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Abstract 

Cell surface glycans are branched structures composed of linear and branched 

chains of monosaccharides that include fucose. Fucose has important biological functions 

during ontogeny and cellular differentiation, suggested by pathological phenotypes 

observed in different strains of mice, including mice with a null mutation in the 3’, 5’-

epimerase/4’-reductase locus (FX-/- mice). FX-/- mice are conditionally deficient in all 

fucosylated glycans, and exhibit server thymic atrophy. This phenotype is cell autonomous 

and characterized by a fucose-dependent complete deficiency of mature T cell with loss of 

early thymic progenitors. Interestingly, Notch1 signaling deficient mouse models have been 

reported with the similar phenotypes, and there are reports that O-fucosylation is required in 

some in vitro experiments for Notch1 signaling. These results strongly suggested that lack 

of Notch1 signaling in FX-/- progenitors accounts for the thymic atrophy phenotype. By 

introducing the Notch1 intracellular domain into fucose-deficient FX-/- bone marrow-

derived lymphoid progenitors, the T cell developmental defect characteristic of FX-/- 

lymphoid progenitors is rescued and thus implicated a fucose-dependent requirement for 

Notch1 signaling in this process. In vitro, OP9 cells that are bearing Notch ligand of Delta-

like1 (Dll-1), Delta-like 4 (Dll-4) or Jagged2, instruct cells to assume a T lymphoid 

differentiation identity, whereas while OP9 cells bearing Jagged1 or Dll3 do not. However, 

in fucose-deficient experimental situation, FX-/- bone marrow cells fail to assume a T 

lineage identity when co-cultured with OP9-Dll1, OP9-Dll4 or OP9-Jagged2, and fail to 

initiate Notch1 signaling events. These results indicate that fucosylation is required for 

Notch1 signaling-dependent T cell differentiation. In effort to define the molecular 

mechanisms that account for fucosylation-controlled Notch1 signaling activation, I conclude 
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from a series of experiments that (1) fucosylation controls the strength of binding between 

Notch1 and its ligand Dll4, and (2) fucosylation controls Notch1 receptor density at the 

surface of an E2a/Pbx1 immortalized bone marrow progenitor cell line. These results 

indicate that fucosylation controls Notch1 signaling strength and thus regulates the 

development of T lymphocytes. My studies have revealed novel biochemical, cellular and 

developmental functions of fucosylation in the development and signaling pathways 

characteristic of the mammalian lymphoid lineage. 
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 Chapter I 

Introduction 

Although complex carbohydrate research began in the nineteenth centuries, it was 

not until the last fifty years that the field has received substantial experimental attention from 

biologists and biochemists. Together with nucleic acids, proteins, and lipids as the main 

components of biological system, complex carbohydrates are linear and branched chain 

sugar molecules found in most eukaryotic cells and organisms, including mammals, and are 

expressed through ontogeny to adulthood. Glycan structures vary in complex tissue-

specific and developmentally regulated expression patterns. At the molecular level, complex 

carbohydrates are primarily found covalently linked to proteins or to lipids, which has 

strongly suggested that sugar structures are involved in the regulation of biological systems. 

Recently, the term glycobiology has been used to refer to structure, biosynthesis and 

biology of saccharide chains that are widely distributed in nature (1). 

 The structures of glycans have been extensively studied with the emergence of 

modern analytic methods such as mass spectrometry. The basic unit of carbohydrates is 

called a monosaccharide that cannot be hydrolyzed into a simpler unit. These units include 

widely known sugar molecules like glucose, fucose and mannose. Monosaccharides in ring 

forms utilize potential carbonyl groups at the end of the carbon chain or at an inner carbon 

to be linked together. This results in the formation of oligosaccharides, comprised of linear 

and branched chains of monosaccharides. Polysaccharides usually refer to longer and more 

complex forms composed by multiple oligosaccharides. Unlike nucleic acids and proteins 
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that are composed of linear structures, glycans display enormous structural complexity and 

combinatorial diversity with combination of different branches (1). 

When polysaccharides are linked to a noncarbohydrate moiety (usually proteins), 

the resulting structures are termed as glycoconjugates. Glycoproteins are proteins with 

sugar molecules attached either in a N-linked or in an O-linked fashion. The most common 

form of polysaccharides on proteins are N-linked glycans, in which an N-acetylglucosamine 

(GlcNAc) is linked to some asparagine residues of membrane and secreted proteins (2, 3). 

O-glycans are linked to serine or threonine residues of proteins via typically N-

acetylgalactosamine (GalNAc) residues (4-6). They are also synthesized in the secretory 

pathway with diversification steps leading to linear and branched O-glycan structures (7). In 

addition to GalNAc, fucose, glucose and mannose may also be linked directly to come 

serine/threonine residues to form the base of other oligosaccharide during modifications (8-

10). 

Biosynthesis of glycoconjugates is typically associated with components of the 

protein synthesis pathway as occurs in different compartments of the cell (11, 12). The 

synthetic pathway contains not only elongations of the glycans but also modifications and 

even shortening. As one example, Figure 1-1a shows the synthesis of a branched N-linked 

glycan structure. This synthetic pathway of oligosaccharide assembly is highly ordered, so 

that each step shown is fully dependent on the previous one. Initially N-linked glycans arise 

in the endoplsmic reticulum (ER) of the early secretory pathway (13). A previously 

synthesized core structure containing of 14 monosaccharides including two GlcNAc, nine 

mannose residues and three glucose residues are added in a co-translational fashion to 

newly synthesized proteins. During maturation, three different enzymes, (glucosidase I, 

glucosidase II and ER mannosidase), modify the structure with cleavage of all three glucose 

residues and one mannose residue, resulting in a 10-unit structure. Up to this stage of 

protein synthesis, the variations of oligosaccharide structures are relatively limited. When 

synthesis moves into the Golgi lumen, more extensive modifications apply to the structure 
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resulting in very different structures depending on the set of enzymes expressed in a 

specific cell type (13, 14).  

One of the most well known O-linked glycan structure is shown in Figure 1-1b, as 

an example of linear oligosaccharides. The Epidermal Growth Factor (EGF) repeat is a 

component of many proteins and contains serine and threonine residues that are enzymes 

that may be covalently modified by a fucose molecule (15) by protein-O-fucosyltransferase 

1 (16, 17). The Fringe molecules are enzymes that catalyze the attachment of GlcNAc to O-

fucose (18). This glycan structure is further elongated by catalytic activities of β-4-Gal 

Transferase 1 (19) and either α-2,3-sialic acid transferase (shown in Figure 1-1b) or α-

2,6-sialic acid transferase (15, 18). This synthetic pathway is, like the biosynthesis of 

proteins characterized by a series of highly ordered linear single molecule additions.  

The structural characteristics of polysaccharides potentially allow them to carry 

more biological information than linear forms of nucleic acids and proteins (1). This is 

because that 1) polysaccharides are both linear and branched molecules, and 2) there are 

many distinct monosaccharides that contribute as components of polysaccharides. 

Nonetheless, the functional roles of glycans have remained enigmatic relative to the more 

extensively investigated nucleic acids and proteins. In the past decade, glycans have been 

discovered to serve as intermediates in protein folding (13) and cellular interactions (20), 

and as structural components of the cells and cell matrix (21). For example, alteration of 

glycosylation has been observed in cancer (22), ulcerative colitis (23), and cystic fibrosis 

(24). Recently, important functional roles have been ascribed to glycans in different 

signaling pathways. For example, O-fucosylated glycans have been shown to be involved in 

Notch signaling (25), which relates to many developmental process in mammals (26-29). 

However, it has not yet been shown if fucosylation is required for mammalian development, 

including the development of the immune system where Notch function is required (30, 31).  
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My thesis work emphasizes the novel physiological, cellular, and biochemical roles 

of fucosylated glycans in mammalian development, specifically in the development of T 

lymphocytes in the immune system. In this introduction a few key concepts, including the 

fucosylated glycans, Notch signaling and immune development, are briefly explained.  

 

Fucosylated glycans 

L-fucose, also known as 6-deoxy-L-galactose, is a monosaccharide commonly seen 

in many glycan structures from Drosophila to humans (32-35). The L-configuration and 

lack of a hydroxyl group on the carbon 6-position distinguish it from other small sugars. 

Fucose exits primarily as a terminal modification of N-glycans. Recent O-glycan structures 

have been found in which fucose is direct linked to serine/threonine residues (15). 

Numerous fucosylated glycan structures exist, and vary depending on the position of fucose 

added to proteins and/or oligosaccharides (Figure 1-2). N-linked fucose can exit as a 

terminal or subterminal modification of glycans.  O-linked fucose is directly added to 

proteins via serine or threonine residues. Like other monosaccharides, fucose is added to 

glycans or proteins by fucosyltransferases, enzymes that use GDP-fucose as the nucleotide 

sugar donor, linking to specific acceptors (Top of Figure 1-2). The catalytic domain of 

fucosyltransferases typically reside in the lumen of the Golgi lumen or endoplastic 

reticulum (ER) (36). Many fucosyltransferases display a pattern of tissue-specific 

regulation, suggesting important roles for fucosylated glycans in specific tissues or cell 

types.  

The biological significance of fucosylated glycans include the following: 
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(a) ABO blood group (37).  

The fucosyltransferase genes FUT1 and FUT2 encode the H transferase and the 

Secretor (Se) transferase, respectively. The H transferase is expressed in erythroid 

precursors while the Se transferase is expressed in epithelial tissues and salivary glands. 

They are both responsible for synthesis of a specific fucosylated glycan structure (H 

antigen) with fucose added in a "(1,2) fashion to the terminal galactose residue (Figure 1-

2). Humans whose red blood cells express only H antigen found are blood type O. H 

antigen can be modified further by the A transferase (an N-acteylgalactosaminyltransferase) 

or the B transferase (an galactosyltransferase) to form A or B antigen. Humans whose red 

blood cells express only A antigen are blood type A, while individuals with red cells bearing 

only the B antigen are blood type B. Blood type AB individuals have both A and B antigens 

on their red blood cells.  

Mixing blood from two individuals can cause blood clumping or agglutination. Big 

clumps of red cells can clog blood vessels and stop the circulation of the blood to various 

parts of the body. The clumped red cells may burst and its contents leak out in the body. 

Hemoglobin outside the cells becomes toxic to the body and resulted effects may be fatal. 

Thus, identification of an individual’s blood type is essential when blood transfusion is 

required. It’s necessary to ensure that blood transfusion recipients receive ABO compatible 

donor red cells. This compatibility study initiated the modern transfusion medicine. 

Lots of studies have shown the susceptibility of individuals with different blood 

types is different in many diseases. These studies include associations of blood type A with 

gastric cancer (38), blood type A and B with gastric atrophy (39), non-O group with 

increased severity of fibrosis in chronic hepatitis C infection (40), blood type O with low 

Factor VIII and von Willebrand factor expressed in blood that can lead to excess bleeding 

(41), non-O group with increased Factor VIII and von Willebrand factor expressed in blood 

that increase the risk of ischaemic heart disease and venous thromboembolic disease (41). 

For example, a bacteria strain of Helicobacter pylori is associated with the development of 
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gastritis, gastric ulcers and adenocarcinomas in humans. Bacterium Helicobacter pylori 

binds preferentially to Lewisb antigens found on the surface of gastric epithelial cells 

especially in stomach (42). Lewisb antigens are part of the blood group antigens that 

determine blood group O. However, the bacteria do not attach to the structure of blood type 

A antigen (42). Moreover, this result confirmed the epidemiological study decades ago that 

showed association of blood type O with gastric ulceration (43).   

(b) Host-microbe interaction. 

The microbial pathogen Helicobacter pylori can attach to host epithelial cells in the 

stomach by using a Lewisb glycan structure (determined by FUT2 and FUT3 product) 

(44). A and B blood group individuals have shown decreased peptic ulcer disease incidence 

that correlates with A antigen expression, which masks the fucosylated Lewisb structure 

(45). In mammalian experimental systems, overexpression of the FUT3 gene leads to 

Lewisb expression in non-Lewisb expressing cells, resulting in an increased severity of 

gastritis by Helicobacter pylori exposure (46).  Furthermore, the bacteria itself express the 

Lewisb structure and related glycans (47), and the expression of these structures increase at 

acid pH similar to the gastric environment (48). Taken together, these observations indicate 

that fucosylated glycans are important for host-microbe interactions.  

(c) Selectin-dependent leukocyte adhesion. 

Selectins are among the best-studied glycoproteins that are expressed on the cell 

surface. Three types of selectins have been found: P-selectin expressed on platelets and 

endothelial cells, E-selectin expressed by endothelial cells and L-selectin found on most of 

leukocytes (49). During the process whereby leukocytes are recruited from the vascular 

compartment to an inflammatory site, or in trafficking to lymph nodes, an initial step 

involves the deceleration of the rapidly moving leukocytes by a process called rolling, 

mediated by selectin and their counter-receptors, so that they may then firmly attach to the 
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endothelial wall of the vessels followed by migration to the extravascular compartment (49). 

Selectin ligands are modified with terminal fucose by the product of the FUT4 and FUT7 

fucosyltransferase loci, two "(1,3) fucosyltransferases (50, 51). Study of genetically 

engineered mice deficient in FUT4 and/or FUT7 demonstrate that "(1,3)-fucosylated 

glycans are essential for selectin-ligand interaction and related cell trafficking (52, 53).  

(d) Signal transduction in development. 

Fucosylated glycans are found on many proteins involved in cell signaling events 

during development. These include well-studied Notch receptors in Notch signaling (15), 

the cripto-1 receptor in Tumor Growth Factor (TGF)-beta signaling (54) and urokinase-

type plasminogen activator as a growth factor (55) in mammalian development. Fucose is 

added to these proteins in a O-linked fashion by protein O-fucosyltransferase 1 (16). This 

enzyme adds fucose directly to serine/threonine residues in epidermal factor like (EGF) 

domains (56). Abolishing fucosylated glycans of urokinase-type plasminogen activator 

inactivates its mitogenic activity without disturbing the cell surface binding ability (55). 

Inactivation of the protein O-fucosyltransferase 1 gene results in the absence of O-

fucosylated glycans on EGF domains, a failure of embryonic development (57), dysfunction 

of Notch signaling (58). Interestingly, absence of POFUT1 leaves cripto-related TGF-beta 

signaling intact (54). These observations indicate that fucosylated glycans play specific and 

essential roles in particular signaling pathways during development.  

 

Notch1 signaling pathway 

The Notch signaling pathway was first studied in Drosophila melanogaster and this 

pathway plays a role in lineage decision of neural precursor cells, directing them to become 

either neuroblasts or neuroepidermal cells (59-62). When Notch is overexpressed in 
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precursor cells, an increase of neuroepidermal cells has been observed at the expense of 

neuroblasts. By contrast, lack of functional Notch protein yields increased numbers of 

neuroblasts at the expense of neuroepidermal cells. These observations indicate that the 

Notch signaling pathway plays an important role in lineage decisions during development. 

Similar functions of the Notch signaling pathway have been demonstrated in other 

developmental systems.  

The Notch signaling pathway includes a family of highly conserved cell surface 

receptors (Notch proteins) on signaling receiving cells, and a set of structurally conserved 

cell surface ligands (Notch ligands) on signaling sending cells. In Drosophila, there is one 

Notch receptor, and two Notch ligands (Serrate and Delta). However, mammals possess 

four different Notch receptors (Notch 1, 2, 3, 4) and five different Notch ligands (Jagged1, 

2, Delta-like 1, 3, 4), suggesting much more complex regulations in mammalian species.  

Notch-dependent signal transduction is quite similar in flies and in mammals. As 

shown in Figure 1-5, mouse Notch1 is synthesized as a large polypeptide precursor, in 

ways similar to most cell surface transmembrane proteins that originate on the ER 

membrane. During this process, Notch1 receptors are also fucosylated on some serine and 

threonine residues. Fucosylated Notch1 proteins then move to the Golgi for further 

modifications. Within the Golgi, Notch1 proteins are cleaved by a Furin-like protease, and 

thus form heterodimer, and eventually are presented on the cell surface.  

Interactions between Notch and its ligand(s) are characterized by a series of 

subsequent proteolytic cleavages that are required for downstream signal transduction 

events. In Drosophila, the force applied by a Notch ligand to Notch extracellular domain 

(EC) has been shown to be essential to change the protein structure of Notch so that the 

ADAM (a distintegrin and metalloprotease) protease is recruited to cleave, and release the 

extracellular portion of Notch. Subsequently, #-secretase cleaves the Notch intracellular 

domain (Notch IC) at a site near or within the cell membrane. Notch IC, a 120 KD 
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polypeptide, then travels to the nucleus, where it displaces a transcriptional suppressor and 

then forms a multi-protein complex to initiate downstream gene expression. 

Unlike the MAP-Kinase signaling pathway, Notch signaling is without multiple 

cascades of protein phosphorylation and interactions before the downstream targets are 

transcribed in nucleus. Once Notch IC is cleaved from the anchored receptor, it directly 

travels into nucleus and the downstream genes are activated. There are few intermediates 

involved in the Notch signaling transduction pathway once the ICN is cleaved. However, 

many of the direct target genes activated by Notch are transcription factor genes, such as 

Hes-1 and Hes-6, which themselves are able to activate other target genes. These 

considerations imply that Notch signal transduction can yield very complicated gene 

activation cascades after direct targets were transcribed, and may affect as many as several 

hundred genes.  

Notch signaling has been implicated in many developmental processes, including in 

neurogenesis (26), somite formation (63), eye development (64),  inner ear and hair cell 

development (29), blood vessel formation (65), cardiogenesis (66), and very importantly, 

immune cell differentiation (67). For example, in fetal lung development, Notch signaling 

seems to be essential for lung size control, because losing Notch downstream target Hes1 

expression in mouse resulted in 20% decrease of lung size compared to wild type 

littermates (68). Jagged-mediated Notch signaling maintains proliferating neural progenitors 

and regulates cell diversity in the ventral spinal cord (69). 

Aberrant Notch signaling is associated with, or causes many diseases, including 

breast cancer (70),  lung cancer (71), and leukemia (72). Transgenic mice that ectopically 

express the intracellular domain of Notch4 (designated as INT-3) develop mammary gland 

tumors (73). A truncated transcript derived from the human Notch4 gene (h-Int-3sh) 

expressed in human breast cancer cell line of MCF-10A (74). These observations indicated 

the association of Notch4 to breast cancer.  
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A truncated Notch1, named as TAN1 (translocation-associated Notch homologue 1), 

is highly associated with T-cell acute lymphoblastic leukemia (T-ALL) patients, and formed 

by a chromosome translocation (75). TAN1 transduced mouse hematopoietic stem cells 

developed T-ALL after being transplanted in vivo (76), indicating its tumorgenic effects. 

Interestingly, immature TAN1 expressing T cells were found in the bone marrow, where 

they should not reside. These results indicate that the activation of Notch1 signaling 

promote T cell development. Conditional Notch1 knockout mice loss mature T cells in 

thymus (77), with B cell populations are enriched (78). These results suggested that the 

lymphoid progenitors adopt B cell fate in the absence of Notch1 signaling. Above 

observations indicated that Notch1 signaling plays an essential role in T lineage decision.  

Immune system and hematopoiesis 

The components of our immune system include cells within the bone marrow, 

thymus, spleen, lymph nodes, blood and the mucosal-associated lymphoid tissues (79). The 

bone marrow is the site of origination of the cellular components of immune system 

including B and T lymphocytes, and natural killer (NK) cells (80). The thymus is an organ 

located in the upper part of the mediastinum, behind the sternum, extending upwards into 

the root of the neck. The function of thymus is specialized for the development of T 

lymphocytes and other types of lymphocytes, which contribute to the adaptive immune 

system (81). The spleen is located in the upper-left part of the abdomen. It functions 

primarily to surveil for and collect antigens from the blood and to dispose of senescent red 

blood cells (82). Lymph nodes are located where the vessels of the lymphatic system 

converge. These secondary lymphoid organs contain both B and T lymphocytes that, 

together with dendritic cells, allow mammals to respond to foreign antigens (83). Blood 

enables the circulation of red cells and leukocytes, and delivers these cells, and protein 



 11 

components of the immune system, including antibodies to lymphoid organs, and to sites of 

inflammation and antigen challenge (84).  

The developmental biology of the immune system includes hematopoiesis, the 

development of the cells of the blood (hematopoietic) cells (Figure 1-3). Different blood cell 

types are categorized by their shapes, cell surface markers, properties on staining, and by 

their functions. Hematopoietic cells develop from hematopoietic stem cells (HSCs) in the 

bone marrow (85). HSCs are capable of self-renewal, can differentiate into more mature 

cells, and can reconstitute the hamatopoietic system in of irradiated recipients (86). HSCs 

can be identified with cell surface markers by antibody staining, are negative for all mature 

lineage (Lin-) markers, and are positive for Sca-1 and c-Kit proteins (Sca-1+, c-Kit+) (87). 

Typically they are within a population of cells termed LSKs, standing for Lin-, Sca-1+, c-

Kit+. Long-term HSCs (Flt-3- LSKs) are capable of hematopoietic reconstitution for 

months after the bone marrow transplantation (88), while short-term HSCs (Flt-3+ LSK) 

are capable of conferring transient (a few weeks) bone marrow reconstitution (89). Both 

HSC populations are capable of generating all mature lineages including myeloid and the 

lymphoid cells (86, 90).  

Cells of the myeloid lineage are thought to derive from a common myeloid 

progenitor (CMP) derived from hematopoietic stem cells (91). These cells are lineage 

negative, IL-7 Receptor-alpha negative, Sca-1 negative, c-Kit positive, Fc-gamma receptor 

negative and CD34 positive (91). CMPs give rise to granulocyte/macrophage lineage-

restricted progenitors (GMPs) and megakaryocyte/erythrocyte lineage-restricted 

progenitors (MEPs) (91). GMPs and MEPs then differentiate into various specific cell 

types within the myeloid lineage, including monocytes and neutrophils (GMPs) and red 

cells and platelets (MEPs). 

Lymphocytes are a class of leukocytes that mediate the adaptive immune response 

involving antigen-specific reactions (79). In humans and mice, there are two main 

populations, B lymphocytes and T lymphocytes that share common lymphoid progenitors 
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(CLPs) in the bone marrow (92) (Figure 1-3). During lineage decisions in the lymphoid 

compartment, CLPs may be directed to assume a B lymphocyte phenotype in the bone 

marrow. Alternatively, CLPs and/or their later progeny may migrate out of bone marrow and 

develop into mature T thymocytes in thymus.  

