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ABSTRACT

COOPERATIVE DATA AND COMPUTATION PARTITIONING

FOR DECENTRALIZED ARCHITECTURES

by

Michael L. Chu

Chair: Scott A. Mahlke

Scalability of future wide-issue processor designs is severely hampered by the use of

centralized resources such as register files, memories and interconnect networks. While

the use of centralized resources eases both hardware design and compiler code gen-

eration efforts, they can become performance bottlenecks as access latencies increase

with larger designs. The natural solution to this problem is to adapt the architecture

to use smaller, decentralized resources. Decentralized architectures use smaller, faster

components and exploit distributed instruction-level parallelism across the resources.

A multicluster architecture is an example of such a decentralized processor, where

subsets of smaller register files, functional units, and memories are grouped together

in a tightly coupled unit, forming a cluster. These clusters can then be replicated

xiii



and connected together to form a scalable, high-performance architecture.

The main difficulty with decentralized architectures resides in compiler code gen-

eration. In a centralized Very Long Instruction Word (VLIW) processor, the compiler

must statically schedule each operation to both a functional unit and a time slot for

execution. In contrast, for a decentralized multicluster VLIW, the compiler must

consider the additional effects of cluster assignment, recognizing that communication

between clusters will result in a delay penalty. In addition, if the multicluster pro-

cessor also has partitioned data memories, the compiler has the additional task of

assigning data objects to their respective memories. Each decision, of cluster, func-

tional unit, memory, and time slot, are highly interrelated and can have dramatic

effects on the best choice for every other decision.

This dissertation addresses the issues of extracting and exploiting inherent paral-

lelism across decentralized resources through compiler analysis and code generation

techniques. First, a static analysis technique to partition data objects is presented,

which maps data objects to decentralized scratchpad memories. Second, an alter-

native profile-guided technique for memory partitioning is presented which can ef-

fectively map data access operations onto distributed caches. Finally, a detailed,

resource-aware partitioning algorithm is presented which can effectively split com-

putation operations of an application across a set of processing elements. These

partitioners work in tandem to create a high-performance partition assignment of

both memory and computation operations for decentralized multicluster or multicore

processors.
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CHAPTER 1

Introduction

A major difficulty with the design of future microprocessor systems is that tradi-

tional designs do not scale effectively or efficiently due to centralized resources, wire

delay, and power constraints. Centralized resources, including register files and in-

struction/data caches, become the cost, energy and delay bottlenecks in a processor

as it is scaled to support more computation bandwidth [18, 19]. The second problem

is that as feature sizes decrease, wire delays grow relative to gate delays [35]. This

has a serious impact on processor designs, as broadcasting control and data signals

each cycle takes more time and energy. Wire delays are further exacerbated when

a processor system is scaled, as the distance between function units, register files,

and caches increases, thereby forcing the signals to travel further. Finally, in recent

years, increased power dissipation and thermal issues have become new first-order de-

sign constraints, forcing processor architects to turn towards simpler, more efficient

designs.

To support scalable design, decentralized architectures have emerged as a preferred
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architecture style for exploiting instruction level parallelism (ILP). An example of a

decentralized architecture is a multicluster design, which breaks down the centralized

register file into several smaller register files [13, 22]. Each of the smaller register

files is geographically distributed and supplies operands to a subset of the functional

units (FUs). Thus, a clustered architecture supports distributed ILP across these

clusters in order to achieve higher performance. The clustered design methodology

was embodied by the original Multiflow Trace 300 [52] and is commonly used today

in embedded processors, such as the TI C6x [66], Lx/ST200 [17], and the Philips

TM1300. MultiVLIW [60] expanded this work by focusing on alternative architecture

strategies for designing scalable distributed data memory subsystems.

A natural extension to the clustered architecture is the tiled architecture, where

each cluster is an entire processor, such as RAW [62]. The interconnect is limited

to one or two dimensional nearest-neighbor arrays to reduce wire length. Common

to both clustered and tiled architectures is inherent scalability. By distributing re-

sources, designs can be effectively scaled by instantiating new clusters, and inter-

connecting them into a regular fabric. However, the main drawback involved with

decentralized designs is the difficulty in compiling code for them. In order to generate

efficient code, the compiler must be cognizant of its interactions with the decentralized

resources and the side effects of its choices.

In this dissertation, compiler code generation technology, one of the most difficult

challenges with decentralized architectures, is addressed. In traditional decentralized

designs with a partitioned register file and shared memory, it is the compiler’s respon-

sibility to partition computation operations across the processing resources in order

2



to achieve effective parallel execution. The compiler must carefully weigh the bene-

fits of distributing the available parallelism by splitting the application’s operations

across clusters with the additional communication overhead required to transfer data

between them. This requires a deep understanding of the decentralized architecture

and strong compiler analyses to partition the operations of the program across the

clustered resources.

The partitioning of computation operations divides up the application in the pres-

ence of a decentralized register file, but the compiler may have additional responsi-

bilities. The data memory subsystem is often partitioned for the same reasons as the

register file was partitioned [25, 26]. In the presence of a decentralized static local

memories, data objects (scalars, arrays, dynamically allocated objects, etc.) must be

partitioned across the distributed data memories in each cluster. The objective is to

localize data with its associated computation on a cluster, thereby avoiding the se-

rialization effects of frequent intercluster communication caused by long latency and

restricted bandwidth of the interconnection network.

While this research began as an investigation of multicluster partitioning tech-

niques, much of the work can be applicable in multicore processor environments.

Multicore processor designs have become a commonplace decentralized architecture

in response to growing concerns over power dissipation. These processors help allevi-

ate the power requirement problem by using multiple simpler cores and integrating

them on a single die. A major architectural feature of these processors in contrast

to clustered and tiled architectures is the presence of distributed caches across the

cores rather than a single shared cache. Distributed caches must be carefully taken

3



into consideration during code generation; a good distribution of the data accesses is

critical to producing a high-performance program. A poor distribution of the memory

could lead to a large amount of processing time spent stalled waiting for memory due

to coherence traffic or cache misses.

The focus of this dissertation is to explore compiler techniques to effectively take

advantage of inherent fine-grain parallelism in application code when presented with

decentralized architectures. As architecture designs have continually distributed more

centralized resources within the processor, the compiler challenges have increased.

Multicluster and multicore processors can decentralize register files, data memories,

and interconnection networks, all of which increase the complexity of code generation.

Common to all decentralized processors is a need to exploit parallelism in order to

achieve high performance. The proposed techniques involve a static analysis method

to perform global program-level partitioning of the data objects for a decentralized

memory model. This technique works well in the presence of distributed scratchpad

and static local memories; however, the static analysis-based partitioning does not

translate to data caches well. The coarse, object-based partitioning fails to effectively

utilize the cache memory space or the coherence netowrk. Thus, a profile-guided

method to distributed data access operations at a fine-grain level is presented, which

is beneficial in the presence of distributed data caches. Either technique can be used in

conjunction with a proposed hierarchical, resource-aware computation partitioner to

divide operations across a set of processing elements, in the presence of a decentralized

register file. Thus, the combined partitioners performs a data-cognizant partition of

the computation to localize operations near their accessed data. These data memory

4



and computation partitioning techniques work cooperatively to create a two-pass

compiler infrastructure to first distribute data, then partition computation operations

across a decentralized architecture.

1.1 Contributions

This dissertation makes the following contributions.

• A compiler technique using static analysis to perform a program-level partition-

ing of the application data objects across scratchpad memories.

• A profile-based technique for distributing memory access operations across mul-

tiple distributed data caches.

• A resource-cognizant graph partitioning algorithm for dividing computation op-

erations across multiple processing elements.

• A cooperative two-phase compiler framework for decentralized processor code

generation: global partitioning of the data memory which helps to drive the

partitioning of the computation

• An method for extracting fine-grain threads, which can be divided across mul-

tiple processing elements and executed in parallel.

5



1.2 Organization

The remainder of this dissertation is organized as follows. Chapter 2 provides

brief overview of multicluster and multicore processor designs and the difficulties

involved in their compilation process. Chapter 3 presents a static analysis approach

for distributing data and computation across partitioned scratchpad memories. With

partitioned scratchpad memories, each processing element has its own local memory

associated with it, and the compiler must statically place each data object in one of the

memories. A profile-guided method for handling distributed data caches is presented

in Chapter 4. This technique uses a profile of the memory accesses to determine

affinity relationships between memory operations and intelligently distribute them

across the caches. The method for purely partitioning computation across multiple

clusters is presented in Chapter 5. This method assumes a shared, data memory that

is accessible from each cluster with uniform access latency. The method for combining

data and computation partitioning into a single phase-ordered process is explained in

Chapter 6. Finally, conclusions and future directions are presented in Chapter 7.
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CHAPTER 2

Background & Motivation

2.1 Multicluster Architectures

Superscalar and Very Long Instruction Word (VLIW) processors achieve high

performance by exploiting ILP to issue multiple operations each cycle. As the num-

ber of operations issued each cycle grows, the demands to supply operands to these

operations also increases. In a conventional processor, a centralized register file is re-

sponsible for operand supply. Supplying a larger and larger number of operands each

cycle from a centralized register file can quickly become a bottleneck in a processor

design. The bottleneck results due to the combined effects of: register file cost and

access time growing with the square of the number of register ports; a larger num-

ber of registers being necessary as issue width increases to maintain more temporary

values; register bypass logic growing quadratically with the number of operations is-

sued per cycle; and the distance separating function units (FUs) from the register file

increasing with a larger number of FUs [18, 19].
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A natural solution to these problems is to remove the centralized register file

and create a decentralized architecture with several smaller register files. Each of

the smaller register files supplies operands to a subset of the FUs. These smaller

register files can be efficiently designed, thereby alleviating the register file bottleneck

while maintaining the desired level of ILP. This strategy is generally referred to as

a clustered architecture or a multicluster processor [22]. One of the first clustered

architectures was the Multiflow Trace [52]. Clustered architectures are becoming

increasingly popular in many recent processor designs including the Alpha 21264 [29],

TI C6x series [66], and Analog TigerSharc [23] and Lx/ST200 [17]. Each of these

processors is a two-cluster design.

Figure 2.1 shows the general progression of decentralized architectures. Fig-

ure 2.1(a) presents a generic centralized processor with a shared register file and

a shared memory. The register file has a large number of read/write ports, which

forces a slower access latency; however, each FU can read from the register file in

each cycle, which can increase throughput. Figure 2.1(b) presents the traditional

decentralized clustered architecture, with multiple register files. Each cluster consists

of a tightly connected set of register files and FUs. FUs may only address those reg-

isters within the same cluster. Transfers of values between clusters are accomplished

through explicit move operations that travel through an interconnection network.

Thus, transferring a scalar value from one cluster to another requires some additional

non-zero latency.

Similar to the register file, the data memory itself can become a large, central-

ized resource shared among the clusters. Figure 2.1(c) represents a homogeneous
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Figure 2.1: The evolution of decentralized processors: (a) a centralized architecture
(b) adding a decentralized register file (c) adding a decentralized data
memory and (d) a tiled processor with decentralized interconnect.

decentralized architecture with a partitioned data memory. For a large number of

clusters, a single, unified data memory as shown in Figure 2.1(b) can suffer the same

performance drawbacks of a larger number of ports and slower access time. By decen-

tralizing the data memory, smaller, more efficient memories can be used, but this may

again come at the cost of increased compiler complexity. Partitioned data memories

can exist as either scratchpad memories, where data objects are statically placed by

the compiler, or as caches, where the data objects are dynamically brought into the
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memories at runtime. The address space can either by partitioned across the data

memories or each memory can have its own address space.

The clustered designs shown in Figures (b) and (c) assume an intercluster commu-

nication bus that connects the processing elements together with a fixed bandwidth.

Though this assumption is not necessary, it is often made because it simplifies com-

piler algorithms by removing the need to model network topologies with different

connectivities. Figure 2.1(d) shows a tiled architecture with a decentralized intercon-

nection network. Data can be transferred between the clusters, but some transfers

may take multiple hops to reach its destination.

In the embedded-processor domain, the multicluster architecture has evolved over

the years to include more decentralization in their design. While the throughput

and capabilities of these processors have continually increased, their actual achieved

performance relies on compiler code generation to effectively use the underlying re-

sources.

2.2 Multicore Architectures

In the general-purpose domain, multicore architectures have helped improve pro-

cessor performance by increasing the number of available resources. A multicore

processor consists of multiple cores, or processing elements (PEs). Each PE also has

its own data cache, and the caches in each PE are kept coherent through a coherence

network. Thus, rather than having a single monolithic processor with a fast clock

frequency, multicore architectures simplify the individual cores, but increase their
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Figure 2.2: A multicore processor with distributed data caches.

number to improve processor throughput. Increased performance in these processors

then relies heavily on throughput rather than clock frequency.

A challenging task for multicore processor code generation is exploiting enough

parallelism to successfully utilize the available throughput. Recent work in multicore

processor interconnects has focused on improving the latency and bandwidth of the

communication network [57, 64]. These techniques allow for faster transfer of scalar

values between the register files, which can then allow the insertion of communication

operations to split producer-consumer relationships across multiple PEs. Thus, fine-

grain threads, which are small subgraphs of computation and data access operations

can be created to maximize resource utilization.

A generic multicore architecture consisting of two PEs is shown in Figure 2.2.

The PEs are connected together by a fast communication network to transfer scalar

operand values between PEs, similar to the intercluster communication network in
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the multicluster processor. The architecture shown presents another difficulty for

code generation because of its distributed data caches. The L1 caches of each PE

must be connected to one another with a coherence network to arbitrate the sharing

of data lines and maintain correctness. This distributed design allows the processor

to be more easily scaled to wider issue designs by simply instantiating new PEs.

Several problems arise with the use of distributed data caches. First, each memory

operation now can have a widely varying access latency for its data, depending on

where it exists and its current coherence state. The data could reside in its local

cache, in a remote cache, or in none of the caches. In each case, the data could also

be in shared, modified, exclusive, or other states, each requiring different coherence

requests to be sent out to copy from or invalidate other caches, and causing a variable

amount of delay because of possible congestion in the coherence network depending on

the coherence protocol. Another problem that arises with distributed data memory

is that each PE now has a smaller amount of memory associated with it. Compared

to the large, shared memory, these smaller L1 caches can have a higher likelihood for

cache misses. Thus, the compiler must be careful about what accesses it chooses to

place in each cache. Finally, with distributed caches, it is possible to partition the

accesses up in a manner in which they cause multiplicative misses in each of the L1

caches, rather than localizing the misses to one of the caches.

The general-purpose domain has seen decentralization of resources as an effective

way to balance performance with power constraints. Effective utilization of these

resources currently falls on both the programmer to expose parallelism, and the com-

piler to make use of it. However, many compiler analyses can help in exposing more
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parallelism to increase performance and throughput.

2.3 Compiling for Decentralized Architectures

There has been a significant amount of prior research in the area of partitioning for

multicluster processors. The first clustering algorithm was the Bottom-Up Greedy,

or BUG, algorithm in the Bulldog compiler [16]. BUG occurs before instruction

scheduling and assigns operations to clusters in order to minimize estimated schedule

length. BUG traverses the critical path, or longest string of operations, in a region of

code and greedily assigns operations to partitions given the schedule impacts of other

currently assigned operations. While this can generally provide good solutions, its

locally greedy decisions have been shown to fall into local minima with large, complex

graphs.

Aletà et al. use a graph partitioner similar to our computation partitioning phase,

but focus on tightly integrating the clustering algorithm with instruction scheduling

and register allocation [1]. Integrating with scheduling and register allocation can

seem logical, since each compiler method is highly dependent on one another; how-

ever, each step is itself a very difficult problem. Combining them together can make

the problem significantly more difficult to solve. In addition to these algorithms,

many other previous works [6, 37, 40, 48, 56] developed methods for partitioning com-

putation. These algorithms all vary in their integration with scheduling and register

allocation, and also with the scope of their decision making, from local to regional.

However, none have added support for partitioning the data memory of a program
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Figure 2.3: A heterogeneous multicluster architecture with twice as many FUs in
cluster 1 as cluster 2.

and accounting for its placement when they make their computation partitioning

decisions.

The goal of clustering is to obtain a balanced workload that takes advantage of

parallelism available within the machine. The notion of balance on a cluster relates

to the resources available on that cluster and the operations scheduled on it. For

example, given a machine with two heterogeneous clusters such that cluster 1 has

twice as many FUs as cluster 2, as shown in Figure 2.3, a balanced workload would

tend to have twice as many operations scheduled on cluster 1 as on cluster 2.

Data is transferred from cluster to cluster via explicit inter-cluster move opera-

tions. Intercluster moves have a non-zero latency and thus can lengthen the schedule.

However, if the latency of the move can be overlapped with the execution of other

operations, then the intercluster moves may not significantly affect performance. A

good partitioning of operations minimizes overall schedule length by simultaneously

maximizing the number of operations executed in parallel while minimizing the num-

ber of moves that negatively affect performance.

In the presence of a partitioned data memory, as shown in Figure 2.1(c), the prob-
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Figure 2.4: An example data flow graph and referenced data objects partitioned
among two clusters. White nodes are in cluster 0, shaded nodes are in
cluster 1.

lem of clustering data is even more difficult, as the compiler has the additional task of

intelligently partitioning the data objects of the program across the memories. Once

the objects are partitioned, the compiler must be cognizant of their cluster location

when placing load/store accesses to them. A poor decision on object placement can

lead to a significant increase in remote loads, in the case of scratchpad memories,

or memory stalls, in the case of data caches. Either case could lead to a significant

reduction in performance.

Figure 2.4 is an example of a data flow graph partitioned into two clusters. One

cluster is indicated by the white nodes, the other by the shaded ones. In addition,

the object being accessed by each memory access operation is indicated with a dotted

line. For this partition, the two thick dark lines indicate intercluster transfers. In one,

the load is accessing an object that is placed in the other clusters data memory. Thus,
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Figure 2.5: A flowchart for our compiler framework for decentralized processors. New
compiler phases are shown in bold.

this requires a remote data access, and added latency to execute the load and transfer

the data object between clusters. In the second, the AND operation in is consuming

a value that was generated in the other cluster. This requires an intercluster move

through the interconnection network, and again, added latency. Thus, in order to

produce efficient code, the compiler must take all of these transfer latencies into

account when producing an operation partitioning for an application.

2.4 Our Compiler Framework

The main contribution of this dissertation proposal is a generalized compiler pro-

cess to generate efficient code for decentralized processors. Figure 2.5 presents a

flowchart for our compiler framework for decentralized processors. The major new

compiler phases are shown in bold. In the IMPACT compiler, interprocedural pointer

analysis is performed which annotates memory operations in the code with the objects

that they reference. This is followed by a profiling phase which collects information

about each object, how often it is accessed and characteristics of the memory oper-

ation accessing it. Two separate methods for data partitioning are presented, which
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provide both a coarse-grain static object partitioning, or a fine-grain profile-guided

data access partitioning.

In the elcor back-end, we extended the compiler to build a data-flow graph of the

entire program. This allows for a program-level view when making decisions about

partitioning data objects. The data partitioning assigns data objects to clusters and

is followed by a region-level computation partitioner, which carefully places each

operation to a cluster. Finally, the cluster assignments of all operations are passed

to the rest of the compiler to perform scheduling and register allocation. All of our

extensions are pre-scheduling and phase-ordered, which can free the compiler from

the complexity of having to make decisions on schedule time, operation partitioning

and object partitioning simultaneously.
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CHAPTER 3

Compiler-directed Data Object Partitioning

for Multicluster Processors

3.1 Introduction

In the embedded-processor domain, large, centralized resources have continually

been the performance bottleneck as architectures have scaled to wider designs with

more capabilities. The decentralization started with the register files with the advent

of the multicluster architecture, and has now begun to focus on the centralized data

memory. A distributed data memory subsystem can benefit the processor design by

using smaller, faster memories, but require an additional latency to transfer values

between clusters. However, knowledge of an underlying decentralized memory can

allow the compiler to be proactive in its assignment of memory access operations to

reduce memory transfers.

