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ABSTRACT 
 

Little and An (2004) proposed a penalized spline propensity prediction (PSPP) 

method of imputation of missing values that yields robust model-based inference under 

the missing at random assumption. The propensity score for a missing variable is 

estimated and a regression model is fit with the spline of the propensity score as a 

covariate. The predicted marginal mean of the missing variable is doubly robust (DR) 

under the misspecification of the imputation model.  

 

In the first part of the thesis, we study properties of a simplified version of the 

PSPP that does not center the regressors prior to including them in the prediction model. 

We then extend the PSPP to multivariate data with both continuous and categorical 

variables so as to yield consistent estimates of both marginal and conditional means. The 

extended PSPP method is compared with the PSPP method and simple alternatives in a 

simulation study. 

 

For the second part of the thesis, we compare the PSPP method with several other 

DR estimators. The PSPP method uses a spline of propensity score to impute the missing 

values and the resulting estimates have a double robustness property. The DR property 

can also be achieved by modeling the relationship parametrically, such as the linear in the 

weight method and calibration method (Firth and Bennett, 1998; Scharfstein, Rotnitzky 

and Robins, 1999; Robins, Rotnitzky and Zhao, 1994; Scharfstein, Rotnitzky and Robins, 

1999). We compare root mean square error (RMSE), width of confidence interval and 

non-coverage rate of the PSPP method and these alternatives under different mean 

functions and propensity score functions. We also study the effects of sample size and 

misspecification of the propensity scores. The PSPP method yields estimates with smaller 

RMSE and width of confidence interval compared with other methods under most 

situations. It yields estimates with non-coverage rates close to the 5% nominal level. 
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For the third part of the thesis, we extend the PSPP methods to the monotone 

missing data. We propose to impute the missing values based on a stepwise PSPP 

procedure and simulation studies show the stepwise PSPP method yields consistent 

marginal and conditional mean estimates. We illustrate the proposed method by applying 

it to an online weight loss study conducted by Kaiser Permanente. We finish the thesis 

with a short discussion and future work. 
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CHAPTER I 
 

INTRODUCTION 
 
 

Missing data arise in scientific research for many reasons. For example, in a two 

stage clinical study, a subset of subjects is selected for expensive medical tests and those 

who have not been selected will have missing values. On the other hand, subjects who 

have been selected may drop out of the study so that it is impossible to collect test results. 

No matter what are the reasons, it is important to include the information in the 

incomplete cases in the analysis to yield efficient estimators and better inferences.  

 

A dataset with missing values can be described by the missing-data pattern, which 

indicates which observations are present and which are missing. Let ( )ijY y=  be a 

 rectangular data set with the  row (n p× ) thi 1( ,..., )i i ipy y y= , where is the 

observation for subject i , 

ijy

thj 1,..., .j p=  Let ( ij )M m=  be a missing-data indicator 

matrix with the  row , such that thi 1(m m ,..., )i i ipm= 1ijm =  if is missing and ijy 0ijm =  if 

is present. The matrix ijy M  then represents the missing data pattern of the dataset Y . 

We assume that ( , )i iy m  are independent over throughout the dissertation. i

 

We first focus on the univariate missing data, where missingness confines to a 

single variable. Let 1( ,..., , )pX X Y denote a ( 1p )+ -dimensional vector of variables with 

subject to missing values and Y 1,..., pX X  fully observed covariates. We consider the 

problem of estimating the mean of Y, and the conditional means of Y in subclasses 

defined by a categorical variable, and the regression coefficient of Y on a continuous 

variable. 

 1   
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  Estimation of the marginal and conditional means of Y requires the assumptions 

on the missing-data mechanism, which concerns the relationship between the missingness 

and the values of the variables in the data matrix. Rubin (1976) treated M as a random  

matrix and described the missing data mechanism by the conditional distribution of 

M given Y , ( | ,f M Y )φ , where φ  denotes unknown parameters. When missingness 

does not depend on Y , missing or observed, that is,  

 ( | , ) ( | ) for all , ,f M Y f M Yφ φ φ=  

the data are called missing complete at random (MCAR). If the missingness depends only 

on , the observed part of obsY Y , but not the missing part of Y , , that is  misY

 obs mis( | , ) ( | , ) for all ,f M Y f M Y Y ,φ φ φ=  

 then the missing data mechanism is called missing at random (MAR). If the missingness 

depends on the missing part of the variables, that is,  

 obs mis( | , ) ( | , , ) for all ,f M Y f M Y Yφ φ φ=  

then the data are called not missing at random (NMAR). MAR is a less restrictive 

assumption than MCAR. In applications researchers are encouraged to take efforts to 

render the MAR assumptions plausible by measuring covariates that characterize the 

nonrespondents (Little and Rubin, 1999). We assume the missing data are MAR 

throughout the dissertation. 

 

Many methods have been proposed to deal with missing information. A simple 

approach is complete-case analysis (CC), which deletes units with Y missing, so 

information contained in the deleted cases is lost. In the context of our problem, CC 

analysis yields consistent estimates of marginal mean of Y, if the missing-data 

mechanism is missing complete at random. But it yields biased estimates if the 

missingness of Y depends on the observed covariates 1,..., pX X  or depends on Y.   