Our knowledge of T lymphocyte development is extensive, yet still, incomplete. It is 

widely accepted that once T cell progenitors arrive in the thymus, they are instructed to 

progress through different developmental stages, beginning with a double negative (DN) 

phenotype (CD4- CD8a-), followed acquisition of CD4 and CD8a markers as the more 

mature double positive (DP) phenotype (Figure 1-4). Later, upon different selection signals 

provided by the thymic stromal cells, DP thymocytes will differentiate into one of two types 

of single positive (SPs, CD4+CD8a- or CD4-CD8a+) T cells, which are then exported to 

the blood stream, where the assure their immune functions. Our understanding of 

developmental processes in the thymus, blood, and marrow, proximal to the DN stage, is 

incomplete. 

 

Fucosylation, Notch signaling and the immune system 

Notch receptors are large proteins with 36 epidermal growth factor-like (EGF) 

repeats containing serine and threonine residues, some of which are modified by O-linked 

fucose, and extended O-linked fucosylated glycans (15, 18). In Drosophila, O-fucosylated 

glycans on Notch receptor are thought to be essential for Notch-dependent signal 

transduction (25). In mammalian cells, lack of O-linked fucosylation on Notch1 has the 

effect of reducing downstream signaling in the Notch pathways (58). These observations 

imply that fucosylation is important in Notch signal transduction.  

Notch receptors and Notch ligands are widely distributed in different cell types 

during hematopoietic development and differentiation (Figure 1-6). As Notch signaling is 
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known to be critical for T cell development (77), it is very likely that O-linked fucosylation 

controls T cell development through modulating Notch1 signaling strength. Thus the 

important roles of fucosylated glycans in T cell development were hypothesized in this 

thesis. In principle, the hypothesis that O-fucosylation and T cell development are linked, 

could be examined by inactivating O-fucosyltransferase 1 in mice and ask if T cell 

developed in the animals. Unfortunately, as reported in 2005, POFUT1(-/-) mice are not 

able to grow to the age when T cells fully develop (57). 

In Dr. Lowe’s lab, a global-defucosylated mouse modal has been made in the effort 

to discover novel functions for fucosylated glycans, by deleting the locus encoding an 

enzyme termed FX (93). As I will described in subsequent chapters of this thesis, the FX(-/-

) mouse can be maintained as an essentially wild type animal when reared on water or chow 

supplemented with fucose, yet sustains a global fucosylation deficiency when the mice are 

reared without fucose supplementation. We observed a thymic atrophy phenotype in FX(-/-) 

mice in fucose-deficient environment, suggesting an important physiological role for 

fucosylated glycans in T cell development in these mice (discussed in Chapter 2). This 

hypoplastic thymic atrophy phenotype is very similar to the phenotype observed in mice 

subjected to inactivation of Notch1 signaling (77). These observations suggested that the T 

cell developmental deficiency characteristic of the fucose-dependent thymic atrophy 

phenotype in FX(-/-) mice is due to a fucosylation-dependent loss of Notch1 signaling in 

their T cell progenitors. Experiments in Chapter III indicate that Notch1 downstream 

signaling is indeed fucose-dependent, and that generation of mature T cells is fucose-

dependent. Moreover, biochemical and cell biology experiments reported in Chapter IV 

disclose that absence of O-linked fucosylation of Notch1 diminishes the ability of Notch 

ligands to interact with Notch1, and down-regulates cell surface expression of Notch1. 
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Figure 1-1 

a 

 

b 

 

Figure 1-1 Examples of glycan biosynthesis and glycan 
structures. a. N-linked oligosaccharide processing in the ER 
and the Golgi apparatus. (Molecular Biology of the Cell, 4th 
Edition, Alberts B and et al, New York and London: Garland 
Science; c2002) b. Structure of O-linked glycans on an 
Epidermal Growth Factor repeat. (Haltiwanger RS, Current 
Opinions of Structural biology, 2002 Oct; 12(5): 593-8)  
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Figure 1-2 

 

 

Figure 1-2: Fucosylated glycans in Mammals. Structures of 
selected fucosylated glycans are shown here. N=number of 
genes. (From Dr. John Lowe) 
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Figure 1-3 

 

Figure 1-3: Conceptual hematopoietic trees in adult mice. 
Indicated cell populations can be purified based on the cell 
surface phenotype. Not all of the linear relationships in this 
figure have been proven. Multipotent progenitors (MPPs), at 
least at the population level, can differentiate into all types of 
hematopoietic cells, but have no detectable self-renewal potential 
in vivo. (Kondo M, et al. Annual Review of Immunology Vol. 
21: 759-806, 2003) 
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Figure 1-4: Anatomical microenvironments in the adult 
thymus. The thymus is a lobed organ divided by mesenchymal 
septae. Lobes are organized into discrete cortical and medullary 
areas, each of which is characterized by the presence of 
particular stromal cell types, as well as thymocyte precursors at 
defined maturational stages. Thymocyte differentiation can be 
followed phenotypically by the expression of cell-surface 
markers, including CD4, CD8, CD44, CD25, CD69 and CD62L 
(Mel-14), as well as the status of the T-cell receptor (TCR). 
Interactions between thymocytes and thymic stromal cells are 
known to be important in driving a complex program of T-cell 
maturation in the thymus, which ultimately results in the 
generation of self-tolerant CD4+ helper and CD8+ cytotoxic T 
cells, which emigrate from the thymus to establish the peripheral 
T-cell pool. (4, CD4; 8, CD8; 44, CD44; 25, CD25; 69, CD69; 
TCRlow, expressing the TCR at low levels; TCRhi, expressing 
the TCR at high levels.) (Modified from Anderson G & 
Jenkinson EJ, Nature Reviews Immunology 1, 31-40, 2001) 
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Figure 1-4 
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Figure 1-5: Notch expression and activation. Notch 
proteins are synthesized as a single peptide of ~300KDa. a. In 
the endoplasmic reticulum (ER), the Notch1 polypeptide is 
fucosylated by protein O-fucosyltransferase 1. b. Notch1 
protein is shuttled to the trans-Golgi, where it is cleaved by a 
furin-like protease (S1-cleavage) to generate the non-covalently 
bounded heterodimerized surface receptor. c. The Notch1 
heterodimer is on the plasma membrane where it is available to 
bind with its ligands on signal sending cells. d. The interaction 
with Notch ligand is induced by ADAM metalloproteinase 
TACE (S2 cleavage) close to the cell membrane. Notch1 
extracellular domain will get into signal sending cells by 
endocytosis. e. S2 cleavage is followed by mono-ubiquitylation 
of the intracellular portion of the transmembrane Notch 
fragment. f. This results in endocytosis of the transmembrane 
fragment of the Notch protein, presumably facilitating cleavage 
by #-secretase (S3 cleavage) on transmembrane portion. g. 
Intracellular Notch is released and translocated to nucleus, 
where it competes out binding of CSL to suppressor protein 
complex. After recruiting transcriptional co-activators, 
intracellular Notch1 induces downstream gene expression. 
Abbreviations: CoR (Co-repressor), CoA (co-activator). 
(Osborn BA and Minter LM, Nat Rev Immunol. 2007 Jan; 7(1): 
64-75. Epub Dec 15, 2006. )  
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Figure 1-5 
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Figure 1-6: Notch receptor-ligand expression during 
hematopoiesis in the mouse. Expression pattern of Notch 
receptors (above cells) and ligands (below cells) in different 
hematopoietic lineages in the organ of developmental origin: 
green, expressed genes; red, absence of detectable expression. 
Controversial results are not indicated unless a consensus has 
been reached. Abbreviations and references: N1!4, 
Notch1!Notch4; J1!2, Jagged1!Jagged2; D1,3,4, Delta1, 
Delta3, Delta4; BM, bone marrow; BM stromal; HSC; CMP, 
common myeloid progenitor; ELP, early lymphoid progenitor; 
Ery, erythroblast; Meg, megakaryocyte; Mono, monocyte; Mac, 
macrophage; Gran, granulocyte; DC, dendritic cell; myeloid DC; 
thymic DC; Mast, mast cell; proB, pro-B cell; preBI, pre-BI cell; 
preBII, pre-BII cell; Imm.B, immature B cell; Trans.B, transitory 
B cell; FoB; MZB; B1, B1 cell; NK, natural killer cell; ETP, 
early thymic progenitor; DN1!4, double-negative (CD4-CD8-) 
thymocyte subsets;  T,  T cell; DP, double-positive 
(CD4+CD8+) thymocyte; thymic CD4; CD4, CD4+ T cell; 
thymic CD8; CD8, CD8+ T cell; peripheral T; thymic stroma.  
(Radtke F, et al. Nature Immunology 5, 247-253, 2004) 
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Figure 1-6 
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Chapter II 

Characterization of thymic atrophy phenotype of  

FX(-/-) mice 

 

Abstract 

As has been established in previous studies, glycoprotein fucosylation deficiency 

results in leukocyte adhesion deficiency (LAD) type II. This disease is a rare human 

congenital disorder resulting in developmental abnormalities, a deficiency of selectin-

dependent leukocyte trafficking and adhesion, and disabled O-linked glycan structure 

extensions in Notch receptors and thrombospondin repeat containing proteins. Mice 

genetically engineered with a mutation in FX locus, which encodes an enzyme controlling 

the last step in the de novo pathway for GDP-fucose synthesis, has global fucosylation 

deficiency, an extreme neutrophilia, myeloproliferation, and an absence of leukocyte selectin 

ligand expression. Furthermore, a severe thymic atrophy phenotype is observed in FX(-/-) 

mice, in temporal association with the loss of fucosylated glycan structures on soluble and 

cell surface proteins. However, restoration of fucosylation with a fucose-supplemented diet 

restores thymic development in the FX(-/-) mice within 2 weeks. In the FX(-/-) hypoplastic 

thymus, there is a loss of more than 95% of total thymocyte and mature T cells subsets 

(CD4+CD8a+, CD4-CD8a+, and CD4+CD8a-). Further, T cell progenitor populations, 

including the lineage negative DN2, DN3, and the recently proposed DN1a-b cells, are 
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absent in the FX(-/-) hypoplastic thymus after rearing the mice off fucose for 4 weeks. 

These observations strongly indicate that T cell development is disrupted in FX(-/-) mice in 

the absence of fucosylation. 

Introduction 

Leukocyte adhesion deficiency type II (LADII) is a rare human syndrome 

characterized by psychomotor defects, persistent leukocytosis, facial and skeletal 

abnormalities and developmental retardation (94). Cells from LADII patients display a 

global deficiency of fucosylated carbohydrate structures on the cell surface (95, 96). The 

molecular basis of LADII corresponds to a disruption in the de novo pathway of GDP-

fucose biosynthesis (Figure 2-1) (97).  

In this GDP-fucose synthetic pathway, GDP-fucose is the high-energy form of 

fucose and is used as a substrate in the synthesis of fucosylated glycans (44). In the de 

novo synthetic pathway, GDP fucose is converted first from GDP-mannose (98-100)  to an 

intermediate product, GDP-4-keto-6-deoxymannose, by the GDP-mannose 4,6-dehydratase 

enzyme (GMD) (Figure 2-1) (101). The sequence of GMD is substantially conserved 

among E.coli (102-104), mice (105) and humans (106, 107), suggesting that this synthetic 

pathway is essential for living organisms. The GMD mRNA transcript is expressed in 

almost all human tissues, although at considerably different levels (106), and has been 

detected in several human cell lines (107). Crystallography studies have shown that E.coli 

GMD protein belongs to the short-chain dehydrogenase/reductase family of proteins with 

threonine133-tyrosine-lysine catalytic triad and glucose135 as an active-site base (103). 

Crystallization and biochemical studies indicate that the GMD enzyme forms a domain-

swapped homodimer for intersubunit communication, with each monomer consisting of an 

NADP+ binding N-terminal domain and a GDP-mannose binding C-terminal domain (103, 
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107, 108). GDP-fucose, as a final product, inhibits the activity of GMD, which has been 

shown to function as a classic negative feedback in enzyme regulation (103, 104, 106-110).  

GDP-4-keto-6-deoxymannose is converted to GDP-fucose by a dual functional 

enzyme, 3,5 epimerase/4-reductase called FX (Figure 2-1) (111, 112). As an epimerase, FX 

speeds up the slow, spontaneous epimerization of the GDP-4-keto-6-deoxymannose stereo 

conversion to yield GDP-4-keto-6-deoxygalactose (113). The reductase activity of FX 

protein then catalyzes an NADPH-dependent transfer of a hydride to the keto group of 

GDP-4-keto-6-deoxygalactose to generate GDP-fucose (113). As first seen during the 

purification of glucose-6-phosphate dehydrogenase from human erythrocytes in 1975, FX 

was annotated as an NADP(H)-binding protein with unknown functions (114). It was not 

until twenty years later that FX was shown, by sequence comparisons to enzymes in the 

pathway for GDP-fucose synthesis in E.coli, to be involved in mammalian GDP-fucose 

synthesis (115). The FX locus has been highly conserved during evolution, with a 50% 

sequence identity between the human and E.coli enzymes, and with approximately 90% 

sequence identity among mammalian FX homologues (112). The structural study of the 

crystallized E.coli FX homologues assigns the FX protein to the reductase-epimerase super 

family (116). Somers and colleagues report a single substrate-binding pocket for GDP-4-

keto-6-deoxymannose in FX, indicating that the epimerization and reduction reactions take 

place at the same site (117). At 1.45-1.6 Angstrom resolution, X-ray crystallographic 

analysis of mutant E.coli FX molecules with site-specific changes in amino acid sequence 

identify Cys109 and His179 as components of the N-terminal NADPH-binding domain 

and a C-terminal domain that forms the substrate-binding pocket (118).  

After being synthesized in the cytosol, GDP-fucose is transported by a multi-pass 

transmembrane transporter to the lumen of the Golgi (119), where it is used for fucosylated 

glycan synthesis. O-fucosylation occurs in the ER (36) indicating the existence of a GDP-

fucose transporter in ER that transports GDP-fucose into the lumen of the ER (120). The 

catalytic domains of fucosyltransferases, as shown here residing in the Golgi lumen, direct 
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the GDP-fucose-dependent transglycosylation reaction that ultimately links fucose to 

specific acceptors (Figure 2-1) (44). Eventually, fucose-containing 

glycoconjugates/glycolipids are transported out of Golgi, to be presented on the 

extracellular side of the cell membrane, or to be released as a soluble molecule to execute 

their biological functions.  

Components of the de novo GDP-fucose synthetic pathway have been shown to be 

involved in many physiological and pathological pathways. The expression level of FX 

protein is elevated in human hepatocellular carcinoma/hepatocyte cell lines (121), in highly 

metastatic colorectal cancer variants (122), and in activated T and B cells (123). Further, 

synchronized upregulation of GMD, FX, GDP-fucose transporter and fucosyltransferase 

VII in inflammation and in tumorigenesis has been reported (124).  

Tonetti and colleagues first demonstrated that cells from LADII patients display a 

significant deficit in GMD activity (125). Thus those patients lack fucose-containing glycan 

structures and fucose-specific biological functions as reviewed in (126). The 

fucosyltransferases in LADII patients were expressed at normal levels (127), suggesting 

that the deficiency of fucosylation was due to the unavailability of GDP-fucose. Later it was 

shown that the GDP-fucose transport activity of Golgi preparations was reduced in cells 

from LADII patients (128, 129). Further, missense mutations (130) or deletion (131) found 

in locus of SLC35C1 gene, a GDP-fucose transporter protein on Golgi apparatus (132), 

corresponded to the LADII phenotype. Mice deficient in SLC35C1 displayed severe growth 

retardation, elevated postnatal mortality rate, dilatation of lung alveoli, hypocellular lymph 

nodes, and a deficiency of selectin-ligand function resembling the symptoms of LADII 

patients (133). Interestingly, adding fucose to cells from these SLC35C1 deficient mice 

partially rescued the phenotype, implying the existence of alternative mechanisms for 

transporting GDP-fucose into the Golgi lumen (133).  

These observations assign important roles to fucose and fucosylated glycans in 

physiology and pathogenesis. In order to uncover novel and specific functional roles for 
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fucose and fucosylated glycans, a genetically engineered mouse model was made in which 

the FX locus was disrupted to induce global fucosylation deficiency (112). Interestingly, 

FX(-/-) mice displayed a partially penetrate embryonic lethal phenotype, with the loss of the 

majority of embryos by 12.5 dpc (93). Intercrosses between FX(+/-) and FX(+/-) were 

carried out in an attempt to generate FX(-/-) mice. These intercross yielded only 6 live-born 

FX(-/-) mice, from a total of 360 progeny genotyped at weaning, which suggested that most 

FX(-/-) mice die in the uterus. These live-born FX(-/-) mice exhibit a postnatal failure to 

grow and have a life span of 1 to 2 months. These observations made it almost impossible 

to study the adult phenotypes of FX(-/-) mice on the original strain background.  

Fortunately, as will be elaborated below, a salvage pathway has evolved that allows 

the supply of GDP-fucose to be restored when the FX-dependent de novo synthetic 

pathway from GDP-mannose is disrupted (Figure 2-1), and was used in combination with 

breeding experiments to generate sufficient numbers of live-born FX(-/-) mice to study. The 

salvage pathway starts from free L-fucose molecules that are transported into cytosol from 

the extracellular milieu (121,134). Yorek and colleagues reported that the uptake of L-fucose 

in various mammalian cell lines is mediated by a fucose-specific process that is not 

receptor-mediated endocytosis but is characteristic of a facilitated diffusion system (135). 

They further purified the L-fucose transporter, a 57kD cell-membrane protein, from mouse 

brains (136). This transporter can be found in almost all major mouse tissues, such as the 

kidney, lung, spleen, heart, and thymus (136), suggesting that the GDP-fucose synthetic 

salvage pathway is not tissue-specific, but is instead a rather generally expressed pathway.   

In a two-step reaction, the salvage pathway in the cytosol converts exogenous L-

fucose. First L-fucose is phosphorylated by fucokinase, a 110kD protein that is widely 

distributed in mammalian tissues, to form fucose-1-phosphate (137-139). The only other 

sugar that can be phosphorylated by fucokinase is D-arabinose with the generation of "-D-

arabinose-1-P, at about 10% the rate of L-fucose, indicating the high specificity of this 

enzyme (138). Fucose-1-phosphate is subsequently converted to GDP-fucose by GDP-L-
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fucose pyrophosphorylase (128,129). This enzyme is a 61kD protein with specificity for 

beta-L-fucose-1-P, although it can use "-D-arabinose-1-P to produce GDP-"-D-arabinose 

(140). Similar to fucokinase, L-fucose pyrophosphorylase was widely distributed in all 

tissues tested (141), indicating that the salvage pathway is a universal mechanism for 

mammalian cell types. The activity of fucokinase and L-fucose pyrophosphorylase may 

change in various conditions, such as after the acquisition of a brightness discrimination 

reaction in the rat hippocampus (142), a day after passive avoidance training in chicks right 

forebrains (143), after incubation of dopamine with rat hippocampal slices (144), or by 

administrate rats with dopaminergic drugs in water (145). Although it’s not fully 

understood yet how fucokinase is regulated, L-fucose and its analogs inhibit fucokinase 

activity in vitro, indicating a negative feedback system similar to GMD (146).  

The degree to which the salvage pathway contributes to GDP-fucose synthesis 

under normal physiological conditions is not understood. In a quantitative study using in 

vitro HeLa cell culture, it has been observed that greater than 90% of GDP-fucose is 

generated from the de novo pathway in the presence of L-fucose (147), indicating a 

supporting role for the salvage pathway in GDP-fucose synthesis. However, this pathway 

may fully reconstitute cellular GDP-fucose levels in Chinese Hamster Ovary Lec13 cells, 

which lack GMD and are thus deficient for the de novo synthetic pathway (105), if L-fucose 

is added to the Lec13 cells in culture (Becker DJ & John Lowe, unpublished data).  

Taking advantage of the salvage pathway, fucose was added to the water or chow of 

two of the original FX(-/-) male mice. These FX(-/-) male founders, when reared on fucose, 

were found to be fertile, and when crossed with FX(+/-) females, gave rise to a nearly 

Mendelian ratio of progeny (50% -/-, 50% +/-expected, ~30%-/-, ~70% +/-) when the 

females were kept in cages with fucose supplementation (93). Breeding experiments further 

improved the yield of null progeny, which is essentially fully Mendelian when FX(+/-) 

males are crossed with FX(+/-) females, when the FX null allele is on a C57Bl/6J 

background (93).  
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Under these circumstances, FX(-/-) mice are able to grow to adulthood on fucose 

supplementation. Experimental evidence has shown that FX(-/-) mice on a fucose-

supplemented diet display an essentially wild-type phenotype in growth (by weight), 

viability (by survival analysis), and cellular functions (by histology and expression of 

fucosylated-glycans) (93).  

In addition, fucosylation is easily manipulated by simply supplying FX(-/-) mice 

with a fucose-containing diet, or maintaining the mice on water or chow not supplemented 

with fucose. Most experiments in my thesis were done using FX(-/-) mice fed with fucose 

from weaning until the age of 8 weeks. In some instances, these mice were then placed on a 

non-fucose supplemented diet, yielding fucosylation deficiency and the fucose-dependent 

phenotypes described previously (148). This approach to the conditional control of 

fucosylation makes it possible to observe phenotypes controlled by fucosylation in FX(-/-) 

mice. 

This chapter will focus on the thymic atrophy observed in adult FX(-/-) mice upon 

the withdrawal of fucose from their diet. Mature T cells were almost completely lost among 

total thymocytes isolated from these FX(-/-) mice. By phenotypic analysis of cell surface 

markers, T lymphocytes within the FX(-/-) hypoplastic thymus accumulated in an early 

stage of development. As discussed in the following chapters of this thesis, these 

observations initiated further investigations that focus on the novel functional roles of 

fucosylated glycans. 

 

Methods 

Materials- All experiments were conducted in accordance with the National 

Institutes of Health guidelines for the care and use of animals and within the approved 

animal protocols of the University of Michigan and Case Western Reserve University 
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Animal Care and Use Committees. C57B/6 mice were obtained from Jackson laboratory. 

FX knockout mice, as FX(-/-), were made as previously described (93). FUT4/7 double 

knockout mice (DKO) were made, again, as previously described (53). Thymus was 

isolated from the mice and mechanically disrupted to make a single cell suspension. 