Traditional multicluster operation partitioning methods are computation-centric

and ignore the effects of the data memory [6, 16, 37, 56]. Either a centralized, multi-
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ported data cache is assumed, or the system contains distributed hardware-coherent

caches. In cost or energy constrained systems, such hardware is generally not avail-

able. Thus, simpler hardware in the form of distributed scratchpad memories or

partitioned caches is often employed. However, distributing data across these sim-

pler memories and then taking advantage of it in the compiler is not a simple task.

Terechko et al. [65] studied the effects of partitioning global values in a clustered

VLIW processor. They found that remote accesses for global values accounted for ap-

proximately half of the cycle count overhead. They evaluated several different schemes

of partitioning data, including unified, round-robin, affinity and 2-pass schemes. They

concluded that data partitioning must consider the consuming operations of data ob-

jects in deciding on an effective memory placement and minimize the remote accesses

required.

This chapter attacks the problem of data partitioning for multicluster processors

and proposes an integrated technique using static analysis for data and computation

partitioning. A hierarchical approach is utilized to break the complex problem down

into two simpler sub-problems that are solved in a phase-ordered manner. First, a

global partitioning of the data objects is performed across the entire application. A

simplistic view of the computation operations and data communication is employed

during this phase to guide the data partitioning. The objective is to balance the

memory demands across each cluster. Following this step, a detailed computation-

centric partitioning is performed to partition all the operations. This computation

partitioning is a slightly modified version of the effective partitioner introduced in

Chapter 5. Based on the results of the global memory partition, memory operations
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are locked into place during this phase. However, all other operations must be assigned

a cluster and the appropriate intercluster communication inserted. This strategy

is effective because the data partitioning is performed at the full application level,

and its affects on all computation operations are considered. Further, the data and

computation partitioning is cooperative, thus each clustering decision considers its

consequences on other related decisions.

3.2 Background & Motivation

This section provides background on multicluster architectures. We describe dis-

tributed data memories within a multicluster processor and an overview of compila-

tion strategies for these architectures.

Data Memory Distribution. While clustered architectures decentralize and

partition the datapath into a more scalable form, the data memory can still become

a performance bottleneck. There are two main categories of data memory designs for

multicluster architectures: shared cache and partitioned caches. Designing a multi-

cluster architecture with a shared cache that is accessible from every cluster is not

easily scalable beyond 1 or 2 clusters. A shared cache must include enough ports for

each cluster yet maintain a low access time, which becomes increasingly difficult as

the number of clusters grow.

The other possible design method would be to use a fully partitioned cache, and

have the compiler partition the data across the caches. In such a design, the address

space is partitioned across the caches, and data objects have their home in only one
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of the memories. This is similar to a scratchpad model, where the data objects are

known to exist in a specific data memory. This type of memory design requires a

sophisticated partitioning of the data in a balanced and efficient manner. For this

chapter, we focus on the architectural model of a fully partitioned data memory.

Thus, a major compiler task is to partition both the data into separate memories as

well as the computation across the clusters.

An obvious middle ground would be a coherent partitioned cache, where each

processing element has its own cache, but a strict coherence policy is enforced much

like a multiprocessor system. While this design meets the goals of creating smaller,

dedicated caches, it increases complexity in adding arbitration and coherence mech-

anisms between caches. The coherent cache model has the benefit of easing some

of the difficulties of the compiler task. However, having a coherence protocol and

hardware support in a low-cost embedded domain simply adds too much complexity.

In addition, the task of partitioning data objects cannot simply be ignored, as a poor

partitioning of the data across clusters can result in more coherence traffic.

Recently, there have been many studies in the area of partitioning data memories

in the architecture. Gibert et al. [26] use small low latency buffers as localized storage

and dynamically fill them in order to improve performance. However, since a miss

in their buffers can always fall back to the L1 cache, there exact partitioning of the

data objects is not as important. Other recent work by Gibert et al. [24] partition

objects to fast-access but high-power and slow-access but low-power caches in order

to save power. Critical objects are placed in the fast cache, while non-critical objects

are placed in the slower cache. Avissar et al. [3] studied techniques to allocate data
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objects across heterogeneous memory units such as scratchpad memories, and internal

and external DRAM.

Hunter [36] studied data objects for characteristics to place them in specialized

SRAM arrays. Her partitioning of the data objects focused more on lowering the

memory port requirements and access latencies. The RAW processor is a tiled archi-

tecture where certain tiles have the ability to access memory and each tile can only

directly communicate with its nearest neighbor. In such schemes, operations in differ-

ent partitions should be assigned to tiles near each other if they often communicate

with one another. The RAW compiler [45] has two phases which first partitions the

computation, then places them on tiles near the location of the data they access as

well as near the other tiles with which they must communicate data. They partition

data by assigning affinities between data objects and instruction streams and group

the data objects into sets. While their method is also global, they differ from ours

in that they focus more on the affinities of whether or not an instruction stream ac-

cesses an object. Our method produces an global graph of the entire program and

can consider the communication patterns between data memory accesses and their

related computation.

Data Partitioning Issues. The partitioning of data is yet another difficult

problem for the compiler to try to optimally solve, as it must consider several factors

such as: object size, access frequencies, and dependence patterns between operations

which manipulate the objects. In the ideal situation, the objects would be partitioned

in such a way to balance memory demands of each cluster and fit within the capacity

constraints of the memory, while not hindering performance so that the application
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Figure 3.1: Increase in cycles when data is partitioned across clusters.

performs as if the memory was unified. Thus, the goals of computation and data

partitioning are very similar; both hope to generate a partition which has performance

of centralized resources on a decentralized processor by reducing communication or

hiding communication latency.

Figure 3.1 shows how partitioning algorithm’s assumptions of a shared, unified

memory can affect the schedule when data elements are actually placed in distributed

caches. Details of the processor configuration and benchmarks are presented later in

Section 4.1. For this experiment, each cluster was assumed to have its own memory.

For a simple data partition, the actual data is placed in the cache of the cluster which

has the most dynamic accesses of that data object. To accomplish this, each static

load is marked with the object that it accesses. Objects are placed in clusters by

their total dynamic access frequency per cluster. Composite objects, such as arrays
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or structures, are not allowed to be split across clusters.

The partitioner is allowed to run assuming that the clusters have a shared, unified

memory. As a postpass to the clustering algorithm, each object is placed in the clus-

ter with the highest dynamic accesses for the object. Thus, if a memory operation

is placed on an incorrect cluster for its data object, the appropriate instructions are

put in place to load/store on the remote cluster and then transfer the object across

the intercluster communication network. This data placement is not intelligent, as

it totally ignores the balance of memory usage across the clusters. In addition, the

partitioning algorithm itself is totally incognizant of the data location, so it does not

account for the location of the data when making its partitioning decisions. How-

ever, it should be fairly performance-centric given the computation partitioning, and

highlights the effects of a data incognizant partitioner.

Thus, Figure 3.1 shows the percentage increase in number of cycles given a 1, 5 or

10 cycle intercluster communication latency. From these results, it is evident that at

higher intercluster move latencies the partition of the data has a significant impact

on the achievable performance. Partitioning algorithms need to consider where data

objects are placed when splitting operations across a distributed architecture. Some

benchmarks, such as rawdaudio, had no noticeable difference in performance even at

higher intercluster move latencies. This occurred because of other computation-based

intercluster moves which were already required that the moves required for data were

hidden behind. However, most benchmarks showed little performance loss at 1 cycle

move latencies (as the penalty for moving data was almost insignificant) but much

more drastic losses at higher latencies. Such large losses in performance suggest that
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Figure 3.2: A flow chart of our Global Data Partitioning method, where the new steps
are shaded.

the data memory must be more intelligently partitioned and their locations must be

made cognizant to the operation partitioner.

3.3 Global Data Partitioning

This section introduces our compiler-directed Global Data Partitioning (GDP)

approach for jointly partitioning data objects and computation across a multicluster

architecture.

3.3.1 Overview

In building a general partitioning strategy, we strongly believe that jointly at-

tacking both computation and data partitioning is important in achieving an efficient

solution. However, each problem on its own is extremely complex, as partitioning

decisions about data affect the decisions on computation and vice versa. Thus, our

approach is to break the problem into two simpler sub-problems that are solved in

a phase-ordered manner. We believe the best strategy consists of two partitioning

phases. An initial memory partitioning is performed to cluster and distribute data
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objects for an entire application across partitioned memories. This initial partitioning

uses a global view of the entire program in order to heuristically model the communi-

cation required for the data memory partition choices. Next, a second, more detailed

partition is performed on the computation given a fixed memory placement to finish

the distribution process. Figure 3.2 is a flow chart which shows how these steps fit

into a compiler framework. We view data partitioning as a first-order effect; the divi-

sion of the data across the clusters needs to be decided first to drive the partitioning

of the computation. This phase-ordered approach is similar to a common approach

used for instruction scheduling and register allocation, wherein prepass scheduling,

followed by register allocation, and ending with postpass scheduling is performed. By

interleaving the partitioning steps, each has influence on the other in terms of the

cost model, but each subproblem is solved in a decoupled manner.

3.3.2 Problem Definition

The following definitions formulate the graphs and objectives of our data parti-

tioner.

1. Program Graph: The graph of the entire application being partitioned,

G = (V,E), where V is the set of operations, both memory and non-memory,

and E are the edges, which indicate data exchanged between the operations in

a producer/consumer relationship.

2. Data Objects: A set of objects, O = {O1...On}, which are all the data objects

present in the program. Each memory operation in V accesses one or more
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object O.

3. Architecture: Given k, the number of memories, the machine M = {C1...Ck},

where Cn is a cluster in the processor with a local memory.

4. Partition Assignment: A function of the form δ : O → M, wherein each of

the objects of O are mapped to a single cluster Cn.

5. Memory Size: A value, Sn, which represents the total size of the data objects

present in cluster Cn.

6. Cut: An edge, e, is cut if, with respect to the partition assignment δ, its source

and destination vertices are mapped to more than one memory.

7. Data Partitioning Problem: Given a DFG G = (V,E), find a partition

assignment δ : O → M that maps the objects of O onto one of the k disjoint

memories such as the weight of the cut edges is minimized and the memory size,

Sk , is balanced.

3.3.3 Prepartitioning Analyses

Before the actual partitioning begins, several compiler analyses are performed in

order to determine characteristics of the application. First, the compiler must discover

the data memory access locations for each operation. More specifically, each load and

store must be analyzed to determine the data objects which can be accessed. For

static global data, sophisticated interprocedural analysis (IPA) techniques [55] are

used to determine points-to relationships about memory accesses and their related
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data objects. This analysis assigns a unique identifier (id) to each data object and

marks the load and store operations with the data objects that can reach them.

Next, for heap objects, each static malloc() call site in the code is given a unique

id. Again, the IPA techniques are used to relate static malloc() call sites back to

load and store objects acting on the heap data. Thus, both static global data and

heap data can be assigned unique id’s, and their access characteristics can be gathered

before the partitioning begins. The compiler builds a data access relationship graph

between memory access operations and the data that they can access. Along with

this relationship graph, the analyses log the data sizes of each data object either by

examining their type sizes for static global variables. In addition, a profile is used in

order to determine the amount of data allocated in the heap for each malloc() call.

The data size information is used to balance the total object size assigned to each

cluster during partitioning.

3.3.4 First Pass: Data Partitioning

The goal of the first pass is to use a coarse-grained view of the code to partition

data objects with knowledge of how their distribution across separate memories will

affect the future partitioning of computation operations. A high-level view of the

computation and communication between operations is used to simplify the problem

down for the compiler. Using a very detailed view of the code schedule, and accurately

modeling the data computation partition and the possible effects on the computation

and performance, can significantly complicate the algorithm. Thus, a more simplified
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int value1;
int value2;

int main() {

 int *x = malloc(sizeof(int));
 int *y = &value1;
 int* foo;

 if(cond) {
  value2 += 1;
  foo = x;
 }
 else {
  *y += 1;
  foo = y;
 }

 printf(”%d”,*foo);
 printf(”%d”,value2);

}

CALL

MOV

ST

ADD

LD LD

ADD

ST

LD

LD

BB1

BB2 BB3

BB4

malloc();
Malloc ID "x"

y += 1;
Object ID "value1"

printf(foo);
Malloc ID "x"

Object ID "value1"

value2 += 1;
Object ID "value2"

printf(value2);
Object ID "value2"

(a) (b)

Figure 3.3: An example of operation merging. (a) the pseudocode for the example
(b) the DFG for the pseudocode, where shaded operations are merged
together with one another and white operations are merged together.

view of the program behavior is used for the data object partitioning.

First, a program-level data-flow graph (DFG) of the application is created. When

creating this graph, nodes are generated from every operation in the code. Memory

operations and calls to malloc() are annotated in the graph with the ids of their as-

sociated objects. This graph is created to generally model the computation patterns

that need to be mapped to clusters. The only information recorded about the oper-

ations are the data-dependent flow edges. This allows the graph to be partitioned in

a way that includes a high-level model of the required computation and intercluster

communication traffic.

Figure 3.3(a) is an example pseudocode with several types of memory accesses.
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The pointer to “x” refers to dynamically allocated memory in the heap, while the

pointer to “y” refers to global data. Depending on a condition, the pointer “foo” is

set to “x” or “y” and then accessed at the end of the function. Figure 3.3(b) illus-

trates this code is a DFG, only showing the important nodes for this discussion. The

interprocedural analysis can determine that the the load and store in BB3 both ref-

erence the pointer “y” and that “y” points to the global variable “value1”. Similarly,

it can find that the first load in BB4 can also access “value1”. Profiling of the heap

accesses can show that the allocated addresses “x” defined by the malloc() in BB1

can also reach the first load of BB4.

After building up the program-level graph, a coarsening process begins, which

merges together operations in the graph that would likely prefer to be on the same

cluster. This is followed by the actual partitioning of the data objects. The process

is described in more detail in the following two sections.

3.3.4.1 Access Pattern Merges

The access pattern merge phase of coarsening examines the objects accessed by

each memory operation and combines operations which access the same memory

objects. By merging these memory nodes in the graph, objects themselves become

merged. There are two main cases when these data memory objects are merged in this

phase. First, when a single memory operation accesses multiple data objects, these

objects are merged together. This occurs because the compiler knows that at least

one memory operation exists that accesses more than one object, so placing them

on separate memories will require data transfers across the communication network.
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Thus, they are merged together so that they will be placed in the same memory.

Second, when multiple memory operations access a single data object, those memory

operations will be merged together. Any other objects accessed by these operations

will then be merged in as well. These access pattern merges serve to help direct

the data partitioner to not unnecessarily break known related objects across separate

memories.

For the example in Figure 3.3(b), since the first load in BB4, could be either

“value1” or the allocated region “x”, both objects are merged together, and every

access to these objects are merged into a single node. The merged nodes are indicated

by the shaded operations in the DFG. These include the call to malloc in BB1 and

the LOAD and STORE of “y” in BB2. Similarly, memory operations in BB2 and

BB4 both access the object “value2”, so they are merged together, as indicated by

the white operations in the figure.

Another possible merging method would be to combine dependent operations

with low slack together. This would group together dependent operations into a

single unit and potentially combine objects whose computation is highly related.

However, in our experimental analysis, we found that merging based on computation

dependencies can negatively affect the resulting object partitioning. This occurred

because fewer groupings of objects allowed for more freedom and flexibility in the

partitioning process.
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3.3.4.2 Data Partitioning

After the coarsening process, the compiler is left with a DFG representing the

computation of the application, however, some of the nodes have been merged to-

gether to form larger nodes. In addition, each node in the graph that accesses data

memory is marked with the id of the data object or malloc() call site, and the size

of the merged data object.

To partition the program graph, we use METIS [38], an efficient graph partitioner

which can partition the operations with multiple node weights. METIS tries to divide

the nodes into separate partitions by minimizing the number of edges cut while also

trying to balance the node weights. The compiler presents METIS with the data-flow

graph representing the entire program. Node weights are added to each operation

which indicate the size of the data (if any) accessed within that node. This helps the

partitioner choose a cluster assignment for the data memory objects that balances

the object sizes across clusters. The memory size balance between clusters is param-

eterized in the case where the memory within one cluster is significantly larger than

the other.

Figure 3.4(a) is an illustrative example of three basic blocks of a DFG which is

partitioned by our global data partitioning. White nodes in the graph are memory

access operations while black nodes are computation. Dotted lines indicate coarsened

operations as explained in Section 3.3.4.1. Each grouped memory operation is labeled

with the number of objects, the size of the objects, and the number of operations

coarsened together. The goal of the partitioner is to balance both the total data
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(a) (b)

Cluster 0: 

4 operations

Cluster 1:

5 operations

Cluster 0: 

5 operations

Cluster 1:

5 operations

Cluster 0: 

2 operations

Cluster 1:

3 operations

4 Objects

2 Operations

200 bytes

1 Object

1 Operation

16 bytes

2 Objects

2 Operations

160 bytes

2 Objects

3 Operations

80 bytes

BB1

BB2

BB3

BB1

BB2

BB3

Figure 3.4: Example of global data partitioning with (a) the original graph with oper-
ations coarsened with dotted lines and (b) an example good partitioning,
indicated by the shaded region.

memory size as well as minimizing the amount of operation communication cut across

clusters, which is indicted in the program-level graph as edge cuts. Figure 3.4(b)

shows an example partitioning produced which could yield such results, where the

operations placed in cluster 1 are indicated by the shaded region. In total, the data

memory in cluster 0 has 216 bytes of data, while the memory in cluster 1 has 240

bytes of data. In addition, in each of the three blocks, the number of operations on

each cluster are balanced fairly well.
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3.3.5 Second Pass: Region-level Computation Partitioning

The second pass of partitioning uses an enhanced Region-based Hierarchical Par-

titioning (RHOP) [10], which was introduced in the previous chapter, in order to

distribute computation across clusters given a mapping of data objects to clusters.

RHOP is a operation partitioner capable of efficiently generating high-quality opera-

tion divisions; however, as with most previous partitioning algorithms for multicluster

architectures, it was designed with the model of a single unified memory.

While RHOP has shown to perform well in a single, unified memory case, it

requires the data objects be accessible from each cluster. There is no notion of a

home location for a data object. Thus, we extended the RHOP method to account

for memory object locations in the schedule estimates. When a memory operation is

considered for placement in an incorrect cluster, the schedule length estimate would

indicate an infeasible partitioning, so that possible clustering choice is ignored. Thus,

all memory access operations will always be placed on their assigned clusters, and the

schedule length estimators can continue to consider moving other operations for the

benefit of balancing computation. The RHOP computation partitioning is presented

in Chapter 5 and details about how the memory partitioning is taken into account is

presented in Chapter 6.

3.4 Experimental Evaluation

This section presents the experiments we ran to evaluate our technique for stati-

cally analyzing a program to determine a data partitioning.
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Algorithm Object Partitioner Object Assignment Computation

Partitioner

GDP Global Data Partitioning RHOP
Profile Max RHOP Greedy (dynamic frequency order) RHOP
Näıve None - data object moves inserted post-computation partitioning RHOP
Unified Memory N/A - data object moves not required for single, unified memory RHOP

Table 3.1: The three different methods tested for object and computation partitioning.

3.4.1 Methodology

We implemented our experimental framework as part of the Trimaran tool set [67],

a retargetable compiler framework for VLIW/EPIC processors. We ran our experi-

ments on Mediabench [44] and a set of DSP kernels. Benchmarks were omitted that

did not have enough data objects where making a partitioning choice about the mem-

ory was important. The machine model used for these experiments is 2-cluster VLIW

with 2 integer, 1 float, 1 memory and 1 branch unit per cluster, with latencies similar

to the Itanium. Similar to scratchpad memories, partitioned caches that achieve a

100% hit rate are assumed in all experiments. The intercluster network bandwidth

allows for 1 move per cycle with latencies of 1, 5 or 10 cycles (5 cycle is default unless

otherwise mentioned).