 

Weighted complete-cases analysis is an alternative of the CC analysis (Little, 

1986; Horvitz, and Thompson, 1952; Cochran, 1968). Let r be the number of complete 

cases, the marginal mean of Y can be derived as  or 
1 1

ˆ ( ) /(
r r

i i i
i i

w y wμ
= =

= ∑ ∑ )
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1

ˆ ( )
r

i i
i

w y nμ
=

= ∑ /

ij i

. The weight, , is the design weight or the probability of being selected 

in sample surveys without nonresponse. For missing data due to nonresponse the weight 

is the inverse of the probability of being observed. When the weight is unknown, we can 

estimate it based on a set of observed variables that characterizes the respondents and 

nonrespondents. One way is to group subjects into subclasses based on a small set of 

observed covariates. Within each subgroup the respondents are a random sample of the 

subpopulation and the weight is the inverse of the proportion of the respondents. When 

the number of covariates increases, sub-grouping will lead to a large number of 

subclasses and in this case, propensity weighting will be an alternative (Cochran, 1965; 

Rosenbaum and Rubin, 1983, 1984, Little, 1986). The propensity score is a scalar 

function of the observed covariates. One can estimate the propensity score by a logistic or 

probit regression of M on the observed covariates and the weight can be derived as the 

inverse of the propensity score. The potential draw back of the propensity weighting is 

that it is may yield estimates with large variances because respondents with very small 

propensity scores will be assigned huge weights, which may lead to out-of-range 

estimates for the means (Little and Rubin, 2002).  

w

  

Complete-case analysis and weighted complete-case analysis delete subjects with 

missing values thus information contained in the covariates of the incomplete cases are 

lost. This loss of information may lead to less efficient estimators. To make full use of 

observed information we can use parametric approach to deal with missing data. For 

example, we can derive the marginal mean of Y based on a linear regression model 

0
1

p

i j
j

Y Xβ β
=

= + +∑ ε , where iε is the error term with 2~ (0, )i Nε σ . We can solve this 

model by maximum likelihood (ML) approach (Little and Rubin, 2002; Anderson, 1957; 

Rubin, 1974). The marginal mean of Y can be derived as , 

with , where 

1
1 1

ˆ ˆ( )r n
i ii i r

Y n y y−
= = +

= +∑ ∑

0
1

ˆ ˆˆ
p

i j
j

y Xβ β
=

= +∑ ij
ˆ

0
ˆ ,..., pβ β are the maximum likelihood estimators based on 

the complete cases. An alternative to the ML estimators is to add a prior distribution for 
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the parameters 0,..., pβ β and 2σ and derive the posterior distribution of Y given the 

covariates and the unknown parameters, 2
1 0( | ,..., , ,..., , )p pp Y X X β β σ  (Gelman, Carlin, 

Stern and Rubin, 1995). Missing values of Y and the unknown parameters 

0( ,..., )pβ β β=  and 2σ are drawn iteratively by Gibbs’ sampler or by Markov Chain 

Monte Carlo (MCMC) method (Casella and George, 1992; Geman and Geman, 1984). 

When the posterior distribution reaches stationary condition after Nth iteration, M sets of 

data are created such that within each data every missing is substituted by an 

independent draw from the posterior distribution. For each dataset a posterior mean of Y, 

iY

( )lY , , is derived as the average of the observed values and the posterior 

draws. The marginal mean of Y is the average the posterior means over the M datasets. 

Usually M needs to be a large number. However, if we can assume approximate 

normality for the poste ior d ribution of 

1,....,l = M

r ist β  and 2σ  given the observed data, 

2
0 1( ,..., , | ,..., )p pp X Xβ β σ , we only need to create a small number of datasets to estimate 

the marginal mean of Y, which is the idea of multiple imputation (Little and Rubin, 2002; 

Rubin, 1978). For each dataset the missing values are replaced by independent posterior 

draws and the complete data analysis technique is applied to each imputed dataset. The 

marginal mean of Y can be derived using Rubin’s combination rules (Rubin 1978, 1987, 

1996; Rubin and Schenker, 1986; Barnard and Rubin, 1999). Let ˆdμ be the estimated 

marginal me th dataset, 1,...,d Dan of the d = , where D is the total number of imputed 

datasets, the marginal mean of Y D

d
 is derived as 

1
ˆ ˆ /d Dμ μ

=
=∑ .  

 

The parametric approach described above is very efficient and yields consistent 

estimates if the model assumptions are correct. But the drawback is that it is very 

sensitive to model misspecification. In reality we can never guarantee the model 

assumptions are correct thus robust estimators are gaining more attention recently. 

Robins, Rotnitzky and Zhao (1994) and Rotnitzky, Robins and Scharfstein (1998) 

proposed a class of augmented orthogonal inverse probability-weighed estimators, which 

combine the features of the parametric prediction with the weighted estimation equations 
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(WEE). The marginal mean of Y can be derived by calibrating the predictions from a 

parametric model by adding mean of the weighted residuals,  

 1 1
1( ( | ,..., )) [ ( ( | ,..., )]

( )y p
ME E Y X X E Y E Y X X
Y

μ
π p
−

= + −  

where ( )Yπ is the probability of being observed. This leads to a calibration estimator of 
the form:  

  1 1

1 1

ˆ ˆ ˆ( ) ( (
n r

i i i
i i

n y n w y yμ − −

= =

= + −∑ ∑ ˆ ))i

PXwhere is the estimated weight for the ith subject, and 1ˆ 1/ Pr( 0 | ,..., )i iw M X= = ˆiy  is 

the prediction from a parametric model for the ith subject. There are three steps for the 

calibration method. Firstly a parametric model is fit to the complete cases and predictions 

are derived for all the subjects by substituting the covariates to the regression model. 

