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ABSTRACT 

 
 

Structure-based drug design (SBDD) has emerged as an important tool in drug 

discovery research. Traditionally, SBDD is based on a static crystal structure of the target 

protein. However, a protein in solution exists as an ensemble of energetically accessible 

conformations and is best described when all states are represented. Upon ligand binding, 

further conformational changes in the receptor can be induced. While ligand flexibility 

can be accurately reproduced, replicating the innumerable degrees of freedom of the 

protein is impractical due to limitations in computational power.  

Previously, Carlson et al. developed a robust method to generate receptor-based 

pharmacophore models based on an ensemble of protein conformations. The use of 

multiple protein structures (MPS) allows a range of conformational space that can be 

assumed by the protein to be sampled and hence, simulates the inherent flexibility of a 

binding site in a computationally feasible manner. Small molecule probes are used to map 

energetically favorable regions of each protein active site, and the MPS are then overlaid 

to identify the most important, chemically relevant features conserved across the 

conformations.  

Here, we have refined the MPS method by developing techniques to optimize 

different steps in the procedure. First, we outline tools to properly overlay flexible 

proteins based on the rigid regions of the structure by incorporating a Gaussian weight 

into a standard RMSD alignment. Atoms that barely move between the two 

conformations will have a greater weighting than those that have a large displacement. 

Using HIV-1 protease (HIV-1p) as a test case, we next examine the use of various 
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sources of MPS: snapshots of an apo structure across a molecular dynamics simulation, a 

bound NMR ensemble, and a collection of bound crystal structures. Finally, we 

implement a simple ranking metric into the MPS method to quantify ligand overlap with 

a contour-based representation of the pharmacophore model. Overlapping in a region of 

the active site dense with pharmacophore spheres results in a higher ranking of a ligand 

pose. The refined MPS method and other computational techniques are then applied to 

study HIV-1p and investigate a novel inhibition mechanism by modulating its 

conformational behavior. 
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CHAPTER 1 

Introduction 

1.1 Background 

 

Protein-Ligand Binding 

Proteins were once thought to assume a single static fold that could only interact 

with a single complementary ligand, the “lock-and-key” theory proposed by Fischer in 

1890. This view then advanced to the “induced-fit” theory, suggesting that the active site 

of a protein could adjust to accommodate the ligand, as reviewed by Jorgensen.1,2 

However, proteins under native conditions have been shown, through NMR and kinetic 

experiments, to pre-exist as a statistical ensemble of conformational states.3-6 This 

evidence sparked a new theory to describe protein-ligand interactions. The protein in 

solution exists as an equilibrium ensemble of pre-existing conformations from all 

energetically accessible states.7-12 Each local minimum on the energy landscape 

corresponds to a different pre-existing structure with a discrete energy level, as 

demonstrated in Figure 1.1. Theoretically, a ligand could bind to any conformation in the 

ensemble, even those in less populated states. It is thought that ligand binding would shift 

the equilibrium of the system in its favor to further drive the binding reaction, resulting in 

a new ensemble distribution.13  
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Figure 1.1.  Schematic diagram of a folding funnel illustrating the multiple states that a protein can 
assume.   

 

 

 

 

 

 

 

 

 

Protein Flexibility 

As a direct result of this new view on protein-ligand binding, Freire and co-

workers realized that the Gibbs energy of stabilization of a protein is not equally 

distributed throughout its structure.6,11 Flexible regions allow ligands to enter and leave 

the binding site, and plasticity is required in any induced-fit binding, whether it is a 

simple side-chain reorientation or movement of a whole domain.12,14 They concluded that 

protein-binding sites are generally characterized by having concomitant regions of low 

and high structural stability. The regions of the protein with high structural stability, or 

“core regions,” remain relatively static between the multiple conformations, despite any 

movement of the flexible regions.  

Protein flexibility is a common feature of many biological systems that can 

regulate ligand binding and also, a large variety of cellular processes. The conformational 

changes can give rise to motion in molecular motors, act as a switch to turn on or off the 

respective biological activity, or even allow the same protein to perform several different 

functions.9,12,15 Signaling proteins can communicate through the same interaction domain 

with many different effectors. This requires that the interaction domain be flexible 

E 
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enough to accommodate structures of various sizes and chemical composition, yet the 

interactions must be specific and selective enough to continue the signal flow.  

Databases that highlight structural variation through mobility or evolution are 

useful and growing resources. The Database of Simulated Molecular Motions provides 

computational data on protein motion and flexibility.16 The Structure Superposition 

Database was created to address the issue of properly aligning and understanding large 

sets of homologous protein structures.17 The Database of Macromolecular Movements 

presents a diverse set of proteins which display large conformational changes in different 

crystallographic structures.18-20 A recent review discusses a range of motions observed in 

biopolymer synthesis and membrane transport seen in the Database of Macromolecular 

Movements.21 For instance, T7 RNA polymerase exhibits a large conformational change 

from the initiation to elongation phase, and a substantial motion is observed in Ca2+-

ATPase as it converts between a calcium-bound and free state.  

 

Structural Alignment of Flexible Proteins 

The heart of comparing two conformations of a flexible protein is an appropriate 

overlay of the structures for visual inspection. Over a dozen different techniques have 

been proposed for comparing and overlaying flexible proteins.19,22-34 For almost 20 years, 

every technique has been based on two steps: first, identify related subsets of Cα in the 

protein conformations and second, overlay that subset by a standard root mean square 

deviation (sRMSD) fit. Each technique differs in the way that it identifies the subsets, 

usually defining static, core regions of the protein. Some methods are quite elegant, even 

using weighted analytical techniques to define the subsets. The merits and caveats of each 

technique’s definition of a subset are often debated, but when an alignment is made in the 

end, all of these techniques get simplified to each Cα receiving a binary assignment of 

“in” or “out” of the subset. The Cα that are in the subset get aligned with an sRMSD. 

Even if weights were used in the analysis, they are not used in the final overlay step. 
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Chapter 2 describes our contribution to such an approach; instead of identifying subsets 

for a sRMSD, we chose to change the RMSD fit process itself. 

In order to perform a structural comparison, the corresponding residues (atom 

pairs) between the proteins must be determined. This task can be accomplished in a 

sequence-dependent manner using an initial sequence alignment or solely through 

structural information in a sequence-independent manner. Sequence-based techniques can 

miss similarity between homologous proteins with intermediate to low sequence identity 

(twilight zone). Fold-based methods can identify structural similarity, even between 

homologs with divergent sequences, but may be mislead in the case of flexible proteins. 

A technique that combines the two approaches and overcomes limitations caused by the 

protein flexibility would be an ideal choice for superimposing homologs. We describe 

such a method in Chapter 3. An evaluation of six structural comparison techniques 

(SSAP35, STRUCTAL18,36, DALI37, LSQMAN38, CE39, and SSM40) demonstrates many 

benefits and limitations of current methods.41 Additional reviews of the field call for 

combining techniques and using consensus across several methods to best define a 

structural comparison.42,43 

 

Ligands as Drugs 

Ligands that bind specifically to proteins known to be involved in disease 

pathways can be used as drugs. As such, the principles that govern protein-ligand binding 

apply to the design and discovery of new drug entities. The initial “hit” in the drug 

discovery process is termed a lead compound. A general distinction can be made between 

lead-like and drug-like compounds. Lead-like compounds are small molecules (200-400 

Da) with micromolar affinity for the target compound.44-46 They may still possess 

undesirable properties such as insolubility, high toxicity, or metabolism problems. Drug-

like compounds are generally larger (400-600 Da) and “have sufficiently acceptable 

ADME (absorption, distribution, metabolism, and excretion) properties and sufficiently 



5 

acceptable toxicity properties to survive through the completion of phase I clinical 

trials”.47  

Empirically derived rules are commonly used to describe “drug-likeness” as they 

offer general guidelines for describing the physical properties of orally available drugs. 

Pioneering work by Lipinski et al. led to Lipinski’s Rule of Five which states that, in 

general, an orally active drug possesses 1) ≤ 5 hydrogen-bond donors, 2) ≤ 10 hydrogen-

bond acceptors, 3) a molecular weight < 500 Da, and 4) a partition coefficient (log P) < 

5.47 A variety of other drug-like guidelines have spawned from the Lipinski study and are 

reviewed by Walters et al.48 Studies by Ajay et al. and Sadowski and Kubinyi have 

demonstrated the predictive power of empirical rules in distinguishing drugs from non-

drugs using multiple datasets.49,50 

Oprea et al. noted that lead-like guidelines should be followed in the initial phases 

of drug discovery to filter compounds, not drug-like profiles.45,51 If drug-like rules were 

employed, the identified lead compounds may be difficult to optimize while remaining in 

“drug-like” space. Lead-like qualities include 1) relatively simple chemical features, 

amenable for combinatorial and medicinal chemistry optimization efforts, 2) membership 

to a well-established SAR (structure-activity relationship) series, wherein compounds 

with similar (sub) structures exhibit similar target binding affinity, 3) a favorable patent 

situation, and 4) good ADME and toxicity properties.45 Moreover, following a physical 

properties analysis of compounds in lead-like datasets, empirical guidelines have been 

suggested: 1) a molecular weight < 450 Da, 2) -3.5 < LogP < 4.5, 3) ≤ 4 rings, 4) ≤ 10 

nonterminal single bonds, 5) ≤ 5 hydrogen-bond donors, 6) ≤ 8 hydrogen-bond  

acceptors.45 
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1.2 Structure-Based Drug Design 

 

Application to Pharmaceutical Research 

Structure-based drug design (SBDD) is a valuable technology that is seeing 

increased utilization to advance the process of drug discovery research.52-55 SBDD 

employs three-dimensional structures to design or predict ligands with high binding 

affinity and can generally be thought of as two varieties: de novo design and molecular 

docking. In de novo design a compound is designed to complement the inherent chemical 

characteristics of a binding site, while molecular docking is used to predict the binding 

mode of a known small molecule in a protein’s active site. When a database of molecules 

is employed to identify a novel lead compound, the docking method is termed virtual 

screening. The three-dimensional structures may be experimentally determined by NMR 

spectroscopy or X-ray crystallography or by theoretical means such as Molecular 

Dynamics (MD) simulations or homology modeling tools.  

The strength of SBDD lies in its potential ability to decrease the time and cost of 

bringing a drug to the market. To date, there has not been much success using SBDD to 

predict de novo compounds. However, molecular docking has played an important role in 

both lead discovery and optimization. By visualizing the interactions occurring between 

the ligand and protein, chemical modifications can be rationally directed to conserve 

those critical to binding. Furthermore, the protein-ligand complex can be evaluated to 

determine where chemical moieties can be eliminated and the ligand modified to improve 

its drug-like properties (e.g. solubility, oral bioavailability, selectivity, etc.). SBDD has 

become an integral part of the iterative drug design cycle46, however due to limitations in 

computational power, the trade-off between speed and accuracy still exists in current 

techniques. 
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Cross-Docking Problem 

Accounting for the conformational changes that can occur within the binding site 

of proteins has increased the difficulty of SBDD. As previously mentioned, the protein in 

solution exists as an ensemble of energetically accessible conformations and is best 

described when all states are represented.7-12 Traditionally, SBDD is based on a static 

crystal structure of the target protein. However, often a single structure is insufficient 

because the conformation observed can be influenced by many factors including 

experimental conditions and the induced fit between ligand and protein.56-58 This pre-

arrangement of the ligand binding site can lead to the cross-docking problem where the 

protein structure has adapted to bind a particular ligand or class of ligands but is unable to 

accommodate structurally diverse inhibitors. Incorporating protein flexibility has been 

recognized as a means to overcome the cross-docking problem and has become an 

important emphasis in improving SBDD techniques such as protein-ligand docking and 

protein-protein docking.  

 

 

1.3 Accounting for Protein Flexibility in Structure-Based Drug Design 

 

Current Techniques 

Much progress has been made in developing clever, computationally feasible 

methods that simulate the inherent flexibility of a ligand-receptor system using both 

experimentally and theoretically determined structures. The original technique is termed 

“soft docking” and involves relaxing the criterion used to model steric fit, allowing for 

overlap of the protein and ligand surfaces.59-61 A second method utilizes a single 

representative structure, the average of a collection of conformational states.62 A third 

way is to generate receptor conformations “on the fly” such that side chains are allowed 

to move to accommodate ligand binding using a pre-determined rotamer library to define 
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acceptable, alternative conformations.63-67 Research groups are now starting to account 

for protein backbone movements as well. The SLIDE method by Kuhn and coworkers68,69 

as well as the GLIDE software from Schrodinger, Inc.70 sample both side chain and 

backbone flexibility. FLIPDock is the first method that allows for fully flexible ligand 

and protein docking using a data structure termed the Flexibility Tree, which can even 

account for full, rigid, domain movements along with backbone and side chain motions.71 

MD simulations are also employed to account for full protein flexibility.72,73 Accurate 

MD simulations can be computationally expensive but may be appropriate to dock a 

small number of compounds, as reviewed by Alonso et al.74 

A final approach, and the focus of this research project, is to use an ensemble of 

protein structures. Models can be generated by overlaying the different conformations in 

the ensemble or each structure can be considered separately. Pioneering work by Knegtel 

and coworkers employed NMR and crystal structures to calculate a single scoring grid 

using geometry-weighted and energy-weighted methods for the program DOCK75,76.77 

Subsequently, Broughton used a similar weight-averaging method with FLOG to create 

composite grids derived from protein conformations taken from an MD simulation.78 The 

AutoDock program has also been used to look at different ways to average grids and 

found that weight-averaged grids performed the best.79,80 Furthermore, the program 

FlexE81, an extension of FlexX utilized a “united protein” approach to represent an 

ensemble of superimposed conformations.82,83 The regions of the protein in good 

structural agreement are averaged whereas the orientations of the structurally dissimilar 

regions are discretely represented, similar to a rotamer library. Shoichet and co-workers 

recently described a method similar to FlexE that treats flexible regions of the protein as 

discrete conformations.84 Their method employs collections of crystal structures and 

scales linearly with the number of flexible groups rather than exponentially. Multiple 

groups have explored docking ligands into each receptor conformation of an ensemble 

obtained by multiple crystal structures85,86, NMR87, normal mode analysis67,88, or MD89,90. 
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However in this technique, the score for a ligand pose is typically calculated against a 

single static structure. Several reviews have been published and summarize the current 

state of the field.14,57,58,91,92 

 

The Multiple Protein Structures Method 

Carlson et al. developed a robust receptor-based pharmacophore method based on 

solvent mapping of an ensemble of unbound Human Immunodeficiency Virus type 1 

(HIV-1) integrase protein structures to account for protein flexibility.93 The use of 

multiple protein structures (MPS), taken from an MD simulation, NMR ensemble, or 

collection of crystal structures, allows a range of conformational space that can be 

assumed by the protein to be sampled and hence, simulates the inherent flexibility of a 

binding site in a computationally feasible manner. Small molecule probes are subjected to 

a Monte Carlo energy minimization to map energetically favorable regions, or “hot 

spots”, of each protein active site. The MPS are overlaid to identify the most important, 

chemically relevant features conserved across the conformations, or “consensus sites”. 

The consensus sites are then reduced to a simple pharmacophore model that can be used 

in virtual screening to identify potential new ligands and scaffolds. This work was 

experimentally verified through biological testing and shown to have a high rate of 

success.93 

The MPS method has been further validated using HIV-1 protease (HIV-1p)94-96, 

dihydrofolate reductase (DHFR)97,98, and MDM299. Using HIV-1p, several parameters for 

defining consensus and using the pharmacophore models in screening were examined: 

MD simulation length, pharmacophore element size, number of required elements, and 

alignment mechanism. The resulting pharmacophore models were highly selective for 

known HIV-1p inhibitors and effectively discriminated against the chemically similar 

non-inhibitors in database searches.94 The use of MPS identified key features of known 

protease inhibitors from an apo protein structure, which is particularly dramatic as HIV-
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1p undergoes a large rearrangement upon binding inhibitors and substrates. In a follow-

up study, the MPS method was applied to two additional unbound HIV-1p structures.95 

Employing three similar but unique starting structures to obtain three independent MD 

trajectories of the unbound HIV-1p resulted in nearly identical pharmacophore models. 

This demonstrated that the MPS method is not overly dependent on a specific starting 

conformation or particular MD trajectory.  

Crystal structures of DHFR from different species were used to examine whether 

MPS pharmacophore models could encode specificity between similar binding sites.97 

The models were shown to be capable of identifying high-affinity, species-specific 

DHFR inhibitors over weaker, general inhibitors, supporting the hypothesis that including 

protein flexibility improves SBDD. Furthermore, a second DHFR study demonstrated 

that longer MD simulations enhanced the performance of MPS models; again, this 

reveals that protein flexibility is needed to model protein-ligand binding interactions 

accurately.98  

Additionally, snapshots from MD simulations of unbound MDM2 and the p53-

MDM2 complex were used to create MPS pharmacophore models of the binding cleft of 

MDM2. Of the 27 compounds identified using the MPS model, 23 were experimentally 

tested and five were shown to inhibit MDM2 (22% success rate).99 An important feature 

of this study was that all five chemical scaffolds are unique and share no common 

substructures with reported inhibitors of MDM, as the MPS technique is intended to push 

the boundaries of chemical space and overcome the cross-docking problem. Chapters 4 

and 5 discuss further refinement of the MPS method. 
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1.4 HIV-1 Protease as a Test Case 

 

HIV/AIDS 

HIV-1p is a viral enzyme critical to continuing the life cycle of HIV, the 

retrovirus responsible for Acquired Immunodeficiency Syndrome (AIDS).100 Presently, 

HIV/AIDS affects approximately 40 million people worldwide and resulted in 

approximately 3 million deaths in 2006.101 Consequently, HIV-1p has been extensively 

studied over the years and is regarded as a key drug target. The first structure of HIV-1p 

was solved in 1989 by Navia et al.102 from Merck laboratories and a second shortly after 

by Kent and coworkers103 at the NIH. A diverse set of experimentally and theoretically 

determined HIV-1p structures is now available, including over 300 crystal structures and 

3 NMR structures, allowing for a thorough evaluation of new structure-based methods. 

Furthermore, hundreds of inhibitors have been reported throughout the literature.  

HIV-1p is responsible for the cleavage of the gag and gag-pol precursor 

polyproteins in at least nine different sites to form mature viral proteins.104 It has been 

demonstrated that budded immature viral particles cannot undergo maturation to an 

infective form if HIV-1p is catalytically inactive.105 Currently, there are eight peptidic 

drugs on the market that competitively inhibit HIV-1p by mimicking substrates and the 

transition state of cleavage: saquinavir, ritonavir, indinavir, nelfinavir, amprenavir, 

lopinavir, atazanavir, and fosamprenavir, and two non-peptidic competitive active-site 

inhibitors available: tipranavir and darunavir (Figure 1.2).106,107 The non-peptidic 

protease inhibitors (PIs) displace a conserved water molecule that coordinates substrates 

(and peptide PIs) to the protease flap tips and form direct hydrogen bonds to the flap 

region.108 The structural water is a key difference between mammalian and HIV 

proteases, and this displacement may be one reason why non-peptidic PIs are very 

selective for HIV proteases.109,110 Saquinavir was the first protease inhibitor (PI) to be 

approved by the FDA and became available to the public in December of 1995. The 
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discovery of novel PIs is still a very active area of research due to the associated toxicity, 

poor pharmacokinetic properties, and resistance that has developed to the existing drugs. 
 
Figure 1.2.  Structures of the ten HIV-1p inhibitors currently on the market. 
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HIV-1p Dynamics 

HIV-1p is found as a C2-symmetric dimer; each monomer is comprised of 99 

residues. The active site is located at the dimer interface and contains two catalytic 

aspartate residues (25, 25’), which interact directly with inhibitors and substrates.104,111 

This region is covered by two glycine-rich, anti-parallel β-hairpins, referred to as the 

“flaps”, consisting of residues 43-58 (Figure 1.3). The conformational behavior of the 

flap region of HIV-1p has been extensively studied in the last few years, as reviewed by 

Hornak and Simmerling.112 It is thought that the largely populated states are closed, semi-

open, and open, with the semi-open conformation being the most prevalent in the apo 

state. Recently, two groups have demonstrated through Langevin Dynamics (LD) 

simulations extensive sampling of the multiple flap conformations.113,114 Both groups also 

showed that upon introduction of a ligand into the active site of a semi-closed 

conformation, the flaps close down upon the ligand and replicate key hydrogen bonds 

seen in bound crystal structures.115,116 
 
Figure 1.3. A cartoon representation of HIV1-p in the semi-open conformation117; catalytic residues 25/25’ 
are shown in stick representation. The location of key features discussed in Chapters 1-6 are indicated to 
orient the reader. 
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A ligand can only access the active site through the open conformation118, 

although the mechanism allowing such entry is still unknown. However, theoretical 

simulations have shown that there is a major rearrangement of the hydrophobic core 

region (residues 5, 11, 13, 15, 22, 24, 33, 36, 38, 62, 64, 75, 77, 85, 89, 90, 93, and 97) 

that helps facilitate the opening of the cavity.119 Additionally, Scott and Schiffer reported 

that curling of the flap tips created a “hydrophobic cluster” in the flap-recognition pocket 

(“eye” region of Figure 1.3, residues 79-81) of the same monomer and induced flap 

opening.120 This curling mechanism, allowing for hydrophobic contacts between the flap 

tips and “eye” region residues, has been demonstrated to drive flap opening by additional 

groups.115,121-123 However, the open conformations sampled in the Hornak et al. 

simulation were not preceded by flap curling.113 In fact, the authors state that the flap tips 

actually moved away from the active site of the protease. NMR data has shown that the 

flap region of HIV-1p is in equilibrium among an ensemble of semi-open states and 

undergoes conformational changes to the open form on a microsecond time scale, while 

the flap tips appear to fluctuate on a subnanosecond time scale.124,125 The dynamics of the 

flaps and flap tips revealed by NMR is consistent with either observation. Two drug-

susceptible apo crystal structures were recent reported in two distinctly different apo 

conformations that the authors term curled and open.126 However, their curled structure is 

actually assuming the semi-open state, according to current literature definitions, and 

should not be confused with “curled” flap tips. 

Upon ligand binding, multiple conformational changes occur in the protease.111,127 

There is an inward rotation of each monomer, and the flaps assume a closed 

conformation over the active-site cavity (5-7 Å shift from apo form). In addition, the 

“handedness” of the flap tip (residues 49-52) orientation reverses upon closing.113-116 The 

conformational changes are demonstrated in Figure 1.4. The closing motion of the flaps 

has been correlated with the substrate movement towards the catalytic residues Asp 
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25/25’, coordination of a water molecule, and positioning the substrate for optimal 

enzymatic activity.121,128,129 
 

Figure 1.4.  Two conformational states assumed by HIV-1p. The flap tips change handedness upon flap 
closure. (A) Semi-open conformation illustrated using the crystal structure 1HHP117. (B) Closed state 
demonstrated using the crystal structure 1PRO130. 

 

 

Resistance 

Drug resistant mutations pose a significant challenge in treating HIV/AIDS. In the 

presence of resistant strains, the potency of the current PIs against HIV-1p drastically 

decreases.131 The resistance is typically associated with specific mutations in the amino 

acid sequence that reduce the protease’s affinity for each inhibitor. Perno et al. found that 

the active site residues D25-D29, tip of the flap residues G49-G52, and “turn” residues 

G78-P81 and G86-R87 are conserved (i.e. residues not associated with resistance in the 

presence of HIV-1p inhibitors).132 This suggests that these residues are essential for the 

activity and/or structural stabilization of HIV-1p.  

Upon the introduction of drug therapies, the first mutations to appear on the 

protease are referred to as primary mutations. Typically such mutations are located in the 

active site and directly interfere with PI binding. However, primary mutations have been 

documented that are distal to the active site, and the authors hypothesize that the 
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mutations distort the geometry of the binding site.133 In addition to reducing the potency 

of PIs, active site mutations can also detrimentally affect substrate binding and reduce the 

catalytic activity of the protease. In order for the protease to combat this issue, 

compensatory, or secondary mutations, typically emerge at non-active site residues. The 

secondary mutations appear to change the dynamics of flap opening and 

closing.121,123,134,135 Clemente et al. postulated that the transient binding of flexible 

substrates would not be affected by the altered dynamics as greatly as “rigid” inhibitor 

binding.135 Additionally, compensatory mutations have been found that are located near 

the cleavage sites of the Gag substrates.136-138 These mutations appear to alter the 

conformation of the substrate to improve interactions with the mutant active site.  

The first crystal structure was solved of an apo multi-drug resistant (MDR) HIV-

1p strain at 1.8 Å and revealed an expanded active site cavity.139 The authors determined 

that the 3.0 Å expansion of the site was primarily attributed to the shorter side chains 

from the V82A and I84V mutations and a larger distance between residues I50 and P81 

resulting in a more open flap conformation. The expanded active site cavity results in 

decreased binding affinity of the PIs due to a loss of van der Waals contacts and 

hydrogen bonds. Ohtaka and Freire propose that more flexible HIV-1p inhibitors, or 

“adaptive inhibitors”, are able to move to accommodate the structural changes associated 

with the resistance mutations.131 Adaptive inhibitors show less of a potency loss than 

conformationally constrained inhibitors.  

 

Inhibition Mechanisms 

 All current PIs on the market bind in the active site of HIV-1p and are 

competitive inhibitors of the natural substrates. Hence, HIV-1p cannot cleave the 

substrates into functional proteins, preventing further maturation and proliferation of 

HIV.111 Novel inhibition mechanisms are needed to overcome the resistance associated 

with existing PIs. Different mechanisms have been proposed in the literature and are 
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summarized below. Our contribution to the discovery of PIs through a novel mechanism 

of action is presented in Chapter 6. 

The substrate envelope theory stems from the observation that HIV-1p is a 

promiscuous enzyme that does not recognize specific amino acids sequences for substrate 

cleavage.140-143 Instead, the substrates assume a conserved shape upon interacting with 

HIV-1p known as the “substrate envelope”; the amino acids upstream of the cleavage site 

form a toroidal shape while the downstream residues adopt an extended conformation 

providing space for essential interactions with water molecules.140,144,145 Current PIs are 

shorter than the natural substrates and contain hydrophobic moieties that protrude outside 

of this “envelope”, interacting with the side chains of the active site residues. As such, a 

mutation in these residues (e.g. Val 82 or Ile 84) can result in decreased van der Waals 

interactions and diminish the inhibitor binding affinity.139 It is hypothesized that 

designing inhibitors that assume a similar shape rather than chemical functionality to the 

natural substrate may be one mode for overcoming resistance. In fact, amprenavir 

predominately fits the substrate envelope and displays a different mutation profile than 

other PIs.141 

An additional element that differs between substrate and PI binding is the degree 

of hydrogen bonding with backbone atoms, the “backbone binding” concept. There are a 

significant amount of backbone hydrogen bonds formed between the substrate and HIV-

1p that are not present in PI binding.145 Mutations in backbone atoms cannot occur; 

hence, these interactions will likely be maintained and could potentially evade drug 

resistance. The “backbone binding” concept was validated by the discovery and 

development of the recently approved nonpeptidic PI, darunavir, as reviewed by Ghosh et 

al.146 A co-crystal structure of darunavir bound to HIV-1p demonstrated hydrogen-

bonding between the bis-tetrahydrofuran oxygens and Asp 29 and Asp 30 backbone 

amides and between the aniline moiety and the carbonyl oxygen of Asp 30’.146,147 

Experimental studies showed exceptional broad-spectrum activity against a large panel of 
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MDR HIV-1 strains147, and darunavir was approved by the FDA in June 2006 as the first 

treatment for drug-resistant HIV. 

A third technique is targeting an allosteric site on HIV-1p. Various groups have 

identified anti-correlated motion between the flap and elbow (residues 35/35’-42/42’) 

regions through normal mode analysis and MD simulations.122,128,148,149 The closed and 

semi-open conformations are distinctly different in this region. A follow-up study 

demonstrated that restricting movement of the elbow region resulted in immobilization of 

the flaps.150 Although harmonic restraints were used to control the HIV-1p flap region, 

such results establish a theory of allosteric control, which may be manipulated in drug 

design. 

A recent crystal structure of the apo form of a multidrug-resistant HIV-1p (PDB 

ID: 1TW7) has the flaps displaced wider and more open than other semi-open 

structures.151 Crystal packing creates contacts between the flap tips in the neighboring 

unit cell and the elbow region of HIV-1p, as shown in Figure 1.5, and it has been 

proposed that this might be experimental corroboration of allosteric control. Recent LD 

simulations by Simmerling and coworkers examined this structure and showed that in the 

absence of the crystal contacts, 1TW7 takes the typical semi-open conformation.149 

Furthermore, they replicated all the packing neighbors (e.g. residues) within 15 Å of the 

central dimer and were able to demonstrate that the central HIV-1p remained in the open 

conformation. The crystal packing contacts suggest the possibility allosteric control; 

however, to date an “elbow” inhibitor has never been experimentally verified in the 

literature. 
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Figure 1.5.  Structure 1TW7 (grey cartoon and surface representation). There are many contacts between 
the neighboring unit cells (not shown for clarity), but contact in the elbow regions is limited (yellow chain). 
(A) Front view. (B) View looking down elbow cavity. 
 

  

A final mode of action currently being pursued is to disrupt HIV-1p dimerization 

by targeting the interdigitating, highly conserved β-sheet region of the C- and N- termini 

and the bulk contact region in the core of the protein.152 Todd et al. showed through 

calorimetry measurements that approximately 75% of the free energy of dimerization 

comes from the β-sheet region93, shown in Figure 1.6. The HIV-1p dimer is in 

equilibrium with the monomeric form in the cell; multiple groups have experimentally 

verified that HIV-1p can be inhibited by blocking the dimerization event.153-157 Several 

groups are employing a peptidomimetic approach to design inhibitors based on residues 

1-6 and 95-99 and tethering the peptides together using flexible and rigid linkers.154,156-161 

The Chmielewski group has been the most successful and has shown through cross-

competitive inhibition assays that the compounds are binding at an allosteric site.162-164 

However, none of the compounds showing inhibition activity have been structurally 

verified to demonstrate that the binding is actually occurring at the dimer interface. 
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Figure 1.6. The β-sheet interface. Monomer A residues are shown in surface representation while 
monomer B residues are shown as ball and sticks. The N-terminal peptide (P1-W6) is at the top, and the C-
terminal peptide (C95-F99) is at the bottom. Green residues are found to be important in designing mimics. 
(Figure curtsey of Jerome Quintero.) 
 

 

 

 

1.5 Theory 

 

Molecular Mechanics 

Numerous computational techniques are utilized to study the behavior of 

biomolecular systems. The most accurate representation of a molecule would employ a 

quantum mechanical treatment of every atom; however, such a high level of accuracy is 

not computationally feasible for large biomolecular systems. A simpler yet reasonably 

accurate model of a molecule can be obtained using molecular mechanics (MM). MM 

provides an energetic description of a set of atoms treating the atoms as points without 

explicit electrons. The set of equations that relates the potential energy to the atomic 

positions is called a force field. A crucial component of the force field is a set of 

parameters that are plugged into the force field equation to describe the system as 

accurately as possible.165  

 MM force fields have been derived to model the behavior of the biomolecules and 

enable the potential energy of the system to be calculated fairly accurately. A variety of 
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MM force fields have been developed; some of the most commonly employed include 

AMBER (Assisted Model Building with Energy Refinement)166, CHARMM (Chemistry 

at Harvard Molecular Mechanics)167, GROMOS (Groningen Molecular Simulation)168, 

and OPLS (Optimized Potential for Liquid Simulations)169. Each atom is represented as a 

sphere and assigned a van der Waals radius and typically, a constant net charge. To 

reduce the complexity of a system, a “united-atom” approach may be used where groups 

of atoms are represented as a single particle. Different hybridization states and element 

types may be modeled by using a discrete set of atom types. The potential energy of the 

system is described as the sum of the bonded (e.g. covalent) and nonbonded (e.g. 

electrostatic, dipole, and van der Waals) interactions. For large biomolecular systems, the 

equations describing such interactions include numerous approximations to allow for a 

rapid calculation of the total energy; hence, there is often a trade-off between speed and 

accuracy.170 

 In the Carlson Lab, the MM simulation suite AMBER is used, along with the 

AMBER force field described by the potential energy function provided below.166 
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where b and θ are the bond length and bond angle, respectively, and Kb and Kθ are the 

force constants for the bond and bond angles. φ is the dihedral angle and Vn is the 

corresponding force constant (commonly referred to as the torsinal barrier height); the 

phase angle γ values are either 0° or 180°. The nonbonded part of the potential is 

represented by van der Waals (Aij) and London dispersion terms (Bij), partial atomic 

charges (qi and qj), and the dielectric constant ε. 

The first three terms of the equation represent the bonded interactions. The 

potential energy of both the bond stretching and bending terms is modeled as a simple 

harmonic oscillator while the torsional component is approximated as a periodic function. 
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The nonbonded term is modeled using Coulomb’s Law for electrostatics and the 

Lennard-Jones Potential for van der Waals interactions. Hydrogen bonds are not 

explicitly represented, rather they are accounted for through appropriate parameterization 

of Lennard-Jones and Coulomb Interactions.170 Figure 1.7 schematically illustrates the 

key components of the MM force field. The constants in the potential energy terms such 

as spring stiffnesses, equilibrium distances, torsional barriers and periodicities, partial 

charges, and Lennard-Jones coefficients have been parameterized using experimental 

data such as crystallographic bond lengths, vibrational frequencies, and solvation free 

energies or by high-level quantum mechanical calculations. One limitation to the current 

force fields is the neglect of polarizable effects from the environment and is an area of 

ongoing research.171  

Figure 1.7.  Bonded and nonbonded components of a typical MM force field. 
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Molecular Dynamics 

MD simulations are commonly used to study the dynamics of biomolecules and 

aid in the refinement of X-ray crystallography and nuclear magnetic resonance (NMR) 

structures. The first MD simulation of a biomolecule, the bovine pancreatic trypsin 

inhibitor, has carried out in 1977 by McCammon et al.172 paving the way for what has 

now become a routine tool for computational chemists. MD is a deterministic method that 

calculates the time-dependent behavior from an initial set of velocity distributions and 

atomic coordinates through the integration of Newton’s equations of motion. Newton’s 

second law of motion (Eq. 1.2) relates the force along a molecular trajectory to the mass 

and acceleration; hence, for a given, initial starting point, the system’s future position and 

momenta can be calculated over time.170  
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where Fi is the force exerted on a particle i, mi is the mass of the particle i, ai is the 

acceleration of particle i, and V is the potential energy of the system, usually calculated 

by an MM force field. 

 For all but the simplest systems there is not an analytical solution to the equations 

of motion, as the potential energy is a function of the 3N coordinates of all the atoms in 

the system. Multiple numerical algorithms are available for integrating the equations of 

motion and include the Verlet, Velocity Verlet, Leap-frog, and Beeman’s algorithms.170 

A proper time step for the integration is very important; it must be an order of magnitude 

smaller than the vibration of bonds that involve hydrogen atoms, the fastest motions of 

the system (approximately 10 fs), for the integration algorithm to be stable. Alternatively, 

if the time step is too small, the amount of phase space sampled is affected. Typically, 1 

fs is employed, although longer time steps may be used if lengths of bonds involving 

hydrogens are constrained. Biochemical simulations are often performed using a single 
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molecule isolated in a box and solvated with explicit water; the assumption is made that 

the number of particles in the box remains constant. The current water models include 

ST2, SPC, TIP3P, TIP4P, and TIP5P, and all treat water as a rigid molecule.173 Periodic 

boundary conditions are applied to approximate an infinitely tiled system. The results 

obtained from an MD simulation are dependent on the MM force field and 

approximations employed; hence, proper care must be taken when setting up a 

simulation.  

 

Langevin Dynamics 

 When solvent molecules are not explicitly represented, an alternative approach to 

MD is the use of LD. The Langevin equation is a stochastic differential equation, which 

incorporates two force terms in Newton’s second law to approximate the loss of the 

biomolecule’s interaction with solvent. The first is a frictional term and is related to the 

collision frequency while the second is a random force. The solvent effects are 

approximated using a frictional drag as well as random jolts associated with the thermal 

motions of the solvent molecules. Langevin's equation for the motion of particle i is 

provided below.170 
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where R is the random force and ξ is the frictional coefficient.  

 Even though the overall integrity of biomolecules are better maintained with MD 

than with LD, LD has a significant speed advantage over MD and allows for longer 

simulations. This is because water molecules are implicitly represented, hence there are 

fewer atoms in the system. Furthermore, LD can sample a greater amount of 

conformational space than MD in a shorter time scale due to the decrease of friction. 

 



25 

Metropolis Monte Carlo 

 Monte Carlo (MC) simulations are stochastic methods based on the use of random 

numbers to sample conformational space rather than deterministic algorithms as in MD 

simulations. As such, the system literally jumps from conformation to conformation, 

overcoming large energy barriers, which allows for greater sampling and the potential to 

find the global minimum and not simply a local minimum. However, because MC does 

not sample a realistic dynamics trajectory, it cannot provide time-dependent properties. 

Each conformation depends only on the previous conformation. Typically, MC 

simulations are performed under conditions of the canonical ensemble (constant number 

of particles, volume, and temperature) unlike MD, which traditionally uses 

microcanonical ensemble conditions (constant number of particles, volume, and 

energy).170 

The potential energy associated with the initial conformation is calculated (E1), 

and the system is perturbed to a new conformation and the energy recalculated (E2). If E2 

< E1, the new conformation is retained, but if  E2 > E1, the Boltzmann factor of the energy 

difference is determined. The Boltzmann factor is compared to a random number 

between zero and one, and if the random number is higher, the conformation is discarded. 

However, if the random number is lower, the conformation is kept. Therefore, the smaller 

the uphill move and hence, the Boltzmann factor, the greater the probability the 

conformation will be accepted. This process continues for a set number of steps or until 

energy convergence is reached.170 Low-temperature MC minimization (MCM) 

techniques are widely used to search for low-energy local minima. One such example is 

the use of MCM to minimize small molecule probes (e.g. benzene) to map the most 

energetically favorable interactions with a protein-binding site.93,174 
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Molecular Docking 

Molecular docking is a method used to predict the binding mode between a ligand 

and biomolecule (typically a protein). It was introduced in 1982 by Kuntz et al.75 and has 

now become an integral part of many drug discovery programs. Docking can reduce the 

time and cost required to attain a clinical candidate by allowing for rapid screening of 

databases containing millions of compounds in the lead discovery phase. Furthermore, 

rationally evaluating where and how to modify the lead compound can minimize the 

number of compounds that need to be synthesized in the optimization phase. However, a 

drawback of this technique is that structural information is required. Frequently used 

docking programs include DOCK75, AutoDock175, FlexX82, GOLD176, ICM177, and 

GLIDE178,179. 

A typical docking protocol is comprised of two components: the search algorithm 

and scoring function. The role of the search algorithm is to generate low-energy ligand 

conformations and predict the orientation of each ligand conformation within the 

receptor’s active site. The predicted ligand conformation and orientation is termed the 

“pose”. A variety of search algorithms is available and consists of random or stochastic 

techniques such as Monte Carlo, genetic algorithms, and tabu search methods and 

simulation methods including molecular dynamics and pure energy minimizations.180,181 

A rigorous search algorithm would account for all possible binding poses by allowing 

both the protein and ligand to be flexible; however, this is not computationally feasible 

due to the enormity of the conformational space that must be searched. A common 

approximation in the early search algorithms was to keep both the protein and ligand 

rigid and later advanced to using pre-generating ligand conformations to model ligand 

flexibility. However, neither approach accounts for the flexibility of the protein or the 

induced fit that may occur upon ligand binding. Developing novel and computationally 

feasible techniques to model the conformational changes that can occur in both the 

protein and ligand is an active area of research, as previously discussed.  
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The role of the scoring function is to evaluate each pose by predicting the free 

energy of binding (binding affinity) of a ligand as a function of its position in a protein 

binding site.182 The scoring function employed is generally either a molecular mechanics 

force field, empirical free energy scoring function, or knowledge based function. 

However, several groups are now using “consensus” scoring techniques that combine 

information from the different algorithms and have demonstrated success over using the 

algorithms individually.183-185 As many simplifications and assumptions must be made to 

increase the speed of the scoring function resulting in a loss of accuracy, to date no 

method is able to predict the free energy of binding correctly. However, the relative 

ranking between compounds in a single screen can provide useful information, even 

though the absolute numbers are not meaningful. 

Scoring functions can be utilized using different techniques. The first is to use a 

rigorous scoring function to both direct the search algorithm and rank the resulting poses. 

The second method uses a “reduced” scoring function initially for rapid evaluation during 

the search step and a rigorous scoring function to rank the resulting poses.181 

Furthermore, the top scoring ligand poses may also be re-ranked using a more 

sophisticated, but slower, scoring function. 

As with any technology, there are identified limitations associated with molecular 

docking. First, the employed structures are not exact (e.g. may contain experimental 

errors), and crystal structures represent an average structure. The conformational space 

that must be sampled is enormous, and the molecules usually undergo conformational 

changes upon association. The scoring functions contain many approximations, as 

accurate calculations are too slow for most applications, and solvent-related terms are 

typically ignored. A review by Taylor et al. suggests that the best docking techniques are 

hybrid methods, which incorporate multiple search and scoring algorithms.181 The field 

of molecular docking is a very active area of research, and there is a plethora of reviews 
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available on the status of protein-ligand docking algorithms and the utilized scoring 

functions.180,181,186-188  

 

1.6 Specific Aims 
 

The goal of this project was to optimize the MPS method and apply it, and other 

computational techniques, to study HIV-1p and discover novel inhibitors to overcome 

existing resistance. My specific aims included: 

 

1. To develop a tool to properly overlay different conformations of the same protein 

based on the rigid regions of the structure (key to identifying “regions of 

consensus” for MPS models). 

 

2. To probe the source of MPS using conformational snapshots of an apo structure 

across an MD simulation, a bound NMR ensemble, and a collection of bound 

crystal structures. 

 

3. To quantify ligand overlap with MPS pharmacophore models by incorporating a 

ranking function using DOCK. 

 

4. To apply the MPS method and other computational techniques to study HIV-1 

protease and investigate a novel inhibition mechanism by modulating its 

conformational behavior. 
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CHAPTER 2 

Gaussian-Weighted RMSD Superposition of Proteins:                                                  

A Structural Comparison for Flexible Proteins 

2.1 Introduction 

 

An appropriate structural superposition provides a means to compare the 

similarity or dissimilarity between protein conformations. Kabsch previously described 

the algorithm that optimally overlays two molecules by minimizing the deviation 

between their atomic coordinates.1 This algorithm is the basis of most alignment methods 

that overlay molecules using an sRMSD fit. The Kabsch method notes a means to 

incorporate weighting or biasing into the sRMSD fit, but this is not regularly used.  

Our technique incorporates a Gaussian-weighting term and minimizes the 

weighted deviation to overlay two structures. The individual weights are directly based 

on the distance between each atom pair; consequently, atoms with little movement will 

have a greater weighting in the least squares fit than those that are further apart. Our use 

of a Gaussian-weighting term inherently selects out atom pairs with similar relative 

positions between the two structures, while discounting loops and other flexible regions. 

This method removes the subjective nature of selecting out and overlaying a subset of 

atoms and does not require any prior knowledge of the protein structure or its dynamics. 

The weighted RMSD (wRMSD) fit is heavily biased by the coordinates found in the 

similar regions of the two conformations, highlighting the static regions and the dynamic 

movement of the protein. Hence, this technique can be a useful way to identify domains 

and hinge regions within a protein structure.  
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Here, we show how weights can be used during the fit to produce an wRMSD 

alignment. Furthermore, we found that predefining the domains is not needed with 

wRMSD fits when using our implementation of weighting. All the Cα coordinates are 

used in the wRMSD alignment, and the resulting weights and alignments can identify the 

domains. This technique is the reverse of other methods in the literature. The overlay 

defines the domains, rather than the domains defining the overlay. 

 

 

2.2 Computational Methods 

 

Protein Dataset  

We have chosen to test this method on eight representative proteins found in the 

Database of Macromolecular Movements2-4, Table 2.1. The proteins were chosen based 

on their interest to the community, variation in size, and range of conformational 

changes. Investigating protein systems which undergo small and large conformational 

changes will allow us to create a robust procedure, appropriate for a full range of 

applications. PyMOL was used for various visualization purposes and the creation of 

figures.5  
 
Table 2.1.  Test case proteins listed in order of small to large conformational changes. 
Protein System Conformation 1 Conformation 2 Standard  Number of 

 PDB6 Code PDB Code RMSD* Residues 
HIV-1p  1KZK7 1HHP8 1.2 94 
cAMP-Dependent PK (PKA)  1JLU9 1CMK10  1.9 337 
Elongation Factor G (EFG)  1FNM11  2EFG12  2.3  580 
Estrogen Receptor  α  (ERα)  3ERD13  3ERT13  4.9  238 
Rb69 Phage DNA Polymerase (DNA Pol)  1IH714 1IG914  6.5  895 
GroEL  1AON15  1OEL16  12.4  524 
RAN  1RRP17  1BYU18 14.4  200 
T7 Phage RNA Polymerase (RNA Pol)  1QLN19  1MSW20  18.3  843 
* Standard RMSD parallels the degree of conformational change 
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Standard RMSD Fit  

A widely used algorithm to calculate the least-squares solution was previously 

described by Kabsch1. Flower has presented a thorough discussion of various 

mathematical approaches to the superposition problem21, and he notes that Diamond22 has 

proposed a more accurate and sophisticated mathematical approach. We have chosen to 

work with Kabsch’s technique because it is more widely used than Diamond’s. This will 

allow our modifications to be easily incorporated into more existing programs and 

applications.  

Following Kabsch’s nomenclature1, let us assume that we have two proteins X 

and Y, both having n atoms. The centers of mass of both proteins are at the origin (it is 

trivial to translate any set of protein coordinates to accomplish this). If we wish to rotate 

protein X to best match the coordinates of protein Y, we start by calculating a 3x3 

covariance matrix (R) between the two set of points X and Y where i and j denote the 3D 

components of each atom n and 

XYR T
=  or ∑=

n

njniij xyr                                           (2.1) 

The square of the covariance matrix (R2) is calculated as  

RRR T2
=                                                                            (2.2) 

 The eigenvectors (A) and eigenvalues of R
2 are determined and sorted in 

decreasing order of eigenvalues. The normalized product of (R x A) is denoted as matrix 

B. Matrices A and B are used to calculate the rotation matrix (U) where 

ABU
T

=  or ∑=
k

kjkiij abu                                         (2.3) 

 All coordinates of protein X are rotated to produce coordinates X’.  
TT' UXX =  or ∑=

k

nkikni xux'                                          (2.4) 

 These new coordinates X’ are compared back to coordinates Y of protein Y. The 

sRMSD is calculated as follows 
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2/1

21
sRMSD 








= ∑

n

nd
n

                                                                 (2.5) 

where  ( ) 2/1222 )'()'()'( nznznynynxnxn xyxyxyd −+−+−=                                          (2.6) 

 

Weighted RMSD Fit 

We use a Gaussian-weighting factor in the wRMSD procedure. The weight is 

given by  
cd

n
new

/)( 2
−

=                                                                          (2.7) 

where c is an arbitrary scaling factor and dn is determined with Eq. 2.6. It should be noted 

that d is the distance between atom n in each protein conformation (X and Y). The 

distance is not between two atoms (n and m) in the same protein nor is it a comparison of 

the n-m distance in conformations X and Y.  

The weighted term is incorporated into the calculation of a weighted center of 

mass (Eq. 2.8), and this term is used to orient the weighted center of mass of each protein 

at the origin. 

∑∑=
n

n

n

nnnx mxmwwCM  and  ∑∑=
n

n

n

nnny mymwwCM                  (2.8) 

An sRMSD fit minimizes the sum of dn
2, but a wRMSD fit minimizes the sum of 

wndn
2. Kabsch noted that weighting terms can be used in the RMSD fit by simply 

incorporating them to the covariance matrix. 

∑=
n

njninij xywr                                                                       (2.9) 

At this point, the procedure is the same. The eigenvectors of R
2 are found and 

used with R to produce the rotation matrix U (Eq. 2.2-2.4). The sRMSD from Eq. 2.5 is 

rewritten as a weighted RMSD. 
2/1

21
wRMSD 








= ∑

n

nndw
n

                                                                                          (2.10) 

A second metric can be created from a sum of all weights. The maximum value 

occurs when all weighs are 1.0 and the sum is n (all atom pairs are perfectly overlaid). 
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The number of atoms will vary for each protein system, so a normalized measure is more 

appropriate. We write the sum of all weights (%wSUM) as  

∑=
n

nw
n

1
%wSUM                                                                           (2.11) 

Technically, it may be more appropriate to calculate wRMSD as the square root 

of the sum of wndn
2 divided by the sum of wn. However, we found that Eq. 2.10 better 

reflects the agreement in the overlay. If the user desires to calculate wRMSD in the 

alternate fashion, it is simply wRMSD from Eq. 2.10 divided by the square root of 

%wSUM in Eq. 2.11. 

We verified that our code produced proper sRMSD fits before incorporating the 

weighted terms. We also confirmed that when the scaling factor c is set to a very high 

number (104 or higher), the weights become approximately one for all atom pairs, and a 

sRMSD fit is produced. 

It should be noted that Diamond also outlined how weights could be included in 

his alignment process.22 Our Gaussian weighting idea could be added to any code based 

on Diamond’s approach by following the discussions in that work. Neither Kabsch nor 

Diamond ever define how weights should be calculated, and to the best of our 

knowledge, no one has published a weighted alignment using either Kabsch’s or 

Diamond’s methods. Even Diamond’s proposal for overlaying ensembles of NMR 

structures23 does not weight the contributions of different atom pairs. In that application, 

subsets of Cα are simply described as “in” or “out” of the overlay process. However, that 

application does show how alignments can be extended to ensembles of structures, 

through iteratively fitting N structures in N(N-1)/2 pairs until convergence is achieved. 

For simplicity, our code (provided in Appendix 1) and our examples in this paper use 

only two conformations of each protein, but this code could be inserted into any program 

that iteratively aligns ensembles of structures. 



50 

 

Another issue that deserves discussion is the importance of coordinate accuracy. 

Schneider24,25 developed a method for aligning two protein conformations which analyzes 

the interatomic distances within each independent protein structure to determine subsets 

of atoms to use in an sRMSD alignment. A unique caveat is his use of a weighting term, 

biased by coordinate accuracy, to define the subset for the alignment. (Though weights 

are used to define the subset, the weights are not part of the sRMSD.) Our 

implementation of wRMSD indirectly accounts for coordinate accuracy. The coordinate 

uncertainty is highest in the flexible regions of the protein, and the flexible regions of the 

protein are inherently underweighted in our implementation. According to Diamond22, 

the errors would have to be on the order of the coordinate measurement itself to be 

significant. In our implementation, the errors would have to be on the order of Ångstroms 

(similar to the scaling factor c) which only happens in poorly resolved loop regions.  

 

Alignment Method  

Our code currently implements the wRMSD method using Cα coordinates of two 

protein conformations (it is straightforward to use all atoms, only backbone atoms, etc.). 

The procedure requires three steps: first, create a list of corresponding atom pairs; 

second, perform an initial sRMSD alignment to bring the two proteins into proximity; 

third, conduct iterative wRMSD fitting until convergence is reached. Our method can be 

used to align two conformations of the same protein, but aligning two homologs could be 

accomplished by incorporating some initial sequence or structural comparison to create 

the corresponding atom pairs.  

The first step in our alignment method is to compare the residues of proteins X 

and Y. This is done to ensure that each residue is present in both structures and can be 

included in the alignment. A residue ID list is parsed for both proteins from its respective 

PDB file. A residue ID is included only if the residue has Cα atomic coordinates in both 

structures. Next, we remove any inappropriate residues from the residue ID lists, which 
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include duplicate residues, disordered residues, or heterogroups. Duplicate and disordered 

residues are typically the result of alternative conformations revealed by the electron 

density maps. As our method inherently underweights flexible regions, it is justified to 

remove these residues from the alignment. The Cα  coordinates that correspond to the 

residues remaining in the residue ID lists are parsed from their respective PDB files and 

used for the initial sRMSD alignment. 

An sRMSD alignment (non-weighted) is performed first to bring the structures 

into close proximity to calculate an appropriate weighted alignment. Consequently, an 

atom’s initial Gaussian-weight is based on the distance between its positions in protein X 

and protein Y, calculated after the sRMSD fit. The Gaussian-weighted alignment is then 

performed in an iterative manner until convergence is reached, Figure 2.1. Each iteration 

recalculates an appropriate weighted center of mass and a new rotation matrix. 
 
Figure 2.1.  A series of iterations are needed to converge the wRMSD solution for overlaying two proteins.  
Four snapshots from the series of iterations are shown to demonstrate the process.  

 

 

 

 

 

 

 

 

2.3 Results and Discussion 

 

Gaussian-Weighted RMSD Alignment  

A weighted alignment is not as straightforward as a standard alignment. The 

structures must be nearly aligned to calculate appropriate weights, hence our use of an 

sRMSD Successive Iterations wRMSD 
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initial sRMSD alignment. The wRMSD procedure requires successive iterations until 

convergence is achieved because every wRMSD fit changes the distances, which changes 

the weights, which changes the wRMSD fit (Figure 2.1). In order to evaluate 

convergence, a metric is needed to describe optimal partial alignment. Proper metrics are 

even more important with wRMSD because a weighted alignment does not have a unique 

solution like an sRMSD fit. If we align the same protein on itself, there are two minima 

where the sum of wndn
2 is zero. The first occurs when the difference between all atom 

pairs is zero, and the protein is perfectly overlaid (all dn
2 = 0); the second minimum 

happens at infinite separation when all weights go to zero (all wn = 0). 

It was previously shown that is there is generally not a unique solution when 

calculating a global alignment of dynamic proteins.26 By determining a metric to identify 

an optimal partial alignment, we can fully automate our method and remove the 

subjectivity of evaluating the RMSD fit by visual inspection. We have chosen to explore 

two different metrics in detail: the wRMSD of Eq. 2.10 and the %wSUM given in Eq. 