Thymocytes were first resuspended in red blood cell lysis buffer (Sigma) at room 

temperature for 5 minutes, and washed twice in Hank’s Balanced Salt Solution (HBSS, 

Gibco) with 0.1% Bovine Serum Albumin (BSA, Sigma) (working medium). Cells were 

pelleted by centrifugation and resuspended for cell counts by Trypan blue or phenotypic 

analysis by flow.   

Thymocyte enrichment- After red blood cell lysis, thymocytes were first incubated 

on ice for 10 minutes in HBSS+0.1% BSA with anti-mouse Fc block (1:400, BD 

Pharmingen). After being washed, the cells were then incubated on ice for 30 minutes with 

biotinylated antibodies from BD Pharmingen: anti-mouse CD3$ (553059), anti-mouse CD4 

(553045) (1mg/ml stock as 20ul/100x106 cells). The cells were then washed twice in 

HBSS+0.1% BSA and were incubated on ice for 15 minutes with rat-anti-mouse IgG 

magnetic beads (Miltyni Biotech) with a concentration of 120x106 cells/830ul beads. Then 

the bead-labeled cells were passed through magnetic columns for negative selection so that 

lineage positive cells were left bound on the columns. Cells that flowed through were 

collected for further surface antibody staining. In FX(-/-) mice rearing off fucose for 4 

weeks, this thymocyte enrichment procedure was typically skipped, since very few mature T 

cells were found.  

Flow cytometry- Thymocytes were stained with anti-mouse antibodies from 

eBiosciences and BD pharmingen and were incubated on ice for 30 minutes. Stained cells 

were then washed twice before being loaded into the cytometor for analysis. The following 

antibodies were used for CD4 and CD8a analysis and PSA staining: FITC-anti mouse 

CD4, PE-anti mouse CD8a, FITC-PSA (Pisum sativum agglutinin). As a negative control 

for lectin binding specificity, 100mM mannose was added in a staining medium of PSA 
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tubes. In lineage depleted DN1-4, ETP and DN1a-b analysis, biotinylated anti-mouse CD3, 

CD4, CD8a, CD11b, CD19, Gr-1, Ter-119, NK1.1 were first incubated with thymocytes on 

ice for 30 minutes. After being washed twice, cells were further stained with SA-PE-TxRd. 

Other antibodies used included APC-anti mouse CD44, APC-Cy7-anti mouse CD25, 

FITC- anti mouse CD24, FITC-anti mouse CD127 (IL7-R"), PE-anti mouse CD117 (c-

Kit). FACSAria (BD biosciences) FACScan (BD biosciences) and ELITE (Coulter) were 

used for 2-6 colored analysis. 

Bone marrow cells isolation- Bone marrow cells from femur and tibia of the mice 

were flushed out in HBSS with 0.1% Bovine Serum Albumin (tissue culture tested, Sigma). 

Red blood cells were lysed after isolation with red cell lysis buffer (Sigma). Lineage 

depletion was carried out by incubating the cells with biotinylated anti-mouse CD3, CD4, 

CD8a, %#-TCR, B220, Gr-1, CD11b, Ter-119, NK1.1  (BD, Pharmingen) antibodies, 

followed by magnetic bead depletion (Miltyni Biotec). 

Intravenous injection- Lineage depleted bone marrow progenitors were 

intravenously injected into FX(-/-) recipient mice off fucose for 4 weeks. 11x106 lineage 

depleted cells on average were isolated from one wild-type mouse and injected intravenously 

into a FX(-/-) recipient mouse off fucose for 4 weeks (12wks old). Recipient mice were 

analyzed four weeks after injection. 

 

Results 

Fucose depletion and abnormal FX(-/-) thymic development in an off fucose 

environment. 

Encouraged by previous evidence of the important roles of fucosylated glycan 

structures in the innate and adaptive immune systems (49), FX(-/-) mice were genetically 

constructed to uncover novel functional roles of fucosylated glycans (93). The de novo 
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GDP-fucose synthesis pathway was disrupted in the FX(-/-) mice by abolishing the 

function of the FX enzyme that controls the last step of the GDP-fucose synthesis (Figure 

2-1). As expected, FX(-/-) mice displayed a global fucosylation deficiency (93). In most 

cases, FX (-/-) mice mostly died around 12.5 days in the uterus, displaying the embryonic 

lethal phenotype. However, this lethality of FX(-/-) mice embryos was rescued by a fucose-

supplemented diet to mothers and the newborn babies. These FX (-/-) mice on a diet 

including fucose displayed wild-type phenotypes. As a result, there was no defect observed 

in these FX(-/-) “on fucose” mice and they were able to grow to adulthood (93). The size 

of the thymus of these FX(-/-) on-fucose mice was similar to their age-matched wild-type 

littermates, as shown in Figure 2-2. These observations indicate that by restoring 

fucosylation with a fucose-supplemented diet normal thymic development is sustained.  

After being fed with a fucose-supplemented diet until 8 weeks old, these FX(-/-) 

mice were fed on a non-fucose-supplemented diet to induce phenotypes that related to the 

loss of fucosylation (Figure 2-2 time bar). At a two-day interval, the thymus of FX(-/-) was 

isolated for analysis. The size of the FX(-/-) thymus decreased at the time of fucosylation 

loss and reached a steady state after 4 weeks off fucose (Figure 2-2). The size of the FX(-/-) 

thymus did not change when mice were maintained on a non-fucose supplemented diet for 

up to 13 weeks (data not shown).  

When FX(-/-) mice off fucose for 4 weeks were again fed a fucose-supplemented 

diet at two-day intervals, within two weeks the size of the thymus of these mice increased to 

a level comparable to that of their age-matched wild-type littermates, indicating that restoring 

fucosylation may fully rescue the atrophy phenotype in FX(-/-) mice.  

The number of total thymocytes of FX(-/-) mice dramatically decreased at the time 

of fucosylation loss and increased when fucosylation was restored, as shown in the same 

time frame of fucose supplementation to mice during analysis (Figure 2-2). Notably, as 

counted by trypan blue exclusion, when losing fucosylation for 4 weeks, the number of live 

total thymocytes of FX(-/-) mice dropped on average by a factor of 1000, from 1.38x108 



 33 

(on fucose since birth, 12 weeks old) to 2.15x105 (4 week off fucose, 12 weeks old) (Figure 

2-2). These results indicate that one or more thymocyte populations were lost in FX(-/-) 

thymus off fucose for 4 weeks. In the following analysis, if not specifically indicated, 

“FX(-/-) off fucose” mice refer to FX(-/-) mice having been off fucose for 4 weeks.  

 However, FX(-/-) mice that had always been fed the fucose-supplemented diet had 

comparably sized thymuses (Figure 2-2) and comparable numbers of thymocytes (Figure 

2-3) relative to their age-matched wild-type littermates, indicating that the atrophy phenotype 

of FX(-/-) mice off fucose was not age-dependent. Rather, the atrophy phenotype of FX(-/-) 

thymus is only fucosylation-dependent.  

In our analysis, the fucosylation status of FX(-/-) thymocytes was monitored by the 

flow cytometry staining of P-lectin, also known as PSA (Pisum sativum agglutinin), which 

is a reagent that recognizes "(1,6)-fucosylated N-glycans (149) on the cell surface (93, 

150). PSA may bind to cells specifically and non-specifically. Free D-mannose can 

compete with fucosylated glycans on the cells and abolish the specific recognition of PSA 

to its fucosylated glycan target. Thus if PSA stains specifically on the cells, this binding can 

be abolished by adding D-mannose (data not shown) (93, 151). By 4 weeks off fucose, 

FX(-/-) thymocytes are mostly PSA negative, indicating the absence of fucosylated glycans 

on the cell surface and the fucosylation-deficient status of the thymocytes. When FX(-/-) 

mice off fucose for 4 weeks were again fed with a fucose-supplemented diet, the PSA 

positive thymocytes of these mice increased to 95% of their original total in two days, 

indicating the presence of fucosylated glycans on the cell surface and the fucosylation-

sufficient status of the thymocytes.  

It is interesting to notice that FX(-/-) thymocytes needed about 8 days to completely 

lose the "(1,6)-fucosylated N-glycans on their cell surface. However, in only 2 days, the 

"(1,6)-fucosylated N-glycans were detected again on FX(-/-) thymocytes. This time 

difference indicates that the fucosylated glycans may be turned over and fucose may be re-

used by the cells or the tissues of FX(-/-) mice; thus the fucosylated structures were still 
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being made in FX(-/-) thymocytes after a few days off fucose. These results also imply that 

the time frame from the synthesis of fucosylated structures to their presentation on the cell 

surface is about 2 days.  

These observations suggest that the thymic atrophy phenotype of FX(-/-) mice is 

fucosylation-dependent and reversible. We were particularly interested in understanding the 

mechanisms of this fucosylation-dependent thymocyte development, because in this way we 

might learn why and how fucosylation contributes to thymocyte development, a very 

important process in the formation of our adaptive immune system.  

 

The Complete Block of Mature T cell Development in FX(-/-) Mice off 

Fucose.  

The thymus is the organ in which T cell development occurs during the development 

of adaptive immune system. The total number of thymocytes include all T cells at various 

developmental stages within the thymus, thus they are very heterogeneous. CD4+CD8+ 

double positive (DP) cells compose 90% of the total thymocytes. We first tested whether 

this DP population was present in FX(-/-) off-fucose thymus by using two-parameter flow 

cytometry. Around 90% of cells in the thymus of a wild-type mouse were CD4 and CD8a 

double positive (Figure 2-4 a). However, FX(-/-) mice off fucose 4 weeks typically have less 

than 1% of DP cells (Figure 2-4 a). Instead, around 60% of FX(-/-) off-fucose thymocytes 

were in the CD4-CD8a- (DN) stage. CD4+CD8a- and CD4-CD8a+ (SP) cells in FX(-/-) 

off-fucose thymus were enriched up to 30% of total number of thymocytes. These results 

indicate that the missing DP population is probably the major defect in FX(-/-) off-fucose 

thymus and accounts for the thymic atrophy phenotype.  

Since there was a dramatic change in the total thymocyte number of FX(-/-) off-

fucose mice, the percentage of each population could not represent the change in number 

within the thymus. The numbers of DP, DN and SP populations were further enumerated 

by multiplying the percentage of each population with the total thymocyte number (Figure 
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2-4 b). The numbers of CD4+CD8a+ DP, CD4+CD8a-, and CD4-CD8a+ cells were graphed 

according to the time frame shown in Figure 2-2. Similar to the changes of total thymocytes, 

the numbers of all of these mature thymocyte populations in FX(-/-) mice first decreased 

upon the time of fucose depletion. FX(-/-) mice off fucose 4 weeks had only 3.03x103 DP 

cells in average, while FX(-/-) on-fucose littermates had 1.21x108 DP cells on average, and 

age matched wild-type mice had 1.47x108 DP cells on average. Despite the enrichment of 

SP populations, as shown by percentage in Figure 2-4 a, the numbers of CD4+CD8a- and 

CD4-CD8a+ cells in FX(-/-) off-fucose thymus actually decreased during fucose depletion, 

indicating that the maturation of T cells is abolished upon the time of fucosylation loss in 

FX(-/-) mice. 

When fed with a fucose-supplemented diet, FX(-/-) mice had an increase in all these 

mature thymocytes and reached levels comparable to their 14-week-old wild-type littermates 

(Figure 2-4 b). These results indicated that the generation of mature thymocytes could be 

restored by fucosylation.  

 

Lin- DN1 T Cell Progenitors Missing in FX(-/-) Mice off Fucose.   

Loss of mature thymocytes in FX(-/-) mice on a non-fucose supplemented diet 

strongly indicated a “block” during thymocyte development. Most of the thymocytes in the 

FX(-/-) off-fucose thymus were in the CD4-CD8a- (DN) stage, which is earlier than the DP 

and SP stages. To further refine the developmental stages within DN cells, CD44 and CD25 

were used to divide the CD4-CD8a- cells into four different stages (152-154). 

CD44+CD25+ (DN1) cells within DN population progress through CD44-CD25+ (DN2), 

CD44-CD25+ (DN3) to CD44+CD25- (DN4), and then up-regulate CD4 and CD8a 

expression to be DP cells as a traditional model for T cell development. FX(-/-) mice off 

fucose 4 weeks had in average 76.51(±0.53)% of CD4-CD8a- cells in CD44+CD25- (DN1) 

stage of the T cell developmental pathway (data not shown), which indicated a possible 

accumulation of T cell progenitors. However, within the DN1 population, other lineage 
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positive cells, including B cells as B220+CD19+ and NK cells as NK1.1+, were found (155, 

156) (data not shown). These observations indicated that lineage positive cells should be 

excluded in the analysis of T cell progenitors that usually don’t express any of the lineage 

markers. A previous study indicated that B220 is also expressed on T progenitors in 

addition to B cell progenitors (157). To avoid the depletion of this potential T progenitor 

population, CD19 was used as a marker for mature B cells in our analysis, while in other 

studies B220 might be used during lineage depletion (157-159). 

The DN1 population is thus extremely heterogeneous, and we analyzed the T cell 

progenitor populations after excluding mature hematopoietic cells. Wild-type thymocytes 

and FX(-/-) on-fucose thymocytes usually occur in the range of 108 per thymus, and lineage 

negative thymocytes were enriched by passing them through the columns that bind to 

magnetic beads conjugated on lineage positive cells. Due to the very limited cell numbers of 

FX(-/-) off-fucose thymus, lineage depletion was carried out simply by electronic gating 

during analysis without lineage depletion by magnetic columns. In fact, around 8 to 10 

thymuses of FX(-/-) off fucose for 4 weeks were combined to generate one flow profile in 

each analysis.  

Propidium iodide (PI) was used at a final concentration of 1ug/ml in every staining 

tube in order to separate the live cells from the dead, because it can stain nuclear chromatin 

when cell membrane is disrupted (160). Live FX(-/-) thymocytes were electronically gated 

on PI negative staining first, and then lineage negative (Lin-) cells were analyzed by CD44 

and CD25 surface markers to be grouped as Lin-DN1 to Lin-DN4 cells (161). Compared 

with age-matched FX(-/-) on fucose and wild-type thymocytes, Lin-DN2 and Lin-DN3 cells 

greatly decreased. 60% of lineage negative FX(-/-) mice off-fucose thymocytes were in the 

Lin-DN1 stage, while 40% of them were in the Lin-DN4 stage (Figure 2-5 a). Although 

there seems to be an accumulation of Lin-DN1 cells in FX(-/-) off-fucose thymus 

percentage-wise, the numbers of the FX(-/-) off-fucose Lin-DN1 cells actually decreased 

(Figure 2-5 b). The complete absence of Lin-DN2 and Lin-DN3 cells in FX(-/-) off-fucose 
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thymus suggests that there is a “block” during the transition of the DN1 stage to the DN2 

stage in early thymocyte development. The presence of Lin-DN4 cells in the FX(-/-) off-

fucose thymus and the absence of DP cells that are a direct downstream population of Lin-

DN4, indicate that there is another “block” during the transition from the DN4 stage to the 

DP stage. These multiple “blocks” suggest that fucosylation is required in all stages of 

early T cell development.  

 

Early T Cell Progenitors Missing in the FX(-/-) Off-fucose Thymus 

Interestingly, Lin-DN1 cells are also very heterogeneous. These cells do not equally 

express cell surface markers such as CD117 (c-Kit), CD127 and CD24, according to the 

studies that attempted to define the earliest thymic immigrants (158, 159, 162).  

Bhandoola and colleagues proposed ETPs (early T cell progenitors) defined as Lin-

CD117+CD127-DN1, which represented a very small population of thymocytes, giving rise 

only to T cells or B cells in vivo (158). In their studies, ETPs were the major population, 

87% (158) or 69% (162) within lin-DN1 cells, however in our study we typically found that 

3% of Lin-DN1 cells were ETPs (Figure 2-6). The difference might depend on the different 

definitions of lineage negative/low populations during analysis with the obscure standards 

in history. Another possibility is that the CD19 marker is used in our analysis to include 

B220 positive T cell progenitors, which is different from others (157-159), since previous 

studies have shown that B220 may be expressed by T cell progenitors (157). Compared to 

wild type and FX(-/-) on-fucose littermates, the ETP population was missing in FX(-/-) mice 

off fucose for 4 weeks (Figure 2-6).  

In another study, Petrie and colleagues proposed five different populations within 

lineage negative DN1 cells defined by the surface CD24 and CD117 expression. Among 

these five different populations, DN1a-b were the T cell progenitors (159). However, the 

DN1a and DN1b populations could not be fully separated in our analysis (Figure 2-7) nor 

in Bhandoola’s study (162). DN1a-b cells may generate only T cells in vitro (159), and T 
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and B cells in vivo (162). Petrie’s group found around 12% of Lin-DN1 cells were in the 

DN1a-b stage (159), while Bhandoola’s group found 69% Lin-DN1 cells are DN1a-b cells 

(162) by using the same analytical method. Thus, there is an inconsistency in the literature 

regarding the percentage of DN1a-b cells per thymus, which may possibly be due to the 

lineage negative gating. In our study, we consistently found that 2% of the lineage negative 

DN1 cells were in DN1a-b stages in wild-type thymocytes.  

In their study, Bhandoola and colleagues further proposed that ETPs are the same as 

DN1a-b cells (162). Our results, that similar percentages of ETPs and DN1a-b cells were 

found in lineage DN1 thymocytes, seem to be consistent with this proposal. Similar to the 

result of ETP analysis, the DN1a-b population was missing to a large extent in FX(-/-) off-

fucose mice (Figure 2-7). To some extent DN1c and DN1d were also missing in FX(-/-) 

off-fucose thymus, and to some extent DN1e was enriched.  

These results suggest that early T cell progenitors could not develop or survive in 

the FX(-/-) off-fucose thymus. These observations also suggest that early T cell progenitors 

may not be able to get into the FX(-/-) off-fucose thymus. To answer these results raised, 

we further analyzed several possible reasons for the FX(-/-) thymic atrophy. 

 

Proposed Causes of FX(-/-) Thymic Atrophy: 

1. Notch1 signaling deficiency 

Notch1 conditional knockout mice were reported with a thymic atrophy phenotype 

similar to FX(-/-) off-fucose mice (77). Most of the cells lost in Notch1 knockout mice 

were mature DP thymocytes, which is very similar to the observations in FX(-/-) mice. 

Further, the DN1a-e populations observed in the FX(-/-) hypoplastic thymus are very 

similar to the DNMAML1 (Dominant negative mastermind like molecule-1) transduced 

bone marrow cells in the bone marrow transplantation experiments (162). In this study, a 

dominant negative form of MAML1 was introduced into the bone marrow progenitors, in 

order to compete out functional MAML1, a transcription co-activator required in Notch1 
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signaling (163). Progenitors with inactivation of Notch1 signaling populated the thymus in 

vivo with an enriched DN1e population and, most importantly, with an absence of DN1a-b 

populations (162). These observations suggest that the thymic atrophy of FX(-/-) off-fucose 

thymus is due to the disruption of Notch signaling.  

 

2. Thymic Environmental Defects. 

T cell development occurs only within the thymus of mammals, indicating the 

thymic environment is unique for T lineage commitment. Another possibility is that the 

FX(-/-) off-fucose thymic environment may not be capable of supporting T progenitor 

development. Defects in the thymus epithelial cells could result in the reduced production of 

T cells (164). To identify whether the thymic environment of FX(-/-) off-fucose mice can 

support T cell development, the developmental potential of healthy bone marrow stem cells 

from wild-type mice were tested. Lineage depleted donor bone marrow cells isolated from 

one wild-type mouse (11x106 cells in average, with CD45.1 expression) were injected 

intravenously into an FX(-/-) (CD45.2) recipient mouse that had been off fucose for 4 

weeks (Figure 2-8a). The chimera mice were analyzed 4 weeks after the bone marrow 

transplantation (165).  

The total number of thymocytes in the recipient mice (1.20 x108 /thymus in average 

of 6 mice, 3 independent experiments) was found comparable with age-matched wild-type 

mice (14 weeks old, 1.39x108/thymus in average of 6 mice). The wild-type donor-derived 

CD45.1+ cells were the major population (96%) in the recipient thymus and were PSA 

positive (Figure 2-8b). Around 96% of CD45.1+ donor derived thymocytes were DPs, 

which was comparable to the wild-type mice (Figure 2-8).  

CD45.2+ endogenous cells were PSA negative (Figure 2-8b). The absence of 

fucosylated glycan structures on recipient cell surfaces indicated that there was no fucose 

transfusion from donor cells to recipient cells. Phenotypically, CD45.2+ endogenous cells 

remained in the DN stage, which was similar to the mock-injected recipients (data not 
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shown) or age-matched FX(-/-) mice off fucose (Figure 2-8). The absence of the DP 

population in the recipient endogenous thymocytes indicates that donor cells did not alter 

the development of recipient cells. 

These results indicate that wild-type healthy hematopoietic cells develop to mature T 

cells when fucosylation is absent in the thymic environment; thus the fucosylated thymic 

environment is dispensable for T cell development. These results suggest that the thymic 

atrophy in FX(-/-) mice off fucose is cell-autonomous.  

 

3. Thymic Progenitor Homing Defects. 

Due to the absence of ETPs in FX(-/-) off-fucose thymus, one possibility is that the 

fucose-deficient thymocyte progenitors may not home to thymus. It has been reported that 

bone marrow cells losing P-selectin glycoprotein ligand 1 (PSGL-1) showed defective 

thymocyte homing ability in competition with wild-type thymocytes (166). PSGL-1 is a 

heavily glycosylated protein with alpha-1,3 fucosylated moiety required for its normal 

functions (167) that binds selectively to P-selectin (168, 169) and E-selectin (170, 171). It 

contributes greatly in the leukocyte and neutrophils rolling process (172, 173). 

Fucosyltransferase 4 and 7 are in charge of adding terminal fucose to functionalize PSGL-1 

(174) and play important regulatory roles in leukocyte rolling (52, 53). Thus FUT4/7 

double knockout mice lack functional PSGL-1 and mimic the major phenotypes of PSGL-1 

knockout mice. However, neither FUT4/7 double knockout mice nor PGSL-1 knockout 

mice have thymic developmental abnormalities, indicating that PSGL-1 and alpha-1,3 

fucosylated glycans are dispensable for thymocyte homing and development (52, 53, 166). 

Thus the defective homing is apparently not the major reason for FX(-/-) thymic atrophy.  

