlrgk This worst case cost is
O(n?).

The worst case cost fav/ I N1 occurs if the deleted data point is the only element in
the skyline. In this caséy/ I N I must evaluate a completely new skyline from scratch. The
worst case fo/ I N T then is the same as the worst case cost BfS, which isO(n?).

Next, we compare the average case cosB&IS to the average case costbf/ V1.
SinceM I NI evaluates the skyline relative to a removed skyline polme,dost savings is
dependant on the number of elements in the new skyline the previously dominated
by the removed skyline point. If this number of skyline psirgs’ and the total number
of skyline points iss, then the cost oM/ I NI relative to that ofBBS is §'/s.

Therefore, the qualitative cost of usihgokOut is less than that of iteratively running

the BBS algorithm for continuous skyline computation.
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Figure 3.5: Quadtree (a) and R*-tree (b) nodes with localiskg. Distances to each represented by dashed
lines.

3.4 Choice of Indexing Structure

In this section, we examine how the choice of the index carashthe performance
of both static and continuous time-interval skyline pemfance. This section examines
some of the differences between the ubiquitous R*-tree wihashbeen used for a number
of the previously proposed skyline algorithms [43, 59], &émel quadtree, which is more
efficient for computing skylines. The quadtree has the Valhg two advantages over
the R*-tree for evaluating continuous time-interval skgbn 1) Insertion into a quadtree
is faster than into a R*-tree, and 2) The quadtree-basedrsaveeduces the maximum
number of heap elements during the best-first search. (Tdumndeadvantage also applies
to skyline computation over static data sets.)

The rationale behind the first point involves the complexensglit operation of the
R*-tree that involves various sorting and grouping operation index entries. In contrast,
the split operation of the quadtree is much simpler, and Inelieides the node in each
dimension in half. For point data, such as that managed ihngkgueries, the superior
performance of the quadtree on inserts and updates has beshin a study of a com-
mercial DBMS [44]. This study of Oracle Spatial shows thatdjuzes are significantly
faster for index creation and updates of point data.

The intuition driving the second point above is as followsst each time the R*-tree
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splits, its children are likely to overlap. No dominanceat&nship can be established
between two overlapping leaf or non-leaf nodes, so neithiébesable to prune the other
from future consideration. Hence, both will be inserted itite heap. Contrast this with
the node split of the quadtree, where no overlap exists, amehat one child is auto-

matically dominated (and pruned) each time a split is peréat. Second, nodes in the
guadtree will produce quite different distances from thgiorfor their internal data. This

is because each quad occupies a region of space derivedroniyttie structure of the

guadtree, and not from the data as in the case of the R*-tras nTdans that the children
of one quad will be fully expanded and mostly removed fromlikap before the data
contained in neighboring leaf and non-leaf nodes is entetedhe heap.

To understand the heap size reduction benefit of quadtreesider the example shown
in Figure 3.5a. Nodesl, B, andC are inserted into the heap when their parent node is
expanded.D is not inserted, because it is automatically dominated3byB is the first
node popped from the heap, and its local skyline points aeriad back into the heap
and ordered by the distance function. The distance #hahd C' are from the origin is
represented by the quarter circle. Note that most of the @réalies within this quarter
circle. Any entries inB that lie within this circle are processed and removed from th
heap before eithed or C' is expanded, thus resulting in a smaller heap. Contrastdhis t
the worst case performance of the R*-tree, seen in Figure 3.5B, C', andD are added
to the heap with similar distances. Hence, each is expandsedduence before any of

their individual data elements are processed.

1A question that a reader may ask is why not consider an R+#itedd of a quadtree. While a full exploration of this issue is
beyond the scope of this paper, the quick answer is that thdetdoes not guarantee the pruning property of the quadirdeich is
critical to the efficiency for skyline computation. The Redronly addresses the non-overlapping problem of the R%-tyet at the
expense of lower page occupancy.
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3.5 Experimental Evaluation

In this section, we present experimental results compakimg:Out with BBS, the
best known method for computing skylines. We compre the gl@advith the R*-tree [6],
a variant of the R-tree. We first present results showing tirastatic skylines, using the
guadtree significantly improves the performance over usmB*-tree. We also show that
the heap size is smaller when using the quadtree comparkd ®*ttree, implying that a
smaller amount of memory is needed for computing skylingk tiie quadtree approach.
(A low memory consumption is critical in streaming enviragmis in which the system is
evaluating multiple skylines concurrently.) We then presesults forLookOut with the

time-interval continuous skyline model.

3.5.1 Experimental Study Goal

In this study, our goal is to compare the performance of thérB&-and the quadtree for
skyline query evaluation. The R*-tree is chosen becauseetiskyline query algorithms
discussed previously have focused exclusively on the Rfaredy of indices. Quadtrees
have been shown to manage point data more effectively tl@aRtnee family in several
notable experimental studies [40, 44]. Since skyline qsedeal exclusively with point
data, it is for this reason we have chosen the quadtree agshalternative. For a broader
comparison beyond the scope of skyline queries for indicgbe R-tree family and the

quadtree, the interested reader may consult [40, 44].

3.5.2 Data Sets and Experimental Setup

The choice of data sets for experimental evaluation is aveaghallenging task. While
the use of real data sets is preferable, a few selected reatédts don’t necessarily bring
out the effect of a range of data distributions. Luckily féylne methods, it has been

recognized that there are three critical types of datailigtons that stress the effective-
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Figure 3.6: Two dimensional examples of (a) correlated,d@lgindependent data, and (c) anti-correlated
data.

ness of skyline methods [10]. These three distributionsratependent, correlated, and
anti-correlated. The correlated data set is considereddbeest case for skyline compu-
tation since a single point close to the origin can quicklyubed to prune all but a small
portion of the data from consideration. The anti-correlatata set is considered the most
challenging of the three for skyline computation. This igdugse points in the skyline
dominate only a small portion of the entire data set. Largenivers of skyline points
exist for anti-correlated data for a given cardinality teka to either the independent or
correlated cases.

To begin the discussion, first consider the different tydedata distributions and the
varying effects that these distributions have on the cosbafiputing the skyline opera-
tion. The two dimensional case for each of the common datehiisons that have been
extensively considered in previous work are shown in Fig3té a, b, and c. Only a small
portion of the data (and hence only a small part of the datiaanrtdex) will be considered
during the skyline evaluation of the correlated and indelpaih cases, since each has a
data point or points near the origin for sufficiently largediaality values. These points
will dominate all or most of the remaining points in the dataguickly pruning away the
majority of the data from skyline consideration. The amtirelated data set is more chal-

lenging for skyline algorithms because it produces mordirs&yoints for a given dataset
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cardinality (on average) than the other distributions. ¢¢em greater number of points are
considered for inclusion in the skyline, which means thaterleaf-level nodes and inner
nodes of a spatial index must be traversed by a skyline @hgoriWhile real datasets may
have distributions that differ from these benchmarks, ghtbsee distributions present a
wide and diverse range of distributions to test the perforreaf skyline algorithms.

Following well established methodology set by previousagsh on skyline algo-
rithms [49, 59], we choose to use these three data distiLtiVWe also test our methods
on a variety of other data set parameters such as data déagdarad dimensionality. For
generating these synthetic data sets, we use the skylireeajengenerously provided by
the authors of [10]; using this, we created a number of dataweaying in cardinalities
from 100K to 5M in two dimensions, for the three distribusoalready mentioned. We
also created data sets varying the dimensionality betwesand2 while holding the car-
dinality fixed at 1M entries. We test with these dimensidiedibecause they have been
commonly tested elsewhere for indexed skyline operati68s/pb].

Our experimental platform is built on top of the SHORE storagmager [11], which
provides support for R*-trees. We also implemented a quadtiexing method in SHORE.
Our quadtree implementation uses a simple mapping of thétopeanodes to disk pages.
Each leaf level quadtree node is one page in size. Non-leqare simply implemented
as SHORE objects, that are packed into pages in the orderatfame

We implemented bottBBS and LookOuton top of the SHORE R*-tree and our
guadtree index implementation in SHORE. To maintain coescst with the previous
approach by Papadias et al. [59], and for ease of comparsoeet the R*-tree node size
at 4KB for both leaf and non-leaf nodes. This results in Retleaf node capacities of
between 330 and 165 data entries for dimensions 2 and 5,ctesgdg The linear split-

ting algorithm is choosen for the nodes of the R*-tree. The-leah node capacities vary
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between 110 for 2 dimensions and 66 for 5 dimensions. We alsd a 4KB page size for
our quadtree implementation, resulting in leaf node cdjsdihat varied between 424 for
2 dimensions to 131 in 5 dimensions. The leaf node utilizefioo the R*-tree is 71 percent
for 2 dimensional data for both the independent and antietated datasets and 74 and 73
percent for 5 dimensional data for the independent andcamtelated datasets, respec-
tively. The leaf node utilization for the quadtree is 61 ardpercent for 2 dimensional
data for the independent and anti-correlated datasefsgatrgely, and 30 and 13 percent
for 5 dimensional data for the independent and anti-cardldatasets, respectively. We
use a buffer pool size of 128 MB. For tli£B.S implementation, we followed the algorithm
described in [59], and added the local skyline optimizatidascribed in [60].
All experiments were run on a machine with a 1.7GHz Intel X@oocessor, with

512MB of memory and a a 40GB Fujitsu SCSI hard drive, runningi@®Linux 2.6.0.

3.5.3 Anti-Correlated Datasets ind Dimensions

The anti-correlated datasets used throughout the expatafrsection of this chapter as
well as later chapters of this thesis are generated usingthaique of [10]. This method
used to generate these datasets is shown in Algorithm 7.

This method first chooses a valuarawn from a normal distribution, with mean 0.5
and variance 0.25 (line 2 of Algorithm 7). The closest distathat is from either extreme
of the universe, either 0 or 1 depending on which is closetetermined in lines 3-7 and
stored ing. The value of the generated point in each dimension is liziéid to v (line
8). Next, uniformly distributed random values are chosemfthe interval(—gq, ¢), one
for each dimension (lines 9-13). For a particular dimensiaf),, one such uniformly
distributed random value is addedtl@,,,| and subtracted from[d,,1].

This results in attribute values that are chosen so that paictof consecutive dimen-

sions are anti-correlated with respect to each other. latiog this results in consecutive
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Algorithm 7 Anti-Correlated Dataset Generation.
1: Output: Anti-correlated poinp
. v = RandomNormal(0.5,0.25)
: if v < 0.5then
qg=v
else
g=1-v
end if
. Initialize p[d] = v for all d € Dimensions;
9: for d < Dimensions do
10:  h =RandomEqual.q)

ONoa RN

11:  pld]+=h
12 p[(d + 1) mod Dimension$-= h
13: end for

14: if p[d] < 0 orp[d] > 1 for anyd € Dimensions, repeat.

dimensionsd,,, andd,,,; having a correlation coefficient of approximately -0.48,ilevh
d,, andd,, ., have a correlation coefficient that is typically less th@&a3)|.
In summary, an anti-correlated dataset chosen in this wihiz@nce have anti-correlated

pairs of consecutive attributes, while nonconsecutiviéaties will be nearly uncorrelated.

3.5.4 R*-tree v/s Quadtree for Skyline Computation

In this section, we examine the effect of the underlying xnsigucture on the perfor-
mance ofstatic skyline computation. In other words, we show the effect & thoice
of index on theBBSS algorithm [59, 60]. We focus on two different propertiesttatiect
skyline query performance: the data set dimensionality @ardinality. This methodol-
ogy is consistent with the performance study of [59]. In thieliest of space, we only
present results for the anti-correlated and independeesscavhich is also consistent with
previous studies [59, 60].

We measure the number of page accesses in our experimeaetims the disk access
cost (DAC) [54] because the DAC is a measure of the number abalés of a tree that are
read during a query. For members of the R-tree family, thisetjomatches the number
of page accesses, since R-tree nodes are mapped directlgds. géor inner nodes of a

packed quadtree, this is not the case since many inner naddsecmapped to one single
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page. Hence, we measure page accesses as a more fair comgarithe work done by

both data structures.
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Figure 3.7: Experimental results for the independent distailolition in 2 dimensions for varying cardinal-
ity. Graphs show (a) the execution time, (b) the page acseasd (c) the maximum heap size.
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Figure 3.8: Experimental results for the anti-correlatathdlistribution in 2 dimensions for varying cardi-
nality. Graphs show (a) the execution time, (b) the pagessass and (c) the maximum heap
size.

Effect of Cardinality

In this experiment, we explore the effect of the data catdindollowing the approach
in [59], we fix the dimensionality at 2, and vary the cardityatietween 100K and 5M. As
in [59], we report three different graphs for each experitaksetting: the CPU time vs.
cardinality, the maximum size of the heap vs. cardinalitgl the number of page accesses
vs. cardinality. The results for this experiment are shawhigures 3.7 a, b, and c.
Figures 3.7a and 3.8a present the execution times for \gaoardinality. In the inde-

pendent case (Figure 3.7a), both the R*-tree and quadtreel Inasthods are comparable
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until the data set size is over one million entries; for thgda data sizes, the quadtree
approach is significantly faster. For the anti-correlatathcget (Figure 3.8a) the quadtree
approach is significantly faster, and its relative perfarogimproves as the data cardi-
nality increases — for the 5000K data it is two orders of magld faster than the R*-tree
approach. This difference occurs because of the lower pagesses for the quadtree and
smaller maximum heap size.

In Figure 3.7b, we notice that the number of page accesséisdandependent case for
the R*-tree is 2-4 times that of the quadtree for the 2M and 5 tike sizes. For these two
file sizes, the quadtree outperforms the R*-tree by signifiaarounts (see Figure 3.7b).

From Figure 3.8b, we observe that the R*-tree performs aboatrder of magnitude
more page accesses than the quadtree. These increasedpaggea are attributable to
the better pruning techniques of the quadtree caused byottie overlaps of the R*-tree
(as discussed in Section 3.4). The quadtree accesses fafemid non-leaf nodes than
the R*-tree because it can prune away more nodes that are dt@aiby the discovered
skyline points. As a side note, for the 100K data size the tjgadapproach actually
performs a few more reads (31 versus 21), which is attribetzba larger tree height for
the quadtree (5 versus 3) relative to the R*-tree index, aadelatively simple packing of
quadtree nodes in our implementation.

The maximum heap sizes in Figure 3.7c and Figure 3.8c showga lmprovement
for the quadtree method for all file sizes, since the quadsreecessing fewer leaf and
non-leaf nodes than the R*-tree due to its non-overlappirgsppartition. In addition,
the nodes that it does access are processed much moreysthaallthe R*-tree, whose
overlapping leaf and non-leaf nodes are expanded into thp aesimilar times because
they have similar distances from the origin. This resulthefewer page accesses and the

smaller maximum heap size for the quadtree (see SectioBthd detailed analysis).
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Figure 3.9: Experimental results for the independent datiloluition with fixed dataset cardinality (1M
tuples) for varying dimensionality. Graphs show (a) theceien time, (b) the page accesses,
and (c) the maximum heap size.
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Figure 3.10: Experimental results for the anti-correlatath distribution with fixed dataset cardinality (1M
tuples) for varying dimensionality. Graphs show (a) thecexien time, (b) the page accesses,
and (c) the maximum heap size.

The Effect of Dimensionality

In this experiment, we examine the effect of data dimengignés in [59], we fix the
data cardinality at 1 million tuples, and vary the dimenaldg from 2 to 5. The results
for this experiment are shown in Figures 3.9 and 3.10.