2.11. The wRMSD decreases to a stable minimum, while the %wSUM increases to a 

stable maximum. The optimal solution should occur when the maximum number of 

atoms makes a significant contribution. Hence, in our example of the wRMSD alignment 

of a protein upon itself, %wSUM identifies the perfectly overlaid minimum to be more 

significant because more atoms are contributing significantly to the weights (%wSUM = 

1). The infinitely separated minimum has a %wSUM = 0. 

 

Gaussian Scaling Factor  

We started by investigating the most appropriate way to weight the RMSD fit. 

The Gaussian scaling factor c in Eq. 2.7 controls the weight given to a pair of Cα atoms. 

For instance, a Cα pair that is 1 Å apart will have a weight of 0.368 with c = 1 Å2. If c = 

5 Å2, the weight is 0.819. Smaller values of c result in tighter, more restrictive coupling 

that forces only very similar atoms to have significant weights during the wRMSD fit.  
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We found that performing the weighted alignment in an iterative manner with a 

constant scaling factor exhibits converging behavior as demonstrated in Figure 2.2. We 

defined convergence by ∆wRMSD < 1x10-6 Å. After 19 iterations, both the wRMSD and 

%wSUM metrics converge to stable values of 0.36 Å and 74.8%, respectively (scaling 

factor c set to 2 Å2). In the final alignment, 182 of the 238 Cα common to both structures 

are within 1 Å, and the average distance between all 238 Cα pairs is 2.0 Å. The same 

converging behavior was also observed for all other test cases.  
 
Figure 2.2. ERα.

13 (A) The behavior of the wRMSD and %wSUM metrics as the weighted alignment is 
performed in an iterative manner using the entire protein sequence for the initial sRMSD fit. A scaling 
factor, c, of 2 Å2 is used. The vertical line indicates where convergence is reached. (B) sRMSD alignment 
of 3ERD (yellow) onto 3ERT (blue). (C) wRMSD alignment after convergence is reached. Arrows denote 
regions with improved fit. 

 

                                        

 

 

 

 

 

 

We varied the scaling factor, using c values from 0.10 to 20 Å2, to determine its 

effect on the weighted alignment. We found that upon convergence a range of c values 

produced nearly identical alignments. This was determined by calculating the sRMSD of 

each solution. The sRMSD remained relatively constant for c in the range of 0.3 to 20 Å2 

for the ERα structures13 3ERD and 3ERT. The constant regions were defined as the 

change in sRMSD (∆sRMSD) of less than 0.1 Å from the maximum to the minimum 

value in the range. The reader will notice that the sRMSD of 5.2 Å is higher than the 4.9 

Å listed for the ERα structures (Table 2.1). This is appropriate; an sRMSD measurement 
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from a wRMSD fit should be higher because some fit of flexible regions is sacrificed to 

better align the rigid core. 

For the PKA structures 1JLU9 and 1CMK10, the sRMSD stayed constant for a 

much smaller range of c values, 0.2 to 2 Å2, shown in Figure 2.3. In the case of PKA, 

high values of c (≥ 10 Å2) simply produce the sRMSD solution (the later values of 

sRMSD in Figure 2.3 are 1.9 Å, the same as the value in Table 2.1). 
 
Figure 2.3. The scaling factor, c, plotted against the sRMSD value for each weighted fit and the target 
coordinates. Open squares (□) are for ERα

13
, 3ERD fit onto 3ERT. The weighted fit is the same for c 

values from 0.3-20 Å2. Filled triangles (▲) are for PKA9,10, 1JLU fit onto 1CMK. The weighted fit is the 
same for c values from 0.2-2 Å2. The largest values of c simply reproduce the sRMSD solution for the PKA 
structures.  

 

 

 

 

 

 

 

 

A range of values for c works well for each protein system, as provided in Table 

2.2; however, as c is decreased, more iterations are needed to reach convergence. We 

found a correlation between the sRMSD and the optimal scaling factor for wRMSD. 
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performs well for all systems except RNA Pol, corresponding to the largest sRMSD. We 

suggest that when the sRMSD is less than 5 Å, a scaling factor of 2 Å2 should be used, 
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Table 2.2. Range of optimal scaling factors for each protein system, along with the calculated sRMSD of 
the wRMSD fit over the given range. 

Protein System sRMSD from the  Range of c (Å2) that produce  
 wRMSD fit (Å) the same sRMSD* 

HIV-1p 1.4 2 – 5 
PKA 2.3 0.2 – 2  
EFG 3.6 0.2 – 4 
ERα 5.2 0.3 – 20 
DNA Pol† 7.2, 7.6 2 – 3, 4 – 6 
GroEL 15.9 2 – 16 
RAN 16.8 0.5 – 20 
RNA Pol 20.6 3 – 20 
* The values for sRMSD changed less than 0.1 Å over the noted range. 
† The DNA Pol system converged to two different solutions when c was changed. Both were stably 
converged over the noted ranges. 

If the scaling factor used is too small for the particular system, we do not see 

converging behavior, and an optimal solution is never reached. As demonstrated in 

Figure 2.4 using the GroEL system15,16, when c is equal to 1 Å2 we do not see converging 

behavior. This unconverged alignment is very similar to the sRMSD alignment used to 

start the wRMSD fit. However, when a larger scaling factor is used (c = 5 Å2), we 

observe convergence after 93 iterations. 
 
Figure 2.4. If the scaling factor is too small, the wRMSD fit fails to produce converged structures for 
GroEL15,16. The behavior of the wRMSD metric versus iteration during the weighted fit, using the entire 
protein sequence for the initial RMSD fit and two values of c. (Left) wRMSD alignment of 1AON (yellow) 
onto 1OEL (blue) after 800 unconverged iterations of wRMSD fitting, c = 1 Å2. (Right) wRMSD 
alignment of 1AON (yellow) onto 1OEL (blue) after convergence is reached, c = 5 Å2.  
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We use EFG11,12 to show the problem that occurs when c is too large, Figure 2.5. 

Large scaling factors (i.e. 100 Å2) produce a superposition similar to the standard 

alignment. However conducting an wRMSD fit using an appropriate scaling factor of 2 

Å2 is able to highlight the similarity of the rigid core region.  
 
Figure 2.5. If the scaling factor is too large, an wRMSD fit is the same as a sRMSD fit for EFG11,12. (A) 
sRMSD alignment of 1FNM (yellow) onto 2EFG (blue). (B) wRMSD alignment of 1FNM (yellow) onto 
2EFG (blue) after convergence is reached, c = 100 Å2. (C) wRMSD alignment of 1FNM (yellow) onto 
2EFG (blue) after convergence is reached, c = 2 Å2. 

 

 

 

In all cases, the weighted alignment resulted in an improved fit over the standard 

alignment. However, the improvement is minimal when the two conformations of a 

protein are very similar (e.g. HIV-1p7,8). When the sRMSD is small, the conformational 

change is only slight as shown in Figure 2.6A. This means that most of the calculated 

weights are approximately equal to one unless an incredibly small value is used for c. The 

wRMSD still biases the rigid core (most noticeable for the C-terminus at the bottom of 

the structure), but the overall effect on the system is slight. Representative sRMSD and 

wRMSD alignments for RAN17,18) and RNA Pol19,20 are also provided in Figure 2.6; a 

scaling factor of 2 Å2 was used for all systems with a sRMSD less than 5 Å, and c = 5 Å2 

was used for systems with a sRMSD greater than 5 Å. 
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Figure 2.6. Left: sRMSD alignment of two protein conformations. Right: wRMSD alignment of the same 
structures. (A) HIV-1p7,8 1KZK (yellow) onto 1HHP (blue), c = 2 Å2. (B) RAN17,18 1RRP (yellow) onto 
1BYU (blue), c = 5 Å2. (C) RNA Pol19,20 1QLN (yellow) onto 1MSW (blue), c = 5 Å2. 
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Identifying Domains and Hinge Regions 

Inspection of the wRMSD alignment of EFG11,12 clearly shows that two possible 

solutions should exist: one where the upper domain is aligned and one where the lower 

domain is aligned. This inspired us to modify the technique in an effort to identify 

domains and hinge regions. This is possible if we change the initial sRMSD alignment.  

As previously mentioned, the Gaussian weights are a direct result of the 

difference between the transformed atom pairs, calculated from the initial sRMSD fit. If 

the sRMSD alignment is performed using a select subset of the protein, this changes the 

weights and biases the wRMSD fit. In a way, we are taking advantage of the fact that a 

wRMSD fit has more than one minimum. Diamond suggested using multiple starting 

orientations to search for alternate solutions to an overlay23, and we chose to align 

different sections of the protein as starting points to provide multiple solutions that can be 

ranked by the metrics previously discussed. This method will allow us to align different 

regions of the protein and identify common domains and linker regions.  

We chose to generate 10 initial sRMSD alignments based on local regions of the 

proteins. The initial standard alignment used 10 residues, chosen evenly spaced through 

the sequence. When larger sections are used (i.e. 20 residues), we found that the initial 

alignment could be based on two different mobile regions simultaneously. In such a case, 

the weighted alignment would not converge to a successful solution. We also found that 

evenly spacing our 10 local regions (i.e., 10 residues from every 10% section of the 

sequence) appears to adequately sample the entire protein structure (at least for the 

diverse test set used here). Making more than 10 initial alignments through choosing 

more frequent sections of the sequence yielded the same optimal alignments (data not 

shown). 

After the initial local alignments, the 10 starting structures were refined with 

iterative wRMSD calculations in our regular way using the entire protein chain. The 

Gaussian scaling factor was set to a small value to maintain the local bias, c = 2 Å2. This 
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resulted in 10 final, weighted alignments. The %wSUM was plotted against the iteration 

number for each test case. As previously mentioned, the %wSUM should increase to a 

stable maximum value corresponding to an optimal solution where the maximum number 

of atoms makes the most significant contribution. When starting from different subsets of 

the protein sequence, the alignment of the largest domain corresponded to the solution 

with the largest %wSUM value. Aligning the second largest domain lead to the second 

largest %wSUM value, and so on. This behavior was expected, and it was observed for 

all test cases. Below we demonstrate the technique on EFG, RAN, and DNA Pol. 

A plot of the %wSUM versus iteration number for the protein system EFG11,12 

shows how using small subsets of the protein in the initial sRMSD leads to the 

identification of the two different domains, as shown in Figure 2.7. The weighted 

alignment based on the largest domain of EFG converged to the maximum %wSUM 

value (55.5%). Seven of the 10 local alignments (residues taken from 1-358) converged 

to this same solution. A second solution, based on the smaller domain of EFG, has a 

smaller %wSUM (27.1%) as expected. Three of the 10 local alignments converged to this 

second solution. The later solutions were initially aligned by sRMSD of residues 407-

416, 465-474, and 523-532. 
 
Figure 2.7. EFG.11,12 The behavior of the %wSUM metric as the weighted alignment is performed in an 
iterative manner. Ten different subsets of 1FNM (yellow) were used for the initial standard alignment onto 
2EFG (blue) and then the weighted iterations were performed using the entire sequence (c = 2 Å2). (Top) 
wRMSD alignment corresponding to the maximum %wSUM value. (Bottom) wRMSD alignment 
corresponding to the smaller %wSUM value. 
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In the case of RAN17,18, the final weighted alignments from 7 of the 10 local 

alignments (residues 1-10, 41-50, 81-90, 101-110, 121-130, 141-150, and 161-170) 

converged to the maximum %wSUM value (55.5%), Figure 2.8. The corresponding 

weighted alignment shows how the largest domain of the protein is superimposed 

between the conformations. Our technique is even capable of the difficult task of finding 

an alignment based on RAN’s N-terminal helix. This alignment corresponds to residues 

181-190 in Figure 2.8A and has a much smaller %wSUM (4.9%) than the first 7 

weighted alignments, as expected. The local alignments using residues 21-30 and 61-70 

were to less structured regions of the protein, and the weighted alignments essentially 

converged to solutions with %wSUM near zero. Poor convergence and near-zero values 

indicate loop or hinge regions of a protein.  
 
Figure 2.8. RAN.17,18 (A) The behavior of %wSUM as the weighted alignment is performed in an iterative 
manner. Ten different subsets of 1RRP (yellow) were used for the initial standard alignment onto 1BYU 
(blue) and then the weighted iterations were performed using the entire sequence (c = 2 Å2). (B) wRMSD 
alignment corresponding to the maximum %wSUM value. (C) wRMSD alignment corresponding to the 
second largest %wSUM value. 
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alignment is based on the largest region of DNA Pol. The alignment from the second 

solution (%wSUM = 32.1%) corresponds to the weighted alignment based on 5 of the 10 

local alignments (residues 1-10, 90-99, 179-188, 268-277, and 357-366). The alignments 

from the first two solutions are not the same; however, they share a common domain that 

is superimposed in both overlays. One of the 10 local alignments (residues 802-811) 

converged to a third solution (17.3%), based on a different region of DNA Pol than the 

first two solutions. The weighted alignment for the fourth solution initially aligned by 

sRMSD of residues 534-544 is based on a small region of secondary structure, and it has 

the lowest %wSUM (7.9%). 
 
Figure 2.9. DNA Pol.14 (A) The behavior of %wSUM as the weighted alignment is performed in an 
iterative manner. Ten different subsets of 1IH7 (yellow) were used for the initial standard alignment onto 
1IG9 (blue) and then the weighted iterations were performed using the entire sequence (c = 2 Å2). The four 
distinct solutions are indicated on the right. (B) wRMSD alignment corresponding to the maximum 
%wSUM value. (C) wRMSD alignment corresponding to the second largest %wSUM value. (D) wRMSD 
alignment corresponding to the third largest %wSUM value. (E) wRMSD alignment corresponding to the 
smallest %wSUM value. This overlay is oriented differently than in (B–D). Arrows in (B–E) highlight 
regions with good alignment. 
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The optimal local alignments are basically identical to the global wRMSD 

alignments initiated from the sRMSD fit of the entire structure. This trend was seen for 

all of the protein systems as demonstrated by the comparison of the global wRMSD fit 

and the best wRMSD fit from local alignments, defined by highest %wSUM in Table 2.3. 

In the case of DNA Pol, two solutions had been found when examining the appropriate 

values for c to report. The alignment corresponding to the largest %wSUM value (32.7%) 

was found to be identical to the global fit with c = 2 Å2. However, the second largest 

%wSUM value (32.1%) matched the global wRMSD fit with c = 5 Å2.  

 
Table 2.3. A comparison of the wRMSD fits using an initial global sRMSD alignment and the best result 
from initial local alignments. Two local wRMSD fits for DNA Pol are compared to two global wRMSD 
fits. 
Protein System Difference in sRMSD (Å) between Global Scaling Factor
  Global and Local wRMSD fits  
HIV-1p 0 c = 2 Å2 
PKA 0 c = 2 Å2 
EFG 0 c = 2 Å2 
ERα 0 c = 2 Å2 
DNA Pol 0 (Fig. 9b), 5.90 (Fig. 9c) c = 2 Å2 
DNA Pol 5.71 (Fig. 9b), 0.23 (Fig. 9c) c = 5 Å2 
GroEL 0 c = 5 Å2 
RAN 0 c = 5 Å2 
RNA Pol 0.25 c = 5 Å2 

 

2.4 Conclusions 

Our Gaussian-weighted alignment tool has been successfully applied to many 

dynamic proteins with two known conformations. We have also shown that an sRMSD 

alignment for these proteins is usually inappropriate. Our method is capable of selecting 

out the static core regions of flexible proteins and returning an alignment heavily 

weighted by those coordinates.  

We have developed two techniques to utilize our Gaussian-weighted method. The 

first, a global wRMSD fit, uses the entire protein sequence for an initial sRMSD 
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alignment and performs iterative wRMSD fits of the entire structure with c = 2 or 5 Å2. 

When protein conformations are similar (sRMSD < 5 Å), c = 2 Å2 is suggested.  For 

larger conformational changes (sRMSD ≥ 5 Å), the larger scaling factor is recommended.  

These values work well, allowing the wRMSD fit to converge to an appropriate solution. 

Our second technique, a local wRMSD fit, uses subsets of the protein sequence 

for an initial, local sRMSD alignment and then performs a wRMSD fit of the entire 

protein. The Gaussian scaling factor is kept set to 2 Å2 to maintain the local bias in the fit. 

The optimal solution is identified by the largest %wSUM. Using this second method, we 

were able to achieve multiple alignments based on different domains of the protein, and 

the solutions could be ranked by %wSUM. 

Although a variety of alignment methods have previously been described to 

account for protein flexibility, we have developed a new method that is both general and 

robust. This method does not require any prior knowledge of the protein structure and 

removes the subjective nature of overlaying user-defined core regions of flexible 

proteins. Our novel technique can easily be incorporated into many RMSD overlay 

calculations.  

This work has been published as: 
 
Damm, K.L. and Carlson, H.A. Gaussian-Weighted RMSD Superposition of 
Proteins: A Structural Comparison for Flexible Proteins and Predicted Protein 
Structures. Biophys. J. 2006, 90, 4558-4573.   
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CHAPTER 3 

Application of the wRMSD Method to Predicted Protein Structures and 

Homologous Proteins 

3.1 Introduction 

 

In the previous chapter, the development of a Gaussian-weighted superposition 

method was described.1 Given the prior success with this technique, we have now applied 

it to evaluate predicted protein structures. Comparing a predicted fold to its 

experimentally determined target structure is another case of comparing two protein 

conformations of the same sequence. The quality of the fit directly measures the accuracy 

of the prediction. The nature of our weighted RMSD (wRMSD) implementation also 

notes if substructures are correctly predicted but misoriented relative to one another. 

Furthermore, it is possible to create a version of RMS/coverage graphs2 by varying the 

weighting term. These features make wRMSD fits a complementary method for 

evaluating protein structure predictions.  

In addition, we have now coupled our wRMSD tool with a BLAST pair-wise 

sequence alignment as a method to overlay homologous proteins. Evolutionarily related 

proteins generally retain a similar tertiary fold that is more conserved than the amino acid 

sequence.3-5 Structure typically is related to function; hence, they may also share a 

common biological activity.6 As a result, the identification of a homolog is a very useful 

means to infer the function and/or predict the structure of an uncharacterized protein. 

Many databases exist that classify proteins into families by their structures, including but 

not limited to SCOP7, CATH8, FSSP9, CAMPASS10, Entrez3D11, ASTRAL12, 
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HOMSTRAD13, ALBASE14, and LPFC15. A review from Orengo and Thorton provides a 

very thorough discussion of protein evolution from a structural standpoint.16 

The wRMSD method can overcome errors in the initial sequence alignment 

because misaligned atom pairs will not be in close spatial proximity and consequently 

will make little contribution to the wRMSD calculation. We are able to show that to a 

minimal sequence identity we can recover the same weighted superposition whereas the 

standard RMSD (sRMSD) fit gives varying results. Hence, our weighted superposition 

technique overcomes the dependency of structural overlays on the initial atom pairing 

and removes the need to determine the best sequence alignment method and parameters 

to use for a particular system. We can also use the wRMSD method to determine 

potential mispaired residues because the calculated weights correlate back to the initial 

sequence alignment. Furthermore, our technique can be used to align homologs with low 

sequence identity and large conformational differences, an area where both sequence and 

structural-based methods may fail. 

 

 

3.2 Computational Methods 

 

Protein Structure Prediction Dataset 

To show the method’s applicability to evaluate protein structure predictions, we 

explored several targets from the Critical Assessment of Techniques for Protein Structure 

Prediction (CASP) 5 competition17. Five targets were chosen based on their category and 

difficulty: Target 147 Ycdx18, Target 162-3 Actin Filament Capping Protein CapZ19, 

Target 170 model 1 for the FF domain of HYPA/FBP1120, Target 172 S-

Adenosylmethionine-Dependent Methyltransferase21, and Target 179 Spermidine 

Synthase22. The corresponding experimental structures were downloaded from the 

Protein Data Bank (PDB)23, and the first chain of each structure was used as the reference 



68 

 

structure for the wRMSD alignments. We chose several predicted structures that ranged 

from high to low GDT-TS (Global Distance Test Total Score). Using the CASP5 website, 

we obtained the “Model 1” coordinates from the groups listed in Table 2, except as noted 

for Target 162. Table 3.1 is a summary of the targets, their category, their entry in the 

PDB, and the groups that generated the predictions used in this study. 
 
Table 3.1. Summary of Targets used in CASP5 Evaluation. 
 
Target  Category*    PDB ID      Groups  
147         FR                    1M65                             2, 29, 10, 331, 437, 52, 246, 64, 25 
162-3 NF 1IZN 132, 373, 29_3, 531, 52, 25_2, 169, 368, 105 
170  FR/NF 1UZC 517, 51, 294, 373, 45, 28, 80, 61, 314 
172  CM/FR 1M6Y 517, 373, 417, 537, 40, 56, 513, 282, 180, 397 
179  CM 1IY9 427, 246, 471, 270, 16, 529, 291, 183, 400, 32, 531, 139 
* FR is Fold Recognition, NF is New Fold, and CM is Comparative Modeling. 

 

Homologous Protein Dataset 

Homologous protein pairs were obtained from the Aug. 2005 release of 

HOMSTRAD13 and used as a benchmark to evaluate the wRMSD method. The 

HOMSTRAD database consists of 3454 proteins clustered into 1032 homologous 

families, ranging from 8-94% sequence identity (%ID). The protein coordinates were 

downloaded from the PDB23, and according to the information provided on the 

HOMSTRAD website, residues from the specified chain were extracted to use in the 

sequence and structural alignments. Aligning proteins with high sequence identity is 

straightforward, so for this study we chose to focus on the more difficult cases of 

homologous proteins in the low to intermediate range (17-39% ID).  

 

Gaussian-Weighted Superposition 

The predicted protein structures were aligned using the Gaussian-weighted 

superposition technique described in Chapter 2.1 A scaling factor of c = 5 Å2 was 

employed for easy targets with small deviations (Targets 179 and 172), and c = 12 Å2 

was used for hard targets with greater differences (Targets 170, 147, and 162-3). 
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To superimpose homologous proteins, the BLAST-based tool ‘BLAST 2 

Sequences’24,25 was incorporated into the wRMSD method described in Chapter 2. 

Default BLAST parameters are used with the exception that the low complexity filter 

parameter is turned off. The technique is performed using Cα coordinates, but it could 

easily be extended to any atom subset. The procedure requires 4 steps to align homologs: 

(1) parse residue sequence from PDB files to generate FASTA files for BLAST 

alignment, (2) run BLAST to determine an appropriate list of atom pairs, (3) calculate an 

initial sRMSD alignment (non-weighted) to bring the two proteins into proximity, and (4) 

conduct iterative wRMSD fitting until convergence is reached. Complete mathematical 

details of the wRMSD procedure can be found in Chapter 2.  

 

 

3.3 Results and Discussion 

 

Using wRMSD to Evaluate Protein Structure Predictions  

The act of evaluating a predicted protein structure against its experimentally 

determined target is another example of comparing two conformations of the same 

protein sequence. To show how wRMSD can be used to evaluate a predicted structure, 

we examined five systems used in the CASP5 competition17. The targets were chosen 

based on increasing difficulty: Target 179 (Comparative Modeling), Target 172 

(Comparative Modeling/Fold Recognition), Target 170 (Fold Recognition/New Fold), 

Target 147 (Fold Recognition), and Target 162-3 (New Fold). These specific targets were 

discussed in several papers that assessed the community’s performance as a whole.26-28 

Each of these assessment papers relied heavily on the GDT-TS metric in their ranking of 

submitted predictions. The GDT-TS values discussed here were obtained from the 

CASP5 website (http://predictioncenter.org/casp5/Casp5.html). 
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Like other techniques in the literature, the GDT procedure evaluates two 

structures based on an sRMSD fit of a subset of atoms29, but what makes GDT unique is 

that it is implemented to provide a type of weighted evaluation in its final GDT-TS value. 

GDT is an iterative method that determines the maximum number of residues that can be 

sRMSD fit within a given distance (i.e., performs an sRMSD overlay of all atoms in the 

structure that can be simultaneously superimposed within 0.5 Å, 1 Å, 1.5 Å, 2 Å… up to 

10 Å). GDT uses many starting alignments and an iterative procedure to identify the 

optimal sRMSD alignment of the largest subset possible. The GDT-TS score is based on 

the percent of atoms that can contribute to a particular sRMSD alignment: GDT-TS = (P1 

+ P2 + P4 + P8)/4 where Pm is the percent of atoms that sRMSD fit within m Å. In the 

GDT-TS value, the atoms within 1 Å agreement have a weight of 100% in the GDT-TS; 

atoms within 2 Å, 4 Å, and 8 Å have weights of 75%, 50%, and 25%, respectively. The 

GDT technique can be used to create RMS/coverage graphs2 by plotting the percentage 

of atoms (Pm) versus the cutoff m. As the cutoff m increases, Pm also increases. 

Comparing a predicted structure to its target involves more structural variation 

than the comparison of two related crystal structures. As one might expect, we found that 

larger scaling factors were necessary to provide accurate comparisons. Paralleling our 

study of flexible proteins, we again found that a smaller scaling factor (c = 5 Å2) was 

necessary for easy targets with small deviations and larger values (c = 12 Å2) were 

needed for hard targets with greater differences. The figures below provide a scale to 

show how the distances (dn) compare with their corresponding weights for c = 5 or 12 Å2. 

This allows the reader to compare the wRMSD weights in the figures to those of GDT-

TS noted above. The wRMSD technique can also be used to create RMS/coverage graphs 

by plotting the %wSUM versus c. As the scaling factor c increases, %wSUM also 

increases in a manner similar to RMS/coverage graphs from GDT (provided in Appendix 

2). 
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Overall, the GDT-TS metric is the most representative measure of a prediction, 

and it is the most widely accepted evaluation tool17,26-28. However, its rankings do not 

always match manual/visual rankings of challenging targets like new folds and difficult 

fold recognition cases.27 In particular, Aloy et al.28 found that GDT-TS over-ranked 

“fragment” submissions that provided coordinates for only a portion of the sequence. To 

prevent a similar bias in our use of wRMSD, we provide a %wSUM score based on the 

fit of the coordinates in the prediction (n in Eq. 2.11 equals the number of atoms in the 

prediction) and a %wSUM-ALL which corrects for any omitted coordinates (n in Eq. 

2.11 equals the number of atoms in the target). If a prediction provides all Cα 

coordinates, %wSUM and %wSUM-ALL are equal. If some are omitted, %wSUM-ALL 

will be proportionally less than %wSUM. (For a more accurate comparison, %wSUM-

ALL is used in our RMS/coverage graphs in Appendix 2). 

Target 179 is the “easiest” target included in our study. Many of the teams 

provided submissions that closely resembled the target. We randomly chose five 

exceptional submissions, two good/moderate submissions, and five poor submissions. 

Table 3.2 shows that the ranking provided by %wSUM-ALL matches that of GDT-TS 

with the exception of groups 32 and 400.  
 
Table 3.2. Target 179, wRMSD rankings (c = 5 Å2) compared to GDT-TS values. 
 
Group  %wSUM-ALL       %wSUM     GDT-TS 
427 76.6 76.6 86.95 
32 76.5 77.0 28.65 
246 76.3 76.3 86.68 
471 75.8 75.8 85.77 
270 74.6 74.6 84.40 
16 64.0 64.0 77.47 
529 63.8 75.1 72.08 
291 24.0 37.4 34.12 
400 18.9 32.6 29.11 
183 16.3 19.1 29.29 
531 5.6 5.6 11.13 
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Figure 3.1 shows the wRMSD alignment of teams 427’s and 32’s top-ranked 

predictions. The regions in blue and green have high weights and are in excellent 

agreement with the target structure. The cause for 32’s poor GDT-TS rank is unknown. 

The CASP5 website gives the low rank and also provides a weak RMS/coverage plot (see 

Appendix 2), but the values for P1, P2, P4, and P6 listed from the GDT-TS analysis do not 

match the plot and indicate that the GDT-TS score should be greater than 85. It appears 

that there may have been a simple typographical or data processing error. The other good 

predictions look very similar to the alignments in Figure 3.1; the differences are minor 

and are localized in the two red, low-weight regions. Teams 529, 291, 400, and 183 

provided significantly fragmented submissions, and the %wSUM-ALL does not match 

%wSUM in those cases. Without the correction of %wSUM-ALL, team 529 would have 

been ranked too high. Figure 3.1C,D shows that 400 should be higher ranked than 183 

because the lowest part of the β-sheet region has better agreement and higher weights. 
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Figure 3.1. The wRMSD alignments of (A) group 427’s and (B) group 32’s predictions (thick, colored 
lines) to Target 179 (thin, gray line). The wRMSD alignments of (C) group 400’s submission and (D) 
group 183’s submission are given as examples of the comparison of a fragment. The target has the same 
orientation in both alignments. (E) The scale at the bottom shows how smaller deviations (blue) are more 
heavily weighted in the wRMSD. Deviations over 3.9 Å have weights under 5% (red). 
 

 

    Group 427       Group 32                              Group 400 

   

     

Target 172 has a central domain that a few teams predicted well; of those teams, 

we examined the submissions of groups 517 and 373. We also randomly chose four 

moderate submissions and four poor submissions. An interesting feature of the wRMSD 

local alignments is that alternate, lower-ranked overlays are also provided. Figure 3.2 

shows that the submission from group 517 has two solutions, one for the agreement in the 

central domain and a second solution showing a properly predicted helix in the more 

difficult domain, respectively. Two independent wRMSD solutions show that the two 

regions were properly solved but not oriented in the correct relative positions. This 

example is simply provided to demonstrate a feature of the method.  
 

0           0.25           0.5           0.75               1 
wn Weights (c = 5 Å2) 

dn Distances (Å) 
∞         2.6           1.85          1.2                0 

A                                  B                                C 

D                                          E 

Group 183 
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Figure 3.2. The submission from group 517 to target 172 has two solutions (A) and (B) by wRMSD fitting. 
The second solution (B) is scored much lower because it is only a match of a small helix. The target (gray, 
thin line) is in the same orientation in both alignments. The color code of the weights is the same as in 
Figure 3.1E. 

                    

            %wSUM-ALL = 33.2%             %wSUM-ALL = 4.3% 

 

The second solution has a very low %wSUM-ALL, and its consideration is not 

necessary to properly rank the predictions of Target 172. Table 3.3 shows that the 

rankings from wRMSD match those of GDT-TS with the exception of the moderate 

submissions of groups 537 and 417. Figure 3.3 shows that the difference in the rankings 

is due to small improvements in the weighted core and possibly the cumulative 

contributions of small weights in the large red region. However, the difference in ranks is 

small, and both groups 537 and 417 can be maximally aligned to highlight the good 

agreement in the same core region.  
 
Table 3.3. Target 172, wRMSD rankings (c = 5 Å2) compared to GDT-TS values. 
 
Group  %wSUM-ALL          %wSUM      GDT-TS 
517            33.2               33.2                  46.50 
373 22.0 22.0 31.83 
537 19.3 22.9 25.85 
417 19.0 20.6 26.20 
40 18.8 30.7 25.00 
56 15.5 36.4 22.27 
513 7.5 8.4 17.32 
282 4.8 5.3 10.50 
180 3.7 3.7 8.53 
397 1.4 17.6 2.99 

 
 
 
 

A                                       B    
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Figure 3.3. wRMSD fits for groups (A) 537and (B) 417 to Target 172. The %wSUM-ALL values for the 
best wRMSD fit are given in parentheses. The color code of the weights is the same as in Figure 3.1E. The 
target (gray, thin line) is in the same orientation in both alignments. 

 

                 

               Group 537 (19.3%)                Group 417 (19.0%) 

 

Target 170 is a “new fold” target. It is considered a relatively straightforward 

example of the most difficult category.27,28 Predictions for these more challenging targets 

tend to have larger deviations, and a scaling factor of 12 was necessary. We found that 

alternate solutions became more common and more significant as the difficulty of the 

target increased. The submissions from the top chosen groups provided secondary 

alignments showing that more than one region of the structure was solved properly, but 

the regions were not correctly oriented relative to one another. This feature of the local 

wRMSD fitting is an advantage over using GDT, which does not provide alternate, 

lower-ranked solutions. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A                                   B    
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Figure 3.4. The multiple wRMSD solutions for the top three structures chosen for Target 170 (thin, gray 
line). (A) The wRMSD alignments of team 517’s prediction (thick, colored line). (B) The wRMSD 
alignment of team 400’s fragment submission. (C) The solutions for team 51. The target has the same 
orientation in both alignments. (D) The scale shows the weights for these wRMSD fits based on c = 12 Å2. 
Deviations over 6.0 Å have weights under 5% (red). 

 

 

 517 (43.1%)                 517 (26.3%)    517 (8.5%) 

 

 

 294 (43.0%)                294 (17.7%)                           51 (41.4%) 

 

 

 

 

 

Figure 3.4 compares the multiple wRMSD solutions for the first three groups. 

wRMSD and GDT-TS have similar rankings for the best alignments (Table 3.4), except 

that the good submissions of groups 294 and 51 are switched. The best alignments of all 

groups match the central helix down the center of the structure, but groups 517 and 294 

also provide a second helix in the correct relative positions. Group 51 does provide 

additional helical structure, but the orientation is not quite as good, and the weights are 

correspondingly lower (with scaling factors > 20 Å2 the weights become more significant 

A                                   

B                                                                    C 

0           0.25           0.5           0.75              1 

wn Weights (c = 12 Å2) 

dn Distances (Å) 

 ∞        4.1             2.9           1.85              0 
D                                                
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and group 51’s submission is ranked highest, see Appendix 2). The second solutions for 

groups 517 and 294 show that the third helix is properly predicted but misoriented 

relative to the first two helices. The third solution for group 517 shows additional 

agreement in the sheet region. This third solution has a low %wSUM-ALL and is an 

example of the boarder line for a significant solution. 
 
Table 3.4. Target 170, wRMSD rankings (c = 12 Å2) compared to GDT-TS values. 
 
Group  %wSUM-ALL       %wSUM     GDT-TS 
517 43.1 43.1 53.26 
294 43.0 43.0 51.45 
51 41.4 41.4 51.81 
373 31.9 31.9 40.94 
45 28.3 28.3 39.86 
28 25.2 25.2 36.96 
80 25.1 25.1 35.51 
61 13.2 20.2 26.81 
314 10.7 10.7 19.56 
 

Target 147 is a challenging case because of its classification and its size. Table 

3.5 shows that the wRMSD alignment ranks entries 2, 29, 10, and 437 in agreement with 

the GDT-TS metric. All of the alignments have good %wSUM-ALL scores because of 

good to moderate agreement throughout much of the structure. Figure 3.5A,B,D shows 

the similar fits of the submissions for groups 2, 10, and 437 to the target, and Figure 

3.5A,C shows the fit of the submission from group 331. We were surprised to see the 

structure from group 331 ranked so much higher with the %wSUM-ALL metric as 

compared to the GDT-TS metric. The 331 entry is pulled up in rank by wRMSD because 

it has excellent placement of three adjacent secondary structures (significantly blue 

regions in Figure 3.5C). With c = 12 Å2, there is still the intended bias of the method to 

identify local regions with exceptional agreement over a larger collection of residues with 

modest agreement. When the scaling factor is larger than 20 Å2, the bias shifts toward 

matching more of the global structure, and 437 is ranked significantly higher than 331 

(see Appendix 2). The disagreement in the rank of entry 246 is not significant because of 

its low rank by both wRMSD and GDT-TS.  
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Figure 3.5. wRMSD fits for groups (A) 2, (B) 10, (C) 331, and (D) 437 (thick, colored lines) to Target 147 
(gray, thin line). The %wSUM-ALL values for the best wRMSD fit are given in parentheses. The color 
code of the weights is the same as in Figure 3.4D. The target is in the same orientation in both alignments. 
 

 

 

2 (24.7%)                  10 (12.6%)                       331 (11.8%)           437 (11.0%) 

 

Table 3.5. Target 147, wRMSD rankings (c = 12 Å2) compared to GDT-TS values. 
 
Group  %wSUM-ALL        %wSUM       GDT-TS 
2 24.7 24.7 33.44 
29 19.2 19.2 27.57 
10 12.6 12.6 24.36 
331 11.8 12.9 16.66 
437 11.0 13.0 21.80 
52 5.9 8.7 9.62  
246 5.3 5.3 12.07  
64 4.1 7.4 7.16  
25             3.6            20.7            4.28 
 

The most difficult target we investigated was 162. The third domain was 

classified as a new fold, and we focused our analyses on these residues in the submitted 

predictions. Table 3.6 shows that the best submissions are ranked highest but are in 

mixed order between wRMSD and GDT-TS. The rank order when c > 50 Å2 appeared to 

be a good metric of a more global score. The groups rank 373 > 132 > 437 > 29 > 2 with 

this high scaling factor (Appendix 2). This is in agreement with Aloy et al.28 who ranked 

group 373 highest based on visual inspection, followed by group 132; groups 2 and 29 

scored significantly below 373 and 132. It is encouraging that wRMSD with a larger 

scaling factor matches the rankings provided by visual inspection. Furthermore, the 

GDT-TS rank order is 132 >373 > 29 > 437 > 2, indicating that our larger-c calculation is 

not a simple reproduction of GDT-TS. Figure 3.6 provides the best wRMSD solution for 

A                        B                            C                       D 



79 

 

each of the top five submissions evaluated in this study. The entries are ordered by the 

“global” group rank noted above, but the alignments and weights are from an wRMSD fit 

with c = 12 Å2. This allows the reader to compare the structures for global and local 

characteristics. The best solutions have several pieces of secondary structure in proper 

relative locations. wRMSD fits have a short coming that is also seen in GDT-TS: 

matching a single long helix provides a relatively good score. The regular structure of a 

helix is simply easy to superimpose with good agreement (easier than superimposing a 

loop, turn, or twisted β-sheet that has more structural variation). The high score for 

helices simply reflects that they are the easiest substructure to properly predict. 
 
Figure 3.6. wRMSD fits for groups (A) 373, (B) 132, (C) 437, (D) 29, and (E) 2 to Target 162-3. The 
order A-E reflects a rank order based on the RMS/coverage graph, but the overlays and their weights are 
from a local wRMSD fit with c = 12 Å2. Two significant solutions were obtained for each group’s entry but 
only the best is shown. The %wSUM-ALL values for the individual wRMSD solutions are given in 
parentheses. The color code of the weights is the same as in Figure 3.4D. The target (gray, thin line) is in 
the same orientation in both alignments. 

 

  

       

          
 
 
 

A                           B                         C                      

D                          E                      

             29 (19.9%)             2 (17.8%) 

373 (16.2%)     132 (16.7%)      437 (17.3%) 



80 

 

Table 3.6. Target 162-3, wRMSD rankings (c = 12 Å2) compared to GDT-TS values. 
 
Group  %wSUM-ALL       %wSUM      GDT-TS 
29_3 19.9 34.4 23.512 
2 17.8 17.8 20.238 
437 17.3 19.1 22.173 
132 16.7 16.7 24.405 
373 16.2 16.2 24.107 
397 13.8 34.5 18.452 
282 10.8 12.6 15.923 
227 10.4 25.1 14.435 
180 7.3 7.8 12.649 
291 6.8 9.1 10.268 
196 6.0 20.1 7.589 

 

Homologs: Low Sequence Identity and Large Conformational Differences 

In Chapter 2, we were able to show an improved superposition of two 

conformations of the chaperonin protein GroEL, which undergoes a large conformational 

change between the bound (PDB ID: 1AON30) and apo (PDB ID: 1OEL31) forms. In 

Figure 3.7, we use this system again to demonstrate the potential difficulties of fitting 

homologous, flexible proteins. With our technique, either conformation of GroEL can be 

appropriately superimposed to the bound form of its archaeal homolog, the thermosome 

(PDB ID 1A6E32). The easier case of fitting the two bound conformations is shown in 

Figure 3.7A, and Figure 3.7B shows the more difficult comparison of the bound form of 

the thermosome to the apo form of GroEL. Using sequence alignments alone may prove 

difficult in some regions because the sequence identity between the homologs is low 

(20.8%). Fold-based techniques can identify the homolog from the similar, bound 

conformation and provide an appropriate standard fit. In cases where the structures of 

homologs are only available in alternate conformations, those same techniques have 

difficulty. Our method is able to overcome errors from the initial atom pairing due to low 

sequence identity and large conformational differences by only weighting regions of the 

protein in good structural agreement. 
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Figure 3.7. Chaperonin family (20.8% ID). Most techniques would readily identify the similarity between 
the thermosome and GroEL in the similar bound conformation, but they may not identify its similarity with 
the apo conformation of GroEL. (A) wRMSD superposition of the bound conformation of GroEL30 (thick, 
colored lines) onto the homologous thermosome32 (thin, black lines). Light gray regions of GroEL indicate 
residues within gaps in the alignment. (B) wRMSD fit of the apo conformation of GroEL31 (thick, colored 
lines) onto its homolog thermosome32 (thin, gray lines). The value of %wSUM gives the normalized 
weights of all residues, showing that the two bound conformations in A have greater similarity than the two 
conformations in B. The scale shows the weights for these wRMSD fits based on c = 5 Å2.  

                                          

 

 

 

Overcoming Errors in the Initial Sequence Alignment 

When the sequence identity between proteins is high (≥ 40% ID), most pair-wise, 

sequence-alignment methods perform equally well and generate appropriate 

correspondence between residues.33-36 However, pairing residues is a difficult task when 

homologous proteins have sequences with intermediate to low sequence identity. 

Sequence alignments may be considerably different depending on the program that is 

used and the parameters employed, such as the scoring matrix, gap opening penalty, and 

gap extension penalty.37,38 In turn, this will affect a standard superposition because of the 

dependency on the initial pairing. Conversely, weighted fits create superpositions that are 

largely independent of the method for sequence alignment. The wRMSD technique 

Thermosome Aligned to 
Bound GroEL 

%wSUM = 44.9% 

   dn Distances (Å) 
 ∞       3.40        2.85        1.60         0  

0       0.10       0.20         0.60         1 
            wn Weights (c = 5 Å2) 

Thermosome Aligned to 
Apo GroEL 

%wSUM = 34.9% 

A                                                                     B 
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overcomes errors in the alignment because mispairings are not in close spatial proximity 

and so have low weights and little contribution to the fitting. 

For each pair of homologs in the low to intermediate range (17-39% ID), a variety 

of sequence alignments were obtained. First, BLAST parameters were varied (scoring 

matrix, gap opening penalty, and gap extension penalty) and second, default parameters 

were used with different sequence-alignment programs: BLAST24,25, SIM39, FASTA40, 

ALIGN41, CLUSTALW37, and TCOFFEE42. (It should be noted that the low-complexity 

filter was turned off in all applications of BLAST.) Each alignment was used to generate 

standard and weighted structural superpositions. For each protein, the variation across the 

structural superpositions was measured as RMSD between the final coordinates (note: 

this use of RMSD is simply a measure of the difference in two sets of coordinates, not a 

fitting procedure). The raw data is provide in Appendix 2. For each test case, the 

difference across the standard superpositions is appreciably larger, and the use of 

weighted superpositions overcomes the differences in the sequence alignments to give a 

more consistent structural comparison. 

Five variations of BLAST were used which altered the gap penalty, extension 

penalty, and scoring matrix. Each of the resulting superpositions was compared to one 

another; the ten unique comparisons across each of the five results were averaged for 

Table 3.7. Table 3.7 shows that when varying the BLAST parameters the standard 

superpositions gave very different results (average differences ranged from 0.494 – 4.866 

Å), but the weighted fits showed little difference (averages only ranged 0.062 – 0.742 Å). 

When the five sRMSD superpositions are very similar (low average difference), it 

indicates that the initial sequence alignments are also very similar. The weighted 

superpositions show consistency whether or not the sequence alignments agree. 
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Table 3.7. Differences in the structural superpositions for a diverse set of homologous proteins.a A 
complete set of references for the crystal structures is provide in Appendix 2. Both standard and weighted 
superpositions were generated from a variety of sequence alignments. The sequence alignments were 
altered by varying the parameters within BLAST or varying the code used for the alignment. The 
differences across the superpositions were measured in RMSD (Å) between the coordinates. Average 
differences are reported above, but all calculated RMSD are included in Appendix 2. 
 

Homologs (% ID)13                                                 BLAST Parameters             Seq Alignment Codes 
        PDB Codes                                                  Standard        Weighted         Standard        Weighted 
                          Fit                   Fit                    Fit               Fit 
Serine/Threonine Phosphatase (39%) 0.494 0.062 1.185 0.021 

1FJM & 1TCO 

Glutathione Synthase (37%) 0.600 0.080 0.162 0.049 
1M9W & 2HGS 

Interferon (35%)  1.224 0.301 1.188 0.339 
1AU1 & 1ITF 

Adenosylmethionine Decarboxylase (33%) 0.655 0.135 0.716 0.102 
1I7B & 1MHM 

Clostridial Neurotoxin Zinc Protease (31%) 0.719 0.098 0.632 0.091 
              1EPW & 3BTA 

Sulfatase (29%)  1.523 0.352 1.273 0.598 
1AUK & 1FSU 

Protocatechuate-3,4-Dioxygenase (28%) 1.160 0.111 3.358 0.132 
3PCG (chain A) & 3PCG (chain M) 

Aminotransferase (27%)  1.181 0.329 1.719 0.137 
1A3G & 5DAA  

 
SpoU rRNA Methylase (26%) 4.866 0.644 3.676 0.347 

1IPA & 1GZ0 

FMN Oxidoreductase (25%) 1.736 0.536 3.298 0.363 
1OYC & 2TMD 

Queuine tRNA-Ribosyltransferase (25%) 0.819 0.072 0.505 0.170 
1IQ8 & 1K4G 

tRNA Synthestase (24%) 2.407 0.459 1.821 0.536 
1GLN & 1QTQ 

DNA Methylase (23%)  1.325 0.119 2.325 0.140 
1BOO & 1EG2 

DNA Topoisomerase (22%) 2.742 0.742 1.445 0.983 
1AB4 & 1BJT 

Pyridoxal-Phosphate Enzymes (21%) 1.022 0.331 3.681 0.649 
1TDJ & 2TYS 

Iron/Ascorbate Oxidoreductase (20%) 2.455 0.556 5.069 1.185 
1BK0 & 1DCS 

Molybdopterin Dehydrogenase (19%) 0.531 0.098 1.238 0.555 
1FFV & 1FO4 

Splicesomal Protein, Internalin B (19%) 2.126 0.542 2.890 0.965 
1A9N & 1D0B 
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Table 3.7 cont. 

Asp/Glu/Hydontoin Racemase (18%) 1.513 0.264 4.961 0.414 
1B74 & 1JFL 

Polysaccharide Lyase (18%) 0.792 0.081 2.089 0.436 
1CB8 & 1EGU 

PHBH-like Proteins (17%) 2.287 0.437 4.744 1.231  
 1FOH & 1PB3 
 
a Smaller values note a greater agreement between the superpositions. 
 

For the comparison of alignment programs, standard and weighted superpositions 

were created using sequence alignments from BLAST, SIM, FASTA, ALIGN, 

CLUSTALW, and TCOFFEE. The fifteen unique comparisons across each of the six 

resulting superpositions were averaged for Table 3.7. When changing the programs used 

for the initial sequence alignment, the difference across the standard superpositions 

ranged 0.162 – 5.069 Å, but the difference across the weighted superpositions were only 

0.021 – 1.231 Å.  

The largest differences in structural superpositions occurred from varying the 

programs used for the initial sequence alignment. Figure 3.8 uses DNA methylase 

homologs43,44 (23% ID) to show how the standard superpositions are noticeably different 

when varying the sequence comparison method (Figure 3.8A). For this example, the 

average difference across the six standard superpositions is 2.325 Å, and the variation 

between each standard fit is visibly large. Conversely, the weighted superpositions are 

indistinguishable by eye (Figure 3.8B); the average difference of the weighted 

superpositions is only 0.140 Å. Most importantly, the weighted superpositions resulted in 

an improved fit over the standard superpositions, particularly in the core region which is 

structurally conserved between the homologous proteins. After all, a consistent 

superposition is only useful if it is also an improved superposition! 
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Figure 3.8. DNA methylase family (23% ID). Weighted structural superpositions are nearly independent of 
the sequence alignment method, but standard superpositions are greatly effected. Six sequence-alignment 
codes were used to determine residue pairings. (A) Overlays of 1BOO43 (thin, colored lines) to 1EG244, 
(thick, black line) from standard superpositions based on six different sequence alignments. The average 
difference in the superpositions is 2.325 Å. (B) The six weighted superpositions of 1BOO43 to 1EG244, 
based on the same sequence alignments, are indistinguishable (average difference is 0.140 Å). 
 

            

 

 

The weighted technique performs well for the homolog pairs tested. In fact, only 

two cases resulted in a set of weighted overlays that had an average difference over 1 Å: 

Iron/Ascorbate Oxidoreductase was 1.185 Å and PHBH-like proteins was 1.231 Å. 

However, the average differences for the same systems were much larger with the 

standard overlays, 5.069 Å and 4.744 Å, respectively.  

Of course, there may be situations where it is difficult to obtain an appropriate 

superposition with the weighted fitting. One instance may occur when a protein is large 

and has multiple domains. If the initial sequence alignment from each sequence 

comparison program focuses the best agreement on different domains rather than the 

entire protein structure, then the weighted superpositions may not converge to the same 

solution. Another case is when there is too little sequence or structural similarity, but this 

is when most comparison methods breakdown. For the test cases employed in this study, 

the sequence alignment tools broke down at ~16% ID, returning sporadic aligned 

segments that were too short and too infrequent. Homologs with so little sequence 

A                                                  B 

 

Standard Superpositions Based on 
6 Sequence-Alignment Methods 

Average Difference = 2.325 Å 

Weighted Superpositions Based on 
6 Sequence-Alignment Methods 

Average Difference = 0.140 Å 
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similarity are notoriously difficult, but it may be possible in some cases to compare them 

using methods based on structural information such as geometric comparisons of folds.34 

These techniques would be most successful when there is little structural variation or 

flexibility. 

 

Identifying Sequence Misassignments 

The residue pairings in regions with good structural agreement will be heavily 

weighted in the wRMSD calculation. As a result, we can use poor weights to determine 

potential misassignments in the sequence alignment. These are “potential 

misassignments” because the sequence pair may not be misaligned but could be located 

in a flexible region of the protein. Regions that have been brought into close spatial 

proximity, but have a low weighting, indicate potentially incorrect pairings of residues in 

the sequences. This concept is demonstrated in Figure 3.9 using two homologs from the 

SpoU rRNA methylase family45,46 with 26% ID.  
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Figure 3.9. SpoU rRNA methylase family (26% ID). (A) BLAST sequence alignment of 1IPA45 and 
1GZ046 using default parameters. Colons represent sequence identities, and gaps are shown with dashes. 
The underlined region notes domain 1, and the blue boxes represent misaligned residues corresponding to 
the labeled α-helix and β-sheet in B. Atom pairs with a weighting of 40% or greater in the wRMSD 
calculation are noted with asterisks. Standard (B) and weighted (C) superpositions of 1IPA45 (thick, colored 
line) onto 1GZ046 (thin, gray line). In C, the color coding by weight is the same as in Figure 3.7. 
 

 
 
 
 

                                        
 

Figure 3.9A shows the initial BLAST sequence alignment using default 

parameters, and the resulting standard and weighted superpositions are provided in Figure 

4B,C. Any sequence-aligned residues that received a weight of 40% or greater from the 

A                                                  

 

B                                               C 
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Domain 1 

Domain 2 
αααα-helix 
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wRMSD calculation is noted with a red asterisk. The underlined region of the sequence 

alignment in Figure 3.9A corresponds to domain 1, a flexible region between the 

proteins; as would be expected, none of those residues were significantly weighted to 

contribute to the superposition.  

The blue boxes in Figure 3.9A indicate regions of incorrect atom pairing. The first 

is due to an erroneous gap placement (before and after the blue box) and corresponds to 

the residues of the denoted α-helix in Figure 3.9C. In the standard superposition, the 

residues of the α-helix were not aligned properly, and the appropriate atoms were not 

paired together. However, after the weighted overlay, they are brought into close spatial 

proximity. This structural information can then be used to correct the initial atom pairing. 

It is interesting to note that when we created an appropriate gap placement to correct the 

atom pairing, a large percentage of the residues within and adjacent to the α-helix have a 

weight of 40% or greater in the weighted superposition (data not shown). The β-sheet 

noted in Figure 3.9C is also a misalignment in the sequences that is overcome by the 

wRMSD superposition. This instance is caused by a feature in the Biopython parser47 

used to pull information from the PDB files. Parsers ignore non-standard amino acids, 

and in the 1GZ0 structure, the methionines have been replaced with selenomethionine to 

aid in obtaining the structure. This results in missing residues in the sequence which are 

difficult to overcome in the sequence alignment because of gap penalties. If we introduce 

selenomethionine into the sequence, the superposition remains the same, but the weights 

properly reflect the agreement in the structures (see Appendix 2). 

 

 

3.4 Conclusions 

 

We have shown how the local wRMSD technique from Chapter 2 can be used to 

evaluate protein structure predictions through an overlay with the experimentally 



89 

 

determined target. The agreement with the standard GDT-TS metric is very good for 

most targets, with more variability in the rankings as the target becomes more difficult. 

The overlays provided by wRMSD are compelling for Comparative Modeling and Fold 

Recognition targets. Comparing predictions to New Fold targets and more difficult Fold 

Recognition targets can provide more than one solution, highlighting cases where local, 

secondary, and tertiary structure is properly assigned but misoriented relative to one 

another. The %wSUM-ALL metric appears to be a good measure of global accuracy of a 

difficult target when the scaling factor is larger (~50 Å2), and it is not a simple 

reproduction of the GDT-TS metric. By varying the scaling factor and examining the 

multiple solutions, the user can evaluate predictions for both local and global accuracy. 

Furthermore, we have now coupled our wRMSD method with a BLAST sequence 

alignment. Our method is capable of preferentially selecting out the regions with the best 

structural agreement between homologous proteins and generating a superposition that 

can identify significant similarities and differences. This technique can be used to 

superimpose homologs with low sequence identity and large conformational differences, 

an area where both sequence-based and structure-based methods may fail.  

Based on homologs in the range of intermediate to low sequence identity, we have 

shown that applying a weighting term can overcome the dependence of a structural 

superposition on the initial sequence alignment used to determine the appropriate Cα 

pairs. The wRMSD superpositions are not significantly affected by the choice of the 

sequence alignment method or the employed parameters, but the standard RMSD fits are 

highly dependent on both. The conserved regions of the structures are heavily weighted, 

thus errors made in the initial sequence alignment are relatively discounted. Moreover, 

the calculated weights can be used to determine potential misassignments in the initial 

sequence alignments. The wRMSD technique does not require prior knowledge of any 

protein system, and it removes the need to determine the best alignment method or 
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parameters for each application. However, we must note that our tool, like any other, will 

breakdown when sequence or structural similarity is too low.  