 

4. Increased Apoptosis.  

Another reason for the FX(-/-) thymic atrophy may lie in the increased apoptotic 

events in thymocytes. Apoptotic DP thymocytes were found throughout the cortex region of 
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the normal thymus and were thought to correspond to the consequences of positive and 

negative selection (175). If apoptosis is the main reason for the loss of DP cells in FX(-/-) 

thymus, the apoptotic events have to happen before the DP stage. To address this 

possibility, lineage negative DN1 cells were stained by Annexin V, a reagent detecting early 

apoptotic cells (176). Thymic early progenitors of 4-week off-fucose FX(-/-) mice showed a 

similar percentage of apoptotic cells (Annexin V positive) within Lin-DN1 and other 

populations, as the age-matched littermate FX(-/-) on-fucose mice and the age-matched 

wild-type mice (data not shown). These results indicate that the decrease in the total 

thymocytes is not likely due to the apoptosis of FX(-/-) thymic progenitors off fucose. It 

could be possible that early T cell progenitors undergo apoptosis at such a high rate that we 

cannot detect their presence within the thymus.  

To summarize the above analysis, the deficiency of multiple populations of T cells 

and their progenitors in FX(-/-) off-fucose thymus indicates that the normal thymocyte 

development pathway is disrupted. Of the above possibilities, it is most likely that this 

thymic atrophy is cell autonomous and related to the disruption of the Notch1 signaling 

pathway.  

 

Discussion 

The results presented here described a novel phenotype of FX(-/-) mice in the 

function of fucosylation. It was very interesting for us to find out how fucosylation and/or 

fucosylated glycans control thymocyte development, which is an important process during 

immune system development. The enumeration of total thymocyte numbers of FX(-/-) off-

fucose mice indicates that there were populations missing within the atrophic thymus. In 

order to find out which populations were missing in FX(-/-) off-fucose thymus, almost all 

known populations within the thymocyte developmental pathway, such as DP, SP, DN, Lin-
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DN1-4 and early thymic progenitors, were analyzed. This analysis was our first step in 

determining the mechanism of FX(-/-) off fucose thymic atrophy.  

 

No Thymic Atrophy Reported in Known Fucosyltransferase Deficient Mice. 

FX enzyme controls the total de novo production of GDP-fucose, the substrate of all 

the fucosyltransferases. Disruption of GDP-fucose synthesis in vivo ablates the supply of 

GDP-fucose as the substrate for all of the fucosyltransferases (FUT) and disrupts all the 

functions of the fucosyltransferases. In theory, FX(-/-) mice display all the phenotypes that 

could be found in fucosyltransferase deficient mice.  

Glycans synthesized by fucosyltransferases contribute to many different 

developmental, physiological, and pathophysiological processes, such as ABO blood type 

(by FUT1 and FUT2 gene products) (37), host-microbe interactions (e.g. by FUT2 and 

FUT3 gene products) (45), selectin-dependent leukocyte adhesion (by FUT4 and FUT7 

gene products) (52, 53) and neonatal development (e.g. by FUT9 gene product) . So far, 13 

fucosyltransferase genes have been identified in the human genome, FUT1, FUT2, FUT3 

(177), FUT4 (178, 179), FUT5 (180), FUT6 (181, 182), FUT7 (183, 184), FUT8 (185), 

FUT9 (186), FUT10 and FUT11 (187-189), OFUT1 (17), and OFUT2 (188).   

Among these fucosyltransferases, FUT10 and FUT11 are putative 

fucosyltransferases based on sequence comparisons only and as yet have unknown 

functions and no known enzymatic activities. The remaining genes are grouped by the 

glycan structures they make: "-1,2 FUT (FUT1 and FUT2), "-1,3 FUT (FUT3,4,5,6,7 and 

9), and "-1,6 FUT (FUT8) and O-FUT (OFUT1 and OFUT2). Mice deficient in FUT1, 

FUT2, FUT4, FUT7, FUT8, or FUT9 have no reported thymic developmental defects (53, 

190-192). FUT3, FUT5, and FUT6 are clustered in the human genome (193) but do not 

have functional homologues in mice (194, 195). FUT9 product CD15 has no expression in 

adult thymocyte subsets and LSKs in mice (Yunfang Man & John Lowe, unpublished 

data). In summary, the absence of genes accounting for constructing N-fucosylated glycans 
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does not result in thymic atrophy. It seems that N-fucosylated glycans may not play a role 

in thymic development.  

In recent studies, OFUT1 and OFUT2 were found encoding enzymes with O-

fucosylation abilities that add fucose directly to EGF repeats or thrombospondin type I 

repeats (TSRs) respectively (17, 196, 197). Recently, Protein O-fucosyltransferase 

(POFUT) 1 has been extensively studied for the important role it plays in Notch signaling 

in Drosophila (25) and mammals (58). OFUT1 knockout mice display the embryonic lethal 

phenotype and most of the mice die on day 8 of postgastrulation, strongly indicating the 

important role of O-linked glycans in early developmental stages (57). POFUT2 adds 

fucose specifically to the TSRs of many important proteins (196), and mice lacking 

POFUT2 also die early in embryo (Lowe, Haltiwanger, unpublished  data). Thus, it is not 

known yet whether POFUT1 or POFUT2 regulates adult thymic development. 

 

O-fucosylation (Notch signaling) May Contribute to FX(-/-) Thymic 

Atrophy 

GDP-fucose is added to different glycans as a terminal modification in Golgi or 

directly to the Serine/Threonine of proteins in ER. Most fucosyltransferases seem to reside 

in Golgi except POFUT1 found in ER. It’s not known yet if POFUT2 resides in ER. Thus 

we could ask whether the FX(-/-) thymic atrophy relates to ER fucosylation or Golgi 

fucosylation. 

Mice lacking the Golgi GDP-fucose transporter SLC35C1 do not have N-

fucosylated glycans, since GDP-fucose cannot get into Golgi. Since transportation of GDP-

fucose to ER is not disrupted, SLC35C1(-/-) mice have ER O-fucosylated glycans 

expressed with their normal functions. In other words, SLC35C1 deficient mice are 

considered to resemble a putative mouse model with all fucosyltransferase genes knocked 

out but with OFUT1 left intact. FX(-/-) mice are considered to have all fucosyltransferases 

genes knockout out due to the global fucosylation deficiency. Thus in theory the phenotype 
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differences of FX(-/-) mice and SLC35C1 mice should represent the functions of O-

fucosylation.  

However, thymic atrophy was not observed in SLC35C1 mice but was a major 

phenotype for FX(-/-) mice. This strongly indicates that thymic atrophy is due to a lack of 

O-fucosylation in FX(-/-) mice. As it has been reported, O-fucosylation is critical for Notch 

signaling, which regulates thymic development. Finally then, we reach the hypothesis that 

the FX(-/-) thymic atrophy phenotype is due to a lack of O-fucosylation and results in 

Notch signaling deficiency. 

This hypothesis initiates the study to confirm the contribution of Notch signaling in 

FX(-/-) thymic atrophy in vivo and in vitro, as described on the cellular level in Chapter III. 

Chapter IV further pursues, using the methods of biochemistry, the mechanism of how 

fucose contributes to Notch signaling. 
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performed most of the FACS analysis in Figure 2-2,Figure 2-3 and Figure 2-4.  
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Figure 2-1 

 
Figure 2-1 Fucosylation pathways in mammals. Two 
different cytosolic pathways lead to formation of GDP–fucose. 
The constitutively active de novo pathway converts GDP–
mannose into GDP–fucose via oxidation, epimerization, and 
reduction catalyzed by two enzymes (GMD and FX). The 
salvage pathway initiates with free fucose, delivered to the 
cytosol from extracellular sources (shown) or from intracellular 
(lysosomal) sources (not depicted). (Smith PL, et al, The 
Journal of Cell Biology, Volume 158, Number 4, August 19, 
2002 801-815) 
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Figure 2-2 Thymic atrophy and total thymocyte decreased 
in FX-/- mice upon the time off fucose. Each bar shows the 
average of 3 and more animals while N=37 on FX-/-off fucose 
4 weeks. Error bar represents standard deviation of the mean 
(SEM).  
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Figure 2-2 
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Figure 2-3 

 
 

Figure 2-3 FX-/- on fucose mice have normal thymic 
development. N> or =3 for each data point. Error bars 
represent SEM.  
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Figure 2-4 Mature T cells greatly decreased in FX(-/-) 
thymus. a. CD4+CD8a+. CD4+CD8a-, and CD4-CD8a+ 
subsets of cells in FX(-/-) total thymocytes decrease upon the 
time off fucose in FX(-/-) mice. N>=3 for each data points. 
N=37 for off fucose 4 weeks.  Error bars show SEM. b. 
Representative flow cytometry data of 3 or more experiments on 
indicated genotypes on PI negative total thymocytes.  

 



 51 

Figure 2-4 
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Figure 2-5 

 

 

 

 
 

Figure 2-5 Lineage negative DN1-4 cells. Top panel shows 
the representative flow profiles of 4 individual mice in 3 
different experiments. CD44 and CD25 on lineage negative, PI 
negative thymocytes. Lin-DN1: Lin-CD44+CD25- (lower right 
population), Lin-DN2&3: Lin-CD25+ (upper population) Lin-
DN4: Lin-CD44-CD25- (lower left population) Bottom panel 
shows the numbers per thymus of each DN subsets of different 
ages and genotypes. Each bar shows the average of 4 mice, with 
error bar showing SEM.  
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Figure 2-6 
 

 
 
 
 

Figure 2-6 Early T cell progenitors. Top panel shows the 
representative flow profiles of 4 individual mice in 3 different 
experiments. CD127 and CD117 (c-Kit) on lineage negative, PI 
negative DN1 thymocytes. ETP: Lin-DN1CD127-c-Kit+ Bottom 
panel shows the numbers of ETPs per thymus of different ages 
and genotypes. Error bars=SEM. 
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Figure 2-7 

 

 
 

 

Figure 2-7: DN1a-b T cell progenitors. Top panel shows the 
representative flow profiles of 4 individual mice in 3 different 
experiments. CD24 and CD117 (c-Kit) on lineage negative, PI 
negative DN1 thymocytes. DN1a-b: CD24+CD117+ Bottom 
panel shows the numbers of DN1a-bs per thymus of different 
ages and genotypes. Error bars=SEM. 
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Figure 2-8: Cell autonomous defect in FX(-/-) hypoplastic 
thymus. FX(-/-) off fucose thymic epithelial cells and soluble 
cytokine are taken together as “thymic environment in the 
absence of fucosylation” tested by intravenous injecting wild 
type bone marrow cells (Top panel). Four weeks after bone 
marrow transplantation, donor (CD45.1) and recipient (CD45.2) 
thymocytes were analyzed.  
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Figure 2-8 
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Chapter III 

Dysfunction of Notch1 signaling in pathogenesis of  

FX(-/-) thymic atrophy 

Abstract 

FX(-/-) mice lacking the de novo fucose synthesis pathway displayed a severe cell 

autonomous thymic atrophy, with a loss of multiple mature thymocyte populations. This 

phenotype is very similar to that reported in Notch1 conditional knockout mice, and thus it 

is very likely that the Notch1 signaling pathway is disrupted in FX(-/-) mice. To test this 

hypothesis, the Notch1 intracellular domain was introduced into fucose-deficient FX(-/-) 

bone marrow-derived lymphoid progenitors, and the cells were assayed for T lymphoid 

developmental potential. This experimental maneuver rescued the T cell developmental 

defect characteristic of FX(-/-) lymphoid progenitors and thus implicated a fucose-

dependent requirement for Notch1 signaling in this process. In vitro, when genetically 

modified to express some Notch ligands, a bone marrow-derived stromal cell line termed 

OP9 can support the generation of the T-lymphoid lineage from bone marrow stem cells, 

providing another platform to test our hypothesis. OP9 cells bearing the Notch ligands 

Delta-like1 (Dll-1), Delta-like 4 (Dll-4) or Jagged2, when co-cultured with WT bone 

marrow stem cells, instruct such cells to assume a T lymphoid differentiation identity, 

whereas while OP9 cells bearing Jagged1 or Dll3 do not. However, in a fucose-deficient 

experimental situation, FX(-/-) bone marrow cells fail to assume a T lineage identity when 
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co-cultured with OP9-Dll1, OP9-Dll4 or OP9-Jagged2, and fail to initiate Notch1 signaling 

events. These results indicate that fucosylation is required for Notch1 signaling-dependent 

T cell differentiation. 

 

Introduction 

Precisely correlating a phenotype with a specific cellular event in knockout mice is 

sometimes difficult due to factors such as the multiple functions of a protein, systematic 

defects, the crosstalk of signaling pathways, and environmental effects. In our study of FX(-

/-) mice, it is even more difficult, since fucose is integrated into all different kinds of glycan 

structures.  Fucosylated glycans can be found on a tremendous number of cell surfaces and 

intracellular proteins. Thus it is almost impossible to determine which exact fucosylated 

protein contributes to the thymic atrophy of FX(-/-) mice off fucose. However, similar 

thymic atrophy phenotypes can be found in other mouse models, which could hint at ways 

to narrow down the possibilities. In Chapter II, all of the proposed T cell progenitors in 

FX(-/-) hypoplastic thymus were enumerated, and the cell distribution patterns were 

compared.  

 

Disruption of the Notch Signaling Pathway Results in Mature Thymocyte 

Loss 

The FX(-/-) off-fucose thymus contains very few CD4+CD8a+ DP cells, a decrease 

of about 1000 fold compared with the wild-type thymus. DP cell loss has also been 

reported in a few strains of genetically engineered mice. Notch1 conditional knockout mice 

have partially suppressed Notch1 gene expression in the thymus, and 90% of thymocytes 

were lost in the thymus of these mice (77). DP and SP populations were 3 to 5 fold 

decreased in cell numbers in Notch1 conditional knockout mice. Since Notch1 conditional 
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knockout mice still had 75% of the Notch1 gene expression left in the thymus, the greater 

cell loss was expected if the Notch1 gene was completely suppressed. The second mouse 

model was the conditional knockout mouse of RBP-J, which encodes a Notch1 downstream 

signaling partner. This mouse displayed a 90% total cell loss 3 months after being induced 

and an approximately 10 fold of reduction of DP and SP T cells (198). RBP-J conditional 

knockout mice had a 25% RBP-J gene expression left in the thymus and were also expected 

to have a more severe phenotype in a complete knockout condition. The above results 

strongly indicate that disruption of Notch1 signaling immediately results in a loss of mature 

thymocytes.  

 

Disruption of Notch Signaling Accounts for the Decrease of ETPs 

Secondly, early thymic progenitors were missing in the FX(-/-) thymus off fucose 

for 4 weeks. In Chapter II, the DN1a-b population of the FX(-/-) hypoplastic thymus was 

greatly reduced, while some enrichment of DN1e population was observed. This pattern is 

very similar that in another study, in which the thymic progenitors lacked Notch1 signaling 

(162). Transduction of DNMAML1, a dominant negative regulator that inhibits Notch1 

downstream signaling into bone marrow progenitors, resulted in the reduction of DN1a-b 

population within early T cell progenitors, with a slight accumulation of DN1e population. 

This DN1a-e distribution pattern is very similar to that of the FX(-/-) off-fucose thymocytes 

and strongly suggests a probable interruption of Notch1 downstream signaling in FX(-/-) 

mice. 

In summary, comparing with the mice or the cells that lack of Notch 1 signaling, the 

FX(-/-) thymic atrophy has the similar defect during T lineage commitment. The hypoplastic 

thymus of FX(-/-) mice is very likely due to a similar disruption of Notch1 signaling.  

 

O-fucosylation is essential for Notch1 Signaling 
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Within the components of Notch1 signaling, Notch receptors and Notch ligands are 

subjected to fucosylation on the EGF domains (15, 199). Fucose was known found as the 

terminal differentiation for glycan structures, but recently found also in an O-linked fashion. 

The O-fucose glycans are found at Serine/Threonine residues of consensus sequence 

C2XXGGS/TC3 within the second and the third cysteine of the EGF repeats (56). The 

enzyme responsible for adding fucose to the EGF repeats was first cloned in hamsters (16), 

then in humans and mice (17), and later in Drosophila (25). This enzyme was designated 

with the name of protein O-fucosyltransferase 1 (POFUT1).  

Biochemical experiments have proved the important roles of fucosylation to Notch 

downstream signaling in Drosophila and mammalian systems. By using RNA interference, 

knock down of OFUT1 in Drosophila results in a notched wing phenotype resembling that 

of Notch null mutants (25). The Notch downstream target gene expression was regulated by 

POFUT1. In another study, the disruption of O-fucosyltransferase 1 gene in Drosophila, 

also known as Neurotic, resulted in a wing-notched phenotype similar to Notch mutants 

(200). These two independent studies indicated the requirement of POFUT1 in Notch 

signaling. Furthermore, the GMD mutant Drosophila has a global fucosylation deficiency 

in theory and displays a wing development defect similar to Notch mutant flies (201). In the 

mammalian system, O-fucosyltransferase 1 knockout mice display a embryonic lethal 

phenotype (58) that resembles Notch1 knockout mice (77), indicating defects in signaling 

pathways related to development. These observations suggest an essential role of O-

fucosylation in the Notch1 signaling pathway.  

In this chapter, we hypothesized that the FX(-/-) thymic atrophy phenotype was due 

to a lack of O-fucosylation and resulted from a Notch1 signaling deficiency. We first 

reconstituted Notch1 signaling in vivo and in vitro and tested whether Notch1 signaling was 

sufficient to rescue T lymphocyte development. Further, Notch1 downstream signal targets 

and the T cell specific transcription factor gene were studied with regard to the function of 

fucosylation. Our results indicate that Notch1 signaling is regulated by the function of 
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fucosylation in FX(-/-) hematopoietic progenitors and that fucosylation is required for T 

lymphocyte development.  

 

Methods 

Materials- All experiments were conducted in accordance with National Institutes of 

Health guidelines for the care and use of animals and with an approved animal protocol 

form the University of Michigan and Case Western Reserve University Animal Care and 

Use Committees. C57B/6 mice were obtained from Jackson laboratory. FX knockout mice 

were made by as previously described(93). FUT4/7 double knockout mice (DKO) were 

made, again as previously described (53).  

Total thymocytes isolation-The thymus was isolated from the mice and mechanically 

disrupted to make a single cell suspension. Thymocytes were first resuspended in red blood 

cell lysis buffer (Sigma) at room temperature for 5 minutes, and washed twice in Hank’s 

Balanced Salt Solution (HBSS, Gibco) with 0.1% Bovine Serum Albumin (BSA, Sigma). 

Cells were collected by centrifugation and resuspended for cell counts by Trypan blue  

Bone marrow isolation- Bone marrow cells were flushed out in HBSS with 0.1% 

Bovine Serum Albumin (Tissue culture tested, Sigma) from the femur and tibia of the mice. 

Red blood cells were lysed after isolation with red cell lysis buffer (Sigma). Lineage 

depletion was carried out by incubating the cells with biotinylated anti-mouse CD3, CD4, 

CD8a, %#TCR, B220, Gr-1, CD11b, Ter-119, NK1.1  (BD, Pharmingen) antibodies 

followed by magnetic bead depletion (Miltenyi Biotec). Lineage depleted cells were used for 

retrovirus transduction. For LSK isolation, the lineage-depleted cells were further stained 

with FITC-anti-mouse Sca-1 and APC anti-mouse c-Kit antibodies.  

As one alternative method, 5’-Fluorouracil treatment was used to deplete mature 

bone marrow cells, as previously described (202). In brief, 5’-Fluorouracil was 
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intraperitoneally injected with 150mg/kg to each mouse. Five days after injection, treated 

bone marrow cells were isolated and used directly as donors.  

Retrovirus- Notch 1 intracellular domain (ICN1) (1735-2531) was inserted into 

pMIG vector to form pMIG-Noch1IC-EGFP, which was subsequently transfected into 

Phoenix E packaging cells. Viral supernatant was collected 2 days after the transfection and 

kept frozen at -80°C. The titer of retrovirus was determined by transduction to NIH3T3 

cells in a serial dilution assay (data not shown). The transduction efficiency to NIH3T3 was 

above 90% on average (data not shown). 

Retroviral transduction- ICN1 retrovirus was transduced as previously described 

(202). In detail, the isolated bone marrow progenitors were plated in 6 well plates in IMDM 

(Gibco) with 10%FCS (Hyclone), 1xL-glutamine (Gibco), 1xPrecillin/straptmycin (Gibco), 

6ng/ml IL-3, 10ng/ml IL-6, and 100ng/ML Stem Cell Factor (R&D system). On the second 

day, the cells were centrifuged down in the plates at room temperature for 5 minutes at 

1300rpm. Undiluted retrovirus supernatant was added to each well for maximum 

transduction efficiency. Polybrene was added to each well at the final concentration of 

4ug/ml. The virus cell mixture was sealed in the dish and centrifuged at room temperature 

for 2 hours at 900g (2500rmp of table top centrifuge). Right after transduction the IMDM 

medium was changed and fresh IMDM medium was added to the cells. On the third day, 

the cells were again transduced with the same procedure and again cultured overnight.  

Intrathymic injection- Donor cells were analyzed by flow cytometry prior to 

injection. For each recipient, 5x105 donor cells were injected intrathymically after being 

reared off fucose for 6 days. On day 17, the thymus of recipients was isolated and the 

thymocytes were analyzed. 

OP9 co-culture- OP9 stromal cells (ATCC) were transduced with bicistronic Ret10-

EGFP vector alone or with a different full length Notch ligand inserted. Different OP9 cell 

lines were sorted with the same EGFP expression level to ensure the same expression level 
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of transduced genes. The function of different Notch ligands on OP9 has been tested by co-

culture OP9 cell lines with C2C12 myoblasts as previously described (203).  

1000 LSK cells were cultured on different OP9 cell lines with 1ng/ml of IL-7 and 

5ng/ml of Flt3 ligand (carrier free, R&D system), as previously described (204). The 

culture was disrupted by vigorously pipetting on day 8 and day 12. One fifth of each well 

was transferred to the newly plated OP9 cells in each passage with new cytokines added in 

each passage. Analysis of the culture was performed on day 20. 

5x104 to 1x105 total thymocytes (equivalent to one FX/- off-fucose thymus) were 

cultured on different OP9 cell lines with 1ng/ml of IL-7 and 5ng/ml of Flt3 ligand (carrier 

free, R&D system), as previously described (204). On day 8, the co-culture was disrupted 

by vigorously pipetting, and all of the cells were passed to new layers of OP9 cells, with 

fresh cytokines added. On day 13, half of the disrupted culture was kept for analysis, while 

the other half of the culture was transferred onto new OP9 layers. The remaining culture 

was analyzed on day 20.  