The execution time graphs for increasing dimensionaligy sgen in Figure 3.9a for
the independent and Figure 3.10a for the anti-correlatéa slets. For the independent
case (Figure 3.9a), the quadtree is about 2-4 times fasten wimensionality is higher
than 2. For the anti-correlated data set (Figure 3.10a)tla€ltree is more than an order
of magnitude faster than the R*-tree when the dimensionaitpwer than five. These

benefits are because the quadtree approach incurs sigtijfitemer pages accesses and
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has fewer entries in the heap.

In Figure 3.9b, the number of page accesses for the independse for the R*-tree
is similar for 2 dimensions. As seen in the previous sectiba,quadtree and R*-tree
had comparable performance for 2 dimensions when the cditginvas less than 2M.
For higher dimensionality, the quadtree obtains cost g@vaf about 2-3 times. This is
attributable to the higher chance for dead space and ovenemgst R*-tree nodes as di-
mensionality increases, which exposes the relative smpgniuning of the quadtree, lead-
ing to more page accesses and heap accesses for the R*-ttegc(essed in Section 3.4).

In Figure 3.10b, the R*-tree performs about an order of magleiimore page accesses
than the quadtree in two and three dimensions, about thresstimore page accesses in
four dimensions, and about twice as many page accesses idifnesions. There are
two competing factors at work here. First, the superior prgiof the quadtree results in a
lower number of page accesses, relative to the R*-tree. Settmmincreasing dimension-
ality means that more skyline points exist for the anti-elated data set and the quadtree
has to access more data pages to find them all. The R*-treesascglgghtly more pages
as well (about twice as many in five dimensions as in two), baeifact that it was already
accessing so many in two dimensions means that the incnedbe rate of page access
with dimensionality is not as remarkable as that of the qeedt

The maximum heap size in Figure 3.9c shows a savings of abaurter of magnitude
for the quadtree over the R*-tree. This is again attributéabldne pruning techniques of
the quadtree, as previously discussed.

Figure 3.10c shows a similar trend for heap size as dimeakignncreases as was
witnessed for the number of page accesses. The same two togiaetors are causing
this. First, the superior pruning of the quadtree givestosesmaller maximum heap size.

Second, the increasing rate of page accesses with dimatisfaneans more pages will
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have similar distances as the data set fans out. Thus, mges pdll be expanded and

insert their entries into the heap at about the same timeSseton 3.4 for details).

Summary

In summary the quadtree index is a much more efficient indegtructure than the
R*-tree for computing skylines. The benefits of using a queslare generally higher for
larger data sets, and for lower dimensionality. In many €aee quadtree approach is
more than an order of magnitude faster than the R*-tree appro@he benefits are the
most significant for the anti-correlated data set. In additio being fast, the quadtree

approach also results in a significantly smaller maximunptseze.

3.5.5 The Continuous Time-Interval Skyline

In this section, we examine the performancd.obkOutrelative to a naive method of
executing theBBS algorithm to compute the skyline whenever anything chan@éss
method is referred to a§ BBS, and can be considered the best alternative method for
computing continuous skylines.

For this experiment, the data structures are entirely mgmesident, to mimic the
application of continuous skyline in streaming applicasiavhere such main memory as-
sumptions are common and often the preferred environmentefample [49] also as-
sumes that there is enough main memory). In thegen@ BBS case, a binary heap or-
dered on data point expiration time is maintained, so thatndn point expires, it can be
deleted and thé& B S skyline algorithm run to reevaluate the skyline. Wheneveata én-
try arrives, it is inserted into both the heap and the R*-teaw] the skyline is reevaluated
by rerunningBBS.

As before, we used synthetic data sets and vary both thenaditgiand the dimension-

ality. For the dimensionality tests, we vaglypetween 2 and 5 and fix the cardinality at
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10K entries. For the cardinality test, we fixat 2 and vary the data set cardinality from

10K to 50K.
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Figure 3.11: Experimental results for the time-intervahtiouous skyline with random time interval length
in 2 dimensions with varying cardinality. Graphs show (&) démti-correlated, (b) the indepen-
dent, and (c) the correlated cases.
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Figure 3.12: Experimental results for the time-intervaitiouous skyline with 1-10 % time interval length in
2 dimensions with varying cardinality. Graphs show (a) thi¢-eorrelated, (b) the independent,
and (c) the correlated cases.

Two different techniques are used to assign data pointgamaland an expiration time,
and results for both techniques are presented. For thedobhique, we randomly pick
an arrival time between 0 and 100K. Then, we pick the depattare randomly between
the arrival time and 100K. For the second technique, datatpaire again assigned an
arrival time between 0 and 100K, but the expiration time issgn randomly between 1
and 10 percent of the total time interval, i.e. between 10@d E0000 time points later

than the arrival time. The data generated using the firsnigak is used to evaluate the

performance of.ookOut when the time interval varies widely; the second data ge¢ioera
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Table 3.3: Delays in processing inserts and deletes for Qobkvarying cardinality, with 2 dim. data.

Delays in ms.
Card- Max Max Avg Avg
inality Anti-Corr. Indep. Anti-Corr Indep.
in K Delay Delay Delay Delay

10 1.21 1.55 0.0291 0.0273
20 1.42 1.72 0.0250 0.0235
30 3.31 2.99 0.0236 0.0223
50 3.41 4.57 0.0221 0.0214

technique is used to evaluate the effect on performance wWietime-intervals have a
constrained size.

The results that we present are generated by running eaahsdafrom time O to
100,001. During this time, each data point will arrive anddedeted following its ex-
piration. The skyline is continuously updated over the seusf the 0 to 100,000 time
interval. We present results indicating the throughpuelements per second (efdbpat
can be achieved b¥ookOut. Note that this metric reflects the time to insert or delete an
element as it arrives or expires, plus the time to updatedghgrwous skyline. For each ex-
periment, we consider the implementation(dB BS and LookOwut using the R*-tree and
the quadtree. Faf'BBS we use the label’ BBS-R andC' BBS-Q for the R*-tree and
the quadtree index implementations respectively. SitgilabokOut - R and LookOut -

Q refer to the R*-tree and quadtree implementatiod.obkOut, respectively. The axis

in all figures uses a log scale to show the workload execuitio®. t

Cardinality

In this test, we vary the data cardinality from 10K to 50K. Tasults of this experiment
using data generated with the first technique (expiratimesi randomly chosen between
the arrival time and 100K) are shown in Figure 3.11, for thre¢hdata distributions. In

these figures, we observe that the execution timeltarkOut with a quadtree relative
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to CBBS is more than two orders of magnitude bettdrookOut with the R*-tree is
between 2 and 6 times faster th@B B.S in the anticorrelated case and almost twice as
fast in the independent case for data set cardinalitiedegréaan 20K. In the correlated
case,LookOut with the R*-tree achieves only a small improvement ovds B.S with an
R*-tree. The superior performance 6bokOut with respect toC BBS irrespective of
the underlying data structure is expected due to the effi@srof LookOut in updating
the skyline with each new insertion or deletion instead obreputing it from scratch as
CBBS does. There is a more marked improvemenLinkOut relative to theC'BBS
algorithm with the quadtree than with the R*-tree becausehefimprovements of the
guadtree over the R*-tree for skyline evaluation alreadytinaed and because the inser-
tions and deletions with the quadtree are very fast. Thehaast of the R*-tree limits the
amount of performance improvement tlatokOwut can achieve.

The results of the experiment using data generated withegbensl technique (expira-
tion times randomly chosen between 1 and 10 percent of thktiote interval) are shown
in Figure 3.12, for the three data distributions. The treindthe data are similar, with
LookOut with the quadtree again outperformiigokOut with the R*-tree and”’BBS,
regardless of indexing structure by at least an order of madg LookOut — R also
outperformsC BBS — R by a factor of 2-3 in the anti-correlated case.

Table 3.3 presents data on the maximum and average progedays forLookOut
for this experiment. These results indicate thavkOut can process about 45,248 eps
for the anti-correlated data set, and about 46,728 eps éointlependent data set. (Note

1000/0.0221 = 45,248.)

Dimensionality

The results for the data set dimensionality tests usinggitarated with the first tech-

nique (expiration times randomly chosen between the amivd 100K) are presented in
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Figure 3.13. We observe that the execution timelfovkOut with an R*-tree relative to
CBBS with an R*-tree is about twice as fast for the independent éaseach dimen-
sionality, and between 2 and 9 times better for the antietated case, depending on the
dimensionality. The best algorithm is agaimokOut with the quadtree, as it only in-
crementally recomputes the skyline on inserts and delatesuses the faster inserts and
deletes methods of the quadtree. It is an order of magnitetterithanC'BB.S with an
underlying quadtree for all data distributions for all dms@nalities and is more than 2 or-
ders of magnitude better in high dimensionality for the @ortielated case. The results of
the experiment using data generated with the second tagh(egpiration times randomly
chosen between 1 and 10 percent of the total time interval3laown in Figure 3.14.

From these figures we observe that the execution timédokOut is less tharC’ BB S
with each respective data structure. With the quaditeekOut is more than an order of
magnitude faster thai BBS with the quadtree. With the R*-treé,ookOut is faster on
average by a factor of 2 to 3. In the anti-correlated caseaatiesof increase for th€ BB S
algorithm is higher ag increases than it is fdrookOut indicating thatLookOutscales
better for increasing.

In Table 3.4, we present the maximum and average processiagsfor theLookOut
algorithm. These results indicate thatokOut can support a throughput rate of about
36,630 eps and 34,364 eps for the independent and antiatedeases, respectively, at
a dimensionality of 2. For dimensionality 5, the throughgaies are about 3,849 eps and

2,950 eps for the independent and anti-correlated cases.
3.5.6 Comparison with the eager and lazy techniques
In this section, we compare the performance.obkOut with that of theeager and

lazy techniques of [75]. The code for these techniques was aatdiom the first author’s

website and compiled for Linux. Following the approach d][Ave experiment with
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Figure 3.13: Experimental results for the time-intervattimuous skyline with random time interval length
with fixed cardinality (10K tuples) and varying dimensidbal Graphs show (a) the anti-
correlated, (b) the independent, and (c) the correlategiscas
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Figure 3.14: Experimental results for the time-intervattiouous skyline with 1-10 % time interval length
with fixed cardinality (10K tuples) and varying cardinali§graphs show (a) the anti-correlated,
(b) the independent, and (c) the correlated cases.

dimensions 2, 3, and 4, windows of size 200, 400, 800, and tL§€s, and report back the
per tuple processing times in milliseconds. The independed anti-correlated data sets
were generated with the data set generator also providedtfie first author’'s website.
Each data set was modified fbbokOut by assigning each tuple an expiration time equal
to the arrival time plus a number of time units equal to the ©f the window. This
means that botlhookOut andlazy andeager have the exact same data points available
for inclusion in the skyline at any one time and produce theesakyline results. The
results for varying dimensionality with a fixed 800 tuple dow size are presented in
Figure 3.15a for independent data and in Figure 3.15b forcantelated data. The results

for 3 dimensionals with a varying tuple window size are pnéseé in Figure 3.16a for
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Table 3.4: Delays in processing inserts and deletes for Qobkfor varying dim., 10K cardinality. Delays

in ms.
Dimen- Max Anti- Max Avg Anti- Avg
sion- Corr.  Indep. Corr.  Indep.
ality Delay Delay Delay Delay

2 1.21 1.55 0.0291 0.0273
3 154 5.65 0.0613 0.0499
4 3.26 9.40 0.1297 0.0959
5 445 14.80 0.3390 0.2598
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Figure 3.15: The per tuple processing costs for varying dsimnality and a fixed window of size 800 for
(a) independent and (b) anti-correlated data.

independent data and in Figure 3.16b for anti-correlat¢al. da

In Figures 3.15a and 3.15bpokOut using the quadtree performs better thanding-r
technique for the independent data set and about an ordeagiitade better than either
eager or lazy for the anti-correlated data set for dimensionality 3 and/dile handling
the more general expiration time model. It achieves sinnéaults for all window sizes in
Figures 3.16a and 3.16b. The performance advantage idylaige to the better update
performance of the quadtree in these experiments, dinoeOut with the R*-tree was
much slower, particularly for the independent data setkOut does not perform as well
as thelazy technique for the independent dataset. This is becausezéhefsthe skyline
is much smaller than in the anti-correlated case, so thefiteé using the quadtree is

much reduced. The important observation from these exeatsns that the performance
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Figure 3.16: The per tuple processing costs for 3 dimenkitata and a varying window size for (a) inde-
pendent and (b) anti-correlated data.

of LookOut is better thareager in all cases and better thdazy in the anti-correlated

case even when handling the more restricted time model.

3.6 Conclusions

In this chapter, we have introduced the continuous timerual skyline operation. This
operation continuously evaluates a skyline over multigisi@nal data in which each ele-
ment is valid for a particular time range. We have also prieskhookOut, an algorithm
for efficiently evaluating continuous time-interval skydi queries. Detailed experimental
evaluation shows that this new algorithm is usually more @gnaorder of magnitude faster
than existing methods for continuous skyline evaluation.

We have also exposed several inherent problems with usenBtree index for eval-
uating a skyline. The primary reason for the inefficiencyhsd R*-tree for skyline com-
putation is the overlap of the bounding box keys, which tssalpoor subtree pruning of
the index non-leaf and leaf nodes that are examined durimgkiline computation. We
have shown that the quadtree index is a much more efficieekisttucture for evaluat-
ing skylines. The non-overlapping partitioning charasters of the quadtree leads to a

natural decomposition of space that can more effectivaip@ithe index nodes that must
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be searched. An extensive experimental evaluation shavsiing a quadtree can result
in a continuous skyline evaluation method that can achigaye throughput and can also
dramatically speed up traditional static skyline compatat

In the next chapter, we will develop algorithms to find thelsle/ for datasets in the
presence of low-cardinality attribute domains that is farenefficient and effective than

the more general techniques discussed in this chapter.



CHAPTER IV

Computing Skylines Using Lattices

4.1 Introduction

In the thesis introduction, we observed that the skylineajoe has emerged as an im-
portant summarization technique for multi-dimensionabdats. Recall that for a dataset
D consisting of data points,, p», ..., p., the skylinesS is the set of alp; such that there
is nop; that dominateg;. p; is said to dominate; if p; is better other dimensions, for a
defined comparison function.

In the previous chapter, we developed methods for evalgidie skyline in the pres-
ence of temporal data using tli@okOut algorithm. While the temporal dimensions of
data in this context are assumed to follow the time intereatiouous modelLookOut
makes no assumptions about the dataset attributes thabatenmporal. In this chapter,
we introduce the Lattice Skyline algorithm, that can evidustatic skylines more effi-
ciently than other techniques if all of the dataset attewdre drawn from low-cardinality
domains.

An example of the skyline operator in a hotel room selectippliaation is shown in
Table 4.1. In this example, various hotels in a particuléy st guest amenities that
they contain, such as whether or not they have parking fi@silia swimming pool, and

a workout facility for guests. The hotels also list the numbfestars that they are rated,

83
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Hotel Parking | Swim. | Workout Star

Name Available Pool Center | Rating | Price
Slumber Well F F F * 80
Soporific Inn F T F *% 65
Drowsy Hotel F F T ok 110
Celestial Sleep T T F * * * 101
Nap Motel F T F *% 101

Table 4.1:A sample hotels dataset.

and the average price of a room. In this example, a traveletssta maximize the star
rating and boolean-valued amenities of the hotel while mining the price. The skyline
of this dataset consists of the Soporific Inn, the Drowsy Hated the Celestial Sleep.
The Slumber Well is not in the skyline since it has no clienkaities and it has a lower
rating and costs more than the Soporific Inn. The Nap Motebismthe skyline because
the Soporific Inn also contains a swimming pool, has the sameer of stars as the Nap
Motel, and costs less.