This work has been published as: 
 
Damm, K.L. and Carlson, H.A. Gaussian-Weighted RMSD Superposition of 
Proteins: A Structural Comparison for Flexible Proteins and Predicted Protein 
Structures. Biophys. J. 2006, 90, 4558-4573.   
 
Damm, K.L. and Carlson, H.A. Overcoming Sequence Misalignments with 
Weighted Structural Superpositions. Submitted to Bioinformatics.   
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CHAPTER 4 

Exploring Experimental Sources of Multiple Protein Conformations in      

Structure-Based Drug Design 

4.1 Introduction 

 

A difficulty that arises when working with multiple structures in SBDD is 

deciding which receptor conformations are the most appropriate to use. A further issue is 

the source of the structures; are structures generated from MD simulations or solved 

using NMR or x-ray crystallography more suitable? Previously, NMR structures have 

been shown to sample more conformational space than MD simulations and account for 

additional protein flexibility.1 However, multiple groups have demonstrated that 

dynamics simulations provide complete sampling of the multiple flap conformations of 

HIV-1p.2,3 

Crystal structures are thought to provide a more accurate depiction of a protein 

despite the fact that NMR structures are solved in a more biologically relevant 

environment.4,5,6 This may be due to the fact that X-ray crystallography generally 

provides a greater amount of high quality experimental data than NMR spectroscopy, 

which can be assessed using standard quality control measurements. Good agreement is 

usually seen in the protein backbones of crystal structures versus NMR structures, while 

the conformational sampling is focused on loop regions and side chains.4,7 Two 

independent groups found that crystal and NMR structures often provide complementary 

structural information and should be used be used in conjunction with one another as 

methods to solve protein structures.8,9 It is also known that the choice of protein structure 
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can heavily influence the outcome of a simulation; different conformations do perform 

better than others in virtual screening applications.10,11 A recent review summarizes the 

use of crystal structures in SBDD and discusses the associated limitations.12 

Crystal structures provide only a static snapshot of the dynamic structure of a 

protein, and bound structures can lead to the “cross-docking” problem. The binding site is 

already predefined for the co-crystallized ligand and may not fit other conformationally 

diverse structures. Nonetheless, using a collection of crystal structures bound to a variety 

of ligand classes offers an ensemble of conformations and can elucidate structural 

changes that occur upon ligand binding.13 Limitations exist such that most systems rarely 

have a large number of crystal structures solved in complex with many diverse ligands. 

Also, crystal structure conformations can be influenced by crystallization conditions such 

as crystal packing effects, pH, buffers, and temperature and may not be a fully correct 

representation of the structure in solution. Finally, flexible regions may be ill-defined due 

to a lack of electron density.  

Conversely, using NMR spectroscopy as a method of three-dimensional structure 

determination provides an ensemble of conformations found in solution. The ensemble is 

comprised of low energy structures that satisfy acceptance criteria based on the 

experimental data. Each conformation alone can be thought of as a static snapshot; 

however, they provide a dynamic representation of the protein when used as a collection. 

As with crystallography, experimental conditions may influence the determined 

conformations. Also, the structural variability may not be a result of true motion in the 

protein but rather due to insufficient experimental data.14 

In the literature, almost all studies use crystal structures in structure-based drug 

design, both collections and single, static conformations. There are a few occurrences 

where NMR ensembles are also employed. For example, Knegtel et al. used NMR 

ensembles to examine ras p21 and uteroglobin.15 Additionally, Huang and Zou found that 

ensemble docking to NMR structures of HIV-1p resulted in the identification of more 
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known inhibitors than docking to single, static crystal structures (91% versus 66%, 

respectively).16 Furthermore, it is common to utilize information from NMR such as 

NOE-derived distance constraints and torsion angle constraints to aid in both protein-

protein and ligand-protein docking.17,18,19 Fragment-based screening through NMR or 

“SAR by NMR” has also been widely used in drug discovery for the past 10 years.20,21,22 

However, no one has compared the use of NMR structures to collections of crystal 

structures. 

We are now interested in expanding our MPS technique to incorporate 

experimental structures from either an NMR ensemble or a collection of crystal 

structures. There are few examples where a diverse set of experimentally determined 

structures is available, but one such case is HIV-1p; structures are available from both 

NMR and X-ray crystallography.  

We focus on comparing the use of two protein collections in our MPS method, an 

NMR ensemble of HIV-1p with a bound cyclic urea (cu) inhibitor and multiple unique 

crystal structures with cu inhibitors. The location and chemical characteristics of the 

pharmacophore elements are consistent between the models; however, additional 

elements exist in the cu-crystal model. Interestingly, even when the protease is in a bound 

conformation, the features of our previous model generated from apo HIV-1p23 are still 

reproduced. In an effort to incorporate the most structural data, we also create a model 

from 90 crystal structures of susceptible HIV-1p. We show that the structural variation 

between the collection is very small, resulting in a similar model to the cu-crystal model. 

We are also able to show that models generated from protein ensembles are more 

successful at discriminating between known HIV-1p inhibitors and inactive drug-like 

molecules than are models from a single “average” structure. Erickson et al. have shown 

that “average” structures of HIV-1p also perform poorly when docking a ligand into its 

binding site with a successful docking rate of only 32.5%.24 To our knowledge, this is the 
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first time a direct comparison of NMR ensembles and crystal collections was made using 

the same protein in structure-based drug design. 

 

4.2 Computational Methods 

Protein Preparation 

A cu-bound NMR structure (PDB ID: 1BVE)25 comprised of 28 distinct models 

was downloaded from the PDB26 along with the restrained minimized average NMR 

structure (PDB ID: 1BVG) 25. The Binding MOAD database27 was used to obtain 174 

bound crystal structures, all having a resolution of ≤ 2.5 Å. Any structure with a mutation 

known to confer resistance or known to alter the biological activity of the protein (i.e. 

A25N) was discarded, resulting in a collection of only drug-susceptible, active strains. 

Because of the ambiguity in the data, any structure with residues in multiple orientations 

in the active site region (defined as any residue within 10 Å of the active site center) was 

removed. Structure 1AID was also discarded from this study as an outlier due to the 

unusual conformation of the flap region28, resulting in a final set of 90 structures. Of the 

90 structures, 10 are drug-susceptible, active strains bound to unique cu ligands and were 

used as a collection to provide a direct comparison to the NMR ensemble: 1AJX29, 

1DMP30, 1HVR31, 1HWR32, 1PRO33, 1QBR34, 1QBS35, 1QBT34, 1QBU34, and 1T7K36. 

The structures of the ten cu ligands and inhibition constants are provided in Appendix 3 

along with the PDB IDs and corresponding references of the entire crystal collection. 

All NMR and crystal structures were first prepared by using MolProbity37 to 

check the side-chain orientations, and histidine tautomers were checked by hand. Next, 

ligands and solvent ions were removed from each structure. Any hydrogen atom was 

stripped from the crystal structures then added with xleap in the AMBER638 suite and 

minimized to convergence with 10,000 steps of conjugate gradient energy minimization 

using Sander Classic. This ensured uniform setup of all structures, whether from NMR or 

crystallographic sources. 
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MUSIC Simulation 

The active site of each NMR and crystal structure was flooded with 500 small 

molecule probes using a 12-Å radius sphere to define the initial placement. Benzene, 

ethane, and methanol were utilized as the probes. The sphere was centered at the 

midpoint of the active site to ensure complete random sampling throughout the entire 

binding cavity. Each structure was then used in a multi-unit search for interacting 

conformers (MUSIC) simulation with the BOSS (Biochemical and Organic Simulation 

System) program39, using the OPLS force field40 and holding the protein atoms fixed. The 

small molecule probes were minimized via a low-temperature Monte Carlo sampling, 

revealing energetically favorable regions of the active site surface for each chemical 

functionality. Benzene probes elucidate aromatic and hydrophobic interactions, ethane 

probes clarify general hydrophobic interactions from aromatic, and methanol probes 

demonstrate hydrogen-bond donating and accepting sites. Probes do not interact with 

other probes, but the full interaction energy is calculated with the protein atoms. Further 

details describing the MUSIC simulation have been previously published.41 

 

Pharmacophore Elements 

Each structure was then examined to determine clusters, regions where multiple 

probes had minimized to the same location on the protein surface. This was done both 

manually and using an auto-clustering method based on our in-house Jarvis-Patrick 

codes. Any cluster within 9.5 Å of the catalytic aspartic acid residues 25 and 25’ was 

investigated, and if 8 probes were present, the cluster was represented by its “parent”, the 

lowest-energy probe calculated in the MUSIC simulation.  

An average structure was calculated for each protein set: the NMR ensemble, all-

crystal collection (90 structures), and cu-crystal collection (10 structures). Each set of 

structures was superimposed to a reference protein, the structure in the ensemble with the 

smallest RMSD to the calculated average structure, using a Gaussian-weighted RMSD 
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(wRMSD) alignment42, setting the scaling factor equal to 2 Å2. The overlaid sets were 

then used to determine “cluster of clusters” or consensus clusters of the probe molecules. 

A consensus cluster is defined by having parent probes from ≥ 50% of the protein 

conformations. For example, the NMR ensemble contains 28 structures; hence, there 

must be 14 parents in close proximity to be a consensus cluster. Only probes found in 

energetically favorable regions, conserved throughout the ensemble, will remain as a 

consensus cluster. Thus, protein flexibility is implicitly accounted for by focusing 

chemical requirements on the rigid, unforgiving regions of the binding site and allowing 

chemical and steric flexibility in the mobile regions.  

The consensus clusters were then represented as spherical pharmacophore 

elements. The center of each pharmacophore element was defined by the average position 

of the benzene centroid, the midpoint of the carbon-carbon bond for ethane, and the 

oxygen atom of the methanol probe, while the radius was based on the RMSD of the 

probe positions. Overlapping benzene and ethane clusters were combined and termed 

aromatic/hydrophobic elements. Individual benzene elements were labeled aromatic 

whereas extraneous ethane clusters were removed. Methanol elements were classified as 

a hydrogen-bond donor, acceptor, or doneptor (donor and acceptor). Two excluded 

volumes were defined by the average position of the Cγ of each catalytic aspartic acid 

residue and used to represent the bottom of the active site. The radii of the excluded 

volumes were set to 1.5 Å, the approximate length of a Cγ – Oδ bond. A more detailed 

description of the MPS method can be found elsewhere.43 

 

Pharmacophore Model Evaluation 

The resulting pharmacophore models were screened against databases of 

compounds with pre-generated multiple conformers (maximum number of conformations 

was 300) using the search option within the Pharmacophore Query Editor of Molecular 

Operating Environment (MOE)44. This is simply a fit/no-fit comparison based on the 
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geometry of each conformer’s chemical features and the physical arrangement of the 

pharmacophore elements. It is not a docking calculation based on scoring functions. 

Three previously created databases of compounds were used. The first database 

consists of 89 diverse known HIV-1p inhibitors taken from the PDB and the literature 

while two databases of non-inhibitors from the Comprehensive Medicinal Chemistry 

Index45,46 were used as decoys. The first non-inhibitor database is comprised of 85 

ligands43 identified by filtering based on size and chemistry comparable to that of known 

protease inhibitors, whereas the second is more general and contains 2322 drug-like 

ligands of very diverse sizes and chemical characteristics.67 The full set created for use in 

our previous work contained 2324 compounds, but for this work it was appropriate to 

remove the two known HIV-1p inhibitors. The preparation and composition of these data 

sets has been described previously.43,47 The stringency of the pharmacophore model was 

examined by varying the required number of pharmacophore elements that must be 

matched by enabling the partial match option in the Pharmacophore Query Editor of 

MOE and also by varying the radii of the elements. 

The performance of the models was evaluated by comparing the percentage of 

identified known inhibitors (true positives) versus the percentage of drug-like non-

inhibitors identified (false positives). The database screening results are presented as 

receiver operator characteristic (ROC) curves, where the optimal model would lie at the 

(0,100) point predicting 100% of true positives and 0% of false positives. The models 

were also qualitatively compared back to the cu ligands.  
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4.3 Results and Discussion 

 

Structural Comparison of the Protein Conformations 

A sequence comparison was made of the 10 cu-crystal structure sequences and 

that of the NMR ensemble. The sequences differ at three amino acid positions: 3, 37, and 

95. However, none of the mutations confer resistance or alter the biological activity of 

HIV-1p. The 28 NMR models and 10 cu-crystal structures were compared by aligning 

their Cα coordinates to their respective average structure using a Gaussian-weighted 

alignment42. The superposition of the 28 NMR models is provided in Figure 4.1 along 

with the bound cu ligands, and the 10 crystal structures and their unique cu ligands. The 

majority of the variation between the NMR backbones is in the “elbows” of the flaps and 

in the “cheek” region, while the active site appears quite rigid. A detailed analysis of the 

NMR ensemble is provided by Yamazaki et al.25 The backbones of the cu-crystal 

structures show much less deviation. 
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Figure 4.1. (A) Gaussian-weighted overlay of 28 models in NMR ensemble along with all cu ligands (front 
view). The corresponding cu ligands are also shown using a top view for clarity. The regions of the protein 
with high backbone deviations are highlighted with an arrow. (B) Gaussian-weighted overlay of 10 crystal 
structures bound to unique cu ligands (front view). A top view of the 10 ligands is also shown. (C) The 
scale shows how smaller deviations (blue) are more heavily weighted in the wRMSD fit,  c = 2 Å2. 
Deviations over 2.45 Å have weights under 5% (red). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

The RMSD was calculated between each wRMSD aligned structure and its 

reference structure. For the NMR ensemble, the Cα RMSD ranges from 0.65 – 1.71 Å 

with the average being 0.92 Å. The cu-crystal collection had much lower RMSD values 

and also a smaller range, 0.26 – 0.80 Å and an average of 0.43 Å. (RMSD values 
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calculated from a wRMSD alignment are higher than those calculated from a standard 

RMSD alignment.42 This is because a wRMSD alignment sacrifices the fit in the flexible 

regions to better align the rigid core.) The point here is not to compare the literal RMSD 

values per se but rather to evaluate the range of the values illustrating the conformation 

variation between the NMR ensemble and cu-crystal collection. This analysis 

demonstrates that there is a greater variation between the Cα coordinates of the NMR 

ensemble than the cu-crystal collection. Other groups have also found that the variation 

between the active sites of different crystal structures is usually small, 0.3 - 0.8 Å 

RMSD.28,48  

Across all NMR and crystal conformations, the cu ligands are in relatively the 

same conformation and position in the active site of the protease, the urea oxygen 

accepting a hydrogen-bond from the protease flaps and the diols off the 7-membered ring 

donating hydrogen bonds to the 25/25’ aspartic acids. The position of the urea oxygen 

shows more spread across the 28 NMR structures than within the crystal structures. The 

side chains of the cu inhibitors occupy their complementary S1/S1’ and S2/S2’ substrate 

recognition sites. The cu ligands bound in crystal structures 1QBR34, 1QBT34, and 

1QBU34 have larger side chains and also hydrogen bond with the flap residue Gly 48/48’. 

 

Pharmacophore Model Comparison 

The NMR pharmacophore model maintains the C2 symmetry of the protease and 

has 8 sites: 2 hydrogen-bond donor elements near the catalytic aspartic acid residues 

25/25’, 2 aromatic/hydrophobic elements that anchor the hydrophobic regions near the 

active site center, and 4 aromatic/hydrophobic elements that occupy the S1/S1’ and 

S2/S2’ pockets of the active-site. The chemical characteristics of the NMR 

pharmacophore elements differ slightly from the chemical features of the bound cu 

ligand. The hydrogen-bond donor elements are slightly displaced from the location of the 

hydroxyl groups that extend below the seven-membered ring. The two interior 
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aromatic/hydrophobic elements are located between the cu ligand side chains and 

represent the hydrophobic features of the central scaffold, while the four exterior 

aromatic/hydrophobic elements complement the chemical features of the ligand side 

chains. The MPS model based on the NMR structures is shown in Figure 4.2 in relation 

to the HIV-1p structure and also superimposed with the 28 cu ligands. 

 
Figure 4.2. (A) Pharmacophore model (radii of 1×RMSD) generated using 28 NMR structures. Elements 
are color-coded according to chemical functionality: red, hydrogen-bond donor; cyan, 
aromatic/hydrophobic. Top view of the protease backbone is shown in grey, as are the excluded volumes. 
(B) Pharmacophore model superimposed with 28 cu-ligands colored in grey. Both top and front views are 
shown. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to assess how the models are improved through the use of MPS, we also 

generated a “static” model from a single structure. The pharmacophore element centers 

were defined in the same manner as previously described; however, the static model is 

based on the probes docked into one structure, rather than the parent probes across MPS. 

The pharmacophore model generated from the average NMR structure maintained the 

features of the model created from the NMR ensemble, but the radii are much smaller for 
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most elements, as demonstrated in Figure 4.3. This is most likely because without the 

consensus clustering step, the positions of the probes comes from one structure only, 

even if it is an average. The spread between the probes docked within one structure is 

usually much smaller than the spread between the parent probes across many 

conformations. There are also two additional donor sites occupying the S3/S3’ subsites. 

Though the model is inferior to MPS models, it does show improvement over our earlier 

static model based on an apo crystal structure43. 
 

Figure 4.3. The average NMR model is compared to a previously created a pharmacophore model from a 
static crystal structure43. It is notable that the model from the average NMR structure, while having 
additional sites compared to the MPS NMR model, was still reasonable unlike the model from the static 
crystal structure. The static crystal structure model has many additional elements and is not appropriate for 
virtual screening applications. (A) Pharmacophore model (radii of 1×RMSD) generated using the average 
NMR structure. (B) Pharmacophore model (radii of 1×RMSD) generated using the static crystal structure 
1HHP. Elements are color-coded according to chemical functionality: red, hydrogen-bond donor; blue, 
hydrogen-bond acceptor; cyan, aromatic/hydrophobic; green, aromatic. Top view of protease is shown; 
backbone is in grey. 
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The cu-crystal pharmacophore model also maintains the C2 symmetry of the 

protease, as shown in Figure 4.4. However, it contains 11 elements: a hydrogen-bond 

acceptor element near the tips of the protease flaps, 2 hydrogen-bond donor elements near 

the catalytic aspartic acid residues 25/25’, 2 aromatic/hydrophobic elements near the core 

of the cu ligands, 4 aromatic/hydrophobic elements that occupy the S1/S1’ and S2/S2’ 

pockets of the active site, and 2 aromatic sites in the S3/S3’ pockets. The crystal model 

overlaid with the 10 unique cu ligands is also provided (Figure 4.4).  
 

Figure 4.4. (A) Pharmacophore model (radii of 1×RMSD) generated using 10 cu-crystal structures. 
Elements are color-coded according to chemical functionality: red, hydrogen-bond donor; blue, hydrogen-
bond acceptor; cyan, aromatic/hydrophobic; green, aromatic. Top view of the protease backbone is shown 
in grey as are the excluded volumes. (B) Pharmacophore model superimposed with 10 unique cu-ligands 
colored in grey. Both top and front views are shown. 
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The most interesting feature of this model is the hydrogen-bond acceptor element 

that perfectly overlays with urea oxygen of the 10 cu ligands. The urea oxygen is known 

to displace a structural water molecule that coordinates substrates/inhibitors to the tips of 

the protease flaps. The structural water is a key difference between mammalian and HIV 

proteases, and this displacement may be one reason why cu ligands are very selective for 

HIV proteases.34,49 Similar to the NMR models, the hydrogen-bond donor elements at the 

bottom of the pocket are slightly higher than the ligand diols. The 4 

aromatic/hydrophobic elements complement the chemical features of some cu ligands but 

do not agree with others. The additional 2 aromatic sites at the S3/S3’ subsites fall at the 

edge of the aromatic rings in the cu ligands.  

The most significant difference between the NMR and cu-crystal models is the 

hydrogen-bond acceptor element in the crystal model. This site was not occupied by 

probes in any of the 28 NMR structures or the average structure. Yamazaki et al. state 

that the flap tips (residues 48-51) are dynamic in solution and exhibit motion on a 

nanosecond time scale whereas in crystal structures the flap tips are well-ordered.25 The 

conformational variation across an NMR ensemble can be due to two things: proteins 

dynamics or an under-resolved structure from lack of experimental data. The HIV-1p 

NMR structure solved by Yamazaki et al. is regarded as a high quality ensemble, and 

hence, the variation is thought to be from the dynamics of the structure.  

There are also two additional aromatic sites in the cu-crystal model that are not 

found in the NMR model. These elements are located in the S3/S3’ subsites found at the 

solvent interface, a pocket known to accommodate broad substrate specificity.49 The 

NMR and cu-crystal models are shown compared to the substrate recognition motifs of 

the HIV-1p active site in Figure 4.5. In the NMR structures, the arginine 8/8’ side chains 

are pushed out from the active site in variable locations. For this reason, there was more 

spread in the probes across the multiple conformations. The high flexibility of the 

arginine 8/8’ side chains that is seen in the NMR structures was also observed in the 
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conformations sampled by MD simulations used to create previous pharmacophore 

models23,43. In both the NMR and cu-crystal structures, additional hydrogen-bond 

doneptor (donor and acceptor) probes were observed between residues arginine 8/8’ and 

aspartic acid 29/29’ in the S3/S3’ pockets. However, these doneptor sites fall outside the 

9.5 Å cut-off; consequently they were not included in the pharmacophore models. A few 

of the larger inhibitors seen in the collection of 90 crystal structures have features that 

hydrogen bond to arginine 8/8’ or aspartic acid 29/29’. Nonetheless, there are many 

smaller ligands that maintain an extremely high potency (nM-pM) without 

complementing this region, so it is appropriate that these sites were not included as an 

essential feature. Accordingly, ligands with the hydrogen bonding feature will be 

accepted by the model, but it will not be required for identification as a potential inhibitor 

of HIV-1p. 
 
Figure 4.5. Comparison of known HIV-1p substrate recognition pockets with MPS pharmacophore models 
(radii of 1×RMSD): white, S1/S1’ pocket; yellow, S2/S2’ pocket; purple, S3/S3’ pocket. Elements are 
color-coded according to chemical functionality: red, hydrogen-bond donor; blue, hydrogen-bond acceptor; 
cyan, aromatic/hydrophobic; green, aromatic. Flap residues 46/46’ – 54/54’ are removed for clarity. (A) 
NMR model. (B) cu-crystal structure model. 
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Eight elements of the cu-crystal model were common to the NMR model: 2 

hydrogen-bond donor elements and 6 aromatic/hydrophobic sites. The position and radii 

of these 8 elements are very similar with the exception that the radii of the hydrogen-

bond donor elements are slightly smaller for the cu-crystal model. The location and 

chemical character of the 8-site NMR model is highly consistent with pharmacophore 

models generated from MD simulations of apo HIV-1p (apo-MD model). However, in 

the apo-MD model, several pharmacophore elements were aromatic, but all of the similar 

elements in the NMR model are aromatic/hydrophobic. The elements of the apo-MD 

model are also spread further apart due to the larger active-site cavity in the semi-open 

conformation than the bound form. The cu-crystal model clearly differs from the apo 

model by the additional hydrogen-bond acceptor and two aromatic sites. A representative 

apo-MD model based on data from our previous work23 is provided in Figure 4.6. 
 
Figure 4.6. (A) Top view of an MPS pharmacophore model (radii of 1×RMSD) created using 11 structures 
generated from a 3-ns MD simulation of apo HIV-1p.23 Elements are color-coded according to chemical 
functionality: red, hydrogen-bond donor; cyan, aromatic/hydrophobic; green, aromatic. Excluded volumes 
are shown in grey. (B) Gaussian-weighted overlay of the 11 snapshots (front view). The color code of the 
weights is the same as in Figure 1C, and the view is comparable to Figure 1A and B. 

 

 

 

 

 

 

 

 

 

 

 

 

Additionally, we observed that the range of Cα RMSD for the apo-MD ensemble 

(11 structures) is similar to that of the NMR (28 structures): 0.94 – 1.50 Å versus 0.65 – 

1.71 Å, respectively. The Gaussian-weighted superposition of the 11 structures from the 
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apo-MD ensemble in Figure 4.6 demonstrates the conformation variation observed across 

the 3-ns MD trajectory. The overlay of the MD ensemble clearly displays more 

movement in the bottom of the active site and, as one would expect due to the apo 

conformation, in the flap region than the NMR ensemble. It is interesting to find better 

agreement between bound HIV-1p conformations from NMR and the apo HIV-1p 

conformations from MD, rather than agreement to other bound conformations from X-ray 

crystallography.  

 

Evaluation of Pharmacophore Models 

The NMR and cu-crystal models were screened against a database of known HIV-

1p inhibitors and two decoy datasets using the search option within the Pharmacophore 

Query Editor in MOE44, while varying the stringency of the search (i.e., enabling a partial 

match in the pharmacophore search and increasing radii size). Each ligand is described as 

a set of “annotation points” based on its chemistry and position in space. The ligand 

annotation points are then mapped to the pharmacophore elements and identified as a 

“hit” only if each of the required elements is satisfied. Hence, this is a binary fit or no-fit 

method, where all identified ligands are considered compatible with the pharmacophore 

model. The resulting data is presented as ROC curves. The best models identify the 

greatest number of true positives and the least number of false positives; consequently the 

optimal pharmacophore model is defined by having the smallest distance from (0,100). 

The raw data used to generate the ROC curves of the NMR and cu-crystal 

pharmacophore screens is available in Appendix 3. 

The MPS models from NMR and cu-crystals were both very successful at 

discriminating known inhibitors versus a database of non-inhibitors with similar size and 

chemistry, as demonstrated in Figure 4.7. The optimal NMR model (7/8 sites, 2×RMSD) 

identifies 89.9% of the true positives and only 10.6% of the false positives. The optimal 
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cu-crystal model (9/11 sites, 3×RMSD) also identifies the same number of true positives, 

89.9%, but hits less false positive than the NMR model, 7.1%.  

However, these results may be misleading. The 11-site cu-crystal model shows 

the best performance when 9 of the 11 sites are required. This demonstrates that the 11 

sites are too specific; less essential features of the active-site were selected out from using 

multiple cu-crystal structures, unlike with the NMR ensemble. If the three “extra” sites 

unique to the crystal model are dropped, the performance is nearly identical to the 

optimal 11-site model. The best, “core 8-site” cu-crystal model (8/8 sites, 3×RMSD) 

identifies 88.8% of the true positives and only 10.6% of the false positives. The extra 

sites do not significantly improve the performance of the model, which indicates that the 

hits from the cu-crystal model are really using the elements in common with the NMR 

model and apo-MD model. Extraneous sites which do not improve the performance of the 

models are problematic for database screening and undesirable for the MPS technique.  
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Figure 4.7. Receiver Operator Characteristic curves generated from screening a database of 89 known 
HIV-1p inhibitors against a set of 85 chemically similar known inactives and 2322 general decoy 
compounds. Each series represents a different stringency in the screen (i.e. 6 of 8 elements are required as a 
hit, 7 of 8 elements are required as a hit, etc.) Points in series are increasing radii values from 1× to 
3×RMSD for the NMR model and 1× to 4× for the cu-crystal model. The radii are labeled on the 6 of 8 
models based on NMR and the 9 of 11 models based on cu-crystals. The optimal pharmacophore models 
are highlighted by an arrow. (A) MPS NMR pharmacophore models, 89 known inhibitors vs. 85 decoy 
compounds (Optimal: 7/8, 2.0×RMSD). (B) MPS cu-crystal pharmacophore models, 89 known inhibitors 
vs. 85 decoy compounds (Optimal: 9/11, 3.0×RMSD). (C) MPS NMR pharmacophore models, 89 known 
inhibitors vs. 2322 general molecules (Optimal: 7/8, 2.0×RMSD). (D) MPS cu-crystal pharmacophore 
models, 89 known inhibitors vs. 2322 general molecules (Optimal: 9/11, 2.7×RMSD). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The optimal NMR performance is comparable to the optimal 11-site cu-crystal 

model but with fewer sites. Additionally the 8/8 site, 3×RMSD, NMR model performed 
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quite similarly to the optimal NMR model (7/8 sites, 2×RMSD); the number of true 

positives identified remained the same while only identifying 2 additional false 

compounds. Therefore, all of the sites in the NMR model appear to encode useful 

information. The 11/11 cu-crystal models demonstrate mediocre performance; the best 

model (4×RMSD) has a larger false positive hit rate and identifies only 65.2% of the true 

positives. The reduced amount of conformational sampling of the protein had to be 

overcome by significantly increasing the scaling factor for radii.  

We use multiple structures to determine the most essential features that are 

conserved across different receptor conformations. Overall, the NMR model is more 

general, and the features do not simply reproduce the chemical characteristics of the 

bound cu ligand. In a recent study by our group using a different protein target, 

dihydrofolate reductase (DHFR), crystal structures were also employed as MPS and very 

minor conformational changes were observed between the collections.47 The minimal 

conformational variation between the structures resulted in relatively small radii of the 

elements. Hence, the radii of the pharmacophore models had to be multiplied by 4× or 

5×RMSD for optimal performance.   

We anticipated that the use of a more general model will be beneficial when 

searching large databases for novel compounds from new chemical space. We compared 

the performance of the pharmacophore models at discriminating known HIV-1p 

inhibitors from a large, general dataset of 2322 decoy compounds. Again, both the NMR 

and crystal models display excellent performance at selecting out the known inhibitors. 

The NMR model again performs very well when 7/8 or 8/8 sites are required. Both 7/8, 

2×RMSD and 8/8, 3×RMSD identified 89.9% of the true positives and only 2.8% and 

4.1% of the false positives, respectively. Once more, the optimal cu-crystal model 

required 9/11 sites (2.7×RMSD) to perform similarly to the optimal NMR model, 

identifying 88.8% of the true positives and 3% of the false positives. However, only the 

NMR model was able to identify almost 100% of the true positives. The presence of 
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extraneous sites may explain why the cu-crystal models miss identifying several of the 

known inhibitors even with the most generous criteria. 

Several aspects of the model’s performance confirm patterns we observed with 

the apo-MD models in our previous studies.23,43 First, all sets of ROC curves are very 

steep at the beginning indicating the potential for models with smaller radii to be used in 

virtual screening applications. When screening large databases of compounds, the 

number of true positives can be sacrificed to reduce the amount of false positives. 

Second, larger radii are needed when more elements are required. Third, among the false 

positives identified by the pharmacophore models are renin inhibitors, transition-state 

mimics of peptide cleavage, and small hydrophobic signaling peptides. This is not 

surprising since renin is a homologous aspartic protease, the function of HIV-1p is to 

cleave peptides, and the substrates are hydrophobic in nature. Similar classes were 

identified from both decoy databases, but as one would expect due to the size of the 

general database (2322), additional classes were also seen. This list includes 

macrocyclics (another HIV-1p inhibitor class), beta-lactams, tetracenes, and other 

polycyclic systems. However, for brevity we are providing only the structures of the 

identified false positives from the database of 85 chemically similar compounds in 

Appendix 3. 

 

Effect of the Structure Number in Ensemble 

Only 10 structures were used to generate the cu-crystal model, but the NMR 

ensemble contains 28 conformations. We were concerned that the larger number of 

structures in the NMR ensemble may bias the model for better performance. To ensure a 

fair comparison between the NMR and crystal structures, we also generated an additional 

MPS pharmacophore model from 90 crystal structures (all-crystal model). The 90 

structures are bound to a variety of ligand classes. Once again, there is little backbone 

variation between the 90 structures; the Cα RMSD values range from 0.12 – 0.71 Å. An 
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Gaussian-weighted overlay of the structures using the Cα coordinates is provided in 

Figure 4.8. Zoete and coworkers also found minimal variation between 73 HIV-1p 

backbones bound to different ligands.50 Moreover, we observed that adding 35 structures 

with resistant mutations did not provide any additional conformational variation (125 

structures total, data not shown). 
 
Figure 4.8. Gaussian-weighted overlay of 90 crystal structures from drug-susceptible strains of HIV-1p. 
The color code of the weights is the same as in Figure 4.1C,  c = 2 Å2. (A) Front View (A) Top View. 
 
 

 

 

 

 

 

 

 

 

 

We also calculated the RMSD for each heavy-atom of the protein active site 

(defined as any atom within 10 Å of the active site center) using 1PRO as the reference 

structure. This was chosen because 1PRO is the representative structure for the HIV-1p 

family in the Binding MOAD database27 as it has the tightest bound inhibitor. Moreover, 

it is also bound to a cu ligand, making it appropriate choice for comparing the cu-crystal 

structures to the larger set of 90 structures. The RMSD values ranged from 0.16 – 1.80 Å, 

with an average of 0.51 ± 0.37 Å.  

The small conformational variation between the crystal structures does not appear 

to be an effect of crystal structure refinement. It is common practice to use a previously 

solved crystal structure when determining the coordinates of another. However, our 

inspection of the electron density maps showed the structures to be of high quality with 

well-resolved density defining the coordinates. Crystal packing effects are known to be 

A B 
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important for conformations of HIV-1p, but there is no evidence to suggest that is the 

cause of the limited sampling. Most likely, the resulting conformations are influenced by 

a variety of factors including the conditions used in X-ray crystallography such as 

temperature and pH. For example, low temperatures are typical for growing crystals and 

may not provide enough thermal energy for a protein to overcome the barrier to sample 

conformations outside of a particular local minimum. In the case of HIV-1p, apo crystal 

structures are found in the semi-open conformation while bound structures exist in the 

closed state. A 1.3-Å apo crystal structure of a highly mutated HIV-1p strain was recently 

solved in a novel open conformation (PDB ID: 1TW7)51, but the open state was later 

shown to be caused by crystal packing effects52.  

Cross-docking studies in the literature demonstrate how different HIV-1p 

structures perform poorly when trying to dock ligands taken from other crystal 

structures.53,54 However, there are also cross-docking examples where HIV-1p performs 

quite well.55 Furthermore, there are examples in the literature where HIV-1p is able to 

reproduce docking poses of its own ligands (i.e. co-crystal structure) successfully53 and 

also unsuccessfully54. We propose that the difficulties in those studies arise from the 

ligands of HIV-1p, not the structures of the proteins. The majority of the bound ligands 

are large, flexible peptides. It is well known that many of the docking programs have 

difficulty with ligands that have many rotatable bonds. The different studies in the 

literature used different routines for sampling ligands, and this could be the real source of 

poor cross-docking results. This argument supports our structural analysis of HIV-1p; 

there is very little variation between the crystal structures.  

The resulting all-crystal pharmacophore model, shown in Figure 4.9, is very 

similar to the cu-crystal model. The only exception is two elements that are aromatic in 

the all-crystal model, rather than aromatic/hydrophobic. The inclusion of more structures 

appears to cause the two elements to become less general. The sphere centers and radii 

are nearly identical between the cu-crystal and all-crystal models, apart from the aromatic 
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sites flanking the solvent exposed region of the binding site. In the all-crystal model, they 

better replicate the C2 symmetry of the protein. The model performance does change 

slightly; the optimal model now requires even more elements to be dropped: 8 out of 11 

elements (8/11 sites, 2.7×RMSD). Furthermore, it identifies less of the true positives 

(86.5% compared to 89.9%) and more of the false positives (14.1% compared to 7.1%). 

The raw data from the pharmacophore screen is available in Appendix 3. Again, as in the 

case of the average NMR model, the loss of the hydrophobic character of the aromatic 

elements in the S1/S1’ pocket does seem to negatively affect the performance of the 

model; it appears that an aromatic/hydrophobic element truly provides a more accurate 

representation of the active-site pockets. 
 
Figure 4.9. Pharmacophore model (radii of 1×RMSD) generated using 90 crystal structures bound to a 
diverse set of ligands. Elements are color-coded according to chemical functionality: red, hydrogen-bond 
donor; blue, hydrogen-bond acceptor; cyan, aromatic/hydrophobic; green, aromatic. Top view of protease 
is shown; backbone is in grey. 
 

 

 

 

 

 

 

 

As previously mentioned, the range of Cα RMSD values for the apo-MD 

ensemble (11 structures) is comparable to that of the NMR (28 structures), 0.94 – 1.50 Å 

versus 0.65 – 1.71 Å respectively, and that the MPS models are nearly identical. 

However, the range of Cα RMSD values for both the cu-crystal (10 structures) and all-

crystal (90 structures) collections is much smaller, 0.26 – 0.80 Å and 0.12 – 0.71 Å, 

respectively. Both models based on crystal structures have 3 additional sites. We strive to 

generate pharmacophore models from an ensemble that represents an appropriate 

sampling of conformational space. It appears that both NMR and MD ensembles can 
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account for more accessible conformations than bound protein-ligand crystals structures, 

even those bound to a set of diverse ligands. We stress that crystal structures are very 

useful in many other SBDD applications, but we believe that bound HIV-1p crystal 

structures do not provide a complete sampling of receptor conformations, and NMR 

models can have definite advantages when trying to represent the protein’s flexibility. 

 

 

4.4 Conclusions 

 

Incorporating protein flexibility into structure-based drug design is necessary to 

simulate a more accurate representation of a protein in solution. By looking for favorable 

interaction regions across multiple conformations of a protein, we can determine the most 

essential and conserved features of the active site. We are able to show that the MPS 

method can be extended to include the use of experimental structures as a source of 

multiple conformations. The use of experimentally determined structures is attractive 

over generating conformations from an MD simulation in order to reduce the amount of 

time required to develop an MPS model. Additionally, to our knowledge this is the first 

direct comparison of NMR ensembles and crystal collections for incorporating receptor 

flexibility in structure-based drug design. 

The MPS pharmacophore models generated from an NMR ensemble and 

collections of crystal structures were able to discriminate known HIV-1p inhibitors from 

drug-like decoys and showed better performance than a model previously created using 

apo HIV-1p structures. They also showed superior performance over a model created 

from the average NMR structure. The average NMR model contained additional elements 

and lost important chemical characteristics that appeared to diminish the performance of 

the model, while the use of MPS identified the most important, chemically relevant 

features. The use of an average structure from multiple receptor conformations is an 
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alternate method that has been proposed for incorporating protein flexibility in structure-

based drug design, but we find that ensembles of structures is a superior approach. 

The present results are strong support for the use of NMR ensembles in structure-

based drug design. The NMR model revealed only the most essential features of the 

binding site. Instead, the collection of crystal structures identified three additional, and 

less essential, elements. These were highly related to chemical features specific to the 

class of cu ligands. In order to achieve a reasonable performance, additional elements had 

to be dropped or the radii had to be multiplied by large scaling factors. The NMR model 

did not simply reproduce its bound ligand. It could be used in its entirety (8/8 sites, 

3×RMSD) with exceptional performance for discriminating true inhibitors from decoy 

molecules. The performance improved slightly with 7/8 sites, 2×RMSD models, which is 

in good agreement with the parameters previously suggested for MPS based on MD 

(generally, n-1 of n features and radii of ~2×RMSD). Furthermore, the NMR ensemble 

samples a greater amount of conformational space than the crystal collection and is 

comparable to the amount of sampling seen in a 3-ns MD simulation of apo HIV-1p.23 

Overall, we recommend NMR structures over crystal structures for incorporating 

protein flexibility into SBDD studies of HIV-1p. By no means are the crystal structures 

inaccurate; instead, there is simply too little variation between the different structures, 

even when bound to a variety of ligand classes. In fact, this analysis strongly suggests 

that the difficulties seen in cross-docking studies of HIV-1p do not arise from the protein 

structures themselves. Most likely, the difficulty comes from the ligands which inhibit 

HIV-1p. Many routines employed to generate ligand conformations have difficultly with 

large, flexible compounds, and this could be the cause of the inconsistencies in the cross-

docking results.53,54,55 

This work has been published as: 
 
Damm, K.L. and Carlson, H.A. Exploring Sources of Multiple Protein 
Conformations in Structure-Based Drug Design. J. Am. Chem. Soc. 2007, 129, 
8225-8235. 
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CHAPTER 5 

Accounting for Multiple Protein Conformations in Ranking Ligand Databases 

5.1 Introduction 

A difficulty that occurs when employing ensembles of protein structures is 

developing a ranking function that accounts for all protein conformations. As discussed 

in Chapter 1, various groups have utilized different approaches; however, many are 

ultimately ranking the ligand pose against a single, static protein structure. Our current 

implementation of the MPS pharmacophore models is geared towards speed – allowing 

rapid filtering of databases to identify subsets that possess the correct features and 

geometry. No attempt to rank the molecules is made, as the discriminatory criteria is 

simply whether at least one molecular conformation could satisfy the pharmacophore 

constraints. Rather than averaging multiple grids, or taking into account the 

combinatorial possibilities of different conformations, we asked whether quantifying 

ligand overlap with a set pharmacophore spheres generated from multiple protein 

conformations could provide a simpler approach for ranking ligands with our 

pharmacophore-based method.   

To probe this question, we have developed an atomistic pharmacophore 

representation that more specifically maps the contours of the interaction surface between 

each individual probe and protein. As the location and chemical characteristics of each 

probe are merged from MPS, the model reveals only the most energetically favorable 

interactions conserved across the protein conformations. Consequently, the density of the 
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pharmacophore model can be used to quantify, and provide a ranking metric, for how 

well a candidate ligand fits the pharmacophore. Our implementation does not determine 

specific interactions with a static protein conformation; instead it measures the amount of 

overlap between ligand atoms and the atomistic MPS pharmacophore elements. 

We have implemented our atomistic MPS pharmacophore models in DOCK 4.0.1 

(DOCK)1,2 as sphere sets used to guide the ligand orientation algorithm (MPS-DOCK). 

DOCK orients ligands within a binding pocket by matching ligand heavy atoms to a set 

of spheres or site-points which map the negative volume of the cavity. It is common 

practice to encode pharmacophoric information in DOCK by chemically labeling spheres 

and require ligand poses to complement the labeling during orienting.2-6 Our method is 

different in that we are generating receptor-based pharmacophore models based on 

ensembles of structures.  

Furthermore, we have developed a simple ranking metric to measure ligand 

overlap with the pharmacophore model. Each probe in the consensus cluster is 

represented as a set of atomic, site-point spheres, and the number of site-points matched 

is used as a metric for ranking ligand orientations. This ranking function is similar to the 

knowledge-based scoring implemented in SLIDE.7 SLIDE counts hydrogen bonds and 

hydrophobic complementarities between the protein and a particular ligand orientation. 

By quantifying the overlap between ligand atoms and the atomistic pharmacophore 

spheres, we are able to identify known HIV-1p inhibitors in the top fractions of ranked 

data set. This ranking method also shows enrichment in discriminating small data sets of 

known HIV-1p inhibitors from both chemically similar decoys and general drug-like 

compounds. Additionally we are able to demonstrate the robustness of our method 

through the study of an additional protein system, E. coli DHFR (ecDHFR). 
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5.2 Computational Methods 

 

Multiple Protein Structures Pharmacophore Model Generation 

Multiple protein conformations taken from 3-ns MD simulations of three unbound 

structures of HIV-1p (PDB8 ID: 1HHP9, 3HVP10, and 3PHV11) were used to generate 

MPS pharmacophore models.12 An additional pharmacophore model was created using 

conformations from a 4 ns MD simulation of ecDHFR.13 The starting conformation for 

the ecDHFR MD simulation was a closed M20 loop conformation wild-type E. coli 

DHFR·NADPH co-crystal structure (PDB ID: 1RX114). Each protein structure was 

solvated with explicit water and equilibrated using the AMBER94 force field15 and the 

AMBER616 suite of programs. Counter ions were added to neutralize the systems. Protein 

conformations were taken after equilibration and every 300 ps along the 3 ns HIV-1p MD 

trajectory and every 200ps along the 4 ns DHFR MD trajectory. 

Receptor-based pharmacophore models were then created using the 11 

conformations from each individual HIV-1p MD trajectory (1HHP, 3HVP, and 3PHV) 

and the 20 conformations from the ecDHFR MD trajectory. The active site of each 

structure was alternately flooded with 500 (1000 for ecDHFR) small molecule probes 

(benzene, ethane, and methanol) which were minimized using MUSIC17 and the OPLS18 

force field in the program BOSS19 as described previously12. This resulted in clusters of 

small molecule probes at favorable interaction regions within the active site of each 

snapshot. If 8 probes were present in the cluster, it was represented by a single “parent” 

probe, defined as the probe within each cluster possessing the most favorable interaction 

energy with the protein. 

Consensus pharmacophore elements were determined by aligning the protein 

snapshots with each respective starting structure20 and looking for interactions (positions 

of parent probes) that were common over multiple protein conformations. This procedure 

resulted in 8-site pharmacophore models for 1HHP and 3PHV, a 9-site model for 3HVP, 
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and a 5-site model for ecDHFR. The three individual HIV-1p models were overlaid, and 

the common features were averaged to generate an 8-site consensus pharmacophore 

model (CONS) which encodes conformational information from 3 independent MD 

simulations and 3 independent starting points. The detailed creation of these models has 

been previously described.12,13 

 

MPS-DOCK Orientation Spheres 

The identified consensus clusters were used to create a contour-based 

pharmacophore representation to be employed as the MPS-DOCK sphere set for ligand 

orientation matching, the “orientation spheres”. Heavy atoms of each probe making up 

the consensus cluster were represented by an individual sphere as shown in Figure 5.1. 

Benzene probes are represented by 6 spheres centered on the aromatic carbons, ethane 

probes are mapped by 2 spheres centered on the aliphatic carbons, and methanol probes 

are described by a single sphere centered at the hydroxyl oxygen position. The radii of 

these atomic spheres was set to 0.75 Å for benzene and ethane which is approximately 

half a carbon-carbon bond length, and 1 Å for methanol which is approximately the 

length of an oxygen-hydrogen bond. 

Figure 5.1. Representation of the small molecule probes as atomic spheres. 

 

Each sphere was also labeled by its chemical functionality: aromatic, hydrophobic 

and hydrogen-bond donating or accepting for benzene, ethane and methanol, 

respectively. These functionality definitions are user specified and based on Tripos atom 

types (provided in Appendix 4). The use of chemical labeling allows the DOCK chemical 
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match feature to enrich the ligand orientations sampled with those that best match not 

only the position but also the chemistry of the spheres. The 3-ns pharmacophore models 

derived from the 1HHP, 3HVP and 3PHV simulations were represented as 397, 478 and 

365 spheres respectively. The CONS pharmacophore elements common to the 3 

individual models were represented as 1178 atomic spheres and the ecDHFR model as 

266 spheres. Figure 5.2 shows a comparison of our original spherical pharmacophore 

element representation of a consensus cluster to our new atomistic, contoured 

representation.    
 
Figure 5.2. Illustration of the aggregate pharmacophore element concept for a benzene consensus cluster. 
In our original model, the consensus cluster is represented as a single, spherical element (left). In our new 
model, each probe of the consensus cluster is represented by a set of atomistic spheres (right). The overlay 
of these sphere-sets generates a pharmacophore map whose size, shape, and density more accurately 
reflects the favorable interaction surface with the receptor. 
 

 

 

A caveat of using our aggregate sphere representation is the large number of 

spheres in each set. The DOCK manual suggests using sets of approximately 50 spheres 

for orientation matching. To alleviate this potential issue, the sphere sets were broken up 

by chemical functionality, and each group was clustered using an iterative distance-based 

Spherical Element 

Representation 
Atomistic Spheres 

Representation 
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approach. Using this approach, there are three necessary parameters: tolerance (the 

distance cut-off that a sphere must be within to be included in a cluster), step size, and 

maximum cluster size. We chose to set the tolerance to 2.0 Å, the step size to 0.005 Å, 

and vary the allowed size for each cluster, c. For example, if the maximum cluster size is 

set to 10, an initial round of clustering is performed using a tolerance of 2.0 Å. For any 

cluster that contains more than 10 spheres, it is re-clustered using a new tolerance of 2.0 

Å minus the step size 0.005 Å. This procedure is iteratively continued until all clusters 

are within the maximum cluster size. Each cluster was then represented by a single 

sphere centered at the average position of the spheres in the cluster and given the same 

radius as discussed above. The values for c were varied from 1- 15, resulting in 

orientation sphere sets that ranged from 98 – 397 for 1HHP, 90 - 365 for 3PHV, 94 - 478 

for 3HPV, 183-615 for CONS, and 91-266 for ecDHFR. 

 

Excluded Volume Representation 

Protein excluded volume spheres were determined by averaging the 2 C-γ 

positions of the catalytic aspartates (25, 25’) (11 snapshots from 1HHP) and assigned a 

fixed radius of 1.5 Å.  A more detailed representation of the protein volume was also 

investigated for both HIV-1p and ecDHFR by including all protein atoms within an 

RMSD cut-off. A heavy atom RMSD was calculated, and all atoms with a RMSD less 

than 0.5 Å, 0.75 Å, 1.00 Å, 1.25 Å, and 1.50 Å were defined as excluded volumes. The 

size of the excluded volumes was investigated using a fixed value of 0.5, 1, and 1.5 Å.  

 

MPS-DOCK Ranking Function 

An empirical ranking function was incorporated into MPS-DOCK to quantify 

how well a ligand overlaps with the orientation sphere set (i.e. aggregate pharmacophore 

spheres). The set of “scoring spheres” was defined as the combination of the orientation 

sphere set and protein excluded volume spheres. The density of the orientation spheres 
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reflects the relative importance of a particular ligand atom position within the interaction 

while the protein excluded volume spheres account for steric interactions with the 

protein. 

To rank a pose, each ligand heavy atom position is sequentially compared to the 

coordinates of each orientation sphere set for all ligand conformations. If the distance 

between the atom and sphere center is less than the pre-defined sphere radius, the 

chemistry is evaluated. The ligand atom type is compared to the chemical definition of 

the sphere according to the matching rules provided in Appendix 4, and if the chemistry 

agrees, the metric is incremented using a weighted scoring system. The value 

incremented for each sphere is scaled by 1/n, where n is the number of atoms in the 

probe. For example, as benzene has 6 spheres in the aggregate representation, a sphere 

representing a benzene atom would be incremented 1/6 or 0.17 whereas a methanol 

sphere would be incremented 1/1 or 1 because of the single oxygen atom in the methanol 

probe. This ensures that an aromatic interaction is weighted the same as a hydrogen bond 

interaction. Also, in order to maintain the “density” of the aggregate representation within 

the clustered representation, each sphere value is multiplied by the number of spheres 

making up its representative cluster. For example if a particular sphere represented a 

cluster of 15 benzene spheres, the value incremented would be 15 multiplied by 0.17 or 

2.55. If the ligand heavy atom is not found within the volume of any atomic sphere or the 

chemistry with a sphere does not match, no penalty is applied. However, the metric is 

incremented for each sphere the atom is within so that matching to a region that is dense 

with spheres leads to a more favorable rank.  

The ligand orientation algorithm in MPS-DOCK matches ligands solely to the 

orientation sphere set (i.e. aggregate pharmacophore sphere set). In order to account for 

the volume occupied by the protein, a steric penalty was incorporated into the ranking 

function. If a ligand heavy atom is within the radius of an excluded volume sphere, the 

score is given a deduction of 10 points. This straightforward ranking function orders 
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screened ligands based on their ability to complement the aggregate sphere 

pharmacophore model, yet does not severely penalize molecules for placing groups into 

flexible regions of the binding site.  

Our ranking function was implemented into DOCK by altering the chemical 

scoring routine to sum ligand heavy atom interactions with the set of scoring spheres 

rather than computing the van der Waals interactions between ligand and protein. 

Additionally, the scoring sum was computed a single time rather than iterating over the 

number of receptor atoms. This approach was chosen to minimize effects on the program 

in general, specifically the orientation routines of DOCK. During the screening method, 

each ligand conformation was rigidly oriented varying the number of nodes, inter-node 

distance, and distance tolerance. A maximum of 5000 orientations were generated for 

each conformation. The highest valued orientations for each ligand were ranked, and the 

score of the top pose was compared to that of the other ligands in a second round of 

ranking. Receptor site chemical matching was enabled, but no grid scoring or 

minimization of the pose was performed.         

 

Ligand Data Sets 

Three data sets of pre-generated multiple conformers were used to evaluate the 

enrichment capabilities of our DOCK ranking function for the HIV-1p systems 

investigated. The first was a set of 89 structurally diverse known HIV-1p inhibitors taken 

from the PDB and the literature and was used to assess selectivity. The second was a 

database of 2324 drug-like non-inhibitors (2 known HIV-1p inhibitors were removed) 

from the Comprehensive Medicinal Chemistry Index21,22 and was used to evaluate 

specificity. In the original work, 23 folate-like inhibitors (structurally similar to known 

DHFR inhibitors) were removed; however, they were kept in this study to ensure a fair 

comparison across the protein systems as peptide-like compounds (structurally similar to 

known HIV-1p inhibitors) are present in the database. The preparation and composition 
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of these data sets has been described previously.23,24 Furthermore, a non-proprietary data 

set used by Cummings and co-workers was employed to replicate a virtual screening 

application.25 Their data set consists of 1025 compounds seeded with 5 known HIV-1p 

inhibitors. It was prepared by assigning PEOE partial charges and using default 

OMEGA26 parameters to generate a maximum of 400 ligand conformations per structure. 

Two additional databases were also used to evaluate the ecDHFR model: a set of 

50 high affinity E. coli inhibitors, where high affinity is defined by IC50 values ranging 

from 2 – 28 nM, and another containing 541 general DHFR inhibitors. Further details of 

their creation can be found in a previous study.13,24 Rule-based torsion driving in 

OMEGA26 was used to produce multiple conformations of each molecule in the DHFR 

databases, using an energy cutoff of 14 kcal/mol and heavy-atom RMSD criterion of 1 Å. 

 

 

5.3 Results and Discussion 

 

Application to HIV-1p 

The MPS pharmacophore method has consistently discriminated known HIV-1p 

inhibitors from structurally similar non-inhibitors. However, our current pharmacophore 

implementation, while very fast at screening databases of compounds, does not provide a 

means to rank or prioritize compounds; it simply provides a “fit or no fit” evaluation. To 

address this aspect of the method, we sought to incorporate a ranking function into our 

MPS method. We chose to use a straightforward counting function that maximizes 

overlap with a contour representation of the pharmacophore model.  