Real-time quantitative PCR- LSK cells cultured on OP9 cells were sorted via flow 

cytometry after 8 days in different OP9 co-cultures. The LSK progeny was gated by the 

right lymphoid-like size in the side and forward scatter gate, together with the GFP negative 

gate. Post-sorting efficiency was examined to ensure that the purity of LSK progeny was 

over 98%. RNA was isolated by using RNeasy plus (Qiagen) and then reversely transcribed 

by iScript kit (Bio-Rad). cDNA amplification was carried out using SYBR green Supermix 

reagents (Bio-Rad) on iCycler (Bio-Rad).  

Primers--Primers were designed by MacVector software and the products of 

amplification were ensured within 100-150bp. Primer efficiencies were tested prior to the 

experiments by the serial dilution of the total thymocyte cDNA samples (data not shown). 

The primer pairs used had a typical efficiency of around 2.0 by experiment and in theory. 

GAPDH (forward: TCAAGAAGGTGGTGAAGCAGGC, backward: 

AAGGTGGAAGAGTGGGAGTTGC), Hes-1 (Forward: 
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AAATGACTGTGAAGCACCTCCG, Backward: TCACACGTGGACAGGAAGC), 

Deltex-1 (Forward: AAAGCGACGTGAAGCCTGTGC, Backward: 

TCACCTTCTGCATGTACCTCCG ), GATA-3 (Forward: 

TCTGGAGGAGGAACGCTAATGG, Backward: TTTCGGGTCTGGATGCCTTC).  

 

Results 

Notch1 Signaling Rescues the Defect of T cell Development in FX(-/-) Mice 

off Fucose In Vivo.  

To determine the mechanism for the thymic atrophy in FX(-/-) mice reared in a 

fucosylation-deficient state, we first asked if similar phenotypes had been reported in other 

genetically engineered mouse models. The majority of the thymocytes lost in the absence of 

fucosylation are due to the sizable decease of CD4+CD8a+ mature T cells as well as 

downstream single positive populations. The loss of mature T cell populations has been 

observed in several mouse models, including NOD/LtSz-scid mice (205), IL-7 Receptor -/- 

mice (206), Rag1-/- mice (207), and notably, inducible Notch1 knockout mice (77). Notch1 

knockout mice had a dramatic decrease of DP cells and SP cells. More excitingly, Notch1 

proteins are fucosylated, while IL-7 receptor and Rag1 proteins have not been reported as 

fucosylated glyco-conjugates. Thus, losing fucosylation does not likely disturb the 

functions of the IL-7 receptor and Rag1 recombinase. Rather, these observations indicate 

that the loss of T differentiation potential in FX(-/-) progenitors was very likely due to 

abolishing the functions of Notch1 receptors on the cell surface.  

In the absence of fucosylation, FX(-/-) mice lost multiple T cell progenitor 

populations, including the early T cell progenitors (ETPs) defined by CD117+CD24-IL7R-

"- within DN1 cells. The ETPs are generated in a Notch-dependent manner (162). Loss of 

the ETPs has also been observed in the thymic progenitors where Notch1 signaling was 
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suppressed by DNMAML1 (162). These observations pointed to a Notch1 signaling 

deficiency in non-fucosylated T cell progenitors as a mechanism that accounts for thymic 

atrophy in the FX(-/-) mice.  

To determine whether Notch signaling can rescue T cell differentiation in FX(-/-) 

mice off fucose for 4 weeks, Notch1 signaling was introduced by retroviral transduction of 

the Notch1 intracellular domain (ICN1) in bone marrow progenitors, as previously 

described (202). ICN1 was inserted into the bicistronic retroviral vector pMIG that has an 

internal ribosome entry site (IRES). IRES on pMIG allows the inserted gene (ICN1) to be 

independently expressed with an Enhanced Green Fluorescence Protein (EGFP) cassette. 

Thus the ICN1 gene expression may be monitored by the EGFP expression in the same 

cell. The pMIG-ICN construct was transfected into packaging cells, Phoenix E, and the viral 

containing medium was then collected for the transduction (208). Virus viability has been 

tested by transduction to NIH3T3 fibroblast cells with a typical >95% efficiency.  

Donor bone marrow progenitors (CD45.1) from FX(-/-) mice off fucose for 4 

weeks were enriched via two different methods. First, 5-fluorouracil was used for injection 

to the animal in vivo in order to deplete mature bone marrow cells. In the second method, 

lineage depletion via magnetic beads was carried out on untreated total bone marrow cells ex 

vivo. Since not every single donor cell was transduced, cells expressing ICN1 were traced 

by EGFP expression and CD45.1 expression. Lineage analysis was carried out before 

injection. No CD4 and CD8a expression were detected after transduction in the progenitor 

cells (data not shown).  

To bypass the possible homing deficiency of FX null cells, 5x105 transduced bone 

marrow progenitors in 10µl of PBS with 1% BSA were injected intrathymically into the 

FX(-/-) (CD45.2+) recipient mice off fucose for 6 days, when the thymus was big enough 

for the injection. As shown in Figure 3-1, three populations were injected separately in each 

experiment. The viral vector transduced bone marrow donors from wild-type mice were 

used as positive controls. The viral-vector-transduced donor FX(-/-) off-fucose cells were 
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used as negative controls. The experimental group was the ICN1 transduced FX(-/-) off-

fucose progenitor cells. The recipient thymus was analyzed 17 days post-transplantation by 

flow cytometry, in accordance with the previous studies (165). 

Figure 3-2 show one representative flow data out of 10 experiments on day 17 post-

injection. Transduced donor cells were gated by CD45.1 positive expression and GFP 

positive expression. The left-panel shows that the wild-type bone marrow progenitors 

transduced with the pMIG vector were capable of differentiating into CD4+CD8a+ mature T 

cells in the FX(-/-) recipient thymus. The FX(-/-) bone marrow progenitors transduced with 

the pMIG vector remained in the CD4-CD8a- stage (middle panel) and were not able to 

differentiate into mature T cells. However, when ICN1 was expressed in the FX(-/-) bone 

marrow progenitors,  these progenitor cells were able to differentiate into CD4+CD8a+ T 

cells (right panel). These observations indicate that the in vivo restoration of Notch1 

signaling rescued the ability of FX(-/-) bone marrow progenitors along the T lineage 

developmental pathway in the fucose-deficient environment. These results suggest that the 

hematopoietic progenitors of FX(-/-) mice were deficient regarding Notch1 signaling.  

 

Fucose-dependent Notch1 Signaling Rescues FX(-/-) off Fucose in T Cell 

Development In Vitro 

To further confirm that restoring Notch1 signaling in non-fucosylated FX(-/-) T cell 

progenitors can fully recover mature T cell generation, an in vitro assay for T cell 

differentiation was used, including the co-culture system with OP9 stromal cells (209). As 

has been shown in recent studies, the generation of CD4+CD8+ T lymphocytes from the 

different multi-potent progenitors can be achieved by using Dll1 transduced OP9 cells (159, 

204, 210, 211). In our study, each of the five mammalian Notch ligands was tested to define 

their specific functions in the T cell development pathway. 

The OP9 cells from ATCC were transduced with different constructs in Ret10 

bicistronic EGFP-containing retroviral vector (as shown in Figure 3-1). Each construct 
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contained one of the five full-length Notch ligand mouse cDNAs (Dll1, Dll3, Dll4, Jagged-

1, or Jagged-2). The control OP9 cell line was transduced with an “empty” Ret10 vector. 

Transduction efficiency was examined by the EGFP protein expression. All six transduced 

OP9 cell lines were sorted for the same medium/low EGFP expression level (data not 

shown). Further, these OP9 cell lines were tested in the C2C12 myotube differentiation 

assay to test the functionality of each ligand (Stephanie Chervin and John Lowe, 

unpublished data). Each of the OP9-ligand cell lines, except the OP9-Dll3, have inhibitory 

effects on the myotube differentiation (data not shown), as previously reported (212, 213).  

The LSK (Lineage- c-Kit+ Sca-1+) cells sorted from 12-week-old wild-type mice 

were first used to characterize this co-culture assay. Post-sort analysis was carried out to 

ensure purity (90% in average). On day 0 of the culture, 1000 LSK cells from wild-type 

mice were seeded on OP9 cell lines (204, 210, 214) in the presence or absence of 1mM 

fucose. A IL-7 concentration lower than 5ng/ml of the original reported system was used to 

optimize T cell generation (210). Since our purpose was to provide the in vitro assay that 

favors T cell development, 1ng/nl IL-7 was consistently used, as in the previous report 

(210).  

On OP9 cells transduced with Ret10 or with Ret10-Dll3 or with Ret10-Jagged-1, 

wild-type LSK differentiated along the B lineage and myeloid lineages in the presence and 

absence of fucose, which confirmed previous reports that B and myeloid lineage 

differentiation proceeds in the absence of Notch1 signals in some circumstances (204, 214). 

Dll3 and Jagged-1 were designated as “non-functional ligands” for T cell development. 

However, B cell generation in OP9-Dll3, OP9-Jagged1 or control OP9 culture in WT and 

FX(-/-) LSK has occurred with differing incidence among experiments, and even among the 

wells in the same experiment, which indicates that the culture condition was not optimized 

for B cell development, as previously seen (162). In contrast to the B cells, myeloid cells 

were consistently generated, indicating that myeloid lineage is the default pathway in the 

absence of Notch1 signaling. 
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Among all the culture conditions, OP9 cells expressing Dll1, Dll4 or Jagged2 

supported the generation of CD4+CD8a+ T cells from the wild-type bone marrow LSKs 

(Figure 3-3) in the absence and presence of fucose. We designated Dll1, Dll4 and Jagged2 

as “functional ligands” for T cell development. Among those ligands, Dll4 and Jagged2 

containing cultures generated 6-8 times more T cells percentage-wise, indicating that Dll4 

and Jagged2 are more efficient than Dll1 in conferring T cell differentiation in this assay. 

The cell proliferation abilities, shown as number per input cells, were consistent with this 

observation (Figure 3-5). More interestingly, our results corresponded to the observations 

that Dll4 and Jagged2, but not Dll1, were greatly expressed in the thymus (215). These 

observations suggest that multiple Notch ligands play redundant roles in T cell generation 

while displaying different abilities. These results also imply a more complicated and finely 

regulated system in mammalian hematopoietic developmental pathways.  

As shown in Figure 3-4, FX(-/-) off-fucose LSK did not progress to mature 

CD4+CD8a+ T cells in the absence of Notch ligands, or when non-functional Notch 

ligands were present (OP9, OP9-Dll3, OP9-Jagged1) in culture. These FX(-/-) cells derived 

to B cell or myeloid lineage cells regardless of the fucose present in culture, indicating that 

fucosylation is dispensable in B and myeloid lineage decisions. In the absence of fucose, 

even in the functional-ligand containing cultures (OP9-Dll1, OP9-Dll4, or OP9-Jagged2) 

myeloid and B cell were generated with full suppression of T cell development. Only when 

1mM fucose was added to the culture was the T cell development pathway restored in FX(-

/-) off-fucose bone marrow progenitors. These results indicate that T cell development is 

fucosylation-dependent only in the presence of “functional Notch ligand”. These 

observations also suggest that the function of Notch1 signaling in T lineage commitment is 

fucosylation-dependent. 

 

Fucosylation Controlled Notch1 Signaling Is Required for Intrathymic 

Development.  
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T progenitors developed from stem cells in bone marrow and travel via the blood to 

the thymus, where they further mature. The precise steps along this differentiation pathway 

are not yet fully understood (216-219). Although T cell development may be rescued in vivo 

and in vitro by restoring Notch1 signaling to FX(-/-) off-fucose bone marrow hematopoietic 

progenitors as shown in the previous experiments, it was not known if there were “blocks” 

inside the thymus along T differentiation.  

Phenotypic analysis in Chapter II indicated that the multiple-potent T cell 

progenitors were lost from the thymus of FX(-/-) mice off fucose for 4 weeks (Figure 2-5, 

2-6, 2-7). The paucity of the remaining cells within each T progenitor population makes it 

extremely difficult to complete biochemical or functional assays with these cells. To 

determine whether fucose is required for intrathymic progenitor development, total 

thymocytes from FX(-/-) mice off fucose 4 weeks were isolated and co-cultured with the 

OP9 and OP9-Notch ligand expressing cells in the presence or absence of 1mM fucose. 

Although multiple potential T progenitors were used in the same culture system, the 

proliferation potential of cells in OP9 culture would easily help us to find out if progenitors 

were blocked from maturation along the differentiation pathway.  

For each experiment, the thymuses from 39 FX(-/-) mice reared off fucose for 4 

weeks was isolated and the thymocytes were isolated by mechanic disruption. The 

thymocytes were combined in 3 different groups. In each group, 1/13 of the cells were 

phenotypically examined by flow cytometry to ensure that no DP cells were seeded in the 

culture (Figure 3-6 day 0). Then each group of cells was equally divided and seeded in 12 

different wells (6 different OP9 cell lines with 2 conditions with or without fucose). Thus in 

each culture condition, 3 different wells were seeded in parallel. For each group of the cells, 

a fair comparison could be made within all 6 different conditions. 

 On average, 5x104 to 1x105 cells (equivalent to one FX(-/-) thymus off fucose 4 

weeks) were seeded in the wells of a 24-well plate. With a supplement of fucose in the 

medium, thymocytes proliferated over time in OP9-Dll1, OP9-Dll4 or OP9-Jagged2 
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cultures (Figure 3-7a). Lineage commitment to CD4+CD8a+ cells was observed by flow 

cytometry on day 13 (Figure 3-6) and day 20 (data not shown) in OP9-Dll1, OP9-Dll4 and 

OP9-Jagged2 cultures. These observations are consistent with OP9 cultured with FX(-/-) 

off-fucose LSK cells (Figure 3-4). However, in the absence of fucose, the thymocytes did 

not proliferate and in fact disappeared over time, in OP9-Dll1, OP9-Dll4 and OP9-Jagged2 

cultures (Figure 3-6a). Proliferation and differentiation along myeloid (CD11b+Gr1+) and B 

(B220+CD19+) lineages was not observed in these culture conditions (data not shown).  

The FX(-/-) thymocytes also disappeared over time on OP9-Ret10, OP9-Dll3 and 

OP9-Jagged1 cultures regardless of fucosylation, indicating that Notch1 signaling is 

required for intrathymic development. Proliferation and differentiation along myeloid 

(CD11b+Gr1+) and B (B220+CD19+) lineages was not observed in these culture conditions.  

Several potential populations in the FX(-/-) off-fucose total thymocytes have the 

potential to progress through DP cells, including Lin-DN1, Lin-DN4 and DN1e (159, 214). 

Although we could not pinpoint the exact populations giving rise to DP cells, these 

observations indicated that, in one or more developmental transition, within the thymus 

fucose is required for Notch1 signaling related to T cell generation.  

 

Fucosylation Dependent Notch1 Downstream Target Gene Expression and 

Lineage Related Gene Expression 

Fucosylation is required for Notch1 downstream signaling in many different in vitro 

and in vivo systems, including the wing development of Drosophila (25, 58). However, the 

role of fucosylation in the Notch1 downstream signaling along T cell differentiation of 

mammals has not yet been examined. To directly confirm our previous observations, we 

further examined the activation of Notch downstream targets together with lymphocyte 

lineage related genes in the presence and absence of fucose in the LSK and OP9 cells co-

culture system. 
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After 8 days in culture, 10,000 LSK progeny were sorted directly into lysis buffer 

by lymphoid-like light scatters and GFP negative, which eliminated contamination by OP9 

cell lines that are GFP positive and have higher light scatters. Real-time PCR with 

SYBRGreen dye was used to monitor the expression levels of different genes. To further 

normalize the cell number, GAPDH was used as the internal reference.  

Two Notch1 downstream targets were tested, Hes-1 (220, 221) representing RBP-J 

dependent signaling target, and Deltex-1(222, 223) as a RBP-J independent signaling target. 

In OP9-Dll3, OP9-Jagged1 and OP9 culture, Hes-1 and Deltex-1 were not activated in the 

cultures, regardless of the presence or absence of 1mM fucose. In OP9-Dll1, OP9-Dll4, 

and OP9-Jagged2 cultures, Hes-1 mRNA expression were upregulated 25 times or more in 

the presence of fucose (Figure 3-8), while Deltex-1 mRNA was increased in its expression 

more than 300-fold (Figure 3-8).  

Pre T-alpha is a Notch1 downstream target (224) and is expressed on DN3  

populations (224-226), specifically along T cell development. However, pT-alpha mRNA 

transcripts were so few to be detected in those LSK progenies (data not shown). GATA-3 is 

so far the specific transcription factor for T lineage (227) and was used in the same 

experiments to monitor the T lineage potential of cells. Similar to Hes-1 and Deltex-1, 

GATA-3 was expressed fucosylation-dependently in the FX(-/-) progenitor cells in Dll1, 

Dll4, and Jagged2 containing OP9 co-cultures (Figure 3-8). Although other fucose-

dependent signaling pathways may contribute to T cell development, our observations 

strongly indicate that fucose is required for the activation of Notch1 downstream signaling 

as well as the T cell differentiation. The correlation of fucose-dependent Notch1 

downstream signaling activation and fucose-dependent T cell differentiation has shown that 

in the absence of fucose, the LSK progeny displayed the silence of Notch1 downstream 

activation and they were unable to differentiate to T cells. These results also imply that the 

pathogenesis of the FX(-/-) thymic atrophy is the disruption of Notch1 downstream 

signaling and T lineage commitment by the abolition of fucosylation. 
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Discussion 

FX(-/-) mice have a fucosylation-dependent hypoplastic thymus. Analysis of 

thymocyte populations in these mice pointed out a developmental defect of T cells that 

correlated with a loss of fucosylation. Early T cell progenitors are missing in the atrophic 

thymus, due to the loss of fucosylation. These conclusions from Chapter II raised the 

question of how fucosylation controls T lymphocyte differentiation. In comparison with the 

phenotypes of other experimental models, it was proposed that fucosylation ceases T cell 

development by disrupting Notch1 signaling. The experiments outlined in Chapter III were 

designed to test this hypothesis. Our observations in Chapter III reveal an important role for 

fucose in Notch1 signaling in the T cell differentiation pathway.  

First, we took the approach of reconstituting Notch1 signaling in vivo by 

transducing the intracellular domain of Notch1 into hematopoietic progenitors. Retroviral 

transduction has been widely used to introduce genes to cells that are difficult to transfect. 

Bone marrow stem cells are difficult to transfect, and the efficiency of retroviral transduction 

is relatively low. Several studies indicate that only 0.1% to 1% of the human pluripotent 

hematopoietic stem cells are potentially targeted during retroviral transduction (228, 229). In 

murine models, retrovirus has been widely used and nearly every experimental detail of 

designing retroviral vector to increase transduction efficiency has been greatly improved 

over time. The Phoenix E packaging cell line (230) was made based on the genetically 

engineered BOSC 23 cell line capable of producing high-titer helper-free retrovirus (231). 

Compared with the BOSC 23 cell line, the Phoenix E (Phoenix Ecotropic) cell line is highly 

transfectable with either calcium phosphate mediated transfection or lipid-based transfection 

protocols. High-titer retroviruses were obtained in 3 days by transient transfection in 
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Phoenix E cells. Thus highly active retroviruses were used in transduction in order to 

increase the transduction efficiency.  

Notch1 intracellular domain inserted retrovirus has been used previously to identify 

the functions of Notch signaling in various experimental systems. Warren Pear and 

colleagues have defined the transduction protocol in their studies of Notch1 signaling in T 

cell leukemia (76, 202, 232-234). Spinoculation during transduction was applied in our 

procedure so that the maximum amount of virus could hit bone marrow stem cells (235). In 

addition, retroviral transduction on the same stem cell population twice in consecutive days 

potentially increased the ratio of transduced cells (232).  

The intrathymic injection technique was developed to study the process of bone 

marrow cell homing to the thymus. This is a complicated surgical procedure made even 

more challenging by the small size of the FX(-/-) recipients with a hypoplastic thymus. 

Transduced cells were analyzed carefully right before being injected into the recipient mice. 

EGFP expression has been seen in transduced bone marrow cells to validate the 

transduction. Cell surface markers of CD4 and CD8a were used in the analysis of 

transduced bone marrow progenitors in order to ensure the early developmental stage of 

injected cells. No mature T cell populations were identified in the transduced bone marrow 

cells that were injected. This observation has been consistent across our 10 or more 

experiments.  

The functions of Notch1 and its ligands in hematopoietic cell differentiation have 

long been sought in different in vitro experimental setups. Soluble human Dll-1 was shown 

to delay the differentiation of mouse hematopoietic progenitors in a culture dish (236). 

Meanwhile, hDll-1 promoted the expansion of primitive precursors in vitro. Plated-coated 

Notch ligand of Dll1 was shown to be required for Notch signaling and downstream gene 

activation (203). However, bone marrow cells cultured on plate-bound Dll1 could only 

progress to the DN2 (CD25+) stage along T cell development. To identify the role of 

Notch ligands in lymphoid differentiation pathways, L. Parreira and colleagues expanded 
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the idea from a co-culture system (237), in which bone marrow stem cells were cultured 

with a bone marrow stromal cell line. In their studies, bone marrow stromal S17 cell line 

was transduced with different Notch ligands and was coated as the bottom layer in co-

culture with human bone marrow progenitors (238). Our initial adaptation of this co-culture 

system by Lan Zhou and Stephanie Chervin for the study of T cell differentiation was not 

able to identify the generation of mature T cells (unpublished data). However, it seems that 

greater T cell differentiation efficiency is achieved with another bone marrow stromal cell 

line of OP9 (204). It is not yet known how S17 cells differ from OP9 cells in terms of 

conferring T cell differentiation in vitro. 

Originated from OP9-Dll1 co-culture system by Juan Carlos Zúñiga-Pflücker and 

colleagues (239), OP9 cells have been widely used in co-culture experiments in order to 

identify the roles of different Notch ligands. OP9-Dll1 cells have been shown to support T 

lymphopoiesis from mouse fetal liver cells (204) or adult bone marrow stem cells and 

embryonic stem cells (211). Progenitors from fetal liver were consistently able to progress 

to mature T cells on OP9-Dll1 (204, 240). However, the generation of CD4+CD8a+ T cells 

from bone marrow hematopoietic stem cells was not as reproducible on OP9-Dll1 cells 

(210). In our study, Dll1 had the weakest ability to induce T cell differentiation compared to 

Dll4 and Jagged2, which has not been reported in previous literature. Dll1 was recently not 

extensively expressed in the thymus, while Dll4 and Jagged2 were identified with a much 

higher expression level (215), indicating that Dll4 and Jagged2, but not Dll1, may actually 

play roles in thymocyte development. This result confirmed our observations of different 

functional abilities within Notch ligands that are able to induce T cell differentiation. 