Each benchmark was evaluated for the performance of our Global Data Parti-

tioning (GDP) algorithm compared to three different memory schemes: Profile Max

object partitioning, the näıve method shown in Figure 3.1, and a unified memory

model. Table 3.1 summarizes the differences about these algorithms and they are

explained in more detail below.

Profile Max Object Partitioning. In this model, the RHOP partitioner is

essentially run twice. The program-level graph of the application is created and
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coarsened as before, so objects are grouped together the same. The first RHOP pass

proceeds to partition the code assuming a single, unified memory, not making any

special concessions for the memory objects. Thus, the resulting partition is very

performance-centric, as it optimistically assumes each object is accessible from every

cluster. After the partitioning is complete, the resulting code distribution is analyzed

and the dynamic frequency of each coarsened object being accessed in every cluster

is recorded. Then, in order of highest frequency to lowest, objects are assigned to

their preferred cluster (the cluster where the majority of their accesses were placed

in the first pass). A memory balance is kept by forcing objects to be placed in other

clusters when the preferred memory reaches a certain threshold. Finally, a second

pass of RHOP is performed much like the second pass of our global data partitioning

algorithm, where RHOP partitions the code cognizant of the object locations. Thus,

this is a natural extension to current unified memory clustering algorithms to allow

them to greedily partition for multiple memories, and serves as a comparison point

for the object partitioning method proposed in this chapter.

Näıve object placement. In the Näıve method, as explained in Section 3.2, no

actual object partitioning is performed. As a postpass after computation partitioning,

each data object is examined and the frequency of it being accessed on each cluster

is recorded. Afterwards, each data object is placed on the cluster where it is accessed

most often and required moves for memory accesses are inserted. Note that, in this

model, balancing of the memory is not considered.

Unified Memory. In this model, we ignore the case of partitioned memories

and simply model a single, multiported memory. Thus, all objects can be uniformly
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Figure 3.5: Performance of the GDP and Profile Max methods relative to the single,
unified memory for a 1 cycle intercluster move latency.

accessed on any cluster in the processor. The unified model represents an upper

bound performance because it assumes a constant access latency (2 cycles, the load

latency) and no penalty to transfer values across the intercluster communication

network. A normal run of RHOP is performed to partition the computation across

these clusters. Thus, no preassignment of memory operations is performed on the

code. RHOP is simply presented with regions of code one at a time in order to

partition the operations. This model can help give an indication of how well the

partitioned memories perform in comparison to a unified, shared memory.

3.4.2 Performance

Figures 3.5, 3.6, and 3.7 show the relative performance of the GDP and Profile

Max object partitioning algorithms normalized to the unified memory model with
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Figure 3.6: Performance of the GDP and Profile Max methods relative to the single,
unified memory for a 5 cycle intercluster move latencies.

intercluster communication latencies of 1, 5 and 10 cycles, respectively. In addition,

the last set of bars in each graph compare the average of these two methods to

the Näıve method shown in Figure 3.1. Higher bars on the graph indicate better

performance. Since the graph is relative to the unified memory model, the closer the

bar is to 1.0, the closer the partitioned memory is to performing as if it were a single,

unified memory.

An interesting fact indicated by these graphs is that in several cases, our parti-

tioned memory is actually performing better than the unified memory case. While

the RHOP method, as presented in [10] and used in the unified memory case, is

performance-centric, it has one large drawback in comparison to our schemes: its

more restrictive view of the program. RHOP already improves upon other previ-

ous partitioning algorithms which have a localized, operation-level view of the code
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Figure 3.7: Performance of the GDP and Profile Max methods relative to the single,
unified memory for a 10 cycle intercluster move latencies.

when making decisions. However, in our data partitioning method, we take this one

step further, from a region-level view to a program-level view for our precoarsening

and decision making. Thus, for the second pass, we can give RHOP a better initial

partitioning to begin with in order to determine how to improve the computation

distribution.

Figure 3.5 shows the performance given an intercluster move latency of 1 cycle.

This graph shows that for most benchmarks, both the GDP and Profile Max methods

are able to perform well, and match the performance of a unified memory model. This

occurs because with such a low latency penalty for intercluster network traffic, the

need to make intelligent object placement decisions becomes less important. Thus, a

poor decision on the placement of data will at most only cost only 1 extra cycle to

transfer the data to the other cluster. However, such a low intercluster move latency
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can be unrealistic to build. Thus, we examine higher latency intercluster moves in

order to properly gauge the usefulness of data partitioning.

In comparing the 5 and 10-cycle move latencies in Figures 3.6 and 3.7, our GDP

method performs much better than the Profile Max partitioner and achieves near

unified memory performance for most benchmarks, and even better in some bench-

marks. In the 5-cycle intercluster latency case, our GDP method achieves an average

of 95.6% of the performance of the unified cache, while the Profile Max method has

an average of 90.0%. For the 10-cycle intercluster communication latency case, the

GDP is on average 96.3% of the single memory performance, while the Profile Max

scheme is 88.1%. Note that these numbers are slightly skewed because some of the

benchmarks achieve more than 100%. However, our partitioning algorithm is able to

produce near single, shared memory performance with multiple smaller, partitioned

memories. For example, for the mpeg2enc benchmark, at the 1-cycle intercluster

move latency, neither the GDP nor the Profile Max methods showed much difference

compared to a single, unified memory. Moving to 5 and 10-cycle move latencies, the

GDP method was able to maintain 99% performance of the unified memory model

while object partitioning of the Profile Max method fell to 81% or 79%, respectively.

Comparing the 5-cycle and 10-cycle latency results shows a larger gap between

the two methods. At higher latencies, intercluster communication has a larger effect

on performance. Thus, the quality of the partition in terms of co-locating data

and computation is more critical. The Profile Max method is less effective because

it cannot account for the inter-region effects of objects and their access patterns.

Conversely, the GDP method is make global decisions with a simplified model of the
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Figure 3.8: An exhaustive search of all possible data object mappings for the rawcau-
dio benchmark. Points marked with darker shading indicate more imbal-
anced partitioning in terms of data object sizes per cluster.

computation and thus can make more intelligent decisions.

In comparison to the data from the Näıve method, both methods did not suffer

as much performance loss. This is attributed to the Näıve method being incognizant

of the data object locations and simply inserting the necessary intercluster moves as

a postpass. Both of these methods are significantly more intelligent as they take the

data objects locations into account while performing computation partitioning.

3.4.3 Exhaustive Search of Partitions

In Figures 3.8 and 3.9, we present two graphs which represent an exhaustive search

of all the possible data object mappings to two clusters for the rawcaudio and rawdau-

dio benchmarks. An exhaustive search was only possible in benchmarks with a fairly

small number of data objects. In both graphs, each point represents the performance
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Figure 3.9: An exhaustive search of all possible data object mappings for the raw-
daudio benchmark. Points marked with darker shading indicate more
imbalanced partitioning in terms of data object sizes per cluster.

of a possible data object partitioning normalized to the worst performing partition-

ing. The shading of each point indicates the relative data object size balance between

the clusters. Darker shaded points are used for more imbalanced partitionings. Thus,

the black points are where nearly the entire set of data objects are placed on a single

cluster, and white points are where the data objects sizes are well balanced across

the clusters. The mappings of both the GDP and the Profile Max method are also

marked in each graph.

Figure 3.8 shows the performance of various data mappings for rawcaudio. In

this graph, there are many different horizontal bands of object mappings that have

relatively the same performance and data object balance. This occurs because there

is a small subset of the objects whose cluster placement determine the performance

level of the partition. Shifting the other objects between clusters does not greatly
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affect performance or balance. Both the GDP and Profile Max methods achieved

object partitionings which were well-balanced. However, the partitioning chosen by

the GDP method had a better performance. While the GDP method was able to

choose a good partitioning, the overall performance benefit for rawcaudio was not as

impressive, as the best partitioning was still less than 10% improvement of the worst.

Figure 3.9 shows a similar graph for the rawdaudio benchmark. This benchmark

has a much more significant performance difference in terms of a good or bad parti-

tioning choice, as the best performing partition choice had almost a 25% performance

increase over the worst. Again, this graph shows many horizontal bands. However,

at each balance level (indicated by the shading) there is a split in performance at

a lower and higher level. This occurs when a small single object can greatly affect

performance. Similar to rawcaudio, both partitioning methods were able to find a

balanced solution, but the GDP method found a mapping with much better perfor-

mance. While many points existed with better performance, all had a significantly

more imbalanced data sizes, so they were not chosen. Note that the object mappings

at better performance, but worse memory balance, can be achieved by allowing for

more imbalance of the resulting partition in METIS.

3.4.4 Increase in Intercluster Traffic

The quality of a partition can be measured in several ways. One such metric is the

number of intercluster moves required during the run of the program. Increasing the

number of intercluster moves generally decreases the performance, as more operations
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Figure 3.10: The percentage increase of intercluster move operations using the GDP
and Profile max methods over a single, unified memory model with 5-
cycle latency intercluster move.

must execute, and they all share the communication network bandwidth. However,

having more intercluster move operations executing does not necessarily hinder per-

formance. If the intercluster moves can be hidden behind other operations or allow

for more parallelization and resource utilization on the clusters, then performance

may actually improve. On the whole, however, increased intercluster communication

correlates to decreased performance.

Figure 3.10 shows the increase in dynamic intercluster communication operations

for the GDP and Profile Max methods over the single, unified memory processor with

an intercluster communication latency of 5 cycles. The baseline processor still has

intercluster moves, as it is a multicluster architecture, and requires moves when depen-

dent computation is split across clusters. The GDP and Profile Max methods, how-
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ever, show intercluster network traffic stemming from both computation-dependent

moves and the required transfers of data objects. The most drastic increase in inter-

cluster moves occurs with the fsed kernel. This is correlated with the performance

results in Figure 3.7, as fsed had a large amount of additional moves to insert and

had one of the largest decreases in performance.

For most of the Mediabench benchmarks, the GDP method has far fewer dynamic

intercluster move operations executing. In fact, in many cases partitioning the mem-

ory has less intercluster traffic than the single memory architecture. This can happen

because, again, having a global, program-view prepartition of the data objects can al-

low the computation partitioner to start with a better initial partition. Of interest is

that the benchmarks, such as mpeg2dec and rawdaudio that had a dramatic decrease

in dynamic intercluster moves, also have an improved performance in Figure 3.7.

3.4.5 Effects on Compile Time

In our experiments, the vast majority of the compiler time was spent in the detailed

computation partitioning. The Profile Max partitioner is actually two complete runs

of this detailed computation partitioner. The first run is to gather the profile of

where objects are placed assuming a shared cache, and the second is to repartition

the computation after preplacing objects in their preferred cluster. Since the GDP

method only requires one run of this detailed computation partitioner, the compile

time is significantly reduced. This is similar to the run time of the Näıve method,

which only requires a single run of the computation partitioner.
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3.5 Summary

This chapter introduced a phase-ordered partitioning algorithm which distributes

both data objects and computation for multicluster architectures. Partitioning of

data objects and computation operations is challenging in that a decision on one can

greatly affect the other. Thus, it is important to develop a partitioning method which

is cognizant of the side effects of its partitioning decisions. Traditional multicluster

partitioning algorithms avoid this problem by assuming a single unified memory for

all the clusters, thus simplifying the problem. Our algorithm is a two-phased ap-

proach that first partitions the data objects by examining their access patterns at a

coarse-grained, program level. By having a viewpoint of the entire program, the data

partitioner can make decisions with knowledge of the overall data usage patterns in

the program. The second phase, region-based computation partitioning is performed

which is cognizant of the preplacement of data objects, and is focused on improving

the partition of the computation operations. Overall, our Global Data Partitioning

algorithm was able to divide objects across multiple memories yet still achieve, on

average, 96.3% of the performance of a single, unified memory memory model.

46



CHAPTER 4

Profile-guided Data Access Partitioning

for Distributed Caches

4.1 Introduction

In Chapter 3, a technique for partitioning data objects across multiple distributed

memories was presented. While this technique worked well for scratchpad or static

local memories, many processors use a distributed L1-cache design, which can allow

for a sharing of data values and a more efficient use of the memory. In the presence of

data caches, the static analysis technique fails to take advantage the added benefits,

as it does not split objects across memories or share the space for frequently utilized

data. Statically, it is difficult to determine whether a load or store operation is

simply referencing a part of a data object or the object as a whole. This can lead to

an unbalanced memory usage, with one cache being issued a large number of access

operations because an entire object is assigned to it.

Distributed data caches require the compiler to carefully examine the data access
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patterns of each individual memory operation. A good dispersal of data accesses

across the cores is critical to producing a high-performance partitioned program.

Poor placement of data accesses could lead to significant time stalled waiting for

memory because of cache misses or coherence traffic, taking away the gains provided

by the fine-grain partitioning of operations. Analysis of the memory accesses of each

operation can help to determine when individual data accesses are causing others to

either hit or miss in the cache. In addition, the compiler can estimate the contribution

each memory operation has to the overall working set. Placing too many operations

in a single cache could potentially increase the number of cache misses. Thus, given

profile information about affinities between operations and working set sizes, the

compiler can proactively combine or split operations across the distributed data caches

in order to improve performance.

The underlying vision in this chapter is to compile to chip-multiprocessors, such

as RAW [62, 63], that can both exploit TLP and ILP. This chapter focuses on the

ILP side, where the architecture can be viewed as a multicluster VLIW with dis-

tributed/coherent L1 caches. We propose a new compiler technique that actively

partitions memory operations across PEs in order to decrease the memory stall time.

A good partitioning of the data allows us to map the problem of fine-grain paral-

lelization for multicore down to the problem of program partitioning for multicluster

VLIWs. Our method is a phase-ordered approach to partition memory and compu-

tation. Thus, the partition of the data accesses is performed first, regardless of the

underlying computation performed. The data access partition is then used the drive

the partitioning of the remainder of the code. Our approach first profiles the program
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to determine statistics about each memory operation, such as its affinity towards other

operations and an estimated working set size. This information is used to create a

program-level graph of the memory accesses. The graph is then heuristically parti-

tioned to assign memory operations to PEs. Finally, a detailed partitioning of each

code block is performed which respects the preplacement locations of the memory

operations.

4.2 Background

This section provides background on our target architecture and the use of a

distributed data cache for the memory subsystem. In addition, we introduce some of

the challenges faced by the compiler in generating code in the presence of distributed

data caches.

4.2.1 Distributed Cache Memories

Both the design choices of using scratchpads or caches for the memory model of a

decentralized processor offer several benefits. Scratchpads, which are often used in the

embedded design space, have the advantages of being smaller and more power efficient.

In addition, scratchpads offer a more simplified model of the memory system for the

compiler. Caches can offer increased parallelism from duplicating data objects across

clusters, but can suffer from false sharing and congestion in the coherence network. In

addition, caches can allow for data objects to have different homes at different times

during the execution of the program. A cache also has the potential to be smaller
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Figure 4.1: Two multicluster processor designs (a) using partitioned scratchpads and
(b) partitioned caches

than a scratchpad, since they only need to be big enough to hold the working set

of the program, not the entire set of data objects. Figure 4.1 shows the difference

between a multicluster processor with partitioned scratchpads and partitioned data

memories.

When focusing on partitioned memories for a multicluster architecture, the use

of scratchpads can greatly simplify many difficult problems for the compiler. By

statically placing an object in a data memory, the compiler will always have knowledge

of where exactly its data is located. Thus, when scheduling operations, the compiler

can be cognizant of penalties involved with transferring data values across the clusters.

The compiler can then easily estimate the required size of a data object when placing

it in memory. In addition, given a scratchpad memory size per cluster, it is then simple

for the compiler to determine the remaining capacity of the memory. Overfilling the

scratchpad memory is not a feasible solution.

Caches require the additional coherence network and must be concerned with the
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coherence traffic, as shown in Figure 4.1(b). For a cache-based memory model, data

is brought in and flushed out of the cache dynamically at run time. In comparison

to the scratchpad model, the actual size of the data object is not as important as the

amount each object actually being processed at any given time. Thus, the compiler

must account for the time-varying behavior of the object accesses as it is partitioning

the data objects. For a cache, rather than total object size, the current working set of

a program should remain below the cluster cache size in order to achieve the highest

performance.

A second major concern when partitioning the data objects to caches is the utiliza-

tion of the coherence network. In partitioned scratchpads, data objects are statically

placed into their respective clusters at compile time; thus, there is so need for a co-

herence network or arbitration. The compiler ensures that there will be no contention

for data between the clusters. However, with caches, each cluster can have any data

object present in its respective cache at any time. The clusters then use a coherence

network to arbitrate conflicts between clusters and keep the data consistent. Thus,

the coherence traffic generated is yet another factor to consider when partitioning the

data objects across clusters.

As our work in [11] showed, a two phased approach to first partition the data ob-

jects, then divide the computation cognizant of the data location, can be an effective

compiler method for multicluster processors. Our approach makes the partitioning of

data objects a first-order term in the mapping of an application to clusters. Thus, the

partitioning of the data and how it is accessed is used to drive the later partitioning

of the computation operations.
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Figure 4.2: Performance of GDP with cache memories.

Figure 4.2 shows the performance of the two-phased Global Data Partitioning

(GDP) technique described in Chapter 3, but in the presence of a cache data memory

structure. Thus, no modifications were made to the original algorithm to account for

the presence of caches. The baseline used for this experiment is a pure run of RHOP

as shown in Chapter 5, which assumes a shared memory. GDP mapped the data

objects to clusters assuming that they would be placed in scratchpads, but caches

were used instead. Each benchmark is shown in comparison to a pure computation

partitioning which assumed a single shared memory, but actually had a partitioned

data cache. Thus, the baseline was able to bring objects into either cache and use

the coherence network to avoid sharing problems.

For several of the benchmarks, the GDP actually improved performance between

5% and 10%. The benefits shown for these mainly result from a decrease in the

coherence network traffic. Since the objects and their respective loads and stores
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are partitioned across memories, there will be no coherence traffic because there is no

sharing of data between clusters. Thus, for coherence traffic-constrained applications,

the GDP method of partitioning data objects can already be an effective algorithm

to improve performance.

Some benchmarks, like rls and fsed, show a dramatic decrease in performance.

The decrease in these benchmarks stem from the GDP’s inability to split or duplicate

memory objects across clusters. The GDP models each data object in the program

as a single unit, and thus maps each data object to a cluster at an object granularity.

Both benchmarks have a large amount of read-only data, but the GDP method is

unable to take advantage of sharing the data across the memories. By forcing each of

these read-only objects to reside in one cluster, the source data for all the computation

can only be driven by a single cluster.

4.2.2 Compilation Challenges for Distributed Data Caches

Producing efficient code for distributed data caches is therefore a challenging task

for the compiler. Traditional operation partitioning algorithms [1, 6, 37] assume a

shared data memory, which greatly simplifies the compilation task. The compiler

could choose to continue use of these algorithms and simply ignore the presence of

the distributed caches, allowing the underlying coherence hardware to maintain cor-

rectness and properly load objects into the cache when needed. This method passively

partitions the memory operations as part of its normal partitioning algorithm, and

doesn’t consider the underlying hardware. However, this strategy could easily de-
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Figure 4.3: An illustrative example of the difficulties in compiling for distributed data
caches (a) a code example (b) a partitioning of the operations assuming a
shared memory (c) a partitioning of the operations cognizant of the data
access pattern (d) idealized schedules assuming a shared memory and (e)
schedules factoring in distributed data caches.

grade performance as multiplicative misses, coherence overheads and conflict misses

increase. Thus, in order to generate efficient code for distributed data caches, the

compiler must actively partition the memory operations cognizant of the cache ram-

ifications of its choices.