Here we have employed HIV-1p as a test case, using conformational snapshots of 

an apo structure (1HHP9) across a MD simulation to generate a receptor-based 

pharmacophore model. The resulting MPS model generally had 8 sites: 2 hydrogen-bond 

donating, 2 aromatic, and 4 aromatic/hydrophobic.12 As an example, the pharmacophore 
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model for 1HHP is shown in Figure 5.3A positioned in the bottom of the active site while 

Figure 5.3B provides a close-up view. This pharmacophore model can then be 

represented as a set of 397 atomic spheres corresponding to each probe in the consensus 

clusters identified using the MPS protocol, Figure 5.3C. The density of the sphere 

distribution reflects the favorability for placing a ligand heavy atom at a given position. 

With this representation, we are including specific atomic interactions rather than looking 

at averaged molecular positions. This atomistic representation was condensed by 

clustering the spheres using an iterative distance-based method. Figure 5.3D shows a 

representative “clustered” set of Figure 5.3C. Each sphere represents a cluster ranging 

from 1-18 spheres; the shade of the chemical functionality color corresponds to the 

number of spheres in the cluster (the shading decreases with decreasing spheres). 
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Figure 5.3. Comparison of the MPS pharmacophore representations for 1HHP. Flap residues 46/46’ – 
54/54’ have removed for clarity in (B) - (D). (A) Front view of HIV-1p with original pharmacophore model 
sitting in active site bottom to orient reader. (B) Close-up view of the original pharmacophore model 
derived for HIV-1p. (C) Close-up view of the aggregate sphere representation. (D) Close-up view of the 
clustered aggregate sphere representation. In all representations spheres are colored according to chemical 
functionality: red, hydrogen-bond donating; green, aromatic; cyan, hydrophobic. The clustered 
representations are also shaded by weight- the greater the number of spheres making up the cluster, the 
darker the color. 
 

 

 

MPS-DOCK Parameter Investigation 

To evaluate the use of quantifying overlap with a contour-based representation of 

the MPS pharmacophore models, we have employed a virtual screening approach. In 

virtual screening, large databases of mostly inactive compounds are screened with the 

hope of selecting the few inhibitors in the top fractions of the database. Recently, 

Cummings and coworkers have made available the non-proprietary portions of a data set 

they used to compare different docking programs in a virtual screening application.25 In 

D C 

B A 



137 

 

their dataset, 5 known HIV-1p inhibitors were seeded among 1025 compounds selected 

to represent a typical screening collection and whose properties generally reflected those 

of the seeded inhibitors. Cummings et al. found HIV-1p to be a particularly challenging 

case for the docking programs investigated.25 Of the programs they investigated, only 

Glide was able to dock 4 out of the 5 seeded inhibitors in the top 50% of the database 

screened. Other programs failed to identify any known inhibitors in the top 20% of the 

ranked database and only selected 2 inhibitors in the top 50%. We have adopted the 

Cummings et al. data set to examine how our scoring method performed in a virtual 

screening situation and to provide a frame of reference to compare screening using the 

MPS pharmacophore methods with traditional docking approaches. It should be noted 

that Cummings et al. used both flexible ligand docking as well as a single bound structure 

(PDB ID: 1HVR27) for their docking trials. Our method uses pre-generated rigid ligand 

conformers and a minimal protein representation based on the apo structure of HIV-1p. 

Thus our study addresses different aspects of virtual screening, but the use of a common 

data set provides context to evaluate the results. 

The aggregate sphere sets both define the binding pocket and restrain the 

orientation space. In the MPS-DOCK orientation search routine, each sphere is 

considered a node with respect to ligand orienting and chemical matching. Only ligand 

orientations that match a minimum number of nodes, m, and whose matching nodes are a 

specified distance apart, d, are accepted during the search and subsequently scored. 

Varying m and d is analogous to varying the pharmacophore query stringency and radii 

size in our previous work.23 The minimum number of nodes required was varied from 2 

to 5, and the distance required between nodes varied from 2 to 4 Å. We also investigated 

the affect of varying the distance tolerance, t, using values of 0.25 and 0.30. Two 

excluded volumes were used to define the floor of the HIV-1p active site in a manner 

analogous to our original pharmacophore approach, and a penalty of 10 was applied if a 

ligand heavy atom was within the radius of an excluded volume sphere. The value 
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incremented for each sphere was scaled by 1/n, where n is the number of atoms in the 

probe, and multiplied by the number of spheres making up its representative cluster, 

where c is the maximum allowed size for a cluster. We were interested in probing the 

effect of varying the maximum cluster size, c, while changing the number of minimum 

required nodes, m, and their distance apart, d. 

Results of varying the MPS-DOCK parameters for the 1HHP aggregate sphere 

model are presented in Table 5.1 for each maximum cluster size, c. The number of 

spheres in each clustered set is also shown and ranged from 110-399. We found that 

below 3m - 4d (3 nodes matched with a distance of 4 Å between them), the query was too 

lenient; the ligands were “clumping” to small areas of the sphere set, and the poses did 

not look realistic. The query was too stringent above 4m - 3d, and only a small percentage 

of the database was able to meet these criteria and be subsequently ranked. This stringent 

performance is ideal for screening against HIV-1p but may be target specific. Given the 

large size of the HIV-1p active site, this query is likely selecting molecules based partly 

on size and is therefore not an appropriate test of the ranking function effectiveness. To 

balance performance and ranking an appropriate amount of the database, we examined 

requiring 3m - 4d, 4m - 2d, and 4m - 3d more thoroughly.  
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Table 5.1. Effect of varying the number of minimum required nodes (m), inter-node distance (d), the 
distance tolerance (t), and cluster size cut-off (c) on virtual screening performance using the 1HHP model. 
Minimal representation was used for the floor of the active site (2 excluded volume with a scoring penalty 
of 10) as to optimize favorable scoring elements prior to excluding compounds based on size and overlap 
with the pocket. The Cummings et al. data set25 was used, consisting of 1025 compounds seeded with 5 
HIV-1p inhibitors. The number of spheres in the scoring set, the sum of the ranks of the 5 inhibitors and the 
number of compounds scored by MPS-DOCK (in parenthesis) is shown. A lower number for the sum of 
ranks indicates cases where the 5 known inhibitors are all ranked highly. A high number (close to 1025) in 
parenthesis is optimal as that means a large percentage of the database is being ranked. This proves a more 
appropriate test for our ranking function. The bolded column represents the optimal parameter set. 
 
 
 
 

     #                       m = 3, d = 4                         m = 4, d = 2                           m = 4, d = 3  

              c, spheres       t = 0.25           t = 0.30            t = 0.25           t = 0.30           t = 0.25         t = 0.30 

 

15 110 1048 (963) 
 

1059 (968) 913 (924) 1059 (968) 563 (722) 
 

633 (754) 

14 114 
 

1163 (965) 1192 (969) 1069 (932) 1192 (969) 593 (730) 628 (763) 

13 117 
 

1028 (967) 1150 (971) 1143 (943) 1044 (957) 596 (737) 723 (769) 

12 124 829 (970) 843 (972) 903 (966) 840 (981) 459 (751) 578 (781) 

11 131 861 (982) 946 (985) 1100 (971) 983 (981) 717 (792) 707 (828) 

10 140 829 (982) 863 (986) 1282 (978) 1182 (986) 674 (799) 616 (838) 

9 148 744 (981) 763 (986) 799 (980) 686 (990) 806 (807) 995 (846) 

8 157 476 (988) 560 (991) 898 (991) 989 (1004) 625 (820) 716 (853) 

7 170 705 (991) 729 (994) 864 (996) 715 (1007) 676 (841) 516 (870) 

6 185 645 (994) 722 (996) 774 (1003) 552 (1008) 676 (862) 352 (890) 

5 205 689 (993) 599 (994) 517 (1009) 314 (1016) 835 (878) 635 (897) 

4 237 768 (998) 706 (999) 792 (1011) 694 (1018) 914 (907) 891 (922) 

3 291 800 (999) 937 (1000) 884 (1020) 950 (1022) 784 (929) 568 (942) 

1 399 960 (1000) 1165 (1002) 595 (1023) 902 (1024) 517 (937) 529 (948) 

 

The Sum of Ranks for the 5 known inhibitors is presented in Table 5.1 as a means 

of comparing parameters, along with the number of ranked compounds in parenthesis. 

Sum of Ranks (# of Ranked Compounds) 
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The lower the Sum of Ranks, the better the enrichment capabilities of the ranking 

function. The first trend that emerged was the superior performance of the distance 

tolerance set to 0.25 over 0.30 as a whole. The second trend was the overall enhanced 

enrichment when 4 nodes with at least 3 Å separation was required. Additionally for 4m - 

3d, it appeared that increasing the maximum allowed cluster size and hence, decreasing 

the number of spheres in the set, also improved performance; however, the majority of 

the sphere sets resulted in reasonable sums. As the maximum allowed cluster size 

decreased, more ligands were ranked. We chose to focus on 4m - 3d and 0.25t for our 

further investigations. 

In Table 5.2, the number of known inhibitors returned in the top fractions of the 

ranked Cummings et al. dataset is shown for the optimal parameter set, 4m - 3d and 0.25t, 

along with the Sum of Ranks, Number of Ranked Compounds, and the actual rank of 

each known inhibitor (expansion of Table 5.1). The raw data for 3m - 4d ; 0.25t, 3m - 4d; 

0.30t, 4m - 2d; 0.25t, 4m - 2d; 0.30t, and 4m - 3d; 0.30t is provided in Appendix 4. Each 

clustered 1HHP sphere set was able to identify all 5 known inhibitors in the top 50%, and 

the majority was also able to distinguish 3 or 4 in the top 20% of the database. Only 3 of 

the 15 spheres sets did not identify at least 1 known inhibitor in the top 1%. The sphere 

set consisting of 124 spheres performed the best with a value of 459 for the Sum of 

Ranks, identifying 2 known inhibitors in the top 2% of the database. The number of 

ranked compounds is also presented. As the clustered sphere size was increased, more 

compounds were able to be ranked. However, any compound not ranked was essentially 

filtered out based on inappropriate size and shape complementarily to the sphere set.  
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Table  5.2. Expansion of Table 1: Effect of varying cluster size cut-off (c) using the optimal MPS-DOCK 
parameters, 4m - 3d and 0.25t. Data from Cummings et al.25 is also presented as a comparison. For a given 
fraction of the ranked database, the number of known HIV-1p inhibitors identified is shown along with the 
sum of the ranks of the 5 inhibitors and the number of compounds scored by MPS-DOCK. The bolded row 
represents the optimal sphere set. 
 
 
 
                               2%    5%    10%  20%   50% 

15 (110) 1 2 4 4 5 563 722 12, 31, 74, 85, 361 

14 (114) 1 2 3 4 5 593 730 4, 34, 85, 112, 358 

13 (117) 1 2 3 4 5 596 737 15, 31, 84, 167, 299 

12 (124) 2 3 4 4 5 459 751 10, 19, 45, 99, 286 

11 (131) 2 2 2 3 5 717 792 15, 17, 162, 245, 278 

10 (140) 0 2 2 4 5 674 799 38, 47, 167, 228, 199 

9 (148) 0 2 2 3 5 806 807 21, 40, 193, 237, 315 

8 (157) 1 2 3 4 5 625 820 10, 39, 90, 176, 310 

7 (170) 0 2 3 3 5 676 841 21, 27, 70, 250, 308 

6 (185) 1 2 2 3 5 676 862 3, 21, 106, 214, 332 

5 (205) 1 2 2 3 5 835 878 3, 32, 203, 271, 326 

4 (237) 1 2 2 2 5 914 907 4, 31, 240, 269, 370 

3 (291) 2 2 2 3 5 784 929 2, 11, 128, 285, 358 

1 (399) 1 3 3 4 5 517 937 2, 21, 29, 129, 336 

DOCK
25

 0 0 0 0 0 4686 N/A
a 

N/A
a
 

DOCKVISION
25

 0 0 0 0 2 3352 N/A
a
 N/A

a
 

GLIDE
25

 1 1 3 4 5 1267 N/A
a
 N/A

a
 

GOLD
25

 0 0 0 0 1 3654 N/A
a
 N/A

a
 

 

 

The Sum of Ranks metric provides a means of comparison to the work of 

Cummings et al.25; their results using four docking programs with the same data set are 

presented in Table 5.2 as well. Our goal is to incorporate a ranking function into the MPS 

pharmacophore method, not to develop a novel docking algorithm or scoring function. 

Therefore, it is not appropriate to explicitly compare the results of ranking using our 

pharmacophore models to the docking studies, but the published work does provide 

context for how other programs perform given the same data set. The best performing 

Top Ranked Compounds  

    c  (# 
 c  (# spheres) 

Sum of 
Ranks 

# Ranked 
Cmpds 

RANK 

aData not reported in Cumming et al. study.25 
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docking program investigated by Cummings et al., Glide, had a sum of ranks equal to 

1267, while other methods had values of 3000 to 5000.25  

The improved virtual screening performance using the MPS pharmacophore 

ranking method highlights the importance of including protein flexibility in docking and 

screening. In contrast, Cummings et al. used a single bound structure for their virtual 

screening. The cross-docking approach used by Cummings and coworkers could be one 

reason why the various docking programs they used failed to identify the diverse 

inhibitors in the top fractions of the ranked database. Furthermore, Cummings et al. 

employed flexible ligand docking whereas our study utilized pre-generated poses. 

 

Effect of Protein Excluded Volumes 

The number of excluded volumes used to represent the protein was also 

examined. To be consistent with our previous pharmacophore approach and bias the 

conformational sampling as little as possible, we first chose to use a minimum number of 

excluded volumes (2 volumes positioned at the average Cγ positions of Asp 25 and 25’). 

This directs the ligand orientation to the top face of the model ensuring that it occupied 

the active site cavity but provides no penalty for placing ligand atoms into regions 

possibly occupied by the protein. However, as we are now using a more detailed 

representation of the pharmacophore model, we were also interested in investigating the 

effect of using a more detailed representation of the protein. The protein heavy atoms 

were averaged among the ensemble of structures, and 0.50, 0.75, 1.00, 1.25, and 1.5 Å 

RMSD cutoffs were used to determine the rigid atoms represented with excluded 

volumes. The average Cα fluctuations calculated from the MD simulation was 

approximately 1.5 Å so this value was chosen as the upper bound.23 The 0.50 Å minimum 

cutoff was the same as the cutoff used to determine variable regions in the approach by 

Knegtel et al.28  
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Figure 5.4 shows the six different excluded volume representations (radii equal to 

0.50 Å) along with the 110 sphere pharmacophore model (c = 15). Figures 5.4A and 5.4B 

demonstrate the minimalist representations of the receptor, 2 excluded volumes and a 

RMSD cut-off of 0.50 Å (35 spheres). The bottom of the active site becomes well defined 

at the RMSD cut-off of 1.00 Å (755 excluded volume spheres), Figure 5.4D, while the 

flap region begins to emerge at cut-offs of 1.25 Å (1033 excluded volume spheres) and 

1.50 Å (1253 excluded volume spheres), given in Figure 5.4E and 5.4F.  

Employing the optimal ligand orientations parameters (4m - 3d and 0.25t) and the 

Cummings et al. data set25, we investigated the affect of the number of excluded volumes 

using a representative clustered sphere set, c = 12 (124 spheres). Using each excluded 

volume representation, fixed radii sizes of 0.5, 1, and 1.5 Å were first explored. For all of 

the excluded volume representations, the Sum of Ranks was quite high compared to our 

previous results when fixed radii sizes were equal to 1 and 1.5 Å (data not shown). 

Interestingly, using a fixed radius of 0.50 Å resulted in an almost identical Sum of Ranks 

for all excluded volume representations (0.50, 0.75, 1.00, 1.25, and 1.5 Å RMSD 

cutoffs); the values were 462 ± 3. It appears that the excluded volume representation does 

not significantly affect the MPS-DOCK outcome. 

We chose to continue with an RMSD cut-off of 1.00 Å and a fixed radius of 0.50 

Å for the 1HHP excluded volumes. When a minimalist representation is used, the ligand 

is not penalized for protruding into areas occupied by receptor atoms that remain 

relatively static across the multiple conformations. Conversely, using a RMSD cut-off of 

1.25 and 1.50 appears to be too restrictive as the flap region, which is known to be very 

flexible, is also now defined. The point of using MPS to generate the pharmacophore 

model is to overcome the cross-docking problem. By applying a “softer” representation 

of the receptor, we hope to probe novel conformational space while still representing the 

important chemical features of the binding site.  
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Figure 5.4. Comparison of excluded volume representations. (A) Minimal excluded volumes- 2 spheres 
centered on the 2 Cγ positions of the catalytic aspartates (25, 25’). (B) RMSD cut-off of 0.50, 35 excluded 
volume spheres. (C) RMSD cut-off of 0.75, 351 excluded volume spheres. (D) RMSD cut-off of 1.00, 755 
excluded volume spheres. (E) RMSD cut-off of 1.25, 1033 excluded volume spheres. (F) RMSD cut-off of 
1.50, 1253 excluded volume spheres. Excluded volume spheres are colored gray and shown along with a 
surface representation. The atomic spheres are colored by chemical functionality (red, hydrogen-bond 
donating; green, aromatic; cyan, hydrophobic) and shaded by weight (the greater the number of spheres 
making up the cluster, the darker the color). 

 

 

 

B 

RMSD < 1.25, 1033 spheres   RMSD < 1.50, 1253 spheres   

RMSD < 0.75, 351 spheres   RMSD < 1.00, 755 spheres   

RMSD < 0.50, 35 spheres   Asp 25/25’, 2spheres 
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Extension to Additional HIV-1p Systems 

Having demonstrated the success of the atomistic sphere overlap ranking function 

for the 1HHP model of HIV-1p, we applied the same technique to the additional HIV-1p 

models 3HVP and 3PHV, as well as the CONS model. The original 3PHV and CONS 

MPS pharmacophore models are nearly identical to the 1HHP model, resulting in very 

similar aggregate sphere representations. However, the original 3HVP model has 9 

elements – an extra aromatic/hydrophobic element was conserved across the protein 

conformations. 

For 1HHP we found that the optimal scoring set included 755 excluded volume 

spheres (RMSD cut-off of 1.00 Å). We anticipated that a similar number of scoring 

spheres should also perform well for the additional three HIV-1p systems. 3PHV 

followed the same trend as 1HHP and using a RMSD cut-off of 1.00 Å resulted in 750 

excluded volumes. However, 3HVP required a RMSD cut-off of 0.75 Å to obtain a 

similar number of excluded volumes (768), and a RMSD cut-off of 1.25 Å was needed to 

produce 807 excluded volumes for the CONS model. These results are not surprising as a 

larger RMSD cut-off is required for less flexible systems, such as 3HVP, while a smaller 

cut-off is needed when the system is quite dynamic, as in the CONS conformational 

ensemble (33 snapshots from 3 different MD trajectories are employed). As previously 

noted, 3HVP also has an extra element in the original pharmacophore model; additional 

sites are characteristic of ensembles that do not display large amounts conformational 

variation.29  

Shown in Table 5.3 are the results for the best performing 1HHP, 3HVP, 3PHV 

and CONS models using the optimal MPS-DOCK parameters: 4m - 3d, 0.25t, and an 

excluded volume penalty of 10. The performance for all variations of each model’s 

sphere sets (i.e. a range of maximum cluster size cut-offs) is provided in Appendix 4. We 

were pleased to see that all models show comparable ability to select known inhibitors in 

the top fractions of the ranked data set. Some variation is observed, for example, the 
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1HHP, 3HPV, and CONS models identified 2 known inhibitors in the top 2% screened as 

opposed to 1 inhibitor for 3PHV. However, the 3PHV model produced the lowest rank 

sum of the seeded HIV-1p inhibitors, 385, and predicted all 5 inhibitors within the top 

20% screened. Additionally, all models were able to identify each of the known inhibitors 

in the top 50%, and the 1HHP model was even able to rank 4 inhibitors in the top 10%! 
 
Table 5.3. Virtual screening performance of the four optimal HIV-1p pharmacophore models (1HHP, 
3HVP, 3PHV, and CONS) using the optimal MPS-DOCK parameters, 4m - 3d and 0.25t along with an 
excluded volume penalty of 10. The number of orientation spheres and excluded volumes is provided. The 
Cummings et al. data set was used consisting of 1025 compounds seeded with 5 HIV-1p inhibitors. For a 
given fraction of the ranked database, the number of known HIV-1p inhibitors identified is shown along 
with the sum of the ranks of the 5 inhibitors and the number of compounds scored by MPS-DOCK.   
 
 
 

 

 
 

It is interesting to note that the model with the lowest rank sum also has the 

smallest sphere set (3PHV), while the model with the highest rank sum is comprised of 

the largest sphere set (CONS). We hypothesize that a reason for the variation in 

performance may be due to the orientation sampling. It is difficult for the orientation 

routine in MPS-DOCK to sample appropriate conformations when a large number of 

spheres is required to be matched. In fact, the DOCK 4.0 manual suggests using a set of 

50 spheres or less for optimal performance. Additionally, it took significantly longer to 

screen the databases of compounds when larger sphere sets were used.  

An additional explanation for the performance variation may be due to the 

maximum allowed cluster size cut-off, c. When the sphere sets are sizeable, larger values 

of c are needed to generate small sphere sets. For example with the CONS model, a 

1HHP 122 755 2 3 4 4 5 459 751 5, 19, 45, 98, 292 

3HPV 128 750 2 2 2 5 5 490 856 3, 14, 109, 170, 194 

3PHV 97 768 1 2 3 5 5 385 806 3, 22, 75, 134, 151 

CONS 513 807 2 2 3 4 5 581 981 6, 20, 102, 132, 321 

 Top Ranked Compounds   
 2%    5%   10%  20%   50%  Sph  Exvol 

RANK 
 

# Ranked 
Cmpds 

 

Sum of 
Ranks 
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maximum cluster size cut-off of 65 is needed to produce a sphere set of 204. A large 

weight is then given if that particular weighted sphere is hit – even though the rest of the 

pose may not be ideal – causing a bias in the calculated score. Furthermore, the three 

smaller models (1HHP, 3HVP, and 3PHV) showed optimal performance with sphere sets 

ranging in size from 97-128. Unfortunately when working with the large CONS model, 

we were not able to even obtain spheres sets in that range; a maximum cluster size of 100 

still produced a sphere set of 183. This is similar to what we observed in creating the 

original pharmacophore models. An optimal number of snapshots were necessary to 

create pharmacophore models with meaningful elements. Including too few snapshots did 

not provide sufficient consensus, and when employing to many snapshots, the 

information became too cluttered to interpret. To overcome this potential sphere size 

limitation, we suggest that the optimal aggregate sphere sets should contain 

approximately 100 spheres. 

Receiver operator characteristic (ROC) curves30,31 based on the rank score were 

used to quantify the performance of the optimal aggregate sphere sets for all HIV-1p 

systems using a database of 89 known HIV-1p inhibitors versus a decoy dataset 

containing 2324 drug-like ligands. Given two populations - known HIV-1p inhibitors and 

known false positives - and their ranks according to our computational model, we can 

examine how well our ranking the model is able to discriminate between them. The 

selectivity and specificity of the model can be calculated from the number of true and 

false positives and negatives. These metrics are able to assess how well our ranking 

function is identifying known inhibitors as high rankers and how well it is able to 

discriminate them from inactive ligands – plotting true positives against false positives. 

The perfect computational ranking method would give complete separation between the 

active and inactive compounds; however, in practice these populations often overlap.  

Thus, a perfect model would lie at to point (0, 1) while an indiscriminate model would lie 

along the line with slope equal to 1.  
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For every possible threshold, the selectivity is plotted against 1 minus the 

specificity to give a ROC plot comparing the effect of the scoring weights on 

discriminatory ability. The area under the curve (AUC) is an unbiased way to compare 

the performance of the different models using the same test data. If the AUC was equal to 

0.80, it would be equivalent to a known inhibitor being ranked higher than a decoy 

molecule 8 out of 10 times.31  

Excellent discrimination was found for all HIV-1p models, as demonstrated by 

the ROC plot shown in Figure 5.5. In this study, all HIV-1p models produced an AUC 

value of 0.90 or greater. In fact for three of the four models, the AUC value was ≥ 0.95. 

Discriminating between two similar populations is very challenging, and we were pleased 

to see this enrichment. It is also of particular interest that the ROC curves are very steep 

at the beginning, indicating the potential for virtual screening applications. When 

screening large databases of compounds, the number of true positives can be sacrificed to 

reduce the amount of false positives. 
 
Figure 5.5.  A representative ROC plot showing enrichments for discriminating a set of 89 known HIV-1p 
inhibitors from a set of 2324 general decoys. Compared are the enrichment profiles obtained using the four 
models- 1HHP, 3HVP, 3PHV, and CONS. The selectivity is plotted against 1 minus the specificity for each 
threshold value evaluated. TN - true negatives, FP - false positives, TP - true positives, FN - false 
negatives.     
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 Nonetheless, we see excellent discrimination between the dataset of known 

inhibitors and the more general decoy dataset, as demonstrated by the ROC plot shown in 

Figure 5.5B. In this study, all HIV-1p models have an AUC value of 0.90 or greater. It is 

also of particular interest that the ROC curves are very steep at the beginning, indicating 

the potential for virtual screening applications. When screening large databases of 

compounds, the number of true positives can be sacrificed to reduce the amount of false 

positives. 

 

Ranking Function Consistency: Application to DHFR 

To fully demonstrate the robustness of the MPS-DOCK method, we have applied 

it to an additional well-studied system, ecDHFR. The active site of ecDHFR is much 

smaller than that of HIV-1p, and consequently, the original ecDHFR MPS 

pharmacophore model had fewer elements: 2 aromatic sites, 2 hydrogen-bond donor 

sites, and 1 hydrogen-bond acceptor site. As we found that HIV-1p sphere sets in the 

range of 97-128 demonstrated optimal performance, we chose to probe clustered 

aggregate sphere sets ranging from 91 – 127 spheres (c equal to 12 - 6) for ecDHFR. 

Figure 5.6 shows the sphere set containing 91 spheres in the active site of ecDHFR 

(1RX114) defined by 818 excluded volumes (RMSD cut-off = 0.75 Å). The cofactor, 

nicotinamide adenine dinucleotide phosphate (NADPH), is also provided to orient the 

reader. Again, the sphere set is colored by chemical functionality and shaded according to 

weight (i.e. number of spheres making up the cluster). 
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Figure 5.6.  The clustered aggregate sphere representation of DHFR. Atomic spheres are colored according 
to chemical functionality (red, hydrogen-bond donating; blue, hydrogen-bond accepting; green, aromatic) 
and also shaded by weight- the greater the number of spheres making up the cluster, the darker the color. 
818 excluded volume spheres are shown in grey along with a surface representation overlaid with a cartoon 
depiction of the entire protein. The cofactor, NADPH, is colored by atom type (carbon is shown in yellow). 
 

 

To investigate the performance of the ecDHFR aggregate sphere sets, three 

databases were screened: one consisting of 50 high affinity ecDHFR inhibitors, another 

of 541 inhibitors from various DHFR species, and a final dataset of 2326 general drug-

like decoys13,24. The optimal MPS-DOCK parameters for the HIV-1p test case were used, 

4m - 3d, 0.25t and an excluded volume penalty of 10. We found that 4m - 3d was too 

stringent; only a small percentage of the compounds in the DHFR databases were able to 

meet this criteria. However when we employed a more lenient parameter set,  4m - 2d (4 

nodes matched with a distance of 2 Å between them rather than 3 Å), the compounds 

were subsequently ranked. This is not surprising because the DHFR active site is much 

smaller than that of HIV-1p, and consequently, the DHFR inhibitors have much fewer 

atoms. HIV-1p inhibitors are typically large, flexible peptide-like molecules. 

We found that the aggregate sphere sets ranging from 91 – 127 spheres performed 

quite similarly when ranking the two known inhibitor databases versus the non-inhibitor 
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dataset. However, the clustered sphere sets with less than 100 spheres did show modest 

improvement, and a representative ROC plot is provided in Figure 5.7 (c = 12, 91 

spheres). We were pleased to see the excellent discrimination between the dataset of high 

affinity ecDHFR inhibitor and the more general decoy dataset, as demonstrated by the 

AUC value of 0.87. While moderate enrichment emerged from our ecDHFR model when 

screening the general DHFR dataset (AUC = 0.69), it demonstrates superior performance 

at discriminating the high affinity ecDHFR inhibitors from the decoy ligands (AUC = 

0.87). This supports a recent study by our laboratory that showed the ability of the MPS 

models to successfully differentiate species-specific inhibitors of DHFR24, and we were 

very excited to see the same trend using our new pharmacophore representation and 

ranking method. The AUC provides a metric to compare the performance of the high 

affinity ecDHFR dataset versus the general DHFR database, and hence the specifies 

differentiating capabilities of our ranking function.  
 
Figure 5.7. A representative ROC plot showing enrichments obtained for the DHFR aggregate sphere 
model for discriminating a set of 50 high affinity ecDHFR inhibitors from a set of 2326 general decoys 
(blue) and a set of 541 general DHFR inhibitors from a set of 2326 general decoys (red). The selectivity is 
plotted against 1 minus the specificity for each threshold value evaluated. TN - true negatives, FP - false 
positives, TP - true positives, FN - false negatives. 
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5.4 Conclusions 

 

The MPS pharmacophore models have been represented as a set of atomic spheres 

which provides a contour-based representation of the pharmacophore models and also 

allows ligand orientations to be ranked based on the number of aggregate spheres 

complemented. We have demonstrated that this approach is successful at identifying 

known HIV-1p inhibitors seeded in large data set, simulating the situation commonly 

encountered in virtual screening. Our results compare favorably to those reported by 

Cummings et al. with the same data set – highlighting the importance of incorporating 

protein flexibility into SBDD. Additionally, we are able to demonstrate the robustness of 

our method through an application to ecDHFR. Our approach is both successful at 

discriminating known inhibitors from general drug-like ligands and discriminating 

between specifies-specific inhibitors. The MPS-DOCK technique allows for ranking of 

ligand poses while still accounting for protein flexibility. This ranking function is 

complementary to our previous use of the MPS pharmacophore models which enables 

fast database searching and facile expansion into new chemical space. 

We are continuing to develop and improve the MPS pharmacophore method and 

demonstrate the utility of the simple ranking metric. In the future, we would like to 

investigate the addition of penalties for a ligand heavy atom not overlapping with a 

scoring sphere or possessing a dissimilar chemistry. An additional DOCK feature that 

could be utilized is the critical points filter where a requirement is made that a certain 

sphere be used in the ligand orientation. A similar technique would be to give extra 

weight to certain spheres in locations that are known to be critical in ligand binding.  

This work has been published as: 
 
Damm, K.L., Meagher, K.L., and Carlson, H.A. Accounting for Multiple Protein 
Conformations in Ranking Ligand Databases.  Manuscript in preparation. 
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CHAPTER 6 

Inhibition of HIV-1p By Modulating its Conformational Behavior of the Flap 

Region 

6.1  Introduction 

The effectiveness and robustness of the MPS method has been adequately 

demonstrated1-4, and we have begun to apply our technique to the discovery of novel 

inhibitors of HIV-1p. Targeting conserved residues that are essential for the activity 

and/or structural stabilization of HIV-1p is a potential approach to overcome the 

resistance associated with current PIs and can be exploited in the design of novel 

inhibitors.5  

Here we present a novel mode of action for HIV-1p inhibitors – modulating the 

conformation behavior of HIV-1p by targeting the flap-recognition site. This region can 

also be thought of as the “eye” from recent HIV-1p naming convention (i.e., the front 

view of the protease resembles the face of a bulldog). Upon substrate binding, each flap 

closes down and positions itself in the highly conserved “eye” region of the opposite-side 

monomer. In Figure 6.1, the “eye” region of a monomer in the semi-open form (dark grey 

in both cartoon and surface representation) is shown occupied by the flap tip (residues 

49-52) of the opposite monomer in a closed conformation (yellow in cartoon 

representation).  
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Figure 6.1. When a monomer closes, it places its flap tips again the “eyebrow” region of the other 
monomer. The right monomer is the apo, semi-open state and shown with a grey surface. The left monomer 
is in the bound, closed state and colored yellow. Ile 50 and Gly 51 are shown in stick representation in 
direct contact with the “eye”. 

                 

 

Targeting the “eye” has interesting ramifications for both the closed and open 

states. If the flaps cannot properly close and coordinate the central water molecule, the 

catalytic efficiency of HIV-1p drops.6-8 If the curling of the hydrophobic flap tips into the 

“eye” site drive the conformational change into the open state8-12, blocking the interaction 

between residue I50 and the “turn” residues 79-81 may interfere with its ability to bind its 

large substrate. If either-  or both - mechanisms are possible, an inhibitor bound to this 

site would alter the equilibrium of the system. Furthermore, it has been suggested that 

flap dynamics rather than sequence specificity plays a major role in the association and 

disassociation of substrates10,13, and modulating the conformational behavior of the flaps 

may be a potential mechanism for eluding inhibitor resistance. 

 We show in this study that the addition of a small molecule into the flap-

recognition pocket prevents the flap from assuming the proper closed conformation. 

Using solvent mapping of the binding site and the MPS method, we generated a receptor-

based pharmacophore model that was screened against an in-house database of 

compounds. The chemical scaffold that best complemented the MPS model was chosen 

as a representative structure. We were able to demonstrate the stability of the bound 

complex through MD simulations of the complex in explicit solvent and multiple LD 

Closed                                  Semi-Open 
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simulations of the complex in implicit solvent. The MD simulation was run for 10 ns and 

five independent LD simulations were run for 5 ns each (total of 25-ns of simulation 

time). The inhibitory activity of our compound was subsequently confirmed through 

experimental testing. 

 

 

6.2 Methods 
 

Multiple Protein Structures Method 

Previously, our group has conducted several 3-ns MD simulations of three 

unbound structures of HIV-1p (1HHP14, 3HVP15, and 3PHV16).1 Each protein structure 

was solvated with explicit water and equilibrated using the AMBER94 force field17 and 

the AMBER618 suite of programs. Counter ions were added to neutralize the systems. 

Multiple protein conformations were taken from those simulations after equilibration and 

every 600 ps along the 3-ns MD trajectory and used to generate a receptor-based 

pharmacophore model. Each monomer was considered a separate structure, resulting in a 

collection of 36 conformations from a total of 9-ns of simulation time. In our 

aforementioned work1,2, we focused on mapping the bottom of the central cavity to 

describe the complementarity of competitive inhibitors. In fact, any features of the 

solvent mapping that were farther 9 Å from the catalytic acids were ignored.  

The “eye” region of each structure was alternately flooded with 500 small 

molecule probes (benzene, ethane, and methanol) using a 14.5-Å radius flooding. Each 

structure was then subjected to a MUSIC simulation with the BOSS program19, using the 

OPLS force field20, while the protein was held rigid. This resulted in clusters of small 

molecule probes at favorable interaction regions within the “eye” region of the protease. 

Probes were clustered using an in-house program based on Jarvis-Patrick methodology. If 

8 probes appeared in a cluster, it was considered significant and included in the 
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consensus step below. For that step, each cluster was represented by the “parent”, the 

probe with the most favorable interactions with the protein. 

Similarly to Chapter 4, “consensus clusters” were determined by aligning the 

protein snapshots with the equilibrated 1HHP structure and looking for interactions 

(positions of parent probes) that were common over > 50% of the multiple protein 

conformations. Each consensus cluster was then represented in the pharmacophore model 

as a spherical element. The center of each element was defined by the average position of 

the probe molecules (benzene centroid, the midpoint of the carbon-carbon bond for 

ethane, and the oxygen atom of the methanol probe). The radius were based on the 

RMSD of the probe positions. Individual benzene clusters were labeled aromatic 

elements whereas ethane clusters were termed hydrophobic. Methanol clusters were 

classified as a hydrogen-bond donor or acceptor element, based on their interaction with 

the protein surface. This procedure resulted in a seven-site pharmacophore model of the 

eye region; the model coordinates are provided in Appendix 5. Full details of the MPS 

method can be found elsewhere.2,21 

 

Virtual Screening 

The MPS pharmacophore model was screened against one of the databases 

(33,623 compounds) available from the University of Michigan’s Center for Chemical 

Genomics (CCG). The dataset was screened using the search option within the 

Pharmacophore Query Editor of MOE22. This is simply a fit/no-fit comparison based on 

the geometry of each conformer’s chemical features and the physical arrangement of the 

pharmacophore elements. Multiple conformations of each ligand were pre-generated 

using the default parameters of OMEGA23 with the exception of the energy window and 

RMS threshold set to 14 kcal/mol and 1, respectively; the maximum number of 

conformations was 300. During the database search, the radii were multiplied by 

1.3×RMSD, and a compound was required to fulfill six of the seven features to count as a 
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hit; this produced small, tractable numbers of compounds that were strictly held to the 

pharmacophore features. The “eye” model identified 93 compounds within a 360 Da 

molecular weight filter. The predicted poses were manually viewed to ensure appropriate 

overlap with the pharmacophore model. Compound 1 (2,2,4-trimethyl-1,2-

dihydroquinolin-6-yl benzoate), shown in Figure 6.2, was chosen as a model compound 

for the theoretical simulations because it best complemented the features of the model. 

The structures of all 93 identified compounds are provided in Appendix 5. 
 
Figure 6.2. Compound 1 (2,2,4-trimethyl-1,2-dihydroquinolin-6-yl benzoate) was identified through a 
virtual screen and chosen for theoretical simulations.  
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Dynamics Simulations 

Unrestrained, all-atom MD and LD simulations were conducted with AMBER8. 

The MD simulation used explicit solvation with TIP3P water30 while aqueous solvation 

was implicitly modeled using the Generalized Born approach24 for the LD simulations. 

Simulations were initiated from the crystallographic coordinates of the apo monomer of 

HIV-1p obtained from the PDB25 (PDB ID: 1HHP14), and the homodimer was generated 

using C2 symmetry operations in PyMOL26. Hydrogens were added via the tLEaP module 

in AMBER818 using the FF99SB force field27. MD and LD simulations were performed 

using the 1HHP dimer in complex with Compound 1 in the “eye” site. The starting 

coordinates of Compound 1 were obtained from the binding pose generated in the MOE 

pharmacophore screen. The Antechamber module with the GAFF28 force field and AM1-

BCC charges29 was used to determine force field parameters for Compound 1. 

Compound 1 
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Explicit-solvent, MD simulations were performed for 10 ns using one random-

number seed with HIV-1p in complex with Compound 1. The simulations were carried 

out using the FF99SB force field27 and the sander module in the AMBER8 suite of 

programs18. The hydrogen atoms were first minimized, and then the system was solvated 

using truncated octahedral boundary conditions with TIP3P water molecules30, a buffer 

distance of 12 Å, and closeness parameter of 0.5. The +4e charge of HIV-1p was 

neutralized by the addition of 4 chloride counter ions placed 10 Å from the protein 

surface in the most electropositive regions. The simulation was run in the NPT ensemble, 

and SHAKE was used to constrain all bonds to hydrogen atoms. A 2 fs time step was 

used, along with a 10-Å cutoff for nonbonded interactions and particle mesh Ewald 

(PME) for long-range electrostatics. For the solvated system, the hydrogen atoms were 

first minimized, followed by side chains, and lastly all atoms. The system was 

equilibrated in a series of four stages: a gradual heating of water from 10 to 310 K over 

50 ps, followed by water equilibration with protein restrained for 250 ps at 310K, then a 

full system heating from 10 to 310 K over 50 ps, and finally, full system equilibration 

with the protein unrestrained at 310K for 250 ps. The production phase was run for 10 ns 

at 310 K. 

Five independent LD simulations of HIV-1p in complex with Compound 1 were 

run for 5 ns starting from different random-number seeds using the FF99SB force field27 

and the sander module in the AMBER8 suite of programs18. Each simulation was run in 

the NPT ensemble using a 999 Å cutoff for nonbonded interactions, and a generalized 

Born solvation model24 was employed. Default dielectric values were used: interior = 1 

and exterior = 78.5. The hydrogen atoms were first minimized, followed by a 

minimization of all atoms. The system was equilibrated over a series of six steps; the first 

three equilibration steps were each performed for ten ps, steps four and five over 50 ps, 

and the sixth step for 100 ps. During the first two equilibration steps, the system was 

gradually heated from 100 K to 300 K and remained at 300 K for the subsequent steps. 
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Restraints were placed on all heavy atoms and gradually removed over the first four 

equilibration steps using force constants from 2.0 to 0.1 kcal/mol• Å2. Throughout the 

fifth equilibration step, the backbone atoms remained restrained with a force constant of 

0.1 kcal/mol• Å2. In the sixth, and final, phase of equilibration, all force restraints were 

removed, and the system was run for 100 ps at 300 K. The subsequent production phase 

was run for 5 ns. A time step of 1 fs and 1 ps-1 collision frequency were used, and 

SHAKE was employed to constraint hydrogens. This protocol is based on that used by 

Simmerling and coworkers for HIV-1p.31,32 

Analyses of the flap conformation and ligand position were performed using the 

Ptraj module from the AMBER8 suite of programs18. The MD trajectory was aligned to 

its average structure across the 10-ns simulation. However, for LD each trajectory was 

aligned to the fully minimized 1HHP, the last common structure between the simulations. 

RMSD traces were calculated for Compound 1 versus its initial position within the eye 

region. The following metrics were used to quantify the movement of the flaps: the 

distance between flap tips and catalytic acid (I50 to D25 and I50’ to D25’) and the 

distance between flap tips and eye pocket (G51 to T80 and G51’ to T80’). Cα atoms were 

used to measure distance and angles between residues. 

 

Ruling out the “Elbow Region” 

An additional site that might be appropriate for a small, hydrophobic molecule 

like Compound 1 to bind is the elbow region (residues 35/35’-42/42’). To rule out this 

site, we conducted five independent MD simulations of the 1HHP dimer in complex with 

Compound 1 in the elbow site. The explicit-solvent MD protocol described above was 

followed. AutoDock 333 was used to predict the binding pose of Compound 1 in the 

elbow region of 1HHP using the Lamarckian genetic algorithm. Polar hydrogens were 

added to both the protein and ligand while Kollman charges were assigned to the protein 

and Gasteiger charges and rotatable bonds to the ligand using AutoDockTools. Grids 
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encompassing the elbow region were calculated using 0.302 Å spacing with AutoGrid 3. 

Default docking parameters were employed with the exception of ga_pop_size = 100, 

ga_num_evals = 750,000, and ga_run = 50. 

 

HIV-1 Protease Inhibition Assay  

A FRET-based assay was available, but unfortunately Compound 1 was auto-

fluorescent and could not be assayed. However, an analog of Compound 1 (Compound 2: 

2,2,4-trimethyl-1,2-dihydroquinolin-6-yl 4-methoxybenzoate) was available in-house to 

experimentally test the chemical class. The employed assay is based on the previously 

described procedure for HIV-1p.34,35 The substrate used in the assay is an oligopeptide, 

RE(EDANS)SQNYPIVQK(dabcyl)R, purchased from Molecular Probes (Cat. No. H-

2930)34,36. All compounds were purchased from Chembridge; Compound 1 and 

Compound 2 are listed as catalog numbers 5493403 and 5303843, respectively. HIV-1p 

was purchased from Bachem Biosciences (Product H-9040). Pepstatin A was purchased 

from USB (lot #110018) and employed as a control. 

Three fluorimetric assays were performed, in triplicate, in 384 well plates 

(Corning No. 3676) and read using a SpectraMax M5 from Molecular Devices. The 

excitation/emission wavelengths of the substrate are 340/490 nm and employed a cutoff 

filter at 475 nm.  PEG-400 was diluted in Buffer A (20mM phosphate, 1 mM DTT, 1 mM 

EDTA, 20% glycerol and 0.1% CHAPS at pH 5.1), and 1 µL was added to each well 

(PEG-400 final concentration, 0.1%) to counter HIV-1p precipitation. Each compound 

was diluted in water, and 2 µL was added to each well (final concentration range of 1-78 

µM), followed by 5 µL of the protease, diluted in Buffer A (final concentration of 30 

nM). After 45 min of incubation at room temperature, 12 µL of substrate (diluted in 

Buffer A, final concentration 2 µM) was introduced to initiate the assay, and the 

fluorescence monitored for 5 min. The inhibition constant, Ki, was determined from a 

dose-response curve and the Cheng-Prusoff equation Ki = IC50/(1 + [S]/KM}, where [S] is 
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the substrate concentration.37 The Michaelis constant KM of the substrate was previously 

determined by Matayoshi et al. at 103 ± 8 µM.34 

 

 

6.3 Results and Discussion 

 

Defining the Flap-Recognition Pocket 

The flap-recognition pocket is only accessible in the semi-open and open 

conformations. Upon ligand binding the flap of the opposite monomer closes down and 

fills this site. The lower portion of the pocket is defined by I84, V32, P81, T80, P79, and 

G78 while the upper portion is defined by V56, I54, I47, G48, G49, and I50 (Figure 

6.3C). More distal contacts may be possible with V82 and the backbone atoms of V77, 

L33, and K55. The large degree of green surface in Figure 6.3A,B indicates the 

hydrophobic character of the binding pocket. 
 
Figure 6.3. The semi-open monomer is shown with the new site color-coded by atom type (green are 
carbons, red are oxygens, blue are nitrogens). (A) Front view. (B) 90 degree rotation. (C) The individual 
residues within the new site are each colored individually and labeled to show their placement within the 
cleft. G78 and V56 are not visible in this view. 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Six of the twelve residues that define the flap-recognition pocket, G49, V56, G78, 

P79, T80, and P81, are highly conserved.38,39 A study by Foulkes et al. showed that 

mutations to the invariant residue T80 are detrimental to enzyme activity and 
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hypothesized that this may be due to alterations in the flexibility of the flap region.40 The 

additional six residues, V32, I47, G48, I50, I54, and I84, are known to mutate to residues 

that confer drug resistance to protease inhibitors38,39; the common mutations are provided 

in Table 6.1. Four of the six drug-resistant variants, V32I, I47V/A, G48V, and I50V/L, 

maintain their nonpolar nature in the mutant form but alter the size of the side chain. The 

additional two, I54 and I84, have been shown to mutate to a variety of residues, although 

the most common mutations are also hydrophobic, I54V and I84V/A. 
 
Table 6.1. List of residues defining the flap-recognition pocket. Those in bold can mutate to residues that 
contribute to drug resistance.38,39 
 
    Position         Wild-Type                      Common 

 #                                         Residue                          Mutations 
32    V                 I    
47     I              V, A    
48    G                V    
49    G   - 
50     I              V, L    
54     I     V, M, T, L, A, S   
56    V   - 
78    G   - 
79    P   - 
80    T   - 
81    P   - 

         84    I           V, A, C  
  

 

Virtual Screen using MPS Pharmacophore Model 

An MPS pharmacophore model was generated to map the chemical character of 

the flap-recognition pocket in the semi-open conformation; it is shown in Figure 6.4A 

and B. The pharmacophore model has 7 sites: a hydrogen-bond donor element near the 

backbone carbonyl oxygen of G48, a hydrogen-bond acceptor element close to the 

backbone amine of I50, and three aromatic and two hydrophobic features that 

complement the hydrophobic nature of the cleft. If we compare the pharmacophore 

elements to the chemical features of the opposite side monomer in the closed state, the 

hydrogen-bond acceptor element perfectly reproduces the position of the backbone amide 



166 

 

of flap tip residue G51 (Figure 6.4B). Ethanes were seen to map out the bottom of the 

pocket where the side chain of I50 is know to occupy, but benzenes were too large 

showing that the interaction is more aliphatic than aromatic in nature. 

In Chapter 5, an atomistic pharmacophore representation was developed that more 

specifically maps the contours of the interaction surface between each individual probe 

and protein. This technique was employed to provide further elucidation into the subtle 

contours of the “eye” site; the atomistic representation is shown in Figures 6.4C and D. 

However, this model was not used to predict novel compounds; it was generated solely to 

offer additional information about the interactions between the probe molecules and 

protein. 
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Figure 6.4. Two representative pharmacophore models are shown. Both are derived from the same solvent-
mapping data. Elements are color-coded according to chemical functionality: red, hydrogen-bond donor; 
blue, hydrogen-bond acceptor; cyan, hydrophobic; green, aromatic. (A) Isotropic MPS Pharmacophore 
model (radii of 1.3×RMSD) mapping the “eye” region of the semi-open conformation. (B) Close-up view 
of model and 90º rotation. Flap tip of the closed monomer is shown in yellow to demonstrate overlap with 
the pharmacophore model. (C) An atomistic representation of the solvent probes better shows the contour 
of the site. (D) Close-up view and 90º rotation. 
 

                
 
 

                    

 

The isotropic MPS model (Figure 6.4A and B) was screened against a subset of 

the CCG database using the Pharmacophore Query Editor option in MOE to predict 

compounds that could potentially complement the chemical features of the “eye” site. 

Using stringent searches, requiring 6 of 7 pharmacophore elements to be matched and 

radii equal to 1.3×RMSD, 93 compounds were identified with a molecular weight of ≤ 

360 Da. Each compound in its respective binding pose was visually inspected, and 

Compound 1 (2,2,4-trimethyl-1,2-dihydroquinolin-6-yl benzoate, Figure 6.2) was chosen 

as the representative compound because it best complemented the features of the model. 

B A 

D C 
Full-side Views                                   Close-up Views 
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Shown in Figure 6.5 is the predicted binding pose for Compound 1 with the MPS 

pharmacophore model. The desired chemical features are present in the molecule and 

overlap well with their corresponding pharmacophore elements. 
 
Figure 6.5. Compound 1, identified through the virtual screen, is shown overlaid with MPS pharmacophore 
model (radii of 1.3×RMSD). The agreement between its chemical scaffold and the pharmacophore 
elements is demonstrated. 
 

 
 

The molecules identified for binding in the eye pocket are significantly smaller 

than existing inhibitors; the molecular weight range for the protease inhibitors currently 

on the market is 505.2- 720.3 Da while the molecular weight of Compound 1 is 323.4 Da. 

Smaller molecules generally have better pharmacokinetic properties, and these entities 

could have a significant advantage in clinical use over existing HIV-1p inhibitors. 

Furthermore, both potential hydrogen bonds may be formed with backbone atoms of the 

protease which may be advantageous for overcoming potential escape mutants. In fact, 

the co-crystal structure of the recently approved nonpeptidic inhibitor, darunavir, 

demonstrated hydrogen-bonding between the bis-tetrahydrofuran oxygens and Asp 29 

and Asp 30 backbone amides and between the aniline moiety and the carbonyl oxygen of 

Asp 30’.41,42 Experimental studies have shown that darunavir exhibits exceptional broad-

spectrum activity against a large panel of MDR HIV-1 strains.42 Though these sites of 
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hydrogen bonding to the backbone are not the same residues as those in the eye site, it 

shows that targeting the backbone is a feasible way to counteract resistance mutations. 

 

Ligand Behavior in the Dynamics Simulations 

Analysis of the MD and LD simulations showed a stable trajectory. Compound 1 

remained bound in the flap-recognition pocket in a stable fashion for the entire 10-ns MD 

simulation as characterized by the RMSD plot of Compound 1 (Figure 6.6A). At the 

beginning of the simulation, it did disassociate away from the protease and into the 

solvent, but after 250 ps, returned back to the eye pocket in its initial binding pose. After 

this point, a consistent binding pose throughout the trajectory was maintained; the 

average RMSD was 1.71 ± 0.53 Å (the average position of Compound 1 over the MD 

simulation was used as a reference state). The 1,2-dihydroquinoline core remained in a 

stable position while the benzoate moiety continuously fluctuated throughout the 

simulation. Qualitatively, it appears that Compound 1 maintains a stable binding pose by 

interacting with the protease through van der Waals contacts. Additionally, there may be 

a favorable interaction between the backbone amide of I50 and π-electrons of the 1,2-

dihydroquinoline core. 
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Figure 6.6. Ligand RMSD Plots. (A) Ligand RMSD values during the 10-ns MD simulation. Compound 1 
is compared to its average position over the MD simulation. The average HIV-1p structure (green) and 
position of Compound 1 (pink) were calculated using data across the entire 10 ns. (B) Ligand RMSD 
values during the 5-ns LD simulations (5 random seeds). Compound 1 is compared to its minimized pose. 
In Run 2, Compound 1 starts in the flap-recognition pocket of Monomer A (red structure) but disassociates 
into the active center and binds in the opposite side pocket of Monomer B (purple structure). Several events 
are seen where the ligand dissociates and rebinds again in the same pocket (spikes up to 10/12 Å, which 
decrease again). 
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 Five LD simulations were also performed for 5 ns each because LD samples 

greater conformational space than MD. During four of the five simulations, Compound 1 

continued to interact in a stable fashion with the residues of the flap-recognition pocket as 

Average Structure over Simulation MD 

A 

B 
LD 

500 ps 

4500 ps 

Run 2 
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demonstrated by Figure 6.6B. However, similar to the beginning of the MD simulation, 

Compound 1 was seen to dissociate temporarily and then rebind to the eye site. For 

example during Run 1 (blue trajectory) at ~1.3 ns, Compound 1 disassociated from the 

eye pocket into the solvent but returned to its original binding pose after 500 ps. 

However, Compound 1’s behavior during Run 2 (purple trajectory) was the most 

intriguing. In Figure 6.6B, 1HHP colored in red demonstrates the initial binding pose 

(shown in grey) predicted from the MOE virtual screen using the MPS pharmacophore 

model. At ~ 2 ns, Compound 1 disassociated from the pocket and interacted with the flap 

tips at the center of the active site. After another ns, it entered the flap-recognition pocket 

of the opposite side monomer and assumed the initial binding pose! However, after 

~100ps, Compound 1 flipped 180º and maintained this pose for the duration of the 

simulation (Figure 6.6B, 1HHP colored in purple). Docking studies with AutoDock 3 

also predicted both binding modes (data not shown); hence, it may be possible for 

Compound 1 to adopt both poses. 