Further, by comparing culturing systems of OP9-Dll1 and OP9-Dll4 (241), a recently 

published observation indicated that Dll4 has stronger abilities during T cell differentiation 

in vitro, which in part confirms our results.  

Moreover, previously only Jagged1 and Dll1 among all five Notch ligands have 

been extensively compared, in terms of functional roles (214, 238). Our work, again for the 
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first time, compared all Notch ligands in their functions of T cell differentiation in parallel. It 

is very interesting that Jagged1 and Jagged2 showed distinct functions during T cell 

development though in protein sequences they very closely resemble each other. It is not yet 

known how Jagged1 and Jagged2 transduce different Notch downstream signals. It is also 

intriguing that Jagged2 and Dll4 functionally resemble each other and yet possess very 

distinct protein sequences.  

Mammalian cells possess five different Notch ligands, while flies have only two 

homologues. It is important to understand the differences among those ligands in order to 

understand the regulatory system of mammals in Notch signaling. By providing the 

functional information, our results potentially initiate the future study of Notch ligands with 

regard to their structures and signaling mechanisms.  

Notch downstream signaling is very complicated in the way that many downstream 

targets are transcription factors themselves. These transcription factors such as Hes-1, 

Deltex-1 may activate many other genes, which forms complex signaling cascades. 

However, in order to induce Notch signaling, a simple process is required, namely the 

release of the Notch intracellular domain. In a biological context, Notch ligands interact with 

Notch receptors and induce a conformational change of the receptors, thus Notch receptors 

are processed by ADAM protease and gamma-secretase sequentially. There are many 

mechanisms potentially regulating the Notch signaling pathway, and our results have shown 

one possibility of fucosylation-dependent regulation. In the absence of fucosylation, Notch 

downstream genes are silenced and the T cell specific transcription factor (GATA-3) was 

not expressed. When Notch receptors are fucosylated, Notch signaling was transduced and 

downstream genes were expressed. The level of the fucosyltransferases expressed tightly 

regulates the presence of fucosylated structures. Recently, missing certain fucosylated 

glycans on Notch1 receptors was shown to interfere Notch1 downstream signaling (242). 

Our results and others suggest a mechanism by which regulating the expression of O-

fucosyltransferase 1 may control the downstream gene expression of Notch1 signaling in T 
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cell progenitors in order to sustain the normal amount of mature T cells produced within 

mammals. This result suggests a novel function of fucosylation in the cellular regulatory 

system of mammalian development. 

The results in Chapter III raise another question: how fucosylation regulates Notch1 

signaling. Based on the conclusions introduced in the previous chapters, Chapter IV focuses 

on our approach to this question.  
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Figure 3-1.  
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Figure 3-1: Experimental designs of intrathymic 
injection. a. Illustration of DNA constructs used in producing 
retrovirus. b. Experimental scheme. Bone marrow progenitors 
were differently transduced and intrathymically injected into 
FX(-/-) off fucose recipient. 17 days after the injection, thymus 
was isolated and analyzed by flow cytometry.  
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Figure 3-1 
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Figure 3-2 

 
 

EGFP+ cells 
 

 
 
 

Figure 3-2: Notch1IC rescues FX(-/-) thymic atrophy in 
vivo. Transduced cells were identified by EGFP expression 
during analysis 17 days post injection. b. Representative of 10 
recipients in 5 different experiments.  
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Figure 3-3: WT LSK co-cultured with OP9 cell lines. 
Representative of 6 and more experiments, in which WT bone 
marrow LSKs were cultured on different OP9 cell lines as 
indicated for 20 days, in the presence or absence of 1mM 
fucose.  
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Figure 3-3 

 

 



 83 

 
 
 
 
 
 
 
 
 
 
 

Figure 3-4: FX(-/-) off fucose LSK co-cultured with OP9 
cell lines. Representative of 6 and more experiments, in which 
FX(-/-) off fucose 4 weeks bone marrow LSKs were cultured 
on different OP9 cell lines as indicated for 20 days, in the 
presence or absence of 1mM fucose.  
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Figure 3-4 
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Figure 3-5 

 

 
 

Figure 3-5: Cell proliferation in OP9 cultures. Left panels 
show the number of different cells per input as day 0 from FX(-
/-) OP9 coculture (Figure 3-4) comparing with the ones in right 
panels from WT OP9 culture (Figure 3-3). Bar graphs 
represent the average of 10 or more data in 6 experiments, with 
error bar showing SEM.  
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Figure 3-6 

 

Figure 3-6. Fucosylation controlled Notch1 signaling is 
required for intrathymic development. Total thymocytes 
from FX(-/-) off fucose for 4 weeks were flowed at day 0 and 
seeded on different OP9 Notch ligand-bearing cells. After 13 
days, cells were collected and analyzed by flow cytometry. Here 
shows the representative flow profiles of day0 and day 13 
cultures.  



 87 

Figure 3-7 
 

 
 

Figure 3-7 Cell proliferation of total thymocyte in OP9 
cultures. a. Total cell proliferation upon the time has been 
shown in different OP9 cultures. b. CD4+CD8a+ DP cells 
generation upon the time in different OP9 cultures. 
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Figure 3-8 

 
 

Figure 3-8: Notch1 downstream gene expressions of LSK 
progenies on day 8 in OP9 co-cultures. One of 3 
independent experiments shown here with the mRNA 
expression monitored by real-time PCR. Hes-1 (top), Deltex-1 
(middle) and GATA-3 (bottom) expression detected in 10, 000 
LSK progenies sorted after cultured with OP9 cells for 8 days.  
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Chapter IV 

Molecular regulations of Notch1 signaling by 

fucosylation 

Abstract 

Fucosylated glycans contribute to important cellular events, including the 

modulation of the Notch1 intracellular signaling pathway by modifying the epidermal 

growth factor (EGF) like repeats. Previous evidence suggests that a loss of fucosylation on 

Notch1 abolishes its signaling ability and its functions in T cell differentiation. To define 

the molecular mechanisms that account for fucosylation-controlled Notch1 signaling 

activation, I completed experiments to ask 1) whether fucosylation controls the amount of 

cell surface Notch1 expressed by cells, and 2) whether fucosylation modulates the strength 

of the interaction between Notch1 and its ligands. These experiments allowed me to 

conclude that (1) fucosylation controls the strength of binding between Notch1 and its 

ligand Dll4, using OP9-Dll4 cells and a recombinant Notch1-IgG fusion protein, and (2) 

fucosylation controls Notch1 receptor density on the surface of an E2a/Pbx1 immortalized 

bone marrow progenitor cell line. These results indicate that fucosylation controls Notch1 

signaling strength and thus regulates the development of T lymphocytes.  
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Introduction 

In the effort to fully understand the role of fucosylation in mammals, a mouse model 

with global fucosylation deficiency was generated by disrupting the gene FX that is 

responsible for making GDP-fucose, the only fucose donor in the de novo pathway. A 

thymic atrophy phenotype was observed and analyzed in detail. This phenotype resembled 

the phenotype reported in Notch1 conditional knockout mice, as it exhibited a virtually 

complete loss of mature thymocyte populations. Further, fucosylation-dependent disruption 

of Notch1 signaling has been shown to be the key reason for thymic atrophy in FX(-/-) 

mice deprived off fucose for 4 weeks at the cellular level. In the absence of fucosylation, 

bone marrow progenitors were not able to differentiate into mature T cells, either in vitro or 

in vivo. Moreover, non-fucosylated bone marrow stem cells were not able to express Notch1 

downstream genes in conditions where Notch1 downstream signaling was induced. These 

observations assign an essential role to fucosylation in T cell development and related Notch 

signaling. However, the mechanisms that account for defective Notch signaling coincident 

with the loss of fucosylation remain unknown.  

To pinpoint the roles of fucosylation and fucosylated glycans in Notch signaling, we 

took into consideration the details of Notch signaling and the ways in which fucosylation 

may modulate Notch signaling.  

 

Which Components are Fucosylated in Notch Signaling Pathway? 

Notch signaling is composed of Notch ligands on the signaling sending cells and 

Notch receptors on signaling receiving cells, together with multiple regulators and co-

activators. All of the mammalian Notch ligands and receptors are large transmembrane 

proteins with multiple EGF repeats in extracellular domains (243). 

EGF repeats have several structural characteristics. First, each EGF repeat has 

approximately 40 amino acids with six evolutionarily conserved cysteine residues. These 
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cysteines form three disulfide bonds between C1-C3, C2-C4 and C5 and C6 (244). Second, 

EGF repeats contain Ca2+ binding sites. However, a comparison between the structures of 

Ca2+-containing EGF (245) and Ca2+-free EGF (246) suggest that Ca2+ performs a minor 

role in conformation change. Third, two different types of glycosylation have been found on 

the EGF repeats, O-glucosylation and notably O-fucosylation (15). The O-glucose 

modification occurs at the serine residues of the first and second conserved cysteins of EGF 

repeat with the consensus sequence of C1XSXPC2 (10). More importantly, O-fucose is 

found linking to serine or threonine residue within the putative consensus sequence 

C2XXGG(S/T)C3 between the second and the third cysteins of the EGF repeat (242).  

Potentially, EGF containing proteins are subjected to fucosylation. Because all of 

the Notch receptors and ligands contain multiple EGF repeats, they are all very likely to be 

fucosylated. Haltiwanger and colleagues have proved that Notch receptors (15) and Notch 

ligands (199) are all fucosylated. Other partners of Notch signaling have not yet been 

known to be fucosylated. Thus we focused on three different possibilities: fucosylated 

ligands, fucosylated Notch receptors, or both are required for Notch signaling. 

Two of the three possibilities are easily ruled out, because fucosylation seems not to 

be required for Notch ligand function. As discussed in Chapter II, when wild type bone 

marrow cells were injected into a FX(-/-) recipient off fucose mouse, wild type T cell 

progenitors developed normally in the non-fucosylated environment of FX(-/-) thymus 

when deprived of fucose 4 weeks. As is widely accepted, Notch ligands are expressed on 

the surface of thymic stromal cells and instruct the development of the thymocyte 

progenitors. The fact that non-fucosylated Notch ligands are apparently able to direct 

thymocyte development suggests that fucosylation of Notch ligands may not be required for 

them to induce signal transduction.  

Thus fucosylation on Notch receptors must be critical for proper signaling. Non-

fucosylated Notch receptors may not signal. This is indicated by the experiments discussed 

in Chapter III, in which bone marrow stem cells carrying Notch receptors can only progress 
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through mature T cells in the presence of fucosylation. This conclusion helped us focus our 

efforts on the fucosylation of Notch receptors and to look for the roles of fucosylation in 

Notch signaling regulation. 

 

Where and When does Fucosylation Occur on Notch Receptors? 

As described above, Notch receptors contain EGF repeats where fucosylated 

glycans are added. Fucosylation is one of the post-translational modifications to proteins by 

the enzymes of fucosyltransferases, indicating that the location of fucosylation may be at 

ER, Golgi, cytosol and/or a cellular compartment other than nucleus. O-fucosylation of 

Notch EGF repeats is specifically carried out by protein O-fucosyltransferase 1 (197). The 

location of POFUT1 determines the location of fucosylation.   

POFUT1 was first found located in ER in Drosophila (201), which is very different 

from Golgi-localized fucosyltransferases mediating the addition of N-linked fucosylated 

glycans. The ER-localized site for POFUT1 has been confirmed in mammalian systems 

(36). The ER is one of the most important places for protein synthesis, modification, and 

secretion. For a type 1 transmembrane protein such as a Notch receptor, mRNA is 

transcribed to protein and folded in the ER, while the signaling peptide immediately directs 

the protein localizing across the ER membrane. Notch proteins are very likely to be folded 

during or after synthesis via chaperon, a set of proteins helping polypeptide folding.  

Temporally, O-fucosylation happens in ER in the early stage of protein synthesis, 

before the Notch receptor reaches the Golgi and is subsequently presented on the plasma 

membrane where it interacts with its ligands. There is evidence that POFUT1 also serves as 

a chaperon for the Drosophila Notch, suggesting that fucosylation plays a role in protein 

folding, at least in Drosophila (201).  

 

How does Fucosylation Regulate Notch1 Signaling in Mammals? 
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From the above analysis, multiple roles of fucosylation in Notch1 signaling may 

exist; in Chapter IV two major roles of fucosylation in the regulation of Notch signaling 

have been proposed and tested. 

1) The proposed role of fucosylation in ligand binding: 

Glycans serve many roles, including their role within glycoprotein interactions. One 

of the widely known examples is P-selection glycoprotein ligand 1 (PSGL-1). PSGL-1 has 

a fucosylated moiety that serves as a component recognized by P-selection. Deletion of 

fucose on PSGL-1 abolishes the binding ability of PGSG-1 to its counter receptors. This 

could also be the case for O-linked fucosylated glycans, as they serve as a Notch ligand 

recognition motif on Notch. In flies, mutations of O-fucosylated sites on different EGF 

repeats have shown that EGF11 and 12 are required for the binding of Notch to its ligand. 

These two EGF repeats are required and sufficient for the ligand delta (247). A mutation of 

EGF12 with a substitution of Ala to Serine in order to abolish the fucosylation resulted in 

defects in wing development that are similar to a Notch null phenotype (248). In vitro 

evidence indicates that missing fucosylated glycans of Drosophila Notch protein at EGF12 

enhanced Notch binding to its ligands (248). This observation indicates that, in flies, O-

linked fucosylated glycans regulate the binding affinity of Notch receptors to their ligands. 

However, it remains to be determined whether fucosylation controls the binding of 

mammalian Notch receptors to its ligands. 

Thus in the first part of this chapter, we pursued quantitative methods to characterize 

the binding activity of mammalian Notch1 and its receptors in two individual experiments as 

a function of fucosylation in vitro.  

 

2) The proposed role of fucosylation in Notch receptor folding and secretion: 

Notch receptor secretion was suggested by studies published in 2005 (201). These 

studies introduced Drosophila protein O-fucosyltransferase 1 and showed that this enzyme 

acts significantly as a fucosyltransferase, and also functions as a chaperon. Mutational 
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inactivation of the fucosyltransferase activity of POFUT1 does not seem necessary for 

Notch secretion, indicating that fucosylation is not required for Notch receptor presentation 

on the cell surface in flies. The method of confocal microscopy used in assessing the 

amount of surface Notch receptors in the studies was not satisfying, due to the limited 

number of subcellular regions focused on each time and the non-quantitative nature of this 

technique. However, this piece of information sheds light on, and may potentially contribute 

to new studies in the field of fucosylation.  

Mammalian Notch signaling is more complex than that of Drosophila, given that 

there are more Notch receptors, more ligands, and a more complex mechanism involved. 

Mutation on EGF 27 of mouse Notch1 that abolished O-fucosylated glycans on that site 

reduced the amount of cell-surface Notch (242). These data strongly suggested that 

fucosylated glycans are used in the mammalian system during Notch1 protein folding and 

secretion. However, no similar data have been published yet on the consequences of the loss 

of fucosylated glycans on Notch. Given that O-fucosyltransferase would fucosylate all 

potential sites or none, it is impossible for cells to lose fucosylated glycans only on one 

particular EGF. Thus testing whether Notch secretion is regulated by global fucosylation 

seems essential to understanding the details of mammalian regulatory systems. In the 

second part of Chapter IV, a quantitative biochemical method was used to find out whether 

fucosylation is relevant to the surface presentation of Notch1 receptors. Considering this 

together with the binding studies, we hope that our effort will advance glycobiological 

studies of fucose as functionally important glycans.  
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Methods 

DNA constructs-Full length mouse Dll4 or Notch1(1-15EGF) was cloned into 

vector pCDNA3.1 containing human IgG1 Fc portion, resulting in a fusion chimera of 

Dll1-hIgG1 or Notch1(1-15EGF) separately.  

Transient transfection- 8x106 HEK 293T cells were plated in a 10-cm dish the day 

before transfection in DMEM medium with 10% FBS. 24ug of DNA and 60ul 

Lipofectamin 2000 (Invitrogen) was diluted separately in 1.5ml of OPTI-MEM medium 

and sat at room temperature for 5 minutes. DNA solution was added to Lipofectamin and 

sat at room temperature for 20 minutes for integration, before being added to the cells. 24 

hours after transfection, attached HEK 293T cells were trypsinized and washed with serum 

free medium (Hyclone) 3 times. Then the cells were plated into 3 150-cm plates for protein 

production. The supernatant was collected 3 days after plating and cells were eliminated by 

centrifugation at room temperature for 15 minutes. To make fucosylated and non-

fucosylated Notch1(1-15EGF), similar procedures were followed for Lec13 cells. Fucose 

was added on the day of transfection and in serum-free medium for CHO cells (Gibco).  

ELISA--The ELISA quantification method for human IgG1 Fc chimeras was set up. 

Each well was coated with 100ul of 2ug/ml anti-hIgG1 (Sigma) at 4°C overnight. After 

being washed 5 times with PBS-0.5%Tween 20, 100ul human IgG (Sigma) in different 

concentrations was first added to develop a standard curve with a 2-hour incubation at room 

temperature. After being washed 5 times, 100ul anti-human IgG Alkaline phosphatase 

conjugated antibody (Sigma) was incubated for 1 hour at room temperature. 50ul of p-

nitrophenyl phosphate (PNPP, Pierce) as the substrate was added for colorimetrical 

detection. After 15 minutes, the reactions were detected by the ELISA plate reader (Bio-

Rad). 

Notch1 fusion protein staining and confocal microscopy- OP9-Dll4 and OP9 cells 

were plated in 25x103 cells/ml in 150mm dishes or on collagen-coated microscope slides 
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and grew for 2 days. OP9 cells in dishes were dissociated by 3mM EDTA at 37°C for 

15min for flow cytometry staining. 70um cell strainers were used to eliminate cell clumps. 

Each 100,000 cells were aliquoted into each staining tube. 100ul of each Notch1(1-15EGF)-

hIgG1 chimera dilution was added to each staining tube in OP9 medium at room 

temperature for 30min. PE-conjugated anti-human IgG was used as the secondary antibody 

for flow cytometry detection. The OP9 and OP9-Dll4 cells on the slides were stained by 

Notch fusion proteins in the same condition as above for 1 hour at room temperature. 

Texas-Red conjugated anti-hIgG was used as the secondary antibody for Notch1, since the 

emission wavelength of Texas-Red does not overlap with that of EGFP expressed by OP9 

cells. Thus when the Argon and HeNe lasers are simultaneously working, the signaling 

leakage from green channel by EGFP would be minimized in the Red channel, so that red 

signals by Notch fusion protein could be sensitively detected. After staining, cells were 

fixed by 4% formaldehyde and mounted for examination (Leica Microsystems Inc). 

Typically a series of 30 pictures were taken from several different regions on the slide from 

the bottom of the cells to the top at about 6um intervals along the z-axis. To minimize the 

biased comparison among different regions of the cells, a picture of overlapped z-stack 

pictures was generated afterwards to show the total signal. 

Ligand fusion protein staining- Dll4-hIgG1 chimera in serum-free culture medium 

was added to cells in a 1:1 dilution with culture medium at room temperature for 30 

minutes. After being washed with the medium, the cells were incubated with a PE-

conjugated anti-human IgG polyclonal antibody. Human IgG was used as a negative 

control.  

Extracellular Notch1 dissociation by EGTA treatment- After being collected, the 

cells were washed twice in Hank’s Balanced Salt Solution with 2.5mM CaCl2 buffer. The 

Notch1 extracellular domain was dissociated by EGTA in TBS buffer in a 37°C water bath 

for 15 minutes. After the cells were centrifuged at 1300 rpm for 5 minutes, the dissociated 

proteins were collected in the supernatant. Cell pellets were treated with 1xRIPA buffer and 
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DNAs were sheared by being passed through an insulin syringe in a cold room. DNA and 

membrane debris were removed by centrifugation at top speed for 30 minutes at 4°C.  

Western blot- Cell lysate or EDTA dissociated proteins with SDS loading buffer 

(Invitrogen) were boiled at 70°C for 10 minutes. Samples were loaded in 15-well 3-8% 

acrylamide gel and transferred to a PMSV membrane overnight. Anti-mouse Notch1 (8G10 

clone, 1:200, Santa Cruz) was used to probe the membrane. After washes, anti-hamster HRP 

(1:5000) conjugated secondary antibody was added. To develop the films, after washing the 

membrane, ECL substrates (Pierce, Supersignal) were added for 1 minute. The membrane 

was stripped by Restore Western Blot Stripping Buffer (Pierce) and blotted by anti-mouse 

beta-actin (mouse monoclonal, 1:10,000, Santa Cruz) as loading controls.  

 

Results 

Our results in Chapter II suggested that the loss of fucosylation diminishes Notch1 

downstream signaling. In this chapter, we further pursued the molecular mechanisms of 

fucosylation-dependent Notch1 signaling regulation. Losing fucosylation may disrupt 

Notch1 signaling in many different ways. It is likely that non-fucosylated Notch1 proteins 

are not presented on the cell surface; thus there are no Notch1 receptors to bind to its 

ligands for downstream signal transduction. We first tried to ask whether losing 

fucosylation perturbed the surface presentation of Notch1 proteins.  

 

The Reduced Surface Presentation of Notch1 in the Absence of Fucosylation 

The role of fucosylation in Notch1 protein secretion was tested by quantitative 

western blot experiments. In these experiments, Homogenous FX(-/-) myeloid progenitors 

were used. These cells were made by transducing the E2a/Pbx1 gene to FX(-/-) adult bone 

marrow progenitors. More specifically, the beta-estradiol response unit controlled E2a/Pbx1 
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gene was inserted into a viral vector pMIG to produce the oncogenic fusion proteins (249). 