Secondly, the propensity score is estimated by a logistic regression or a probit model of 

M on 1,..., pX X . Then the marginal mean of Y  can be estimated by combining mean of 

the predictions with mean of the weighted residuals, where residuals are the differences 

of the observed values and the predicted values for the complete cases.  This method has 

a double robustness property meaning that if either the prediction model is correctly 

specified or the weight is correctly estimated, the marginal mean of Y is consistent. This 

class of estimators is further extended in Robins and Rotnitzky (2001), Lunceford and 

Davidian  (2004), Yu and Nan (2006).   

 

An alternative way to achieve robustness is to weaken the model assumptions; for 

example, we can fit models with robust mean functions. One of the methods is the linear 

in the weight prediction (LWP). It includes the weight as a linear term in the imputation 

model (Scharfstein, Rotnitzky and Robins, 1999; Bang and Robins, 2005) as follows.  

 2
1 1

ˆ( | ,..., ; ) ~ ( ( ,... ; ) * , )p pY X X N g X X Wβ β α σ+  

where 1
ˆ 1/ Pr( 1 | ,..., )PW R X= = X  is  the inverse of the estimated propensity score of 

respondents. Similar approach has been applied in the sample survey setting, where the 

weights are due to sampling rather than nonresponse (Sarndal, Swensson and Wretman, 

2003 ; Firth D. and Bennett, 1998). The linear in the weight prediction method has a 

similar double robustness property as the calibration estimators meaning that if either the 
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mean function of Y given the covariates are correctly specified or the weight is correctly 

estimated then the marginal mean of missing variable Y will be consistent. Like the 

calibration method, the first step of fitting a linear in the weight model estimates the 

propensity score, for example by a logistic regression model or a probit model of M on 

1,..., pX X ; in the second step, a regression of Y on the weight and the other covariates is 

fit parametrically. 

 

Semiparametric and non-parametric method is another approach to yield robust 

mean functions by capturing the nonlinear relationship between the variables. In 

particular, with p = 1 and single covariate X, one version of this approach is to base 

imputations on the penalized spline model ( )i iy s x iε= +

q
k

with truncated polynomial basis 

 0 1 1
( ) ... ( )Kq

q qkk
s x x x xβ β β β κ +=

= + + + + −∑   

where 1, x x  is known as the truncated power basis of degree 

q;

1,..., , ( ) ,..., ( )q q q
kx xκ κ+ +− −

1 .... Kκ < < κ

} q T D

are selected fixed knots and K is the total number of knots (Eilers and 

Marx, 1996; Ruppert, Wand and Carroll, 2003; Ngo and Wand, 2004). The penalized 

least squares estimator is obtained by minimizing 0 1
ˆ ˆ ˆ ˆ ˆ( ,..., , ,..., )T

q q qKβ β β β β=

 2 2
0 1 1

1

{ ( )
n

q Kj q
i j qk kj k

i

y x xβ β β κ λ β+= =
=

− − − − +∑ ∑ ∑ β  

where λ is a smoothing parameter and D = . The fitted values are 

=

1(0 ,1 )q Kdiag +

ŷ 2 1( )T q TX X X D X yλ −+ . This model can be fitted using a number of existing software 

packages, such as PROC MIXED in SAS (SAS, 1992; Ngo and Wand, 2004; Littell, 

Milliken, Stroup, and Wolnger. 1996; Ruppert, 2002) and lme() in S-plus (Pinheiro and 

Bates, 2000). With more than one covariate, one might extend this approach by fitting a 

multivariate spline. However, such models are subject to the curse of dimensionality 

when p is large, which relates to the difficulty of fitting nonparametric regression 

functions when the regressor space has high dimension. The Penalized Spline of 

Propensity Prediction (PSPP; Little and An 2004) method addresses this problem by 

restricting the spline to a particular function of covariates most sensitive to model 

misspecification, namely the propensity score. Little and An show that the PSPP method 
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yields an estimate of the marginal mean of the missing variable with a double robustness 

(DR) property, which means that the predicted marginal mean of Y will be consistent 

when either the mean function of Y given the covariates is correctly specified or the 

propensity score function is correctly specified. The robustness feature lies in the fact that 

the parametric function does not have to be correctly specified. A related approach is 

given by Zeng (2001), who reduces the dimension of the covariates to two, the propensity 

and a linear predictor, and then models the relationship of the outcome and these two 

variables by a bivariate nonparametric model.  

 
For the first part of the dissertation, we simplify and extend the PSPP method. 

Little and An's method requires centering of the covariates before adding them to the 

model parametrically. We show this centering is not necessary and simplify the PSPP 

method considerably. We prove that this simplified version has the same DR property as 

the model proposed by Little and An (2004). The simplified PSPP method is much easier 

for the practitioners. We then extend the simplified PSPP method to derive the 

conditional mean(s) of a missing variable given a covariate. A stratified PSPP method is 

proposed to derive the subgroup means given a categorical covariate. For continuous 

covariate, we propose a bivariate PSPP method. Both of these extensions consider the 

interaction of the propensity score and the covariate. Simulations show that these 

extensions yield consistent conditional means under different mean and propensity 

structures. We apply the stratified PSPP method to an online weight loss study conducted 

by Kaiser Permanente (Couper, Peytchev, Little, Strecher and Rothert, 2005).  