In this example, the skyline is being computed over a numbeomains that have low
cardinalities, and only one domain that is unconstraineeRtice attribute in Table 4.1).
This dataset characteristic is common in many real apphcafor several reasons. First,
many applications naturally have low cardinality attrdsit For example, used car pur-
chase applications often involve the user exploring tréiddmetween the car price (an
unconstrained attribute) and several additional atteibuwtith low-cardinality or boolean-
valued domains, including the number of doors and the poesenabsence of airbags.
Second, even seemingly continuous attribute are oftemalbtsearched using a mapping
to a low cardinality domain. For example, the car mileagefisromapped to a small
number of mileage ranges.

Existing skyline evaluation methods are not designed tdoéxthe low-cardinality
characteristics of such applications, and as a result, arefficient when used in these

cases. The focus of this chapter of the thesis is on devegj@pirefficient skyline algorithm
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for such applications.

We propose an algorithm called the Lattice Skyline algamif.S) that is built around
a new paradigm for skyline evaluation. We show that the glagtider imposed by the
skyline operator over such low-cardinality domains cdotgs aattice. We then develop
an algorithm that exploits this property and computes thgirgk based on the structure
of this lattice. The algorithm is very efficient, and for tgpl dimensionalities has an
asymptotic complexity that is linear in the number of inpuples, which can be a big
improvement over other techniques. Detailed experima&vauation comparing LS with
existing methods on both real and synthetic datasets sh@tsnt practice LS is indeed
significantly more efficient than existing methods.

An additional interesting property of the new lattice-lzhskyline computation paradigm
is that the performance of LS is independent of the undeglgeta distribution. To under-
stand this property, consider the paradigm used by prewkylse evaluation techniques,
such as Block Nested Loops [10] and Sort-First Skyline [19lege algorithms eliminate
data elements from consideration in the skyline by findingeoelements in the dataset
that dominate them. The performance of this class of algorivaries greatly depend-
ing on the underlying data distribution; specifically, thexfprmance of these algorithms
degrades if the distribution tends towards an anti-caedlaistribution. Note that many
skyline applications involve datasets in which there isadéoff in relative values, which
often naturally results in datasets that tend to be antietatied. In contrast, LS uses a
lattice-structure that is dependent only on the underldiognain characteristics which re-
sults in performance that is both predictable and indeparaféhe underlying distribution
of the dataset. This property is very desirable, not onlynfi@ stability perspective, but
also when using the skyline operator in a complex applicatiovhich estimates of com-

putational costs can be useful in shaping the user experidac example in providing
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progress indicators [16, 52] for complex queries, which tregeived a lot of attention in
recent years).

We acknowledge that previous skyline algorithms which hbgen designed to be
largely independent of the underlying domain characiessire more general than LS.
The generality of these methods implies that they can beexppl any setting. However,
we have observed that many skyline applications involveaoswith small cardinalities
— these cardinalities are either inherently small (suchiasatings for hotels), or can nat-
urally be mapped to low-cardinality domains (such as mieag a used car). We show
that LS produces substantial performance gains for thi®itapt class of applications.

The main contributions of this chapter are as follows:

1. We develop a new paradigm for skyline computation thataseld on constructing
a lattice over the underlying domains. We then develop anieffi algorithm that

exploits this lattice structure to compute skylines over-ardinality domains.

2. We show that this method can easily accommodate one unamesi domain by

modifying the lattice-based computation.

3. We show that for low-cardinality datasets of typical skgldimensionality, the sky-

line using LS can be evaluated in linear time!

4. We conduct an extensive performance evaluation usirigrbat and synthetic datasets
and compare our method with the SFS technique [19] with th&3% Bptimiza-
tions [24], which is currently considered to be the most &fit skyline method
that does not require indexing or preprocessing. Our etiahgshows that LS is

significantly faster than SFS with the LESS optimizations.

The remainder of this chapter is organized as follows: $ac# discusses related
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work. In Section 3, we show that the skyline operator overdpace of vectors over
low-cardinality domains is a lattice, and develop an akioni for computing skylines us-
ing this lattice. In Section 4 we extend the algorithm to aopwwdate one attribute over
an unrestricted domain and discuss extensions of LS fouatiafy temporal skylines. In
Section 5 we discuss properties of LS and Section 6 presemsimental results. Section
7 discusses applications of LS for discretized attributmaios, and Section 8 contains

our concluding remarks.

4.2 Terminology and Further Related Work

In this section, we discuss terminology used in this chagitdre thesis, and also further

highlight work related to skyline computation over low-genality attribute domains.

4.2.1 Terminology

An attribute domain is said to blw-cardinality if its value is drawn from a set
S={s1, s9, ..., S;m } Such that the set cardinality. is small. A low-cardinality attribute
domain is said to bwotally orderedif s; < s < ... < s,,. Skylines usually involve totally
ordered attribute domains. Boolean-valued attributes apeaial case of totally ordered,
low-cardinality attributes. Henceforth, we refer to loardinality domains and implicitly

assume that they are totally ordered.

4.2.2 Related Work

The Sort-First Skyline algorithm is proposed in [19], andsita variant of the BNL
algorithm. This technique requires the data to be sorted bgoaing function. Once
the data is sorted, the comparison between tuples is sigtpidince the buffer pool is
guaranteed to contain only skyline points. The techniquefised in [24] by eliminating

some tuples during the first sort pass with comparisons toadl swilection of tuples that
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fall early in the sort order and combining the final pass ofg¢be with the first filter pass
of the skyline computation. The refined version of the aliponiis called LESS.

Two progressive techniques were proposed in [74]: the Bitarag the Index tech-
niques. The Bitmap technigue operates on skylines over bnghtality domains, similar
to the LS algorithm. The Bitmap technique does not allow onéhefattributes to be
over an unrestricted domain, so the scope of applicatiomghioh Bitmap is applicable
is more narrow. Bitmap also requires preprocessing, singadpitindices are required.
The Bitmap technique was also shown to be generally lessegftithan the Index tech-
nigue. Since we are proposing an unindexed technique, wetdmompare with either of
these indexed techniques; we further discuss our rationalecting SFS with LESS for
comparison in Section 4.6.

Techniques to evaluate skylines in subspaces have beepnseapn [84] and [62].
These consider the lattice of dimensional subspaces fdingkgvaluation; in contrast,
our work views the discrete, well-ordered data space agiadand uses that lattice to
evaluate the skyline.

In [48], a data cube for the dominance relationship is predo# uses a lattice structure
to develop the D*-tree, which in turn is used to answer sdwgpas of dominance queries.
However, the dominance relationship is a very differentysmisioperation than the skyline
operation. Also, LS uses a lattice structure on-the-fly smaar skyline queries, as opposed

to indexing to evaluate the dominance of a specific point.
4.3 Skyline Computation for Low-Cardinality Attributes
Throughout this chapter, and without loss of generality,camsider the skyline with

the max operator for all attributes. This means that thee/dldominates the valué’

in the boolean case and that larger values dominate smalé for low-cardinality and
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Figure 4.1: (a) A Boolean Lattice and (b) the Boolean Lattigth arrows to explicitly indicate the domi-
nance relationship.

unrestricted attributes.

In this section, we first show that the skyline operator olierdpace ofl-dimensional
vectors over low-cardinality domains is a lattice. We thikavg how this lattice property
can be used to develop an efficient skyline algorithm (théideaSkyline algorithm). We

also give an example of its use and analyze its complexity.

4.3.1 Skyline and the Low-Cardinality Lattice

The dominance operatok’ over a dataset defines a partial ordering. (This is easy to
see in the dataset in Table 4.1. The Celestial Sleep domitiet&umber Well, and hence
Celestial Sleep< Slumber Well. The ordering is not total since the CelestiakSIneither
dominates nor is dominated by the Soporific Inn).

In this subsection, we show that the partial order that tlyrekoperator imposes over
the space offl dimensional vectors over low-cardinality domailiss a lattice. We letB
denote the space akdimensional vectors over low-cardinality domains throogt the
rest of the chapter.

We use the following definition for the lattice of a partiatiyjdered set.

Definition 4.3.1. A partially ordered set5 with operator <’ is a lattice if V a,b € S, the

set{a, b} has a least upper bound and a greatest lower bounsl.in
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We can now use Definition 4.3.1 to show that the space of v@é&tawith the skyline

operator is a lattice.

Theorem 4.3.2.The space of boolean valued vectérsvith the skyline operator<’ is a

lattice.

Proof. To show thatB with the skyline operator=<’ is a lattice, we must show that each
pair{x,y} wherez,y € B has (1) a greatest lower boundAhand (2) a least upper bound
in B.

Showing (1) involves proving two cases - the case (a) in whicdtominatesy (or y

dominates) and the case (b) in whichandy are not comparable by the skyline operator.

CASE 1.a: Ifx dominatesy (y dominatesr), then trivially the greatest lower boungd

betweenr andy isy ().

CASE 1.b: Ifx andy are not comparable in the partial order then the greatest lower
boundg between: andy is obtained by taking the min betwegrandy on all dimensions.
¢ i1s now a lower bound betweenandy since in any dimensiofy ¢ has a value smaller
than or equal to both that afor y in dimension;, and hence is dominated by both and
y. q is a greatest lower bound since increasing the value of dnigwe a; on dimension
7 would no longer result in a lower bound, since the new valugiofdimension; would

now be larger than one or both ofor y in that dimension.

Showing (2) also involves proving two cases - (a) in whichominates, (or y domi-
natesr) and the case (b) in whichandy are not comparable by the skyline operator. This
part can be proved in a similar way as above, and is omittedeimnterest of space.

[

Since B and the skyline operator are a lattice, we can draw the Haageath for the

lattice. The Hasse diagram @& for d = 3 in which each low-cardinality attribute is
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2,2) (2,2)
(1,2) 2,2) (1,2) 2,2)
0,2) (L,2) (2,0) 0,2) (L,2) (2,0)
01) (1,0) (0,1) (1,0
(0,0) (0,0)

(@) (b)
Figure 4.2: A two-dimensional lattice in which each atttiébis drawn from the domaif0,1,2}.
boolean-valued is presented in Figure 4.1a. In this FigheeyaluelTT dominates all
other values, so it is at the top of the diagram and it is theeuppund of the sett’ F'F' is
dominated by all values so it is the lower bound.

The dominance relationship between element8 o&in be further illustrated by adding
arrows to the Hasse diagram as shown in Figure 4.1b. For dgaimipF’ dominates F'F',
FTF,andFFF. These are the values in the graph in Figure 4.1b that arbabgcfrom
TTF.

An example Hasse Diagram for a lattice over a two dimensigpate in which attribute
a; is an element of 0, 1,2} and attributes, is also an element of0, 1,2} is shown in
Figure 4.2a. In Figure 4.2b, arrows have been added to shewddminance relationship
between elements of the lattice.

We now define the concept of ammediate dominatoof an element of a lattice over
B. We let f(q.a;) denote the number of attribute values in tHeattribute domain that
a; dominates for; € B. For example, in the domaif0, 1,2}, value1 dominates one

element.

Definition 4.3.3. Let ¢ and ¢’ be elements fron®. ¢ is an immediate dominator @f if

and only if¢ dominates;,’ and
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S flaa) =0, f(qai) + 1.

For example, the immediate dominators of lattice elemed) (b Figure 4.2b are (2,1)
and (1,2). In this casef(1,1) = 2 andf(2,1) = f(1,2) = 3. In general, an element
will have d or fewer immediate dominators since an element can only harenediate
dominator per dimension. This property of the immediate amors is used later in the

cost analysis of the algorithm.

4.3.2 Skyline Computation using the Lattice

A datasetD overd low-cardinality attributes does not necessarily contajpresenta-
tives for each lattice element. For example, the three lamaddtributes (Parking Available,
Swimming Pool, and Workout Center) in the dataset in Tablecdritains aF"T'F' entry
(the Soporific Inn and Nap Motel), but contains ¢’ F entry.

The method to obtain the skyline of a datagetonsisting of elements aB can be
visualized using the Hasse diagram/&f The elements ob that compose the skyline are
those in the Hasse diagram that have no path leading to tleemainother element present
in D. For example, consider the case in whiglis the space of 3 boolean attribute vectors
andD consists of four tuples,T'F, FTF, FFT, FFF. FTF is not a skyline value since
it is reachable in the diagram in Figure 4.1b from valliEF € D. Similarly, FFF is
reachable froMT'F, FTF,andFFT. TTF andF F'T are not reachable from any of the
values inD, and they are the skyline values.

We can use these observations to develop the LS-B algorithimd the skyline of a
dataset over the space of vectors drawn from low-cardyndbimains. Initially, all ele-
ments of the lattice o3 are marked asot presentn the dataset. The algorithm then
iterates through each tupteof the dataseD. The element of the lattice that corresponds

to t will be marked agpresent(and not yet dominated) in the dataset. After all tuples
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Algorithm 8 LS-B: The Skyline for Datasets over Low-Cardinality Domain Aitries.

1: Input: DatasetD with n tuples overd low-cardinality attributes, Vectov” of sized whereV; is the cardinality of
dimension:.
: Output: A set of skyline points.
. Let size be the number of entries in the lattieeV; * Vo x ... % V.
. Let the set oflesignatorde {not present, present, dominated
Leta be an array oflesignatorf sizesize, initialized tonot present
. Let F'(j) be the one-to-one mapping pf B to a position ina.
: for eachs € D do
Let s be the low-cardinality attribute values of
Seta[F'(ls)] to present
: end for
s for t = size —1to0do
for Eachg € immediate dominators f[t] do
if a[g] = (presentor dominated then
alt] =dominated
end if
end for
: end for
: for eachs € D do
Let s be the low-cardinality attribute values ef
if a[F'(ls)] = presentthen
outputs as a skyline point.
end if
: end for

NNNNRPRRRERRRRERR R
NP OOONDOAEWNRO

have been processed, the elements of the lattice that akednaspresentand which are
not reachable by the dominance relationship from any gilesentelement of the lattice
represent the skyline values. Elements that are preseatdueachable by the dominance
relationship, and hence are not skyline values, are matkednatedo distinguish them
from presentskyline values. The tuples that represprasentskyline values can then be
output with another iterative pass over the dataset. Wetloalpresent, not presengr

dominatedvalue of each lattice position tliesignatorof that element.

4.3.3 The LS-B Algorithm

The LS-B algorithm, shown in Algorithm 8, computes the shglon a datasd? with
low-cardinality attribute spacB.