 

Protein Behavior in the Dynamics Simulations 

The effect of bound Compound 1 on the dynamics of the protease was also 

characterized. In Figure 6.7, an overlay of 11 snapshots taken at uniform time points 

across the trajectory for each MD and LD simulation demonstrates the conformational 

space samplied. The protease assumed a closed conformation throughout the MD 

simulation (Figure 6.7A). The LD simulations provided greater conformational variation 

as was expected. Although the protease generally remained in a semi-open state during 

LD, the closed conformation as also samplied as demonstrated in Figure 6.7B-F. It is 

very encouraging to see that Compound 1 can complement the eye site in many 

conformations. This entropic benefit is likely the result of our MPS models incorporating 

the behavior of the protein across an ensemble of conformational states. 
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Figure 6.7. Overlay of snapshots across dynamics simulations. The conformations are colored in order of 
time reference across the simulations (MD: 0-10 ns, LD: 0-5ns). (A) MD simulation, snapshot taken every 
1 ns, resulting in 11 overlaid conformations.  (B-F) LD Run 1-5, respectively. Snapshot taken every 0.5 ns, 
resulting in 11 overlaid conformations. 
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The structural alignments in Figure 6.7 raise an interesting question. How is the 

protease assuming a closed conformation with Compound 1 bound in the flap recognition 

pocket? A more detailed picture is possible with the MD simulation than the LD because 

of the explicit solvation. Furthermore, the hydrophobic effect is better represented, and 

that is a crucial component to real recognition. As such, a variety of metrics were 

calculated to quantify the conformational state of HIV-1p with Compound 1 bound using 

the trajectory from the MD simulation. To quantify the vertical movement of the flaps, 

the distance between the flap-tip residue  I50/I50’ and the Cα atom of the catalytic 

residue D25/D25’ was calculated for each monomer, as shown in Figure 6.8. The angle 

between residues D25-R57-I50/D25’-R57’-I50’ could also be used to characterize the 

same motion as we found agreement between the two metrics. Flap A (monomer with 

Compound 1 bound) remained slightly more open than Flap B (ligand free); the average 

distance values were 14.47 ± 0.92 Å and 12.80 ± 0.84 Å for Flap A and Flap B, 

respectively. The presense of Compound 1 appears to create an asymmetry between the 

flap conformations as Flap B is assuming a slightly more closed state. To provide a 

reference, the distances were also calculated using crystal structures of HIV-1p in the 

semi-open (monomer 1HHP14) and closed forms (dimer 1PRO43); the values were found 

to be 17.20 Å and 14.14 Å /14.12 Å, respectively. This demonstrates that although 

Compound 1 is bound in the flap-recognition site of Flap B, the protease is still able to 

assume a closed conformation. In fact, Flap B is slightly more shut than the proper closed 

form. For completeness, analyses of the implicit-solvent LD are provided in the 

supplemental information. 
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Figure 6.8. Distance calculated between the flap-tip residue I50 Cα to the catalytic residue D25 Cα 
throughout the MD trajectory. This metric quantifies the flap movement in the vertical direction.  
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Further analysis determined that the closed state was possible due to the 

“handedness” of the flap-tip residues, shown in Figure 6.9. A representative structure 

taken from the MD simulation demonstrates the closed-flap conformation but semi-open 

handedness of the flap tips (Figure 6.9C). As previously mentioned in Chapter 1, upon 

ligand binding, the flaps assume a closed conformation over the active-site cavity44,45, 

and the “handedness” of the flap tips (residues 49-52) orientation reverses upon 

closing11,31,32,46. If the flaps do not change orientation, Flap B does not sit in its 

corresponding flap-recognition pocket. Due to the presense of Compound 1 in this site, 

the flaps are not able to properly shut; rather they form a new closed conformation. It is 

very likely that this state may render the protease inactive as the flap tips are not 

positioned correctly for substrate cleavage. 
 

Distance (D25-I50 and D25’-I50’) 
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Figure 6.9. Structures of HIV-1p. A front and top view is provided to demonstrate the conformation of the 
flap region and change in handedness of the flap tips that occurs between the different states. (A) Semi-
open conformation (PDB ID: 1HHP14). (B) Closed conformation (PDB ID: 1PRO43) (C) Representative 
structure from the 10-ns MD in a closed-flap conformation but semi-open handedness of the flap tips. 
 
 
 
 

     

 

                                    

 

 

                                     

 
 

 
 

 

 

 

 

 

 

As discussed in Chapter 1, the curling of the flap tips has recently been proposed 

as the driving force in flap opening.8-12 This would place the flap tip of one monomer in 

its own “eye” site. The flap tips are curled 144.5º in the semi-open conformation, found 

by measuring the angle between the Cα of residues G48-G49-I50/G48’-G49’-I50’ of 

1HHP14. Furthermore, a study by Perryman et al. suggested that the curled-in state 

occurred at ~115º and the curled-out state at ~145º.10  Throughout the MD trajectory, the 

curling ranged from 155.3-107.3º for Flap A and 155.4-107.3º for Flap B as shown in 

Figure 6.10. However, the tips were only in the curling range ~1% of the simulation 

using Perryman’s definition. In addition, both monomers are sampling the same curling 

range, and an opening event was not observed in the 10 ns of simulation. Along with 

blocking Flap B from closing down into the Flap A recognition pocket, Compound 1 may 

Semi-Open 

Closed  

MD Simulation 
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also be impeding the proposed interaction between the flap-tip residue I50 and the 

residues P79-T80-P81 of its own flap-recognition pocket.  
 
Figure 6.10. Angle calculated between resides G48 Cα- G49 Cα- I50 Cα to quantify the curling of the flap 
tips. An angle ≤ 115º is defined as a curled state and ≥ 145º as curled out.10 The blue curve displays the 
movement of Flap A and the yellow curve of Flap B. 
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 The distance between flap tip residue G51/51’ and the “eye” pocket residue 

T80/80’ was also calculated to further quantify the movement of the flaps. It appears that 

having Compound 1 bound in Monomer A introduces an additional asymmetry across the 

system, as demonstrated by Figure 6.11. The average distance between the flap-tip 

residue G51 and “eye” pocket residue T80 for Monomer A (ligand bound) is 12.35 Å, 

while it is 10.57 Å for Monomer B (no ligand bound). Monomer B seems to have 

“collapsed” in order to accommodate the binding of Compound 1 in Monomer A and 

stabilize the closed, bound form. In fact, if a second ligand is introduced into the system 

(i.e. one compound in the eye pocket of each monomer), the complex is not stable (data 

not shown). The 1:1 stoichiometry (i.e. 1 compound bound per monomer) may not be 

possible due to lack of space. 
 

 

 

 

 

 

 

 

Flap-Tip Curling (G48-G49-I50 and G48’-G49’-I50’) 
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Figure 6.11. Distance is calculated between resides G51 Cα and T80 Cα to quantify the position of the 
flaps. The blue curve displays the movement of Flap A and the yellow curve of Flap B. 
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Ruling out the “Elbow Region” 

The elbow region of HIV-1p (residues 35-42) is another small, flat, hydrophobic 

cleft and one of the recent hypotheses for inhibiting HIV-1p through new mechanisms. 

Anti-correlated motion has been identified between the flap and elbow regions through 

normal mode analysis and MD simulations7,10,47-49, suggesting a potential site for 

allosteric control. It is the only other site on the surface of HIV-1p that may 

accommodate Compound 1. To provide further evidence that our compound is binding in 

the “eye” pocket and not the elbow region, we conducted five independent explicit-

solvent MD simulations of the 1HHP in complex with Compound 1 in the elbow site. The 

protocol described in the methods was followed. AutoDock 3 was used to predict the 

binding pose of Compound 1, which provided the initial starting position for the 

simulations, shown in Figure 6.12A. Compound 1 disassociated from the elbow region in 

all five simulations as demonstrated in Figure 6.12B while HIV-1p itself remained stable. 

Furthermore in two of the five runs, the disassociation occurred during the equilibration 

phase and in another two, immediately after the restraints were removed from the protein. 

The ligand remained associated for almost 800 ps during one of the five simulations 

although not in a stable manner. Simulations would have been run for longer periods, as 

Distance (G51-T80 and G51’-T80’) 
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is appropriate for the field, but they would not have provided useful information after the 

dissociation of the compound. Our analysis suggests that binding of Compound 1 in the 

elbow region is not favorable.  
 
Figure 6.12. (A) HIV-1p shown in a surface representation. The predicted pose of Compound 1 (green, 
stick representation) by AutoDock 3 in elbow region is highlighted by an arrow. (B) RMSD values of 
Compound 1 during MD simulation (5 random seeds) showing ligand disassociating from contact with 
HIV-1p. Compound 1 is compared to the starting pose given in (A). 
 

          

                                                                         

Experimental Verification of Predicted Compounds 

  Compound 1 was found to be auto-fluorescent and could not be evaluated by the 

employed assay. As such a para-methoxy analog also identified from the virtual screen of 

the CCG database screen was chosen to test (2,2,4-trimethyl-1,2-dihydroquinolin-6-yl 4-

methoxybenzoate, provided in Figure 6.13A). Using the fluorescent assay previously 

described34,35, Compound 2 was shown to inhibit HIV-1p activity; the IC50 value was 

determined at ~18 µM and Ki as ~17.7 µM (Figure 6.13B). The binding affinity is modest 

and falls within the range of a lead-like compound, as does the molecular weight.50-52 

Oprea et al. noted that lead-like guidelines should be followed in initial phases of drug 

discovery to filter compounds, not drug-like profiles.51,53 If drug-like rules were 

employed, the identified lead compound may be difficult to optimize while remaining in 

“drug-like” space.  
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Figure 6.13. (A) Para-methoxy analog: 2,2,4-trimethyl-1,2-dihydroquinolin-6-yl 4-methoxybenzoate. (B) 

The activity of HIV-1p was monitored using a fluorimetric assay; upon HIV-1p cleavage of the FRET 
peptide substrate, fluorescence is recovered. Inhibition is measured as a result of the time-dependent 
decrease of fluorescence intensity that is linearly related to substrate cleavage. Each data point represents 
an average of three experiments, and the error bars reflect the standard deviation of observed values. 
Pepstatin A is shown as a control. 
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6.4 Conclusions 

Finding novel mechanisms to inhibit HIV-1p is very important to overcoming the 

resistance associated with current inhibitors and discovering therapies with improved 

pharmacokinetic properties. We have shown in this study that the flap-recognition pocket 

can accommodate a small molecule, Compound 1, and maintains stable binding across 

both a 10-ns MD and five, 5-ns LD trajectories. Furthermore, the inhibition activity of an 

analog of our lead compound was experimentally verified (Ki ~ 17.7 µM and IC50 ~18 

µM) through a fluorimetric assay by preventing cleavage of the substrate. These 

inhibitors are much smaller than existing protease inhibitors and chemically very distinct. 

Hence, there is little likelihood that they are acting as traditional competitive inhibitors 

within the enzymatic binding site of HIV-1p. In fact modeling showed that Compound 1 

Compound 2           

A B 

Compound 2 
Pepstatin A 
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is not stable within the central pocket; instead, it will migrate to the new site and form an 

appropriate complex. 

The presence of a ligand in the flap-recognition pocket appears to alter the 

conformational behavior of the flap region, which may directly modify the kinetics of the 

system. Analysis of the conformational behavior of HIV-1p over an explicit-solvation 

MD simulation suggests that the protease assumes a closed conformation. We 

hypothesize two inhibition mechanisms: 1) Compound 1 binds in the flap-recognition 

pocket and the resulting closed conformation prevents the substrate accessibility to the 

active site or 2) the substrate may bind concurrently with Compound 1, but substrate 

cleavage cannot occur as the protease forms an inactive closed state (i.e. Flap B cannot 

properly occupy the recognition site of Monomer A). Furthermore, if the flap-tip curling 

hypothesis is correct, the flaps of HIV-1p may not be able to sample an open 

conformation when Compound 1 is bound. 

There are several reasons why this new site is so attractive. First, it appears to be 

essential in forming the closed conformer. As previously mentioned, if the flaps cannot 

close appropriately, the substrate is not properly positioned for cleavage. Second, half of 

the residues defining the eye pocket are highly conserved and may be resistant to giving 

rise to escape mutants. Third, there is a good possibility that greater specificity for the 

site can be achieved because the ethane probes fit more deeply into the elbow than the 

flap tips. The most common mutant for the flap tip is I50V which shows that the eyebrow 

has some flexibility in binding hydrophobic moieties. Fourth, this site is much smaller 

than the central cavity, so it may yield inhibitors with low molecular weight which could 

have better pharmacokinetic properties than current HIV-1p drugs. Lastly, if co-

administration proves synergistic, the new entities could be added to formulations of 

existing inhibitors as a combination therapy. 

This study presents a new mode of inhibition of a key therapeutic target. In fact, 

this is the first new mechanism of action in ~15 years.54,55 Targeting the elbow and β-
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sheet region are proposed in the literature as potential inhibition mechanisms, but no 

actual inhibitors have been identified. The dimerization inhibitors are the only 

experimentally verified alternative therapies to competitive, active-site inhibitors. 

This work has been published as: 
 
Damm, K.L., Quintero, J.J., Gestwicki, J.E. and Carlson, H.A. Inhibition of HIV-
1 Protease by Modulating the Conformational Behavior of the Flap Region. 
Manuscript in preparation. 

 
Carlson, H.A., Damm, K.L., and Meagher, K.L. “Compositions and Methods 
Relating to HIV Protease Inhibition” U.S. Provisional Patent Application No. 
60/972,505 (Sept. 2007). 
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APPENDIX 1 

Gaussian-Weighted RMSD Superposition of Proteins:                                                  

A Structural Comparison for Flexible Proteins 

A1.1 Global wRMSD code. 

 

#!/usr/bin/env python 

 

""" REQUIRED INSTALLATIONS: 

 -Python 2.5 

 -Scipy 0.5.2 

 -NumPy 1.0.1 

 -Biopython 1.42 

 -Numerical 24.2 (install through Biopython website) 

 -mxTextTools: http://www.egenix.com/files/python/mxTextTools.html 

 

INPUT REQUIREMENTS: 

 -2 PDB files 

  PDB file must be in correct PDB format (i.e. chain ID's 

present, unique atom name within each residue, occupancy, etc...) 

 

Global_wRMSD.py INFORMATION 

 

 NOTE: For similar structures (characterized by a small sRMSD; 

example: sRMSD < 5), the scaling factor is set to 2  

   For nonsimilar structures (characterized by a large sRMSD; 

example: sRMSD > 5), the scaling factor is set to 5  

 

 TO RUN Global_wRMSD.py: 

 

  Global_wRMSD.py Protein_1.pdb Protein_1_Chain_ID 

Protein_2.pdb Protein_2_Chain_ID 

 

  Example: 

  Global_wRMSD.py 3ERD.pdb A 3ERT.pdb A 

 

  Example output: 

   3ERD_sRMSD.pdb 

   3ERD_wRMSD.pdb 

   Calculated standard RMSD value 
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To run through cygwin: 

 In c:cygwin\etc\profile 

  

 Change PATH to local python (Python25): 

 

 PATH=/usr/local/bin:/cygdrive/c/Python25:/usr/bin:/bin:/usr/X11R6

/bin:$PATH 

 export PATH 

 

For questions or comments: 

Kelly Damm 

kdamm@umich.edu 

 

University of Michigan 

Carlson Lab """ 

 

 

#define global functions 

from __future__ import division 

import sys,re,cgi,os 

from scipy import sort,transpose 

import Numeric, LinearAlgebra 

from Numeric import * 

 

def run_Global_wRMSD(file1,file2,X_Chain_ID,Y_Chain_ID): 

 #COMPARE RESIDUES FROM PROTEIN X AND PROTEIN Y BY CHAINS, REMOVES 

NONMATCHING RESIDUE COORDINATES AND RETURNS CA COORDINATES FROM 

MATCHING RESIDUES 

 xlist,ylist = 

Ensure_Correspondence(X_Chain_ID,Y_Chain_ID,file1,file2) 

 x = transpose(xlist) 

 y = transpose(ylist) 

 

 #RETURNS ALL COORDINATES OF PROTEIN X FOR TRANSFORMATION 

 all = getAll_Coords(file1) 

 set = getStructure(file1) 

 title=(file1.split('.')[0], file1) 

 

 #PERFORM STANDARD AND WEIGHTED RMSD CALCULATION 

 allrot,SRMSD = weighted_alignment(x,y,all,set,title) 

 print "The standard RMSD value is = ",SRMSD 

 

 #OUTPUT TRANSFORMED STRUCTURE OF PROTEIN X 

 s = getStructure(file1)  

 setAll(s,allrot) 

 writeStructure(s,'%s_wRMSD.pdb'%title[0]) 

 

#ENSURE RESIDUE CORRESPONDENCE 

def Ensure_Correspondence(X_Chain_ID,Y_Chain_ID,file1,file2): 

 xlist =[] 

 ylist =[]  

 x_CAResIDs= getCA_Resseq(file1, X_Chain_ID) 

 y_CAResIDs= getCA_Resseq(file2, Y_Chain_ID)  

 

 #REMOVE DISORDERED RESIDUES 

 x_disordered = get_Disordered(file1,X_Chain_ID) 

 y_disordered = get_Disordered(file2,Y_Chain_ID) 
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 xremove_disorder,x_ResSeq1 = 

remove_ResID(x_CAResIDs,x_disordered)  

 yremove_disorder,y_ResSeq1 = 

remove_ResID(y_CAResIDs,y_disordered) 

 

 #COMPARE PROTEIN1 TO PROTEIN2 AND REMOVE NONMATCHING RESIDUES 

 x_Nonmatch, y_Nonmatch = compare(x_ResSeq1,y_ResSeq1) 

 

 #MAKE LIST OF ALL RESIDUES TO BE REMOVED 

 x_Remove = x_disordered + x_Nonmatch 

 x_Remove.sort() 

 y_Remove = y_disordered + y_Nonmatch 

 y_Remove.sort() 

 

 #DETERMINE POSITION OF RESIDUES TO BE REMOVED IN PDB FILES 

 x_Res_positions = get_Residue_Position(x_CAResIDs, x_Remove) 

 y_Res_positions = get_Residue_Position(y_CAResIDs, y_Remove) 

 

 #RETURNS ALL CA COORDINATES 

 x_CAcoords = transpose(get_CAcoords(file1,X_Chain_ID)) 

 y_CAcoords = transpose(get_CAcoords(file2,Y_Chain_ID)) 

 

 #Removes CA coordinates of nonmatching residues 

 xlist = zero_CAcoords(x_CAcoords,x_Res_positions) 

 ylist = zero_CAcoords(y_CAcoords,y_Res_positions) 

 

 #FINAL CHECK TO ENSURE RESIDUE CORRESPONDENCE 

 n = len(xlist) 

 j = len(ylist) 

 if n != j: 

  sys.exit("Proteins do not have same number of atoms; 

Protein X has",n,"atoms, while Protein Y has",j,"atoms") 

   

 #CHECK TO DETERMINE IF APPROPRIATE NUMBER OF COORDINATES PRESENT 

 if (len(xlist[0]) != 3):  

  sys.exit("Protein X does not have a 3xn atom coordinate 

set") 

 if (len(ylist[0]) != 3): 

  sys.exit("Protein Y does not have a 3xn atom coordinate 

set") 

 

 #CHECK TO DETERMINE IF >4 COORDINATES PRESENT FOR EACH PROTEIN 

 if n < 4: 

  sys.exit("Protein X has 3 or less coordinates, 4 or more 

needed to perform alignment") 

 if j < 4: 

  sys.exit("Protein Y has 3 or less coordinates, 4 or more 

needed to perform alignment") 

 return xlist,ylist 

 

 

##WEIGHTED RMSD ALIGNMENT## 

def weighted_alignment(x,y,all,set,title): 

 atoms = len(x[0]) 

 

 #Initial standard alignment without weight  
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 #TRANSLATE PROTEINS X AND Y TO CENTER 

 n = len(x[0]) 

 x_mean = mean(x,n) 

 y_mean = mean(y,n) 

 x_trans = translation(x, x_mean) 

 x_translated = nested_list(x_trans,n) 

 y_trans = translation(y, y_mean) 

 y_translated = nested_list(y_trans,n) 

 x_transpose = transpose(x_translated) 

  

 #CALCULATE COVARIANCE MATRIX (y_translated *x_translated^t) 

 R = matrixmultiply(y_translated, x_transpose) 

 R_transpose = transpose(R) 

 R2 = matrixmultiply(R_transpose, R) 

 

 #DETERMINE THE EIGENVECTORS AND EIGENVALUES of R2  

 mu,A = LinearAlgebra.eigenvectors(R2) 

 

 #SORT EIGENVECTORS IN DECREASING ORDER OF EIGENVALUES 

 a = [(mu[i],A[i]) for i in range(len(A))] 

 a.sort() 

 a.reverse() 

 mu = [x[0] for x in a] 

 A = [x[1] for x in a] 

 

 #DETERMINE RIGHT-HANDED SYSTEM 

 A_3 = crossproduct(A[0], A[1]) 

 A = [A[0], A[1], A_3] 

 

 #CALCULATE B, NORMALIZED PRODUCT OF (RxA) 

 B_1 = matrixmultiply(R, A[0]) 

 B_2 = matrixmultiply(R, A[1]) 

 norm_B_1 = normalize(B_1) 

 norm_B_2 = normalize(B_2) 

 norm_B_3 = crossproduct(norm_B_1,norm_B_2) 

 B = [norm_B_1,norm_B_2,norm_B_3] 

 B_transpose = transpose(B) 

 

 #CALCULATE ROTATION MATRIX, U  

 U = rotation_matrix(B_transpose, A) 

 x_rot = matrixmultiply(U,x_translated) 

 

 #CALCULATE STANDARD RMSD 

 standard_RMSD = sRMSD(x_rot, y_translated) 

 

 #ADD MEAN VALUES OF PROTEIN Y TO ROTATED COORDINATES OF PROTEIN X 

 x_coords = add_coords(x_rot, y_mean) 

 x = nested_list(x_coords,n) 

 

 #TRANSLATE ALL COORDINATES OF PROTEIN X 

 all_trans = translation(all, x_mean) 

 j = len(all[0]) 

 all_translated = nested_list(all_trans,j) 

 all_rot = matrixmultiply(U,all_translated) 

 

 #ADD ALL MEAN VALUES OF PROTEIN Y TO ALL ROTATED COORDINATES OF 

PROTEIN X 
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 all_coords = add_coords(all_rot, y_mean) 

 all = nested_list(all_coords,j) 

 allrot = transpose(all) 

 setAll(set,allrot) 

 

 #OUTPUT STANDARD RMSD ALIGNMENT 

 writeStructure(set,'%s_sRMSD.pdb'%title[0]) 

 

 #WEIGHTED RMSD CALCULATION, z = # of iterations  

 z = 1 

 weighted_rmsds = [] 

 w_metric = [] 

 all_list = [] 

   

 #DETERMINE APPROPRIATE SCALING FACTOR 

 if standard_RMSD < 5: 

  scaling_factor = 2 

 elif standard_RMSD >= 5: 

  scaling_factor = 5 

 while z < 5001: 

  n = len(x[0]) 

  #TRANSLATE WEIGHTED CENTROIDS TO ORIGIN 

  #CALCULATE WEIGHTS (protein1, protein2, scaling_factor) 

  weights = weight(x,y,scaling_factor) 

  weighted_x_mean =  weight_trans(x,weights,n) 

  weighted_y_mean =  weight_trans(y,weights,n) 

  x_trans = translation(x, weighted_x_mean) 

  y_trans = translation(y, weighted_y_mean) 

  x_translated = nested_list(x_trans,n) 

  y_translated = nested_list(y_trans,n) 

    

  #CALCULATE WEIGHTED COVARIENCE MATRIX 

  weighted_rot = 

weight(x_translated,y_translated,scaling_factor) 

  weighted_x_translated = multiply(weighted_rot,x_translated) 

  wx_transpose = transpose(weighted_x_translated) 

  R = matrixmultiply(y_translated,wx_transpose) 

  R_transpose = transpose(R) 

  R2 = matrixmultiply(R_transpose, R) 

 

  #DETERMINE THE EIGENVECTORS AND EIGENVALUES of R2  

  mu,A = LinearAlgebra.eigenvectors(R2) 

 

  #SORT EIGENVECTORS IN DECREASING ORDER OF EIGENVALUES 

  a = [(mu[i],A[i]) for i in range(len(A))] 

  a.sort() 

  a.reverse() 

  mu = [x[0] for x in a] 

  A = [x[1] for x in a] 

 

  #DETERMINE RIGHT-HANDED SYSTEM 

  A_3 = crossproduct(A[0], A[1]) 

  A = [A[0], A[1], A_3] 

 

  #CALCULATE B, NORMALIZED PRODUCT OF (RxA) 

  B_1 = matrixmultiply(R, A[0]) 

  B_2 = matrixmultiply(R, A[1]) 
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  norm_B_1 = normalize(B_1) 

  norm_B_2 = normalize(B_2) 

  norm_B_3 = crossproduct(norm_B_1,norm_B_2) 

  B = [norm_B_1,norm_B_2,norm_B_3] 

  B_transpose = transpose(B) 

 

  #CALCULATE WEIGHTED ROTATION MATRIX, U 

  U = rotation_matrix(B_transpose, A)    

  x_rot = matrixmultiply(U,x_translated) 

 

  #CALCULATE WEIGHTED RMSD 

  weighted_rmsds.append(wRMSD(x_rot, 

y_translated,scaling_factor)) 

  w_metric.append(wSUM(x_rot, 

y_translated,scaling_factor,atoms,z)) 

   

  #DETERMINE IF CONVERGENCE IS REACHED 

  if z > 1: 

   wrmsd_diff = weighted_rmsds[-2] - weighted_rmsds[-1] 

  else: 

   wrmsd_diff = [] 

 

  if 0 < wrmsd_diff < 0.000001: 

 

   #ADD MEAN VALUES OF PROTEIN Y TO ROTATED COORDINATES 

OF PROTEIN X 

   x_coords = add_coords(x_rot, weighted_y_mean) 

   x = nested_list(x_coords,n)  

 

   #TRANSFORM ALL COORDINATES OF PROTEIN X 

   all_trans = translation(all, weighted_x_mean) 

   j = len(all[0]) 

   all_translated = nested_list(all_trans,j) 

   all_rot = matrixmultiply(U,all_translated) 

 

   #ADD ALL MEAN VALUES OF PROTEIN Y TO ALL ROTATED 

COORDINATES OF PROTEIN X 

   all_coords = add_coords(all_rot, weighted_y_mean) 

   all = nested_list(all_coords,j) 

   allrot = transpose(all) 

   break 

 

  else:   

   #ADD MEAN VALUES OF PROTEIN Y TO ROTATED COORDINATES 

OF PROTEIN X 

   x_coords = add_coords(x_rot, weighted_y_mean) 

   x = nested_list(x_coords,n)  

 

   #TRANSFORM ALL COORDINATES OF PROTEIN X 

   all_trans = translation(all, weighted_x_mean) 

   j = len(all[0]) 

   all_translated = nested_list(all_trans,j) 

   all_rot = matrixmultiply(U,all_translated) 

 

   #ADD ALL MEAN VALUES OF PROTEIN Y TO ALL ROTATED 

COORDINATES OF PROTEIN X 

   all_coords = add_coords(all_rot, weighted_y_mean) 
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   all = nested_list(all_coords,j) 

   z = z + 1 

 else: 

  print "Alignment stopped after 5000 iterations, convergence 

was never reached" 

  allrot = transpose(all) 

 return allrot,standard_RMSD 

 

 

#####HELPER FUNCTIONS##### 

def getCA_Resseq(filename,chain_key): 

 x =[] 

 parser=PDBParser() 

 structure=parser.get_structure(filename.split('.')[0], filename) 

 for model in structure.get_list(): 

  chain_A = model[chain_key] 

  for residue in chain_A.get_list(): 

   if residue.has_id("CA"): 

    resseq=residue.get_id()[1] 

    x.append(resseq) 

 return x  

 

def get_Disordered(filename,chain_key): 

 x =[] 

 parser=PDBParser() 

 structure=parser.get_structure(filename.split('.')[0], filename) 

 for model in structure.get_list(): 

  chain_A = model[chain_key] 

  for residue in chain_A.get_list(): 

   if residue.is_disordered(): 

    resseq = residue.get_id()[1] 

    x.append(resseq) 

 return x 

 

def remove_ResID(filename,list): 

 result=[] 

 result1=[] 

 for value in filename: 

  if value in list: 

   result.append(value) 

  else: 

   result1.append(value) 

 return result,result1 

 

def compare(x,y): 

 x_list = [] 

 y_list = [] 

     for each in x: 

      if each not in y: 

   x_list.append(each) 

 for each in y: 

         if each not in x: 

             y_list.append(each) 

 x_list = zero2(x_list) 

 y_list = zero2(y_list) 

 x_list = sort(x_list) 

 y_list = sort(y_list) 
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 x_list = list(x_list) 

 y_list = list(y_list) 

 return x_list, y_list 

 

def zero2(x): 

 result = [] 

 for each in x: 

  if each != 0: 

   result.append(each) 

  else: 

   continue 

 return result  

 

def get_Residue_Position(first,list): 

 c = 0 

 q = len(list) 

 result2 = [] 

 while c < q: 

  result = [] 

  for each in first: 

   result.append(each) 

   if each != list[c]: 

    continue 

   else: 

    break 

  ans = len(result) 

  ans = ans - 1 

  result2.append(ans) 

  c = c + 1 

 return result2 

 

def get_CAcoords(filename,chain_key): 

 x =[] 

 parser=PDBParser() 

 structure=parser.get_structure(filename.split('.')[0], filename) 

 for model in structure.get_list(): 

  chain_A = model[chain_key] 

  for residue in chain_A.get_list(): 

   if residue.has_id("CA"): 

    ca=residue["CA"] 

    x.append(ca.get_coord()) 

 x_t  = transpose(x) 

 return x_t 

 

###THANK YOU TO MARK BENSON FOR UPDATING THIS HELPER FUNCTION### 

def zero_CAcoords(first,list): 

        c = 0 

        q = len(list) 

        r = len(first) 

        s = r - q 

        result = array([[s]]) 

        import copy 

        temp = copy.copy(first) 

        if q != 0: 

  result = copy.copy(first) 

  for i in range(len(first)) : 

   if i not in list : 
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    if i + c < r : 

     temp[i] = first[i+c] 

   else: 

    c = c + 1 

 

    result[i] = [0,0,0] 

    if i + c < r : 

     temp[i] = first[i+c] 

  a = temp[:s]  

  return a 

        else: 

              return first 

 

def getAll_Coords(filename): 

 result =[] 

 parser=PDBParser() 

 structure=parser.get_structure(filename.split('.')[0], filename) 

 for model in structure.get_list(): 

  chain = model.get_list() 

  for each in chain: 

   for res in each.get_list(): 

    for x in res.get_list(): 

     result.append(x.get_coord()) 

 x_t = transpose(result) 

 return x_t 

 

def getStructure(filename): 

 parser = PDBParser() 

 structure = parser.get_structure(filename.split('.')[0], 

filename) 

 return structure 

 

def writeStructure(structure,filename): 

 from Bio.PDB.PDBIO import PDBIO 

 import sys 

 io = PDBIO() 

 io.set_structure(structure) 

 io.save(filename)  

 

def setAll(structure,newCACoords): 

 allCAs =[] 

 for model in structure.get_list(): 

  chain = model.get_list() 

  for each in chain: 

   for res in each.get_list(): 

    for x in res.get_list(): 

     allCAs.append(x) 

 if len(allCAs) != len(newCACoords): 

  print "wrong number of atoms .. structure 

had",len(allCAs),"you gave me",len(newCACoords) 

  raise Exception("wrong number of atoms") 

 for newCoords,ca in zip(newCACoords,allCAs): 

  #print newCoords,ca.get_coord() 

  ca.set_coord(newCoords) 

  #print ca.get_coord() 

  #raise Exception("time to stop") 
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def mean(first,n): 

 return [sum(each)/n for each in first] 

 

def translation(first,second): 

 c = 0 

 k = [] 

 q = len(first) 

 while c < q: 

  for each in first[c]: 

   subtr = each - second[c] 

   k.append(subtr) 

  c = c + 1 

 return k 

 

def nested_list(name,n): 

 first1 = name[0:n] 

 first2 = name[n:2*n] 

 first3 = name[2*n:3*n] 

 first_translated =[first1,first2,first3] 

 return first_translated 

 

def crossproduct(a,b): 

 C_0 = a[1]*b[2] - a[2]*b[1] 

 C_1 = a[2]*b[0] - a[0]*b[2] 

 C_2 = a[0]*b[1] - a[1]*b[0] 

 return [C_0, C_1, C_2] 

  

def normalize(a): 

 B_0 = (a[0])/(((a[0]**2)+(a[1]**2)+((a[2])**2))**(1/2)) 

 B_1 = (a[1])/(((a[0]**2)+(a[1]**2)+((a[2])**2))**(1/2)) 

 B_2 = (a[2])/(((a[0]**2)+(a[1]**2)+((a[2])**2))**(1/2)) 

 return [B_0, B_1, B_2] 

 

def rotation_matrix(first, second): 

 U = matrixmultiply(first, second) 

 return U 

 

def sqr(matrix): 

 k = [] 

 for each in matrix: 

  sq = (each)**2 

  k.append(sq) 

 return k 

 

def sqroot(matrix): 

 j = [] 

 for each in matrix: 

  sqroot = sqrt(each) 

  j.append(sqroot) 

 return j 

 

def sRMSD(first,second): 

 first = array(first) 

 second = array(second) 

 subtr = first - second 

 def sqr(matrix): 

  k = [] 
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  for each in matrix: 

   sq = (each)**2 

   k.append(sq) 

  return k 

 subtr_s = sqr(subtr) 

 sum_subtr_s = sum(subtr_s) 

 def sqroot(matrix): 

  j = [] 

  for each in matrix: 

   sqroot = sqrt(each) 

   j.append(sqroot) 

  return j 

 d = sqroot(sum_subtr_s) 

 sq_d = sqr(d) 

 s_sq_d = sum(sq_d) 

 tot = (len(first[0])) 

 value = sqrt(s_sq_d/tot) 

 return value 

 

def add_coords(first,second): 

 c = 0 

 k = [] 

 q = len(first) 

 while c < q: 

  for each in first[c]: 

   add = each + second[c] 

   k.append(add) 

  c = c + 1 

 return k 

 

def weight_trans(first,weight,n): 

 mult = multiply(first, weight) 

 sum_mult = sum(mult) 

 mean = [sum(each)/n for each in mult] 

 return mean 

 

def weight(first,second,constant): 

 first = array(first) 

 second = array(second) 

 subtr = first - second 

 subtr_s = sqr(subtr) 

 sum_subtr_s = sum(subtr_s) 

 d = sqroot(sum_subtr_s) 

 weighted_d = Gaussian(d,constant) 

 weighted_d = Gaussian2(weighted_d) 

 return weighted_d 

 

def wSUM(first,second,constant,atoms,z): 

 first = array(first) 

 second = array(second) 

 subtr = first - second 

 subtr_s = sqr(subtr) 

 sum_subtr_s = sum(subtr_s) 

 d = sqroot(sum_subtr_s) 

 weighted_d = Gaussian(d,constant) 

 weighted_d = Gaussian2(weighted_d) 

 sum_weighted_d = sum(weighted_d) 
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 value = sum_weighted_d/atoms 

 return value 

 

def wRMSD(first,second,constant): 

 first = array(first) 

 second = array(second) 

 subtr = first - second 

 subtr_s = sqr(subtr) 

 sum_subtr_s = sum(subtr_s) 

 d = sqroot(sum_subtr_s) 

 weighted_d = Gaussian(d,constant) 

 weights = Gaussian2(weighted_d) 

 sq_d = sqr(d) 

 wd = multiply(sq_d,weights) 

 s_wd = sum(wd) 

 n = len(d) 

 s_sq_d_divide = s_wd/n 

 value = sqrt(s_sq_d_divide) 

 return value 

 

def Gaussian(first,z): 

 value = [] 

 for each in first: 

  weight = (-((each)**2)/z) 

  value.append(weight) 

 return value  

 

def Gaussian2(first): 

 value = [] 

 for each in first: 

  weight = exp(each) 

  value.append(weight) 

 return value 

 

 

##### HELPER FUNCTIONS IN ENSURE RESIDUE CORRESPONDENCE FUNCTION ##### 

##### THIS HAS BEEN MODIFIED TO WORK WITH WRMSD CODE ##### 

# Copyright (C) 2002, Thomas Hamelryck (thamelry@vub.ac.be) 

# This code is part of the Biopython distribution and governed by its 

# license.  Please see the LICENSE file that should have been included 

# as part of this package.   

 

 

# Python stuff 

import sys 

from string import split 

from Numeric import array, Float0 

 

# My stuff 

from Bio.PDB.StructureBuilder import StructureBuilder 

from Bio.PDB.PDBExceptions import PDBConstructionException 

from Bio.PDB.parse_pdb_header import _parse_pdb_header_list 

 

__doc__="Parser for PDB files." 

 

 

# If PDB spec says "COLUMNS 18-20" this means line[17:20] 
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class PDBParser: 

    """ 

    Parse a PDB file and return a Structure object. 

    """ 

 

    def __init__(self, PERMISSIVE=0, get_header=0, 

structure_builder=None): 

        """ 

        The PDB parser call a number of standard methods in an 

aggregated 

        StructureBuilder object. Normally this object is instanciated 

by the 

        PDBParser object itself, but if the user provides his own 

StructureBuilder 

        object, the latter is used instead. 

 

        Arguments: 

        o PERMISSIVE - int, if this is 0 exceptions in constructing the 

        SMCRA data structure are fatal. If 1 (DEFAULT), the exceptions 

are  

        caught, but some residues or atoms will be missing. THESE 

EXCEPTIONS  

        ARE DUE TO PROBLEMS IN THE PDB FILE!. 

        o structure_builder - an optional user implemented 

StructureBuilder class.  

        """ 

        if structure_builder!=None: 

            self.structure_builder=structure_builder 

        else: 

            self.structure_builder=StructureBuilder() 

        self.header=None 

        self.trailer=None 

        self.line_counter=0 

        self.PERMISSIVE=PERMISSIVE 

 

    # Public methods 

 

    def get_structure(self, id, file): 

        """Return the structure. 

 

        Arguments: 

        o id - string, the id that will be used for the structure 

        o file - name of the PDB file OR an open filehandle 

        """ 

        self.header=None 

        self.trailer=None 

        # Make a StructureBuilder instance (pass id of structure as 

parameter) 

        self.structure_builder.init_structure(id) 

        if isinstance(file, basestring): 

            file=open(file) 

        self._parse(file.readlines()) 

        file.close() 

        self.structure_builder.set_header(self.header) 

        # Return the Structure instance 
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        return self.structure_builder.get_structure() 

 

    def get_header(self): 

        "Return the header." 

        return self.header 

 

    def get_trailer(self): 

        "Return the trailer." 

        return self.trailer 

 

    # Private methods 

     

    def _parse(self, header_coords_trailer): 

        "Parse the PDB file." 

        # Extract the header; return the rest of the file 

        self.header, 

coords_trailer=self._get_header(header_coords_trailer) 

        # Parse the atomic data; return the PDB file trailer 

        self.trailer=self._parse_coordinates(coords_trailer) 

     

    def _get_header(self, header_coords_trailer): 

        "Get the header of the PDB file, return the rest." 

        structure_builder=self.structure_builder 

        for i in range(0, len(header_coords_trailer)): 

            structure_builder.set_line_counter(i+1) 

            line=header_coords_trailer[i] 

            record_type=line[0:6]  

            if(record_type=='ATOM  ' or record_type=='HETATM' or 

record_type=='MODEL '): 

                break 

        header=header_coords_trailer[0:i] 

        # Return the rest of the coords+trailer for further processing 

        self.line_counter=i 

        coords_trailer=header_coords_trailer[i:] 

        header_dict=_parse_pdb_header_list(header) 

        return header_dict, coords_trailer 

     

    def _parse_coordinates(self, coords_trailer): 

        "Parse the atomic data in the PDB file." 

        local_line_counter=0 

        structure_builder=self.structure_builder 

        current_model_id=0 

        # Flag we have an open model 

        model_open=0 

        current_chain_id=None 

        current_segid=None 

        current_residue_id=None 

        current_resname=None 

        for i in range(0, len(coords_trailer)): 

            line=coords_trailer[i] 

            record_type=line[0:6] 

            global_line_counter=self.line_counter+local_line_counter+1 

            structure_builder.set_line_counter(global_line_counter) 

            if(record_type=='ATOM  ' or record_type=='HETATM'): 

                # Initialize the Model - there was no explicit MODEL 

record 

                if not model_open: 
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                    structure_builder.init_model(current_model_id) 

                    current_model_id+=1 

                    model_open=1 

                fullname=line[12:16] 

                # get rid of whitespace in atom names 

                split_list=split(fullname) 

                if len(split_list)!=1: 

                    # atom name has internal spaces, e.g. " N B ", so 

                    # we do not strip spaces 

                    name=fullname 

                else: 

                    # atom name is like " CA ", so we can strip spaces 

                    name=split_list[0] 

                altloc=line[16:17] 

                resname=line[17:20] 

                chainid=line[21:22] 

                try: 

                    serial_number=int(line[6:11]) 

                except: 

                    serial_number=0 

                resseq=int(split(line[22:26])[0])   # sequence 

identifier    

                icode=line[26:27]           # insertion code 

                if record_type=='HETATM':       # hetero atom flag 

                    if resname=="HOH" or resname=="WAT": 

                        hetero_flag="W" 

                    else: 

                        hetero_flag="H" 

                else: 

                    hetero_flag=" " 

                residue_id=(hetero_flag, resseq, icode) 

                # atomic coordinates 

                x=float(line[30:38])  

                y=float(line[38:46])  

                z=float(line[46:54]) 

                coord=array((x, y, z), Float0) 

                # occupancy & B factor 

                occupancy=float(line[54:60]) 

                bfactor=float(line[60:66]) 

                segid=line[72:76] 

                if current_segid!=segid: 

                    current_segid=segid 

                    structure_builder.init_seg(current_segid) 

                if current_chain_id!=chainid: 

                    current_chain_id=chainid 

                    structure_builder.init_chain(current_chain_id) 

                    current_residue_id=residue_id 

                    current_resname=resname 

                    try: 

                        structure_builder.init_residue(resname, 

hetero_flag, resseq, icode) 

                    except PDBConstructionException, message: 

                        self._handle_PDB_exception(message, 

global_line_counter) 

                elif current_residue_id!=residue_id or 

current_resname!=resname: 

                    current_residue_id=residue_id 
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                    current_resname=resname 

                    try: 

                        structure_builder.init_residue(resname, 

hetero_flag, resseq, icode) 

                    except PDBConstructionException, message: 

                        self._handle_PDB_exception(message, 

global_line_counter)  

                # init atom 

                try: 

                    structure_builder.init_atom(name, coord, bfactor, 

occupancy, altloc, fullname, serial_number) 

                except PDBConstructionException, message: 

                    self._handle_PDB_exception(message, 

global_line_counter) 

            elif(record_type=='ANISOU'): 

                anisou=map(float, (line[28:35], line[35:42], 

line[43:49], line[49:56], line[56:63], line[63:70])) 

                # U's are scaled by 10^4  

                anisou_array=(array(anisou, 

Float0)/10000.0).astype(Float0) 

                structure_builder.set_anisou(anisou_array) 

            elif(record_type=='MODEL '): 

                structure_builder.init_model(current_model_id) 

                current_model_id+=1 

                model_open=1 

                current_chain_id=None 

                current_residue_id=None 

            elif(record_type=='END   ' or record_type=='CONECT'): 

                # End of atomic data, return the trailer 

                self.line_counter=self.line_counter+local_line_counter 

                return coords_trailer[local_line_counter:] 

            elif(record_type=='ENDMDL'): 

                model_open=0 

                current_chain_id=None 

                current_residue_id=None 

            elif(record_type=='SIGUIJ'): 

                # standard deviation of anisotropic B factor 

                siguij=map(float, (line[28:35], line[35:42], 

line[42:49], line[49:56], line[56:63], line[63:70])) 

                # U sigma's are scaled by 10^4 

                siguij_array=(array(siguij, 

Float0)/10000.0).astype(Float0)    

                structure_builder.set_siguij(siguij_array) 

            elif(record_type=='SIGATM'): 

                # standard deviation of atomic positions 

                sigatm=map(float, (line[30:38], line[38:45], 

line[46:54], line[54:60], line[60:66])) 

                sigatm_array=array(sigatm, Float0) 

                structure_builder.set_sigatm(sigatm_array) 

            local_line_counter=local_line_counter+1 

        # EOF (does not end in END or CONECT) 

        self.line_counter=self.line_counter+local_line_counter 

        return [] 

 

    def _handle_PDB_exception(self, message, line_counter): 

        """ 
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        This method catches an exception that occurs in the 

StructureBuilder 

        object (if PERMISSIVE==1), or raises it again, this time adding 

the  

        PDB line number to the error message. 

        """ 

        message="%s at line %i." % (message, line_counter) 

        if self.PERMISSIVE: 

            # just print a warning - some residues/atoms will be 

missing 

            print "PDBConstructionException: %s" % message 

            print "Exception ignored.\nSome atoms or residues will be 

missing in the data structure." 

        else: 

            # exceptions are fatal - raise again with new message 

(including line nr) 

            raise PDBConstructionException, message 

 

if __name__=="__main__": 

 

 import sys 

 

 p=PDBParser(PERMISSIVE=1) 

 

 s=p.get_structure("scr", sys.argv[1]) 

 

 for m in s.get_iterator(): 

  p=m.get_parent() 

  assert(p is s) 

  for c in m.get_iterator(): 

   p=c.get_parent() 

   assert(p is m) 

   for r in c.get_iterator(): 

    p=r.get_parent() 

    assert(p is c) 

    for a in r.get_iterator(): 

     p=a.get_parent() 

     if not p is r: 

      print p, r 

 

 

#RUN Global_wRMSD.py  

if __name__ == "__main__": 

 if len(sys.argv) != 5: 

      print "usage: Global_wRMSD.py Protein_X.pdb 

Protein_X_ChainID Protein_Y.pdb Protein_Y_ChainID"  

  sys.exit() 

     filename1 = sys.argv[1] 

    filename2 = sys.argv[3] 

 X_Chain_ID = sys.argv[2] 

 Y_Chain_ID = sys.argv[4] 

 run_Global_wRMSD(filename1,filename2,X_Chain_ID,Y_Chain_ID) 
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A1.2 Local wRMSD code. 

 
#!/usr/bin/env python 

 

""" REQUIRED INSTALLATIONS: 

 -Python 2.5 

 -Scipy 0.5.2 

 -NumPy 1.0.1 

 -Biopython 1.42 

 -Numerical 24.2 (install through Biopython website) 

 -mxTextTools: http://www.egenix.com/files/python/mxTextTools.html 

 

INPUT REQUIREMENTS: 

 -2 PDB files 

  PDB file must be in correct PDB format (i.e. chain ID's 

present, unique atom name within each residue, occupancy, etc...) 

 

Local_wRMSD.py INFORMATION 

 

 NOTE: Scaling factor is set to 2 for local alignments. 