Figure 4.3 is an example pseudocode that illustrates some of the difficulties that

can arise when the compiler is partitioning the operations. In Figure 4.3(a), the C

code for a loop is shown which accesses two different arrays. Within the body of
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the loop, there are three loads, two of which are to array x and one to array y. In

addition, there is a store to array x at the end of the loop. Each memory operation is

annotated with a label, and dataflow graphs for this code are shown in Figure 4.3(b)

and (c).

An operation partitioner that assumes a shared memory may try and produce the

assignment of operations shown in Figure 4.3(b). This can be a good partition because

it only requires one transfer of register values across the communication network, and

balances the required work for each PE well. This assignment of operations can place

two of the loads (L2 and L3) on one PE and the other memory operations on the other.

With a shared data cache between the PEs, the sole objective of operation assignment

(including memory operations) is to minimize the expected schedule length.

Given a distributed data cache design, the desired PE assignment can change

drastically. Looking again at Figure 4.3(b), in each iteration in PE 1, load L1 will

bring a line into the cache that is also written to by store S1. Load L2 is also reading

from the same cache line, but in PE 2. When store S1 is executed, its PE will upgrade

the line in PE 1’s cache to the ownership state, and invalidate the cache line in PE

2. In the next iteration, load L2 will again be executed on the PE 2, causing another

miss in its cache, since it had been invalidated. In fact in this next iteration, the

miss caused by load L2 will be a case of false sharing of the cache line. It would

then have to use the coherence network to get the modified cache line from PE 1. A

better partitioning of this code cognizant of the distributed data caches is shown in

Figure 4.3(c), where loads L1 and L2, and store S1 are grouped together on a single

PE.
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The schedules for these two assignments are presented in Figure 4.3(d) and (e).

In Figure 4.3(d), we show the idealized schedule with a shared cache. In this case

the schedule length of assignment #2 is longer because of the extra required register

transfer operations, indicated by the arrows crossing the PE boundaries. Thus, as-

signment #1 has a shorter per iteration static schedule than assignment #2. However,

in Figure 4.3(e), which considers cache effects, load L2 will miss in its cache during

each iteration and be stalled (indicated by the dotted line), waiting to transfer the

modified cache line from PE 1. In addition, each iteration will have a stall for store

S1 waiting to upgrade its cache line to modify it. The schedule for assignment #2

shows none of these coherence issues, and would only stall for cold misses that would

affect any partition assignment.

This example illustrates one of the main difficulties in partitioning memory op-

erations for distributed data caches. There is a careful balance between improving

cache usage to reduce stall time and the benefits of parallelization. Grouping together

all memory operations that access the same addresses onto the same PE can be an

attractive option, as it can reduce misses. However, it can also come at the expense

of computation parallelism across the PEs. The total execution of the program is the

sum of compute cycles and stall cycles, and the compiler must decide which is more

beneficial. In this example, it was better to sacrifice computation in order to reduce

stall cycles in each iteration of the loop.
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Figure 4.4: A flow chart of our Profile-guided Data Access Partitioning technique.

4.3 Profile-guided Data Access Partitioning

This section introduces our Profile-guided Data Access Partitioning technique for

assigning memory access operations to processing elements with distributed data

caches.

4.3.1 Overview

This work proposes a profile-guided method that analyzes the access pattern of

memory operations and distributes them among PEs. This is followed by a detailed

partitioning of the rest of the operations of the program cognizant of the cache location

of the memory accesses. We feel this approach to first assign memory operations,

then assign the rest of the operations helps to reduce stall-time effects and allows

the compiler to take advantage of an improved memory partitioning when generating

code for the rest of the program. We chose to use a profile-guided technique rather

than static analysis because the profile allows finer grain control over the placement

of the data. Static analysis methods can relate memory access operations to data

objects, but then the partition must be made at the object level rather than the

operation level.
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Our technique for data access partitioning includes three steps, shown in the gray

boxes in Figure 4.4. The dotted box indicates the main parts of our profile-guided

approach. During the first step, a profile of the data accesses is performed which de-

termines affinities that memory operations have with one another. We use a pseudo-

cache simulation in order to determine whether any pair of operations would prefer

to occur in the same cache or be kept in separate caches. The second step builds

a program-level data access graph of all the memory operations, using the statistics

gathered during the profile. This graph is then partitioned to determine the memory

operation placement across the PEs. In the third step, a standard operation parti-

tioner is used to produce a block-level partitioning of the remainder of the program,

cognizant of the preplaced memory operations. This third step is an important part

of our process, but is not the focus of this paper. Our main contribution is the de-

velopment of the profile-guided technique to effectively partition memory operations

to reduce stall time. Our technique can be used in conjunction with any standard

operation partitioner [11, 16, 56], as long as it can be modified to acknowledge that

some of the memory operations have been preassigned to PEs.

4.3.2 Problem Definition

The following definitions formulate the graphs and objectives of our profile-guided

data partitioner.

1. Memory Access Graph: The graph, G = (V,E), where V is the set of mem-

ory access operations (loads and stores), and E are the edges, which indicate
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affinity relationships between the vertices.

2. Architecture: Given k, the number of clusters, the machine M = {C1...Ck},

where Cn is a cluster in the processor with a unique L1 cache..

3. Partition Assignment: A function of the form δ : V → M, wherein each of

the memory operations of V are mapped to a single cluster Cn.

4. Working Set Size: A value, Sn, which represents the total size of the memory

operations Vn assigned in memory Mn.

5. Cut: An edge, e, is cut if, with respect to the partition assignment δ, its source

and destination vertices are mapped to more than one cluster.

6. Data Partitioning Problem: Given a DFG G = (V,E), find a partition

assignment δ : V → M that maps the objects of V onto one of the k disjoint

caches such as the weight of the cut edges is minimized and the working size,

Sn , across clusters is balanced.

4.3.3 Data Access Profile

The first step of our technique is a profiling pass that builds a program-level data

access graph between memory operations. The purpose of this step is to monitor the

data accesses produced by each memory operation to determine whether individual

operations have any preference to being placed together on the same cache or apart

on different caches. Thus, the resulting data access graph consists of each memory op-

eration in the program connected by edges representing the affinity between memory
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Figure 4.5: Our profiler’s sliding window to analyze memory access affinities

operations.

We identified three important characteristics of memory operations to take into

account during this pass: constructive interference, destructive interference, and work-

ing set size. Constructive interference occurs when two memory operations are likely

to access the same cache lines and one access helps the other hit in the cache. Simi-

larly, destructive interference occurs when two memory operations are likely to kick

one another out of the cache. Working set size is an estimate made of how much

memory an individual memory operation takes up in the cache. Each of these three

characteristics is determined during a profile run by examining and analyzing the

stream of memory accesses produced by the program.

Our data access profile creates a sliding window of the last n memory accesses, as

shown in Figure 4.5. The sliding window gives the profiler a narrow view of the recent

accesses that have been sent to the data cache. With each access, the profiler records

the memory operation and the accessed address into the window. The operation and

address are recorded in order to determine if future memory accesses can benefit from

being in the same partition as the current access. Thus, the profiler is performing
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a pseudo-cache simulation over the window of accesses, trying to determine whether

memory operations attract or repel one another.

The profiler then travels back through the window of accesses from the head to

the tail, recording a count of each time it sees a different memory operation that

accessed the same memory block. This static count of accesses to the same address is

an indication of how much the memory operation could help the current access hit in

the cache. Thus, this value is used as the constructive interference metric, or positive

affinity of operations to one another. For the case in Figure 4.5, our profile statistics

would increase the constructive interference between LD 4 and LD 2 once as well as

LD 4 and ST 1 because they all access block B4 within the window. Equation 4.1

illustrates the calculation for the constructive interference between a static memory

operation i and another operation j.

cons(i, j) =
∑

trace

∑

window

(line(i) == line(j)) (4.1)

While traveling back through the window of accesses, the profiler also records how

often the current memory access is likely to kick another memory operation’s accessed

cache line out of the cache assuming a direct-mapped cache. This static count is used

as the destructive interference, or negative affinity of operations to one another. In

Figure 4.5, since blocks B4 and B2 both write to cache line C2, the profile increases

the destructive interference between LD 4 and LD 1 by one. In both the constructive

and destructive passes back through the sliding window, the analysis is terminated

either at the tail of the window or when an address match occurs with a memory
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Input: {(L1, B1), (L2, B2), (L3, B3), ..., (Lk, Bk)}
Output: {Lk, Size}
for (i = (k − 1) to 1) do

dist++ ;
if (Bi = Bk) then

break;

end
end
if (DistMap[Lk].lookup(dist)) then

DistMap[Lk].value(dist)++ ;

end
else DistMap[Lk].insert(dist, 1) ;

Algorithm 1: Estimating working-set size of load/store instructions.

store operation. The store operation termination was added because with coherent

L1 caches, a store would cause an exclusive access in one of the caches, effectively

invalidating it from the others. Thus, in Figure 4.5, the profiler would begin at the

current memory access LD 4, and travel back noting that load LD 2 and store ST 1

accessed the same block. However, it would not mark that load LD 3, the tail of the

sliding window, also accessed that block, since the store ST 1 would have ownership on

that cache line. The calculation for destructive interference between a static memory

operation i and another operation j is this illustrated in Equation 4.2.

dest(i, j) =
∑

trace

∑

window

(block(i) == block(j)) (4.2)

The final metric recorded by the profiler is an estimate for the working set con-

tribution of each memory operation. For this work, we leverage previous research for

working set estimates based on reuse distances of load and store operations [4, 53].

Algorithm 1 illustrates the calculation of this estimate. Input into the algorithm is

a list of cache block references for every load and store operation in reference order.
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The working set size is estimated by looking at past references to unique blocks by

that instruction from the head to the tail. The algorithm measures the distance, or

number of intervening operations between the current instruction and its accessed

block and its previous instance. This quantifies the number of cache blocks that

must be present in a fully-associative cache for the instruction to result in a hit. For

each memory operation, a histogram is produced that indicates the number of times

the operation had each access distance. A weighted average is taken of these cache

distances and is used as the working set estimate. Thus, while this estimate is not

perfect as it assumes a fully-associative cache, it can be useful as a heuristic to help

determine how long certain accesses would likely prefer to be in the cache.

Our memory partition method uses a direct-mapped cache metric for our interfer-

ence calculations and a fully-associative cache metric for the working set estimates.

While these are very different cache designs, using them for the metric allows for

a more conservative estimate. The direct-mapped assumption for the interference

estimates the worst case situation for conflict misses in the cache. Similarly, the

fully-associative assumption estimates the worst case for capacity misses. Thus, these

assumptions can allow for a more conservative view of the cache effects of the memory

operations.

4.3.4 Access Partitioning

The second step is the actual partitioning of the data accesses across the differ-

ent data caches. After the profile run is completed, a program-level graph of all the
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Figure 4.6: Partitioning of the program-level data access graph to processing elements
for the rawdaudio benchmark. Nodes represent memory operations are
annotated with their working set estimate. The thickness of the edges
indicate the amount of affinity one operation has for another.

accesses in the program is created. The nodes in the graph represent each memory

operation and the edges connecting the nodes represent affinities between the oper-

ations. Each node is weighted with the estimated working set size of the memory

operation. Each edge is weighted with the difference between of the constructive and

destructive interferences between the memory operations. Our technique inputs this

graph into the METIS graph partitioner [38], which divides the data accesses trying

to cut as few positive edges as possible while keeping a balanced node weight per

partition.

The use of the estimated working set for the node weight helps keep the partitioned

memory operations balanced in their usage of the data caches. For example, if a
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memory operation had a high working set estimate, it would most likely need to be

in the cache for a longer period of time to hit than an operation with a low working

set estimate. Thus, the partitioner could take this into consideration and not push

as many large working set operations together into the same cache.

The use of the constructive and destructive affinities for the edge weights helps

the partitioner decide which edges are best to cut when dividing up the memory

operations. If two operations had a large amount of destructive interference, this

would be indicated in the graph with a large negative edge weight. That would then

be attractive to the partitioner as a good edge to cut. Similarly, if two operations had

a large amount of constructive interference, the edge weight would be a large positive

value, indicating the operations should be kept together in a single cache.

Figure 4.6 shows the data access graph created for the rawdaudio benchmark.

In this figure, each node represents a memory operation and is labeled with an id

number inside and its estimated working set next to the node. Edges connect various

operations in this graph, and the thickness of the graph indicates different affinities.

Higher affinities are shown with thicker edges. Thus, operations 11 and 18 have a very

high amount of affinity towards one another, while 4 and 7 have a very small amount.

Nodes without any edges are memory operations that had no affinity towards any

other operations during the profile. For this benchmark, there was no destructive

interference, as is common with many kernel loop benchmarks that generally walk

through large data arrays. Therefore, there is no negative affinities for the partitioner

to try and push operation apart, but the partitioner still had to deal with which

operations to merge together and how to balance the working set.
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The end partition in Figure 4.6 shows several interesting results. First, the most

highly connected nodes, 6 to 13 and 11 to 18, are kept together on the same PE.

This allows them to help one another in using the same cache lines. In addition,

the partitioner chose to group many of the other operations with affinity to 11 and

18 together. Next, many of the operations (5, 8, 10, 12, 15 and 19) have no edges,

suggesting they have no interaction with one another. In these cases, the partitioner

chose the group them with operations 6 and 13 to help balance the overall working

set sizes. The large group of operations (4, 9, 11, 14 and 18) that had high affinity

towards one another were grouped together and they had a large working set sum,

thus the partitioner preferred to place the free operations on the other PE. Finally,

note that the partitioner chose to cut the edges around operation 4. This was done

to also help balance the working set, as all the operations left in PE 2 have a large

working set size. Operation 4 was chosen because it had the smallest affinity towards

the other operations and created the best balance of the working set.

4.3.5 Operation Assignment

The final step of our technique is to finish partitioning the rest of the program

code, including all computation operations. In this step, any standard operation

partitioning technique can be used, as long as it can be modified to be cognizant of

preplaced memory operations. For this work, we used the Region-based Hierarchical

Partitioning (RHOP) algorithm [10] to distribute all the operations across the PEs.

RHOP is a operation partitioner capable of efficiently generating high-quality oper-
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ation divisions; however, as with most previous operation partitioning algorithms, it

was designed with the model of a single unified memory.

RHOP itself was designed as a performance-centric multilevel graph partitioner

for multicluster architectures. The novel aspect with the algorithm was its modeling

of the resources and estimates of the schedule length. These were used in order

to estimate the schedule length impact of clustering decisions without requiring the

need to actually schedule the code, which is a complex and time consuming process.

RHOP proceeds by coarsening operations together based on the dependencies between

operations. Edges in the graph are given weights based on either low slack between

the operations (higher weight), or high slack between the operations (lower weight).

A low slack between operations indicates that the edge is more critical, and breaking

the edge across PEs will require increasing the schedule length. Similarly, high slack

edges have more freedom in inserting intercluster communication. The coarsening

process groups together operations in high-weight edge priority. Each stage of the

coarsening process groups an operation only once. A more detailed explanation of

the RHOP algorithm is provided in Chapter 5.

After coarsening, the algorithm begins backtracking across the coarsened states,

uncoarsening operations. At each stage of the uncoarsening, the schedule length

estimates are updated to reflect the current partitioning of the objects. Uncoars-

ened groups of operations are considered for movement across partitions when they

appear favorable in terms of reducing schedule length or resource saturation. Our

process is illustrated in Figure 4.7 for a basic block in the benchmark rawdaudio.

In Figure 4.7(a), the partitioning of the block begins with the memory operations
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Figure 4.7: Operation assignment of the computation operations in rawdaudio given
the memory operation placement from our profile guided technique.

preassigned to their respective PEs from the output of the previous step (as shown in

Figure 4.6). Every other operation is unassigned to a PE, but some operations have

live-in operands from previously partitioned blocks in the code. In Figure 4.7(b), we

show the operation partition after RHOP has completed. The memory operations

are still assigned to their prebound PEs, and the operations around them have been

partitioned taking the data location into consideration. There are two transfers across

the communication network in this figure, one from LD 13 to an add operation, and

one from the add operation to a compare operation.

While RHOP can produce high-quality partitions of the operations, it has the

underlying assumption that data can be accessed from any PE. We extended RHOP

to allow for a prebinding of memory operations to the PE which was determined by

the partition of the program-level data access graph. This was done by modifying the
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resource usage weights of the memory operations to have a very high weight when

placed on an incorrect PE. Furthermore, operations prebound to different PEs are

prevented from coarsening with one another. When RHOP begins estimating costs

of moving computation operations between partitions, it can then take into account

the moves that may be required to transfer the accessed data across PEs.

4.4 Experiments

This section presents the experiments we ran to evaluate our profile-based method

for data access partitioning.

4.4.1 Methodology

Our profile-guided data access partitioning technique was implemented as part of

the Trimaran compiler infrastructure [67], a retargetable compiler for VLIW/EPIC

processors. The machine model used had 2 or 4 PEs and 1 integer, float, memory and

branch unit per PE. Each PE includes a distributed L1 data cache of varying sizes

between 512B and 8kB. We assumed a shared 128kB 4-way associative L2 data cache

and coherency was kept between the L1 caches with a MOESI coherence protocol. The

intercluster communication network between PEs, which is used to transfer register

values, allows for a total of 1 move per cycle with a 1-cycle latency. More details of

our simulated machine are provided in Table 4.1.

We ran our experiments on a wide number of benchmarks with varying amounts

of inherent parallelism in order to gauge the effectiveness of our technique. The
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Parameter Configuration

Number OF PEs 2, 4

Function Units 1 I,F,M,B per PE

PE Comm. B/W 1 total move per cycle

PE Comm. Latency 1, 2, 3 cycles

L1 Cache 2-way associative

L1 Block Size 32 bytes

L1 Cache Sizes 512B, 1kB, 4kB, 8kB per PE

L1 Hit Latency 1 cycle

L1 Bus Latency 2 cycles

L2 Hit Latency 10 cycles

Main Memory Latency 100 cycles

Coherence Protocol MOESI

Table 4.1: Details of our simulated machine configurations

benchmarks with the most parallelism consisted of a set of DSP kernels. These

benchmarks were the ideal case with a significant amount of available parallelism

to extract. We also used the Mediabench [44] benchmarks, which have slightly less

parallelism, but still enough to extract some performance gains. Finally, we ran our

technique on the SPEC CPU 2000 benchmarks, which have the lowest amount of

parallelism available. Our results show a representative set from these benchmark

suites.

For each benchmark, we evaluated the performance of a standard RHOP generated

partition which assumes a shared memory and compared it to our profiled-guided

method which prepartitions the memory accesses. Thus, our base case is a data

cache incognizant method, which places data access operations without knowledge of

the distributed L1 caches. We report the improvement of our technique relative to

the base RHOP case. A comparison with the base RHOP partitioning was used to

determine the amount of improvement that our phased-ordered memory placement
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Figure 4.8: Reduction in stall cycles when using a profile-guided data access parti-
tioning for a 2-PE processor

could have on a standard multicluster operation partitioner. In generating our PE

assignment for memory operations, our data access partitioning technique profiled

each application using a sliding window size of 256 instructions and assumed a 32-

byte line size. Each benchmark was profiled and evaluated on different input sets.

The profile used a smaller input set to generate the memory operation to PE bindings.