 

For the second part of the dissertation, we compare the PSPP method and several 

alternative doubly robust estimators. The PSPP method is based on the balance property 

of the propensity score, which means, conditioning on the propensity score and assuming 

MAR, missingness of Y does not depend on the covariates 1,..., pX X  (Rosenbaum and 

Rubin, 1983). Since we do not know the true relationship of Y and the propensity score, 

we use a spline of the propensity score to impute the missing values and the resulting 

estimates have a double robustness property. The DR property can also be achieved by 

modeling the relationship parametrically, such as linear in the weight prediction method 
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and the calibration estimators. However emphasis in previous research has been on 

asymptotic properties of the estimates, namely consistency and achieving the 

semiparametric efficiency bound (Firth and Bennett, 1998; Scharfstein, Rotnitzky and 

Robins, 1999; Bang and Robins, 2005; Robins, Rotnitzky and Zhao, 1994; Scharfstein, 

Rotnitzky and Robins, 1999). Consistency is a relatively weak property, and does not 

guarantee good confidence coverage of inferences in small or moderate sized samples. 

Semiparametric efficiency is also a fairly weak property since it is asymptotic and does 

not necessarily guarantee efficiency in finite samples. For the second part of the 

dissertation we compare root mean square error (RMSE), width of confidence interval 

and non-coverage rate of the above approaches for a range of sample sizes, when the 

regression model is misspecified. We also compare these methods when the propensity 

score is wrongly specified.  

 

In the third part of my dissertation, we extend the PSPP method to the monotone 

pattern of missing data, where variables can be arranged in a way that if jY  is missing in 

a unit then 1, 2j jY Y+ + ,…, are missing as well. Monotone pattern of missing data is 

common in longitudinal studies when some subjects drop out the study and do not return. 

We propose to impute the missing values in a stepwise procedure. The marginal 

propensity score is derived for each part of the missing variables. For the part where 

marginal propensity score is zero due to the missingness of the precedent variable(s), we 

cannot apply the PSPP method directly since there is no observed data with this 

propensity score. In this case we propose to borrow the propensity scores from the 

previous stages. Imputation of missing values is done in several steps according to the 

pattern of missing data. The part with least missing information is imputed first and then 

the imputed data is used to predict the missing values for the next part of data.  

Simulation studies show that the stepwise procedure yields satisfactory results. We 

illustrate our method by applying it to an online weight loss study conducted by Kaiser 

Permanente. We conclude the dissertation with a short discussion and future work in 

Chapter V.  

pY

   



    

CHAPTER II 

EXTENSIONS OF THE PENALIZED SPLINE PROPENSITY PREDICTION 

(PSPP) METHOD OF IMPUTATION 

 

Abstract 

Little and An (2004) proposed a penalized spline of propensity prediction (PSPP) method 

of imputation of missing values that yields robust model-based inference under the 

missing at random assumption. The propensity score for a missing variable is estimated 

and a regression model is fit that includes the spline of the estimated propensity score as a 

covariate. The predicted unconditional mean of the missing variable has a double 

robustness (DR) property under misspecification of the imputation model. We show that 

a simplified version of PSPP, which does not center other regressors prior to including 

them in the prediction model, also has the DR property. We also propose two extensions 

of PSPP, namely stratified PSPP and bivariate PSPP, that extend the DR property to 

inferences about conditional means.  These extended PSPP methods are compared with 

the PSPP method and simple alternatives in a simulation study and applied to an online 

weight loss study conducted by Kaiser Permanente.  

Keywords: missing at random, propensity, penalized spline. 
 

2.1 Introduction 

Missing data problems are common in many applications of statistics. In this 

paper, we consider univariate nonresponse, where the missingness is confined to a single 

variable. Let denote a 1( , ,..., )pY X X 1p +  dimensional vector of variables with Y subject 

to missing values and 1,..., pX X  fully observed covariates. We consider here the problem 

of estimating the mean of Y, and the conditional mean of Y in subclasses defined by a 

categorical X-variable, and the regression coefficient of Y on a continuous X-variable.

 9   
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Many statistical methods have been proposed for these problems. A simple 

approach is complete case analysis (CC), which deletes units with Y  missing, so 

information contained in the deleted cases is lost. In the context of our problem, CC 

analysis yields a consistent estimate of the overall mean of Y if missingness does not 

depend on any of the variables, and consistent estimate of the conditional mean of Y  

given a covariate 1X  if the missing-data mechanism depends on 1X , but does not depend 

on  or Y 2 ,..., pX X . Another approach is to impute missing values based on a parametric 

model, for example a linear regression model Y X0 1

p
i j ij= β ij

β ε
=

+ +∑ , where iε is the 

error term with 2~ (0, )i Nε σ . One can estimate 0( ,..., )pβ β  based on the complete cases 

and predict the missing values of Y by substituting X for that case into the regression 

equation. This approach is effective when the data are missing at random (Rubin 1976; 

Little and Rubin, 2002) and the regression model assumptions are correct, but can yield 

biased results when the model is misspecified. Semiparametric and nonparametric 

methods weaken the model assumptions and capture the nonlinear relationships between 

the variables. In particular, with p = 1 and single covariate X, one version of this 

approach is to base imputations on the penalized spline model y s( )i i ix ε= +

q
k

with 

truncated polynomial basis 

 0 1 1
( ) ... ( )Kq

q qkk
s x x x xβ β β β κ +=

= + + + + −∑  (1) 

where 1,  is known as the truncated power basis of degree 

q;