 

 TO RUN Local_wRMSD.py: 

 

  Local_wRMSD.py Protein_1.pdb Protein_1_Chain_ID 

Protein_2.pdb Protein_2_Chain_ID 

 

  Example: 

  Local_wRMSD.py 3ERD.pdb A 3ERT.pdb A 

 

  Example output:  

  Unique weighted solutions with a corresponding %wSUM 

 

 

To run through cygwin: 

 In c:cygwin\etc\profile 

  

 Change PATH to local python (Python25): 

 

 PATH=/usr/local/bin:/cygdrive/c/Python25:/usr/bin:/bin:/usr/X11R6

/bin:$PATH 

 export PATH 

 

For questions or comments: 

Kelly Damm 

kdamm@umich.edu 

 

University of Michigan 

Carlson Lab """ 

 

 

#define global functions 

from __future__ import division 

import sys,re,cgi,os 

from scipy import sort,transpose 



206 

 

import Numeric, LinearAlgebra 

from Numeric import * 

 

def run_Local_wRMSD(file1,file2,X_Chain_ID,Y_Chain_ID): 

 #COMPARE RESIDUES FROM PROTEIN X AND PROTEIN Y BY CHAINS, REMOVES 

NONMATCHING RESIDUE COORDINATES AND RETURNS CA COORDINATES FROM 

MATCHING RESIDUES 

 xlist,ylist = 

Ensure_Correspondence(X_Chain_ID,Y_Chain_ID,file1,file2) 

 x = transpose(xlist) 

 y = transpose(ylist) 

 

 #RETURNS ALL COORDINATES OF PROTEIN X FOR TRANSFORMATION 

 all = getAll_Coords(file1) 

 title=(file1.split('.')[0], file1) 

 

 #PERFORM STANDARD AND WEIGHTED RMSD CALCULATION 

 final_wSUM,All_final_Coords = weighted_alignment(x,y,all,2) 

 

 #DETERMINE UNIQUE LOCAL SOLUTIONS 

 all_answer = Unique_Coords(All_final_Coords) 

 s = getStructure(file1)  

 all_sorted_wSUM = 

Coord_Positions(all_answer,All_final_Coords,s,final_wSUM,title) 

 rounded_wSUM = round_decimal(all_sorted_wSUM) 

 solns = percent(rounded_wSUM) 

 print_pos_soln(solns,title) 

 

 

#ENSURE RESIDUE CORRESPONDENCE 

def Ensure_Correspondence(X_Chain_ID,Y_Chain_ID,file1,file2): 

 xlist =[] 

 ylist =[]  

 x_CAResIDs= getCA_Resseq(file1, X_Chain_ID) 

 y_CAResIDs= getCA_Resseq(file2, Y_Chain_ID)  

 

 #REMOVE DISORDERED RESIDUES 

 x_disordered = get_Disordered(file1,X_Chain_ID) 

 y_disordered = get_Disordered(file2,Y_Chain_ID) 

 

 xremove_disorder,x_ResSeq1 = 

remove_ResID(x_CAResIDs,x_disordered)  

 yremove_disorder,y_ResSeq1 = 

remove_ResID(y_CAResIDs,y_disordered) 

 

 #COMPARE PROTEIN1 TO PROTEIN2 AND REMOVE NONMATCHING RESIDUES 

 x_Nonmatch, y_Nonmatch = compare(x_ResSeq1,y_ResSeq1) 

 

 #MAKE LIST OF ALL RESIDUES TO BE REMOVED 

 x_Remove = x_disordered + x_Nonmatch 

 x_Remove.sort() 

 y_Remove = y_disordered + y_Nonmatch 

 y_Remove.sort() 

 

 #DETERMINE POSITION OF RESIDUES TO BE REMOVED IN PDB FILES 

 x_Res_positions = get_Residue_Position(x_CAResIDs, x_Remove) 

 y_Res_positions = get_Residue_Position(y_CAResIDs, y_Remove) 



207 

 

 

 #RETURNS ALL CA COORDINATES 

 x_CAcoords = transpose(get_CAcoords(file1,X_Chain_ID)) 

 y_CAcoords = transpose(get_CAcoords(file2,Y_Chain_ID)) 

 

 #Removes CA coordinates of nonmatching residues 

 xlist = zero_CAcoords(x_CAcoords,x_Res_positions) 

 ylist = zero_CAcoords(y_CAcoords,y_Res_positions) 

 

 #FINAL CHECK TO ENSURE RESIDUE CORRESPONDENCE 

 n = len(xlist) 

 j = len(ylist) 

 if n != j: 

  sys.exit("Proteins do not have same number of atoms; 

Protein X has",n,"atoms, while Protein Y has",j,"atoms") 

   

 #CHECK TO DETERMINE IF APPROPRIATE NUMBER OF COORDINATES PRESENT 

 if (len(xlist[0]) != 3):  

  sys.exit("Protein X does not have a 3xn atom coordinate 

set") 

 if (len(ylist[0]) != 3): 

  sys.exit("Protein Y does not have a 3xn atom coordinate 

set") 

 

 #CHECK TO DETERMINE IF >4 COORDINATES PRESENT FOR EACH PROTEIN 

 if n < 4: 

  sys.exit("Protein X has 3 or less coordinates, 4 or more 

needed to perform alignment") 

 if j < 4: 

  sys.exit("Protein Y has 3 or less coordinates, 4 or more 

needed to perform alignment") 

 return xlist,ylist 

 

 

##WEIGHTED RMSD ALIGNMENT## 

def weighted_alignment(x,y,all,scaling_factor): 

 All_final_Coords = [] 

  

 #TOTAL NUMBER OF ATOMS 

 atoms = len(x[0]) 

 residue = int(atoms * (.10)) 

 final_wSUM = []   

 

 #10 LOCAL STANDARD ALIGNMENTS (t = counter, goes through 10 

iterations; begin = first residue in local section; end = last residue 

in local section) 

 t = 1 

 begin = 0 

 end = 10 

 while t < 11: 

  x_domain = [coords[begin:end] for coords in x] 

  y_domain = [coords[begin:end] for coords in y] 

  n = len(x_domain[0]) 

 

 #TRANSLATE PROTEINS X AND Y TO CENTER 

  x_mean = mean(x_domain,n) 

  y_mean = mean(y_domain,n) 
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  x_trans = translation(x_domain, x_mean) 

  x_translated = nested_list(x_trans,n) 

  y_trans = translation(y_domain, y_mean) 

  y_translated = nested_list(y_trans,n) 

  x_transpose = transpose(x_translated) 

 

  #CALCULATE COVARIANCE MATRIX (y_translated *x_translated^t) 

  R = matrixmultiply(y_translated, x_transpose) 

  R_transpose = transpose(R) 

  R2 = matrixmultiply(R_transpose, R) 

 

  #DETERMINE THE EIGENVECTORS AND EIGENVALUES of R2  

  mu,A = LinearAlgebra.eigenvectors(R2) 

 

  #SORT EIGENVECTORS IN DECREASING ORDER OF EIGENVALUES 

  a = [(mu[i],A[i]) for i in range(len(A))] 

  a.sort() 

  a.reverse() 

  mu = [s[0] for s in a] 

  A = [s[1] for s in a] 

 

  #DETERMINE RIGHT-HANDED SYSTEM 

  A_3 = crossproduct(A[0], A[1]) 

  A = [A[0], A[1], A_3] 

 

  #CALCULATE B, NORMALIZED PRODUCT OF (RxA) 

  B_1 = matrixmultiply(R, A[0]) 

  B_2 = matrixmultiply(R, A[1]) 

  norm_B_1 = normalize(B_1) 

  norm_B_2 = normalize(B_2) 

  norm_B_3 = crossproduct(norm_B_1,norm_B_2) 

  B = [norm_B_1,norm_B_2,norm_B_3] 

  B_transpose = transpose(B) 

 

  #CALCULATE ROTATION MATRIX, U  

  U = rotation_matrix(B_transpose, A) 

 

  #TRANSLATE ALL COORDINATES OF PROTEIN X 

  s_all_trans = translation(all, x_mean) 

  j = len(all[0]) 

  s_all_translated = nested_list(s_all_trans,j) 

  s_all_rot = matrixmultiply(U,s_all_translated) 

  

  #ADD MEAN VALUES OF PROTEIN Y TO ROTATED COORDINATES OF 

PROTEIN X 

  s_all_coords = add_coords(s_all_rot, y_mean) 

  s_all2 = nested_list(s_all_coords,j) 

  s_allrot = transpose(s_all2) 

 

  #TRANSFORM CA COORDINATES ONLY 

  g = len(x[0]) 

  s_x_ca_trans = translation(x, x_mean) 

  s_x_ca_translated = nested_list(s_x_ca_trans,g) 

  s_x_ca_rot = matrixmultiply(U,s_x_ca_translated) 

  s_x_ca_coords = add_coords(s_x_ca_rot, y_mean) 

  xt = nested_list(s_x_ca_coords,g) 

  S_RMSD = sRMSD(xt, y) 
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  #AFTER LOCAL STANDARD ALIGNMENT, WEIGHTED ALIGNMENT 

PERFORMED USING ENTIRE PROTEIN 

  #z = number of iterations 

  z = 1 

  weighted_rmsds = [] 

  w_metric = [] 

  all_list = [] 

 

  #DETERMINE APPROPRIATE SCALING FACTOR 

  while z < 501: 

   p = len(xt[0]) 

 

   #TRANSLATE WEIGHTED CENTROIDS TO ORIGIN 

   #CALCULATE WEIGHTS (protein1, protein2, 

scaling_factor) 

   weights = weight(xt,y,scaling_factor) 

   weighted_x_mean = weight_trans(xt,weights,p) 

   weighted_y_mean = weight_trans(y,weights,p) 

 

   #USING NEW WEIGHTED TRANSLATION 

   w_x_trans = translation(xt, weighted_x_mean) 

   w_y_trans = translation(y, weighted_y_mean) 

   w_x_translated = nested_list(w_x_trans,p) 

   w_y_translated = nested_list(w_y_trans,p) 

 

   #CALCULATE WEIGHTED COVARIENCE MATRIX 

   weighted_rot = 

weight(w_x_translated,w_y_translated,scaling_factor) 

   weighted_x_translated = 

multiply(weighted_rot,w_x_translated) 

   wx_transpose = transpose(weighted_x_translated) 

   R = matrixmultiply(w_y_translated,wx_transpose) 

   R_transpose = transpose(R) 

   R2 = matrixmultiply(R_transpose,R) 

 

   #DETERMINE THE EIGENVECTORS AND EIGENVALUES of R2  

   mu,A = LinearAlgebra.eigenvectors(R2) 

 

   #SORT EIGENVECTORS IN DECREASING ORDER OF EIGENVALUES 

   a = [(mu[k],A[k]) for k in range(len(A))] 

   a.sort() 

   a.reverse() 

   mu = [b[0] for b in a] 

   A = [b[1] for b in a] 

 

   #DETERMINE RIGHT-HANDED SYSTEM 

   A_3 = crossproduct(A[0], A[1]) 

   A = [A[0], A[1], A_3] 

 

   #CALCULATE B, NORMALIZED PRODUCT OF (RxA) 

   B_1 = matrixmultiply(R, A[0]) 

   B_2 = matrixmultiply(R, A[1]) 

   norm_B_1 = normalize(B_1) 

   norm_B_2 = normalize(B_2) 

   norm_B_3 = crossproduct(norm_B_1,norm_B_2) 

   B = [norm_B_1,norm_B_2,norm_B_3] 
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   B_transpose = transpose(B) 

 

   #CALCULATE WEIGHTED ROTATION MATRIX, U 

   U = rotation_matrix(B_transpose, A)    

   w_x_rot = matrixmultiply(U,w_x_translated) 

 

   #CALCULATE WEIGHTED RMSD 

   weighted_rmsds.append(wRMSD(w_x_rot, 

w_y_translated,scaling_factor)) 

 

   #CALCULATE %wSUM 

   w_metric.append(wSUM(w_x_rot, 

w_y_translated,scaling_factor,p)) 

 

   #DETERMINE IF CONVERGENCE IS REACHED 

   if z > 1: 

    wRMSD_diff = w_metric[-2] - w_metric[-1] 

 

   else: 

    wRMSD_diff = [] 

 

   if 0 < wRMSD_diff < 0.000001: 

    #TRANSFORM ALL COORDINATES OF PROTEIN X 

    w_all_trans = translation(s_all2, 

weighted_x_mean) 

    i = len(all[0]) 

    w_all_translated = nested_list(w_all_trans,i) 

    w_all_rot = matrixmultiply(U,w_all_translated) 

 

    #ADD ALL MEAN VALUES OF PROTEIN Y TO ALL 

ROTATED COORDINATES OF PROTEIN X 

    w_all_coords = add_coords(w_all_rot, 

weighted_y_mean) 

    w_all = nested_list(w_all_coords,i) 

    w_allrot = transpose(w_all) 

    All_final_Coords.append(w_allrot) 

    iters = z - 1 

 

    #WRITE OUT WEIGHTED RMSD SOLUTION 

    final_wSUM.append(w_metric[-1]) 

    begin = begin + residue 

    end = end + residue 

    t = t + 1 

    break 

 

   else: 

    #ADD MEAN VALUES OF PROTEIN Y TO ROTATED 

COORDINATES OF PROTEIN X 

    w_x_coords = add_coords(w_x_rot, 

weighted_y_mean) 

    xt = nested_list(w_x_coords,p)  

 

    #TRANSFORM ALL COORDINATES OF PROTEIN X 

    all_trans = translation(s_all2, 

weighted_x_mean) 

    i = len(all[0]) 

    all_translated = nested_list(all_trans,i) 
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    all_rot = matrixmultiply(U,all_translated) 

 

    #ADD ALL MEAN VALUES OF PROTEIN Y TO ALL 

ROTATED COORDINATES OF PROTEIN X 

    all_coords = add_coords(all_rot, 

weighted_y_mean) 

    s_all2 = nested_list(all_coords,i) 

    z = z + 1 

  else:  

   #print "Solution",t,":Alignment stopped after 1000 

iterations, convergence was never reached" 

   allrot_nocovg = transpose(s_all2) 

   All_final_Coords.append(allrot_nocovg) 

   iters = z - 1 

 

   #WRITE OUT WEIGHTED RMSD SOLUTION 

   final_wSUM.append(w_metric[-1]) 

   begin = begin + residue 

   end = end + residue 

   t = t + 1  

 else: 

  end 

 return final_wSUM,All_final_Coords 

 

 

 

#####HELPER FUNCTIONS##### 

def getCA_Resseq(filename,chain_key): 

 x =[] 

 parser=PDBParser() 

 structure=parser.get_structure(filename.split('.')[0], filename) 

 for model in structure.get_list(): 

  chain_A = model[chain_key] 

  for residue in chain_A.get_list(): 

   if residue.has_id("CA"): 

    resseq=residue.get_id()[1] 

    x.append(resseq) 

 return x  

 

def get_Disordered(filename,chain_key): 

 x =[] 

 parser=PDBParser() 

 structure=parser.get_structure(filename.split('.')[0], filename) 

 for model in structure.get_list(): 

  chain_A = model[chain_key] 

  for residue in chain_A.get_list(): 

   if residue.is_disordered(): 

    resseq = residue.get_id()[1] 

    x.append(resseq) 

 return x 

 

def remove_ResID(filename,list): 

 result=[] 

 result1=[] 

 for value in filename: 

  if value in list: 

   result.append(value) 
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  else: 

   result1.append(value) 

 return result,result1 

 

def compare(x,y): 

 x_list = [] 

 y_list = [] 

     for each in x: 

      if each not in y: 

   x_list.append(each) 

 for each in y: 

         if each not in x: 

             y_list.append(each) 

 x_list = zero2(x_list) 

 y_list = zero2(y_list) 

 x_list = sort(x_list) 

 y_list = sort(y_list) 

 x_list = list(x_list) 

 y_list = list(y_list) 

 return x_list, y_list 

 

def zero2(x): 

 result = [] 

 for each in x: 

  if each != 0: 

   result.append(each) 

  else: 

   continue 

 return result  

 

def get_Residue_Position(first,list): 

 c = 0 

 q = len(list) 

 result2 = [] 

 while c < q: 

  result = [] 

  for each in first: 

   result.append(each) 

   if each != list[c]: 

    continue 

   else: 

    break 

  ans = len(result) 

  ans = ans - 1 

  result2.append(ans) 

  c = c + 1 

 return result2 

 

def get_CAcoords(filename,chain_key): 

 x =[] 

 parser=PDBParser() 

 structure=parser.get_structure(filename.split('.')[0], filename) 

 for model in structure.get_list(): 

  chain_A = model[chain_key] 

  for residue in chain_A.get_list(): 

   if residue.has_id("CA"): 

    ca=residue["CA"] 
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    x.append(ca.get_coord()) 

 x_t  = transpose(x) 

 return x_t 

 

###THANK YOU TO MARK BENSON FOR UPDATING THIS HELPER FUNCTION### 

def zero_CAcoords(first,list): 

        c = 0 

        q = len(list) 

        r = len(first) 

        s = r - q 

        result = array([[s]]) 

        import copy 

        temp = copy.copy(first) 

        if q != 0: 

  result = copy.copy(first) 

  for i in range(len(first)) : 

   if i not in list : 

    if i + c < r : 

     temp[i] = first[i+c] 

   else: 

    c = c + 1 

 

    result[i] = [0,0,0] 

    if i + c < r : 

     temp[i] = first[i+c] 

  a = temp[:s]  

  return a 

        else: 

              return first 

 

def getAll_Coords(filename): 

 result =[] 

 parser=PDBParser() 

 structure=parser.get_structure(filename.split('.')[0], filename) 

 for model in structure.get_list(): 

  chain = model.get_list() 

  for each in chain: 

   for res in each.get_list(): 

    for x in res.get_list(): 

     result.append(x.get_coord()) 

 x_t = transpose(result) 

 return x_t 

 

def getStructure(filename): 

 parser = PDBParser() 

 structure = parser.get_structure(filename.split('.')[0], 

filename) 

 return structure 

 

def writeStructure(structure,filename): 

 from Bio.PDB.PDBIO import PDBIO 

 import sys 

 io = PDBIO() 

 io.set_structure(structure) 

 io.save(filename)  

 

def setAll(structure,newCACoords): 
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 allCAs =[] 

 for model in structure.get_list(): 

  chain = model.get_list() 

  for each in chain: 

   for res in each.get_list(): 

    for x in res.get_list(): 

     allCAs.append(x) 

 if len(allCAs) != len(newCACoords): 

  print "wrong number of atoms .. structure 

had",len(allCAs),"you gave me",len(newCACoords) 

  raise Exception("wrong number of atoms") 

 for newCoords,ca in zip(newCACoords,allCAs): 

  #print newCoords,ca.get_coord() 

  ca.set_coord(newCoords) 

  #print ca.get_coord() 

  #raise Exception("time to stop") 

 

def mean(first,n): 

 return [sum(each)/n for each in first] 

 

def translation(first,second): 

 c = 0 

 k = [] 

 q = len(first) 

 while c < q: 

  for each in first[c]: 

   subtr = each - second[c] 

   k.append(subtr) 

  c = c + 1 

 return k 

 

def nested_list(name,n): 

 first1 = name[0:n] 

 first2 = name[n:2*n] 

 first3 = name[2*n:3*n] 

 first_translated =[first1,first2,first3] 

 return first_translated 

 

def crossproduct(a,b): 

 C_0 = a[1]*b[2] - a[2]*b[1] 

 C_1 = a[2]*b[0] - a[0]*b[2] 

 C_2 = a[0]*b[1] - a[1]*b[0] 

 return [C_0, C_1, C_2] 

  

def normalize(a): 

 B_0 = (a[0])/(((a[0]**2)+(a[1]**2)+((a[2])**2))**(1/2)) 

 B_1 = (a[1])/(((a[0]**2)+(a[1]**2)+((a[2])**2))**(1/2)) 

 B_2 = (a[2])/(((a[0]**2)+(a[1]**2)+((a[2])**2))**(1/2)) 

 return [B_0, B_1, B_2] 

 

def rotation_matrix(first, second): 

 U = matrixmultiply(first, second) 

 return U 

 

def sqr(matrix): 

 k = [] 

 for each in matrix: 
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  sq = (each)**2 

  k.append(sq) 

 return k 

 

def sqroot(matrix): 

 j = [] 

 for each in matrix: 

  sqroot = sqrt(each) 

  j.append(sqroot) 

 return j 

 

def sRMSD(first,second): 

 first = array(first) 

 second = array(second) 

 subtr = first - second 

 def sqr(matrix): 

  k = [] 

  for each in matrix: 

   sq = (each)**2 

   k.append(sq) 

  return k 

 subtr_s = sqr(subtr) 

 sum_subtr_s = sum(subtr_s) 

 def sqroot(matrix): 

  j = [] 

  for each in matrix: 

   sqroot = sqrt(each) 

   j.append(sqroot) 

  return j 

 d = sqroot(sum_subtr_s) 

 sq_d = sqr(d) 

 s_sq_d = sum(sq_d) 

 tot = (len(first[0])) 

 value = sqrt(s_sq_d/tot) 

 return value 

 

def add_coords(first,second): 

 c = 0 

 k = [] 

 q = len(first) 

 while c < q: 

  for each in first[c]: 

   add = each + second[c] 

   k.append(add) 

  c = c + 1 

 return k 

 

def weight_trans(first,weight,n): 

 mult = multiply(first, weight) 

 sum_mult = sum(mult) 

 mean = [sum(each)/n for each in mult] 

 return mean 

 

def weight(first,second,constant): 

 first = array(first) 

 second = array(second) 

 subtr = first - second 
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 subtr_s = sqr(subtr) 

 sum_subtr_s = sum(subtr_s) 

 d = sqroot(sum_subtr_s) 

 weighted_d = Gaussian(d,constant) 

 weighted_d = Gaussian2(weighted_d) 

 return weighted_d 

 

def wSUM(first,second,constant,atoms): 

 first = array(first) 

 second = array(second) 

 subtr = first - second 

 subtr_s = sqr(subtr) 

 sum_subtr_s = sum(subtr_s) 

 d = sqroot(sum_subtr_s) 

 weighted_d = Gaussian(d,constant) 

 weighted_d = Gaussian2(weighted_d) 

 sum_weighted_d = sum(weighted_d) 

 value = sum_weighted_d/atoms 

 return value 

 

def wRMSD(first,second,constant): 

 first = array(first) 

 second = array(second) 

 subtr = first - second 

 subtr_s = sqr(subtr) 

 sum_subtr_s = sum(subtr_s) 

 d = sqroot(sum_subtr_s) 

 weighted_d = Gaussian(d,constant) 

 weights = Gaussian2(weighted_d) 

 sq_d = sqr(d) 

 wd = multiply(sq_d,weights) 

 s_wd = sum(wd) 

 n = len(d) 

 s_sq_d_divide = s_wd/n 

 value = sqrt(s_sq_d_divide) 

 return value 

 

def Gaussian(first,z): 

 value = [] 

 for each in first: 

  weight = (-((each)**2)/z) 

  value.append(weight) 

 return value  

 

def Gaussian2(first): 

 value = [] 

 for each in first: 

  weight = exp(each) 

  value.append(weight) 

 return value 

 

def Compare_Solns(file,t):  

 list = [t + 1] 

 c = t + 1 

 while c < 10: 

  SRMSD = sRMSD(transpose(file[c]),transpose(file[t])) 

  c = c + 1 
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  if SRMSD < 0.5: 

   list.append(c) 

 return list 

 

def Unique_Coords(file):  

 t = 0 

 all_answer = [] 

 while t < 9: 

  if t == 0: 

   answer = Compare_Solns(file,t) 

   all_answer.append(answer) 

  else: 

   for each in all_answer: 

    if t + 1 not in each: 

     answer = Compare_Solns(file,t) 

    else: 

     answer = [0] 

     break 

   all_answer.append(answer) 

  t = t + 1 

 for each in all_answer: 

  if 10 not in each: 

   all_answer.append([10]) 

   break 

 return all_answer 

  

def round_decimal(file): 

 rounded_wSUM = [] 

 for each in file: 

  rounded_wSUM.append(round(each,4)) 

 return rounded_wSUM 

 

def percent(file): 

 catch = [] 

 for each in file: 

  a = each * 100 

  catch.append(a) 

 return catch 

 

def Coord_Positions(file,coords,s,final_wSUM,title): 

 new_list = [] 

 all_wSUM = [] 

 ALL_first = [] 

 all_soln_coords = [] 

 for each in file: 

  if each != [0]: 

   new_list.append(each) 

 for num in new_list: 

  first = num[0] 

  ALL_first.append(first) 

 for value in ALL_first: 

  wSUM = final_wSUM[value -1] 

  all_wSUM.append(wSUM) 

  soln_coords = (coords[value - 1]) 

  all_soln_coords.append(soln_coords) 

 #Sort coords in order of %wSUM 
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 a = [(all_wSUM[k],all_soln_coords[k]) for k in 

range(len(all_soln_coords))] 

 a.sort() 

 a.reverse() 

 all_wSUM = [b[0] for b in a] 

 all_soln_coords = [b[1] for b in a] 

 count = 1 

 #Write out weighted solns 

 for sorted_coords in all_soln_coords: 

  setAll(s,sorted_coords) 

  writeStructure(s,'%s_wRMSD_%s.pdb'%(title[0],count)) 

  count = count + 1 

 return all_wSUM 

 

def print_pos_soln(file1,title): 

 n = len(file1) 

 c = 0 

 while c < n: 

  print title[0],"wRMSD",c+1,"corresponds to %wSUM 

of",file1[c],"%" 

  c = c + 1 

 

 

##### HELPER FUNCTIONS IN ENSURE RESIDUE CORRESPONDENCE FUNCTION ##### 

##### THIS HAS BEEN MODIFIED TO WORK WITH WRMSD CODE ##### 

# Copyright (C) 2002, Thomas Hamelryck (thamelry@vub.ac.be) 

# This code is part of the Biopython distribution and governed by its 

# license.  Please see the LICENSE file that should have been included 

# as part of this package.   

 

 

# Python stuff 

import sys 

from string import split 

from Numeric import array, Float0 

 

# My stuff 

from Bio.PDB.StructureBuilder import StructureBuilder 

from Bio.PDB.PDBExceptions import PDBConstructionException 

from Bio.PDB.parse_pdb_header import _parse_pdb_header_list 

 

__doc__="Parser for PDB files." 

 

 

# If PDB spec says "COLUMNS 18-20" this means line[17:20] 

 

 

class PDBParser: 

    """ 

    Parse a PDB file and return a Structure object. 

    """ 

 

    def __init__(self, PERMISSIVE=0, get_header=0, 

structure_builder=None): 

        """ 

        The PDB parser call a number of standard methods in an 

aggregated 
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        StructureBuilder object. Normally this object is instanciated 

by the 

        PDBParser object itself, but if the user provides his own 

StructureBuilder 

        object, the latter is used instead. 

 

        Arguments: 

        o PERMISSIVE - int, if this is 0 exceptions in constructing the 

        SMCRA data structure are fatal. If 1 (DEFAULT), the exceptions 

are  

        caught, but some residues or atoms will be missing. THESE 

EXCEPTIONS  

        ARE DUE TO PROBLEMS IN THE PDB FILE!. 

        o structure_builder - an optional user implemented 

StructureBuilder class.  

        """ 

        if structure_builder!=None: 

            self.structure_builder=structure_builder 

        else: 

            self.structure_builder=StructureBuilder() 

        self.header=None 

        self.trailer=None 

        self.line_counter=0 

        self.PERMISSIVE=PERMISSIVE 

 

    # Public methods 

 

    def get_structure(self, id, file): 

        """Return the structure. 

 

        Arguments: 

        o id - string, the id that will be used for the structure 

        o file - name of the PDB file OR an open filehandle 

        """ 

        self.header=None 

        self.trailer=None 

        # Make a StructureBuilder instance (pass id of structure as 

parameter) 

        self.structure_builder.init_structure(id) 

        if isinstance(file, basestring): 

            file=open(file) 

        self._parse(file.readlines()) 

        file.close() 

        self.structure_builder.set_header(self.header) 

        # Return the Structure instance 

        return self.structure_builder.get_structure() 

 

    def get_header(self): 

        "Return the header." 

        return self.header 

 

    def get_trailer(self): 

        "Return the trailer." 

        return self.trailer 

 

    # Private methods 
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    def _parse(self, header_coords_trailer): 

        "Parse the PDB file." 

        # Extract the header; return the rest of the file 

        self.header, 

coords_trailer=self._get_header(header_coords_trailer) 

        # Parse the atomic data; return the PDB file trailer 

        self.trailer=self._parse_coordinates(coords_trailer) 

     

    def _get_header(self, header_coords_trailer): 

        "Get the header of the PDB file, return the rest." 

        structure_builder=self.structure_builder 

        for i in range(0, len(header_coords_trailer)): 

            structure_builder.set_line_counter(i+1) 

            line=header_coords_trailer[i] 

            record_type=line[0:6]  

            if(record_type=='ATOM  ' or record_type=='HETATM' or 

record_type=='MODEL '): 

                break 

        header=header_coords_trailer[0:i] 

        # Return the rest of the coords+trailer for further processing 

        self.line_counter=i 

        coords_trailer=header_coords_trailer[i:] 

        header_dict=_parse_pdb_header_list(header) 

        return header_dict, coords_trailer 

     

    def _parse_coordinates(self, coords_trailer): 

        "Parse the atomic data in the PDB file." 

        local_line_counter=0 

        structure_builder=self.structure_builder 

        current_model_id=0 

        # Flag we have an open model 

        model_open=0 

        current_chain_id=None 

        current_segid=None 

        current_residue_id=None 

        current_resname=None 

        for i in range(0, len(coords_trailer)): 

            line=coords_trailer[i] 

            record_type=line[0:6] 

            global_line_counter=self.line_counter+local_line_counter+1 

            structure_builder.set_line_counter(global_line_counter) 

            if(record_type=='ATOM  ' or record_type=='HETATM'): 

                # Initialize the Model - there was no explicit MODEL 

record 

                if not model_open: 

                    structure_builder.init_model(current_model_id) 

                    current_model_id+=1 

                    model_open=1 

                fullname=line[12:16] 

                # get rid of whitespace in atom names 

                split_list=split(fullname) 

                if len(split_list)!=1: 

                    # atom name has internal spaces, e.g. " N B ", so 

                    # we do not strip spaces 

                    name=fullname 

                else: 

                    # atom name is like " CA ", so we can strip spaces 
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                    name=split_list[0] 

                altloc=line[16:17] 

                resname=line[17:20] 

                chainid=line[21:22] 

                try: 

                    serial_number=int(line[6:11]) 

                except: 

                    serial_number=0 

                resseq=int(split(line[22:26])[0])   # sequence 

identifier    

                icode=line[26:27]           # insertion code 

                if record_type=='HETATM':       # hetero atom flag 

                    if resname=="HOH" or resname=="WAT": 

                        hetero_flag="W" 

                    else: 

                        hetero_flag="H" 

                else: 

                    hetero_flag=" " 

                residue_id=(hetero_flag, resseq, icode) 

                # atomic coordinates 

                x=float(line[30:38])  

                y=float(line[38:46])  

                z=float(line[46:54]) 

                coord=array((x, y, z), Float0) 

                # occupancy & B factor 

                occupancy=float(line[54:60]) 

                bfactor=float(line[60:66]) 

                segid=line[72:76] 

                if current_segid!=segid: 

                    current_segid=segid 

                    structure_builder.init_seg(current_segid) 

                if current_chain_id!=chainid: 

                    current_chain_id=chainid 

                    structure_builder.init_chain(current_chain_id) 

                    current_residue_id=residue_id 

                    current_resname=resname 

                    try: 

                        structure_builder.init_residue(resname, 

hetero_flag, resseq, icode) 

                    except PDBConstructionException, message: 

                        self._handle_PDB_exception(message, 

global_line_counter) 

                elif current_residue_id!=residue_id or 

current_resname!=resname: 

                    current_residue_id=residue_id 

                    current_resname=resname 

                    try: 

                        structure_builder.init_residue(resname, 

hetero_flag, resseq, icode) 

                    except PDBConstructionException, message: 

                        self._handle_PDB_exception(message, 

global_line_counter)  

                # init atom 

                try: 

                    structure_builder.init_atom(name, coord, bfactor, 

occupancy, altloc, fullname, serial_number) 

                except PDBConstructionException, message: 
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                    self._handle_PDB_exception(message, 

global_line_counter) 

            elif(record_type=='ANISOU'): 

                anisou=map(float, (line[28:35], line[35:42], 

line[43:49], line[49:56], line[56:63], line[63:70])) 

                # U's are scaled by 10^4  

                anisou_array=(array(anisou, 

Float0)/10000.0).astype(Float0) 

                structure_builder.set_anisou(anisou_array) 

            elif(record_type=='MODEL '): 

                structure_builder.init_model(current_model_id) 

                current_model_id+=1 

                model_open=1 

                current_chain_id=None 

                current_residue_id=None 

            elif(record_type=='END   ' or record_type=='CONECT'): 

                # End of atomic data, return the trailer 

                self.line_counter=self.line_counter+local_line_counter 

                return coords_trailer[local_line_counter:] 

            elif(record_type=='ENDMDL'): 

                model_open=0 

                current_chain_id=None 

                current_residue_id=None 

            elif(record_type=='SIGUIJ'): 

                # standard deviation of anisotropic B factor 

                siguij=map(float, (line[28:35], line[35:42], 

line[42:49], line[49:56], line[56:63], line[63:70])) 

                # U sigma's are scaled by 10^4 

                siguij_array=(array(siguij, 

Float0)/10000.0).astype(Float0)    

                structure_builder.set_siguij(siguij_array) 

            elif(record_type=='SIGATM'): 

                # standard deviation of atomic positions 

                sigatm=map(float, (line[30:38], line[38:45], 

line[46:54], line[54:60], line[60:66])) 

                sigatm_array=array(sigatm, Float0) 

                structure_builder.set_sigatm(sigatm_array) 

            local_line_counter=local_line_counter+1 

        # EOF (does not end in END or CONECT) 

        self.line_counter=self.line_counter+local_line_counter 

        return [] 

 

    def _handle_PDB_exception(self, message, line_counter): 

        """ 

        This method catches an exception that occurs in the 

StructureBuilder 

        object (if PERMISSIVE==1), or raises it again, this time adding 

the  

        PDB line number to the error message. 

        """ 

        message="%s at line %i." % (message, line_counter) 

        if self.PERMISSIVE: 

            # just print a warning - some residues/atoms will be 

missing 

            print "PDBConstructionException: %s" % message 

            print "Exception ignored.\nSome atoms or residues will be 

missing in the data structure." 



223 

 

        else: 

            # exceptions are fatal - raise again with new message 

(including line nr) 

            raise PDBConstructionException, message 

 

if __name__=="__main__": 

 

 import sys 

 

 p=PDBParser(PERMISSIVE=1) 

 

 s=p.get_structure("scr", sys.argv[1]) 

 

 for m in s.get_iterator(): 

  p=m.get_parent() 

  assert(p is s) 

  for c in m.get_iterator(): 

   p=c.get_parent() 

   assert(p is m) 

   for r in c.get_iterator(): 

    p=r.get_parent() 

    assert(p is c) 

    for a in r.get_iterator(): 

     p=a.get_parent() 

     if not p is r: 

      print p, r 

 

 

#RUN Local_wRMSD.py  

if __name__ == "__main__": 

 if len(sys.argv) != 5: 

      print "usage: Local_wRMSD.py Protein_X.pdb 

Protein_X_ChainID Protein_Y.pdb Protein_Y_ChainID"  

  sys.exit() 

     filename1 = sys.argv[1] 

    filename2 = sys.argv[3] 

 X_Chain_ID = sys.argv[2] 

 Y_Chain_ID = sys.argv[4] 

 run_Local_wRMSD(filename1,filename2,X_Chain_ID,Y_Chain_ID) 
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APPENDIX 2 

Application of the wRMSD Method to Predicted Protein Structures and 

Homologous Proteins 

A2.1 RMS/coverage graphs. 

The wRMSD technique was used to create RMS/coverage graphs by plotting the 

%wSUM versus c. As the scaling factor c increases, %wSUM also increases in a manner 

similar to RMS/coverage graphs from GDT. The top graph corresponds to the wRMSD 

metric and the bottom to the GDT_TS metric. 
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TARGET 172 (Comparative Modeling/Fold Recognition) 
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TARGET 170 (Fold Recognition/New Fold) 
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TARGET 147 (Fold Recognition) 
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TARGET 162-3 (New Fold) 
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A2.2 PDB IDs and references for crystal structures obtained from the HOMSTRAD 
Database 

 
 
1FJM-Goldberg, J., Huang, H. B., Kwon, Y. G., Greengard, P., Nairn, A. C., Kuriyan, J. 
(1995). Three-dimensional structure of the catalytic subunit of protein serine/threonine 
phosphatase-1. Nature 376, 745-753. 
 
1TCO- Griffith, J. P., Kim, J. L., Kim, E. E., Sintchak, M. D., Thomson, J. A., 
Fitzgibbon, M. J., Fleming, M. A., Caron, P. R., Hsiao, K., Navia, M. A. (1995). X-ray 
structure of calcineurin inhibited by the immunophilin-immunosuppressant FKBP12-
FK506 complex. Cell 82, 507-522. 
 
1M9W- Monleon, D., Celda, B. Study of electrostatic potential surface distribution using 
high resolution side-chain conformation determined by NMR. To be Published. 
 
2HGS- Polekhina, G., Board, P. G., Gali, R. R., Rossjohn, J., Parker, M. W. (1999). 
Molecular basis of glutathione synthetase deficiency and a rare gene permutation event. 
EMBO J 18, 3204-3213.  
 
1AU1- Karpusas, M., Nolte, M., Benton, C. B., Meier, W., Lipscomb, W. N., Goelz, S. 
(1997). The crystal structure of human interferon beta at 2.2-A resolution. Proc Natl 

Acad Sci USA 94, 11813-11818.  
 
1ITF- Klaus, W., Gsell, B., Labhardt, A. M., Wipf, B., Senn, H. (1997). The three-
dimensional high resolution structure of human interferon alpha-2a determined by 
heteronuclear NMR spectroscopy in solution. J Mol Biol 274, 661-675. 
 
1I7B- Tolbert, W. D., Ekstrom, J. L., Mathews, I. I., Secrist 3rd., J. A., Kapoor, P., Pegg, 
A. E., Ealick, S. E. (2001). The structural basis for substrate specificity and inhibition of 
human S-adenosylmethionine decarboxylase. Biochemistry 40, 9484-9494. 
 
1MHM- Bennett, E. M., Ekstrom, J. L., Pegg, A. E., Ealick, S. E. (2002). Monomeric S-
Adenosylmethionine Decarboxylase from Plants Provides an Alternative to Putrescine 
Stimulation. Biochemistry 41, 14509-14517. 
 
1EPW- Swaminathan, S., Eswaramoorthy, S. (2000). Structural analysis of the catalytic 
and binding sites of Clostridium botulinum neurotoxin B. Nat Struct Biol 4, 693-699.  
 
3BTA- Lacy, D. B., Tepp, W., Cohen, A. C., DasGupta, B. R., Stevens, R. (1998). 
Crystal structure of botulinum neurotoxin type A and implications for toxicity. Nat Struct 

Biol 5, 898-902. 
 
1AUK- Lukatela, G., Krauss, N., Theis, K., Selmer, T., Gieselmann, V., von Figura, K., 
Saenger, W. (1998). Crystal structure of human arylsulfatase A: the aldehyde function 
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and the metal ion at the active site suggest a novel mechanism for sulfate ester hydrolysis. 
Biochemistry 37, 3654-3664. 
 
1FSU- Bond, C. S., Clements, P. R., Ashby, S. J., Collyer, C. A., Harrop, S. J., 
Hopwood, J. J., Guss, J. M. (1997). Structure of a human lysosomal sulfatase. Structure 
5, 277-289. 
 
3PCG- Orville, A. M., Elango, N., Lipscomb, J. D., Ohlendorf, D. H. (1997). Structures 
of competitive inhibitor complexes of protocatechuate 3,4-dioxygenase: multiple 
exogenous ligand binding orientations within the active site. Biochemistry 36, 10039-
10051. 

1A3G- Okada, K., Hirotsu, K., Sato, M., Hayashi, H., Kagamiyama, H. (1997). Three-
dimensional structure of Escherichia coli branched-chain amino acid aminotransferase at 
2.5 A resolution. J Biochem (Tokyo) 121, 637-641. 
 
5DAA- van Ophem, P.W., Peisach, D., Erickson, S.D., Soda, K., Ringe, D., Manning, 
J.M. (1999). Effects of the E177K mutation in D-amino acid transaminase. Studies on an 
essential coenzyme anchoring group that contributes to stereochemical fidelity. 
Biochemistry 38, 1323-1331. 
 
1IPA- Nureki, O., Shirouzu, M., Hashimoto, K., Ishitani, R., Terada, T., Tamakoshi, M., 
Oshima, T., Chijimatsu, M., Takio, K., Vassylyev, D. G., Shibata, T., Inoue, Y., 
Kuramitsu, S. & Yokoyama, S. (2002). An enzyme with a deep trefoil knot for the active-
site architecture. Acta Crystallogr D Biol Crystallogr 58, 1129-37. 
 
1GZ0- Michel, G., Sauve, V., Larocque, R., Li, Y., Matte, A. & Cygler, M. (2002). The 
structure of the RlmB 23S rRNA methyltransferase reveals a new methyltransferase fold 
with a unique knot. Structure (Camb) 10, 1303-15. 
 
1OYC- Fox, K. M., Karplus, P. A. (1994). Old yellow enzyme at 2 A resolution: overall 
structure, ligand binding, and comparison with related flavoproteins. Structure 2, 1089-
1105. 
 
2TMD- Barber, M. J., Neame, P. J., Lim, L. W., White, S., Matthews, F. S. (1992).
Correlation of x-ray deduced and experimental amino acid sequences of trimethylamine 
dehydrogenase. J Biol Chem 267, 6611-6619. 
 
1IQ8- Ishitani, R., Nureki, O., Fukai, S., Kijimoto, T., Nameki, N., Watanabe, M., 
Kondo, H., Sekine, M., Okada, N., Nishimura, S., Yokoyama, S. (2002). Crystal structure 
of archaeosine tRNA-guanine transglycosylase. J Mol Biol 318, 665-677. 
 
1K4G- Meyer, E. A., Brenk, R., Castellano, R. K., Furler, M., Klebe, G., Diederich, F. 
(2002). De novo design, synthesis, and in vitro evaluation of inhibitors for prokaryotic 
tRNA-guanine transglycosylase: a dramatic sulfur effect on binding affinity. 
ChemBioChem 3, 250-253. 
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1GLN- Nureki, O., Vassylyev, D. G., Katayanagi, K., Shimizu, T., Sekine, S., Kigawa, 
T., Miyazawa, T., Yokoyama, S., Morikawa, K. (1995). Architectures of class-defining 
and specific domains of glutamyl-tRNA synthetase. Science 267, 1958-1965. 
 
1QTQ- Rath, V. L., Silvian, L. F., Beijer, B., Sproat, B. S., Steitz, T. A. (1998). How 
glutaminyl-tRNA synthetase selects glutamine. Structure 6, 439-449. 
 
1BOO- Gong, W., O`Gara, M., Blumenthal, R. M., Cheng, X. (1997). Structure of pvu II 
DNA-(cytosine N4) methyltransferase, an example of domain permutation and protein 
fold assignment. Nucleic Acids Res 25, 2702-2715. 
 
1EG2- Scavetta, R. D., Thomas, C. B., Walsh, M. A., Szegedi, S., Joachimiak, A., 
Gumport, R. I., Churchill, M. E. (2000). Structure of RsrI methyltransferase, a member of 
the N6-adenine beta class of DNA methyltransferases. Nucleic Acids Res 28, 3950-3961.  
 
1AB4- Cabral, J. H., Jackson, A. P., Smith, C. V., Shikotra, N., Maxwell, A., Liddington, 
R. C. (1997). Crystal structure of the breakage-reunion domain of DNA gyrase. Nature 
388, 903-906.  
 
1BJT- Fass, D., Bogden, C. E., Berger, J. M. (1999). Quaternary changes in 
topoisomerase II may direct orthogonal movement of two DNA strands. Nat Struct Biol 
6, 322-326.  
 
1TDJ- Gallagher, D. T., Gilliland, G. L., Xiao, G., Zondlo, J., Fisher, K. E., Chinchilla, 
D., Eisenstein, E. (1998). Structure and control of pyridoxal phosphate dependent 
allosteric threonine deaminase. Structure 6, 465-475.  
 
2TYS- Rhee, S., Parris, K. D., Hyde, C. C., Ahmed, S. A., Miles, E. W., Davies, D. R. 
(1997). Crystal structures of a mutant (betaK87T) tryptophan synthase alpha2beta2 
complex with ligands bound to the active sites of the alpha- and beta-subunits reveal 
ligand-induced conformational changes. Biochemistry 36, 7664-7680. 
 
1BK0- Roach, P. L., Clifton, I. J., Hensgens, C. M., Shibata, N., Schofield, C. J., Hajdu, 
J., Baldwin, J. E. (1997). Structure of isopenicillin N synthase complexed with substrate 
and the mechanism of penicillin formation. Nature 387, 827-830.  
 
1DCS-Valegard, K., van Scheltinga, A. C., Lloyd, M. D., Hara, T., Ramaswamy, S., 
Perrakis, A., Thompson, A., Lee, H. J., Baldwin, J. E., Schofield, C. J., Hajdu, J., 
Andersson, I. (1998). Structure of a cephalosporin synthase. Nature 394, 805-809. 
 
1FFV- Hanzelmann, P., Dobbek, H., Gremer, L., Huber, R., Meyer, O. (2000). The effect 
of intracellular molybdenum in Hydrogenophaga pseudoflava on the crystallographic 
structure of the seleno-molybdo-iron-sulfur flavoenzyme carbon monoxide 
dehydrogenase. J Mol Biol 301, 1221-1235. 
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1FO4- Enroth, C., Eger, B. T., Okamoto, K., Nishino, T., Nishino, T., Pai, E. F. (2000).
Crystal structures of bovine milk xanthine dehydrogenase and xanthine oxidase: 
structure-based mechanism of conversion. Proc Natl Acad Sci USA 97, 10723-10728. 
 
1A9N- Price, S. R., Evans, P. R., Nagai, K. (1998). Crystal structure of the spliceosomal 
U2B"-U2A' protein complex bound to a fragment of U2 small nuclear RNA. Nature 394, 
645-650. 
 
1D0B- Marino, M., Braun, L., Cossart, P., Ghosh, P. (1999). Structure of the lnlB 
leucine-rich repeats, a domain that triggers host cell invasion by the bacterial pathogen L. 
monocytogenes. Mol Cell 4, 1063-1072. 
 
1B74- Hwang, K. Y., Cho, C. S., Kim, S. S., Sung, H. C., Yu, Y. G., Cho, Y. (1999). 
Structure and mechanism of glutamate racemase from Aquifex pyrophilus. Nat Struct 

Biol 6, 422-426. 
 
1JFL- Liu, L., Iwata, K., Kita, A., Kawarabayasi, Y., Yohda, M., Miki, K. (2002). 
Crystal structure of aspartate racemase from Pyrococcus horikoshii OT3 and its 
implications for molecular mechanism of PLP-independent racemization. J Mol Biol 319, 
479-489. 
 
1CB8- Fethiere, J., Eggimann, B., Cygler, M. (1999). Crystal structure of chondroitin AC 
lyase, a representative of a family of glycosaminoglycan degrading enzymes. J Mol Biol 

288, 635-647. 
 
1EGU- Li, S., Kelly, S. J., Lamani, E., Ferraroni, M., Jedrzejas, M. J. (2000).Structural 
basis of hyaluronan degradation by Streptococcus pneumoniae hyaluronate lyase. Embo. 

J. 19, 1228-1240. 
 
1FOH- Enroth, C., Neujahr, H., Schneider, G., Lindqvist, Y. (1998). The crystal 
structure of phenol hydroxylase in complex with FAD and phenol provides evidence for a 
concerted conformational change in the enzyme and its cofactor during catalysis. 
Structure 6, 605-617.  
 
1PB3- Mesecar, A. D., Koshland Jr., D. E. (2000). Sites of Binding and Orientation in a 
Four-Location Model for Protein Stereospecificity. IUBMB Life 49, 457-466.  
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A2.3 Homologous wRMSD code. 

 
#!/usr/bin/env python 

 

 

""" REQUIRED INSTALLATIONS FOR A PC: 

 -Python 2.5 

 -Scipy 0.5.2 

 -NumPy 1.0.1 

 -Biopython 1.42 

 -Numerical 24.2 (install through Biopython website) 

 -mxTextTools: http://www.egenix.com/files/python/mxTextTools.html 

 -BLAST (bl2seq), Tutorial on downloading BLAST on a PC- 

http://www.people.vcu.edu/~elhaij/IntroBioinf/Links/DownloadBlast.html 

 

 

INPUT REQUIREMENTS: 

 -2 PDB files 

  PDB file must be in correct PDB format (i.e. chain ID's 

present, unique atom name within each residue, occupancy, etc...) 

 

 -This script ignores Hetgroups. If you have an atypical residue 

in your sequence that is labeled as an HETATM (i.e. MSE), it will be 

ignored. To have  it included in the sequence alignment as an 'X', 

manually change the label from HETATM to ATOM. 

 

 

Global_HwRMSD.py INFORMATION 

 NOTE: For similar structures (characterized by a small sRMSD; 

example: sRMSD < 5), the scaling factor is set to 2  

   For nonsimilar structures (characterized by a large sRMSD; 

example: sRMSD > 5), the scaling factor is set to 5  

 

 TO RUN Global_wRMSD.py: 

 

  Global_HwRMSD.py bl2seq_Location Protein_1.pdb 

Protein_1_Chain_ID Protein_2.pdb Protein_2_Chain_ID 

 

  Example: 

  Global_HwRMSD.py bl2seq 3ERD.pdb A 3ERT.pdb A 

 

  Example output: 

   3ERD_sRMSD.pdb 

   3ERD_wRMSD.pdb 

   3ERD_FASTA.txt 

   3ERT_FASTA.txt 

   3ERD_3ERT_BLAST.out 

   Calculated standard RMSD value 

    

 

To run through cygwin: 

 In c:cygwin\etc\profile 

  

 Change PATH to local python (Python25): 
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 PATH=/usr/local/bin:/cygdrive/c/Python25:/usr/bin:/bin:/usr/X11R6

/bin:$PATH 

 export PATH 

 

For questions or comments: 

Kelly Damm 

kdamm@umich.edu 

 

University of Michigan 

Carlson Lab """ 

 

 

 

#define global functions 

from __future__ import division 

import sys,re,cgi,os 

from scipy import sort,transpose 

import Numeric, LinearAlgebra 

from Numeric import * 

 

 

def run_Global_HwRMSD(file1,file2,X_Chain_ID,Y_Chain_ID,bl_loc): 

 #CREATE FASTA FILES FROM PDB FILES 

 x_FASTA,y_FASTA = 

get_FASTA_Files(file1,file2,X_Chain_ID,Y_Chain_ID) 

 

 #RUN BLAST (bl2seq) USING FASTA FILES 

 os.system('%s -p blastp -i ProteinX_FASTA.txt -j 

ProteinY_FASTA.txt -o BLAST.out -F F'%bl_loc)   

 

 #DETERMINES RESIDUE CORRESPONDENCE USING BLAST SEQUENCE ALIGNMENT 

 xlist,ylist = 

BLAST_Coordinates(file1,file2,X_Chain_ID,Y_Chain_ID) 

 x = transpose(xlist) 

 y = transpose(ylist) 

 

 #RETURNS ALL COORDINATES OF PROTEIN X FOR TRANSFORMATION 

 all = getAll_Coords(file1) 

 set = getStructure(file1) 

 title=(file1.split('.')[0], file1) 

 title2=(file2.split('.')[0], file2) 

  

 #PERFORM STANDARD AND WEIGHTED RMSD CALCULATION 

 allrot,SRMSD = weighted_alignment(x,y,all,set,title) 

 print "The standard RMSD value is = ",SRMSD 

 

 #OUTPUT TRANSFORMED STRUCTURE OF PROTEIN X 

 s = getStructure(file1)  

 setAll(s,allrot) 

 writeStructure(s,'%s_wRMSD.pdb'%title[0]) 

 

 #REMOVE FILES GENERATED DURING ALIGNMENT 

 os.system('mv ProteinX_FASTA.txt %s_FASTA.txt'%title[0]) 

 os.system('mv ProteinY_FASTA.txt %s_FASTA.txt'%title2[0]) 

 os.system('mv BLAST.out %s_%s_BLAST.out'%(title[0],title2[0])) 
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#CREATE FASTA FILES 

def get_FASTA_Files(file1,file2,X_Chain_ID,Y_Chain_ID):  

 x_ResidueID = get_ResidueName(file1,X_Chain_ID) 

 y_ResidueID = get_ResidueName(file2,Y_Chain_ID) 

 #CHANGE 3 LETTER AA CODE TO 1 LETTER AA CODE 

 x_AminoAcid = AminoAcids(x_ResidueID) 

 y_AminoAcid = AminoAcids(y_ResidueID) 

 x_FASTA = "".join(x_AminoAcid) 

 y_FASTA = "".join(y_AminoAcid) 

 x_output = open('ProteinX_FASTA.txt','w') 

 x_output.write(x_FASTA) 

 x_output.close() 

 y_output = open('ProteinY_FASTA.txt','w') 

 y_output.write(y_FASTA) 

 y_output.close() 

 return x_FASTA,y_FASTA 

 

 

#ENSURE RESIDUE CORRESPONDENCE 

def BLAST_Coordinates(file1,file2,X_Chain_ID,Y_Chain_ID): 

 ## GET PDB COORDINATE START NUMBERS 

 input = open('BLAST.out','r') 

 filelist = input.readlines() 

 X_start = X_startnum(filelist) 

 Y_start = Y_startnum(filelist) 

  

 ## GET AA LIST FROM BLAST OUTPUT 

 X_all_aa_list = X_AAlist(filelist) 

 Y_all_aa_list = Y_AAlist(filelist)   

  

 ##GET CA RES ID (WHAT WE NEED FOR ALIGNMENT) AND ALL RES ID (USED 

IN TO CREATE FASTA FILE FOR BLAST INPUT); HETS NOT INCLUDED 

 X_CA_resID = get_CA_ResID(file1,X_Chain_ID) 

 Y_CA_resID = get_CA_ResID(file2,Y_Chain_ID) 

 

 x_FASTA_IDs = get_ResidueID(file1,X_Chain_ID) 

 y_FASTA_IDs = get_ResidueID(file2,Y_Chain_ID) 

 

 ##COMPARE CA RESIDUES TO RESIDUES (FASTA FILE), REMOVE THOSE IN 

X_FASTA AND Y_FASTA FROM X_FASTA_IDs AND Y_FASTA_IDs 

 x_CA,x_CA_fasta = compare(X_CA_resID,x_FASTA_IDs)  

 y_CA,y_CA_fasta = compare(Y_CA_resID,y_FASTA_IDs) 

 X_AA_positions = AA_to_Position(X_all_aa_list, X_start)  

 Y_AA_positions = AA_to_Position(Y_all_aa_list, Y_start)  

 X_noCA_AA_positions = CA_to_Dash(X_AA_positions,x_CA_fasta) 

 Y_noCA_AA_positions = CA_to_Dash(Y_AA_positions,y_CA_fasta) 

 

 ##GET POSITION OF GAPS 

 Gap_list = find_Gaps(X_noCA_AA_positions,Y_noCA_AA_positions) 

 Gap_list_X, Gap_list_Y = unzip(Gap_list) 

 

 #GET PDB COORD END NUMBER 

 X_Gap_length = len(Gap_list_X) 

 Y_Gap_length = len(Gap_list_Y) 
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 #ADD CORRECT START POSITIONs (PDB file and BLAST output) TO 

GAP_LIST 

 Final_X_list = Add_Start_Value(Gap_list_X,X_start) 

 Final_Y_list = Add_Start_Value(Gap_list_Y,Y_start) 

 X_ResID_f = Minus_Start_Value(Final_X_list) 

 Y_ResID_f = Minus_Start_Value(Final_Y_list) 

 

 #GET ALL CA COORDINATES FROM PDB FILES, EXCEPT THOSE OF HET 

GROUPS 

 x_CAcoords = get_CA_Coords(file1,X_Chain_ID) 

 y_CAcoords = get_CA_Coords(file2,Y_Chain_ID) 

  

 #GET COORDINATES THAT COORESPOND TO POSITIONS FROM SEQUENCE 

ALIGNMENT 

 X_Seq_CA_Coords = Seq_CACoords(x_CAcoords,X_ResID_f) 

 Y_Seq_CA_Coords = Seq_CACoords(y_CAcoords,Y_ResID_f) 

 

 #FINAL CHECK TO ENSURE RESIDUE CORRESPONDENCE 

 n = len(X_Seq_CA_Coords) 

 j = len(Y_Seq_CA_Coords) 

 if n != j: 

  sys.exit("Proteins do not have same number of atoms; 

Protein X has",n,"atoms, while Protein Y has",j,"atoms") 

   

 #CHECK TO DETERMINE IF APPROPRIATE NUMBER OF COORDINATES PRESENT 

 if (len(X_Seq_CA_Coords[0]) != 3):  

  sys.exit("Protein X does not have a 3xn atom coordinate 

set") 

 if (len(Y_Seq_CA_Coords[0]) != 3): 

  sys.exit("Protein Y does not have a 3xn atom coordinate 

set") 

 

 #CHECK TO DETERMINE IF >4 COORDINATES PRESENT FOR EACH PROTEIN 

 if n < 4: 

  sys.exit("Protein X has 3 or less coordinates, 4 or more 

needed to perform alignment") 

 if j < 4: 

  sys.exit("Protein Y has 3 or less coordinates, 4 or more 

needed to perform alignment") 

 

 return X_Seq_CA_Coords,Y_Seq_CA_Coords 

 

 

 

##WEIGHTED RMSD ALIGNMENT## 

def weighted_alignment(x,y,all,set,title): 

 atoms = len(x[0]) 

 

 #Initial standard alignment without weight  

 #TRANSLATE PROTEINS X AND Y TO CENTER 

 n = len(x[0]) 

 x_mean = mean(x,n) 

 y_mean = mean(y,n) 

 x_trans = translation(x, x_mean) 

 x_translated = nested_list(x_trans,n) 

 y_trans = translation(y, y_mean) 

 y_translated = nested_list(y_trans,n) 
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 x_transpose = transpose(x_translated) 

  

 #CALCULATE COVARIANCE MATRIX (y_translated *x_translated^t) 

 R = matrixmultiply(y_translated, x_transpose) 

 R_transpose = transpose(R) 

 R2 = matrixmultiply(R_transpose, R) 

 

 #DETERMINE THE EIGENVECTORS AND EIGENVALUES of R2  

 mu,A = LinearAlgebra.eigenvectors(R2) 

 

 #SORT EIGENVECTORS IN DECREASING ORDER OF EIGENVALUES 

 a = [(mu[i],A[i]) for i in range(len(A))] 

 a.sort() 

 a.reverse() 

 mu = [x[0] for x in a] 

 A = [x[1] for x in a] 

 

 #DETERMINE RIGHT-HANDED SYSTEM 

 A_3 = crossproduct(A[0], A[1]) 

 A = [A[0], A[1], A_3] 

 

 #CALCULATE B, NORMALIZED PRODUCT OF (RxA) 

 B_1 = matrixmultiply(R, A[0]) 

 B_2 = matrixmultiply(R, A[1]) 

 norm_B_1 = normalize(B_1) 

 norm_B_2 = normalize(B_2) 

 norm_B_3 = crossproduct(norm_B_1,norm_B_2) 

 B = [norm_B_1,norm_B_2,norm_B_3] 

 B_transpose = transpose(B) 

 

 #CALCULATE ROTATION MATRIX, U  

 U = rotation_matrix(B_transpose, A) 

 x_rot = matrixmultiply(U,x_translated) 

 

 #CALCULATE STANDARD RMSD 

 standard_RMSD = sRMSD(x_rot, y_translated) 

 

 #ADD MEAN VALUES OF PROTEIN Y TO ROTATED COORDINATES OF PROTEIN X 

 x_coords = add_coords(x_rot, y_mean) 

 x = nested_list(x_coords,n) 

 

 #TRANSLATE ALL COORDINATES OF PROTEIN X 

 all_trans = translation(all, x_mean) 

 j = len(all[0]) 

 all_translated = nested_list(all_trans,j) 

 all_rot = matrixmultiply(U,all_translated) 

 

 #ADD ALL MEAN VALUES OF PROTEIN Y TO ALL ROTATED COORDINATES OF 

PROTEIN X 

 all_coords = add_coords(all_rot, y_mean) 

 all = nested_list(all_coords,j) 

 allrot = transpose(all) 

 setAll(set,allrot) 

 

 #OUTPUT STANDARD RMSD ALIGNMENT 

 writeStructure(set,'%s_sRMSD.pdb'%title[0]) 
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 #WEIGHTED RMSD CALCULATION, z = # of iterations  

 z = 1 

 weighted_rmsds = [] 

 w_metric = [] 

 all_list = [] 

   

 #DETERMINE APPROPRIATE SCALING FACTOR 

 if standard_RMSD < 5: 

  scaling_factor = 2 

 elif standard_RMSD >= 5: 

  scaling_factor = 5 

 while z < 5001: 

  n = len(x[0]) 

  #TRANSLATE WEIGHTED CENTROIDS TO ORIGIN 

  #CALCULATE WEIGHTS (protein1, protein2, scaling_factor) 

  weights = weight(x,y,scaling_factor) 

  weighted_x_mean =  weight_trans(x,weights,n) 

  weighted_y_mean =  weight_trans(y,weights,n) 

  x_trans = translation(x, weighted_x_mean) 

  y_trans = translation(y, weighted_y_mean) 

  x_translated = nested_list(x_trans,n) 

  y_translated = nested_list(y_trans,n) 

    

  #CALCULATE WEIGHTED COVARIENCE MATRIX 

  weighted_rot = 

weight(x_translated,y_translated,scaling_factor) 

  weighted_x_translated = multiply(weighted_rot,x_translated) 

  wx_transpose = transpose(weighted_x_translated) 

  R = matrixmultiply(y_translated,wx_transpose) 

  R_transpose = transpose(R) 

  R2 = matrixmultiply(R_transpose, R) 

 

  #DETERMINE THE EIGENVECTORS AND EIGENVALUES of R2  

  mu,A = LinearAlgebra.eigenvectors(R2) 

 

  #SORT EIGENVECTORS IN DECREASING ORDER OF EIGENVALUES 

  a = [(mu[i],A[i]) for i in range(len(A))] 

  a.sort() 

  a.reverse() 

  mu = [x[0] for x in a] 

  A = [x[1] for x in a] 

 

  #DETERMINE RIGHT-HANDED SYSTEM 

  A_3 = crossproduct(A[0], A[1]) 

  A = [A[0], A[1], A_3] 

 

  #CALCULATE B, NORMALIZED PRODUCT OF (RxA) 

  B_1 = matrixmultiply(R, A[0]) 

  B_2 = matrixmultiply(R, A[1]) 

  norm_B_1 = normalize(B_1) 

  norm_B_2 = normalize(B_2) 

  norm_B_3 = crossproduct(norm_B_1,norm_B_2) 

  B = [norm_B_1,norm_B_2,norm_B_3] 

  B_transpose = transpose(B) 

 

  #CALCULATE WEIGHTED ROTATION MATRIX, U 

  U = rotation_matrix(B_transpose, A)    
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  x_rot = matrixmultiply(U,x_translated) 

 

  #CALCULATE WEIGHTED RMSD 

  weighted_rmsds.append(wRMSD(x_rot, 

y_translated,scaling_factor)) 

  w_metric.append(wSUM(x_rot, 

y_translated,scaling_factor,atoms,z)) 

   

  #DETERMINE IF CONVERGENCE IS REACHED 

  if z > 1: 

   wrmsd_diff = weighted_rmsds[-2] - weighted_rmsds[-1] 

  else: 

   wrmsd_diff = [] 

 

  if 0 < wrmsd_diff < 0.000001: 

 

   #ADD MEAN VALUES OF PROTEIN Y TO ROTATED COORDINATES 

OF PROTEIN X 

   x_coords = add_coords(x_rot, weighted_y_mean) 

   x = nested_list(x_coords,n)  

 

   #TRANSFORM ALL COORDINATES OF PROTEIN X 

   all_trans = translation(all, weighted_x_mean) 

   j = len(all[0]) 

   all_translated = nested_list(all_trans,j) 

   all_rot = matrixmultiply(U,all_translated) 

 

   #ADD ALL MEAN VALUES OF PROTEIN Y TO ALL ROTATED 

COORDINATES OF PROTEIN X 

   all_coords = add_coords(all_rot, weighted_y_mean) 

   all = nested_list(all_coords,j) 

   allrot = transpose(all) 

   break 

 

  else:   

   #ADD MEAN VALUES OF PROTEIN Y TO ROTATED COORDINATES 

OF PROTEIN X 

   x_coords = add_coords(x_rot, weighted_y_mean) 

   x = nested_list(x_coords,n)  

 

   #TRANSFORM ALL COORDINATES OF PROTEIN X 

   all_trans = translation(all, weighted_x_mean) 

   j = len(all[0]) 

   all_translated = nested_list(all_trans,j) 

   all_rot = matrixmultiply(U,all_translated) 

 

   #ADD ALL MEAN VALUES OF PROTEIN Y TO ALL ROTATED 

COORDINATES OF PROTEIN X 

   all_coords = add_coords(all_rot, weighted_y_mean) 

   all = nested_list(all_coords,j) 

   z = z + 1 

 else: 

  print "Alignment stopped after 5000 iterations, convergence 

was never reached" 

  allrot = transpose(all) 

 return allrot,standard_RMSD 
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##### HELPER FUNCTIONS IN ENSURE RESIDUE CORRESPONDENCE FUNCTION ##### 

 

 

###PDB_Parser.py HAS BEEN MODIFIED FOR USAGE WITH KLD HWRMSD CODE### 

# Copyright (C) 2002, Thomas Hamelryck (thamelry@vub.ac.be) 

# This code is part of the Biopython distribution and governed by its 

# license.  Please see the LICENSE file that should have been included 

# as part of this package.   

 

 

# Python stuff 

import sys 

from string import split 

from Numeric import array, Float0 

 

# My stuff 

from Bio.PDB.StructureBuilder import StructureBuilder 

from Bio.PDB.PDBExceptions import PDBConstructionException 

 

# If PDB spec says "COLUMNS 18-20" this means line[17:20] 

 

 

class PDBParser: 

 """ 

 Parse a PDB file and return a Structure object. 