4.4.2 Performance Improvement

Figure 4.8 shows the improvement in stall cycles for our profile-guided data access

partitioning technique compared to the partition produced by RHOP with no active

data partitioning. Each bar represents a different cache size per PE. Higher bars

indicate a larger reduction in stall cycles, and bars below zero indicate a increase in
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Figure 4.9: Total performance improvement of our data partitioning technique.

stall cycles. In almost all cases our technique significantly reduced the number of

stall cycles, as much as 90% in gsmdecode and linescreen. This can be attributed to

a better grouping of high affinity memory operations decreasing the coherence traffic

and better localizing data usage in a single PE. Most benchmarks saw increasing

benefits as cache size increased, as a larger cache size allowed for our grouping of

memory operations together to be more effective at keeping cache lines valid. Some,

like rawdaudio, showed drop-offs in improvement at the larger cache sizes. This was

not due to the profile-guided approach performing worse, but attributed to the fact

that almost all of the working set of the benchmark could fit in the larger cache.

In addition, the average stall cycle reductions for intercluster communication la-

tencies of 2 and 3 cycles are shown. For higher latencies, the stall cycle reduction is
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fairly similar. Variance appears because RHOP reassigns the computation causing

slightly different overlaps between computation and stall time.

Some benchmarks, like lyapunov and rawcaudio, actually increased the number of

stall cycles with a 512B cache. For rawcaudio, this occurred because the partition

assignment overcommitted one of the PE caches with too many memory requests,

causing additional conflict misses. This resulted in this benchmark making far more

accesses to the L2 cache than the base case. For the lyapunov kernel, our partitioning

of the memory operations actually produced a memory operation assignment that had

comparable L1 cache miss rates. However, with the small cache size, our partitioner

overcommitted the number of store accesses assigned in PE 2, increasing the number

of misses in one critical section.

While the number of cycles due to stall is improved, total performance is affected

by the sum of both stall and compute cycles. Figure 4.9 shows the results for the

overall performance factoring in compute cycles. Again, higher bars indicate an in-

crease in performance, and bars below zero indicate a performance loss. Overall, most

benchmarks show performance improvement, although it is not quite as pronounced

as the improvements in stall cycle time. Some benchmarks seemed to perform better

with larger cache sizes. This occurred because our method of grouping together high

affinity memory operations could more likely keep their accessed data in the larger

cache. In addition, with increased cache sizes, the cache-unaware base RHOP par-

titioner would more likely have lines sitting in its cache that would need coherence

arbitration to invalidate.

In many of the benchmarks, compute time was a much larger portion of the total
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the execution time than the memory stall time. Since we are not actively addressing

the compute benefits, this decreased the benefit of improving stall cycle time. In the

cases where performance worsened, our phase ordering of the memory assignment of-

ten restricted the parallelism that the computation partitioner could extract. Again,

we show the average total improvement in performance for 2 and 3 cycle intercluster

communication latencies. While the stall cycle reduction remains quite similar, as

shown in Figure 4.8, the total performance improvement decreases with higher move

latencies. This is because the higher latency intercluster communication causes an in-

crease in the computation cycles, thus making the stall cycle improvements a smaller

fraction of the total cycle time. Our profile-guided method can only actively address

stall cycle improvements. However, we still achieve an average performance improve-

ment of 6-7% for each cache size with a 1-cycle communication. In some cases, like

cjpeg and mpeg2decode, the performance improvement is more than 20%.

4.4.3 Reduction in Coherence Traffic

Besides stall cycle reductions, another benefit of our data access partitioning

method is that by actively grouping memory operations that have high affinity to-

wards one another, coherence traffic can be reduced. While this is not a strict indica-

tor of performance, if the coherence traffic became a bottleneck, this reduction could

be beneficial. With a significant increase in network traffic, congestion could cause

additional delays on memory accesses, as coherence requests begin lining up waiting

for arbitration.
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Benchmark Incognizant Profiled % Reduction

lyapunov 82117 0 100.0

fsed 335597 8253 97.5

sobel 841 69 91.8

channel 3196 179 94.4

vitoneloop 16834 1 99.9

linescreen 1416908 3 99.9
Kernels

Benchmark Incognizant Profiled % Reduction

cjpeg 525562 52021 90.1

djpeg 160703 7930 95.0

g721encode 9384112 672792 92.8

g721decode 9353752 737476 92.1

gsmencode 4758854 194416 95.9

gsmdecode 3082861 275893 91.0

mpeg2enc 4138884 1213889 70.7

mpeg2dec 12956935 1916597 85.2

rawcaudio 76 4 94.7

rawdaudio 102580 1 99.9
Mediabench

Table 4.2: The number of snoops required across the coherence network for the pure
RHOP case and the Profile-guided case for high ILP kernels and Media-
bench, as well as the percentage reduction in snoops.

Tables 4.2 and 4.3 presents the reduction in coherence traffic produced by our

profiled-guided method for a 4kB data cache per PE. For each benchmark, the number

of snoops performed by the base RHOP and the profile-guided method is shown along

with the percentage reduction. In almost all cases, our method is able to significantly

reduce the number of snoop requests put on the coherence bus. Most cases are

above an 80% reduction in snoop requests, with the lowest being a 47% reduction in

mpeg2enc.

There was only one benchmark, 177.mesa, in which our technique failed to signif-

icantly reduce the coherence traffic. This application had a small region with a large

number of stores to similar locations. Our technique chose to try and balance out
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Benchmark Incognizant Profiled % Reduction

164.gzip 137074797 9795008 92.9

175.vpr 11192509 1711914 84.7

181.mcf 38087128 11278386 70.4

256.bzip2 150271055 5198114 96.5

300.twolf 49666748 2147275 95.7
SPECint

Benchmark Incognizant Profiled % Reduction

171.swim 4500483 5264423 64.3

172.mgrid 2649332 9795008 94.8

177.mesa 31104748 30271083 2.7

188.ammp 1024210 273371 73.3
SPECfp

Table 4.3: The number of snoops required across the coherence network for the pure
RHOP case and the Profile-guided case for low-ILP SPECcpu benchmarks,
as well as the percentage reduction in snoops.

the memory usage and caused the majority of the coherence traffic. Another bench-

mark to note is rawcaudio, which had a extremely small number of snoops in the

base RHOP case. This indicates that the base RHOP had a fairly good partitioning

of the data objects, as it didn’t require many invalidations. Figure 4.8 shows that

we were not able to significantly improve this benchmark. This table shows that the

base case was already producing a fairly good result; thus, there was little room for

improvement.

4.4.4 Partitioning to Four Processing Elements

To see how our algorithm generalizes to more parallel architectures that are becom-

ing more common today, we ran our method on a machine with 4 PEs. Figures 4.10

and 6.3 presents the percentage reduction in both stall cycles and overall speedup for

two different machines: a 2-PE processor and a 4-PE processor. In each case, each
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Figure 4.10: Comparison of 2-PE and 4-PE machines for stall cycle reductions

PE had a 4kB L1 cache associated with it. In Figure 4.10, the two bars indicate the

percentage reduction in stall cycle time for the 2-PE and 4-PE machines, respectively.

In Figure 6.3, the two bars indicate the overall speedup achieved over a single PE

machine for 2-PEs and 4-PEs. In each case, higher bars indicate better performance.

In general, the results of the 4-PE processor were mixed, but overall they were

fairly in line with the results for 2-PE processors. The stall cycle reductions in Fig-

ure 4.10 indicate that with more PEs, our proactive technique was still able to reduce

a large amount of the memory stalls. In some cases, this reduction was significantly

larger, such as mpeg2enc, in others, it was less such as g721encode. However, on

average, we were able to reduce approximately the same amount of memory stall

cycles.

77



-5

0

5

10

15

20

25

30

ly
a
p
u
n
o
v

fs
e
d

s
o
b
e
l

c
h
a
n
n
e
l

v
it
o
n
e
lo

o
p

li
n
e
s
c
re

e
n

c
jp

e
g

d
jp

e
g

g
7
2
1
e
n
c
o
d
e

g
7
2
1
d
e
c
o
d
e

g
s
m

e
n
c
o
d
e

g
s
m

d
e
c
o
d
e

m
p
e
g
2
e
n
c

m
p
e
g
2
d
e
c

ra
w

c
a
u
d
io

ra
w

d
a
u
d
io

1
6
4
.g

z
ip

1
7
5
.v

p
r

1
8
1
.m

c
f

2
5
6
.b

z
ip

2

3
0
0
.t

w
o
lf

1
7
1
.s

w
im

1
7
2
.m

g
ri
d

1
7
7
.m

e
s
a

1
8
8
.a

m
m

p

A
V
E
R
A
G

E

%
 I

m
p

r
o

v
e
m

e
n

t 
in

 P
e
r
fo

r
m

a
n

c
e

2-PE 4-PE

Kernels Mediabench SPECint2000 SPECfp2000 AVG

Figure 4.11: Comparison of 2-PE and 4-PE machines for overall performance

Figure 4.11 shows that overall performance was also similar to our 2-PE results.

Some benchmarks, such as cjpeg and gsmencode, where dramatically improved; how-

ever, on average, there wasn’t a significant increase in performance even though were

four times the number of resources as the baseline case. Much of the achievable per-

formance benefits depends on whether or not the benchmark has enough parallelism

to support the wider machine. In addition, the larger number of PEs increases the

contention for the communication bus causing more compute cycles to be executed.

This shows us that while fine-grain parallelism is useful and can be exploited for

performance improvement, it has its limits based on the application.
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4.4.5 Compile-Time Effects

Our method for profile-guided memory operation assignment will generally in-

crease compilation time. The runtime of the profiler is affected by three major fac-

tors: the profiling input used, the size of our sliding window, and the total number of

memory operations executed by the program. For our experiments we used a smaller

input to profile all the benchmarks. The sliding window size was kept at 256 in-

structions, so every executed memory instruction would at most look at the last 256

traced memory addresses. Our current system is not optimized for speed and can

be improved significantly. Overall runtimes varied by benchmark; the worst case was

approximately doubling of the total compile time. These cases were generally bench-

marks which had many memory instructions to trace. On average, our technique

increased compile time by 30.8%.

4.5 Related Work

The topic of compiler partitioning for distributed architectures has been studied

significantly in the past, especially in the context of multicluster VLIW processors.

The first cluster assignment algorithm for multicluster processors was the Bottom-

Up Greedy (BUG) algorithm in the Bulldog compiler [16]. BUG greedily assigns

operations to clusters in order to minimize a estimated schedule length. Thus, it

had a very narrow view of the code and often fell into local minima. Özer et al. [56]

developed a partitioning algorithm that unified cluster assignment with scheduling to

produce more efficient code. Many other operation partitioning techniques [1, 6, 37]
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have been proposed, but all make the fundamental assumption of a shared data cache

to reduce the complexity of their algorithms. We view our profile-guided data access

partitioning work as an additional prepass phase which can work in concert with any

of these algorithms to help produce better partitions in the presence of distributed

data caches.

Recently, there has been related work in the area of partitioning data objects across

distributed data memories. Sánchez [59, 60] studied the fully distributed clustered

VLIW architecture, where fetch, execute and memory units were all decentralized.

They focused on modifying the modulo scheduler to be cognizant of memory locations.

Their technique similarly uses a locality metric; however, they focus on cache misses.

In addition, their cache miss equations, which determine the number of misses caused

by memory instructions, work on affine arrays. Our technique is more global in

nature, as it determines both positive and negative affinities throughout the entire

program and can handle arbitrary code. Gibert et al. [26] use small low latency

buffers as localized storage and dynamically fill them in order to improve performance.

Other recent work by Gibert et al. [24, 27] partitions memory at a data object level

into either a fast-access, high-power cache or a slow-access, low-power cache. Thus,

objects that are accessed in critical portions of the code are placed into the fast cache,

while non-critical objects can be partitioned into the slower cache. Their work is not

directly comparable to ours, as they target power reduction rather than performance.

Hunter [36] investigated placing objects into specialized SRAM arrays, and focused on

lowering the memory port requirements and access latencies. Chu et al. [11] studied

the partitioning of objects into scratchpad memories. Their work considers data and
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an object level and partitions entire objects across the memories. This allowed for

simplification of the partitioning problem, as the compiler could ignore the effects

of coherence and sharing of data. However, their technique was unable to consider

working set sizes and were forced to use the larger granularity of an object rather

than individual loads/stores.

In the multiprocessor domain, there has been previous work on software mecha-

nisms to reduce the required invalidation and updates from coherence traffic. Cheong

et al. [9] proposed a method to selectively invalidate potentially stale cache lines, thus

proactively reducing the required invalidations. Chen et al. [8], developed a compiler

method to allow for writes to shared cache lines, which would also reduce the required

coherence traffic. These works focused mainly on individual accesses and reducing

specific coherence request instances, rather than the producing an overall partition of

the program.

Overall, we see our work having several advantages and improvements over previ-

ous memory partitioning techniques. First, rather than using a data object granular-

ity for partitioning memory, we use a much finer-grain memory operation granularity.

Thus, rather than partitioning an entire object to a cache, we can partition individ-

ual load and store operations that may access different portions of the data object

to different caches. Second, we use statistics gathered in a memory access profile to

help guide the partitioner to group and repel operations with one another. Third,

we break the assumption of static scratchpads and take the use of data caches into

consideration. Lastly, our technique works more on reducing coherence traffic of the

entire program, rather than identifying individual memory accesses or blocks.
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4.6 Conclusion

This chapter presented a profile-guided technique for partitioning memory access

operations across distributed data caches to help exploit fine-grain parallelism. The

profile gathers statistics on memory operation affinities and working set estimates,

and uses the information to create a program-level data access graph. This graph is

partitioned to simultaneously cut as few high affinity edges as possible while balancing

the working set per cache. The output is a mapping of memory operations to process-

ing elements. By partitioning the memory accesses across distributed data caches,

our technique helps to map the problem to similar work in multicluster computation

partitioning. The technique can work in conjunction with any standard operation

partitioner, and helps to enhance their ability to extract parallelism by proactively

accounting for the data memory subsystem. By first making decisions globally on

the memory operations, the placement of data became the first-order term in the

definition of a good program partitioning. This technique for automated fine-grain

parallelization can be used as a complementary method to current coarse-grain tech-

niques, and able to increase the performance of applications on multicore processors.

Overall, the profile-guided technique was able to improve the average memory stall

cycle time of a standard operation partitioner by 51% and average speedup by 30%

for a 2-PE processor.
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CHAPTER 5

Region-based Hierarchical Operation Partitioning

for Multicluster Processors

5.1 Introduction

The central challenge with clustered architectures is compilation support. The

compiler must effectively partition operations across the resources available on each

cluster to maximize ILP. However, this goal must be achieved while carefully con-

sidering the implications of inter-cluster communication. Communication of values

between clusters is both slow and bandwidth-limited. Thus, operations must be parti-

tioned to ensure that ILP is not constrained by frequent inter-cluster communication.

A common rule of thumb is that breaking a processor into two identical clusters re-

duces program performance by around 20%. Furthermore, a four cluster processor

loses around 30% performance over the equivalent single cluster processor [18]. Gen-

erally, these numbers get worse when the clusters are not identical. While clustering

makes sense from an architectural perspective, a large amount of performance is left
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on the table with this choice.

This chapter focuses on developing an effective operation partitioning algorithm

for a traditional multicluster design. Traditionally, multicluster processors focus on

the register file bottleneck by using small decentralized register files. Most designs

assume a shared, centralized data memory. For a small number of clusters, using a

shared data memory can be a fair assumption. Thus, we first focus our efforts on

developing an intelligent compiler partitioning algorithm for a multicluster processor

with decentralized register files and a shared memory.

Examining common operation partitioning algorithms in more depth reveals two

recurring problems. First, partitioning algorithms are modeled closely after opera-

tion scheduling. They make local, greedy decisions to optimize the placement of an

operation based on the placement of its neighbors. This strategy makes sense as clus-

tering and scheduling are heavily intertwined. However, locally optimal decisions may

actually be poor decisions when the global picture is considered. The second prob-

lem is that clustering algorithms are notoriously slow due to the detailed modeling

of processor resource constraints. Resource models similar to (or often identical to)

those used during operation scheduling are repeatedly evaluated for each candidate

operation placement. The final code schedule is indeed very sensitive to the parti-

tion chosen, so this seems like the proper strategy. However, detailed modeling of a

particular placement can be counterproductive when it limits the number of choices

that can be considered. Furthermore, as processors have more resources and their

resource usage patterns become more complex, detailed modeling of each placement

choice may become infeasible for production compilers.
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We use an approach opposite to this scheduler-centric methodology. Operation

partitioning is performed at a global scope with the view of all operations in a region

(a group of closely related basic blocks is referred to as a region [31]). We adapt two

powerful techniques that are commonly used in VLSI design: multilevel graph par-

titioning and slack distribution. Multilevel graph partitioning divides the dataflow

graph into multiple parts in a hierarchical manner. Operations are iteratively par-

titioned from a coarse level of groups of related operations down to a fine-grained

level of individual operations. Slack distribution identifies available scheduling slack

within a region and allocates it to specific dataflow edges. In this manner, the cost

of cutting specific dataflow edges to create a partition is determined.

Graph partitioning also requires a processor resource model to determine the qual-

ity of a partition. Again, we take a non-scheduler-centric approach. We employ a

simple estimation strategy that is similar to the RESMII (resource minimum initi-

ation interval) calculation used with modulo scheduling [58]. However, we focus on

scalar scheduling as opposed to software pipelining. Resource usage estimates are

computed prior to partitioning and used to estimate the resource load for each can-

didate partition. While this method suffers inaccuracies, it is both more efficient

and accurate enough to provide a suitable guide to the operation partitioning algo-

rithm. Our proposed approach is referred to as region-based hierarchical operation

partitioning, or RHOP.
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Figure 5.1: A heterogeneous two-cluster machine.

5.2 Overview of Clustering

This section introduces the clustered architectural model that is assumed for this

chapter and the basic process of partitioning a dataflow graph (DFG) for this archi-

tecture. Next, we present a high-level classification of the common approaches for

clustering and break them down by four categories: phase ordering, scope, desirability

metric, and operation grouping. Last, we conclude with a discussion of the limitations

of scheduler-centric approaches to motivate the work in this paper.

5.2.1 Basics

The architectural model assumed in this chapter is as in Figure 5.1. Each cluster

consists of a tightly connected set of register files (RFs) and function units (FUs).

FUs in a cluster may only address those registers within the same cluster. Transfers

of values between clusters are accomplished through explicit move operations that go

through an interconnection network. The interconnection network is assumed to have

a uniform connection to all clusters with a fixed bandwidth. Though this assumption
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Figure 5.2: Example dataflow graph with (a) locally greedy and (b) region-aware clus-
ter assignment.

is not necessary, it simplifies the compiler algorithms. Clusters in a machine may

be homogeneous, each containing the same types and numbers of RFs and FUs, or

heterogeneous, each having a unique mix of resources. The machine in Figure 5.1 is

heterogeneous and has three FUs and one RF in cluster 1, and two FUs and a RF in

cluster 2.

In the presence of a decentralized architecture, the goal for the compiler is to take

a graph of the operations and partition them up amongst the resources. Figure 5.2

shows two possible clusterings of an example DFG. For simplicity, the machine that

will be used for the example is a homogeneous two-cluster machine, with one RF and

one FU per cluster. Each FU is capable of executing any operation. The latencies of

all operations are assumed to be one cycle. Furthermore, the interconnection network

is capable of sustaining one inter-cluster move per cycle.

For the example in Figure 5.2, the clustering algorithm must partition the op-

erations into two sets with each set executing on a particular cluster. Any time an
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edge is broken, an inter-cluster move is required to copy the data from the producing

cluster to the consuming cluster. The critical path through this example graph is 5

cycles going through operations 1, 2, 6, 10, and 12. Cutting edges along the critical

path increases the critical path length; thus, most clustering algorithms avoid such

cuts.

5.2.2 Approaches to Clustering

A large number of algorithms to perform clustering have been proposed by the

research community. To better understand the operation and relative strengths of

these algorithms, it is useful to understand the major characteristics that differentiate

them. We have identified four primary characteristics of clustering algorithms: phase

ordering, scope, desirability metric, and grouping.