1,..., , ( ) ,..., ( )q q
kx x x xκ +− − qκ +

1 .... Kκ < < κ

} q T D

are selected fixed knots and K is the total number of knots (Eilers and 

Marx, 1996; Ruppert, Wand and Carroll, 2003; Ngo and Wand, 2004). The penalized 

least squares estimator is obtained by minimizing 0 1
ˆ ˆ ˆ ˆ ˆ( ,..., , ,..., )T

q q qKβ β β β β=

 2 2
0 1 1

1

{ ( )
n

q Kj q
i j qk kj k

i

y x xβ β β κ λ β+= =
=

− − − − +∑ ∑ ∑ β  

where λ is a smoothing parameter and D = . The fitted values are 

=

1(0 ,1 )q Kdiag +

ŷ 2 1( )T q TX X X D X yλ −+ . This model can be fitted using a number of existing software 

packages, such as PROC MIXED in SAS (SAS, 1992; Ngo and Wand, 2004) and lme() 

in S-plus (Pinheiro and Bates, 2000). This imputation model is strictly speaking 
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parametric, but mimics a nonparametric method when K  is large, since the form of the 

relationship between Y and X is very flexible.  

 

With more than one covariate, one might extend this approach by fitting a 

multivariate spline. However, such models are subject to the curse of dimensionality 

when p is large, which relates to the difficulty of fitting nonparametric regression 

functions when the regressor space has high dimension. Penalized Spline of Propensity 

Prediction (PSPP; Little and An 2004) addresses this problem by restricting the spline to 

a particular function of covariates most sensitive to model misspecification, namely the 

propensity score. Little and An show that the PSPP method yields an estimate of the 

marginal mean of the missing variable with a double robustness (DR) property, described 

below in section 2.2. We propose a simplification of PSPP that does not center the 

regressors prior to including them in the prediction model.  

 

Little and An (2004) did not consider whether the PSPP yields robust estimates 

for other parameters, such as conditional means or regression coefficients. In section 2.3 

we provide examples to show that the PSPP method does not in general yield estimates of 

these parameters with the DR property. This motivates robust extensions of the PSPP 

method for estimating subgroup means and regression coefficients, which are described 

in sections 2.4 and 2.5. We apply the proposed methods to an online weight loss study in 

section 2.6, and section 2.7 presents concluding remarks. 

 

2.2 Penalized Spline of Propensity Prediction (PSPP) 

 Let  denote a vector of variables with Y subject to missing values 

and 

1( , ,..., )pY X X

1,..., pX X  fully-observed covariates. The missingness of Y  depends only on 

1,..., pX X , so the missing data mechanism is missing at random (Rubin, 1976). Let M be 

an indicator variable with 1M =  when is missing and Y 0M =  when is observed. 

Define the logit of the propensity for Y  to be observed as: 

Y

 ( )*
1=logit Pr( 0 | ,..., )pP M X= X  (2) 
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The key property of the propensity score is that, conditioning on the propensity score and 

assuming MAR, missingness of Y does not depend on 1,..., pX X  (Rosenbaum and Rubin, 

1983). Thus, the mean of Y can be written as 

  (3) *[(1 ) ] [ ( | )]y E M Y E M E Y Pμ = − + ×

Since the true relationship of Y and the propensity score is unknown, Little and An (2004) 

proposed to include the propensity score in the imputation model nonparametrically. This 

motivates the Penalized Spline of Propensity Prediction Method (PSPP), which is based 

on the following model: 

 
* * *

2 1 2

* * * *
2 2

( ,..., | ) ~ (( ( ),..., ( )), )

( | , ,..., ; ) ~ ( ( ) ( , ,... ; ), )
p p p

p p

X X P N s P s P

Y P X X N s P g P X X * 2β β σ
− Σ

+
 (4) 

where ( , )kN μ Σ  denotes the k-variate normal distribution with mean μ  and covariance 

matrix , , Σ * *( ) ( | )j js P E X P= 2,..., ,j p=  is a spline for the regression of jX on  of 

the form (1);  is the residual of the spline model and represents the part 

in 

*P

* ( )j j jX X s Y= − *

jX  not explained by the propensity score; is a spline of Y on  of the form (1) 

and g is a parametric function indexed by unknown parameter 

*( )s P *P

β  with 

 for all *( ,0,...,0; ) 0g Y β = β . One of the predictors, here 1X , is omitted from the g - 

function to avoid multicollinearity. The first step of fitting a PSPP model estimates the 

propensity score, for example by a logistic regression model of M on 1,..., pX X ; in the 

second step, the regression of Y on  is fit as a spline model with the other covariates 

included in the model parametrically in the g - function. 