 """ 

 

 def __init__(self, PERMISSIVE=0, structure_builder=None): 

  """ 

  The PDB parser call a number of standard methods in an 

aggregated 

  StructureBuilder object. Normally this object is 

instanciated by the 

  PDBParser object itself, but if the user provides his own 

StructureBuilder 

  object, the latter is used instead. 

 

  Arguments: 

  o PERMISSIVE - int, if this is 0 (default) exceptions in 

constructing the 

  SMCRA data structure are fatal. If 1, the exceptions are 

caught, but some  

  residues or atoms will be missing.  

  o structure_builder - an optional user implemented 

StructureBuilder class.  

  """ 

  if structure_builder!=None: 

   self.structure_builder=structure_builder 

  else: 

   self.structure_builder=StructureBuilder() 

  self.header=None 

  self.trailer=None 

  self.line_counter=0 

  self.PERMISSIVE=PERMISSIVE 

  # 

  # We added repeatedResidues to keep track of repeated 

residues.  _handle_PDBException now 
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  # just adds repeated residues to this list and ignores the 

exception even when PERMISSIVE is not 

  # set.  The user is then responsible for removing the 

repeated residues herself. 

  # 

  self.repeatedResidues = {} 

 # Public methods 

 

 def get_structure(self, id, filename): 

  """Return the structure. 

 

  Arguments: 

  o id - string, the id that will be used for the structure 

  o filename - name of the PDB file 

  """ 

  self.header=None 

  self.trailer=None 

  # Make a StructureBuilder instance (pass id of structure as 

parameter) 

  self.structure_builder.init_structure(id) 

  file=open(filename) 

  self._parse(file.readlines()) 

  file.close() 

  # Return the Structure instance 

  return self.structure_builder.get_structure() 

 

 def get_header(self): 

  "Return the header." 

  return self.header 

 

 def get_trailer(self): 

  "Return the trailer." 

  return self.trailer 

 

 # Private methods 

  

 def _parse(self, header_coords_trailer): 

  "Parse the PDB file." 

  # Extract the header; return the rest of the file 

  self.header, 

coords_trailer=self._get_header(header_coords_trailer) 

  # Parse the atomic data; return the PDB file trailer 

  self.trailer=self._parse_coordinates(coords_trailer) 

  

 def _get_header(self, header_coords_trailer): 

  "Get the header of the PDB file, return the rest." 

  structure_builder=self.structure_builder 

  for i in range(0, len(header_coords_trailer)): 

   structure_builder.set_line_counter(i+1) 

   line=header_coords_trailer[i] 

   record_type=line[0:6]  

   if(record_type=='ATOM  ' or record_type=='HETATM' or 

record_type=='MODEL '): 

    break 

  header=header_coords_trailer[0:i] 

  # Return the rest of the coords+trailer for further 

processing 
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  self.line_counter=i 

  coords_trailer=header_coords_trailer[i:] 

  return header, coords_trailer 

  

 def _parse_coordinates(self, coords_trailer): 

  "Parse the atomic data in the PDB file." 

  local_line_counter=0 

  structure_builder=self.structure_builder 

  current_model_id=0 

  current_chain_id=None 

  current_segid=None 

  current_residue_id=None 

  current_resname=None 

  structure_builder.init_model(current_model_id) 

  for i in range(0, len(coords_trailer)): 

   line=coords_trailer[i] 

   record_type=line[0:6] 

  

 global_line_counter=self.line_counter+local_line_counter+1 

  

 structure_builder.set_line_counter(global_line_counter) 

   if(record_type=='ATOM  ' or record_type=='HETATM'): 

    fullname=line[12:16] 

    # get rid of whitespace in atom names 

    split_list=split(fullname) 

    if len(split_list)!=1: 

     # atom name has internal spaces, e.g. " N 

B ", so 

     # we do not strip spaces 

     name=fullname 

    else: 

     # atom name is like " CA ", so we can 

strip spaces 

     name=split_list[0] 

    altloc=line[16:17] 

    resname=line[17:20] 

    chainid=line[21:22] 

    resseq=int(split(line[22:26])[0]) # sequence 

identifier  

    icode=line[26:27]   # insertion code 

    if record_type=='HETATM':  # hetero 

atom flag 

     if resname=="HOH" or resname=="WAT": 

      hetero_flag="W" 

     else: 

      hetero_flag="H" 

    else: 

     hetero_flag=" " 

    residue_id=(hetero_flag, resseq, icode) 

    # atomic coordinates 

    x=float(line[30:38])  

    y=float(line[38:46])  

    z=float(line[46:54]) 

    coord=array((x, y, z), Float0) 

    # occupancy & B factor 

    occupancy=float(line[54:60]) 

    bfactor=float(line[60:66]) 
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    segid=line[72:76] 

    if current_segid!=segid: 

     current_segid=segid 

     structure_builder.init_seg(current_segid) 

    if current_chain_id!=chainid: 

     current_chain_id=chainid 

    

 structure_builder.init_chain(current_chain_id) 

     current_residue_id=residue_id 

     current_resname=resname 

     try: 

     

 structure_builder.init_residue(resname, hetero_flag, resseq, 

icode) 

     except PDBConstructionException, message: 

      self._handle_PDB_exception(message, 

global_line_counter,chainid) 

    elif current_residue_id!=residue_id or 

current_resname!=resname: 

     current_residue_id=residue_id 

     current_resname=resname 

     try: 

     

 structure_builder.init_residue(resname, hetero_flag, resseq, 

icode) 

     except PDBConstructionException, message: 

      self._handle_PDB_exception(message, 

global_line_counter,chainid)  

    # init atom 

    try: 

     structure_builder.init_atom(name, coord, 

bfactor, occupancy, altloc, fullname) 

    except PDBConstructionException, message: 

     self._handle_PDB_exception(message, 

global_line_counter,chainid) 

   elif(record_type=='ANISOU'): 

    anisou=map(float, (line[28:35], line[35:42], 

line[43:49], line[49:56], line[56:63], line[63:70])) 

    # U's are scaled by 10^4  

    anisou_array=(array(anisou, 

Float0)/10000.0).astype(Float0) 

    structure_builder.set_anisou(anisou_array) 

   elif(record_type=='ENDMDL'): 

    current_model_id=current_model_id+1 

    structure_builder.init_model(current_model_id) 

    current_chain_id=None 

    current_residue_id=None 

   elif(record_type=='END   ' or record_type=='CONECT'): 

    # End of atomic data, return the trailer 

   

 self.line_counter=self.line_counter+local_line_counter 

    return coords_trailer[local_line_counter:] 

   elif(record_type=='SIGUIJ'): 

    # standard deviation of anisotropic B factor 

    siguij=map(float, (line[28:35], line[35:42], 

line[42:49], line[49:56], line[56:63], line[63:70])) 

    # U sigma's are scaled by 10^4 
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    siguij_array=(array(siguij, 

Float0)/10000.0).astype(Float0)    

    structure_builder.set_siguij(siguij_array) 

   elif(record_type=='SIGATM'): 

    # standard deviation of atomic positions 

    sigatm=map(float, (line[30:38], line[38:45], 

line[46:54], line[54:60], line[60:66])) 

    sigatm_array=array(sigatm, Float0) 

    structure_builder.set_sigatm(sigatm_array) 

   local_line_counter=local_line_counter+1 

  # EOF (does not end in END or CONECT) 

  self.line_counter=self.line_counter+local_line_counter 

  return [] 

 

 def _handle_PDB_exception(self, message, line_counter, 

chainid=None): 

  """ 

  This method catches an exception that occurs in the 

StructureBuilder 

  object (if PERMISSIVE==1), or raises it again, this time 

adding the  

  PDB line number to the error message. 

  """ 

  message="%s at line %i." % (message, line_counter) 

  if self.PERMISSIVE: 

   # just print a warning - some residues/atoms will be 

missing 

   print "PDBConstructionException: %s" % message 

   print "Exception ignored.\nSome atoms or residues 

will be missing in the data structure." 

  else: 

   # exceptions are fatal - raise again with new message 

(including line nr) 

   try: 

    if PDBConstructionException.reason == 

'repeated': 

    

 self.repeatedResidues.setdefault(chainid,[]).append(PDBConstructi

onException.resseq) 

    

 #self.repeatedResidues.append(PDBConstructionException.resseq) 

     #print "PDBConstructionException: %s" % 

message 

     #print "Exception ignored.\nSome atoms or 

residues will be missing in the data structure." 

    else: 

     raise PDBConstructionException, message 

   except AttributeError: 

    # if PDBConstructionException doesn't have a 

reason, raise it like normal 

    print "caught an attribute error .. no reason?" 

    #print dir(PDBConstructionException) 

    #raise 

    raise PDBConstructionException, message 

 

if __name__=="__main__": 
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 import sys 

 

 p=PDBParser(PERMISSIVE=1) 

 

 s=p.get_structure("scr", sys.argv[1]) 

 

 for m in s.get_iterator(): 

  p=m.get_parent() 

  assert(p is s) 

  for c in m.get_iterator(): 

   p=c.get_parent() 

   assert(p is m) 

   for r in c.get_iterator(): 

    p=r.get_parent() 

    assert(p is c) 

    for a in r.get_iterator(): 

     p=a.get_parent() 

     if not p is r: 

      print p, r 

 

 

 

def AminoAcids(file): 

 list = [] 

 for each in file: 

  if each == 'GLY': 

   each = 'G' 

   list.append(each) 

  elif each == 'PRO': 

   each = 'P' 

   list.append(each) 

  elif each == 'ALA': 

   each = 'A' 

   list.append(each) 

  elif each == 'VAL': 

   each = 'V' 

   list.append(each) 

  elif each == 'HIS': 

   each = 'H' 

   list.append(each) 

  elif each == 'HID': 

   each = 'H' 

   list.append(each) 

  elif each == 'HIE': 

   each = 'H' 

   list.append(each) 

  elif each == 'HIP': 

   each = 'H' 

   list.append(each) 

  elif each == 'LEU': 

   each = 'L' 

   list.append(each) 

  elif each == 'ILE': 

   each = 'I' 

   list.append(each) 

  elif each == 'MET': 

   each = 'M' 



247 

 

   list.append(each) 

  elif each == 'CYS': 

   each = 'C' 

   list.append(each) 

  elif each == 'CYX': 

   each = 'C' 

   list.append(each) 

  elif each == 'CYM': 

   each = 'C' 

   list.append(each) 

  elif each == 'PHE': 

   each = 'F' 

   list.append(each) 

  elif each == 'TYR': 

   each = 'Y' 

   list.append(each) 

  elif each == 'TYM': 

   each = 'Y' 

   list.append(each) 

  elif each == 'TRP': 

   each = 'W' 

   list.append(each) 

  elif each == 'LYS': 

   each = 'K' 

   list.append(each) 

  elif each == 'LYN': 

   each = 'K' 

   list.append(each) 

  elif each == 'ARG': 

   each = 'R' 

   list.append(each) 

  elif each == 'GLN': 

   each = 'Q' 

   list.append(each) 

  elif each == 'ASN': 

   each = 'N' 

   list.append(each) 

  elif each == 'GLU': 

   each = 'E' 

   list.append(each) 

  elif each == 'GLH': 

   each = 'E' 

   list.append(each) 

  elif each == 'ASP': 

   each = 'D' 

   list.append(each) 

  elif each == 'ASH': 

   each = 'D' 

   list.append(each) 

  elif each == 'SER': 

   each = 'S' 

   list.append(each) 

  elif each == 'THR': 

   each = 'T' 

   list.append(each) 

  else: 

   each = 'X' 
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   list.append(each) 

 return list 

 

def get_ResidueName(filename,chain_key): 

 x =[] 

 parser=PDBParser() 

 structure=parser.get_structure(filename.split('.')[0], filename) 

 for model in structure.get_list(): 

  chain_A = model[chain_key] 

  for residue in chain_A.get_list(): 

   residue_id = residue.get_id() 

   if  residue_id[0] == ' ': 

    resid=residue.get_resname() 

    x.append(resid) 

 return x 

 

def X_startnum(filelist): 

 querycount = 0 

 for fileline in filelist: 

  if fileline.strip().lower().startswith('query'): 

   querycount += 1 

  if querycount == 2: 

   parts = fileline.split() 

   num = int(parts[1]) 

   break 

 return num 

 

def Y_startnum(filelist): 

 #querycount = 0 

 for fileline in filelist: 

  if fileline.strip().lower().startswith('sbjct'): 

   parts = fileline.split() 

   num = int(parts[1]) 

   break 

 return num 

 

def X_AAlist(filelist): 

 scorecount = 0 

 all_aa_list = []  

 for fileline in filelist: 

  if fileline.strip().lower().startswith('score'): 

   scorecount += 1 

  if scorecount == 1: 

   if fileline.strip().lower().startswith('query:'): 

    parts = fileline.split() 

    #print "parts=",parts 

    aa_list = parts[2] 

    all_aa_list.append(aa_list) 

    AA_string = "".join(all_aa_list) 

  if scorecount != 1: 

   quit 

 return AA_string 

 

def Y_AAlist(filelist): 

 scorecount = 0 

 all_aa_list = []  

 for fileline in filelist: 
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  if fileline.strip().lower().startswith('score'): 

   scorecount += 1 

  if scorecount == 1: 

   if fileline.strip().lower().startswith('sbjct:'): 

    parts = fileline.split() 

    #print "parts=",parts 

    aa_list = parts[2] 

    all_aa_list.append(aa_list) 

    AA_string = "".join(all_aa_list) 

  if scorecount != 1: 

   quit 

 return AA_string 

  

def get_CA_ResID(filename,chain_key): 

 x =[] 

 parser=PDBParser() 

 structure=parser.get_structure(filename.split('.')[0], filename) 

 for model in structure.get_list(): 

  chain_A = model[chain_key] 

  for residue in chain_A.get_list(): 

   if residue.has_id("CA"): 

    residue_id = residue.get_id() 

    if  residue_id[0] == ' ': 

     resid = residue_id[1] 

     x.append(residue.get_id()[1]) 

 return x  

  

def get_ResidueID(filename,chain_key): 

 x =[] 

 parser=PDBParser() 

 structure=parser.get_structure(filename.split('.')[0], filename) 

 for model in structure.get_list(): 

  chain_A = model[chain_key] 

  for residue in chain_A.get_list(): 

   residue_id = residue.get_id() 

   if residue_id[0] == ' ': 

    resid=residue.get_id()[1] 

    x.append(resid) 

 return x  

 

def compare(x,y): 

 x_list = [] 

 y_list = [] 

     for each in x: 

      if each not in y: 

   x_list.append(each) 

 for each in y: 

         if each not in x: 

             y_list.append(each) 

 x_list = zero2(x_list) 

 y_list = zero2(y_list) 

 x_list = sort(x_list) 

 y_list = sort(y_list) 

 x_list = list(x_list) 

 y_list = list(y_list) 

 return x_list, y_list 
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def zero2(x): 

 result = [] 

 for each in x: 

  if each != 0: 

   result.append(each) 

  else: 

   continue 

 return result   

 

def AA_to_Position(filename, start): 

 idx1 = start - 1 

 result = [] 

 for value in filename: 

  if value == '-': 

   result.append(value) 

  else: 

   idx1 += 1 

   result.append(idx1) 

 return result 

  

def CA_to_Dash(filename, CA_list): 

 result = [] 

 for value in filename: 

  if value in CA_list: 

   value = '-' 

   result.append(value) 

  else: 

   result.append(value) 

 return result  

  

def find_Gaps(seq1, seq2): 

 idx1,idx2 = 1,1 

 result = [] 

 for res1,res2 in zip(seq1,seq2): 

  if res1 != '-' and res2 != '-': 

           result += [(idx1,idx2)] 

       if res1 != '-': idx1 += 1 

       if res2 != '-': idx2 += 1 

 return result  

  

def unzip(l,*jj): 

 #Christopher P. Smith 7/13/2001 

 if jj==(): 

  jj=range(len(l[0])) 

 rl = [[li[j] for li in l] for j in jj] 

 if len(rl) == 1: 

  rl=rl[0] 

 return rl  

  

def Add_Start_Value(file,Blast_start): 

 new_count = [] 

 for each in file: 

  grab = each - 1 + Blast_start 

  new_count.append(grab) 

 return new_count 

 

def Minus_Start_Value(file): 
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 new_count = [] 

 for each in file: 

  grab = each - 1 

  new_count.append(grab) 

 return new_count 

 

def get_CA_Coords(filename,chain_key): 

 x =[] 

 parser=PDBParser() 

 structure=parser.get_structure(filename.split('.')[0], filename) 

 for model in structure.get_list(): 

  chain_A = model[chain_key] 

  for residue in chain_A.get_list(): 

   if residue.has_id("CA"): 

    residue_id = residue.get_id() 

    if  residue_id[0] == ' ': 

     ca=residue["CA"] 

     x.append(ca.get_coord()) 

 return x 

 

def Seq_CACoords(first,list): 

 result = [] 

 for each in list: 

  result.append(first[each]) 

 return result 

 

def getAll_Coords(filename): 

 result =[] 

 parser=PDBParser() 

 structure=parser.get_structure(filename.split('.')[0], filename) 

 for model in structure.get_list(): 

  chain = model.get_list() 

  for each in chain: 

   for res in each.get_list(): 

    for x in res.get_list(): 

     result.append(x.get_coord()) 

 x_t = transpose(result) 

 return x_t  

  

def getStructure(filename): 

 parser = PDBParser() 

 structure = parser.get_structure(filename.split('.')[0], 

filename) 

 return structure 

 

def writeStructure(structure,filename): 

 from Bio.PDB.PDBIO import PDBIO 

 import sys 

 io = PDBIO() 

 io.set_structure(structure) 

 io.save(filename)  

 

def setAll(structure,newCACoords): 

 allCAs =[] 

 for model in structure.get_list(): 

  chain = model.get_list() 

  for each in chain: 
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   for res in each.get_list(): 

    for x in res.get_list(): 

     allCAs.append(x) 

 if len(allCAs) != len(newCACoords): 

  print "wrong number of atoms .. structure 

had",len(allCAs),"you gave me",len(newCACoords) 

  raise Exception("wrong number of atoms") 

 for newCoords,ca in zip(newCACoords,allCAs): 

  ca.set_coord(newCoords) 

 

 

 

 

##### HELPER FUNCTIONS IN WEIGHTED ALIGNMENT FUNCTION ##### 

 

def mean(first,n): 

 return [sum(each)/n for each in first] 

  

def nested_list(name,n): 

 first1 = name[0:n] 

 first2 = name[n:2*n] 

 first3 = name[2*n:3*n] 

 first_translated =[first1,first2,first3] 

 return first_translated 

 

def translation(first,second): 

 c = 0 

 k = [] 

 q = len(first) 

 while c < q: 

  for each in first[c]: 

   subtr = each - second[c] 

   k.append(subtr) 

  c = c + 1 

 return k 

  

def crossproduct(a,b): 

 C_0 = a[1]*b[2] - a[2]*b[1] 

 C_1 = a[2]*b[0] - a[0]*b[2] 

 C_2 = a[0]*b[1] - a[1]*b[0] 

 return [C_0, C_1, C_2] 

  

def normalize(a): 

 B_0 = (a[0])/(((a[0]**2)+(a[1]**2)+((a[2])**2))**(1/2)) 

 B_1 = (a[1])/(((a[0]**2)+(a[1]**2)+((a[2])**2))**(1/2)) 

 B_2 = (a[2])/(((a[0]**2)+(a[1]**2)+((a[2])**2))**(1/2)) 

 return [B_0, B_1, B_2] 

 

def rotation_matrix(first, second): 

 U = matrixmultiply(first, second) 

 return U 

 

def sRMSD(first,second): 

 first = array(first) 

 second = array(second) 

 subtr = first - second 

 def sqr(matrix): 
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  k = [] 

  for each in matrix: 

   sq = (each)**2 

   k.append(sq) 

  return k 

 subtr_s = sqr(subtr) 

 sum_subtr_s = sum(subtr_s) 

 d = sqroot(sum_subtr_s) 

 sq_d = sqr(d) 

 s_sq_d = sum(sq_d) 

 tot = (len(first[0])) 

 value = sqrt(s_sq_d/tot) 

 return value 

 

def add_coords(first,second): 

 c = 0 

 k = [] 

 q = len(first) 

 while c < q: 

  for each in first[c]: 

   add = each + second[c] 

   k.append(add) 

  c = c + 1 

 return k 

 

def weight_trans(first,weight,n): 

 mult = multiply(first, weight) 

 sum_mult = sum(mult) 

 mean = [sum(each)/n for each in mult] 

 return mean 

 

def weight(first,second,constant): 

 first = array(first) 

 second = array(second) 

 subtr = first - second 

 subtr_s = sqr(subtr) 

 sum_subtr_s = sum(subtr_s) 

 d = sqroot(sum_subtr_s) 

 weighted_d = Gaussian(d,constant) 

 weighted_d = Gaussian2(weighted_d) 

 return weighted_d 

 

def sqr(matrix): 

 k = [] 

 for each in matrix: 

  sq = (each)**2 

  k.append(sq) 

 return k 

 

def sqroot(matrix): 

 j = [] 

 for each in matrix: 

  sqroot = sqrt(each) 

  j.append(sqroot) 

 return j 

 

def wSUM(first,second,constant,atoms,z): 
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 j = [] 

 k = [] 

 first = array(first) 

 second = array(second) 

 subtr = first - second 

 subtr_s = sqr(subtr) 

 sum_subtr_s = sum(subtr_s) 

 d = sqroot(sum_subtr_s) 

 weighted_d = Gaussian(d,constant) 

 weighted_d = Gaussian2(weighted_d) 

 for each in weighted_d: 

  mult100 = (each * 100) 

  j.append(mult100) 

 for each in j: 

  subtr100 = (100 - each) 

  k.append(subtr100) 

 sum_weighted_d = sum(weighted_d) 

 value = sum_weighted_d/atoms 

 return value 

 

def wRMSD(first,second,constant): 

 first = array(first) 

 second = array(second) 

 subtr = first - second 

 subtr_s = sqr(subtr) 

 sum_subtr_s = sum(subtr_s) 

 d = sqroot(sum_subtr_s) 

 weighted_d = Gaussian(d,constant) 

 weights = Gaussian2(weighted_d) 

 sq_d = sqr(d) 

 wd = multiply(sq_d,weights) 

 s_wd = sum(wd) 

 n = len(d) 

 s_sq_d_divide = s_wd/n 

 value = sqrt(s_sq_d_divide) 

 return value 

 

def Gaussian(first,z): 

 value = [] 

 for each in first: 

  weight = (-((each)**2)/z) 

  value.append(weight) 

 return value  

 

def Gaussian2(first): 

 value = [] 

 for each in first: 

  weight = exp(each) 

  value.append(weight) 

 return value 

 

def get_Adjusted_Res_Position(position,listname): 

 while position in listname: 

  position += 1 

 return position 

 

def getHetGroups(filename,chain_key): 
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 result =[] 

 result2 = [] 

 parser=PDBParser() 

 structure=parser.get_structure(filename.split('.')[0], filename) 

 for model in structure.get_list(): 

  chain_A = model[chain_key] 

  for residue in chain_A.get_list(): 

   if residue.has_id("CA"): 

    residue_id = residue.get_id() 

    resid = residue_id[1] 

    if residue_id[0] == ' ': 

     result.append(resid) 

    else: 

     result2.append(resid) 

 return result2  

 

#RUN Global_HwRMSD.py  

if __name__ == "__main__": 

 if len(sys.argv) != 6: 

      print "usage: Global_HwRMSD.py bl2seq_Location 

Protein_X.pdb Protein_X_ChainID Protein_Y.pdb Protein_Y_ChainID"  

  sys.exit() 

 bl_loc = sys.argv[1] 

     filename1 = sys.argv[2] 

    filename2 = sys.argv[4] 

 X_Chain_ID = sys.argv[3] 

 Y_Chain_ID = sys.argv[5] 

 run_Global_HwRMSD(filename1,filename2,X_Chain_ID,Y_Chain_ID,bl_lo

c) 
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A2.4 Raw Data from differences in superpositions. 

 

Both standard and weighted superpositions were generated from a variety of 

sequence alignments. The sequence alignments were altered by varying the parameters 

within BLAST or varying the code used for the alignment. The differences across the 

superpositions were measured in RMSD (Å) between the coordinates. The bolded 

heading are the default BLAST parameters. 
 

 
A. Varying Parameters within BLAST (Scoring matrix, Gap Opening Penalty (G), 
Gap Extension Penalty (E))- Standard RMSD Superposition. 
 
 

Standard 
RMSD       

       

Serine/Threonine Protein Phosphatase   AVG 

39%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 0.577 0        

BLOSUM62, 

G6, E2 0.000 0.577 0      

BLOSUM45, 

G11, E1 0.577 0.000 0.577 0    

PAM30, G11, 

E1 0.846 0.471 0.846 0.471 0 0.494 

       

Eukaryotic Glutathione Synthase     

37%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 0.083 0        

BLOSUM62, 

G6, E2 0.304 0.325 0      

BLOSUM45, 

G11, E1 0.080 0.016 0.326 0    

PAM30, G11, 

E1 1.280 1.221 1.134 1.227 0 0.600 

       

Interferon alpha, beta, and delta     

35%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 1.561 0        
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G13, E1 

BLOSUM62, 

G6, E2 1.561 0.000 0      

BLOSUM45, 

G11, E1 1.561 0.000 0.000 0    

PAM30, G11, 

E1 0.917 2.212 2.212 2.212 0 1.224 

       

Adenosylmethionine Decarboxylase    

33%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 0.000 0        

BLOSUM62, 

G6, E2 0.183 0.183 0      

BLOSUM45, 

G11, E1 0.729 0.729 0.883 0    

PAM30, G11, 

E1 0.967 0.967 1.011 0.901 0 0.655 

       

Clostridial Neurotoxin Zinc Protease    

31%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 0.443 0        

BLOSUM62, 

G6, E2 0.609 0.826 0      

BLOSUM45, 

G11, E1 0.607 0.785 0.108 0    

PAM30, G11, 

E1 0.816 0.557 1.241 1.201 0 0.719 

       

Sulfatase       

29%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 1.282 0        

BLOSUM62, 

G6, E2 1.746 1.599 0      

BLOSUM45, 

G11, E1 1.448 1.607 0.727 0    

PAM30, G11, 

E1 1.633 0.768 2.219 2.205 0 1.523 

       

Protocatechuate-3,4-Dioxygenase, alpha and beta chains   

28%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 0.000 0        

BLOSUM62, 0.560 0.560 0      
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G6, E2 

BLOSUM45, 

G11, E1 0.438 0.438 0.329 0    

PAM30, G11, 

E1 2.361 2.361 2.170 2.385 0 1.160 

       

Aminotransferase Class IV     

27%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 0.000 0        

BLOSUM62, 

G6, E2 1.704 1.704 0      

BLOSUM45, 

G11, E1 1.699 1.699 0.115 0    

PAM30, G11, 

E1 1.742 1.742 0.717 0.686 0 1.181 

       

SpoU rRNA Methylase Family     

26%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 5.408 0        

BLOSUM62, 

G6, E2 1.499 6.098 0      

BLOSUM45, 

G11, E1 3.171 6.792 1.911 0    

PAM30, G11, 

E1 6.551 1.589 7.401 8.239 0 4.866 

       

FMN Oxidoreductase      

25%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 0.627 0        

BLOSUM62, 

G6, E2 0.473 0.958 0      

BLOSUM45, 

G11, E1 1.988 1.554 2.282 0    

PAM30, G11, 

E1 2.554 2.426 2.792 1.701 0 1.736 

       

Queuine tRNA-Ribosyltransferase     

25%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 0.238 0        

BLOSUM62, 

G6, E2 0.342 0.456 0      

BLOSUM45, 0.207 0.064 0.451 0    
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G11, E1 

PAM30, G11, 

E1 1.622 1.704 1.400 1.701 0 0.819 

       

tRNA Synthestase Class I (E and Q)     

24%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 4.038 0        

BLOSUM62, 

G6, E2 0.350 3.967 0      

BLOSUM45, 

G11, E1 1.181 3.669 1.234 0    

PAM30, G11, 

E1 na na na na 0 2.407 

       

DNA Methylase      

23%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 1.281 0        

BLOSUM62, 

G6, E2 1.244 1.857 0      

BLOSUM45, 

G11, E1 1.266 1.700 0.600 0    

PAM30, G11, 

E1 na na na na 0 1.325 

       

Type II DNA Topoisomerase, Domains 2-4    

22%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 0.000 0        

BLOSUM62, 

G6, E2 2.222 2.222 0      

BLOSUM45, 

G11, E1 2.324 2.324 0.696 0    

PAM30, G11, 

E1 4.947 4.947 3.999 3.735 0 2.742 

       

Pyridoxal-Phosphate Dependent Enzymes    

21%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 0.333 0        

BLOSUM62, 

G6, E2 1.436 1.407 0      

BLOSUM45, 

G11, E1 1.317 1.242 0.397 0    

PAM30, G11, na na na na 0 1.022 
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E1 

       

Iron/Ascorbate Oxidoreductase     

20%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 0.833 0        

BLOSUM62, 

G6, E2 3.386 3.359 0      

BLOSUM45, 

G11, E1 3.467 3.469 0.216 0    

PAM30, G11, 

E1 na na na na 0 2.455 

       

FAD Binding Domain in Molybdopterin Dehydrogenase   

19%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 0.000 0        

BLOSUM62, 

G6, E2 0.696 0.696 0      

BLOSUM45, 

G11, E1 0.462 0.462 0.867 0    

PAM30, G11, 

E1 na na na na 0 0.531 

       

Leucine Rich Repeats in Splicesomal U2A/' Protein and Internalin B  

19%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 3.020 0        

BLOSUM62, 

G6, E2 0.000 3.020 0      

BLOSUM45, 

G11, E1 1.619 3.475 1.619 0    

PAM30, G11, 

E1 na na na na 0 2.126 

       

Asp/Glu/Hydontoin Racemase     

18%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 1.762 0        

BLOSUM62, 

G6, E2 1.126 2.168 0      

BLOSUM45, 

G11, E1 1.737 0.170 2.117 0    

PAM30, G11, 

E1 na na na na 0 1.513 
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Polysaccharide Lyase Family 8, N Terminal Domain   

18%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 0.000 0        

BLOSUM62, 

G6, E2 1.074 1.074 0      

BLOSUM45, 

G11, E1 0.608 0.608 1.387 0    

PAM30, G11, 

E1 na na na na 0 0.792 

       

PHBH-like       

17%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 0.000 0        

BLOSUM62, 

G6, E2 2.900 2.900 0      

BLOSUM45, 

G11, E1 2.992 2.992 1.936 0    

PAM30, G11, 

E1 na na na na 0 2.287 

 

 

 
B. Varying Parameters within BLAST (Scoring matrix, Gap Opening Penalty (G), 
Gap Extension Penalty (E))- Weighted RMSD Superposition. 
 

Weighted 
RMSD       

       

Serine/Threonine Protein Phosphatase    AVG 

39%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 0.035 0        

BLOSUM62, 

G6, E2 0.000 0.035 0      

BLOSUM45, 

G11, E1 0.040 0.005 0.039 0    

PAM30, G11, 

E1 0.126 0.107 0.126 0.110 0 0.062 

       

Eukaryotic Glutathione Synthase     

37%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          
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BLOSUM62, 

G13, E1 0.023 0        

BLOSUM62, 

G6, E2 0.038 0.019 0      

BLOSUM45, 

G11, E1 0.009 0.002 0.021 0    

PAM30, G11, 

E1 0.166 0.171 0.184 0.171 0 0.080 

       

Interferon alpha, beta, and delta     

35%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 0.525 0        

BLOSUM62, 

G6, E2 0.525 0.000 0      

BLOSUM45, 

G11, E1 0.508 0.025 0.025 0    

PAM30, G11, 

E1 0.161 0.420 0.420 0.400 0 0.301 

       

Adenosylmethionine Decarboxylase     

33%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 0.000 0        

BLOSUM62, 

G6, E2 0.119 0.119 0      

BLOSUM45, 

G11, E1 0.030 0.030 0.117 0    

PAM30, G11, 

E1 0.203 0.203 0.314 0.216 0 0.135 

       

Clostridial Neurotoxin Zinc Protease     

31%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 0.009 0        

BLOSUM62, 

G6, E2 0.007 0.016 0      

BLOSUM45, 

G11, E1 0.053 0.062 0.045 0    

PAM30, G11, 

E1 0.205 0.210 0.202 0.171 0 0.098 

       

Sulfatase       

29%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 0.583 0        
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BLOSUM62, 

G6, E2 0.021 0.586 0      

BLOSUM45, 

G11, E1 0.044 0.555 0.058 0    

PAM30, G11, 

E1 0.440 0.356 0.452 0.421 0 0.352 

       

Protocatechuate-3,4-Dioxygenase, alpha and beta chains   

28%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 0.000 0        

BLOSUM62, 

G6, E2 0.100 0.044 0      

BLOSUM45, 

G11, E1 0.112 0.054 0.029 0    

PAM30, G11, 

E1 0.243 0.218 0.195   0 0.111 

       

Aminotransferase Class IV      

27%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 0.000 0        

BLOSUM62, 

G6, E2 0.145 0.145 0      

BLOSUM45, 

G11, E1 0.124 0.124 0.118 0    

PAM30, G11, 

E1 0.601 0.627 0.720 0.689 0 0.329 

       

SpoU rRNA Methylase Family     

26%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 0.323 0        

BLOSUM62, 

G6, E2 0.265 0.222 0      

BLOSUM45, 

G11, E1 0.336 0.408 0.236 0    

PAM30, G11, 

E1 1.251 1.059 1.074 1.269 0 0.644 

       

FMN Oxidoreductase      

25%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 0.060 0        

BLOSUM62, 

G6, E2 0.093 0.123 0      
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BLOSUM45, 

G11, E1 0.046 0.018 0.114 0    

PAM30, G11, 

E1 0.960 1.300 1.347 1.300 0 0.536 

       

Queuine tRNA-Ribosyltransferase     

25%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 0.094 0        

BLOSUM62, 

G6, E2 0.021 0.102 0      

BLOSUM45, 

G11, E1 0.096 0.016 0.102 0    

PAM30, G11, 

E1 na na na na 0 0.072 

       

tRNA Synthestase Class I (E and Q)     

24%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 0.700 0        

BLOSUM62, 

G6, E2 0.021 0.712 0      

BLOSUM45, 

G11, E1 0.306 0.720 0.293 0    

PAM30, G11, 

E1 na na na na 0 0.459 

       

DNA 
Methylase       

23%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 0.077 0        

BLOSUM62, 

G6, E2 0.092 0.162 0      

BLOSUM45, 

G11, E1 0.134 0.202 0.049 0    

PAM30, G11, 

E1 na na na na 0 0.119 

       

Type II DNA Topoisomerase, Domains 2-4     

22%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 0.000 0        

BLOSUM62, 

G6, E2 0.682 0.682 0      

BLOSUM45, 

G11, E1 0.560 0.560 0.154 0    
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PAM30, G11, 

E1 1.034 1.149 1.159 1.443 0 0.742 

       

Pyridoxal-Phosphate Dependent Enzymes     

21%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 0.247 0        

BLOSUM62, 

G6, E2 0.376 0.466 0      

BLOSUM45, 

G11, E1 0.281 0.101 0.512 0    

PAM30, G11, 

E1 na na na na 0 0.331 

       

Iron/Ascorbate Oxidoreductase     

20%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 0.542 0        

BLOSUM62, 

G6, E2 0.464 0.919 0      

BLOSUM45, 

G11, E1 0.257 0.393 0.761 0    

PAM30, G11, 

E1 na na na na 0 0.556 

       

FAD Binding Domain in Molybdopterin Dehydrogenase    

19%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 0.000 0        

BLOSUM62, 

G6, E2 0.001 0.000 0      

BLOSUM45, 

G11, E1 0.196 0.196 0.195 0    

PAM30, G11, 

E1 na na na na 0 0.098 

       

Leucine Rich Repeats in Splicesomal U2A/' Protein and Internalin B  

19%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 0.832 0        

BLOSUM62, 

G6, E2 0.000 0.832 0      

BLOSUM45, 

G11, E1 0.755 0.078 0.755 0    

PAM30, G11, 

E1 na na na na 0 0.542 
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Asp/Glu/Hydontoin Racemase     

18%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 0.314 0        

BLOSUM62, 

G6, E2 0.157 0.199 0      

BLOSUM45, 

G11, E1 0.331 0.263 0.322 0    

PAM30, G11, 

E1 na na na na 0 0.264 

       

Polysaccharide Lyase Family 8, N Terminal Domain    

18%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 0.000 0        

BLOSUM62, 

G6, E2 0.095 0.095 0      

BLOSUM45, 

G11, E1 0.075 0.075 0.147 0    

PAM30, G11, 

E1 na na na na 0 0.081 

       

PHBH-like       

17%ID 
BLOSUM62, 

G11, E1 
BLOSUM62, 

G13, E1 

BLOSUM62, 

G6, E2 

BLOSUM45, 

G11, E1 

PAM30, 

G11, E1  

BLOSUM62, 
G11, E1 0          

BLOSUM62, 

G13, E1 0.000 0        

BLOSUM62, 

G6, E2 0.513 0.513 0      

BLOSUM45, 

G11, E1 0.170 0.990 0.433 0    

PAM30, G11, 

E1 na na na na 0 0.437 

 

 
C. Varying Code used for Sequence Alignment- Standard RMSD Superposition. 
 

Standard 
RMSD        

        

Serine/Threonine Protein Phosphatase   AVG 
39%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 0.656 0          
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FASTA 1.119 1.010 0        

ALIGN 1.882 1.824 1.279 0      

CLUSTALW 1.836 1.645 1.317 0.488 0    

TCOFFEE 1.119 1.010 0.000 1.279 1.317 0 1.185 

        

Eukaryotic Glutathione Synthase     

37%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 0.061 0          

FASTA 0.157 0.190 0        

ALIGN 0.204 0.211 0.153 0      

CLUSTALW 0.115 0.112 0.169 0.253 0    

TCOFFEE 0.126 0.075 0.221 0.229 0.149 0 0.162 

        

Interferon alpha, beta, and delta     

35%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 0.789 0          

FASTA 0.730 1.737 0        

ALIGN 0.611 0.461 1.626 0      

CLUSTALW 1.706 1.072 1.481 1.200 0    

TCOFFEE 1.704 1.979 1.488 1.196 0.042 0 1.188 

        

Adenosylmethionine Decarboxylase    

33%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 0.947 0          

FASTA 0.424 0.918 0        

ALIGN 0.376 0.902 0.063 0      

CLUSTALW 0.377 0.924 0.157 0.122 0    

TCOFFEE 0.826 1.532 1.112 1.056 1.000 0 0.716 

        

Clostridial Neurotoxin Zinc Protease    

31%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 0.883 0          

FASTA 0.506 0.881 0        

ALIGN 0.506 0.881 0.000 0      

CLUSTALW 0.665 1.433 0.728 0.728 0    

TCOFFEE 0.341 0.829 0.192 0.192 0.717 0 0.632 

        

Sulfatase        

29%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  
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BLAST 0            

SIM 0.551 0          

FASTA 1.898 1.773 0        

ALIGN 2.346 2.258 0.675 0      

CLUSTALW 0.685 0.697 1.375 1.781 0    

TCOFFEE 1.073 0.960 0.964 1.408 0.658 0 1.273 

        

Protocatechuate-3,4-Dioxygenase, alpha and beta chains  

28%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 3.215 0          

FASTA 0.705 3.123 0        

ALIGN 1.415 4.096 1.273 0      

CLUSTALW 6.027 5.482 6.001 7.182 0    

TCOFFEE 0.906 3.123 0.590 0.724 6.513 0 3.358 

        

Aminotransferase Class IV      

27%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 3.044 0          

FASTA 1.728 2.320 0        

ALIGN 1.787 2.135 0.237 0      

CLUSTALW 1.738 2.251 0.090 0.189 0    

TCOFFEE 1.368 3.266 1.840 1.907 1.888 0 1.719 

        

SpoU rRNA Methylase Family     

26%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 6.619 0          

FASTA 3.174 8.156 0        

ALIGN 3.244 8.037 0.304 0      

CLUSTALW 3.322 7.816 0.819 0.873 0    

TCOFFEE 3.264 8.090 0.403 0.550 0.462 0 3.676 

        

FMN Oxidoreductase      

25%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 5.619 0          

FASTA 0.669 5.159 0        

ALIGN 4.263 2.618 4.014 0      

CLUSTALW 2.039 5.616 1.825 4.551 0    

TCOFFEE 1.461 4.729 0.830 3.925 2.149 0 3.298 
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Queuine tRNA-Ribosyltransferase     

25%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 0.792 0          

FASTA 0.363 0.678 0        

ALIGN 0.364 0.662 0.039 0      

CLUSTALW 0.681 0.877 0.363 0.385 0    

TCOFFEE 0.606 0.884 0.329 0.342 0.203 0 0.505 

        

tRNA Synthestase Class I (E and Q)    

24%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 2.600 0          

FASTA 2.662 2.108 0        

ALIGN 2.054 1.595 1.107 0      

CLUSTALW 1.880 1.532 1.470 1.053 0    

TCOFFEE 2.275 2.114 1.712 1.851 1.303 0 1.821 

        

DNA Methylase       

23%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 1.375 0          

FASTA 3.442 2.056 0        

ALIGN 2.871 3.523 0.626 0      

CLUSTALW 3.354 2.984 1.687 1.590 0    

TCOFFEE 2.709 3.211 1.833 1.544 2.069 0 2.325 

        

Type II DNA Topoisomerase, Domains 2-4    

22%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 0.000 0          

FASTA 2.110 2.110 0        

ALIGN 2.129 2.129 0.129 0      

CLUSTALW 2.557 2.557 0.805 0.836 0    

TCOFFEE 2.403 2.403 0.486 0.521 0.503 0 1.445 

        

Pyridoxal-Phosphate Dependent Enzymes    

21%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 6.141 0          

FASTA 3.761 6.370 0        

ALIGN 3.045 3.770 4.030 0      

CLUSTALW 1.698 5.344 3.735 2.224 0    
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TCOFFEE 3.425 3.536 4.622 0.762 2.755 0 3.681 

        

Iron/Ascorbate Oxidoreductase     

20%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 6.000 0          

FASTA 11.757 8.990 0        

ALIGN 3.924 2.287 9.824 0      

CLUSTALW 3.850 2.365 9.864 0.239 0    

TCOFFEE 4.055 2.176 9.759 0.474 0.466 0 5.069 

        

FAD Binding Domain in Molybdopterin Dehydrogenase   

19%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 2.655 0          

FASTA 0.490 2.917 0        

ALIGN 0.481 2.790 0.352 0      

CLUSTALW 0.699 2.975 0.324 0.422 0    

TCOFFEE 0.638 3.000 0.301 0.327 0.199 0 1.238 

        

Leucine Rich Repeats in Splicesomal U2A/' Protein and Internalin B 

19%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 4.404 0          

FASTA 1.960 3.793 0        

ALIGN 3.057 3.996 2.641 0      

CLUSTALW 3.636 4.122 2.689 1.967 0    

TCOFFEE 2.751 3.870 1.891 1.026 1.552 0 2.890 

        

Asp/Glu/Hydontoin Racemase     

18%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 6.438 0          

FASTA 1.294 7.294 0        

ALIGN 4.732 3.049 5.701 0      

CLUSTALW 4.860 3.012 5.855 0.663 0    

TCOFFEE 8.863 4.500 9.698 4.275 4.180 0 4.961 

        

Polysaccharide Lyase Family 8, N Terminal Domain   

18%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 2.572 0          

FASTA 1.206 3.132 0        
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ALIGN 2.082 2.367 2.254 0      

CLUSTALW 1.149 3.125 1.169 1.959 0    

TCOFFEE 2.230 1.670 2.798 1.258 2.367 0 2.089 

        

PHBH-like        

17%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 3.707 0          

FASTA 7.070 5.627 0        

ALIGN 4.703 4.881 6.505 0      

CLUSTALW 4.822 3.729 5.811 3.830 0    

TCOFFEE 5.285 4.515 5.962 3.199 1.517 0 4.744 

 

 
D. Varying Code used for Sequence Alignment- Weighted RMSD Superposition. 
 

Weighted 
RMSD        

        

Serine/Threonine Protein Phosphatase   AVG 
39%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 0.035 0          

FASTA 0.004 0.033 0        

ALIGN 0.009 0.041 0.009 0      

CLUSTALW 0.034 0.001 0.033 0.041 0    

TCOFFEE 0.004 0.034 0.000 0.009 0.033 0 0.021 

        

Eukaryotic Glutathione Synthase     

37%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 0.027 0          

FASTA 0.045 0.045 0        

ALIGN 0.032 0.030 0.047 0      

CLUSTALW 0.061 0.083 0.075 0.074 0    

TCOFFEE 0.030 0.034 0.062 0.022 0.070 0 0.049 

        

Interferon alpha, beta, and delta     

35%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 0.292 0          

FASTA 0.345 0.306 0        

ALIGN 0.220 0.217 0.228 0      

CLUSTALW 0.529 0.438 0.449 0.330 0    

TCOFFEE 0.520 0.430 0.445 0.322 0.011 0 0.339 
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Adenosylmethionine Decarboxylase     

33%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 0.102 0          

FASTA 0.057 0.105 0        

ALIGN 0.055 0.107 0.014 0      

CLUSTALW 0.124 0.153 0.101 0.113 0    

TCOFFEE 0.105 0.117 0.104 0.099 0.174 0 0.102 

        

Clostridial Neurotoxin Zinc Protease     

31%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 0.240 0          

FASTA 0.031 0.224 0        

ALIGN 0.031 0.224 0.000 0      

CLUSTALW 0.011 0.235 0.031 0.031 0    

TCOFFEE 0.011 0.232 0.028 0.028 0.010 0 0.091 

        

Sulfatase        

29%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 0.231 0          

FASTA 0.072 0.169 0        

ALIGN 1.478 1.652 1.542 0      

CLUSTALW 0.184 0.088 0.120 1.643 0    

TCOFFEE 0.043 0.046 0.046 1.515 0.148 0 0.598 

        

Protocatechuate-3,4-Dioxygenase, alpha and beta chains  

28%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 0.230 0          

FASTA 0.087 0.240 0        

ALIGN 0.056 0.214 0.055 0      

CLUSTALW 0.150 0.252 0.090 0.133 0    

TCOFFEE 0.086 0.240 0.006 0.052 0.092 0 0.132 

        

Aminotransferase Class IV      

27%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 0.159 0          

FASTA 0.156 0.225 0        

ALIGN 0.152 0.243 0.037 0      

CLUSTALW 0.155 0.236 0.024 0.020 0    

TCOFFEE 0.057 0.204 0.139 0.124 0.130 0 0.137 

        

SpoU rRNA Methylase 
Family      
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26%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 0.398 0          

FASTA 0.361 0.486 0        

ALIGN 0.361 0.495 0.046 0      

CLUSTALW 0.297 0.528 0.215 0.213 0    

TCOFFEE 0.258 0.207 0.428 0.449 0.457 0 0.347 

        

FMN Oxidoreductase       

25%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 0.418 0          

FASTA 0.117 0.443 0        

ALIGN 0.639 0.618 0.618 0      

CLUSTALW 0.085 0.369 0.140 0.577 0    

TCOFFEE 0.064 0.402 0.167 0.677 0.118 0 0.363 

        

Queuine tRNA-Ribosyltransferase     

25%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 0.370 0          

FASTA 0.029 0.352 0        

ALIGN 0.029 0.352 0.000 0      

CLUSTALW 0.079 0.331 0.058 0.058 0    

TCOFFEE 0.102 0.420 0.109 0.109 0.149 0 0.170 

        

tRNA Synthestase Class I (E and Q)     

24%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 0.629 0          

FASTA 0.088 0.870 0        

ALIGN 0.406 1.051 0.412 0      

CLUSTALW 0.521 0.982 0.503 0.173 0    

TCOFFEE 0.377 0.935 0.363 0.195   0 0.536 

        

DNA Methylase       

23%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 0.144 0          

FASTA 0.026 0.141 0        

ALIGN 0.057 0.125 0.061 0      

CLUSTALW 0.159 0.442 0.157 0.125 0    

TCOFFEE 0.081 0.203 0.095 0.083 0.203 0 0.140 

        

Type II DNA Topoisomerase, Domains 2-4    

22%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            
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SIM 0.000 0          

FASTA 0.682 0.682 0        

ALIGN 0.700 0.700 0.054 0      

CLUSTALW 1.356 1.356 1.600 1.581 0    

TCOFFEE 1.368 1.368 1.503 1.485 0.307 0 0.983 

        

Pyridoxal-Phosphate Dependent Enzymes    

21%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 0.520 0          

FASTA 0.438 0.671 0        

ALIGN 0.625 0.925 0.918 0      

CLUSTALW 0.640 0.887 0.850 0.328 0    

TCOFFEE 0.667 0.974 0.903 0.182 0.204 0 0.649 

        

Iron/Ascorbate Oxidoreductase     

20%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 0.870 0          

FASTA 0.684 1.272 0        

ALIGN 1.662 0.951 2.123 0      

CLUSTALW 1.741 0.997 2.226 0.155 0    

TCOFFEE 1.703 1.051 2.163 0.074 0.104 0 1.185 

        

FAD Binding Domain in Molybdopterin Dehydrogenase   

19%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 0.904 0          

FASTA 0.675 1.242 0        

ALIGN 0.245 0.688 0.736 0      

CLUSTALW 0.320 0.611 0.844 0.118 0    

TCOFFEE 0.328 0.597 0.834 0.138 0.052 0 0.555 

        

Leucine Rich Repeats in Splicesomal U2A/' Protein and Internalin B  

19%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 0.751 0          

FASTA 0.139 0.869 0        

ALIGN 1.067 1.614 1.037 0      

CLUSTALW 1.067 0.325 1.183 1.916 0    

TCOFFEE 0.761 0.801 0.872 1.032 1.048 0 0.965 

        

Asp/Glu/Hydontoin Racemase     

18%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 0.384 0          

FASTA 0.343 0.494 0        
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ALIGN 0.355 0.247 0.318 0      

CLUSTALW 0.614 0.549 0.364 0.346 0    

TCOFFEE 0.584 0.624 0.290 0.426 0.267 0 0.414 

        

Polysaccharide Lyase Family 8, N Terminal Domain   

18%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 0.341 0          

FASTA 0.445 0.231 0        

ALIGN 0.751 0.502 0.336 0      

CLUSTALW 0.508 0.331 0.250 0.334 0    

TCOFFEE 0.840 0.586 0.476 0.201 0.408 0 0.436 

        

PHBH-like        

17%ID BLAST SIM FASTA ALIGN CLUSTALW TCOFFEE  

BLAST 0            

SIM 1.074 0          

FASTA 0.942 0.651 0        

ALIGN 1.540 1.737 2.096 0      

CLUSTALW 1.134 0.661 0.474 2.245 0    

TCOFFEE 1.494 0.553 1.056 1.745 1.069 0 1.231 
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A2.5 An alternate version of Figure 3.4 with selenomethionine added to the sequence 

of 1GZ0. 
 