Virus was produced by Phoenix E packaging cell lines and collected in supernatant. The 

FX(-/-) bone marrow stem cells were enriched in vivo by 5-fluorouracil treatment and were 

isolated by the depletion of lineage positive cells. These FX(-/-) stem cells were cultured for 

2 days before transduction. After transduction, the transduced cells were selected by long-

term culture and myeloid lineage was driven by the cytokine of GMCSF made by B16 cells 

(249). The expression of the E2a/Pbx1 gene was enabled by the addition of 1uM beta-

estradiol. Only the cells expressing E2a/Pbx1 would exist in the culture and be able to avoid 

dying out. When the culture was 4 weeks old, individual clones were seeded by serial 

dilution methods. These clones were expanded and selected for their uniform GFP 

expression. I discovered 2 independently selected cell lines. These cells were cultured as 

single-cell suspensions at 1x106/ml and fed on a daily basis. The progenitor cells are large 

round suspended cells with large nuclei (Figure 4-1a) and do not express mature 

granulocyte markers, such as Gr-1 (Figure 4-1b). When they were cultured in the absence 

of beta-estradiol, they further differentiated into polymorphonuclear neutrophils (PMNs) 

showing the segmented shape of nucleus (Figure 4-1a) and expressing Gr-1 on the cell 

surface (Figure 4-1b).  

An FX(-/-) myeloid progenitor cell line was first characterized in its ability to bind to 

Notch ligands as a function of fucosylation (Figure 4-1c). Expanded cloned cells were 

originally made in the absence of fucose. They were divided in half and cultured in the 

absence or presence of 1mM fucose in the culture medium. Two days later, the cells were 

collected for staining. PSA staining showed the fucosylation status of the cells right before 

being used for the quantitative western blot experiments. Gr-1 staining demonstrated the 

homogenous progenitor-like developmental stage of these myeloid progenitors with all the 

cells lacking Gr-1 expression. Dll4-IgG chimera binds to fucosylated myeloid progenitors 

much better than the non-fucosylated ones, indicating the presence of non-fucosylated 

Notch1 receptors on the cell surface.  
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EGTA treatment was used to dissociate cell membrane Notch1 proteins, and the 

experimental setup is shown in Figure 4-2. The 8G10 antibody used on the western blot 

was made as targeted against the N terminal of mouse Notch1 (Figure 4-3a). At first, the 

EGTA dilution curve was generated to optimize the dissociation of non-fucosylated Notch1 

proteins (Figure 4-3b). It seemed that 5mM EGTA was enough to dissociate all the Notch1 

proteins on the cell surface, while 10mM EGTA was used to ensure maximum dissociation 

results. Because the FX(-/-) myeloid progenitor cell line was made in the absence of fucose, 

these expanded cloned myeloid cells were cultured in the absence of fucose or in 1mM 

fucose in parallel for 2 days before shedding experiments.  

Dissociated proteins in the supernatants from 1x106 cells were loaded per lane for 

comparison in the presence or absence of fucosylation (Figure 4-3c). Only one form of 

Notch was found in the supernatants, by size as known of extracelluar domain of Notch1 

(ECN). More ECNs from the fucosylated cells were detected than the ECNs from the non-

fucosylated cells. No other forms of Notch1 were detected. The absence of full-length 

Notch1 that reside inside of the cells indicated that the cells were not lysed by EDTA 

treatment.  

 However, in the cell lysate after EGTA treatment, two forms of Notch proteins were 

found. The smaller form of Notch1 by size is most likely to be the ECN sequestered inside 

the cells, perhaps within the protein secretion pathway. More ECN from fucosylated cells 

were found compared to the ECN found in non-fucosylated cells. The larger form of 

Notch1 is the non-processed Notch protein, the so-called full-length Notch1. In the cell 

lysate after EGTA treatment, fewer full-length Notch1 proteins from the fucosylated cells 

were found compared to the full-length Notch1 from the non-fucosylated cells. The 

presence of more naïve and unprocessed Notch1 proteins in non-fucosylated cells indicated 

that there was a defect in the Notch1 protein secretion pathway of the non-fucosylated cells.  

Notably, a size difference was observed between fucosylated-Notch1 forms and 

non-fucosylated Notch1 forms, including ECNs and full-length Notch1. It seemed that 
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fucosylated-glycans on Notch1 EGF domains added a few kilo-Dolton to the protein 

weight, thus they migrated slower in electrophoresis. These results indicate that fucosylation 

is required for Notch1 secretion in mammalian cells. It is very different from the reported 

results in the Drosophila system (201), indicating the more complicated regulatory role of 

fucosylation of Notch signaling in mammals.  

Although in a reduced quantity, there were indeed non-fucosylated Notch1 proteins 

on the cell surface. Since these non-fucosylated proteins presented on the cell surface, did 

they bind to the ligand as well as the fucosylated proteins? Non-fucosylated FX(-/-) 

E2a/Pbx1-immortalized progenitor cells had less binding affinity to the Dll4-hIgG1 chimera 

(Figure 4-1c). However, the reduced binding ability may result from the reduced amount of 

the surface Notch1 proteins that were available to bind to the Dll4 ligand. Thus we took a 

different approach to assess the binding abilities of the fucosylated and the non-fucosylated 

Notch1 proteins.  

 

Non-fucosylated Notch1 Reduced Ability to Bind to its Ligand of Dll4 In Vitro. 

A very precisely controlled experimental system has been designed to investigate the 

influence of fucosylation on Notch1 binding to its ligands (for details see the Discussion). 

OP9-Dll4 cells were used for Notch ligand Dll4 expression. The cells were dissociated 

from the plate by EGTA treatment. Because the Ca2+ ion does not contribute to forming the 

structure of EGF repeats, depleting Ca2+ by EGTA may not able to change the conformation 

of Dll4 proteins that contain only 8 EGF repeats. Moreover, Notch ligands are 

transmembrane proteins with no S1 cleavage (i.e. not heterodimer), which suggested that 

Notch ligands could not be dissociated by EDTA treatment. Thus the low concentration of 

the EGTA treatment is a “safe” method for generating individual OP9 cells bearing Notch 

ligand without losing Notch ligand proteins on surface.  

A Notch1(1-15EGF)-hIgG1 chimera was made in vitro, in FX-deficient CHO cells 

(CL17), cells via transient transfection by Lipofectamin 2000. Cells were trypsinized 24 
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hours after being transfected and expanded in serum-free medium for protein secretion. The 

fucosylated Notch1(1-15EGF)-hIgG1 chimera was secreted by the transfected CL17 cells 

in the presence of 1mM fucose. The non-fucosylated Notch1(1-15EGF)-hIgG1 chimera 

was secreted by the transfected CL17 cells in the absence of fucose.  

A human IgG specific ELISA was developed and optimized to measure the 

concentration of each chimera. IgG Fc portion of the chimera naturally dimerized, thus one 

hIgG1 chimera protein has two Fc sites available for antibody binding. The coating 

antibody for capture recognized one Fc site. The other Fc site was recognized by Alkaline 

Phosphate conjugated anti-human IgG antibody for detection (Figure 4-4a). A standard 

curve was developed by using the serial dilutions of purified human IgG Fc proteins. The 

O.D.405 readings were plotted versus different concentrations of chimera, and the resulted 

curve was linear-regressed (Figure 4-4b). The diluted Notch1 chimeras in this assay had 

readings in this linear range and the original concentrations were calculated according to the 

dilution factors. Finally, the Fucosylated and non-fucosylated Notch1 (1-15EGF) chimeras 

were normalized to 1800ng/ml, in order that the same molar of the proteins were made in 

serial dilution and were used in later experiments.  

OP9-Dll4 cells and OP9 cells were expanded in culture for two different 

experimental setups (illustrated in Figure 4-5). The same batch of cells was used for 

staining on slides and in tubes to ensure the same number of Dll4 ligands on the cell 

surface. The same amount of the fucosylated or non-fucosylated Notch1 chimeras were 

used to test the binding abilities to the same number of Dll4 ligands.  

In flow staining, OP9-Dll4 cells were stained by fucosylated-Notch1(1-15EGF)-

hIgG chimera or non-fucosylated Notch1-hIgG chimera in different concentrations (Figure 

4-6). Each pair of data showed that the same concentration of the fucosylated chimera and 

the non-fucosylated chimera were used and compared in parallel. OP9-Dll4 cells bound to 

the fucosylated-Notch1(1-15EGF)-hIgG more than the non-fucosylated Notch1(1-

15EGF)-hIgG in all concentrations tested. These results indicate that the non-fucosylated 
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Notch1(1-15EGF)-hIgG1 has weaker binding affinity than the fucosylated chimera. As 

controls, OP9 cells were stained in the same experimental setup but showed binding abilities 

to neither the fucosylated nor the non-fucosylated Notch1(1-15EGF)-hIgG chimera (data 

not shown). 

The mean fluorescence intensity of stained OP9-Dll4 cells in Figure 4-6 was plotted 

versus the different concentrations of Notch1 chimera used in staining (Figure 4-7). Low 

concentration points were plotted by linear regression, with the regression equations shown 

by the lines (Figure 4-7a). These data fit the linear curve with a coefficient of determination 

(R2) very close to 1.00 (perfect fit), suggesting a precisely controlled experimental platform. 

The fucosylated Notch1 chimera staining curve had a greater slope (1.379) in the linear 

range, indicating a greater binding affinity than non-fucosylated Notch1 chimera 

(slope=0.49).  

Figure 4-7b shows the full range of the different concentrations of chimeras used. 

Strikingly, the non-fucosylated chimera reached a binding plateau (MFI=319.59) of about 

half that of the fucosylated one (MFI=592.99), indicating different binding avidities of Dll4 

to different forms of Notch1. These observations have been confirmed by an independent 

experiment of the surface plasmon resonance (Jeongsup Shim and John Lowe, unpublished 

data).  

Further, confocal microscopy was used to confirm this result in an independent 

experimental setup. Figure 4-8 showed the representative area of each staining slide with a 

series of Notch1 chimera concentrations on OP9 and OP9-Dll4 cells. Notch1 chimera 

bound to Dll4 on the cell surface was represented by the red signals along the edge of the 

cells. Green signals indicated the intracellular region, since EGFP proteins are soluble and 

restricted within the plasma membrane. The co-localization of red and green signals was 

never observed, thus Notch1 proteins bound outside of the cells were not co-localized with 

EGFP sequestered inside the cells, indicating that there was no leak on the cell surface. In 

low concentrations, the Notch1(1-15EGF) chimera did not bind well regardless of whether 
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it was fucosylated. This may be due to the sensitivity of the instrument, since flow 

experiments showed the binding in low concentrations.  

When cells were stained by 180ng/ml of chimeras, the intensity difference was 

shown that OP9-Dll4 cells bound more fucosylated Notch1 chimeras than the non-

fucosylated chimeras. OP9 cells are not stained by any concentration of the fucosylated or 

non-fucosylated Notch1(1-15EGF)-hIgG1 chimeras as shown in the right panels, indicating 

that binding to the chimeras to OP9-Dll4 cells was specific to the Dll4 ligand. These 

observations have been confirmed by three individual experiments. 

The above results from two independent experiments indicate that the loss of 

fucosylation on Notch1 reduces its binding ability to the ligand Dll4. This observation 

corresponds to the loss of Notch1 downstream signaling in FX(-/-) hematopoietic 

progenitors and the loss of Notch1-dependent T cell development in the FX(-/-) thymus. 

This observation also indicates that the monosaccharide fucose plays a very important role 

in regulating signaling strengths in critical developmental processes in the lymphopoietic 

system.  

 

Discussion 

A Cell Line for Cell Surface Protein Comparison 

To compare cell surface protein expression in a function of fucosylation, a specific 

cell line was pursued. First, these cells have to be a homogenous population that has global 

fucosylation deficiency. This will ensure the precise comparison in the quantitative methods 

in the function of fucosylation. We currently have three homogenous populations available 

to use: 1) Lec13 (mutation on GMD) and CL17 (mutation on FX) are Chinese hamster 

ovary cells with global fucosylation deficiency and have been used for decades in various 

research groups; 2) FX(-/-) MEF (Mouse Embryonic Fibroblast) was made from FX(-/-) 
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embryos in our lab and used in our previous experiments; 3) Four years ago, I made an 

immortalized myeloid progenitor cell line from FX(-/-) adult bone marrow stem cells, which 

is also a potent choice for the quantitative experiments. 

Second, this cell line will be a progenitor population in hematopoietic development. 

Lec13 and CL17 cells were made from the hamster ovary, which is not relevant to the blood 

system. MEF cells are fibroblasts involved in hematopoiesis by their ability to support 

embryonic stem cell differentiation. So we could exclude Lec13, CL17 and FX(-/-) MEF 

cells from our pool of selections.  

Third, there have to be a constant level of Notch proteins expressed by the cells in 

order to ensure that only one variable of fucosylation is tested. The binding ability of FX(-/-

) myeloid progenitors to Notch ligand Dll4 was tested first (Figure 4-1). In the presence of 

fucose, FX(-/-) myeloid progenitors were bound to the Dll4-hIgG1 chimera, indicating the 

existence of Notch1 receptors. This observation encouraged us to test FX(-/-) myeloid 

progenitors in the surface Notch1 study. Thus only the immortalized FX(-/-) myeloid 

progenitors were chosen for our experiments.  

 

A Feasible Experimental System for Binding Assay 

In order to assess the binding activities of non-fucosylated Notch1 receptors to their 

fucosylated ligands, it is very important to find out the experimental platform suitable for 

this defined question. The cell-based systems have long been used in binding assays and 

may closely represent what is happening in vivo. So a cell-based system with Notch1 

expressed is desired, while the Notch ligand could be used to quantify the binding ability of 

Notch1 proteins in the function of fucosylation.  

At first, to closely replicate the progress of T cell development, T cell progenitors 

were proposed with great interest in having Notch1 receptors on the surface. As discussed 

in the introduction chapter, the earliest T cell progenitor in bone marrow has not yet been 

defined, which made it impossible to isolate such populations for our study. Stem cell 
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derivatives from certain in vitro OP9 co-culture systems were able to differentiate to T cells, 

as described in Chapter III, indicating their potential for the binding assay. However, the 

complexity of multiple Notch ligands on multi-potential progenitors cells made it very hard 

to interpret our results while accessing their binding ability to Notch ligand chimeras, 

especially in a quantitative way.  

Thus a homogenous population was preferred for our purpose. The FX(-/-) 

E2a/Pbx1 progenitor cells are homogenous and express Notch1 on the cell surface. We 

preferred for our experiments, however, for the amounts of fucosylated and non-fucosylated 

Notch1 proteins on the cell surface to be different. Thus a fair comparison cannot be made 

due to various amounts of receptors on the cell surfaces.  

In light of the difficulties we met in the above attempts, a reversible system was 

designed. A cellular system bearing Notch ligands was proposed with the availability of 

fucosylated and non-fucosylated Notch1 chimeras made in vitro. Notch ligand transduced 

OP9 cells were ideal for us to use in the binding assay because of the purity of cells and the 

equivalent amount of Notch ligand presented on the cell surface. Fucosylated and non-

fucosylated Notch1 chimeras were quantified in vitro by the ELISA system, which is highly 

sensitive. The same molars of fucosylated and non-fucosylated chimera were used; thus the 

only variable in the assay system was the presence or absence of fucosylated glycans on 

Notch1 proteins.  

 

The Dual Functions of Fucosylation in Notch1 Signaling 

Haltiwanger and colleagues have reported their study of fucosylated sites on Notch1 

receptors in mammalian cell lines in vitro (15, 242, 250). Three EGF repeats on Notch1 

receptors were extremely evolutionarily conserved across different species (251). Several 

other EGF repeats on Notch1 were highly evolutionarily conserved. They made 8 different 

mutants, in which one EGF repeat was mutated by using Ala substituting Serine or 

Threonine to delete the site O-fucose may link to. Among the 8 mutants studied, only 3 of 
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them resulted in aberrant Notch1 downstream signaling. Mutation on either EGF 12 or 

EGF 27 led to decreased downstream signaling triggered by either Dll1 or Jagged1. On the 

contrary, mutation on EGF 26 elevated downstream signaling induced by either Dll1 or 

Jagged1. These studies suggest the important roles of fucosylated glycans on Notch 

receptors in the regulation of its signaling abilities.  

However, it is not known yet whether losing fucosylated glycans on any of the EGF 

repeats of Notch1 receptors leads to altered ligand-binding abilities. Moreover, these studies 

were focused on individual EGF domains and/or the fucosylated glycans on these particular 

domains. There was no evidence yet that showed what would happen if all the fucosylated 

glycans were lost at one time. Since POFUT1 is the enzyme fucosylating all possible sites 

on EGF repeats, it is not very likely that only one EGF repeat is not fucosylated while the 

others are. It would be more likely that all of the possible fucosylated sites are fucosylated 

or not fucosylated. It is important to find out how losing fucosylation on all of the EGF 

repeats affects the signaling and functions of Notch1.  

N-glycans have been studied for a long time and they are known as essential 

components of the binding pockets of lots of proteins, including PSGL-1. It is not clear yet 

if O-fucosylated glycans contribute to the structure of binding pockets in the mammalian 

system. Our results from Figure 4-3 strongly indicate that a non-fucosylated Notch1 form 

exists in nature. The presence of non-fucosylated Notch1 on the cell surface indicates that 

losing fucosylation alone cannot fully stop Notch1 secretion. This result seems to be 

different from that in Drosophila, in which losing fucosylation did not perturb the secretory 

pathway of Notch1 proteins (201).  

The amount of Notch1 presented on the cell surfaces was evident independent of the 

fucosylation status of the cells (Figure 4-3). Dll1 density was shown regulating Notch1 

signaling strength in vitro (252). But the density of Notch ligands within the thymus is 

more likely to be constant. Conversely, it is very likely that the density of Notch1 on signal 

receiving cells actually controls the signaling strength. Thus regulating Notch1 receptor 
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density on T cell progenitors could be a very efficient and direct way to regulate the T 

lineage commitment. These results suggest the regulatory role of fucosylation in controlling 

Notch1 signaling strength by attenuating the secretory pathway of Notch1. 

The binding ability of the non-fucosylated form of Notch1 was greatly reduced 

compared to the fucosylated forms of Notch1 (Figure 4-7 and Figure 4-8). Even when non-

fucosylated Notch1 was provided at high concentration, the binding of non-fucosylated 

Notch1 to Dll4 could not be restored to the level of fucosylated Notch1. In the kinetic 

aspect, the result showed in Figure 4-7 is the statistical summary of an equilibrated status 

that included dynamic binding and dissociating. Some of the ligands were dissociating from 

the receptor at the moment others were binding to the receptor. The bound-ligand detected 

from our assays actually represents the chance of Notch1 binding to OP9-Dll4 cells.  

When the Notch1 chimera concentration was increased, the chance of Notch1 

chimera binding to ligands was increased. However, the ratio of Notch1 chimera 

dissociating from OP9-Dll4 cells was also simultaneously increased. When providing 

enough Notch1 chimeras, dissociating Notch1 and binding Notch1 reached a constant level. 

In this situation, no more Notch1 was able to bind to the OP9-Dll4 cells, since all the 

binding pockets were occupied. The plateau in the binding curve shown in Figure 4-7 

represents the nature of binding pockets themselves. When the binding pockets were 

fucosylated, the ligands were not likely to be dissociated as fast as the ones that bound to 

the non-fucosylated binding pockets. It is also possible that dissociation was the same for 

non-fucosylated and fucosylated ligands, while fucosylation greatly increased the speed at 

which ligands were able to bind.  

In conclusion, fucosylation in mammalian system plays important and complex 

roles in the regulation of Notch1 signaling. Mammalian cells can quickly reduce Notch1 

downstream strength by lowering the fucosylation level, thus non-fucosylated ligands would 

be stuck during transportation from ER to Golgi. The cell surface fucosylated receptors 

were reduced during turnover. Newly synthesized non-fucosylated Notch1 proteins were 
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presented on the cell surface with difficulty. Even non-fucosylated Notch1 proteins were 

able to bind and be presented on the cell surface; their reduced ability to bind to their 

ligands substantially decreased the Notch1 downstream signaling strength. As a result, the T 

lineage commitment of hematopoietic progenitors was disrupted.   
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Figure 4-1: Characterization of E1a/Pbx1 transduced 
FX(-/-) bone marrow myeloid progenitor cell lines. a. 
Pictures of the cells cultured in the presence of beta-estradiol 
(Left) and in the absence of beta-estradiol (Right) for 6 days. 
Blue staining shows the nucleus. b. Cell surface markers of 
myeloid progenitor cells in presence or absence of beta-
estradiol. (No-fucose added in the culture) c. Staining and 
binding experiments on myeloid progenitors cultured with beta-
estradiol. Fucosylation status of the cells is shown by PSA 
staining. Arrested cell differentiation statuses are indicated by 
Gr-1staining. Notch-ligand Dll4-hIgG1 chimera binds to FX(-/-
) myeloid progenitor cells in the presence of fucose much better 
than the cells cultured in the absence of fucose.  
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Figure 4-1 
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Figure 4-2 
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Figure 4-2 (continued) 

 
 

 
 

Figure 4-2: Illustration of quantification of Notch1 
different forms. Notch1 protein is made in ER and modified 
by POFUT1. Then during secretion pathway, Notch1 proteins 
moved through Golgi, where it is cleaved by Furin enzyme, 
known also as S1 cleavage to form the heterodimer. EDTA 
dissociate Notch extracellular domain from cell surface. Panel a 
shows the fucosylated cells while panel b shows the non-
fucosylated cells. Panel c and d shows the Notch1 proteins in 
supernatant and cell lysate after EDTA treatment in fucosylated 
or non-fucosylated scenario separately. 
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Figure 4-3: Quantification of Notch1 in different cellular 
locations. a. Anti-Notch1 antibody 8G10 specifically binds to 
mouse Notch1 EGF33 to LIN repeat 1 (shown in panel a as in 
non-fucosylated Notch1 forms). FX(-/-) E2a/Pbx1 transduced 
myeloid progenitor cell line was made in the absence of fucose. 
b. EDTA in Notch dissociation experiment has been titrated on 
those cells in the absence of fucose while maximum amount of 
Notch1 in supernatant detected in 10mM EDTA treated 
samples. c. The fucosylated and non-fucosylated FX(-/-) 
E2a/Pbx1 transduced myeloid progenitors were treated with 
10mM EDTA. Supernatant collected after treatment was loaded 
in left lanes. Cells collected after EDTA treatment were lysed 
and denatured before loaded in right lanes. Anti-Notch1(8G10) 
shows the Notch forms as indicated in upper western blot. The 
same blot was stripped and blotted with anti-beta-actin to show 
the equivalent loading among the samples as quantitative 
controls.  
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Figure 4-3 
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Figure 4-4 

 

 
 

 
Figure 4-4: Standard curve of hIgG1 Fc chimera ELISA. 
Top panel shows the experimental setup. Lower Standard panel 
shows one of the representative standard curves using human 
IgG1 Fc. In details, Fc dimerized hIgG1 was bought from 
Sigma and diluted to different concentrations for a standard 
curve in quantification of soluble Notch1(1-15EGF)-hIgG1. 
Linear regression was used to develop a correlation of 
concentration to O.D. 405. R2 represents the approximation of 
data points to the linear regression curve, and in this case, 
0.9959 of R2 has shown a very accurate linear relationship 
within 1 to 20ng/ml range.  
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Figure 4-5 
 

 
 
 

Figure 4-5: Designs of quantitative binding experiments. 
OP9-Dll4 cells were expanded in culture first. Some of the OP9 
cells were directly plated on microscope cover slides for staining 
with fucosylated or non-fucosylated Notch1 (1-15EGF)-hIgG1 
chimera (Bottom). Some of the cells were seeded in very low 
density to be detached by EDTA treatment. Single cell 
suspension was used for fucosylated or non-fucosylated 
Notch1 (1-15EGF)-hIgG1 chimera staining examined by flow 
cytometry.  
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Figure 4-6 

 

 
 

Figure 4-6: Fucosylated Notch1 has a higher binding 
affinity to Delta-like 4 than does non-fucosylated Notch1. 
Top left panel shows control staining of hIgG1 to OP9-Dll4 
cells. Different concentration of fucosylated Notch1(1-15EGF)-
hIgG1 (shown as +fucose panels) and non-fucosylated 
Notch1(1-15EGF)-hIgG1 (shown as –fucose panels) were used 
as indicated in flow cytometry staining. In each defined 
concentration, OP9-Dll4 cells are stained better by the 
fucosylated Notch1 chimera.  