*P

 

 The predicted mean of Y from model (4) has the following DR property:   

Theorem 1. Let ˆ yμ  be the prediction estimator for (3) based on model (4), and assume 

MAR. Then ˆ yμ  is a consistent estimator of yμ if either (a) the mean of Y given 

 in model (4) is correctly specified, or (b1) the propensity  is correctly 

specified, and (b2) for 

*
2( , ,..., )pP X X *P

* *( | ) (j jE X P s P= ) 2,...,j p=  and  The *( | ) ( * .E Y P s= )P
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robustness feature derives from the fact that the regression function does not have to be 

correctly specified ( Little and An, 2004).   

g

 

The covariates  in this theorem are centered by regressing *
2 ,..., pX X *

2 ,..., pX X  on 

splines of  and taking residuals. A simpler method adds *P 2 ,..., pX X  directly to the 

regression, without centering. We now show that this method also has the DR property: 

Theorem 2. The PSPP method based on model (4) can be simplified as follows:   

 * * *
2( | , ,..., ; ) ~ ( ( ) ( , ,... ; ), )pY P X X N s P g P X X 2

2 pβ β σ+  (5) 

that is, the covariates 2 ,..., pX X enter the parametric function g without centering. Let ˆ yμ  

be the prediction estimator for (3) based on model (5), and assume MAR, then ˆ yμ  has the 

same DR property as that derived from model (4) (see appendix for proof). For this 

reason, we focus on the uncentered version of the PSPP method for the remainder of the 

paper. 

 

2.3 PSPP is not doubly robust for subgroup means. 

The DR property of PSPP for estimating the marginal mean of Y does not extend 

to estimates of conditional means, such as means in subgroups defined by a categorical 

covariate 1X . The next two examples illustrate this statement. The first example 

illustrates the intuitively obvious fact that for estimating the conditional mean of Y given 

1X , the PSPP method needs to include 1X  as a predictor in the model for Y. The second 

example illustrates that inclusion of 1X  as a predictor in the model for Y is not sufficient 

to avoid bias with the PSPP method. This limitation is then addressed with the extended 

versions of the method.  

Example 1. PSPP for estimating a conditional mean: including the subgroup 

variable in the model for Y is necessary. We simulate 500 datasets with 500 subjects, 

with categorical covariate 1X , continuous covariate 2X  and continuous response variable 

Y, where 1, 2X X  are independent with , , and  1 ~ multinomial (0.5,0.3,0.2)X 2 ~ (0,1X N )
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( )1 2 1 2

1 2 1 1 1

| , ~ ( , ),1 ,
( , ) [ 1] 3 [ 2] 5 [ 3] 10

Y X X N X X

2X X I X I X I X X
μ

μ = = + × = + × = +
 

where I[] denotes an indicator for the event in the parenthesis. We create missing values 

of Y from the response propensity model:  

  1 2 2 1 1logit ( ( 0 | , )) 0.5* [ 1] 0.5* [ 2]P M X X X I X I X= = + = − =

2

We impute the missing values of Y using predicted means from the following methods: 

(a) A correctly-specified ANCOVA model of Y given 1,X X , which we denote 

1 2[ ]X X+ .  

(b) An incorrectly specified regression model for Y that omits 2X , namely 1[ ]X . 

(c) The PSPP Method with null g function, which we denote . The propensity 

score  is modeled as an additive function of 

*[ ( )]corrects P

*
correctP 1X  and 2X  and hence is correctly 

specified and conditions on 1X .   

(d) Model (c) with 1X  included, namely . This model correctly specifies 

the mean of Y given the covariates, since it includes the main effects of 

*
1[ ( ) ]corrects P X+

1X  and 2X . 

(e) The PSPP Method with null g function and incorrectly specified propensity score, 

modeled as a linear function of 2X  alone, which we denote . *[ ( )]wrongs P

(f) Model (e) with 1X  included, namely . This model correctly specifies 

the mean of Y given the covariates, since it includes the main effects of 

*
1[ ( ) ]wrongs P X+

1X  and 2X . 

 

For all the penalized spline methods in this paper, we choose 20 equally spaced 

fixed knots and a truncated linear basis.  We estimate the marginal mean of Y and the 

conditional means of Y given 1X  as the average of observed and imputed values from 

these methods. For comparison purposes, we also show estimates from the data before 

deletion (BD) and estimates based on the complete cases (CC). Empirical bias (Bias), 

empirical standard deviation (STD) and root mean square error (RMSE) over the 500 

replications are summarized in Tables 2.1A and 2.1B. CC analysis yields estimates with 

large biases and RMSEs. The correctly specified ANCOVA model (a) yields unbiased 

estimates close to the BD estimates. The wrongly specified ANCOVA model (b) yields 
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biased parameter estimates, with large biases and RMSEs. For the PSPP method, 

inclusion of 1X  in the model is important for subgroup mean estimation. Without 1X  in 

the model, the PSPP method (c) yields small empirical bias for the marginal mean 

estimate and a large empirical bias for the conditional means of Y given 1X , even though 

the propensity score model is correct and conditions on both 1X  and 2X ; including 1X  in 

the PSPP method (d) yields estimates of the marginal mean of Y and conditional means of 

Y given 1X  with small empirical biases, and STDs and RMSEs very close to those of BD. 

When neither the propensity score nor the mean function is correctly specified, the PSPP 

method (e) yields biased results; but the bias is removed in model (f) by including 1X , 

since then the regression is correctly specified. 