In lines 3-5, the algorithm begins by initializing all elente of the arrayz to not
present The size of this array is equal to the product of the domardinalities. Each

element of the array represents one element of the latticB Bnd stores designator
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We let F'(q) denote the one-to-one mapping of an elemgent B to a position of the
array in line 6. In the boolean case, we can use the binangalthe boolean attributes
to determine the array position. For exampledit= 3, then elemenl’FT € D is
represented by position 5 of the arr@ysince the binary equivalent @fF'7"is 101 = 5. In
the low-cardinality case in our implementation, we chobég) to be a linearization of the
elements of the lattice, i.e. the ordering becorie®), (2,1), (2,0), (1,2), etc. In lines
7-10, the algorithm iterates over each tupldirand sets the position inrepresented by
the value ofy € D to present

Inlines 11-17, the LS-B algorithm iterates through eacimelet of the lattice. If one of
the immediate dominators of a lattice position in the Hasagrdm is marked agresent
or dominated indicating that either it is in the skyline or it is domindtey a skyline
value, this position imn: is marked aslominated The algorithm proceeds through the
array beginning at the top of the lattice and ending at théobmtguaranteeing that the
immediate dominators of any element are checked before it.

In lines 18-23, the elements &f are iterated through again, and if the positior édr
the boolean-valued attributes of a particular tuple is etpupresent then that tuple is a

skyline tuple.

4.3.4 Example

As an example, suppose a traveler wants to find the skylin@tsfor the boolean
valued attributes (availability of parking, swimming ppaind workout center) for the
dataset from Table 4.1. Specifically, the example data @aijed in Table 4.2.

The lattice element for each element®is initially marked asiot presentThe LS-B
algorithm iterates through each tuple in the input. Thedatpositiondesignatorof each
tuple is set topresent For examplet; is the first tuple considered in the dataset. The

designatorof its boolean attributes; F'F, is set topresent The lattice with each lattice
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Figure 4.3: (a) The Boolean Lattice from the example, witesent p] and not presentnp] elements
marked. (b) The lattice with dominated values marked as datad fl]. Skyline values are
those markedd].

value following these actions is displayed in Figure 4.3a.

Following this, the positions in the lattice that are skglivalues are evaluated. The
algorithm iterates through the possible values that theesp&3 boolean vectors can ob-
tain. It begins with array position 7{/'T) and finishes with array position @'¢'F). For
each position, the immediate dominators are checked. Tin@nador each lattice posi-
tion, progressing from step 1 to step 8, are shown in Table ®h@ lattice following the
skyline value evaluation, with each lattice element markedp=not presentp=present
or d=dominatedis shown in Figure 4.3b. The skyline values are those lafizstions
marked a$.

The only positions of the lattice that are markegessentnow are position§'7'F and

FFT. These tuples are now output as the skyline with anotherthassgh the data.

4.3.5 Analysis

We now analyze the complexity of the LS-B algorithm for dottiies with low-cardinality

domains.
Tuple Name Boolean Attribute Values
t1 Slumber Well FFF
to Soporific Inn FTF
ts Drowsy Hotel FFT
ty Celestial Sleep TTF
ts Nap Motel FTF

Table 4.2:The hotels from the example dataset of Table 4.1 with theegabf their three boolean-valued
attributes (parking availability, swimming pool, and wotk center).
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Theorem 4.3.4.The complexity of the LS algorithm over a set of low-cardigaitributes
is O(dV + dn), whered is the dimensionality, is the number of data tuples, afdis the
product of the cardinalities of thé low-cardinality domains from which the attributes are

drawn.

Proof. The algorithm makes an initial pass throughratuples of the data in lines 7-10 of
the algorithm. For each tuple, LS-B marks a position in anyaaspresentbased on the
attribute value for each dimension. Since array accesss9 (@, this pass through the
data isO(dn).

There arel” elements in the lattice. Each is initialized in line 5 of thgaaithm. In
lines 11-17, each element of the lattice is compared withmisiediate dominators, of
which there are at mogt We note further that the individual operations in the alkipon
are very simple, and that the actual complexity is somewbk#tbthan the asymptotic
would suggest. For instance, eleméntl) of the lattice depicted in Figure 4.2b has only
1 immediate dominator instead of 2. In short, we expect tgerdhm to be efficient in
practice, as we show in Section 4.6. Since therelatetal entries in the lattice, each
compared with at most entries, this step i©(dV).

LS-B makes a final pass through the data in lines 19-23, whigub the skyline. For

each tuple, the algorithm checks an array position baseth@mttribute value for each

Lattice Old/New

Step Pos D1 (Value) | D2 (Value) | D3 (Value) Value

1 TTT n/a n/a n/a np/ np

2 TTF TTT (np) n/a n/a p/p

3 TFT TTT (np) n/a n/a np/np

4 TFF TTF (p) TFT (np) n/a np/d

5 FTT TTT (np) n/a n/a np/np

6 FTF TTF (p) FTT (np) n/a p/d

7 FFT | TFT (np) | FTT (np) n/a p/p

8 FFF TFF (d) FTF (d) FFT (p) p/d

Table 4.3:The actions taken during the example, whpepresent np=not presentandd=dominated D1,
D2, and D3 are the dominators of each position in the exanjle.value of each such immediate
dominator is given in parenthesis.
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dimension to see if its value jsresent This stage i9)(dn). This produces an overall
complexity ofO(dV + dn) for the algorithm.

[

Analysis: This analysis shows that # is larger thanV/, the product of the domain
cardinalities of each low-cardinality domain attributeen the algorithm is linear in. We
expectn to be significantly larger thadfor typical skyline datasets (past work has usually
experimented with 5-7 dimensions). We also give severahgkas in Section 4.6 of low-
cardinality datasets in which both skyline computatiomgportant and/ is smaller than

n. In such cases, the skyline can be evaluated in linear time!

4.4 Extending LS to Handle One Unrestricted Attribute

In this section, we show how to expand the LS-B algorithm tooatmodate one at-
tribute v drawn from an unrestricted domain producing the generad & algorithm.

(For example, the domain afmay be the real numbers.)

441 Overview

The LS-B algorithm presented in Algorithm 8 marks eachdatposition apresent
not presentor dominatedand uses these designations to find the skyline values. To ac-
commodate an unrestricted domain attribute, in additiostéoing thedesignatoy each
lattice position also stores the besvalue in the dataset for that lattice element. For ex-
ample, if tuples with the lattice valuBF'F' haveu attribute value$, 6, and7, then the
lattice element could storgin addition to thepresent designatorin this case, we call

thelocally optimal value Ipv) of lattice position' F'F'.

Definition 4.4.1. The locally optimal valuelgv) of an element; € B is the maximum

value of the unrestricted attribute for any element of a dataset whose low-cardinality
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attributes arey.

In the LS-B algorithm presented in the previous sectionttecaelement that is marked
presents in the skyline if none of the lattice positions dominatingre marked apresent
Now, a lattice element with v « is in the skyline if none of the lattice positions domi-
nating it have dov «’ that is better than or equal to For example, ifl' F'F has alov 7
stored in the lattice an@T'F' has aov 8, theT F'F’ value is dominated and hence it will
not appear in the skyline. In this caséF'F' can be marked as dominated. We call the
maximumlov contained in an elemente B and in the elements iB that dominate the

dominant lattice valued]v).

Definition 4.4.2. Let A be the set consisting of the locally optimal value of an el@me
g € B and of the locally optimal values of a}f € B that dominate;. The dominant

lattice value @Iv) of ¢ is the maximum value iA.

Now, a tuplet; with low-cardinality attribute valueg is a skyline value iy is marked
presentandt;.u is equal to thallv of ¢ in the lattice. If thedesignatorof ¢ is dominated
some other lattice entry that dominatebas anlov that is better than or equal to that of
q. We can now modify the LS-B algorithm to (1) store tbg for each element oB, (2)
find thedlv for each element of B, and then (3) compare each tuple'value with the

dlv to determine if the tuple is in the skyline.

4.4.2 The Extended LS Algorithm

Algorithm 9 shows the general LS algorithm, which is an egten of the LS-B Algo-
rithm. Most aspects of the algorithm remain unchanged. Tihedifference between the
two is the values stored for each element of the lattice dferdnt (no longer just storing
the designatoras in the boolean case, but also a value for the unrestrictexhich). This

information for each lattice element is stored in an array afefined typel in lines 4
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through 6. Each array position stores two pieces of infoionat(1) thedesignatorand
(2) thelov of the lattice element.

Each element of the lattice is initialized not presentn line 6 of the LS algorithm. In
lines 7-15, the algorithm iterates through the elementh@ftiataseD. If the lattice entry
is markednot presenbr thelov is smaller than, the lattice entry is markepresentand
thelov is updated ta:. For example, suppose a dataset consists of data elememt8 ov
boolean attributes and 1 unrestricted attribute and treafitst two data elements of the
inputare(T', F, F,3.2) and(T, F, F,4.9). TheT F'F lattice position is initiallynot present
indicating that no elements with boolean vallie'F' have yet been seen in the data. After
processing input element’, F, F,3.2), TFF is marked agpresentand 3.2 is stored as
thelov. After processind7, F, F,4.9), the lov is set to 4.9, since 4.9 is the best value for
boolean valugd'F'F' so far seen.

Now, LS must find thellv for each element of the lattice. This is done in lines 16-25 of
the algorithm. It does this by iterating over the elementheflattice starting at the top of
the lattice and ending with the bottom element. For each Ritibe elemeni, LS checks
thedlv values of the immediate dominatorsg@fThedlv value ofg becomes the maximum
of the dlv values of the immediate dominators @marked agpresentor dominatedand
thelov of ¢. If any of thedlv values of the immediate dominators¢gmarked agpresent
or dominatedare greater than or equal to tlee of ¢, ¢ is marked as dominated.

Following this operation, the skyline tuples are those vehlasv-cardinality value is
marked agpresentand have allv equal to theiru value. In lines 26-31, LS iterates over
the elements ob). For each element ab, LS compares the value afto thedlv for the
lattice element. If they are the same and the lattice elemanarkedpresentthe tuple is

an element of the skyline.
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Algorithm 9 LS: The Low-Cardinality Domain Skyline with 1 Unrestricted Aiute Value.

1: Input: DatasetD with n tuples overd low-cardinality attributes and 1 unrestricted attribute, Vedtoof size d
whereV; is the cardinality of dimension

2: Output: A set of skyline points.
3: Let size be the number of entries in the lattieeVy * V5 * ...« Vj.
4: Let the set oflesignatorde {not present, present, dominated
5: Let L be a defined type that containsthe locally optimal value, and, an element from the set designators
6: Leta be an array of typd. of sizesize, initialized tonot present
7: for eachs € D do
8: Let F'(j) be the one-to-one mapping pf B to a position ina.
9: Letls be the low-cardinality attribute values ef

10:  Letpos = F(ls).

11:  if a[pos].e =not presenbr a[pos].v < s.u then

12: Seta[pos].v tow.

13: Seta[pos].e to present

14: endif

15: end for

16: for t = size — 1 to 0 do

17:  for Eachg € immediate dominators efft| do

18: if a[g].e = (presentor dominateqd then

19: if a[t].e =not presenvr aft].v < ag].v then

20: alt].v = alg].v

21: a[t].e =dominated

22: end if

23: end if

24:  end for

25: end for

26: for eachs € D do

27:  Letls be the low-cardinality attribute values ef

28:  if a[F(ls)].e = presentanda[F(I5)].v = s.u then

29: outputs as a skyline point.

30: endif

31: end for

4.4.3 Example

Suppose a traveler is interested in finding the skyline oélsatith regard to the three
boolean-valued attributes and the price for the data frobteTd.1. For this example, we
transform the price attribute via a simple flipping functto200—price so that we are only
considering computing the skyline using tim@xoperator. Note that this transformation is
necessary only to make the example easier to follow by ctamiase of thenaxoperator.
Our method can easily be adapted to compute the skyline asirggbitrary combination
of maxandmin operators. The data used in the example with the price wamstion is
shown in Table 4.4. We refer to t260 — price value asu.

The lattice consists of eight entries, one for each booledurey and each is initialized
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(TTT) [p] - (TTT) [np] --

(TTF) [p] 99 (FTT) [np] -- (TTF) [p] 99 (FTT) [np] --
(TFT)[np] -- (TET) [np] -
(FTF)[p] 135 (FTF)[p] 135
(T FF)[{‘ (FFT) [p] 90 (TFF)[d] 99 (FFT) [p] 90

(FFF)[p] 120 (FF F)[d] 135
(@) (b)

Figure 4.4: (a) The Boolean Lattice from the example, wiflpjjesent and [np] not present elements marked
with their locally optimal values; — means the lattice elatris not updated. (b) The lattice with
dlvs for each element and with dominated values marked [d].ii@kylalues are those marked

[p]-

to not present The LS algorithm now iterates through the input and updetedattice
position for each tuple to the bestvalue so far present in the data. For example, when
LS processes tuplg, thelov of FFF is set to 120. Since tuplegs and¢; both contain
boolean valued attributesT'F, thelov of F'T'F'is set to 135 (the bestvalue of eithett,
ort5). The lattice following these actions is displayed in Feydr4a.

Now, each position in the lattice stores tlo# for each lattice element, i.e. the best
value that is present in the ddtar that element of the latticeFor example, both, and
t5 have boolean valué'T'F’, but thelov stores only the best value (135) fé6fT'F. LS
now finds thedlv for each element of the lattice. For examplé] F' has alov equal to
135, which is better than tHev of F'F'F'. Hence, theF"T'F' element dominates thBF' F’
element, and"F I is marked aslominatedand itsdlv is set to 135.

To find these dominating values, the algorithm iteratesutjnche possible values that

the space of 3 boolean vectors can obtain. It begins Withi" and ends withF F'F'. For

Tuple Name Boolean Value | u (200-price) Value
t1 Slumber Well FFF 120
to Soporific Inn FTF 135
t3 Drowsy Hotel FFT 90
ty Celestial Sleep TTF 99
ts Nap Motel FTF 99

Table 4.4:Example data tuples.
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Old/New
Step | Position Imm. Dom. (Value) Value
1 TTT n/a [np] =/ [np] —
2 TTF TTT ([np] -) [P199/[p] 99
3 TFT TTT ([np]-) [np] -/ [np] -
4 TFF TTF ([p] 99), TFT ([np] -) [np] —/1[d] 99
5 FTT TTT ([np]-) [np] -/ [np] -
6 FTF TTF ([p] 99), FTT ([np]-) | [p] 135/[p] 135
7 FFT TFET ([np]-), FTT ([np]-) [p] 90/ [p] 90
g | prp | TFF ([d}?}; (I[Dp c]rgog[p] 135). | 1p] 120/ [d] 135

Table 4.5:Example LS actions to find thdlv for each lattice position. Each lattice position is marked
[p]=present, [np]=not present, or [d]=dominated with tthe next to it.

each position, the immediate dominators are checked. Ttl@nador each lattice position
are shown in Table 4.5.

The skyline tuples can now be found by iterating over the stdtagain. Each tuple
t1-t5 is compared with its lattice position. If thevalue for each tuple is equal to thiés
of the lattice position and that position is mark@esent that tuple is in the skyline. If
the values are not equal or the position is marllechinated then the tuple is not in the
skyline. For examplet,.u is equal to 135 and theélv of lattice positionF"T'F' is 135.
FTF is also marked agresent Hence¢, is in the skyline. Howevet, .« is equal to 120
and the value of F'F’s dlv is 135. Moreover[/'F F' is marked aslominatedsot; is not

in the skyline. The skyline in this exampletis t3 andt,.

4.4.4 Analysis

The LS algorithm performs the same sequence of operationS-& with minor dif-
ferences in the specifics that do not impact the complexignde, the complexity of the
LS algorithm for one unrestricted attribute is identicathat of the LS-B algorithm. We

omit a formal proof since it is similar to the one presente8aattion 4.3.
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4.5 Properties of LS

In the previous section, we showed that LS can have a signifacsymptotic complex-
ity advantage over other techniques. In this section, weudistwo properties of LS that

are desirable for skyline computation.
1. The performance of LS does not depend on the ordering alémeents of the input.
2. The performance of LS does not depend on the distribufitimeanput.