Phase Ordering. In the compilation process, cluster assignment can take place

as a separate phase before scheduling, where the scheduler is constrained by the de-

cisions made in the clustering phase. This isolates the clustering problem from the

scheduling problem. Alternatively, clustering can be integrated with the schedul-

ing phase; in this case, more information is available for making decisions, but the

complexity of the problem increases, limiting the number of options that can be con-

sidered during the process. As a compromise, clustering and scheduling can be done

iteratively, such that decisions made by one phase are used to guide the decisions

made in the other, until a suitable result is obtained.
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Scope. The scope of the clustering algorithm can be local, region-based, or global.

A local algorithm generally examines one operation at a time and decides which

cluster it should be assigned to based on its immediate neighbors. As with scheduling,

operation priorities may guide the order in which operations are considered. A region-

based algorithm, on the other hand, considers all of the operations within a region

such as a basic block or set of basic blocks at once. Finally, a global algorithm

uses knowledge of the entire program or function to make intelligent decisions. The

complexity of the algorithm increases with the scope, but better decisions can be

made with higher level knowledge.

Desirability Metric. The cluster assignment algorithm can use one of several

ways to measure the quality of a candidate partition. It can perform an actual

scheduling of the code, which gives the most accurate measure since the performance

is then known. It can generate a pseudo-schedule using an approximate machine

model to provide a reasonable estimate of the actual schedule. It can use quantitative

resource usage estimates to project the load a set of operations places on a cluster.

Finally, it can use a simple count of how many operations are on each cluster and

how many moves are required to get an idea of the desirability of a partition.

Grouping. Another property of clustering algorithms is whether they employ a

hierarchical or flat partitioning scheme. In the case of region-based or global cluster-

ing, a hierarchical approach means that decisions are made on multiple levels, with

information available in a finer-grained view of the operation graph being used to

refine previous decisions made from a coarser view of the graph.
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5.2.3 Pitfalls of Scheduler-Centric Approaches

Scheduler-centric approaches to clustering employ a natural extension of the sched-

uling process to perform cluster assignment. This does not mean clustering is done

during scheduling. In fact, any phase ordering is possible. The two distinguish-

ing characteristics of scheduler-centric approaches are local scope and flat grouping.

These are the primary characteristics of operation scheduling where operations are

greedily placed into the schedule one by one considering the placement of those oper-

ations with higher priority that have already been scheduled. The desirability metric

for scheduler-centric approaches is most often through the use of an actual schedule.

But again, this is not a requirement.

The most well known scheduler-centric clustering algorithm is Bottom-Up Greedy,

or BUG [16]. BUG occurs before scheduling; while other algorithms [47, 54, 56], are

similarly scheduler-centric though they take place during or interleaved with schedul-

ing. BUG proceeds by recursing depth-first along the DFG, critical paths first. It

assigns each operation to a cluster based on estimates of when the operation and

its predecessors can complete earliest. These estimates are based on resource usage

information from the scheduler, and BUG queries this information twice whenever it

considers each operation on each cluster—once before and once after its predecessors

have been bound.

This works well for simple graphs, but when the graph becomes more complex

such that locally good decisions may have negative effects on future decisions, the

algorithm can be fooled into making a bad partition.
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Figure 5.2(a) shows a likely operation partitioning generated by BUG or other

similar local, scheduler-centric algorithms. The critical path (1, 2, 6, 10, 12) is con-

sidered first, and nodes 1, 2, and 6 are placed together on one cluster. Nodes 3 and

7 are placed on the other cluster, since this allows node 10 to begin and complete

executing soonest. However, the right subtree is now constrained by the decisions

that were locally optimal for the left subtree. As a result, in our example machine

which executes one operation per cycle per cluster, this code would take 8 cycles to

complete.

The optimal partitioning requires only 7 cycles and is shown in Figure 5.2(b).

Operations 4, 5, 8, 9, and 11 should be placed on one cluster, with the remaining

operations on the other cluster, as the shading in the figure indicates. With this

partition, one inter-cluster move is needed along the edge from 11 to 12. This parti-

tioning minimizes the resultant schedule length by balancing the workload effectively

and introducing only one move operation, which is not on the critical path.

Another limitation of BUG is that it keeps track of which resources are busy as

it proceeds, and at every step of the algorithm it performs checks to see if a cluster

is free at a certain time to perform a certain operation. Therefore, the number of

queries to the resource information grows with the number of clusters in the machine

and with the number of nodes in the graph.

In order to avoid the potential pitfalls of local decision-making and the compiler

overhead of using detailed scheduling information for resources, our approach is to

view the graph more globally and to use estimates for determining resource load

balance.
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5.3 Region-based Hierarchical Operation

Partitioning

Our region-based hierarchical operation partitioning algorithm consists of two dis-

tinct phases: weight calculation and partitioning. Each operation is represented by a

node in a DFG, and node weights are created to represent the resource utilization of

the operation. The edges connecting the nodes are given edge weights, which repre-

sent the cost on the schedule length for adding an inter-cluster move between those

operations. Both node and edge weights are used to guide the partitioning phase.

The node weights are used to balance the workload among the clusters, while the

edge weights are used to minimize the communication required between them. The

partitioning phase consists of a coarsening process, where highly related operations

are combined together and placed into clusters, and a refinement process, which im-

proves the initial partitioning. The refinement process uses the calculated weights

to consider moving operations between clusters, then iteratively improves the parti-

tion by weighing the benefits of improving load balance and reducing inter-cluster

communication.

The rest of this section includes a more detailed explanation of the clustering

process. The example code and DFG shown in Figure 5.3 will be used throughout

this section to demonstrate the process.
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5.3.1 Problem Definition

This section provides a formal definition of the graphs and objectives being ad-

dressed within this partitioner. For simplification purposes, clusters are assumed to

be identical with full interconnect between them.

1. Data Flow Graph:

A graph G = (V, E, l, w) such that V is the set of operations in a scheduling

region, and E are the edges, indicating data exchanged between the operations

in a producer/consumer relationship. Vertices, v ∈ V, have a latency of l(v)

and edges, e ∈ E ,have a weight of w(e).

2. Cluster:

A cluster C = (R, F1...Fn) such that R is a single register file connected to n

functional units F1..Fn.

3. Machine:

A machine M = {C1...Ck}, such that Cn is one of k disjoint clusters in the

processor.

4. Partition Assignment:

A function of the form P : V → {C1...Ck}, wherein all the vertices of V are

mapped to a disjoint cluster Cn. Thus, this function maps each of the vertices

to one of k disjoint clusters.

93



5. Cut:

An edge, e = (u, v) is a cut edge ecut such that, with respect to the partition

assignment P, P (u) 6= P (v). Cut edges have a weight w(e) > 0, all other edges

have w(e) = 0.

6. Intercluster Move:

A new operation, vicm, which is inserted into G between the source and desti-

nation operations of e. Each vicm has a given latency l(vicm).

During partition assignment, a valid schedule for a given partitioning must be de-

termined. At that point, a cycle in the schedule is assigned for each operation. Thus,

for a given partition P, an instruction schedule is represented by two interrelated

mappings:

7. Instruction Schedule:

A mapping of the form S : V → {Rk,Fn}, such that Rk and Fn are part of a

single cluster Ck.

8. Scheduled Cycle:

A mapping of the form C : V → N, such that each vertex in G is assigned a

cycle number in which to execute.

For each of the operations v ∈ V , the dependences between the operations must

hold for their scheduled cycle C(v).
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9. Schedule Constraint:

Given an operation v ∈ V of the graph G, with the incoming edges:

e1 = (u1, v), ..., en = (un, v), then

C(v) ≥ maxn
i=1(C(ui) + w(ei)).

10. Schedule Length:

The schedule length, L(S, G) is the maximum scheduled cycle of any given

vertex in the graph defined as:

L(S, G) = maxv∈V (C(v) + l(v))

11. RHOP Partitioning Problem: Given a DFG G = (V,E), find a partition

assignment P : V → {C1...Ck} that maps the vertices of G onto one of the k

disjoint clusters such as the schedule length L(S,G) is minimized.

5.3.2 Weight Calculation Phase

Node Weights. The node weights in our graph enable the algorithm to calculate

an estimate of how many cycles it will take to execute a set of operations on a

cluster, ignoring dependencies, when it is determining the quality of a partition under

consideration. Thus, the weights reflect the quantity of resources an operation uses

in the machine.

Resources can be characterized as being used by an individual operation, such as

FUs, or shared between operations, such as buses or RF ports. In general, resource

usage in a machine forms a spectrum between these two extremes. We use the two
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endpoints to compute an individual node weight and a shared node weight for each

operation. The worst case of these provides an approximation of the operation’s

resource usage.

Individual node weight, or op wgtc, is calculated per node for each cluster c, and

is a measure of the resources used by this particular node. Note that, in the case of

heterogeneous clusters, the weight of a node is dependent on which cluster it is being

considered on. For example, an ADD operation on a cluster with one adder carries

more weight than an ADD operation on a cluster with two adders, because in the

second case it only uses up half of the available resources.

To determine the weight of a node on a cluster, the number of times that the

resources available on that cluster will support the execution of that operation in a

single cycle is counted. The weight is the inverse of this number:

op wgtc =
1

#ops supported on c in 1 cycle

Since the example machine executes one operation per cycle, the individual weight

of all of the nodes in the graph is 1.0 for both clusters.

To account for shared resources, a shared node weight value is calculated per clus-

ter for the region being clustered. This shared node weight on a cluster, shared wgtc,

is determined by placing all of the operations in a region on cluster c, and dividing

the resulting resource-limited minimum schedule length by the number of operations.

The minimum schedule length is similar to RESMII used in modulo scheduling. Since

this is done only to determine resource availability and ignores data dependencies, no
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actual scheduling is done and the calculation is fast.

shared wgtc =
resource limited sched length on c

#ops

In the example, placing the 14 operations on either cluster reveals that a minimum

of 14 cycles is required. Thus the shared weight is 1.0 on each cluster. Due to the

simplicity of the machine, these numbers are somewhat trivial. Given a real machine

with more and varied resources available, as was used in our experiments, the node

weights become more interesting.

Edge Weights. The weight of an edge is a measure of its criticalness. If an

edge is critical, then placing the nodes on either end of the edge on different clusters

and inserting the required move will impact the schedule length. Therefore, edges on

the critical path have a higher weight than other edges, and the graph partitioning

algorithm attempts to minimize the sum of the weights of the edges that are cut by

the partition.

Once critical edges are assigned a high weight, the remaining edges can be assigned

a low weight. However, this can be dangerous as there may be a non-critical path

that, once a few moves are inserted, becomes critical. Therefore, a more intelligent

system for assigning edge weights to non-critical edges is beneficial.

The concept of slack is a measure of how critical an edge is. An edge on a path

where nodes can be delayed without affecting the overall minimum schedule length

has more slack, while a critical edge has no slack. We use a definition of slack similar

to that of global slack in [21], though our measurement is per-edge rather than per-
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1:  ADD  r1  <- r2, 4      (0,0)

2:  SUB  r3  <- r4, 2        (0,0)

3:  SHR  r5  <- r1, r3       (1,1)

4:  ADD  r6  <- r7, 8        (0,1)

5:  ADD  r8  <- r9, r10      (0,1)

6:  SUB  r11 <- r12, 2       (0,1)

7:  SUB  r13 <- r14, r15     (0,1)

8:  ADD  r16 <- r5, 8        (2,2)

9:  MAC  r17 <- r6, r8, r11  (1,2)

10: SHL  r18 <- r19, r20     (0,2)

11: SHR  r21 <- r13, 2       (1,2)

12: SUB  r22 <- r16, r17     (3,3)

13: SUB  r23 <- r18, r21     (2,3)

14: ADD  r24 <- r22, r23     (4,4)
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Figure 5.3: The example code and corresponding DFG with slack distribution defining the edge weights.
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node.

The slack of a directed flow edge from src to dest is defined as:

slackedge = lstartdest − latedge − estartsrc

Here, estart refers to the earliest cycle an operation can begin executing (i.e. its

inputs are available), and lstart refers to the latest cycle it can begin executing

without delaying the exit operation(s) of the region. The latency of the edge, latedge,

is defined to be the latency of the src operation.

Thus, in the example DFG of Figure 5.3(a) with estart and lstart as shown next

to the assembly code, the edges on the critical path 1–3–8–12–14 have zero slack; the

edge from node 10 to 13 has a slack of 3 − 1 − 0 = 2; and the remaining edges have

a slack of 1.

A method of first-come first-serve slack distribution is used to account for paths

that have some slack in them by taking up slack (by increasing latency) starting

from edges close to the critical path. This increased latency may lower the lstart of

operations higher on the path, thereby decreasing the slack on their incoming edges.

The process continues for the next edge on the path until all of the slack has been

allocated. The edge weights are assigned depending on whether or not slack was
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allocated to the edge, based on the following numbers:

edge wgt =































10 if critical

8 if no slack after distribution

1 if slack allocated

These numbers were chosen because cutting a critical edge will increase the sched-

ule time so it is weighted high; cutting an edge that has slack allocated to it is es-

sentially free, so it is weighted low. Cutting a non-critical edge that has no slack

remaining after distribution is not guaranteed to increase the schedule, but it is likely

especially if the “free” edges are cut; therefore, it is given a high weight but not as

high as that of a critical edge.

Using this slack distribution algorithm, edges closer to the critical path are more

likely to be cut. This accomplishes the goal of offloading as much work as possible

from the critical path. It also discourages cutting a single non-critical path too many

times such that it becomes critical.

As shown in Figure 5.3(b), the edges which initially had zero slack (indicating that

they are critical) are assigned a weight of 10. Now, the non-critical edge from node

13 to 14 can have a unit of slack allocated to it, giving it a weight of 1. This lowers

the lstart of node 13 by one cycle, with the result that the slacks on the edges coming

into node 13 are decreased. Similarly, the edge from node 9 to 12 receives a weight of

1, and the slacks on the edges coming into node 9 are decreased. Figure 5.3(c) shows

the final edge weights for this DFG, with the edges that had zero slack remaining
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after step 5.3(b) receiving a weight of 8, and the edge from node 10 to 13 receiving a

weight of 1.

5.3.3 Partitioning Phase

The partitioning phase of RHOP employs a multilevel graph partitioning algo-

rithm to cluster the DFG of a region into distinct groups. Multilevel graph partition-

ing, known for its efficiency and good results, is available in many software packages

such as Chaco [32] and Metis [38].

A multilevel algorithm coarsens highly related nodes together and places them into

partitions. The nodes within the graph are continually coarsened by grouping pairs

of nodes together. At each level of coarsening, a snapshot of the currently coarsened

nodes is taken. When the number of coarse nodes reaches the number of desired

partitions, coarsening stops. The coarse nodes are then assigned to different clusters,

and the uncoarsening process begins. During uncoarsening, the algorithm backtracks

across the earlier snapshots of coarse nodes, considering moving operations at each

stage. A refinement algorithm is used to decide the benefits of moving a node from

one cluster to another in order to improve the partition.

5.3.3.1 Coarsening

Coarsening takes a DFG representing the region to be clustered and produces an

initial partition for the graph. Producing a good initial partition has been shown to

have a large impact on how well the algorithm produces results [32]. The coarsening

algorithm uses edge weights determined earlier during the weight calculation phase to
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Figure 5.4: The coarsening process to group together highly related operations and
create the initial cluster assignment.

intelligently group operations together. Operations separated by a high weight edge

are thus first targeted for coarsening.

Each stage of the coarsening process groups together operations into pairs based

on the weights of their edges. All operations are sorted based on the highest weight

on any of its edges and considered for coarsening in that order. Operations on the

critical path will then most likely be paired together. In order to try and coarsen

as many nodes as possible at each stage, operations are coarsened from the outside

of the DFG toward the center; thus, operations with a single neighbor have higher

priority for coarsening. Ties in preferences for coarsening are broken arbitrarily.

Figure 5.4 shows how coarsening progresses through the running example. At the

first stage, the first priority is to coarsen together critical edge paths, then the lower
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weight edges are considered. Each stage of the process only pairs up a single operation

once, and every operation that has an available neighbor to coarsen with will be paired

up. Operations that cannot be paired up, either because they have no neighbors or

all of their neighbors have already coarsened with other operations, will be left as is

for the current coarsening stage. For example, in the first coarsening stage of Figure

5.4, operation 8 no longer has any uncoarsened neighbors, so is not coarsened for this

particular stage. When no more operations in a stage can be coarsened, the entire

coarsening process is repeated with the resulting coarse nodes.

The coarsening phase ends when the number of coarse nodes is equal to the number

of desired clusters for the machine. The coarse nodes are then divided up between

the clusters to form the initial partition. For the running example, the final partition

ends with operations 1, 2, 3, 4, 5, 6, 8, 9, 12 and 14 on cluster 1; with the rest on

cluster 2.

5.3.3.2 Refinement

The refinement process traverses back through the coarsening stages, making im-

provements to the initial partition. At each uncoarsening stage, the coarsened nodes

available at that point are considered for movement to another cluster. In order to

properly improve the partition of the operations in the graph, the algorithm must

have metrics for deciding which cluster to move from, the desirability of the current

partition, and the benefits of an individual move. The refinement process uses the

following to judge each of these:
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• Cluster Weight: The node weights for each operation are used to generate an

estimate for the load per cluster; the cluster with the highest weight is denoted

the imbalanced cluster.

• System Load: Similar to the cluster weight, the system load uses the node

weights of all the operations, but estimates the load across all clusters, gener-

ating a metric for the current cluster assignment desirability.

• Gain: Once the imbalanced cluster has been targeted, the gain of moving

each operation to the other clusters is calculated using the change in system

load and the change in edge cuts.

Since the process backtracks through the coarsening stages, highly related oper-

ations are grouped together at each stage, and the algorithm can then account for

a group of operations preferring to move together. This helps to alleviate situations

where moving one operation to another cluster is not beneficial, but moving a group

of related operations together will show improvements.

The refinement algorithm is a slightly modified Kernighan-Lin partitioner [39],

which is known to be a good algorithm for partitioning graphs. In addition, the tech-

nique incorporates some of the partitioning improvements implemented by Fidducia-

Mattheyses [20]. Traditionally, Kernighan-Lin tries to match pairs of operations from

different partitions to swap. Each swap incurs some cost upon the system, and swaps

are continually made until the overall cost gain is negative. This allows individual

negative moves, which may in fact allow future positive moves to occur. By allowing

individual negative moves, the algorithm avoids falling into local minima.
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Figure 5.5: The initial partition after coarsening and the cluster weights.

A modified version of Kernighan-Lin is used which considers node and edge weights

to determine the gain of moving an operation to another cluster. Unlike Kernighan-

Lin, which weighs the benefits of swapping nodes between partitions, RHOP considers

explicitly moving each operation within the imbalanced cluster, rather than swapping.

Like Kernighan-Lin, RHOP allow moves with negative gain as long as the overall gain

for the current refinement step is positive.

Cluster weight. To determine the cluster which is most imbalanced, cluster

weights, the metric for the load per cluster, is calculated. In order to calculate

the weight of a particular cluster, a weight for each execution cycle of the region

is computed. To estimate the weight of each operation at each cycle, we use the

scheduling range, which is the estart of the operation to its lstart. The operation

must be placed within this range in order to achieve minimum schedule length.

The two important factors in regards to the load of operations on a cluster are:

the individual resource constraints for the operations at each cycle, and the total

node weight which is the constraint on the shared resources of a given cluster. The

individual resource constraint is the load put on any one specific resource. The shared

105



resource weight is the load put on all the resources within the cluster as a whole. Since

these individual resource and shared resource weights are competing with one another,

the overall cluster weight is the max between them.

To compute the individual resource constraints, each operation is placed in a

single op group, which groups similar operations by their resource usage. For each

operation in an op group, its total impact to a particular cycle is the node weight for

the operation, calculated earlier, divided by the slack+1 of the operation. This value,

the individual weight, Iwgtc,τ , for cluster c at cycle τ gives a general approximation

of the impact of those operations which use a similar resource, currently placed in

that cycle on the cluster load.