 

Example 2. PSPP for estimating a conditional mean: including the subgroup 

variable in the model for Y is not sufficient. We now generate 1X and 2X  as in 

Example 1; but the mean of Y given 1X and 2X  is simulated to include both a quadratic 

term in 2X  and interactions between 1X  and 2X :  

 
1 2 1 2

2
1 2 1 1 1 2 2

1 2 1 2

| , ~ ( ( , ),1),

( , ) [ 1] 3 [ 2]+5 [ 3] 10
1 4 [ 1] 10 [ 2]

Y X X N X X

X X I X I X I X X X
I X X I X X

μ

μ = = + × = × = + +
− + × = × − × = ×

 

The logistic regression of M is additive in 1X  and a quadratic function of 2X :  

  2
1 2 1 1 2 2logit( ( 0 | , )) 0.5 [ 1] 0.25 [ 2] 0.25 0.5 0.5P M X X I X I X X X= = × = − × = + × + × −

We simulate 500 datasets with sample size of 1000 each. We impute the missing Y as 

predicted means from the following methods: 

(a) A correctly-specified regression model for Y, namely 2
1 2 1 2 2[ ]X X X X X+ + × + .  

(b) The PSPP model with null g-function, namely . The propensity score  is 

modeled as an additive function of 

*[ ( )]s P *P

1X , 2X  and 2
2X  and hence is correctly specified. 

(c) PSPP with 1X  included, that is, . *
1[ ( ) ]s P X+

(d) PSPP with 2X and 2
2X  included, namely, . * 2

2 2[ ( ) ]s P X X+ +
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The correctly-specified ANCOVA model yields estimates with small empirical 

bias and RMSE close to BD (Table 2.2).  CC analysis and the wrongly specified 

ANCOVA model yield biased estimates. The PSPP methods (b) – (d) yield estimates for 

the marginal mean of Y with small empirical bias, but are clearly biased for the 

conditional means of Y given 1X  and Y given 2X . In particular, unlike Example 1, adding 

1X  to the g-function does not correct the misspecification of the mean of Y given 1X , 

since the estimates of the conditional means are still biased.  

 

In the second example, the PSPP method  assumes that for different 

levels of 

*
1[ ( ) ]s P X+

1X , the splines of Y on  have the same shape; since the true model includes 

the interaction between 

*P

1X  and 2X , this assumption is violated, and it is this fact that 

leads to bias for the conditional means. One solution is to include the interaction of 

propensity score and 1X  into the model, yielding a stratified PSPP method discussed in 

the next section. 

 

2.4 Stratified Penalized Spline Propensity Prediction for subgroup means 

     Let  if 1cI = 1X c= ; 0cI =  if 1 ,  X c≠  1,...,c C= , where C is the total number of 

categories of 1X . The stratified PSPP method is based on the following model:  

 * * *
1 1

1

( | , ,..., ; ) ~ ( ( ) ( , , ,..., ; ), )
C

p c c p
c

Y P X X N I s P g P X X X 2
2 1β β σ−

=

+∑  (6) 

Where g is a parametric function indexed by unknown parameter β as before, with pX  

dropped to avoid multicollinearity;  is 

the fitted curves for the cth level of 

* *
0

1 1

( ) ( ( ) ( )  )
q K

j q
c c c c jc qkc k

j k

I s P I P Pγ γ γ κ +
= =

= + + −∑ ∑ *

1X . Within each level of 1X , 

 * * *
1 2 1 1 2 1( | , , ,..., ; ) ( ) ( , , ,..., ; )p c pE Y P X c X X s P g P X c X Xβ β− −= = + = . 

Note that this method is not the same as applying PSPP within strata defined by 1X , 

since the g-function does not necessarily include the interactions of 1X  with the other 

covariates. This method yields consistent estimates for the conditional means of Y given 
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1X .  The marginal mean of Y is a weighted average of conditional means, which again 

has the double robustness property (see appendix for proof). 

 

Example 2 continued 

Row (e) in Table 2.2 shows the results of applying stratified PSPP to the data in 

Example 2. The empirical bias is small for the marginal mean of Y and the subgroup 

means of Y given 1X , and the RMSE for these parameters is only slightly larger than for 

BD. Thus stratified PSPP has fixed the bias for the subgroup means in the PSPP methods. 

On the other hand the empirical bias remains large for the coefficients of the regression 

of Y on 2X . For those parameters we need another extension of PSPP, which we now 

describe. 

 

2.5 A Bivariate PSPP Method for estimating the conditional mean of Y given a 

continuous covariate. 

In this section we consider estimating the conditional mean of Y given a 

continuous variable 2X , based on a regression model for Y given 2X . To estimate the 

regression coefficients in this case we need to assume that the regression of Y on 2X  is 

correctly specified; for concreteness we assume it is linear with mean 
2

2 0 1 2 2( | ) 2E Y X X Xβ β β= + + . To yield consistent parameter estimates for the regression 

coefficients, we now include the interaction of propensity score and 2X  in the model for 

predicting the missing values of Y. Specifically, we propose the following bivariate PSPP 

method, based on the model: 

 * * *
1 2 2 1 2 1( | , , ,..., ; ) ~ ( ( , ) ( , , ,..., ; ), )p pY P X X X N s P X g P X X X 2β β σ−+  (7) 

where g is a parametric function;  is a bivariate P-spline of  and *
2( , )s P X *P 2X .  