The first property is desirable because we want a skyline atetipn technique to
have good performance irrespective of the order of the ipfarhents. For example, the
performance of the BNL algorithm of [10] improves signifidgnf skyline tuples that
dominate a large number of data points are present earlyeiddbaset, since this allows
BNL to eliminate most of these points in the first eliminaticasp. On the other hand,
if skyline tuples come very late in the dataset order, marggsgs are needed to eliminate
non-skyline points from consideration. SFS [19] addre$sississue by first sorting the
data, but requires an expensive sorting operation.

LS achieves the first property because it is intrinsicalemsitive to the ordering of
the input. No additional costs are incurred such as sortifay. each input element, LS
simply reads and writes an element of the lattice. Accessaah element of the lattice
has the same fixed cost (an array access), so LS is not sensit@orderings of the input
elements.

The second property is desirable because we want skylioetgs to have good per-
formance regardless of whether the input data is correlatddpendent, or anti-correlated.
Algorithms such as SFS and BNL tend to perform much worse ifipet is anti-correlated.
The performance of LS does not depend on the input distabusiince finding the skyline

values involves the same comparisons with immediate ddonséor each element of the
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lattice irrespective of the dataset distribution. Morelslgy points may be found if the
dataset is anti-correlated, but this also does not resaldifference in performance. This
is because during the second pass through the data, eadrelament is checked with
thedlv of the corresponding lattice element to determine if thelirglement is a skyline

point.

4.6 Experimental Evaluation

In this section we presents results from an experimentdisiesigned to compare the
performance of LS with the best existing method. We have eémginted two algorithms:
a) our LS algorithm and b) the SFS algorithm [19] with the LEsp@mizations described
in [24]. Throughout this section, we refer to these algonshsimply as LS and LESS,
respectively. All methods are implemented in C++. A buffeplpof size 500 pages is
used by both implementations for the experiments, and gk paquests go through this
buffer pool. Page size is set to 4KB for both methods. All eéxpents are performed on
a 1.7GHz Xeon machine running Debian Linux 2.6.

In all experiments, the tuple size is 100 bytes. This tupte 8 also used in [24] for
their experiments. If the amount of space needed to storatthibute values that the sky-
line is evaluated over is less than 100 bytes, a random sequébits is added to the tuple
for padding. This more closely resembles a real databasegset which a projection is
applied to the tuples of the skyline that seek informatiochsas that contained in a text
field or some other information in addition to the multidinsemal skyline values.

The reader will notice that LS requires two scans of the @ati@msoutput the skyline,
the first to mark positions in a lattice structure and a sec¢orwitput skyline points from
values derived from the lattice. Our implementation dodh lbbthese passes through the

dataset for LS, i.e. our LS implementation is outputtingjnet skyline values but the 100
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byte values associated with each skyline tuple. Hence,amuaparison with LESS is a fair
comparison.

The reason for choosing the LESS algorithm is as follows: 4.8 skyline evaluation
technique that does not require an index, such as BBS thatrescan underlyingi-tree,
or some other multidimensional index. SFS with the LESSrojttions is currently
the best general skyline evaluation technique that alss doé require an index to be
preconstructed on the data.

Both LS and LESS do not require preprocessing or indexingghvimakes them very
appealing when the skyline operation is part of a complexyg(fer example computing
the skyline over a subset of the base relation). On the othed,hindexed techniques
require precomputing an index, or building an index on4tiief an index does not exist,
which is expensive. To confirm this, we have also consideudidlbading an R-tree index
on the fly using the R-tree bulk loading technique of [47] arehthunning BBS [59]. For
the datasets that we use in this section, the index constnutttne itself is often greater
by more than an order of magnitude compared to the LS evatutithe. In the interest of

space, we omit these results.

4.6.1 Datasets

For the datasets, we use both synthetic and real datasetsisehof synthetic datasets
allows us to carefully explore the effect of various datarabteristics, and is commonly
used for skyline evaluation. We generate the syntheticsdétavith correlated (CO), in-
dependent (IN) and anti-correlated (AC) distributions gdine popular skyline dataset
generator of [10]. We have modified the generator to genéqtdatasets with attributes
each from low-cardinality domains with domain sizecpfind (b) datasets witth — 1 at-
tributes from low-cardinality domains and 1 attribute frtme domain of all real numbers

between 0 and 100K.
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Parameter Settings
d 5,6, 7
c 4,6,8,10, 12
n 100K, 250K,500K, 750K, 1M

Table 4.6:Parameter settings used for varying the dimensionality gtfjibute cardinality (c), and dataset
cardinality (n) for the synthetic data experiments, witlfedét parameters shown in bold.

Domain
Description Type Values Cardinality
# of Bedrooms | Low-card. | Integer 7
# of Bathrooms | Low-card. | Nearest 1/2 Bath 4
# of Floors Low-card. | Integer 3
Total Rooms Low-card. | Integer 10
Contains Garage Boolean Yes or No 2
Asphalt Roof Boolean Yes or No 2
Colonial Arch. Boolean Yes or No 2
Estimated Price | Continuous| Dollar value nearly 160K

Table 4.7:Attributes in the Zillow house-price dataset.

We generate a number of synthetic datasets by varying ttaeaneters: (1) the data
cardinality n, (2) the data dimensionality, and (3) the number of distinct values for
each low-cardinality attribute domain Datasets are generated for the CO, IN, and AC
distributions by holding two of these three parameters fatesl default value and varying
the third parameter. The parameter settings used for these parameters are shown in
Table 4.6, with default parameter settings shown in boltie(default value ofi = 500K
is also used in [24]).

We also use two real datasets for our experiments. The fitaséiais a house-price
information dataset that is obtained from Zillow.com [4]ll&v lists the number of bed-
rooms, the number of bathrooms, the estimated price, arat mtformation about houses
all over the United States. We obtained a dataset contammg than 160K entries for
the local regional area between Yonkers, NY and Stamford,TGIiE region corresponds
to the area that a New York City commuter might live in north leé city. The dataset
contains 8 attributes which are summarized in Table 4. hithdataset, the house price is
an unconstrained attribute.

The second real dataset is taken from the Internet Moviedaat&(IMDB) [1], which
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Domain
Description Type Values Cardinality
Rating Low-card. | 1/10 Increments 101
Color Boolean Color or B&W 2
Year Low-card. | Integer 99
No. of Reviewers| Continuous| # of voters 217K

Table 4.8:Attributes in the IMDB movie dataset.
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Figure 4.5: Results for 1 unrestricted and d-1 low-cardiiyalttributes with varying dimensionality for (a)
the CO, (b) the IN, and (c) the AC distributions. (n=500K, z¥&e number of skyline points in
each dataset is shown in (d).

contains information about movies and television shows, ratings of these by actual
users. From the IMDB, we have produced a dataset that coraa@rsl61K entries and
four attributes. The four attributes are summarized in &db8. In this dataset, the rating
attribute is a value between 0.0 and 10.0 with 1 decimal pi@ti and the number of

reviewers is an unconstrained attribute of the datasetavitnge from 0 to 217K.
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4.6.2 Experimental Setup

A buffer pool size of 500 pages is used in all the experimefist LS, 499 buffer
pages are used to store the lattice element entries in apamthl page is used to read
in the data set. The 499 buffer pool pages are enough for theelatructure to fit into
memory for all tests. For example, for either the CO, IN, or A@tketic datasets with the
default parametersi(= 6, ¢ = 6) the lattice structure size B = 32768 lattice entries.
Each lattice entry uses 34 bits (4 bytes to storesthattribute which may be either low-
cardinality or from an unrestricted domain, and 2 bits teestbedesignato). Hence, the
lattice structure in this case uses 136K of memory (3276@83MNote that the buffer pool
is of size 500*4K=2000K. Note also that the largest the sizé® lattice reaches in these

experiments i$°*34/8=1088K.
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Figure 4.7: Results for 1 unrestricted and d-1 low-cardiipalttributes with varying dataset cardinality for
(a) the CO, (b) the IN, and (c) the AC distributions. (c=8, §i¥8e number of skyline points in
each dataset is shown in (d).

In [24], the authors state that no increase in performancetised when setting the
EF window size to more than 5 pages. We observed this alsoriexqueriments and
even noticed a decrease in performance for some larger Efowisizes. Hence, the EF

window size is set to 5 pages in our experiments, which is@dse in [24].

4.6.3 Performance on Synthetic datasets

d-1 Low-Cardinality Attributes and One Continuous Attribu te

In this experiment, we evaluate the two algorithms on bothetated, independent, and
anti-correlated datasets. In these tests, one attribdieven from an unrestricted domain
consisting of the set of all real numbers between 0 and 10@Ktla@ remaining/ — 1
attributes are are drawn from low-cardinality domains hiafirst test, we vary the dimen-
sionality between 5 and 7 (similar to the performance stdd®4j). The results are shown

in Figures 4.5a, 4.5b, and 4.5c for the correlated, indepethdnd anti-correlated datasets,
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Figure 4.8: Results for d low-cardinality attributes withrying dimensionality for (a) the CO, (b) the IN,
and (c) the AC distributions. (n=500K, ¢c=8) The number oflslg/points in each dataset is
shown in (d).

respectively. Figure 4.5d, shows the number of skyline fsdior each distribution.

From Figure 4.5c we observe that LS is an order of magnitusierfahan LESS in
the AC case. LS is also faster in the independent case for érdiions (about 3X), 7
dimensions (about 4X), and a small advantage for 5 dimessiarthe correlated case, the
algorithms perform almost identically for lower dimenssg® and 6). LESS does achieve
an advantage over LS for 7 dimensions in the CO case. Notitdhtbgerformance of
LS is not varying across distributions, which is expectes (Section 4.5 for details). The
time curve for LS is identical for the CO, IN, and AC distrilaris, only the scaling in the
three graphs is changing. LESS’s performance varies wémtimber of skyline points.
The number of skyline points for each distribution is showrFigure 4.5d. When the

number of skyline points is small (near 10), as in the CO caB&3. performs as well or
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Figure 4.9: Results for d low-cardinality attributes witarying attribute cardinality for (a) the CO, (b) the
IN, and (c) the AC distributions. (h=500K, d=6) The numbesk§line points in each dataset is
shown in (d).

better than LS. However, when the number of skyline pointsgases and as the dataset
becomes more anti-correlated, LESS requires more conpuitane as expected. LS has
a bigger advantage in the AC case because LESS is not ablenioak as many tuples
with its sort-filter pass as in the IN case. Hence, LESS mu$bpe more comparisons in
the AC case.

It is worth noting that the number of skyline points for the drestricted andl — 1
low-cardinality domains in Figure 4.5d never climbs aboyeedcent of the 500K dataset
size for any of the dimensionalities or distributions. Ihather experiments, the number
of skyline points for each test is a small percentage of tha (lEso always less than 4
percent of the dataset size). In other words, low-cardinalomains do not produce a

catastrophic case in which nearly the whole dataset is iskiine.
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Figure 4.10: Results for d low-cardinality attributes withrying dataset cardinality for (a) the CO, (b) the
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In the second test, we vary the attribute cardinality betw&and 12. The results are
presented in Figures 4.6 a, b, and c for the CO, IN, and AC Migtdns, respectively.
Similar to the dimensionality results already presented,outperforms LESS by more
than an order of magnitude for the AC distribution. For thedistribution, the perfor-
mance advantage of LS relative to LESS rises as the domaimedities (and hence also
the number of skyline points present in the dataset) inessasrying from between 1.5X
better when each of thé-1 low-cardinality domains has cardinality 4 to about 2.5Xéet
when the cardinality is 12. For the correlated case, LS arfS gerform about the same
when the domain cardinalities are between 4 and 10 while L&®$&ves a performance
advantage when the domain cardinality reaches 12. Thiscause the small number of
skyline points (similar to the dimensionality tests, abbitotal data points) present in the

data for the correlated case means that LESS can be vergeffidihe number of skyline
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points for each distribution is shown in Figure 4.6d. Thefganance of LESS degrades
for the other data distributions as the number of skylinen{sorises. The performance
of LS varies with the sizes of the low-cardinality domainigcs larger sizes mean more
elements in the lattice. The performance of LS does not vaitly thie data distribution,
but remains constant across each of the three distributions

In the third test, we vary the input data cardinality betw&6AK and 1M data tuples.
The results for the CO, IN, and AC distribution are presenteBigures 4.7 a, b, and c,
respectively. LS is faster than LESS by an order of magnitudeetter for the AC dis-
tribution, and about 3X better than LESS on the IN distribati LS and LESS perform
similarly on the CO dataset. The performance of LS decregg@eximately linearly as
increases, since the sizeroexceeds the cost of the lattice comparisahs ()* V' =164K.
for all data sizes except 100K. The performance of LESS diegréaster for the AC dis-
tribution because the number of skyline points is greatmstHis distribution (see Fig-

ure 4.7d).

d Low-Cardinality Attributes

In this section, we evaluate the performance of LS on datdbkat containi attributes
drawn from low-cardinality domains. We again compare LShWiESS and test with
synthetically generated datasets from the CO, IN, and ACilligions.

For these experiments, we build the lattice using1 of the low-cardinality attributes.
This allows us to use Algorithm 9 for the skyline evaluatistgring the value of the'”
attribute in the lattice. The skyline evaluation using tieishnique is correct. This results
in better performance than building the lattice overdadittributes since the size of the
lattice is smaller.

The skyline sizes for the datasets are presented in FiguBes419d, and 4.10d for vary-

ing dimensionality, attribute cardinality, and datasetoaality, respectively. The reader
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may notice when observing this data for the correlated adedgandent data distributions
that the number of skyline points decreases as d gets larger, which seems counter-
intuitive. This occurs because, for these parameter chotbere are a large number of
duplicates of the maximal tuple. This repetition occursause in these cases, the size of
the dataspace is smaller than the dataset size. Skylinathlge cannot simply discard
such duplicate skyline values because the skyline quegyoféen is requesting informa-
tion beyond just skyline values (for example, the name oftalhthat is unique to each
tuple. These duplicates can occur in real datasets. Forggamany hotels could offer
a workout center, a pool, and free parking. A skyline quenttiese attributes could then
return multiple hotels offering the same features.

In the first test, we vary the dimensionality between 5 ands7irfahe performance
comparison in [24]). The results are shown in Figures 4.8 and c for the correlated,
independent, and anti-correlated datasets, respectitedyperforms better than LESS
by a factor of 5-6X for the AC dataset. On the IN dataset, L® algtperforms LESS
when the dimensionality is 6 or 7 (nearly 2X). LS performsathitbe same as LESS for
the correlated dataset for dimensionalities of 5 and 6 an83_gerforms better than LS
for the correlated dimensionality of 7. The performanceaatage for LS for thel low-
cardinality attributes is not as great as was achieved itide4.6.3 because the number
of skyline points is smaller. As is described in Section X.@here is a smaller number
of skyline points for the correlated case because the numibealues expected to be
located at the maximum point decreases as the dimensipiralieases{00K /8% = 15
vs. 500K /87 > 1). This trend accounts for the shape of the lines for the numobekyline
points in Figure 4.8d.