The total node weight, Twgtc,τ , is then calculated as the total number of oper-

ations currently placed within cluster c at cycle τ divided by the average slack for

all the operations. This is then multiplied with the shared resource weight from the

weight calculation phase to give an approximation of the constraints on the shared

resources. This gives an estimate as to how well the operations share the resources

at a cycle. The total node weight is effective in situations where there is a lot of

parallelism and the assumption of operations finishing within the scheduling range

breaks down. Thus, the desired partition focuses more on spreading the work out

evenly among the clusters.

The cycle weight Cwgtc,τ in cluster c at cycle τ is therefore determined by:

Iwgtc,τ = max
o∈opgroups

∑

op∈o at τ

op wgtc

opslack + 1
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Twgtc,τ =
#ops in c at τ

slackave + 1
∗ shared wgtc

Cwgtc,τ = max(Iwgtc,τ , Twgtc,τ) (5.1)

For example, at the end of the coarsening process, the graph reaches a partition

as shown in Figure 5.5 with its corresponding cycle-by-cycle representation of all

operation scheduling ranges (estart to lstart). For the simplicity of the example, we

will not consider the explicitly consider total node weight, as it has no effect in the

result. The Cwgtc,τ of each cluster is shown in the figure. Cwgt1,1, the cycle weight

of cluster 1 at cycle 0 is calculated as follows: ops 1 and 2 each have a node weight

of 1 and slack+1 of 1. Ops 4, 5, and 6 each have node weight of 1 and a slack+1 of

2. Therefore, ops 1 and 2 each contribute 1 to the cycle weight while ops 4, 5, and 6

each contribute 0.5, which forms a cycle weight, Cwgt1,1, of 3.5.

The weight of a cluster, cluster wgtc, is simply the sum of all cycle weights from

0 until the max estart, minus one. One cycle is subtracted from each cycle weight to

evaluate how overloaded each cycle is. Since every cycle can do one cycle’s worth of

work, any amount greater than one means the cycle has too much work assigned to

it. Therefore, our cluster weight equation is:

cluster wgtc = (
max estart

∑

t=0

Cwgtc,t − 1) (5.2)

System Load. While equation 5.2 gives an estimate to the weight of any one

cluster, it doesn’t give a general estimate for the overall desirability of the current

chosen clustering. This is defined by the system load, SL, which gives a cycle by
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cycle account for the clustering. At any given cycle, whenever one cluster’s weight

dominates that of the other cluster, the smaller load is subsumed by the larger.

Therefore equation 5.1, which calculated the load every cycle in a cluster, is maxed it

across all clusters and summed for the scheduling range. The system load then results

in the maximum any cluster is overloaded over all cycles in the scheduling range.

Since inter-cluster moves have a limited bandwidth, the system load is maxed

with consideration of the inter-cluster moves required for this cluster. The inter-

cluster move bandwidth, icm bw, is used to determine the overhead, icmo, of making

the inter-cluster moves required in the current partition. This inter-cluster move

overhead is mostly used as a safeguard to prevent clusters from forming that contain

far too many inter-cluster moves. In general, the partitioner tries to minimize edge

cuts, so this simple estimate of total inter-cluster moves by the cluster is all that is

necessary. The system load is therefore determined by:

icmo =
#icm

icm bw
− (max estart + 1)

SL = max((
max estart

∑

τ=0

max
i∈cluster

Cwgti,τ − 1), icmo) (5.3)

Gain. At each uncoarsening stage, our algorithm calculates the weight of both

clusters using equation 5.2. The cluster with the higher weight, which we refer to

as the imbalanced cluster, is chosen as the one to begin moving operations from.

A metric is then needed for determining the benefits of moving an operation to a

different cluster. Each time a node is moved to another cluster, there is a shift in
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both the load balance, as a different set of operations are now on each cluster, and

also the cut edges, as there will now be different edges between clusters requiring

inter-cluster moves.

Thus, the load gain, Lgain, is defined as the difference in the system load before

and after the proposed move is made. The edge gain, Egain, is the sum of the edge

weights of the edges merged minus the sum of the edge weights of the edges cut. The

algorithm counts an increase of one on the load gain as equal importance to cutting a

critical edge, as it will mean the cycle is so overloaded with work that schedule length

must be increased by one. Therefore, the difference in system load is multiplied by

the cost of a critical edge, which is currently specified as 10. The overall gain for a

particular move, Mgain, is then determined by:

Egain =
∑

i∈merged edges

edge wgti −
∑

j∈cut edges

edge wgtj

Lgain = SL(before) − SL(after)

Mgain = Egain + (Lgain ∗ CRITICAL EDGE COST )

Figure 5.6 shows the refinement process and gain calculations on the running

example. In 5.6(a), the proposed move is to change the coarsened node containing

operations 4, 5, 6, and 9 from cluster 1 to cluster 2. This decreases the system load

from 5.0 to 4.5, a Lgain of 0.5. By moving this operation over, no edges are merged,

and a weight 1 edge is cut (between operations 9 and 12). Therefore the Mgain for

this operation is −1+5 = 4. No other moves in this uncoarsening step are beneficial,
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Figure 5.6: The refinement process traveling back through coarsened states. (a) The beneficial move of the coarsened node con-
taining operations 4, 5, 6 and 9 to cluster 2. (b) A situation where no positive moves exist and the move is not made.
(c) Moving the coarsened node containing 7 and 11 to cluster 1 is now beneficial.
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so the graph is uncoarsened again.

The next uncoarsened state is shown in Figure 5.6(b), where operation 6 has been

uncoarsened from 4, 5, and 9, all of which are now in cluster 2 after step 5.6(a). Of

interest is that even though moving operation 6 from cluster 1 to cluster 2 provides

a positive Lgain by dropping the system load from 4.5 to 4.17, This is not enough to

counteract the cost of cutting the weight 8 edge from operation 6 to 9, therefore this

move is not made. Since no move in this coarsening state is beneficial, uncoarsening

continues.

Next the graph reaches the uncoarsening state in Figure 5.6(c). At this stage

of uncoarsening, both the coarsened nodes containing 4 and 9 as well as 7 and 11

decrease the system load from 4.5 to 3.5 if moved to cluster 1, as they both have

the same node weights and affect the same cycles. The coarse node with 7 and 11 is

chosen for moving, though, because it only cuts one weight 8 edge and thus remains

a positive move, while the coarse node 4 and 9 cuts two weight 8 edges and merges

one weight 1 edge, making it a negative Mgain.

Each uncoarsening stage finishes when it can make no more moves and the same

imbalanced cluster is chosen twice in a row. Then, it moves on to the the next

uncoarsened stage and the refinement process is repeated. When the uncoarsening

process completes its refinement of the original, totally uncoarsened snapshot of the

region, one final pass through each of the clusters is run, to ensure that no positive

moves out of a cluster were ignored because another cluster was extremely out of

balance. In this final phase, each cluster allows only positive moves.
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When this final phase completes, the resulting partitions correspond to the de-

sired clusters. The node weights and edge weights ensure that there exists a good

load balance between the clusters as well as a minimal cut set for inter-cluster com-

munication. For this example, the final uncoarsening step yields no change from the

partition after the move in Figure 5.6(c). Thus, the final partition is operations 1, 2,

3, 7, 8, 11, 12 and 14 on cluster 1, with the remaining operations on cluster 2. Even

though there are three cuts in this partition, none are critical and this results in the

optimal schedule length of 8 cycles.

5.4 Experimental Evaluation

We implemented the RHOP algorithm using the Trimaran tool set [67], a retar-

getable compiler for VLIW processors.

5.4.1 Methodology

To gauge the performance of our algorithm, we compared our results to the BUG

algorithm. We evaluated the performance of both BUG and RHOP on several DSP

kernels and the SPECint2000 benchmark suite. DSP kernels were investigated be-

cause of their characteristically high ILP that make them ideal candidates for wide-

issue processors. As a result, they provide a true measure of the clustering algorithm’s

ability to exploit high levels of ILP. The SPECint2000 benchmarks1 were also used

because of their generally low and irregular ILP. These benchmarks provide the chal-

1176.gcc, 186.crafty, and 252.eon were not run due to limitations of the current Trimaran compiler
system.
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Name # Clusters Configuration
2-1111 2 Homogeneous 1I, 1F, 1M, 1B per cluster
2-2111 2 Homogeneous 2I, 1F, 1M, 1B per cluster
4-1111 4 Homogeneous 1I, 1F, 1M, 1B per cluster
4-2111 4 Homogeneous 2I, 1F, 1M, 1B per cluster
4-H 4 Heterogeneous IF, IM, IB, and IMF clusters

Table 5.1: Our clustered machine configurations.

lenge of exploiting ILP when it is available, but not over-partitioning when ILP is

limited.

Five different machine configurations were used to compare our performance with

BUG. The details of these machines are shown in Table 5.1. Common to all these ma-

chines are 64 registers per cluster, operation latencies similar to those of the Itanium,

and perfect caches. Four of the machine configurations have homogeneous clusters

(i.e. the resources on each cluster are identical), and the last one is a heterogeneous

machine. Each has varying numbers of integer (I), float (F), memory (M) and branch

(B) units. The different machine configurations are summarized below:

For each benchmark, the dynamic cycle count was used as the evaluation metric

for how well the clustering algorithm was able to partition the code into clusters.

After clustering, prepass scheduling, register allocation and postpass scheduling are

performed to generate the final assembly code.

5.4.2 Performance Improvement

Table 5.2 shows our improvement over BUG for 13 kernels and the SPECint2000

benchmarks for the five different machine models. For each kernel, we present the
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Kernel 2-1111 2-2111 4-1111 4-2111 4-H
adpcm -2.09 3.25 12.03 8.95 11.98
atmcell -0.32 3.34 34.86 32.58 14.04
channel -3.35 -0.73 11.20 20.44 6.50
dct -0.64 10.53 31.24 28.86 17.31
fir 4.75 15.74 30.90 12.34 11.62
fsed 4.39 6.52 22.87 27.90 10.65
halftone 1.17 4.91 27.99 34.18 -2.12
heat -6.24 21.50 31.23 33.32 15.26
huffman -4.84 -3.87 24.65 24.79 19.76
LU -2.65 -1.23 -1.42 12.44 4.51
lyapunov 1.83 9.43 13.26 6.63 13.41
rls -1.90 4.50 6.09 30.51 11.42
sobel -2.04 1.02 20.67 20.92 22.20
Average -0.92 5.75 20.43 22.60 12.04

SPEC 2-1111 2-2111 4-1111 4-2111 4-H
164.gzip -2.18 5.21 8.67 6.86 4.12
175.vpr -5.98 2.42 3.26 6.15 3.41
181.mcf -1.72 -1.49 3.99 -5.99 -3.44
197.parser -3.45 -2.76 -1.22 -1.40 -1.62
253.perl -3.16 0.00 6.25 5.13 1.84
254.gap -5.79 0.34 -0.76 0.47 -1.08
255.vortex -2.61 2.08 -5.29 7.59 1.84
256.bzip2 -1.02 -0.29 25.45 21.66 9.66
300.twolf -2.16 1.13 8.24 3.41 4.04
Average -3.11 0.73 5.40 4.87 2.28

Table 5.2: Percentage improvement by RHOP on cycle time over the BUG algorithm
for several kernels and the SPECint2000 benchmarks on five different ma-
chine models.

percentage improvement in dynamic total cycles of RHOP over BUG. Positive re-

sults mean RHOP performed better than BUG, while negative results mean BUG

performed better.

Overall, our results for a two cluster machine with one resource of each type are

rather poor, with an average increase in dynamic cycles of 0.92% on the kernels.

As the machine configuration becomes more complex, by adding more resources and

additional clusters, results dramatically improve in the quality of our operation clus-

tering. On the kernels, there was an average of 20% improvement on the 4-1111
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Figure 5.7: Comparison of BUG and RHOP clustering performance degradations on
a 2 cluster (2-1111) machine configuration versus a 1-cluster (1-2222) ma-
chine with the sum of the resources of the clusters.

machine, and a 23% improvement on the 4-2111 machine. The results for the four-

cluster heterogeneous machine fell between the two and four-cluster homogeneous

machines. A similar trend is seen on the SPECint2000 programs in Table 5.2 except

the improvements are more modest. In general, the SPECint2000 benchmarks have

less ILP than the kernels, thus there is less opportunity for distributing work across

clusters.

The data in the table shows that local, greedy methods for clustering can perform

quite well in constrained, resource limited situations. The poor results from the two-

cluster machine occur because of the inaccuracies of our resource model. Estimates,

in general, can be wrong, and at times we observe one cluster gets more operations

than it should. One major factor is that our resource load estimate ignores edges;
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Figure 5.8: Comparison of BUG and RHOP clustering performance degradations on
a 4 cluster (4-1111) machine configuration versus a 1-cluster (1-4444) ma-
chine with the sum of the resources of the clusters.

thus, it also ignores dependencies between instructions, and assumes reordering is

possible where in actuality, it may not be. We then have too many operations being

placed into a cluster and forced to execute serially.

On the other hand, for four-cluster machines, the most important factor is carefully

spreading out the workload among all the different clusters. In such a situation, the

region-level scope used by RHOP becomes much more effective than a local, operation-

centric scope. Thus, we are able to achieve a drastic improvement for four clusters.

Figures 5.7 and 5.8 compare the performance of the 2-1111 and 4-1111 machines

using BUG and RHOP with a single cluster machine containing the sum of the re-

sources of all the clusters, respectively. The single cluster machine provides an upper-

bound of performance. For the two-cluster results, both BUG and RHOP achieve
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Figure 5.9: Comparison of our RHOP technique with a simulated annealing method.

greater than 92% of the upper-bound. Conversely, for a four-cluster machine, BUG

only achieves 68% of the upper-bound. Again this is due to the local, greedy heuris-

tics breaking down for wide machines. RHOP increases performance to 79% of the

upper bound. Clearly, there is still room for improvements to the RHOP algorithm.

5.4.3 Comparison to Simulated Annealing

The previous graphs compared our RHOP technique to a single-cluster machine

with the sum of the resources. This baseline single-cluster machine is an unachievable

upper-bound, since it has all the resources of the clustered version, but does not suffer

from the additional intercluster move latency. To find what a closer upper-bound

for the optimal partitioning assignment, we developed a technique which anneals

the partition assignment and uses the actual scheduler to measure the quality of

the partition. Thus, this partitioner could only work on a few smaller benchmarks
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Figure 5.10: Histogram comparing the performance of RHOP and BUG; each category
is the achieved schedule length of the region with respect to the critical
path length. The numbers on top are the dynamic execution percentage
of the category.

because of its significant compiler runtime. The results for this technique are shown in

Figure 5.9, where we compare the simulated annealing technique and RHOP against

the baseline single-cluster performance for a 2-cluster machine. This graph shows

that our partitioner is doing quite well in these benchmarks, and is approximately

93% of the performance of the simulated annealing technique, on average.

5.4.4 Compile-Time Effects

Since our desirability metrics assume that schedules finish within the critical-path

length (CPL) number of cycles, we performed a study of RHOP performance as a

function of schedule length relative to the CPL. In Figure 5.10, each bar represents

the cumulative ratio of RHOP cycles over BUG cycles for all regions (across all

benchmarks) in the range. The bars are annotated on top with the percentage of
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Kernel Sched BUG RHOP
adpcm 4550 13777 (3.0) 6676 (1.5)
atmcell 31560 109880 (3.5) 33244 (1.1)
channel 12294 32094 (2.6) 14686 (1.2)
dct 16646 47346 (2.8) 17148 (1.0)
fir 9284 26434 (2.8) 10474 (1.1)
fsed 13300 40244 (3.0) 13910 (1.0)
halftone 14109 29519 (2.1) 15475 (1.1)
heat 5159 13113 (2.5) 5667 (1.1)
huffman 22030 54974 (2.5) 25296 (1.1)
LU 1935 4563 (2.4) 3105 (1.6)
lyapunov 16256 43234 (2.7) 17940 (1.1)
rls 25305 84413 (3.3) 26471 (1.0)
sobel 8138 23145 (2.8) 9414 (1.2)
Average (2.8) (1.2)

SPEC Sched BUG RHOP
164.gzip 385173 1303443 (3.4) 455795 (1.2)
175.vpr 1356211 4555987 (3.4) 1528947 (1.1)
181.mcf 220845 700958 (3.2) 245269 (1.1)
197.parser 1238238 4045074 (3.3) 1434704 (1.2)
253.perl 2102449 7066202 (3.4) 2862355 (1.4)
254.gap 2046872 6754402 (3.3) 2813026 (1.4)
255.vortex 2133516 7199868 (3.4) 2635402 (1.2)
256.bzip2 489923 1580643 (3.2) 550493 (1.1)
300.twolf 1405475 4861800 (3.5) 1681433 (1.2)
Average (3.3) (1.2)

Table 5.3: Number of calls to the resource table. For BUG and RHOP, the ratio of
total calls over Scheduling-only calls is given in parentheses.

dynamic cycles that occur within these ranges. For regions very close to the CPL,

our algorithm performs modestly well. These regions are critical-path limited, and

our system load estimates are quite accurate. For regions much higher than the

CPL, where the regions are resource-constrained, our algorithm performs even better.

In such regions, the key to a good partition is properly spreading out work across

the clusters, and the total node weight heuristic in RHOP intelligently balances the

workload. The middle ground, when regions are neither critical-path nor resource

constrained, is where RHOP has the most difficulty. Since neither resources nor CPL
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dominate, our resource estimates lose substantial accuracy and thus bad clustering

decisions can be made.

In addition, the runtime of the two algorithms was evaluated. For a research-

oriented compiler like Trimaran, simply evaluating raw compute time is a rather

inaccurate way to measure the speed of an algorithm. A more realistic measurement

is the number of calls to the resource table, which gives an estimate on how often

the algorithm is checking and rechecking its resource model. This is the heart of the

scheduler, where most of the time is spent. Thus, minimizing entries into this function

is a key metric to improving compiler run-time. The results from this experiment are

presented in Table 5.3. Our algorithm shows significant improvement over BUG,

taking an average of 1.2 times the runtime of the scheduler alone, versus 3.0 times

for BUG. This is a result of the necessity of scheduler-centric algorithms requiring

a detailed model of the current resource constraints and repeatedly reevaluating the

model for each step of the process.
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When (rel. to sched) Scope Desirability Metric Grouping
Algorithm Before During Iterative Local Region Sched Pseudo Est Count Hier Flat
BUG [16] [52]

√ √ √ √

PCC [14]
√ √ √ √ √

UAS [56]
√ √ √ √

ABC [41]
√ √ √ √

Eichenberger [54]
√ √ √ √

Leupers [47]
√ √ √ √

Capitanio [6]
√ √ √ √

URACAM [12]
√ √ √ √

GP(A) [1]
√ √ √ √

GP(B) [2]
√ √ √ √

B-ITER [42]
√ √ √ √

CARS [37]
√ √ √ √

Convergent [46]
√ √ √ √

RHOP
√ √ √ √

Table 5.4: A comparison of several different clustering techniques based on four important characteristics: when the clustering
occurs in relation to scheduling, the scope of the algorithm, the metric used in order to determine the quality of the
partition, and whether operations are considered individually or in groups.
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5.5 Related Work

There has been a large body of research conducted in the area of clustering. In

Table 5.4, we summarize our general categorization of many of them based on the

four characteristics of clustering algorithms presented in Section 2.

The most closely related work to our clustering approach is with algorithms that

use graph partitioners, and those that use an estimate-based approach. Capitanio

et al. [6] proposed a graph partitioning method to clustering operations, but focused

mainly on a Kernighan-Lin like approach to improving partitions. They focus their

improvements strictly on a function of the partition cut set, and weighing the benefits

of making a cut with the probability that it will increase the schedule length.