Correcting the ββββ-sheet in Figure 4 of the text. Python bioparsers ignore HET groups, 

regardless of their inclusion in the protein chain. In the PDB file 1GZ0, methionine 

residues (MET) are replaced with selenomethionine (MSE) and labeled HETATM. (A) 

The sequence alignment changes when X (bold, blue font ) is used to represent MSE. 

Residues with a weighting of 40% or greater in the wRMSD overlay are shown with red 

asterisks, which now includes atoms from the β-sheet region (blue box). (B, next page) 

The weighted superposition is shown for both sequence alignments, the one without MSE 

as shown in Figure 4 of the paper (left) and the one with MSE included (right). The 

superposition is unchanged because the wRMSD procedure can compensate for the error, 

but the resulting weights in the β-sheet region (highlighted by the arrow) are affected. 

The color code of the weights is the same as in Figures 2 and 4 in the paper. 
 

 

1IPA IKELARLLERKHRDSQRRFLIEGAREIERALQAGIELEQALVWEGGLNPEEQQVYAALLA  

     :     ::::     :  :   : ::  : :     :  ::   :         :      

1GZ0 IHAVQALLERAPERFQEVFILKG-REDKRLLP----LIHALESQGVVIQLANRQY----- 

 

 

1IPA  LLEVSEAVLKKLSVRDNPAGLIALARMPERTLEEYRPSPDAL------ILVAVGLEKPG  

      : : :              : ::    : :   :    ::          :   :   :     

1GZ0  LDEKSDGAVHQ--------GIIARVK-PGRQYQENDLPDLIASLDQPFLLILDGVTDPH 

                                 *                    ***********   

 

1IPA  NLGAVLRSADAAGAEAVLV---AGGVDLYSPQVIRNSTGVVFSLRTLAASESEVLDWIK 

      :::: ::::::::  :: :              :       :   :    

1GZ0  NLGACLRSADAAGVHAVIVPKDRSAQLNATAKKVACGAAESVPLIRV—TNLARTXRXLQ 

      *******************                                *      * 

 

1IPA QHNLPLVATTPHAEALYWEANLRPPVAIAVGPEHEGLRAAWLEAAQTQVRIPMQGQADSL  

        :   : :   :             :   : : :: :    :       ::  :  ::   

1GZ0 EENIWIVGTAGEADHTLYQSKXTGRLALVXGAEGEGXRRLTREHCDELISIPXAGSVSSL 

      * ******************** ******************************     *              

 

1IPA  NVSVSAALLLYEALRQR  

      ::::     : :: :::    

1GZ0  NVSVATGICLFEAVRQR  

 ***************** 

 

 

ββββ-sheet 
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B 

wRMSD superposition when MSE IS NOT 
included in the initial sequence alignment 

(as in Figure 4 of the paper) 

wRMSD superposition when MSE IS 
included in the initial sequence alignment 

(as given in section S3A above) 

ββββ-sheet ββββ-sheet 
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APPENDIX 3 

Exploring Experimental Sources of Multiple Protein Conformations in      

Structure-Based Drug Design 

A3.1 Structures and inhibition constants of the ten unique cyclic urea ligands. 

1BVE (NMR structure) and 1QBS (crystal structure) are bound to same cyclic 

urea ligand. Inhibition constants were obtained from the Binding MOAD database; values 

are pulled from the crystal structure papers referenced in A3.2. 
 

 

PDB ID         Ki (nM)              Cyclic Urea Ligand 

 

1BVE/1QBS 0.33  

   

 

1AJX  12.0 

 

 

1DMP  0.34  
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1HVR  0.31  

 

 

 

1HWR  4.70  

 

 

1PRO  0.01  

 

 

1QBR  0.03  

 

 

1QBT  0.02  

 

 

 

1QBU  0.06 

 

 

1T7K  N/A 
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A3.3  MPS NMR and crystal structure pharmacophore models. 

Coordinates and RMSD for the pharmacophore models (radii of the elements are 

determined from the RMSD). Coordinates provided are relative to the restrained 

minimized average NMR structure. 
 

 

A. MPS NMR pharmacophore model. 

Elem. Type  Coordinates (x, y, z)   RMSD, Å 
Donor       -0.1611, -3.0595, -5.2083    1.04 
Donor          2.6602, -3.2735, -4.1087  0.90 
Aro|Hyd    -4.1929, -2.7413, -9.9160     1.07 
Aro|Hyd      6.6589, -4.9417, -0.1864    1.04 
Aro|Hyd      1.3605, -4.1510, -2.3492     0.88 
Aro|Hyd      1.3024, -2.7065, -7.4530     0.91 
Aro|Hyd      2.7215, -3.2545, -9.4311     0.87 
Aro|Hyd    -0.9180, -6.3930, -1.3636     1.08 
Ex Vol        -0.9630, -0.0937, -3.6953    1.50 
Ex Vol          3.1599, 0.1924, -4.0376  1.50 
 
 
 
B. Average NMR pharmacophore model. 
 
Elem. Type  Coordinates (x, y, z)   RMSD, Å 
Donor          2.2589, -3.4029, -4.6702     0.75 
Donor       -0.3882, -3.3633, -5.5292     0.66 
Donor        -0.1471, -0.7050, -11.8712     1.01 
Donor         3.5497, -4.8143, 2.1128     0.50 
Aromatic       -0.0177, -5.6019, -0.9173     0.44 
Aromatic          2.5906, -3.1309, -9.3923     0.36 
Aro|Hyd    -3.9996, -2.7591, -10.0458     0.70 
Aro|Hyd      0.9839, -4.1726, -2.5660    0.65 
Aro|Hyd      1.1833, -2.9642, -7.6859     0.74 
Aro|Hyd      6.6757, -5.0684, 0.0844     0.63 
Ex Vol        -1.3370, -0.3760, -4.0790     1.50 
Ex Vol               2.9700,  0.1380, -4.2960     1.50 
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C. MPS cu-crystal pharmacophore model. 
 
Elem. Type  Coordinates (x, y, z)   RMSD, Å 
Donor          2.4152, -2.4095, -4.7692     0.62 
Donor       -0.0731, -2.5531, -4.5108     0.56 
Acceptor          1.3437, -6.6043, -5.6621     0.80 
Aromatic         0.6738, -6.7983, 2.2868     1.35 
Aromatic          1.7913, -2.4492, -11.7215     0.60 
Aro|Hyd    -3.3554, -2.9588, -9.7970     1.04 
Aro|Hyd      1.4747, -3.4045, -2.8660     0.75 
Aro|Hyd     0.6975, -2.5271, -6.4520     0.75 
Aro|Hyd      5.9341, -5.1557, -0.3034     0.89 
Aro|Hyd      3.2395, -4.1574, -9.0405     1.11 
Aro|Hyd    -0.5012, -5.9069, -1.6563     1.17 
Ex Vol             -1.4028, 0.4679, -3.4277     1.50 
Ex Vol               3.5914, 0.7441, -4.1807     1.50 
 
 
 
D. MPS all-crystal pharmacophore model. 
 
Elem. Type  Coordinates (x, y, z)   RMSD, Å 
Donor       -0.1078, -2.6451, -4.6182     0.68 
Donor          2.4448, -2.4559, -4.8834     0.70 
Acceptor          1.5220, -6.3965, -5.6347     0.53 
Aromatic        -0.1250, -3.3718, -6.9840     1.05 
Aromatic         2.7582, -4.2537, -2.9076     0.96 
Aromatic          1.8569, -1.9610, -12.0313     1.01 
Aromatic          0.6104, -5.7236, 2.1739     1.06 
Aro|Hyd    -3.6092, -3.0254, -9.5565    0.99 
Aro|Hyd      6.0061, -5.0509, -0.4301     0.98 
Aro|Hyd    -0.7590, -5.8742, -1.8651     1.09 
Aro|Hyd     3.2866, -3.6945, -8.8517     1.18 
Ex Vol        -1.3470, 0.4254, -3.4447     1.50 
Ex Vol          3.5239, 0.8270, -4.1748     1.50 
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A3.4  Raw pharmacophore screening data. 

The raw data from all pharmacophore models screens. The first column, W, 

provides the factor that was multiplied by the consensus cluster RMSD. The second 

column contains the % true positives values found by dividing the number of known 

active hits by 89 and multiplying by 100. The third column reports the % inactive hits 

divided by 85 and multiplied by 100. The last column contains distance values 

( ( ) 22 )%1(%0 vestruepositiivesfalseposit −+− ); the smaller the value the closer the point 

on the ROC plot is to (100% true positives, 0% false positives) indicating the most 

optimal pharmacophore models. The bolded numbers represent the optimal 

pharmacophore models, again optimal being defined as the models that reduce the 

amount of false positives while sacrificing the least true positives.   

 

 

A. MPS NMR pharmacophore model- 89 Known Inhibitors vs. 85 Decoys. 

 
    W       % True Positives        % False Positives     distance from (0,100) 
 

 6 of 8   7 of 8   8 of 8    6 of 8   7 of 8   8 of 8    6 of 8   7 of 8   8 of 8 

    1         65        22         0          5            0          0          35        78        100         

 1 1/3      87        55        15         9            1          0          16        45         85        

    1 2/3      94        80        43        22           6          0          23        21         57        

       2         99        90        66        32          11         0          32        15         34         

    2 1/3      99        92        75        36          14         5          36        16         25         

    2 2/3      99        93        87        41          20         9          41        21         16         

       3         99        95        90        44          27        13         44        27         16         

 
 
 



291 

 

B. Average NMR pharmacophore model- 89 Known Inhibitors vs. 85 Decoys. 
 
 
    W          % True Positives            % False Positives           distance from (0,100) 

8 of 10  9 of 10  10 of 10   8 of 10  9 of 10  10 of 10   8 of 10  9 of 10  10 of 10   

     1          0            0            0             0            0            0            100       100       100        

  1 1/3       0            0            0             0            0            0            100       100       100      

     1 2/3       1            0            0             0            0            0             99        100       100      

        2          6            0            0             1            0            0             74        100       100      

     2 1/3      26           1            0             1            0            0             74         99        100      

     2 2/3      54           8            0             2            0            0             46         92        100      

        3         69          14           0             4            1            0             32         87        100      

C. MPS cu-crystal pharmacophore model- 89 Known Inhibitors vs. 85 Decoys. 

 
    W          % True Positives            % False Positives           distance from (0,100) 

 9 of 10 10 of 11 11 of 11   9 of 10 10 of 11 11 of 11   9 of 10 10 of 11 11 of 11    

      1          0            0            0             0            0            0            100       100       100      

   1 1/3       0            0            0             0            0            0            100       100       100      

      1 2/3      10           0            0             0            0            0             90        100       100      

         2         34           7            0             0            0            0             66         93        100      

      2 1/3      71          22           1             0            0            0             29         78         99      

      2 2/3      89          54          11            6            0            0             13         46         89     

         3         90          72          21            7            1            0             12         28         79     

      3 1/3      92          84          39           13           6            0             15         17         61      

      3 2/3      96          85          56           17           7            1             17         16         44     

         4         96          87          65           22           8            4             23         16         35     
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D. MPS all-crystal pharmacophore model- 89 Known Inhibitors vs. 85 Decoys. 
    

    W              % True Positives                         % False Positives                   

           8 of 11 9 of 11 10 of 11 11 of 11 8 of 11 9 of 11 10 of 11 11 of 11  

        1          0          0            0            0         0            0            0          0           

     1 1/3       0          0            0            0         0            0            0          0        

     1 2/3      15         0            0            0         0            0            0          0                   

        2         50         5            0            0         2            0            0          0            

     2 1/3      71        24           1            0         8            1            0          0            

     2 2/3      87        56          11           0        14           2            0          0           

        3         87        67          34           3        19           7            4          0            

    

D. cont. 

 

   W            distance from (0,100) 

           8 of 11 9 of 11 10 of 11 11 of 11    

    1         100       100       100       100           

     1 1/3     100       100       100       100           

     1 2/3      85        100       100       100                     

        2         51         96        100       100           

     2 1/3      30         76         99        100           

     2 2/3      20         44         89        100                       

        3         23         32         66         97           
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E. MPS NMR pharmacophore model- 89 Known Inhibitors vs. 2322 Compounds. 

 
   W       % True Positives        % False Positives     distance from (0,100) 

6 of 8   7 of 8   8 of 8    6 of 8   7 of 8   8 of 8    6 of 8   7 of 8   8 of 8 

    1         65        22         0          0            0          0          34        78        100         

 1 1/3      87        55        15         2            0          0          14        45         85        

    1 2/3      94        80        43        12           1          0          13        20         57        

       2         99        90        66        27           3          0          27        10         34         

    2 1/3      99        92        75        43           8          0          43        11         25         

    2 2/3      99        93        87        64          17         2          64        19         14         

       3         99        95        90        76          29         4          76        29         11         

 
F. MPS cu-crystal pharmacophore model- 89 Known Inhibitors vs. 2322 Compounds. 

 
   W          % True Positives            % False Positives           distance from (0,100) 

             9 of 10 10 of 11 11 of 11   9 of 10 10 of 11 11 of 11   9 of 10 10 of 11 11 of 11    

     1          0            0            0             0            0            0            100       100       100      

  1 1/3       0            0            0             0            0            0            100       100       100      

     1 2/3      10           0            0             0            0            0             90        100       100      

        2         34           7            0             0            0            0             66         93        100      

     2 1/3      71          22           1             0            0            0             29         78         99      

     2 2/3      89          54          11            3            0            0             12         46         89     

        3         90          72          21            6            1            0             12         28         79      

     3 1/3      92          84          39           14           2            0             16         16         61      

     3 2/3      96          85          56           25           4            0             25         15         44     

       4         96          87          65           35           8            1             35         16         35    
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A3.5  Identified false positives. 

 
A. 4 False Positives for the optimal average NMR pharmacophore model: 8/10, 
3×RMSD.  
 

Renin Inhibitor 

Growth Promoter 
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B. 9 False Positives for the optimal NMR pharmacophore model: 7/8, 2.0×RMSD.

Renin Inhibitor 

Growth Promoter 

Transition State Mimic- Endothelin Inhibitor 

Renin Inhibitor 

Oxytotic Peptide 
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C. 6 False Positives for the optimal cu-crystal pharmacophore model, 9/11: 
3×RMSD. 
 
 

Renin Inhibitor 

Renin Inhibitor 

Growth Promoter 
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APPENDIX 4 

Accounting for Multiple Protein Conformations in Ranking Ligand Databases 

A4.1 DOCK code modifications. 

Global variables added to:  global.h, dock.c, grid.c 

/* KLM global vbles */ 

extern float sphere_array_KLM[1500][8]; 

extern int sphere_number_KLM; 

extern char sphere_name_KLM[81]; 

 

Code added to dock.c 

/*KLM file for sphere */ 

  FILE *klm_file; 

 
 
/* KLM read sphere file */ 

 

  printf ("Please enter sphere file (full path):\n"); 

  gets (sphere_name_KLM); 

  printf ("you entered: %s\n", sphere_name_KLM); 

  printf ("Please enther number of spheres (max 1500):\n"); 

  scanf ("%d", &sphere_number_KLM); 

  printf ("you entered: %d\n", sphere_number_KLM); 

 

  if ( (klm_file = fopen(sphere_name_KLM, "r")) != NULL ) 

  { 

    printf ("file DID open\n"); 

  } 

 

  for (i=0; i<sphere_number_KLM; i++) 

  { 

    fscanf (klm_file, "%d %f %f %f %f %f %f %f", 

&sphere_array_KLM[i][0], &sphere_array_KLM[i][1], 

&sphere_array_KLM[i][2 
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], &sphere_array_KLM[i][3], &sphere_array_KLM[i][4], 

&sphere_array_KLM[i][5], &sphere_array_KLM[i][6], &sphere_array_KLM[ 

i][7]); 

 

  } 

 

  fclose (klm_file); 

 

Code added to score.c 

/* /////////////////////////////////////////////////////////////// 

 

Routine to identify all receptor atoms near the ligand atom 

and compute a continuous intermolecular score. 

 

2/97 te 

 

/////////////////////////////////////////////////////////////// */ 

 

void calc_inter_score_cont 

( 

  SCORE_GRID *grid, 

  void  *score, 

  float  distance_cutoff, 

  void  calc_inter_score 

                  (SCORE_GRID *, void *, LABEL *, MOLECULE *, 

                  int, int, SCORE_PART *), 

  LABEL  *label, 

  MOLECULE *molecule, 

  int  atom, 

  SCORE_PART *inter 

) 

{ 

  int i, j, k; 

  int ilo, jlo, klo; 

  int ihi, jhi, khi; 

  int grid_cutoff; 

  int grid_coord[3]; 

  int index; 

  int rec_atom; 

  SLINT *ptr; 

 

/*printf ("I'm in calc_inter_score_cont \n"); 

*/ 

 

  get_grid_coordinate (grid, molecule->coord[atom], grid_coord); 

  grid_cutoff = (int) (distance_cutoff / grid->spacing) + 1, 

 

/* original code 

  ilo = MAX (0, (grid_coord[0] - grid_cutoff)); 

  jlo = MAX (0, (grid_coord[1] - grid_cutoff)); 

  klo = MAX (0, (grid_coord[2] - grid_cutoff)); 

  ihi = MIN (grid->span[0], (grid_coord[0] + grid_cutoff + 1)); 

  jhi = MIN (grid->span[1], (grid_coord[1] + grid_cutoff + 1)); 
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  khi = MIN (grid->span[2], (grid_coord[2] + grid_cutoff + 1)); 

 

  for (i = ilo; i < ihi; i++) 

    for (j = jlo; j < jhi; j++) 

      for (k = klo; k < khi; k++) 

      { 

        index = 

          grid->span[0] * grid->span[1] * k + 

          grid->span[0] * j + i; 

 

        for (ptr = grid->atom[index]; ptr; ptr = ptr->next) 

        { 

          rec_atom = ptr->value; 

          calc_inter_score 

          ( 

            grid, 

            score, 

            label, 

            molecule, 

            atom, 

            rec_atom, 

            inter 

          ); 

        } 

 

      } 

*/ 

 

/* KLM changes */ 

/* change so it only goes through once */ 

 

  ilo = MAX (0, (grid_coord[0] - grid_cutoff)); 

  jlo = MAX (0, (grid_coord[1] - grid_cutoff)); 

  klo = MAX (0, (grid_coord[2] - grid_cutoff)); 

  ihi = MIN (grid->span[0], (grid_coord[0] + grid_cutoff + 1)); 

  jhi = MIN (grid->span[1], (grid_coord[1] + grid_cutoff + 1)); 

  khi = MIN (grid->span[2], (grid_coord[2] + grid_cutoff + 1)); 

 

          rec_atom = 1; 

 

          calc_inter_score 

          ( 

            grid, 

            score, 

            label, 

            molecule, 

            atom, 

            rec_atom, 

            inter 

          ); 

 

/* KLM commented out this grid searching thing - above just forced it 

to only call calc_inter_score once  

*/ 

/*  for (i = ilo; i < ihi; i++) 

    for (j = jlo; j < jhi; j++) 

      for (k = klo; k < khi; k++) 
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      { 

        index = 

          grid->span[0] * grid->span[1] * k + 

          grid->span[0] * j + i; 

        if (ptr = grid->atom[index]) 

        {  

          rec_atom = ptr->value; 

printf ("index is %d, rec_atom is %d, gridatom index is %d  \n", index, 

rec_atom, *ptr); 

 

          calc_inter_score 

          ( 

            grid, 

            score, 

            label, 

            molecule, 

            atom, 

            rec_atom, 

            inter 

          ); 

        }  

 

      } 

*/ 

} 

 

/* /////////////////////////////////////////////////////////////// 

 

Routine to compute the intermolecular chemical score in a continuous 

fashion given a ligand atom and a receptor atom. 

 

2/97 te 

 

/////////////////////////////////////////////////////////////// */ 

 

void calc_inter_chemical_cont 

( 

  SCORE_GRID *grid, 

  SCORE_ENERGY *energy, 

  LABEL  *label, 

  MOLECULE *molecule, 

  int  atom, 

  int  rec_atom, 

  SCORE_PART *inter 

) 

{ 

 

/* KLM modifications */ 

  extern int sphere_number_KLM; 

  extern float sphere_array_KLM[1500][8]; 

  int i; 

  float xlig, ylig, zlig, xdiff, ydiff, zdiff, rad, dist; 

  FILE *file; 

  float array [397][8]; 

  int flush; 

  char Caro[10] = "C.ar"; 

  char Naro[10] = "N.ar"; 
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  char Chyd[10] = "C.3"; 

  char Nam[10] = "N.am"; 

  char N4[10] = "N.4"; 

  char N3[10] = "N.3"; 

  char O3[10] = "O.3"; 

  char *type[10]; 

/**/ 

 

  float vdwA, vdwB, electro; 

  int count = 0; 

 

 

  if (label->vdw.member[grid-

>receptor.atom[rec_atom].vdw_id].well_depth != 0.0) 

  { 

 

/*    printf ("if clause value is %f \n",label->vdw.member[grid-

>receptor.atom[rec_atom].vdw_id].well_depth); 

*/ 

    calc_pairwise_energy 

    ( 

      energy, 

      label, 

      molecule, 

      &grid->receptor, 

      atom, 

      rec_atom, 

      &vdwA, 

      &vdwB, 

      &electro 

    ); 

 

/* commenting out original function  

    inter->vdw += (vdwA - vdwB * 

      label->chemical.score_table 

        [molecule->atom[atom].chem_id] 

        [grid->receptor.atom[rec_atom].chem_id]) * energy->scale_vdw; 

*/ 

/* leave electrostatic part alone */ 

 

    inter->electro += electro * energy->scale_electro; 

 

/*    inter->total = inter->vdw + inter->electro; 

*/ 

 

/*  KLM scoring function */ 

 

    xlig = molecule->coord[atom][0]; 

    ylig = molecule->coord[atom][1]; 

    zlig = molecule->coord[atom][2]; 

 

    if (molecule->atom[atom].heavy_flag == TRUE) 

    { 

/*printf ("starting if loop "); 

printf ("xcoord is %f %f %f  ", xlig, ylig, zlig);  

printf ("atomType is %s \n", molecule->atom[atom].type); 

*/ 
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      *type = molecule->atom[atom].type; 

 

      for (i=0; i<sphere_number_KLM; i++) 

      { 

 

/* printf ("sphere is %f, %f, %f\n", sphere_array_KLM[i][1], 

sphere_array_KLM[i][2], sphere_array_KLM[i][3]); 

 printf ("rad is %f next is %d next is %d next is %f \n", 

sphere_array_KLM[i][4], sphere_array_KLM[i][5], sphere_array_KLM[i][6], 

sphere_array_KLM[i][7]); 

 

 

printf ("sphere_array_KLM is %f sphere number is %d\n", 

sphere_array_KLM[i][7], i); 

*/  

        xdiff = (xlig-sphere_array_KLM[i][1]); 

        ydiff = (ylig-sphere_array_KLM[i][2]); 

        zdiff = (zlig-sphere_array_KLM[i][3]); 

 

/*printf ("diffs are: %f, %f, %f", xdiff, ydiff, zdiff); 

*/ 

        dist = sqrt( (xdiff*xdiff) + (ydiff*ydiff) + (zdiff*zdiff) ); 

 

/*printf ("dist is %f\n", dist);  

*/ 

 

        if (dist <= sphere_array_KLM[i][4]) 

        { 

/*          printf ("dist is within rad %f  type is %s  label is %f 

Caro is %s\n", dist, *type, sphere_array_KLM[i][7], Caro); 

 

if ( strcmp(*type, Caro) == 0) 

{ 

printf ("type and Caro agree!\n"); 

} 

*/ 

          if ( sphere_array_KLM[i][7] == 5 ) 

          { 

/*            printf ("too close to ex vol :( id is %f spheres num is 

%d sphere xcoord is %f %f %f dist is %f\n", sphere_array_KLM[i][7], i, 

sphere_array_KLM[i][1], sphere_array_KLM[i][2], sphere_array_KLM[i][3], 

dist); 

*/ 

            inter->vdw += sphere_array_KLM[i][5] * 

sphere_array_KLM[i][6]; 

          }  

 

 

          if ( ((strcmp(*type, Caro) == 0) || (strcmp(*type, Naro) == 

0)) && (sphere_array_KLM[i][7] == 1) ) 

          { 

/*           printf ("aromatic chemistry agrees :) id is %f sphere 

number is %d\n", sphere_array_KLM[i][7], i); 

*/ 
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            inter->vdw -= sphere_array_KLM[i][5] * 

sphere_array_KLM[i][6]; 

/*            printf ("inter->vdw w/in loop is %f\n", inter->vdw); 

*/ 

          } 

 

          if ( ((strcmp(*type, Caro) == 0) || (strcmp(*type, Chyd) == 

0)) && (sphere_array_KLM[i][7] == 2) ) 

          { 

/*            printf ("hydrophobic chemistry agrees :) id is %f sphere 

number is %d\n", sphere_array_KLM[i][7], i); 

*/ 

            inter->vdw -= sphere_array_KLM[i][5] * 

sphere_array_KLM[i][6]; 

/*            printf ("inter->vdw w/in loop is %f\n", inter->vdw); 

*/ 

          } 

 

          if ( ((strcmp(*type, Nam) == 0) || (strcmp(*type, O3) == 0) 

            || (strcmp(*type, N4) == 0)  || (strcmp(*type, N3) == 0)) 

&& (sphere_array_KLM[i][7] == 3) ) 

          { 

/*            printf ("hydrogen bond chemistry agrees :) id is %f 

sphere number is %d\n", sphere_array_KLM[i][7], i); 

*/ 

            inter->vdw -= sphere_array_KLM[i][5] * 

sphere_array_KLM[i][6]; 

/*            printf ("inter->vdw w/in loop is %f\n", inter->vdw); 

*/ 

          } 

        } 

        else 

        { 

/*printf ("dist is too big\n");  

*/ 

        } 

      } 

    } 

   

 

  inter->total = inter->vdw + inter->electro; 

 

/*printf ("inter->total score is: %f\n", inter->total); 

*/ 

 

  } 

 

} 
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A4.2 Modified DOCK parameter files. 

A. Chem_score 

label null 

label hydrophobic 

label   aromatic 

label donor 

 

table 

1 

0 5 

0 0 1 

0 0 0 10  

B. Chem_match 

label   null 

label hydrophobic 

label   aromatic 

label donor 

label   acceptor 

 

table 

1 

0 1 

0 0 1 

0 0 0 1 

0       0       0       0       1  

C. Chem.defn 

______________________________________________________________________ 

name  hydrophobic 

 

definition C. [ O. ] [ N. [ 2 O.2 ] [ 2 C. ] ] ( * ) 

definition      C.ar 

definition N.pl3 ( 3 C. ) 

definition Cl ( C. ) 

definition Br ( C. ) 

definition I ( C. ) 

definition C.3 [ * ] 

______________________________________________________________________ 

name            aromatic 
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definition      C.ar 

______________________________________________________________________ 

name  donor 

 

definition N. ( H ) 

definition      O. ( H ) 

definition      N.4 ( H ) 

______________________________________________________________________ 

name            acceptor 

 

definition      O. [ H ] [ N. ] ( * ) 

definition      O.3 ( 1 * ) [ N. ] 

definition      O.co2 ( C.2 ( O.co2 ) ) 

definition      N. [ H ] [ N. ] [ O. ] [ 3 . ] ( * )  

definition      O.2 [ * ] 

______________________________________________________________________ 
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A4.3 Example INDOCK file. 

flexible_ligand                no 

orient_ligand                  yes 

score_ligand                   yes 

minimize_ligand                no 

multiple_ligands               yes 

parallel_jobs                  no 

random_seed                    293847 

match_receptor_sites           yes 

random_search                  no 

automated_matching             no 

maximum_orientations           5000 

write_orientations             yes 

rank_orientations              yes 

rank_orientation_total         1 

nodes_minimum                  4 

nodes_maximum                  1000 

distance_tolerance             0.25 

distance_minimum               2 

check_degeneracy               no 

reflect_ligand                 no 

critical_points                no 

chemical_match                 yes 

intermolecular_score           yes 

gridded_score                  no 

contact_score                  no 

chemical_score                 yes 

energy_score                   no 

energy_cutoff_distance         999 

distance_dielectric            yes 

dielectric_factor              4 

attractive_exponent            6 

repulsive_exponent             12 

atom_model                     u 

vdw_scale                      1 

electrostatic_scale            1 

ligands_maximum                500000 

initial_skip                   0 

interval_skip                  0 

heavy_atoms_minimum            0 

heavy_atoms_maximum            5000 

rank_ligands                   no 

ligand_atom_file               ../general_DHFR_inhibs_peoe.mol2 

receptor_site_file             dhfr_c10_a125_RMSD05.sph 

receptor_atom_file             receptor.mol2 

vdw_definition_file            

/users/kdamm/DOCK/kld_dock/parameter/vdw.defn 

chemical_definition_file       ../chem_all.defn 

chemical_match_file            ../chem_match_all.tbl 

chemical_score_file            ../chem_score.tbl 

ligand_chemical_file           LOW_dhfr_c10_4-2.mol2 

info_file                      LOW_dhfr_c10_4-2.info 
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 A4.4 Raw atomistic pharmacophore screening data. 

Tables A-E: Effect of varying the number of minimum required nodes (m), inter-node 

distance (d), the distance tolerance (t), and cluster size cut-off (c) on virtual screening 

performance using the 1HHP model. Two excluded volumes were used to represent the 

floor of the active site with a scoring penalty of 100. The Cummings et al. data set was 

used consisting of 1025 compounds seeded with 5 HIV-1p inhibitors. For a given fraction 

of the ranked database, the number of known HIV-1p inhibitors identified is shown along 

with the sum of the ranks of the 5 inhibitors and the number of compounds scored by 

DOCK.   

 

Table A: DOCK parameters 3m - 4d and 0.25t.  

  

            

15 (110) 0 1 2 2 5 1048 963 50,63,257,288,390 

14 (114) 0 0 1 2 5 1163 965 91,121,273,307,371 

13 (117) 0 1 1 2 5 1028 967 33,134, 246,267,348 

12 (124) 0 0 1 3 5 829 970 100,112,114,236,267 

11 (131) 0 1 1 3 5 861 981 38,128,188,241,271 

10 (140) 0 0 1 3 5 829 982 48,141,193,212,225 

9 (148) 1 1 3 5 5 744 981 17,56,100,230,341 

8 (157) 1 2 3 4 5 476 988 20,44,89,118,205 

7 (170) 0 1 3 4 5 705 991 47,79,95,157,327 

6 (185) 1 1 2 4 5 645 994 18,70,133,133,291 

5 (205) 1 2 3 3 5 689 993 10,40,82,222,335 

4 (237) 0 1 3 4 5 768 998 38,54,56,147,473 

3 (291) 0 1 3 4 5 800 999 25,66,99,193,417 

1 (399) 0 1 2 3 4 960 1000 37,70,132,207,514 

 

      Top Ranked Compounds  Sum of Ranks   # Ranked Cmpds              RANK 
 

        2%    5%    10%   20%  50%     c  (# spheres) 
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Table B: DOCK parameters 3m - 4d and 0.30t.  

 
 
            

15 (110) 0 0 2 2 5 1059 968 54,89,209,295,415 

14 (114) 0 0 1 2 5 1192 969 95,177,290,292,338 

13 (117) 0 0 1 2 5 1150 971 99,160,257,258,376 

12 (124) 0 0 2 3 5 843 972 76,101,138,239,289 

11 (131) 0 1 1 2 5 946 985 37,118,247,255,289 

10 (140) 0 0 1 2 5 863 986 54,106,209,223,271 

9 (148) 0 0 2 3 5 763 986 66,97,131,219,250 

8 (157) 0 1 2 5 5 560 991 29,86,111,132,202 

7 (170) 0 1 3 4 5 729 994 51,80,88,182,328 

6 (185) 1 1 1 4 5 722 996 16,122,125,128,331 

5 (205) 1 3 4 4 5 599 994 12,41,30,92,414 

4 (237) 0 3 3 4 5 706 999 30,35,49,129,463 

3 (291) 1 2 2 4 4 937 1000 7,33,148,197,552 

1 (399) 0 0 1 2 4 1165 1002 52,110,218,220,564 

 

      Top Ranked Compounds  Sum of Ranks   # Ranked Cmpds              RANK 
 

        2%    5%    10%   20%  50%     c  (# spheres) 

 

 

Table C: DOCK parameters 4m - 2d and 0.25t.  

 
 

            

15 (110) 0 1 1 2 5 913 924 23,141,207,256,276 

14 (114) 0 1 1 2 5 1069 932 33,137,215,260,424 

13 (117) 0 0 1 2 5 1143 943 85,127,248,288,395 

12 (124) 0 1 1 3 5 903 966 43,152,161,240,307 

11 (131) 0 0 2 2 5 1100 971 56,75,244,352,373 

10 (140) 0 0 1 2 5 1282 978 53,112,344,382,391 

9 (148) 0 1 2 4 5 799 980 22,85,104,124,463 

8 (157) 1 2 2 3 5 898 991 10,32,104,328,424 

7 (170) 0 2 2 4 5 864 996 22,39,130,169,504 

6 (185) 1 2 2 3 5 774 1003 5,27,171,271,300 

5 (205) 2 2 3 4 5 517 1009 1,20,77,198,221 

4 (237) 0 1 3 3 5 792 1011 31,54,62,330,315 

3 (291) 0 2 3 3 5 884 1020 21,30,77,338,418 

1 (399) 0 1 3 4 5 595 1023 47,56,84,199,209 

 

      Top Ranked Compounds  Sum of Ranks   # Ranked Cmpds              RANK 
 

        2%    5%    10%   20%  50%     c  (# spheres) 
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Table D: DOCK parameters 4m - 2d and 0.30t.  

 
 
            

15 (110) 0 0 2 2 5 1059 968 54,86,209,295,415 

14 (114) 0 0 1 2 5 1192 969 95,117,290,292,338 

13 (117) 0 0 1 2 5 1044 957 86,108,259,264,327 

12 (124) 0 1 2 3 5 840 981 24,70,150,262,334 

11 (131) 0 1 2 2 5 983 981 48,85,212,271,367 

10 (140) 0 0 1 1 5 1182 986 74,218,263,284,343 

9 (148) 0 1 3 3 5 686 990 41,64,71,224,286 

8 (157) 1 1 2 3 5 989 1004 18,75,142,353,401 

7 (170) 1 2 3 4 5 715 1007 18,47,95,157,398 

6 (185) 1 1 2 4 5 552 1008 14,55,116,148,219 

5 (205) 2 2 4 5 5 314 1016 2,14,55,70,173 

4 (237) 2 3 3 3 5 694 1018 9,11,26,302,346 

3 (291) 0 1 3 3 5 950 1022 23,81,98,368,380 

1 (399) 0 1 1 3 5 902 1024 32,118,142,217,393 

 

      Top Ranked Compounds  Sum of Ranks   # Ranked Cmpds              RANK 
 

        2%    5%    10%   20%  50%     c  (# spheres) 

 

Table E: DOCK parameters 4m - 3d and 0.30t.  

  

            

15 (110) 0 2 2 4 5 633 754 27,33,116,135,322 

14 (114) 1 2 2 4 5 628 763 13,24,128,157,306 

13 (117) 0 2 2 3 5 723 769 40,46,118,221,298 

12 (124) 1 2 3 4 5 578 781 13,21,65,136,343 

11 (131) 0 2 2 3 5 707 828 28,29,140,209,301 

10 (140) 1 2 2 4 5 616 838 17,49,137,189,224 

9 (148) 0 2 2 2 5 995 846 28,34,258,305,370 

8 (157) 1 2 2 3 5 716 853 7,29,129,229,322 

7 (170) 1 2 3 4 5 516 870 16,26,100,168,206 

6 (185) 2 2 3 5 5 352 890 2,18,60,132,140 

5 (205) 2 2 2 4 5 635 897 3,9,112,204,307 

4 (237) 1 1 2 3 5 891 922 2,95,204,224,366 

3 (291) 1 1 3 4 5 568 942 2,84,96,121,265 

1 (399) 2 2 4 4 5 529 948 1,17,83,94,334 

 

      Top Ranked Compounds  Sum of Ranks   # Ranked Cmpds              RANK 
 

        2%    5%    10%   20%  50%     c  (# spheres) 
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Tables F-I: Virtual screening performance of the four HIV-1p pharmacophore models 

(1HHP, 3HVP, 3PHV, and CONS) using the optimal dock parameters, 4m - 3d and 0.25t 

along with an excluded volume penalty of 10. The Cummings et al. data set was used 

consisting of 1025 compounds seeded with 5 HIV-1p inhibitors. For a given fraction of 

the ranked database, the number of known HIV-1p inhibitors identified is shown along 

with the sum of the ranks of the 5 inhibitors and the number of compounds scored by 

DOCK.   

Table F: 1HHP, RMSD cut-off = 1.00 Å (755 spheres) 

  

            

18 (98) 2 2 2 2 5 983 669 9,10,269,278,417 

17 (103) 2 2 3 4 5 665 681 3,19,85,153,405 

16 (107) 2 2 4 4 5 575 706 5,16,76,80,398 

15 (110) 2 2 4 4 5 584 722 5,20,75,90,394 

14 (114) 2 2 3 4 5 624 730 3,15,89,116,401 

13 (117) 2 2 3 4 5 583 737 5,15,89,172,302 

12 (124) 2 3 4 4 5 459 751 5,19,45,98,292 

11 (131) 2 2 2 3 5 730 792 10,17,167,251,285 

10 (140) 0 2 2 2 5 780 799 21,47,207,230,275 

9 (148) 1 2 2 3 5 820 807 20,41,200,243,316 

8 (157) 1 2 3 4 5 642 820 10,41,94,180,317 

7 (170) 0 2 3 3 5 688 841 21,28,73,256,310 

6 (185) 1 2 2 3 5 688 862 3,22,108,219,336 

5 (205) 1 2 2 2 5 792 878 3,32,207,271,279 

4 (237) 1 2 2 2 5 930 907 4,30,246,374,76 

3 (291) 2 2 2 3 5 726 929 3,10,132,254,327 

1 (399) 2 3 3 4 5 517 937 1,20,29,131,336 

 

      Top Ranked Compounds  Sum of Ranks   # Ranked Cmpds              RANK 
 

        2%    5%    10%   20%  50%     c  (# spheres) 
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Table G: 3HVP RMSD cut-off = 0.75 Å (768 spheres) 
 

            

20 (94) 1 2 2 2 5 1030 746 9,28,260,292,441 

19 (102) 1 2 2 2 5 890 783 3,35,232,298,322 

18 (107) 1 2 2 2 5 897 840 1,26,254,298,318 

17 (109) 1 2 2 2 5 918 843 1,37,259,299,322 

16 (116) 1 2 3 3 5 788 855 3,36,189,215,345 

15 (122) 2 2 2 3 5 670 857 5,15,129,239,282 

14 (128) 2 2 2 5 5 490 856 3,14,109,170,194 

13 (134) 2 2 2 3 5 781 872 5,18,165,240,353 

12 (137) 1 2 2 3 5 751 874 3,22,164,273,289 

11 (144) 1 2 2 2 5 1009 885 19,37,283,315,355 

10 (154) 1 1 3 3 5 675 902 5,76,90,236,268 

9 (167) 1 1 3 3 5 711 906 13,68,98,262,270 

8 (176) 1 1 3 3 5 848 909 10,76,98,294,370 

7 (192) 1 2 2 2 5 884 922 16,43,236,282,307 

6 (215) 1 2 2 3 5 807 924 1,51,156,274,325 

5 (246) 1 1 2 3 5 753 934 2,54,157,251,289 

4 (285) 1 2 4 4 5 529 941 16,29,83,85,316 

3 (347) 0 0 0 4 5 774 950 115,135,138,141,245 

1 (478) 0 1 3 4 5 582 958 30,75,56,168,233 

 

      Top Ranked Compounds  Sum of Ranks   # Ranked Cmpds              RANK 
 

        2%    5%    10%   20%  50%     c  (# spheres) 

 

 
Table H: 3PHV RMSD cut-off = 1.00 Å (750 spheres) 
 

            

15 (90) 1 2 3 3 4 879 765 1,25,55,274,524 

14 (97) 1 2 3 5 5 385 806 3,22,75,134,151 

13 (99) 2 2 3 4 5 532 810 3,19,96,126,288 

12 (106) 1 3 3 5 5 416 828 6,46,47,145,172 

11 (111) 1 2 2 3 5 684 837 3,29,122,214,316 

10 (117) 1 1 2 3 5 876 853 12,57,202,273,332 

9 (126) 2 2 2 3 5 796 878 5,11,196,279,305 

8 (132) 1 2 2 2 5 1101 885 1,47,272,333,448 

7 (142) 1 2 2 2 5 960 902 3,44,273,274,366 

6 (156) 1 2 2 2 5 980 918 2,46,285,309,338 

5 (177) 1 1 2 3 5 1074 928 7,69,192,382,424 

4 (213) 1 2 2 2 5 1140 946 8,27,275,390,440 

3 (264) 1 2 2 3 5 970 959 6,22,148,370,424 

1 (365) 2 2 2 2 5 868 970 2,11,210,207,338 

 

      Top Ranked Compounds  Sum of Ranks   # Ranked Cmpds              RANK 
 

        2%    5%    10%   20%  50%     c  (# spheres) 

 

 



312 

 

Table I: CONS RMSD cut-off = 1.25 Å (807 spheres) 

 
 

            

100 (183) 0 2 2 2 5 1261 764 26,46,303,435,451 

65 (204) 0 0 2 2 4 1412 767 61,73,292,458,528 

60 (212) 0 0 2 2 5 1274 828 75,88,273,405,433 

50 (218) 0 2 2 3 5 706 856 26,29,114,206,331 

45 (233) 0 2 2 3 5 754 910 23,27,121,213,370 

40 (253) 1 1 2 2 5 1025 937 8,72,226,347,372 

35 (267) 1 2 3 3 5 743 945 6,43,68,298,328 

30 (289) 1 2 2 2 5 917 957 6,31,245,257,378 

27 (304) 1 1 2 3 5 809 963 10,53,198,224,329 

25 (315) 1 2 2 3 5 897 962 19,39,150,269,420 

22 (332) 1 2 2 4 5 813 962 6,31,181,198,397 

20 (342) 1 2 2 2 5 1029 968 14,47,228,335,405 

18 (352) 1 2 2 2 5 984 970 10,48,205,332,389 

17 (358) 1 2 2 2 5 921 971 7,33,207,292,382 

16 (371) 1 2 2 2 5 976 972 9,44,281,306,336 

15 (389) 1 2 2 3 5 752 974 13,27,116,269,327 

14 (396) 1 1 2 3 5 896 976 4,56,194,283,359 

13 (408) 2 2 2 2 5 963 978 3,17,253,319,371 

12 (423) 1 1 2 3 5 903 978 2,58,169,309,365 

11 (432) 1 2 2 3 5 802 978 2,30,151,300,319 

10 (449) 1 2 3 3 5 644 980 1,25,102,231,285 

9 (465) 1 2 2 3 5 741 981 2,44,135,272,288 

8 (486) 2 2 2 2 5 870 981 7,8,240,252,363 

7 (513) 2 2 3 4 5 581 981 6,20,102,132,321 

6 (556) 2 2 3 4 5 713 982 4,8,101,198,402 

5 (615) 1 3 3 4 5 642 981 5,40,42,143,412 

 

      Top Ranked Compounds  Sum of Ranks   # Ranked Cmpds              RANK 
 

        2%    5%    10%   20%  50%     c  (# spheres) 
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APPENDIX 5 

Inhibition of HIV-1p By Modulating its Conformational Behavior of the Flap 

Region 

A5.1 MPS “eye” pharmacophore model. 

Coordinates and RMSD for the pharmacophore model (radii of the elements are 

determined from the RMSD). Coordinates provided are relative to 1HHP monomer. 
 

A. Isotropic pharmacophore model. 

Elem. Type  Coordinates (x, y, z)   RMSD, Å 
Aromatic         37.223    38.637    -5.538      1.22 
Aromatic         34.737    39.215    -6.802      1.22 
Aromatic         30.129    37.435    -7.590      1.05 
Hydrophobic     37.650    39.514    -7.048      1.21 
Hydrophobic    35.959    38.190    -9.007      1.41   
Donor            37.526    35.713    -4.966      1.26 
Acceptor         32.651    37.225    -4.985      1.51 
 
 
B. Atomistic pharmacophore model. 

Sphere  

Number     x        y         z        r    weight   

------------------------------------------------------ 

AROMATIC 

   1     34.617   39.721   -8.997    0.750    1 

   2     35.586   40.821   -4.707    0.750    1 

   3     34.727   39.960   -3.889    0.750    1 

   4     36.015   39.878   -9.076    0.750    1 

   5     28.907   36.396   -9.749    0.750    1 

   6     28.271   36.629   -8.703    0.750    1 

   7     36.305   40.830   -7.549    0.750    1 
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   8     29.287   39.621   -8.291    0.750    1 

   9     33.197   37.494   -5.658    0.750    1 

   10    38.409   40.425   -4.640    0.750    3 

   11    36.068   40.062   -3.472    0.750    1 

   12    36.845   39.726   -2.518    0.750    1 

   13    37.552   40.574   -3.364    0.750    2 

   14    35.667   41.339   -6.331    0.750    2 

   15    35.589   37.851   -3.766    0.750    1 

   16    33.086   39.978   -6.213    0.750    8 

   17    38.638   39.318   -3.830    0.750    2 

   18    37.446   39.480   -3.203    0.750    1 

   19    32.090   38.284   -5.288    0.750    1 

   20    30.656   37.540   -5.556    0.750    1 

   21    30.759   37.707   -6.391    0.750    1 

   22    36.420   36.973   -4.491    0.750    1 

   23    29.221   36.767   -6.601    0.750    9 

   24    28.450   38.043   -7.536    0.750    6 

   25    29.742   39.294   -6.770    0.750    4 

   26    28.978   35.503   -8.385    0.750    2 

   27    34.631   41.328   -5.281    0.750    1 

   28    30.105   37.515   -6.912    0.750    1 

   29    35.515   37.452   -7.328    0.750    1 

   30    30.933   37.717   -9.421    0.750    1 

   31    30.142   38.927   -9.001    0.750    2 

   32    35.840   38.753   -8.847    0.750    1 

   33    36.590   38.802   -3.418    0.750    3 

   34    36.376   39.318   -8.123    0.750    7 

   35    34.429   40.245   -5.431    0.750    6 

   36    30.491   38.738   -7.347    0.750    8 

   37    29.164   38.383   -6.014    0.750    4 

   38    36.022   38.518   -4.254    0.750    2 

   39    29.970   35.927   -6.552    0.750    1 

   40    29.432   37.875   -8.767    0.750    2 

   41    39.345   37.980   -6.110    0.750    1 

   42    33.066   38.755   -5.135    0.750    2 

   43    37.970   36.463   -5.886    0.750    1 

   44    34.623   38.624   -4.438    0.750    1 

   45    36.985   39.375   -4.353    0.750    3 

   46    30.056   35.243   -7.784    0.750    1 

   47    29.827   37.641   -9.922    0.750    2 

   48    37.129   36.804   -6.758    0.750    2 

   49    38.142   38.129   -4.166    0.750    2 

   50    37.891   37.913   -5.630    0.750    3 

   51    37.173   36.947   -5.829    0.750    1 

   52    29.807   36.541   -9.131    0.750    1 

   53    36.667   37.436   -5.960    0.750    6 

   54    30.982   36.278   -8.024    0.750    1 

   55    30.872   36.445   -6.533    0.750    5 

   56    34.385   38.572   -7.475    0.750    2 

   57    38.791   40.005   -6.018    0.750    1 

   58    31.887   37.325   -6.476    0.750    4 

   59    36.812   39.564   -5.744    0.750    1 

   60    32.512   38.649   -6.108    0.750    4 

   61    35.056   40.659   -6.963    0.750    2 

   62    32.941   38.763   -7.497    0.750    6 

   63    34.402   38.535   -5.461    0.750    5 

   64    30.175   36.017   -7.739    0.750    8 
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   65    29.312   36.721   -8.430    0.750    2 

   66    37.034   37.977   -7.524    0.750    2 

   67    37.851   40.159   -7.799    0.750    1 

   68    31.092   37.992   -8.018    0.750    9 

   69    31.993   38.263   -7.215    0.750    2 

   70    33.563   37.795   -6.622    0.750    1 

   71    37.442   40.546   -6.507    0.750    1 

   72    35.648   38.008   -6.064    0.750    7 

   73    35.251   37.505   -6.499    0.750    3 

   74    34.098   37.922   -7.139    0.750    7 

   75    36.021   37.764   -5.081    0.750    2 

   76    37.234   37.643   -4.823    0.750    6 

   77    37.627   39.529   -5.744    0.750    3 

   78    34.845   38.828   -7.951    0.750    4 

   79    34.669   39.942   -7.116    0.750    1 

   80    38.177   39.180   -4.843    0.750    2 

   81    37.342   40.055   -7.429    0.750    1 

   82    33.742   38.880   -7.104    0.750    1 

   83    34.735   39.293   -6.000    0.750    2 

   84    38.988   38.954   -4.926    0.750    2 

   85    38.203   39.416   -6.268    0.750    1 

   86    38.635   38.043   -5.352    0.750    5 

   87    38.176   37.262   -6.051    0.750    3 

   88    37.598   38.418   -4.628    0.750    2 

   89    30.712   36.906   -8.483    0.750    7 

   90    30.399   37.482   -8.837    0.750    3 

   91    36.455   38.515   -5.850    0.750    5 

   92    38.718   38.988   -6.366    0.750    8 

   93    37.716   38.715   -6.778    0.750    3 

   94    35.482   39.435   -6.201    0.750    2 

   95    37.568   39.706   -6.895    0.750    7 

   96    34.025   39.257   -7.805    0.750    1 

   97    36.867   39.032   -6.956    0.750    5 

   98    36.115   38.624   -6.825    0.750    1 

   99    35.225   39.716   -6.752    0.750    2 

  100    34.565   39.320   -6.865    0.750    1 

  101    35.164   38.912   -6.569    0.750    5 

  102    34.130   39.599   -7.293    0.750    5 

  103    35.160   38.569   -7.187    0.750    2 

  104    36.467   40.154   -5.582    0.750    1 

  105    36.069   39.961   -6.555    0.750    9 

  106    36.345   39.177   -6.527    0.750    3 

 

HYDROPHOBIC 

  107    34.945   38.251  -10.549    0.750    1 

  108    36.254   40.103   -9.109    0.750    1 

  109    34.798   39.729   -8.809    0.750    1 

  110    36.295   40.436   -7.560    0.750    1 

  111    34.719   37.631   -9.508    0.750    1 

  112    35.986   38.076  -11.380    0.750    1 

  113    34.851   38.652   -9.284    0.750    1 

  114    37.378   38.535   -6.062    0.750    1 

  115    36.103   39.173  -10.316    0.750    1 

  116    36.997   37.871   -6.734    0.750    1 

  117    36.159   37.156  -10.296    0.750    6 

  118    36.295   37.869   -9.048    0.750    7 

  119    39.385   39.349   -6.428    0.750    1 
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  120    37.943   39.936   -6.939    0.750    8 

  121    37.297   41.269   -7.276    0.750    3 

  122    34.999   38.496   -7.894    0.750    6 

  123    38.468   38.631   -6.733    0.750    3 

  124    37.165   38.644   -7.859    0.750    8 

  125    36.064   38.118   -7.322    0.750    2 

 

DONOR 

  126    37.679   34.664   -4.203    0.750    1 

  127    38.167   36.500   -5.268    0.750    8 

  128    36.154   35.397   -4.390    0.750    1 

 

ACCEPTOR 

  129    31.138   34.840   -5.183    0.750    1 

  130    33.272   36.039   -4.427    0.750    1 

  131    32.817   35.236   -5.980    0.750    2 

  132    32.828   38.203   -2.985    0.750    3 

  133    32.476   37.262   -3.603    0.750    1 

  134    31.840   37.594   -4.579    0.750    1 

  135    30.757   36.944   -6.538    0.750    1 

  136    32.331   38.696   -4.593    0.750    1 

  137    31.932   37.441   -5.936    0.750    1 

  138    33.550   38.456   -4.635    0.750    3 

  139    33.133   37.272   -5.994    0.750    9 

  140    31.474   36.435   -5.441    0.750    2 
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A5.2  93 Identified Compounds from MPS pharmacophore screen grouped by 60% 

chemical similarity and overlap. 
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A5.3  Analysis of implicit-solvation Langevin Dynamics simulations. 

 
Distance calculated between the flap tip residue I50 Cα to the catalytic residue D25 Cα 
throughout the MD trajectory. This metric quantifies the flap movement in the vertical 
direction. Compound 1 is bound to Monomer A (i.e., Flap A). 
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