In the next experiment, we vary the low-dimensionality aaadities. The results for

this experiment are shown in Figures 4.9 a, b, and c for the GiQaihd AC datasets,
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respectively. LS is faster in the anti-correlated case arlgean order of magnitude for

¢ > 6 and is about 4X faster when= 4. LS is faster for the independent case by about 2X
whenc > 8 and about .5X whenc = 4 or 6. The performance of LESS for the correlated
case is better for > 6 versusc = 4 because the number of skyline points for 4 is
much greater than the other cases. This is because the soathespace results in more
duplicate values (see Section 4.6.1 for details). Esdbntiae performance of LESS for
the CO case closely follows the trend set by the skyline ske®ya in Figure 4.9d.

In the third test, we vary the number of data points in eachstbetween 100K and
1M. The results are shown in Figures 4.10 a, b, and c for the QQamd AC datasets
respectively. LS is better by nearly an order of magnitudetie AC distribution and by
nearly 2X for the IN distribution for cardinalities greatéan or equal to 500K. The per-

formance of LESS and LS is similar for the correlated casadasons already discussed.

4.6.4 Performance on Real Datasets

First, we evaluate the performance of LS and LESS on thewZitlataset. The Zillow
dataset contains 8 attributes (see Table 4.7), and ouregueompute the skyline with
respect to the max operator for the first seven attributesedhese attributes represent
home features that a home buyer may want to maximize. We hakskyline with respect
to the min operator for the estimated price of the house.

Using this 8 dimensional dataset, we obtain 5, 6, and 7 diraeabksubsets to be used
for testing in the following way: for 5 dimensions, we randgmeelect 4 of the first 7
attributes along with the price attribute (the unrestdcadtribute) to obtain 5 attributes
in total. We do this 10 times to obtain 10 unique 5 dimensiateihsets whose query
times are then averaged and reported in this section. Aairaperation is done for 6
dimensions. For 7 dimensions, there are seven possibletisele of six of the first seven

attributes. Each of these seven possible attribute sefesstalong with the price attribute,
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make up the 7 dimension attribute subsets.

The performance on the Zillow dataset is shown in Figure &.1dere, we see that
LS outperforms LESS by about an order of magnitude. This\aeh#& due to the anti-
correlated nature of the price attribute with respect tortinaber of features (bedrooms,
bathrooms, etc.) offered by each house. Intuitively spegkas the number of features
rises, the cost of the house also rises. This produces amtadpafor LS since its perfor-
mance is independent of the dataset distribution.

We also evaluate the performance of LS on the IMDB movie @ataBhere are four
different skyline queries that different users may wantde with this dataset: (1) a query
for classic movies that are in black and whi@BW (e.g. “Casablanca”), (2) a query for
classic movies that are in col&2C (e.g. “The Wizard of Oz”), (3) for new movies that are
black and whiteNBW (e.g. “Schindler’s List”), and (4) for new movies in colC. All
gueries maximize the movie rating and number of reviewdrgates when performing
the skyline, to find highly rated movies that have been regtbiyy as many voters as pos-
sible. Each query either minimizes or maximizes the yearcatat attributes, depending
on whether it is a classic or new movie query for films in colomoblack and white. The
performance on the IMDB dataset for these four queries isvehin Figure 4.11b. The
performance of LS is about 2X faster than LESS for @&V and CC queries and about
1.7X faster on th&lBW query. LS achieves a modest improvement forNlizquery. The
reason why LESS performs relatively better for M movie query is that the movie en-
titted “The Shawshank Redemption” has the largest numbexvéws (more than 217K),
and one of the best ratings. It, and a few similar movies, dateia large number of the
other entries. Hence, the skyline filter pass of LESS is végctve. There is no similar
effect for the other queries. which means that LESS does mork for these. LS per-

forms the same irrespective of the input. It is also worthngpthat the “low” cardinality
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Figure 4.11: Performance of LS and LESS on (a) the Zillow kgusce information dataset, and (b) the
IMDB Movie Ratings Dataset.

domains in this example each had cardinalities of approw@ind 00. Even for this large

c value, LS outperforms LESS.

4.6.5 Performance Summary:

The performance results can be summarized as follows:

e LS typically performs between 5X and an order of magnitudéeb¢han LESS on anti-
correlated datasets.

¢ LS performs between about 1.5X and 4X better than LESS orpent#ent datasets.

e LS and LESS perform similarly for the synthetic correlategbdets, with LESS achiev-
ing an advantage wheh= 7 or ¢ > 10.

e For the real Zillow dataset LS outperforms LESS by an ordenafjnitude and for the

lower dimensional IMDB movie database LS outperforms LEg8bto 2X.

4.7 Discretized Skylines

In many applications, it may be appropriate to discretimgaites that are over continuous-
value domains at coarse granularity. For example, consii@enotel dataset already used
as a running example (see Table 4.1). Now consider what happ€elestial Sleep were

to reduce the price of a room to 66 dollars. The tuples for tHes@ial Sleep and Soporific
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Inn are as follows:

Hotel Parking | Swim. | Workout Star

Name Available Pool Center | Rating | Price
Soporific Inn F T F *x 65
Celestial Sleep T T F * ok x 66

The Celestial Sleep does not dominate the Soporific Inn singstill more expensive.
Although the Soporific Inn is still in the skyline, includingthere in the skyline adds
little value since most travelers would prefer to stay attigher-rated Celestial Sleep for
only one extra dollar. This characteristic feature is pnese a number of real skyline
applications.

As another example, consider the typical car purchaseagtign in which users ex-
plore the tradeoffs in price and several additional attebwvith low-cardinality or boolean-
valued domains. A mileage attribute that may be over a coatia domain can be dis-
cretized into a low-cardinality domain. For example, mijeaategories might include
30,000-40,000 miles, 40,000-50,000 miles, etc. (Websities as autotrader.com already
allow you to search for cars with mileage under certain im@ets such as under 75,000).
This sort of coarse discretization is often appropriatecfamtinuous valued attributes in
many skyline applications because the purpose of skylimepctations is often to find
candidates for further consideration, and small diffeesnin the value of a continuous
attribute can sometimes be ignored.

Definition: We may formally define the discretized skyline if we d€t.a,) denote the

value of thei!” attribute ofg in the discretized space.

Definition 4.7.1. Elementy € D is said to dominate’ € D in the discretized space with
respect to preference functiox; if Vi € d,g(q.a;) <; 9(¢".a;). The discretized skyling
for datasetD is the set of alp € D such thatp is not dominated by any otherc D in

the discretized space.
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This formulation weakens the dominance condition for twgppses. First, it observes
that a small advantage in dimensiorior ¢ over ¢’ does not necessarily makemore
interesting thary (such as in the case of the Soporific Inn and Celestial Sleegmortl,
the overall number of skyline points may be reduced, andshisually desirable.

LS is applicable only to problems with low-cardinality doms with at most one un-
constrained domain. When discretization is appropriatg,cantinuous attribute can be

converted into a low-cardinality attribute. LS can then ppleed after such discretization.

4.8 Conclusions

In this chapter, we have proposed the Lattice Skyline aflgrithat is built around a
new paradigm for skyline evaluation of datasets whosebatgs are drawn from low-
cardinality domains. Other skyline evaluation technigaes built around a common
paradigm that eliminates points from consideration in thdise by finding some other
dataset element that dominates it. LS uses the structureeofattice imposed by the
skyline operator on the data space of the low cardinalitsibaties to identify skyline
points. This allows LS to have a complexity (for typical skgl dimensionalities and
low-cardinality domains) that is linear in the size of thpuh It also means that the per-
formance of LS is independent of the data distribution, apartant result since the per-
formance of other skyline algorithms typically degradeshesdataset attributes become
anti-correlated.

We have shown that LS is applicable to skyline evaluatiortioee important classes
of applications: those in which all attributes come from Joardinality domains (such as
the discretized skyline), those in which attribute domaias be naturally mapped to low-
cardinality domains, and those in which one attribute isnflan unrestricted domain and

all other attributes are from low-cardinality domains. Hoese applications, LS is also
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usually significantly faster than existing skyline evaioatmethods.

In the next chapter, we discuss the Skyline Point Order, awawto rank skyline
points. By identifying those points that are most valueabléhe skyline summary, the
technique increases the utility of the skyline operator myadkes using the skyline easier

in cases when the number of skyline points in a dataset islaegg.



CHAPTER V

Measuring Skyline Point Utility

5.1 Introduction

In the previous two chapters, we described skyline evalnat the presence of tem-
poral data using théookOut algorithm and over low-cardinality attribute domains @sin
the Lattice Skyline algorithm. The utility of the skylineqatuced in either of these con-
texts and in the most general, static context as a meanidgfalsummarization technique
is heavily influenced by the number of data elements in thdéirsky The cardinality of
the skyline of a dataset is often very large, particularlthé# dimensionality of the data
is large or the data set elements are anti-correlated. EYxemhe dataset attributes are
independent of one another, the number of elements in tHaeekyas been shown to be
O(log?~! n) in expectation in [7]. In such cases, the number of data pdirthe skyline is
on the order of the number of data points in the dataset iself in such cases, the value
of the skyline as a summary technique is lost.

The potential for skylines with large cardinalities hasrbeeted before [43, 60, 84].
Some techniques to try to reduce the number of skyline pbiaée previously been pro-
posed. For example, some methods consider the skyline insesaf the dimensionality
such as the skyline frequency [14] or in thedominant skyline [15] setting. However,

these techniques do not guarantee a reduction of skyliméptm any particular number,
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Figure 5.1: An example skyline with five skyline points.

nor does it address the problem in the general case, i.e. theenser is interested in
points in alld dimensions. Techniques such as the Approximately Donmgd&iepresen-
tatives [41] and thé most representative skyline operator [50] do reduce thérgkjo a
fixed size, but these lack a monotonic property, which we sisasesirable, and they do
not rank the elements of the skyline in any particular oragich is the primary focus of
this chapter.

Ordering points places the most significant points at thenbégg of the skyline re-
sult set. Intuitively speaking, not all points in the skgiare equally useful as summary
points. For instance, consider the common hotel price gedgiance example shown in
Figure 5.1. In this example, poinksc, andd in all dominate approximately the same set
of points and are all very close to one another. Someone sigbstelc is likely also
to be satisfied with hotel or d. Hence, someone seeking a condensed skyline summary
is likely to satisfied with one such point. Hotelsande both possess values which are
different from any other skyline point. However,does not dominate any other hotels
while e dominates hotelg, £, andi. Thus,e seems like a better summary point than

In this chapter, we quantify these intuitive ideas to dep@oneasure of the importance
of each point to the skyline of a dataset. We develop two sumzatson properites, the

dataset summarization and the spatial summarizationk§ting points in datasets and de-



123

velop a method, called the Skyline Point Ordering (SPOY, qoantifies these properties
to rank skyline points. Using this method, the skyline peiate ranked in order of sum-
marization importance to the skyline so that the most ingrarskyline points are returned
to a user first for consideration. A ranked skyline can nédljutze extended to a top-
skyline result set by selecting only the fidsstelements of the ranked skyline. To assess
the accuracy of different top-skyline result sets, we also introduce the Hypperarea Dif-
ference and Pareto spread metrics developed in the engige@mmunity to assess the
optimality of Pareto sets as methods to measure the sumatianizaccuracy of different
top-k skyline sets.

We further propose two different algorithms to evaluate $kgline Point Ordering.
The first, called the Coverage First Algorithm, evaluatesSR® using only the multi-
dimensional dataset as input, while the second, called kiggn® First Algorithm, uses
both the dataset and the set of skyline points as input.

The rest of this chapter is organized as follows: Sectiors2udises related work. Sec-
tion 3 describes the HyperArea Distance and Pareto spreadures for top: skyline
accuracy. Section 4 introduces the Skyline Point Orderimg) section 5 describes the
Coverage First and Skyline First Algorithms. Section 6 corstaour experiments and

Section 7 concludes.

5.2 Related Work

Methods to reduce the number of skyline points have beenogemp Reductions for
high dimensional skylines include the skyline frequenc$][strong skyline points [85],
and the k-dominant skyline [13]. These methods do not ragkrek points nor do they
guarantee a reduction to any specific number. The skylinkgese cases can still be very

large.
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Several top-k skyline techniques exist, including Appnoately Dominating Repre-
sentatives [41] (ADR) and the most representative skyline operator [50]. The ADR of a
dataset is obtained by postprocessing the skyline by bapatskyline point by a factar
in each dimension and removing skyline points dominatedchieyniew point until onlyk
skyline points remain in the new set. The problem is showrettNB-hard and approxi-
mation algorithms are developed. Thenost representative skyline operator selectsithe
points in the skyline set that collectively dominate thgé&st number of other points in the
dataset. This problem is also shown in [50] to be NP-hard. @vepare our techniques
to the FMG technique developed for approximating Ahost representative skyline op-
erator. These techniques do not rank skyline points, wtidhe focus of our work, but
top-k skyline methods are similar to our Skyline Point Ondgibecause the firét ranked

skyline points could be treated as the topoints.

5.3 Motivation and Summary Quality Measures

One of the drawbacks of using the skyline as a summary mesingior a dataset is
the shear volume of data that the skyline may contain. A laajeme of data decreases
the usefulness of the skyline as a summary. Summarizingkiime with some smaller
number of skyline points is advantageous if the number dlirs&yoints is very large.

Once we decide to summarize the skyline, we must find a goodavalytain summary
points for the points in the Pareto set. A number of methodsviduate the effective
summary measure for Pareto sets have been developed indimeEnng community. We
will summarize the Hyperarea Difference measure here shappropriate for measuring
the summary accuracy of a tdpskyline (see [80] for more details).

The Hyperarea Difference (HD) metric is a quantitative eaéibn of the difference

between the size of the dominated spaces of the true (camhptetreto sef’. and an
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observed (summary) Pareto $&t If we let H D(P., P;) denote the hyperarea difference

guantity, then:

HD(P.,P;) = space(P,.)— space(Ps)

Here, the term space refers to the area covered by the dooeisahof the skyline in 2
dimensions and the volume in 3 or more dimensions.

The hyperarea difference can be quantified as the spaceediffe between the com-
plete skyline, which may contain too many points to be usafuh summary but which
still captures the unique optimal values with respect todiw@inance relationship, and a
potential candidate skyline summary. In [80], the autharte nhat the better the space of
an observed (summary) Pareto set approximates the spale tfie (complete) Pareto
set, the better the observed (summary) Pareto set appri@sitiee true (complete) Pareto
set.

The hyperarea difference measure is one way of accessieffttotiveness of a skyline
summary. In the next section, we develop methods to efiegtsummarize skyline points

that try to obtain good spatial summarization as well assgtsummarization.

5.4 Skyline Point Ranking

In this section, we discuss skyline point qualities thatudtidbe measure when ranking
skyline points. We then discuss quantitative measureshieset qualities. Finally, we

develop an overall measure of the importance of a skylinetgoithe overall skyline.

5.4.1 Qualities for Skyline Measure

Any measure that is to rank the relative importance of skyfoints to the overall

skyline must consider the following two properties of skglipoints.
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1. Dataset Summarization: Since the skyling is a summary of the larger datadet
elementss € S that dominate other points iP add summary value to the skyline.
If a points € S dominatep € D, then the value of is preferred to that of. The

more points that dominates, the better its summary value.

2. Spatial Summarization: The points in the skyline are also values that are not domi-
nated in the partial order imposed by the skyline. Each skigling element occupies
a point in space whose importance to the skyline can be megsyrhow unique a
value it is relative to other points in the skyline. A skylipeint p that is very near
to another skyline poinf is not adding much additional summary value; a user inter-

ested in the approximate locationbn the skyline can substituteat little cost.