Aletà et al. use a similar multilevel graph partitioner, but focus on tightly integrat-

ing the clustering algorithm with the instruction scheduling and register allocation [1].

Also studied was clustering via a multilevel partitioner to determine the optimal ini-

tiation interval (II) for a modulo scheduled loop using a pseudo-scheduler [2]. Their

work focuses on scheduling cyclic code in multicluster domains, while ours is targeted

toward acyclic code. We also use substantially different models for computing node

and edge weights.

While not a heavily researched area, there has been some work on estimate-based

approaches for clustering. Lapinskii et al. [42] base their estimate off three major fac-

tors: the data transfer penalty, FU serialization penalty and bus serialization penalty.

They use a local approach like BUG to minimize the data transfer penalties. The

FU serialization is basically the load of the cluster, which is determined in a cycle by
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cycle approach.

Partitioning can also be approached by considering operands instead of oper-

ations [34]. Research on partitioning for multiprocessors has many similarities to

clustering for multicluster processors. Yang and Gerasoulis [68] proposed a low-

complexity method for clustering and scheduling parallel tasks for multiprocessors.

Liou and Palis [50] improved upon the complexity of this algorithm.

More generally, graph partitioning is a widely studied area, and many similar

problems have been mapped to graphs in the past. The ares of floorplanning and

placement have been using graph partitioners to reduce their problem sizes. For ex-

ample, Li et al. [49] present a technique for efficiently partitioning a graph through a

multilevel algorithm. These floorplan partitioning techniques are similar to our prob-

lem in that the graph objective function is difficult to calculate simply by examining

node weights and edges, and must be heuristically approximated. The problems differ

in the basic nature of the optimization problem as well as the problem sizes. Floor-

planning usually has much larger graphs, while DFGs of applications are typically

smaller and narrow as they are linearized by the scheduler.

5.6 Summary

This chapter introduced a novel technique to cluster operations for multicluster

processors with a shared data memory. A slack distribution algorithm is presented,

which effectively weights edges based on their preference for being broken across

clusters. We introduce a new way to estimate the impact of clustering decisions,
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which is used to guide our graph partitioner. Our graph partitioner is able to consider

an entire region of code and base its decisions off a view of the code as a whole, rather

than what the best clustering is for a single operation.

We compared our results to a popular algorithm, BUG, and results show that for

larger number of clusters, our algorithm is able to efficiently produce better partitions.

Two-cluster machines saw an average performance decrease of 1.8% across all kernels

and benchmarks. As we increased the number of clusters, there was a dramatic

increase in the performance of our partitioner. A four-cluster machine provided an

average improvement of 14% in our experiments.
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CHAPTER 6

Data and Computation Partitioning for

Fine-grain Parallelism

6.1 Introduction

In recent years, the processor design industry has shifted away from increasing

the performance of monolithic, centralized processor designs. In the past, proces-

sor generations could scale performance by increasing clock frequency and designing

larger, more complex structures. However, problems with increased power dissipa-

tion and thermal issues have become the main design constraints, forcing a change

to decentralized multicore designs. Multicore processors lessen the power issues by

using multiple simpler cores and tightly integrating them together on a single die.

This allows for an increase in throughput capabilities of the processor but does not

necessarily increase performance. As Moore’s Law continues to increase transistor

counts, the semiconductor industry is expected to use the additional transistors to

scale the number of cores per chip from the 2 to 8 core processors currently available
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on the market to many more in the future.

While the shift to multicore designs has the ability to significantly improve the

performance of applications, this performance boost is not free. In order to take

advantage of massively parallel cores, the difficult problem of parallelizing an ap-

plication falls back on the programmer and compiler. Traditional code generation

for decentralized multicore processors focus on coarse-grain methods for paralleliza-

tion. These techniques include new programming models [7, 30, 33, 51] and different

ways to exploit thread-level or single-instruction multiple-data (SIMD) data-level

parallelism [15, 28, 43, 61]. While these methods are an extremely effective way for

programmers to increase overall throughput of the processors, there is still available

parallelism which can be extracted by the compiler. In addition, there is also a signif-

icant number of single-threaded applications and programs that simply do not exhibit

the inherent parallelism for programmers to widely spread their execution across mul-

tiple cores. However, at a fine-grain level, the compiler can determine parallel tasks

to distribute across the cores and further increase performance.

This chapter focuses on a two-phased cooperative compiler-directed method for

program parallelization by exploiting fine-grain instruction-level parallelism (ILP).

Current research in interconnection networks has examined multiple ways to increase

the speed and bandwidth of communication between cores [57, 64]. Faster commu-

nication of scalar values between the cores enables applications to take advantage of

parallelization at the operation granularity. While coarse-grain techniques can par-

allelize large portions of execution, our method can use an additional dimension to

further increase performance by creating fine-grain threads to exploit on the multiple
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underlying cores.

The challenge for exploiting fine-grain parallelism is: given an application, identify

the operations that should execute on each core. This decision must take into account

the communication overhead of transferring register values between the cores as well

as the layout of data values in the individual caches of each core. Poor decisions could

lead to communication across the interconnection network delaying the execution of

other operations, cache conflicts evicting data and increasing cache misses, or an

increase in cache coherency traffic between the cores, all of which would lead to

lower performance. The fine-grain nature of these decisions make it difficult for the

programmer to specify. However, the compiler is able to take advantage of analyses

of the data-flow and memory access behavior to make better decisions to how to

distribute the application.

Extracting fine-grain parallelism is a difficult task, but as the industry moves

to faster, tighter interconnection networks between the cores, many similarities can

be drawn with multicluster processors in the embedded domain. These processors

address the issue of fine-grain parallelism by relying on the compiler to partition

operations across the multiple clusters [1, 6, 16, 37]. The main architectural differ-

ence between multicluster and the multicore processors of today are that multicluster

designs generally have a shared data cache, while multicore systems have coherent

distributed data caches per core. This adds another level of complexity for the com-

piler to be cognizant of data values and how they are brought into each individual

cache. However, by phase-ordering the compiler passes to first partition the data,

then partition the computation cognizant of the data location, our technique simpli-
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fies the problem while still generating high-performance code. This chapter brings

together the data partitioning techniques from Chapters 3 and 4 with the computa-

tion partitioner described in Chapter 5 and details how they interact to produce a

partitioned application for decentralized architectures.

6.2 Fine-grain Parallelism Extraction

Both data and computation partitioning are important compiler phases to ex-

tract fine-grain parallelism for decentralized processors. Chapters 3 and 4 explained

two possible techniques for partitioning data memory across decentralized scratchpad

memories and data caches, respectively. Chapter 5 introduced a region-based tech-

nique for partitioning computation operations across multiple PEs. In this section,

the combined technique is explained which phase orders data and computation par-

titioning. The data partitioning is first completed, and passes its decisions down to

the computation partitioner, which can factor in the location of data when making

its partitioning decisions.

6.2.1 Data-cognizant Computation Partitioning

A phase-ordered partition of data and computation can occur either data-first or

computation-first. In this dissertation, we made the partition of the data the first-

order term in producing the overall partition. Data is more global in nature and

the effects of memory stalls can be much greater. In addition, problem size of data

partitioning was small enough to enable the compiler to make global, program-level
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Figure 6.1: Example of computation partitioning where shaded areas are operations
in cluster 1: (a) the cluster assignment designed by the first-pass data
partitioning. (b) two performance based improvements made by the com-
putation partitioner and (c) the final partition.

decisions. There are far more computation operations, making program-level analysis

infeasible.

The process of making the second computation partitioning phase cognizant of

the data required the first phase to produce a mapping of data access to cache. Thus,

our compiler phase determines a memory access partition and locks, or freezes, the

memory operations to a specific PE. The second phase, RHOP, can easily take this

prepartition of the data into consideration, by not moving the memory operation and

understanding the required interconnect moves needed to transfer the data to any de-

sired PE. This also gives RHOP the ability to add preference for specific computation

operations to move closer to their data location.

Figure 6.1 is an example of how the more detailed computation partitioning can

improve on the partition produced by the high-level data partitioner. Focusing on only

a the single block of code, we see the partition of operations breaking the edge between

operations 3 and 5, as shown in Figure 6.1(a). At a high level, this partitioning seems
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fairly good, as only one single edge is broken, requiring a single intercluster move and

the number of operations per cluster is balanced. During the second pass, memory

nodes A and B are, in effect, locked down to cluster 0, and node C is forced to be

in cluster 1. However, all other computation operations are free to move about the

clusters. Given this ability, the second RHOP pass can note that keeping the critical

path 1-2-3-5-6 on a single cluster can be beneficial for the schedule length, and place

those operations with memory operation C. Breaking the non-critical edge between

4 and C will not affect the schedule length, so operation 4 is moved to cluster 0 as

shown in Figure 6.1(b). The final partitioning is shown in Figure 6.1(c). While this

creates an imbalance of operations on the shaded cluster, it actually has a better

performance because the cluster resources can execute the extra operations in the

same number of cycles. Thus, the first pass data-partitioning path works more as

a guide, viewing the entire program and dividing up memory usage for the more

detailed computation-based second pass.

6.3 Experiments

To study the overall effects of fine-grain parallelism extraction, we ran our coop-

erative data and computation partitioning technique on 2 and 4 core machines. Each

core can execute one integer, floating point, memory and branch operation per cycle.

The cache configuration for these experiments was set at 4kB per core. The reported

results are through the Trimaran compiler and simulation infrastructure with the M5

cache simulator. The details of the simulated machines are presented in Table 6.1.
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Parameter Configuration

Number OF PEs 2, 4

Function Units 1 I,F,M,B per PE

PE Comm. B/W 1 total move per cycle

PE Comm. Latency 1 cycle

L1 Cache 2-way associative

L1 Block Size 32 bytes

L1 Cache Sizes 4kB per PE

L1 Hit Latency 1 cycle

L1 Bus Latency 2 cycles

L2 Hit Latency 10 cycles

Main Memory Latency 100 cycles

Coherence Protocol MOESI

Table 6.1: Details of the simulated multicore machine configuration

This section presents the achievable speedups from increasing the number of cores

and utilizing the extra resources with fine-grain threads.

6.3.1 Partitioning for 2 Cores

Figure 6.2 shows the achieved speedup over a single PE machine on a 2-PE pro-

cessor and our fine-grain parallelization techniques. Thus, 1.0 in the x-axis indicates

the performance of a single PE processor, and higher bars indicate better perfor-

mance. For each benchmark, three bars are shown. The first indicates the perfor-

mance achieved by a data-incognizant partitioner which purely focuses on the com-

putation operations. This technique generally does the worst, as it suffers from a

poor data access distribution and memory stalls. The second bar indicates the per-

formance of our technique, where we proactively distribute data accesses. The final

bar is the performance of a unified machine: a single PE processor with twice the

resources. Thus, this bar is an indication of the upper bound of our technique, as it
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Figure 6.2: Speedup over a 1-PE processor when using 2 PEs and our data partition-
ing technique.

can support the same amount of parallelism and does not suffer from the intercore

communication latencies.

Overall, most benchmarks show a performance improvement. As expected, bench-

marks with more parallelism such as the kernels and Mediabench, show more speedup.

This is directly related to the amount of parallel work available for our fine-grain

technique to exploit. The SPECcpu benchmarks show less speedup, but the unified

machine speedup for each benchmark indicates that many of those applications have

very little room for improvement. On average, we saw the upper-bound of achievable

speedup around 1.43 and our techniques able to extract approximately a 1.3 speedup

with our data access partitioning.

It is evident that a data-incognizant partitioning is not a good solution, and the
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Figure 6.3: Comparison of 2-PE and 4-PE machines for overall speedup

proactive distribution of the data is extremely important in leveraging benefit from

the extra resources. In many cases, such as gsmdecode, 175.vpr, and 300.twolf, a

decrease in performance is shown for a data incognizant partition, as the memory

stall time takes away any gains from computation parallelization. However, with our

proactive data partitioning, all three of these benchmarks show some speedup over

the baseline case. Two benchmarks, 181.mcf and 171.swim, show slight performance

degradation even with our technique. In these applications, the amount of parallelism

available was so low that we were not able to extract enough parallel work.
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6.3.2 Partitioning for 4 Cores

To study the scalability of our technique, we partitioned each program to 4 PEs to

see how much additional performance benefit existed. Figure 6.3 shows that overall

speedup was also similar to our 2-PE results. Some benchmarks, such as gsmencode,

where dramatically improved; however, on average, there wasn’t a significant increase

in performance even though were four times the number of resources as the baseline

case. Much of the achievable performance benefits depends on whether or not the

benchmark has enough parallelism to support the wider machine. In addition, the

larger number of PEs increases the contention for the communication bus causing

more compute cycles to be executed. This shows us that while fine-grain parallelism

is useful and can be exploited for performance improvement, it has its limits based

on the application.

6.3.3 Conclusion

This chapter presented a methodology for incorporating both data and compu-

tation partitioning into a single compiler process for extracting fine-grain threads of

execution. With multicore processors becoming more commonplace, and numbers

of cores expected to rise, both the compiler and the programmer need to develop

new ways to exploit parallelism in their applications. While the major gains must

be made at the coarse-grain level, the work presented in this chapter shows how

fine-grain examination of applications can be an complementary and effective way to

further increase performance. Compiler-directed parallelism extraction first divides
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the memory accesses across the cores, cognizant of the affinity relationships between

different memory operations. This is followed by a detailed computation partitioning

pass which understands the location of each memory access and can take the data

transfer latencies into account when creating the fine-grain threads. Overall, we found

that many applications have enough inherent parallelism to utilize two cores; how-

ever, this did not scale in all applications to four cores. Thus, fine-grain parallelism

extraction can be an useful technique to increase performance, but each application

has its limit on effectiveness.
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CHAPTER 7

Conclusion

As decentralized processors have become ubiquitous in both the general-purpose

and embedded-system domains, techniques to exploit underlying application par-

allelism have become vital to achieve high performance. Decentralized processors

partition the processor resources, such as FUs, register files and data memories, into

smaller subsets connected together with a communication network. Thus, perfor-

mance in these processors depends more on throughput and parallel execution than

raw clock frequency. This dissertation focuses on compiler processes to analyze and

develop efficient fine-grain partitions of both the data and code of a program, allowing

for effective parallel execution and increased performance.

7.1 Summary

The partition of the data is the first phase of the code generation system, and is

expected to produce a mapping of memory access operations to PEs. This dissertation

proposes two methods for providing this division of the memory operations: static and
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profile-based techniques. The static method analyzes the application to determine the

set of objects accessed by each memory operation. Given this knowledge of statically

accessed objects, a partitioning of the objects to memories could be made, which, in

turn, led to a mapping of the load and store operations for those objects. A partition

of the objects worked well in the embedded design space with scratchpad and static

local memories, achieving up to 99% (96% on average) of the performance of a larger,

shared memory when using small, decentralized memories.

While this static technique for object partitioning is an efficient compiler process,

it did not translate well to the general-purpose domain with caches. Partitioning an

entire object to a specific cache in one PE does not effectively utilize the caches or

the abilities of the coherence network. Partitioning an entire data object to a cache

can mis-utilize the caches, not allowing for shared data to be spread across memories,

and also overcommit a memory. Thus, the profile-guided method for partitioning data

accesses was developed. The profile gathers statistics about affinity relationships and

between memory accesses and working-set estimates of each individual access. A

partition can then be made at the finer granularity of a memory operation rather

than objects. This allowed for more sharing of data across PEs and caches, and

improved performance in the presence of coherent data caches. The profile-driven

method was able to reduce memory stall time over 90%, and 50% on average, by

colocating data accesses and reducing coherence traffic.

Regardless of the technique to partition the memory, reducing the memory stall

time is only half the solution, as the remaining computation must also be partitioned

across the PEs. This dissertation introduced the RHOP compiler technique, which
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efficiently partitioned the computation operations with a region-level scope. In ad-

dition, the technique used novel slack distribution and schedule estimation methods

to improve its partitioning decisions. RHOP is able to include input from the data

partitioning to determine a synergistic computation partition. The RHOP technique

was shown to produce better partitions as the number of PEs increased. With the

inclusion of a data partition, the overall process for fine-grain parallelism extraction

was able to achieve speedups of 1.35 when increasing from a single to 2-PE processor,

and 1.37 with a 4-PE processor.

The techniques presented in this dissertation combine to form an effective method

for parallelism extraction for decentralized architectures. This work focused on com-

piler analyses, extensions and processes for parallelism extraction and management

through fine-grain partitioning of data and computation. The work presented is di-

rectly applicable to the embedded-systems domain with multicluster VLIWs, but

can also be applied to detecting parallelism for general-purpose multicore proces-

sors. With the abundance of decentralization in the forms of multicluster VLIW and

multicore superscalar processors, compiler extensions to parallelize applications have

become of growing importance for high-performance code generation.

7.2 Future Directions

There are a number of future directions in which this dissertation could be ex-

panded and extended, including exploration of parallelized benchmarks, new archi-

tectural features, and compiler partitioning extensions.
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7.2.1 Benchmarks

The current set of benchmarks examined consists of single-threaded benchmarks

with varying amounts of inherent parallelism. While this benchmark set is represen-

tative of the embedded system domain, a proper examination of the applicability of

fine-grain thread extraction to the general-purpose domain will need examination of

explicitly threaded code. It is currently an infrastructure limitation which kept those

benchmarks from being tested. When applications have already been parallelized

by the programmer at a coarse-grain level, fine-grain parallelization by the compiler

is still applicable on each individual thread. However, the inter-thread interaction

of data must be evaluated to determine its effects on determining a good memory

partition.

7.2.2 Optimal Partitioning for Small Blocks

Our compiler infrastructure currently applies a selected operation partitioning

algorithm to all scheduling blocks in the input program. Previous work by Caldwell

et al. [5] has shown that for small basic blocks of less than 30 nodes, FM-based

partitioning can become suboptimal. In these cases, it is often preferable to use a

enumeration or branch-and-bound based optimal solution. Their work focused on

standard-cell layout algorithms, but the applicability of optimal solutions for small

basic blocks could still be true in our operation clustering case. For some of the

smallest basic blocks, a full enumeration of the problem space and a full schedule

of all resulting partitions could be made. However, small basic blocks are generally
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infrequently executed and make up a very small amount of the total execution time

of applications.

7.2.3 Compiler Partitioning Extensions

The data and computation partitioning methods presented in this dissertation

have several ways in which the could be extended. First, the choice in number of

partitions to create is currently a parameter to the system, rather than a discoverable

variable. As evident in many of the results, an application’s ability to benefit from

partitioning is highly dependent on the inherent parallelism of the code. Compiler

analyses could be developed to determine an optimal number of partitions to create.

Another way in which the current techniques are limiting is the static decisions for

each operation. When the resources are not fully utilized, replication of operations,

rather than strict partitioning, could be beneficial. While replication increases the

number of operations being executed, it could have benefits of localizing data in

several PEs, and allowing for more parallel work to execute. However, this would

require a significant amount of work in code generation and program restructuring to

ensure correctness.

7.2.4 New Architectural Features

Currently, decentralized architectures typically have a homogeneous structure be-

tween the PEs. As processor designs evolve, heterogeneous or specialized PEs will

likely become more common. Most of the techniques in this dissertation have support
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for heterogeneous PEs in terms of FUs, but the handling of heterogeneous memories is

not currently supported. Future decentralized architectures could specialize memories

in terms of size, associativity, and power, among other characteristics.

Another way in which future decentralized architectures will undoubtedly change

is in terms of their interconnect. The experiments presented in this dissertation

assume either bus-based or point-to-point interconnects between the PEs. As the

number of PEs scales to larger numbers, more advanced interconnections are likely

necessary, such as different network topologies, varying bandwidths and protocols.

These would require both the data and computation partitioners to not only partition,

but also consider the geographic placement of operations on specific PEs.
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