 119 

Figure 4-7 

 

 
 

Figure 4-7: OP9-Dll4 cells have different affinity and 
avidity to fucosylated and non-fucosylated Notch1(1-
15EGF)-hIgG1 chimera. Mean fluorescence of intensity 
(MFI) of each flow sample in previous figure was plot with the 
increasing concentrations. a. Lower concentration rage (1-
180ng/ml) MFI points showed linear fashion. Slopes represent 
the affinity of OP9-Dll4 to different binding partners. b. 
Binding of non-fucosylated Notch1(1-15EGF)-hIgG1 to OP9-
Dll4 cells reached a lower plateau than fucosylated chimera, 
indicating avidity of OP9-Dll4 cells to each chimera is different.  
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Figure 4-8 

 

 
 
 

Figure 4-8: Dll4 binds to fucosylated Notch1 with better 
affinity confirmed by confocal microscopy. OP9-Dll4 cells 
were plated on microscope cover slide two days before staining. 
Left panels show OP9-Dll4 cells with right panels showing 
control OP9 cells. OP9 cells are not stained with any of Notch1 
chimera in any concentration. OP9-Dll4 cells show better 
staining in low concentration to fucosylated Notch1(1-15EGF)-
hIgG1 chimera than non-fucosylated ones. Green: GFP. Red: 
Notch1 chimera. 
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Chapter V 

Conclusions 

Glycobiology is still a young field compared with protein biology and nucleic 

biology. Although it was estimated that 80% of proteins are glycosylated, our knowledge of 

these sugar structures has remained limited. Searching on the NCBI pubmed database, the 

entries returned by “glycan” amounted to about one third of the publications returned by 

“DNA”, and one tenth of the publications returned by “protein.” From these numbers, 

and given the fact that fewer labs focus on glycobiological research, it is very possible that 

the scientific community has underappreciated carbohydrates and the carbohydrate research 

for a long time (253). The study of glycobiology is complicated by its emphasis it places on 

three different aspects: structure, biosynthesis, and biology. Scientists new to the field may 

first experience consternation at the complex linear and branching structures, and the 

elaborate biosynthetic procedures. Exploring the biological functions of polysaccharides 

must take into account the required knowledge base of the structures and of biosynthesis. In 

the past decades, our understanding of the biological functions of carbohydrates has been 

greatly enhanced by many scientists such as ourselves, enchanted by the concealed wonders 

that may lie ahead.  

Fucose biology was studied as early as the 1960s. The earlier efforts focused on the 

biosynthesis of GDP-fucose, the fucose donor for all fucosyltransferases. With the 

identification of various fucosylated structures, the functions of these glycans were brought 

to Dr. John Lowe’s attention. Taking the approach of genetically engineering mouse 

models, Dr. Lowe and his colleagues successfully disclosed the roles of many fucosylated 

structures in the immune system. One of his prominent works has focused on the glycans 
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modified by fucose attached in the alpha-1,3 anomeric linkage and on the 

fucosyltransferases responsible for their synthesis. In the initial required step during the 

process used by leukocytes when migrating from the blood to extravascular site of 

inflammation, fucosylated structures on selectin ligands are required in leukocyte-selectin 

interactions. Encouraged by the functions discovered, a global fucosylation-deficient mouse 

model was made in order to uncover more functional roles of fucose-containing structures.  

 

Novel Developmental Functions of Fucosylated Glycans 

A genetically engineered mouse model, FX(-/-) mice, was made by the disruption of 

the FX locus to silence the de novo GDP-fucose synthetic pathway (Figure 2-1). The 

salvage pathway of GDP-fucose synthesis enables the manipulation of fucosylation status 

in these mice. By the time of fucosylation loss, each organ of FX(-/-) was extensively 

examined. The thymus from FX(-/-) mice off fucose was shown to be much smaller than 

those of their littermates kept on a fucose-supplemented diet during the loss of fucosylation 

(Figure 2-2). This finding revealed a novel phenotype of FX(-/-) mice: thymic atrophy.  

In order to find out the reason for this thymic atrophy, it is important to examine the 

cellular components within the thymus. The functional role of the thymus in physiology is 

to support the differentiation of T cells. The great majority of the cells in thymus are T cells. 

Multiple cell types, including T cells, epithelial cells, and myeloid cells could be found. 

Thus, cellular components other than T cell in FX(-/-) thymus were considered as the 

supporting environment for thymocyte development (218). To simplify our study: cells in 

thymus are considered to be two groups, the thymocytes (T cells) and other cell types 

(thymic environment). The thymic atrophy defect may be caused by the defects exhibited by 

the thymocytes, or on the thymic environment, or on both.  
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Since thymic size in FX(-/-) mice off fucose decreased greatly, it is most likely that 

the majority of T cells are lost in the thymus. The very first approach was to count the total 

thymocyte numbers from the thymus of FX(-/-) mice upon the time of fucosylation loss. 

Surprisingly, thymocytes were lost when fucosylation was shut off for 4 weeks in FX(-/-) 

mice (Figure 2-2). Although many cell types could be found within thymus, thymus is the 

organ specialized for T cell development. In a wild-type thymus, more than 90% of total 

thymocytes are T cells in different stages of development. Further, T cell populations were 

enumerated in total thymocyte population and refined by their stages during the 

developmental pathway. Mature CD4+CD8a+ T cells were almost completely lost when 

fucosylation was disabled in FX(-/-) mice (Figure 2-3). Early T cell progenitors were also 

missing in FX(-/-) mice off fucose for 4 weeks (Figure 2-4, 2-5, 2-6). These results 

strongly suggested that T cell development was blocked in the absence of fucose.  

It is also likely that defects may occur on any of those cells that eventually harmed T 

cell development within the FX(-/-) thymus in the absence of fucosylation. For normal 

ontology to occur, thymocytes must physically interact with thymic epithelial cells in the 

cortex and the medulla (164). Disruption of thymic epithelial cell expansion in Nude mice 

resulted in the cystic structure made up of epithelial sheets instead of the meshwork three-

dimensional structure in normal mice (254-257). Thymocyte development was greatly 

reduced in nude mice (258). Moreover, the soluble growth factors and cytokines within the 

thymus are also required for thymic development. As one example, mice lacking both 

receptor tyrosine kinase (c-Kit) and the common cytokine receptor gamma chain have 

severe thymic atrophy with completely abrogated thymocyte development (259).  

Thus it is very important to examine the thymic environment of FX(-/-) mice. Wild-

type bone marrow stem cells were introduced into FX(-/-) mice after their being off fucose 

for 4 weeks. Firstly, the emergence of donor wild-type cells in the FX(-/-) off-fucose 

thymus proved that the thymic epithelial cells have no defect upon receiving bone marrow 

progenitors in the absence of fucosylation. Secondly, mature donor T cells identified in the 
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recipient mice proved that the thymic environment is capable of supporting thymocyte 

development.  

These observations strongly suggest that possibilities other than defects on 

thymocytes are excluded in the absence of fucosylation. The non-fucosylated T cell 

progenitors are not capable of differentiating to mature T cells. Cell autonomous defects are 

responsible for thymic atrophy in FX(-/-) when fucosylation is disabled. This physiological 

function role of fucosylation has not been reported yet in previous literature. In conclusion, 

a novel functional role of fucosylation in thymocyte development has been identified in 

FX(-/-) mice.  

 

The Required Presence of Fucosylation in Signaling Events During 

Thymocyte Development 

The observations and conclusions in Chapter II raised a very interesting question: 

how does loss of fucosylation result in the disruption of thymocyte development? 

Thymocyte development is a highly controlled process in which multipotent blood stem 

cells become specialized into T lymphocytes. The differentiation procedures are intricately 

regulated involving changes in many aspects of cell shape, size, polarity, metabolic activity, 

and gene expression profiles. T cell development is controlled by sequential signaling 

events that eventually turn on many gene expressions, including CD4 and CD8. Genes 

specifically expressed in multipotent progenitors are shut down during this process. 

However, fucosylation is a biochemical event concerning the macromolecules inside the 

inner compartments of the cells. How does a biochemical modification to substrates 

influence a strictly controlled developmental process? Fucosylation has to change the 

characteristics and functions of some proteins or lipids involved in T cell differentiation. 

Only through cellular signaling events could a developmental procedure be stopped. To 
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answer this question, a bridge of cell signaling has to be found to bridge the gap from a 

chemical modification procedure of fucosylation to the fundamental process of the cells.  

Biological developmental procedures are tightly regulated by cellular events both 

temporally and spatially in order to formulate organisms. During the differentiation of the 

cells, the programmed events take place in response to the surrounding environment. 

Cellular response is triggered by the signals transduced from outside the cell to inside. 

Similar to all other developmental procedures, T cell differentiation is precisely regulated by 

numerous transcription factors and signaling pathways, including E2a, hematopoietic 

transcription factor PU.1, growth factor independence (Gfi)-1, T cell factor (TCF)-1, Runx 

factors, and the Notch1 signaling pathway (260). Many of these transcription factors are 

also used in many other lineage specifications (261). Most of them promote T cell 

development through Notch signaling. It was thought that Notch signaling has to be “on” 

all the time during T cell development in order to restrain the latent diversionary effect of the 

other factors involved (260). Very luckily, among all these transcription factors and 

signaling participants for T cell differentiation, only Notch receptors and ligands are 

fucosylated. This indicates that Notch signaling is the “bridge” we sought to link 

fucosylation to T cell development. Fucosylation controls T cell development through its 

influences on Notch signaling. Our results in Figure 3-6 have proven that the presence of 

fucosylation turns on Notch1 downstream genes and T cell specific transcription factors.  

On the other hand, fucosylated glycans related to thymocyte development were 

searched for in all known fucosylated proteins. Hundred of proteins are potentially 

fucosylated in a N-linked and/or O-linked fashion mediated by different 

fucosyltransferases. The fucosylated proteins are categorized in two groups roughly, N-

fucosylated proteins and O-fucosylated proteins. N-linked fucosylation is mediated by 

several different fucosyltransferase, encoded by FUT1, FUT2, FUT3, FUT4, FUT5, FUT6, 

FUT7, FUT8, FUT9, FUT10 and FUT11. However, no reported thymic abnormalities were 

found in known knockout mice from the genes above. Then O-link fucosylated proteins 
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were examined extensively. Some of EGF domains are fucosylated by protein O-

fucosyltransferase 1 (POFUT1). Many other proteins containing TSR domains are O-

fucosylated by POFUT2. Among all of these proteins, Notch1 stood out as the most 

promising candidate because it is involved in the regulation of T cell development.  

This conclusion has been further confirmed by comparing thymic abnormalities in 

detail in the following experimental models: 1) Notch1 conditional knockout mice and FX(-

/-) mice off fucose both had a sizable loss of mature T cell subsets. Notch1 conditional 

knockout mice had a residue Notch1 gene expression that cannot be ignored. Thus the 

complete loss of CD4+CD8a+ T cells was not seen in Notch1 conditional knockout mice. 

Although the thymic phenotypes resulting from fucosylation loss are not exactly the same 

as the ones resulting from the loss of Notch1 receptors, it has been strongly suggested that 

T cell progenitors without fucosylation behave to a large extent like the ones without 

functional Notch1 receptors. 2) RBPJ conditional knockout mice also showed a sizable loss 

of mature T cell subsets. These mice lack the Notch1 signaling pathway and display 

phenotypes similar to the Notch1 conditional knockout mice. 3) DNMAML1 transduced 

bone marrow cells lack Notch1 downstream signaling in early differentiation stages. These 

cells cannot progress through DN1a-b stages. 4) DN2 and DN3 cells require Notch1 

signaling to maintain T lineage specification and progression (214, 262). In the absence of 

fucosylation, DN2 and DN3 cells were greatly reduced in the FX(-/-) thymus, indicating the 

loss of Notch1 signaling.  

Although other possibilities may exist, from the above evidence it is most likely that 

fucosylation controls T cell development through modulating Notch1 signaling. Our 

experimental results have supported this hypothesis. Moreover, Notch1 signaling is not 

transduced in T cell progenitors in the absence of fucosylation. This result provided direct 

evidence that fucosylation controls the Notch1 signaling pathway. It is a new function for 

fucosylation in glycobiology and developmental studies and emphasizes the important 

regulatory roles of fucose in nature.  
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Multiple Molecular Functions of Fucosylated Glycans 

The studies presented in Chapter II and Chapter III reached the conclusion that 

fucosylation controls Notch1 signaling transduction and thus influences T lymphocyte 

development. The molecular mechanisms of fucosylation controlled Notch1 signaling were 

focused on in Chapter IV. This part of study shifts from the cellular level to the level 

defined by molecular biology. Our effort included the applications of recombinant DNA 

technology, protein quantification, functional studies of proteins, and cell imaging.  

Kenneth D. Irvine and colleagues have contributed to Notch signaling in Drosophila 

since early 1990. In their earlier studies, they focused extensively on the formation of 

Drosophila wings (263). During this developmental process, the interactions between dorsal 

and ventral cells are required. A soluble protein that modulates dorsal and ventral cells was 

identified and named Fringe (264). Other researchers have found that Serrate (265), Delta 

(266) and Notch (267) also modulate the wing disk formation of Drosophila. Serrate and 

Delta were shown signaling through Notch during wing development (266, 268). The Notch 

signaling then has been set up with Notch proteins as the receptors and Serrate/Delta as the 

ligands. Fringe modulates the Notch signaling pathway through a cell-autonomous 

mechanism (269). The basic scheme of Notch signaling has been set up.  

O-fucose was first identified on the EGF domain of factor XII (270) and was soon 

found on the EGF domains of mammalian Notch (18). A few years later, Fringe was found 

modulating the Notch-ligand interaction (269) through a glycotransferase activity (271). It 

turned out to be a beta1,3 N-acetylglucosaminyltransferase activity that initiates the 

elongation of O-linked fucose residues attached to epidermal growth factor-like sequence 

repeats of Notch (18). Further, studies from the Irvine lab have shown that O-fucose may 

regulate Notch signaling in wing development (25). O-fucosyltransferase was cloned (25) 
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and shown to have chaperon activity in Notch receptor folding (201). Losing fucosylation 

does not disturb the secretion of the Notch receptor in Drosophila (201).  

In the mammalian system, the chaperon activity of POFUT1 has not yet been 

reported. If mammalian Notch1 were folded in the same way as that of Drosophila, losing 

fucosylation would not alter the secretion of Notch1. In FX(-/-) mice off fucose, Notch1 

receptors accumulated in ER  in the full-length format (Figure 4-3), indicating an important 

role of O-fucose in mammalian Notch1 folding.  No quantitative evidence has shown that all 

of the Drosophila Notch receptor stuck in Golgi. Our results showed that there were little 

non-fucosylated Notch1 receptors on the cell surface that potentially interacted with their 

ligand (Figure 4-3). Non-fucosylated Notch1 was also observed in multipotent progenitor 

surfaces in the absence of fucose (Yunfang Man, Bronia Petryniak, John Lowe, unpublished 

data), which excludes the artificial abnormalities of E2a/Pbx1 cell line. However, the 

numbers of non-fucosylated proteins on cell surfaces were scarce compared to those of 

fucosylated Notch1 (Figure 4-3). Thus, different from Drosophila, mammalian cells require 

fucosylation to present Notch1 on the cell surface.  

The Notch1 receptor without fucosylated glycans has lowered binding abilities to 

the Dll4 ligand. One possibility is that non-fucosylated Notch1 receptor is properly folded, 

but that the binding pocket on Notch1 is not in the right shape, due to having lost 

fucosylated glycans. Dll4 binds to the binding pocket with less affinity. Another possibility 

is that the non-fucosylated Notch1 receptor is not properly folded. Dll4 binds to other parts 

of Notch1 (within 1-15EGF). Our results could not differentiate the conformation changes 

of the Notch1 receptor. Future studies are required to answer this question. By NMR and 

X-Ray crystallography, the structures of Notch1 could be obtained to compare the 

conformation of fucosylated Notch1 with non-fucosylated Notch1 in the near future.  

 



 129 

A Regulatory Mechanism for Maintaining T cell Generation 

Our results in the above chapters strongly suggested that T cell generation depends 

on the cellular fucosylation level and on the proper transduction of Notch1 signaling. 

Attenuating the cellular fucosylation level seems able to adjust the surface Notch1 receptors 

presented. By presenting non-fucosylated Notch1 on the cell surface, the ligand-binding 

abilities of signaling receiving cells are reduced. Further multipotent progenitors adapt 

lineage specifications other than T cells.  

We proposed a possible regulatory pathway to balance T cell development in the 

thymus. Since the expression of Notch1 ligands on thymic stromal cells occurs at a 

constant level, multipotent progenitors are differentiated in the thymus. When Notch1 

signaling is constitutively active, these progenitors are enforced to differentiate along the T 

cell pathway. However, cells other than T lymphocyte subsets were identified within the 

thymus. Since Notch1 signaling is required for multiple transitions within the thymus, 

multipotent progenitors have several chances to quit from the T cell differentiation pathway 

and are quickly differentiated into other cell types, including B cells. Immature and mature 

B cell subsets were identified within the normal thymus (155). Losing Notch1 signaling led 

multipotent progenitors to adopt the B cell fate within the thymus (78). These observations 

indicate that when T cells were surfeit, B cells would be generated within the thymus. 

Natural killer cells were found within thymus and for a long time it was thought they were 

being recruited from the peripheral repertoire (272). More evidence showed that thymic 

natural killer cells developed in situ (273). DN2 cells are able to adopt the NK cell lineage 

that is normally suppressed by Notch1/ligand interaction (262). It is very likely that these 

cell types other than T lymphocyte are generated as the result of decreasing T cell 

generation.  

Thus there might be a feedback loop to prevent the excessive generation of T cells, 

also preventing T cell lymphoma. Excess or an absence of T cells in the periphery may 
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signal multipotent progenitors before their entry to the thymus. A possible feedback target 

is the protein O-fucosyltransferase 1 residing in the ER in these progenitor cells. By 

attenuating the fucosyltransferase activities of POFUT1, the Notch1 signaling strength is 

adjusted accordingly (Figure 5-1). Whenever more T cells than sufficient are generated 

around the periphery, multipotent progenitors in the blood may receive a signal to decrease 

the O-fucosylation level.  POFUT1 in multipotent progenitors may be deactivated by 

various methods, including protein degradation and gene silencing. Once these multipotent 

progenitors arrive in the thymus, they will no longer receive Notch ligand signals from 

thymic stromal cells. When T cells are in shortage within the mammal, the cellular activities 

of POFUT1 may be increased for enhanced Notch1 downstream signaling. Thus these cells 

will have more Notch1 receptors that would increase the chances of binding to their ligands. 

Once they find the Notch1 activating ligand, they will bind well and quickly induce 

intracellular cleavages. Then the chance of this progenitor cell differentiating along the T 

lineage is greatly enhanced.  

Other modulators than POFUT1 can regulate this process as well. For example, 

Fringe enzymes are famous in their regulatory roles related to Notch1 signaling (274). 

Mammals have three different Fringe enzymes, Lunatic Fringe, Manic Fringe and Radical 

Fringe (275). Among them, neither Radical nor Manic Fringe were thought essential for 

development in any mouse tissue (274). Multipotent progenitors over-expressing the 

Lunatic Fringe gene were inclined to adopt the B cell fate within the thymus other than T 

cells (276). Increasing the expression of the Lunatic Fringe in multipotent progenitors may 

reduce its ability to be a T lymphocyte during competition (277). Lunatic Fringe deficient 

mice have been made independently by Jackson Lab (278) and Randy L. Johnson’s lab 

(279). However, there is a discrepancy between the two mouse models. Female Lfn(-/-) 

mice from Johnson’s lab were all not fertile, due to a disorganized ovarian morphology 

(280). But some of the female mice made by Jackson Lab were fertile as reported (281). It 

is not yet clear why there was such a difference between two mice similarly targeted during 



 131 

genetic engineering.  Moreover, there has not yet been any report of thymic abnormalities of 

the Lfn(-/-) mice from either lab yet. It is not known whether Lunatic Fringe is dispensable 

for thymocyte development. 

In summary, our studies have concluded the important roles of fucosylation in the 

regulation of signaling pathways and programmed cellular development. These functions of 

fucosylation had not previously been discovered. Our FX(-/-) mouse model greatly 

enhanced our knowledge in fucose biology and has explored a new field in thymocyte 

development. There are still a few key things left to investigate. The T cell progenitors are 

still thought to have multiple possibilities (216). It is not clear yet how Notch1 gene is 

regulated. Upstream of Notch signaling was not extensively focused yet. Further, Notch 

signaling talks with other signaling pathways forming a very complicated network (282, 

283). It will be very interesting to explore the functions of fucose in regulation of this 

network in lymphocyte development and other developmental processes in mammalian 

systems.  
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Figure 5-1 
 

 
 

Figure 5-1: Proposed regulatory feed back in T cell 
development via POFUT1. Left panel shows the situation of 
T cell generation. Right panel shows when T cells in peripheral 
are in excess.  
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