To see why these two properties of skyline points are impoftar ranking, consider
as an example the dataset shown in Figure 5.1. Data paloes not dominate any other
point, i.e. there is no other data pointin D that would prefer to p. Therefore, the
utility of this point for dataset summarization purposegasy low. However, the value of
a IS very unique since no other point is near it. Hence, théyof this point for spatial
summarization is very high.

These measures are relativistic, meaning that the summaryraqueness importance
of a pointp varies depending on the dataset (on the nonskyline poiatsate dominated

by p and on the nearness of other skyline pointg)to

5.4.2 Dataset Summarization Measure

In this subsection, we propose a novel measure called th& Poiminance Set of
a skyline point as a measure of its dataset summarizatigmepies with respect to the

dataset.

Definition 5.4.1. Point Dominance Set (PDS): The point dominance set of angkplbint
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s of a datasetD is the set of alp € D such thats dominate.

PDS(s,D) = {pe€ Dst.s<p}Us

The point dominance set for each skyline point measuresuitsygrization for ele-
ments ofD. For example, in Figure 5.1, the point dominance set of gas{b, g, h, 7, j }.
The PDS ok is {e, [, k}.

We require a numeric measure of the PDS in order to rank skgliements relative to
one another. We can obtain such a measure by normalizingtdeality of the PDS by
the size of the dataset. We call this measure the Normaliaed Bominance of a skyline

point.

Definition 5.4.2. Normalized Point Dominance (NPD): The normalized point d@nae
of a skyline points of a datasetD is the cardinality of the PDS of divided by the total

cardinality of D.

|PDS(s,D)|

NPD(s,D) = D

As an example, consider again Figure 5.1. In the figure, theevaf the NPD for is
I{b, f, g, h,i, 7}/ D|=6/12=0.5.
5.4.3 Spatial Summarization Measure

In this subsection, we develop a technique called the Nektetadominant Distance

as a measure of the spatial summarization properites ofleslglement.

Definition 5.4.3. Nearest Metadominant Distance (NMD): The nearest metadarmis-
tance of a skyline point of a datasetD is the distance to the nearest skyline point’in

that dominates more points thardominates.
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NMD(s,D) = mindist(s,p € S) s.t.

NPD(p) > NPD(s)

If no pointp has a largerN PD than a points, thenNM D(s, D) = |U|, whereU is

the universe.

The Nearest Metadominant Distance measures the distamefskyline point only
to those skyline points in the dataset that dominate moretpdihans dominates. This
prevents all skyline points in a cluster from being low-tht¥ to their spatial similar-
ity. At least one of these points should be highly rated. Eangple, in Figure 5.1, the
three skyline point$, ¢, andd are all close in space and dominate the same set of points
{f,g,h,1,j}, with the exception ofl which also dominates poirit For this reason, the
NMD distances ob andc will be small (their distances to poid), while that ofd will be
the size ofU.

If two points have the sam& PD, we can adopt the tie-breaking convention to rate
points with equalV P D scores based on the value in a particular dimension.

We now introduce the Normalized Nearest Metadominant Besgao normalize the

interpoint distances by the size of the universe.

Definition 5.4.4. Normalized Nearest Metadominant Distance (NNMD): The norredliz
nearest metadominant distance of a skyline peiof a datasetD is the nearest meta-
dominant distance of divided by the size of the univergein which elements ob are

drawn.

|[NMD(s, D)|

NNMD(s, D) 0]
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5.4.4 Complete Ordering

In this subsection, we define the Skyline Point Ordering feetof skyline points as a
combination of the Normalized Point Dominance and the Ndz®d Nearest Metadom-
inant Distance, thus capturing a combination of the dataseétspatial summarization of

each skyline point.

Definition 5.4.5. Skyline Point Ordering:

SPO(s,D) = NNMD(s,D) = NPD(s, D)

The skyline point which dominates the largest number of {goim D will always be
the highest ranked skyline point. This is because it willdhthe largest Point Dominance
Set of any skyline point and its Nearest Metadominant Ditanill be the size of the

Universe.

5.4.5 Using the Skyline Point Ranking to find the Top K Skyline

As we have already discussed, ranking skyline points is rapbto present users with
the most important skyline summary points first in the evlat the number of skyline
points. It can also be used as a convenient measure of thediogdine points, wheré is
an integer between 1 and the cardinality of the skyline. & diefine the tog skyline

operator using th& PO developed in the previous section.

Definition 5.4.6. Top-K Skyline: a skyline point is said to be a tog: skyline point if

there does not exigt or more skyline points that have a greater SPO than

This definition takes the first points in the ranking of th& PO for the top4. This
definition has one very important advantage over the coget@finition used in [50] or the

ADR used in [41] that are discussed in the related work seetrwl that is its monotonicity.
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Figure 5.2: An example skyline with three skyline points.

5.4.6 Monotonicity Property

In this section, we discuss the monotonic property for kagkyline queries. A tops
skyline definition is monotonic if the set of tdpskyline points is a superset of the top-
k — 1 skyline points. In other words, the tdpskyline points should be equal to the top
k — 1 skyline points with one additional skyline point that is mothe top4 — 1 skyline
points. This can be written &5, = T),_; + s whereT}, is the topk skyline pointsT},_; is
the top4 — 1 skyline points, and is a skyline point not ir{},_;.

To understand why monotonicity is desireable for the kagkyline, consider the top-
skyline definition used by the authors of []: The tbskyline of a dataseb is the set of
k skyline points which dominate the largest possible numbpomts in D.

For example, consider the dataset in Figure 5.2. In thisdigilnree data elements are

in the skyline:a, b, andc. The dominance sets of each point are shown in Table 5.1.

Skyline Point | Dominance Set
a d,efg
b f,g,hi,j
c h, i, k, |

Table 5.1:The skyline points from Figure 5.2 with their dominance sets

The top#4 points using the set coverage definitiorki= 1 is b, sinceb has the largest

coverage set. Ik = 2, the topk skyline isa andc. This seems unintuitive to a user — the
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best point ish, but the two best points do not contain the best point.

5.5 Top K Skyline Algorithms

In this section, we propose two different algorithms forlea#ing theS PO. The first of
these algorithms, called the Coverage First Algorithm,aavals the skyline of the dataset
and the Point Dominance Set of each skyline point at the sange The second of these
algorithms, called the Skyline First Algorithm, evaluaties skyline of a dataset using any

known skyline algorithm, then uses the skyline to find thenPDiominance Set.

5.5.1 Coverage First Algorithm

The first algorithm we propose is called tBeverage First Algorithn{CF) which si-
multaneously evaluates the cardinality of R@®S of a data point and determines whether
or not that point is a skyline point.

The algorithm maintains two sets of data points. The firstceesists of those data
points that have not yet been dominated by any other datdspoirnis set is called the
Skyline Candidate (SC) set. The second set consists of those data points thableaw
dominated by some other data point and hence cannot beslkgints. This set s referred
to as theDominated Points (DP) set. These sets are mutually exclusivé'( J DP = D
andSC () DP = emptyset).

The CF algorithm is presented in Algorithm 10. The algorithegibs with all elements
of the dataseD in SC' and no data points il P (lines 3-5 of the algorithm). Each element
of SC is compared with every other element$f’ to determine dominance (lines 6-18).
If a point in SC' is dominated, it is added to the set of dominated pointsglitie and 24
of Algorithm 10). If a point is not dominated and is hence alisleypoint, it is compared
with the set of dominated points (lines 19-23) to determhreegize of theP DS for the

point. The temporary sk P is used to hold dominated points removed fr8i@ which
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are later added t® P to prevent them from being considered twice (lines 24-25).

Once the skyline has been found and thBS cardinality of each point is known, the
skyline set is sorted on theD S cardinalities (line 27). Now, thé&/ M D of each skyline
point is found in lines 28-36. First, th& M/ D is initialized to the size of the universe,
where the size of the universe is the L-norm distance fromdher-left (least) corner
to the upper-right (greatest) corner in the universe. Téithe maximum value of the
N M D for any point. Next, each skyline pointis compared with all other points in the
skyline (lines 30-34). If a skyline point has a larger point dominance set than another
skyline pointp and the euclidean distance frgno ¢ is less than the nearest metadominant
distance ofy, thenmd of p is set equal to the distance betweeandg.

Once a poinp has been compared with all other skyline pointssjts can be found
(line 35). The skyline points are then sorted on #pe (line 37), which completes the

ranking.

5.5.2 Skyline First Algorithm

The second algorithm we propose is called $hgline First Algorithn(SF) which first
evaluates the skyline of the dataset before evaluatingatdrality of the coverage set of
each skyline point. The Skyline First algorithm is shown iig@sithm 11.

The algorithm begins by first evaluating the skyline using previously proposed
skyline evaluation algorithm. In our implementation, wes tse SFS technique of [19]
with the LESS [24] optimizations. The set of skyline poistand the remaining points in
the datasebD are inputs to SF (line 1). In lines 4-10, the size of phe set for each skyline
point is determined by comparing each element of the skglatevith each element d@b.

The remainder of the SF algorithm (lines 11-21) is similatiie® CF algorithm (lines

27-37) in how it evaluates th&o of each skyline point.
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Algorithm 10 Coverage First Algorithm.

1: Input: D
2: Output: Ranked Skyline Se§C.
3: SC=D.
4: DP=4.
5 RP=0.
6: for alli € SC do
7. forall j € SC andj # i do
8: if ¢ dominateg then
9: SC=58C-j.
10: RP=RP+j.
11: i.pds++.
12: end if
13: if 7 dominateg then
14: SC=SC -i.
15: DP=DP +1.
16: break.
17: end if
18: end for
19: for alln € DP do
20: if 4 dominates: then
21: i.pds++.
22: end if
23:  end for
24: DP=DP+ RP.
25:  RP=0.
26: end for
27: sortSC by pds size.
28: for allm € SC do
29:  m.nmd = size ofU.
30: forallne SC,m#ndo
31: if n.pds < m.pds anddist(m,n) < m.nmd then
32 m.nmd = dist(m,n).
33: end if
34:  end for
35 m.spo=m.pdsl| D |* m.nmd/| U |.
36: end for
37: sort.SC' on spo.

5.5.3 Algorithm Comparison

We expect the SF algorithm to outperform the CF algorithm whersize of the skyline
is small. This is because the CF algorithm performs a blocteteloop computation that
is avoided by SF in which points have the cardinalities ofrtheminance sets determined.
Since many of these points end up being dominated, someatrputation is performed
during this step. The SF algorithm, in contrast, separaeesio steps. The skyline can be
found without the expensive block-nested loops calcutatemd comparing only skyline

points with the dominated set is more efficient than the CFrélgo.
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Algorithm 11 Skyline First Algorithm.

1: Input: datasetD, skyline.S
: Output: Ranked Skyline SetC.
SC =0.
: for i € SC do
for j € D do
if - dominategj then
i.pdst+.
end if
9: end for
10: end for
11: sortSC by pds size.
12: for all m € SC do
13:  m.nmd = size ofU.
14:  for alln € SC, m # ndo

NG RN

15: if n.pds < m.pds anddist(m,n) < m.nmd then
16: m.nmd = dist(m,n).

17: end if

18:  end for

19:  m.spo=m.pdsl| D | * mmmdl| U |.

20: end for

21: sortSC on spo.

We expect the CF algorithm to outperform the SF algorithm whersize of the skyline
is large. This occurs when the size of the skyline approatiiesize of the dataset. In
this case, finding the skyline and the size of the dominanicia #me combined step as is
done by CF saves computation that is split up into two stepfsi&sE algorithm. This is
because every point needs to be compared with every othetrygben (nearly) all points
are in the skyline. The size of the skyline will approach tize ©f the dataset in general

when the dataset is anti-correlated and the dimensiordlitye dataset is high.

5.5.4 Complexity

The complexity of both algorithms 8(n?). For the interest of space, we omit a formal
proof but give the intuition here. The worst case for bottoathms occurs if all dataset
elements are in the skyline. For CF, finding the dominanceme¢dch element (lines
6-26) isO(n?) since the step then involves comparing each element to alll other
dataset elements. The computation of the (lines 28-36) also take®(n?) time since

each element of C' is compared with all other elements$id’. For SF, finding the skyline
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in the initial step is arO(n?) operation if all elements are in the skyline. Finding the

(lines 12-20) ixN(n?) also for the same reasons as for CF.

5.6 Experiments

In this section, we study the performance of the SF and CFighgas for evaluating the
SPO. We then measure the effectiveness of$t#&) for summarization of skyline sets. In
the performance study, we also compare the SF and CF algaritinthe performance of
the FMG algorithm of [50], because the FMG algorithm is useéirnd the topk skyline
and is the most similar technique to our work. The compileecexables for the Linux
operating system for FMG were graciously provided to us lydhthors of [50]. The
SF and CF algorithms have been implemented in C++. All expetisnagre performed on
a PC running Debian Linux with kernel 2.6.0, a 1.70 GHz InteloX CPU, 512 MB of
memory, and a 40 GB Fujitsu SCSI hard drive.

The Coverage First and Skyline First algorithms are impleegtim C/C++. Each uses
a buffer pool to access data with a buffer pool size of 128 pagth a page size of 4KB,
and reads and writes of data pages are modeled using readgitaxlto the file system.
The FMG binary files work for datasets varying in dimensidggpdletween 2 and 5. The
FMG technique requires that a spatial indexing structuse lie bult. We do not count the
time to build the indexing structure in the query resultsorggd here; all indices for the
FMG technique are prebuilt. The SF and CF techniques intelircthis chapter require
no indexing.

The FMG technique returns the tdpskyline points, instead of a ranking of all skyline
points as is done by our techniques. The query results epdortre are for the FMG
algorithm run for the tog = 10 skyline points. The algorithm does require more time for

largerk values. The FMG algorithm also has a parameter which dedlsheiv closely
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the algorithm approximates the NP harddominating representatives definition. This
parameter is set to the fastest, least accuracte valuer(8)dgerformance study and to
the most accurate, slowest value (32) possible for the acgugxperiments so that the
results in both cases are the best possible for FMG.

In this performance experimental study, we first descrilgeditasets used, including
both real and synthetic, then discuss results for low-dsiwerality synthetic datasets with
dimensions between 2 and 5, which allows for direct comparisetween the SF and CF
techniques and the FMG method. We then perform higher diimealsty comparisons for
SF and CF and finally show results on real datasets. We themicobacturacy experiments

on the topk results which we later describe.

5.6.1 Datasets

We experiment with both real and synthetic datasets. Fopénrmance study, we
use synthetic datasets generated with the dataset ganefrfit6]. These datasets are cor-
related, independent, and anti-correlated, and are widsdd to evaluate the effectiveness
of skyline algorithms because they represent many diffeyges of real datasets in which
skyline algorithms are useful. In the first set of experirsente generate datasets with di-
mensionalities varying between 2 and 5, because the codngdecutables provided for
the FM algorithm operate on data with between 2 and 5 dimessio

In the second set of experiments, we evaluate the perforenairtsF and CF on higher
dimensionality datasets. The compiled binaries for the R¢hnique is not applicable
for these dimensionalities. For these experiments, wergéndatasets with dimensional-
ities between 6 and 8.

We also experiment with two the real datasets. The first ra@lset is the NBA players

datasét This dataset has been used previously to evaluate theiedieess of skyline

Lwww.basketballreference.com
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Figure 5.3: Performance results for varying dataset caligjnwith fixed dimensionality of 2 for the (a)
anti-correlated, (b) independent, and (c) correlated distaibutions.

algorithms [13]. It consists of various statistics for NBRayers for a season, such as the
number of points, the number of rebounds, and the numbereeftfirows that players
obtain as single season totals. The dataset contains f#agson row entries, so certain
players have multiple entries in the dataset, dependingoanrhany seasons they played
in the NBA. For example, Michael Jordan has 15 entries in titagkt, corresponding to
the 15 seasons he played in the NBA. This dataset containstiman 19 thousand entries.
The second real dataset we use is taken from the InterneeVDatabase (IMDB). This
dataset contains information about movies and televismws and ratings information
from real users about each movie or television show and cwtlaree attributes and more
than 160 thousand entries. The three attributes for eadh &awp the number of raters for

each movie or TV show, the rating, and the year of production.

5.6.2 Low Dimensionality Performance

In this section, we present results for dataset dimensiesVarying between 2 and 5.
These are the dimensions for which the FMG algorithm opsyated hence allows for a
direct comparison between FMG and the CF and SF algorithms.

We show the results for 2 dimensions in Figure 5.3 a, b, and thivanticorrelated,
independent, and correlated cases, respectively. In sd#isc&SF performs better than the

CF techngiue by nearly an order of magnitude. This is becawesshkyline is small for
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Figure 5.4: Performance results for varying dataset caligjnwith fixed dimensionality of 5 for the (a)
anti-correlated, (b) independent, and (c) correlated distaibutions.
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these two dimensional cases, and it can be found quicklyyukm SFS skyline algorithm,
which improves the performance of SF over CF because CF loeyadivtely through the
complete dataset. SF also performs better than FMG for theamelated (about 50%
faster) and the independent (about 2X faster). This is Iscthe performance of SF im-
proves from the anti-correlated to the independent datdsstause of the smaller number
of skyline points in the independent case, while the peréoroe of FMG does not improve
much. In the correlated case, the performance is nearlyigdn

We present the results for each dataset for 5 dimensiongjuré-b.4 a, b, and c for the
anticorrelated, independent, and correlated cases,atasgde As in the 2 dimensional
case, SF is the best performing technique. SF performsridede CF by 3-10X. SF
outperforms FMG by a factor of 4-10X in the anti-correlated eandependent cases. Small
efficiencies are also obtained in the correlated case. Ckoatperforms FMG in the anti-
correlated case by 2-4X and achieves small efficienciesanrttependent case. FMG is
faster than CF in the correlated case by nearly an order of nuaign

The results for varying the dimensionality for fixed 500 wigdataset cardinalities are
shown in Figure 5.5 a, b, and c for the anti-correlated, iedelent, and correlated cases,
respectively. SF is faster than CF in all cases by 5-10X. Sastef than FMG by 2-

10X in the anti-correlated case, 2-4X in the independere,casd the two perform nearly
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Figure 5.6: Performance results for fixed dataset cardynafi100K with varying high dimensionality for
the (a) anti-correlated, (b) independent, and (c) comdldata distributions.

identically in the correlated case. CF does outperform FMGHe 4 and 5 dimensional
cases in the anti-correlated case and the two perform niglaryically in the independent

case. In all other cases, FMG performs better than CF by 2-10X.

5.6.3 Higher Dimension Performance

In the previous section, we compared the performance of thar@FSF algorithms
with that of the FMG technique. Because the FMG techniqueiregjan index to be con-
structed first, the dimensionality in the previous sectibthe datasets tested was lower.
We use smaller dataset cardinalities in these experimbatsliefore because the larger
dimensionalities produce higher running times than bef@ve use 100 K datasets when
varying the dimensionality between 6 and 8 and vary the datdinality between 20

and 100 K for the 8 dimensional dataset tests.
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Figure 5.7: Performance results for varying dataset caligjnwith fixed dimensionality of 8 for the (a)
anti-correlated, (b) independent, and (c) correlated distaibutions.

In this section, we evaluate the performance of the CF and @i itims on datasets
having higher dimensionality. Specifically, we experimeith 6-8 dimensional synthetic
datasets using the correlated, independent, and antdated distributions discussed in
the datasets section.

The results for varying the dataset dimensionality betw&eand 8 dimensions are
presented in Figures 5.6 a, b, and c for the anti-correlatei&pendent, and correlated
distributions, respectively. The SF technique still parfe better than the CF dataset in
these experiments as was the case for the 2-5 dimensiorsgitslaHowever, the perfor-
mance advantage is smaller because the number of skylinesp®igreater for the higher
dimensionality. This results in the skyline computatioedi®y the SF technique taking
a greater amount of time than for the smaller dimensioealitiowering the advantage
relative to CF.

The results for varying the dataset cardinality for 8 dimems are presented in Fig-
ures 5.7 a, b, and c for the anti-correlated, independedtcarrelated distributions, re-
spectively. As for the dimensionality experiments justtdssed, the SF algorithm still
performs better than the CF technique, but the performaneantage for the larger di-
mensionalities is smaller than before because of the lamgmber of skyline points in the

datasets.



141

5.6.4 Real Datasets

In this section, we compare the performance of CF, SF, and M@ B&lgorithms on
the two real datasets discussed in Section 5.6.1, the NBfealataset and the IMDB
dataset. From the NBA players dataset, we randomly selegh®&rgional subsets from
the overall dataset and average the results for 10 suchtsubBee results for both the
NBA and the IMDB datasets are shown in Figure 5.8.

For both datasets, the performance of SF is the best of tke thethods. It is more
than a factor of 2 better than the FMG algorithm for the NBAypls dataset and 3 times
better on the IMDB dataset and SF is also more than an ordeaghitude faster than the

CF algorithm on both datasets for reasons already mentiomegbpsly in Section 5.6.2.
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Figure 5.8: Performance results for the NBA players and IMI2Basets.

5.6.5 Accuracy

Next, we measure the overall accuracy of the results redunseng the Skyline Point
Ordering (SPO) method and compare this to the/kgbyline of FMG. We use two mea-
sures of accuracy for these experiments. The first is the tdypa Difference (HD) mea-
sure discussed in Section 3 that measures the spatial valiai@areto set. The second is
the number of points in each dataset that are dominated bppranked: skyline points

for each method (DOM).
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Figure 5.9: Hyperarea Difference accuracy measure forahBIBA players, (b) IMDB, and (c) synthetic 5
dimensional anti-correlated datasets for the FMG and 8&y#oint Order techniques.

We again use the NBA players and IMDB real datasets and aesyoith dimensional
anti-correlated dataset with 500K data points (5A). Thedhdatasets contain 22, 79,
and 4079 skyline points for the IMDB, NBA players, and 5A datasrespectively. We
measure the top=3, 5, 10, and 20 skyline points for each dataset.

The results for the Hyperarea Difference are presentedgar€is.9 a, b, and c for the
NBA players, IMDB, and 5A datasets, respectively. Here, wanadize the volumes by
the largest result (typically wheh is 20 for the SPO) so that results are represented as
a percentage of this best result. In Figure 5.9 a and b, theiSROvers slightly more
volume than the results of FMG whénis 10 and 20 and the two have identical results
whenk is 3. Whenk is 10, the SPO results do cover a significantly larger voluRoe.the
results in Figure 5.9 c, the SPO achieves significantly bettkime coverage.

The results for the number of points dominated are presentBgyure 5.10 a, b, and
c for the NBA players, IMDB, and 5A datasets, respectivelye DOM results are very
similar for the IMDB dataset in Figure 5.10. For the NBA da&ttashe topk SPO results
do achieve better results than that of the FMG. ThekidPO results are significantly

better for the 5A synthetic data.
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Figure 5.10: The number of dominated points for the (a) NBaypls, (b) IMDB, and (c) synthetic 5 di-
mensional anti-correlated datasets for the FMG and Skfwmiat Order techniques.

5.6.6 Summary

We have shown that the Skyline Point Order is generally mooceirate than the top-
k results of FMG as measured by the HD and DOM methods and tea®O can be

evaluated using the SF algorithm as quickly as the FMG metmodorrelated datasets

and 2-3 times faster on other datasets.

5.7 Discussion

This work is currently the leading research on skyline poarking. Hence, there
are many potential future research opportunities in thésaaf work. In this section,
we discuss a few open questions related to the SPO rankingodwbgy and point to
directions for potential future work in this area. We alssadiss the robustness of the SF
and CF algorithms which evaluate the SPO.

The SPO method is sensitive to the placement of nonskyliirggavhich means that
moving nonskyline points can result in a new ranking of tleednts of the skyline. Con-
sider the example shown in Figure 5.11. This is the sameeladass shown in Figure 5.2,
in which pointd has the largest dominance set of any point. In Figure 5.1ihig¢ and
h are slightly perturbed, so that they are no longer dominbygabintd. Now, pointb has

the largest dominance set of any point in the dataset, ancehewill outrankd.
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Figure 5.11: The skyline shown in Figure 5.2 with points
f andh perturbed.

The ranking of the skyline elements in this case has changeuhtb is a better sum-
mary point than/ now that it has a larger dominance set. This sensitivity égoilacement
of nonskyline points is one potential weakness of the Skyfnint Order ranking method.
We can define a robust tdpranked skyline point to be one that remains a togkyline

point despite perturbing the underlying dataset.

Definition 5.7.1. A robust topk skyline point is one that remains a tdpskyline point

when nondominant skyline points are perturbed by upitoany dimension.

In this chapter, we have discussed the SPO as a method tokgirlegoints, as well
as a set covering definition for the tépskyline points developed by [50]. Another method
to find important skyline points is to consider which layettw skyline they might reside.
The skyline layers are indicated in Figure 5.12 for the eXendjataset first discussed in
Figure 5.2. In Figure 5.12, there are four skyline layersctHayer is indicated by how
many skyline layers would have to be removed for points ihldnger to be on the skyline.
Those points in lower numbered layers are closer to thersgkyhan are points in higher
numbered skyline layers. Exploring the potentials of thdisk layers is another area for

future work.
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Figure 5.12: The skyline shown in Figure 5.2 with the first
through fourth skyline layers indicated.

5.7.1 Cost Analysis for Modifying the SPO

In this subsection, we discuss the cost of the SF and CF digmsifor making mod-
ifications to the SPO. The Skyline Point Order is one methadud skyline points, but
modifications to the ranking can be made and still evaluasetyuhe SF or CF algorithms.
For example, introducing a log factor to the NNMD or NPD temil produce a different

ordering of the skyline points. For example:

SPO(s,D) = logiu(NNMD(s,D)) * loggo(NPD(s, D))

This modification will not produce a change in the cost of @itthe SF or CF al-
gorithms and each method will remain unchanged, excephfofihal line of each that
computes the SPO from the NNMD and NPD values. In generalalt@ithms remain
unchanged for any SPO that is a function of the NNMD and NPDe&that are evaluated

by each algorithm.

5.8 Conclusion

The skyline operation as a summary method suffers when timauof skyline points

is large. We have proposed the novel Skyline Point Order agtaod to rank skyline
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points so that the most important points in the skyline sungrappear first in the skyline
order, in contrast to other methods that return skyline saetsdered. We have further
proposed the hyperarea difference metric as a quantitai®asure of the summary value
of skyline points. We have also shown that a fopdmmary set produced using the Skyline
Point Order is more effective summary set than one using pro&pnation to thek most
representative skyline operator of [50] using both the hgrea difference and the total
number of points dominated criteria.

We have proposed two algorithms, the Coverage First and tlie8Hirst, to evaluate
the Skyline Point Order and have shown that the Skyline Bpgroach is more efficient
than the nearest competing technique on experiments imgohwoth synthetic and real

datasets.



CHAPTER VI

Future Work and Conclusions

6.1 Conclusions

The analysis of large multidimensional datasets is inangasnportant for database
systems. This is because the volume of data for such daiasetsy large, and the ap-
plications that use and generate multidimensional daasetplentiful. This necessitates
efficient algorithms to mine and summarize these datasets.

In this thesis, we have described efficient algorithms fad@ating time-series similar-
ity and for evaluating skyline sets. In Chapter 2, we havegitesi the FTSE algorithm for
evaluation of time-series similarity measures that aretbasound ar threshold-based
scoring function. We showed that this technique is signifilyafaster than traditional
evaluation measures such as dynamic programming. We hswepedsented the Swale
scoring model that combines the notions of gap penaltiesraatdh rewards of previous
models for comparing the similarity between time-serigaskits. We have shown Swale
to be more accurate compared to other existing measureg estansive experimental
evaluation.

In Chapter 3, we have presented an algorithm for the efficiaitiation of continuous
time-interval skyline queries, callddokOut ThelLookOutalgorithm continuously eval-

uates the skyline operator for temporal datasets in whitdheaments are valid for certain

147
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time ranges. This algorithm is shown to be more than an orfleragnitude faster than
existing techniques. In Chapter 3, we have also studied tHerpgance of the quadtree
for skyline evaluation and determined it to be a superioexmnag structure to the R*-tree
for skyline queries, both in the static and continuous tinterval contexts.

In Chapter 4, we have examined skyline computation for degasbose attributes
are drawn from low-cardinality domains and described thitidea Skyline algorithm as
a method to find skylines in this context. The Lattice Skykatgorithm differs from pre-
existing measures because it does not use the familiarigardlat eliminates points from
skyline consideration by comparison with other points ia tfataset. Rather, it uses the
structure of the lattice defined by the low-cardinalityiatite domains to identify skyline
values. Skyline points can then be identified by comparisith the appropriate lattice
entry. This gives LS an improved complexity result over oteehniques and performance
that is independent of the dataset attribute distributions

The skyline operation as a summary method suffers when timeuof skyline points
is large. In Chapter 5, we have described a method to ranknekgbints called the Skyline
Point Order technique. The SPO returns the most importantpio the skyline summary
first in the skyline order, as opposed to other techniqueg¢barn them in an unspecified
ordering. We have shown the tdpskyline result of the SPO method to be more accurate
a summary than the most representative skyline method. We have described thie Co
erage First and the Skyline First algorithms for evaluatérthe SPO and have shown

experimentally that the SF technique is more effective t@npeting techniques.

6.2 Future Research Directions

We would like to explore research opportunities in both itradal database research

areas such as spatial and temporal data management as mahi@sdisciplinary areas.
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Spatial: We are interested in storage, indexing, and querying neestgp spatial data
including moving data, biomedical data types, and scierddia. \We are also interested in
researching new ways to obtain improved performance fdraplata including using new
types of hardware. As we reach the limits of Moore’s Law, ngpet of hardware includ-
ing dual cores and commodity GPUs offer new alternativesnigroving the efficiency
of spatial data processing. We are also interested in pugswew research directions that
can result from the skyline and its varients.

Temporal: We are interested in a broad scope of research issues regteorthe effec-
tive querying of temporal data. This thesis has focused eedipg up time-series com-
parison, and we are interested in pursuing new and fastepaason techniques further.
One such direction is to use dictionary-based compressmiques such as Lempel-Ziv
to search sequence data for motifs by examining commonrpatteund in the dictionary
after compression. The Swale measure that is developedrbats all time-series datasets
the same. We are also interested in classifying differgregyof time-series datasets based
on underlying data characteristics. Designing similargasures to focus on specific data

classes offers new opportunities for improved accuracy.
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