Estimation of the bivariate smoothing function  requires bivariate basis 

functions, which can be derived in several different ways. A natural extension of the 

truncated linear basis for one dimension is to form all the pair-wise products of the basis 

functions. The resulting bivariate basis is called the tensor product basis (Ruppert, Wand 

and Carroll, 2003). With this basis, the bivariate function  can be written as  

*
2( , )s P X

*
2( , )s P X
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1 2

1 2 1 2

* * * *
2 0 1 1 1 2 2 2 ' 2 2 ' 3 2

1 ' 1

* * *
3 2 1 4 ' 2 2 ' 5 ' 1 2 2 '

1 ' 1 1 ' 1

( , ) ( ) ( )

                  ( ) ( ) ( ) ( )

K K

k k k k
k k

K K K K

k k k k kk k
k k k k

s P X P P X X P X

X P P X P X

α α γ κ α γ κ α

γ κ γ κ γ κ κ

+ +
= =

k+ + +
= = = =

= + + − + + − +

+ − + − + − −

∑ ∑

∑ ∑ ∑∑ +

 

where 
111 1... Kκ κ< < and 

221 2... Kκ κ< <  are selected fixed knots for propensity score and 

2X  respectively. In this paper we choose 5 equally spaced knots for each variable when 

fitting the bivariate splines using a tensor product basis.  

 

Example 2 Continued 

Row (f) in Table 2.2 shows estimates of the parameters when missing values are 

imputed using the bivariate PSPP method. This method yields estimates of the 

coefficients of the regression of Y on 2X  with small empirical biases and RMSEs only 

slightly higher than those of BD analysis.  

 

The conditional means of Y given 1X  from bivariate PSPP are biased. To get 

consistent estimates of both the conditional means of Y given 1X and conditional mean of 

Y given 2X , a model is needed that includes the interaction between the propensity score 

and 1X  and the interaction between the propensity score and 2X . This motivates the 

following combination of the stratified PSPP and bivariate PSPP models:  

 * * * *
1 2

1

( | , ,..., ; ) ~ ( ( ) ( , ) ( , ,..., ; ), )
C

p c c p
c

Y P X X N I s P s P X g P X X 2
2β β σ

=

+ +∑  

where *( )c cI s P and are defined as in sections 4 and 5 respectively. When we 

applied this method to the second simulation, a small number (8) of the 500 samples 

failed to converge, but results for the other samples indicate that empirical bias from this 

model is small for both the conditional mean of Y given 

*
2( , )s P X

1X  and the conditional mean of 

Y given 2X  (Table 2.2, row (g)).   

 

 

 

   



 19  

2.6 An Example: Online Weight Loss Study 

To illustrate our proposed approach, we consider data from an online weight loss 

study conducted by Kaiser Permanente (Couper et al., 2005). The study randomized 

approximately 4,000 subjects to the treatment or the control group. For the treatment 

group, the weight loss information provided online was tailored to the subjects based on 

their answers to an initial survey, which contained baseline measurements such as 

baseline weight, motivation to weight loss, etc; for the control group, information 

provided online was the same for all the subjects.  At 3 months, a second survey was sent 

to all of the participants, which collected follow-up measurements such as current weight. 

Our goal is to compare the short-term treatment effects; in particular, we compare the 

reduction of the body mass index (BMI), defined as difference of 3-month BMI and 

baseline BMI. 

 

There were 2059 subjects in the treatment group and 1956 subjects in the control 

group at the baseline. At 3 month 623 subjects in the treatment group and 611 subjects in 

the control group responded to the second survey. We assume the data are missing at 

random. Subjects in the treatment group who remained in the study have much lower 

baseline BMI than those who dropped out  (P<0.001), but this differences is not seen in 

the control group (P=0.47); On the other hand, for the control group subjects who 

remained in the study have better baseline health, as measured by the number of previous 

diseases, than those who dropped out of the study (P<0.01); this differences was not seen 

in the treatment group (P=0.56). These differences suggest that interactions between 

treatment and baseline covariates need to be included when estimating the propensity 

scores.  

 

We estimate the propensity scores by a logistic regression, with the inclusive 

criterion of retaining all variables with P-values less than 0.20.  The final model includes 

the following covariates: baseline BMI; number of previous disease; baseline self care; 

which is harder–eating less or being active; baseline exercise support; baseline activity 

level; baseline eating topology; education; ethnic identity; treatment; interaction of 

treatment and baseline BMI; interaction of treatment and baseline eating topology; 
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interaction of treatment and baseline activity level; interaction of treatment and number 

of previous disease; interaction of treatment and which is harder–eating less or being 

active.  

We apply the PSPP method and the stratified PSPP method to the data as follows:  

(a) PSPP method with null g-function, denoted as *[ ( )]s P , where *P is the propensity 

scores defined in section 2. 

(b) Model (a) with treatment as a covariate, denoted as . *[ ( ) treatment]s P +

(c) Model (b) with baseline covariates, denoted as 

. *[ ( ) treatment + (baseline vars)]s P g+

(d) Stratified PSPP method with null g-function, denoted as )]c c

2
*

1

[ (
c=
∑ I s P . 

(e) Model (d) with baseline covariates, denoted as . 
2

*

1

[ ( ) (baseline vars)]c c
c

I s P g
=

+∑

The baseline covariates in the g-function of model (c) and (e) include: ethnic 

identity; baseline medical advice; baseline eating topology; baseline cardio exercise; 

baseline activity level; baseline BMI; number of previous disease; number of weigh loss 

methods tried; motivation of weigh loss; which is harder–eating less or being active.  

 

Results are summarized in Table 2.3. Empirical Standard errors (SE) and the 

corresponding confidence intervals are obtained from 200 bootstrap samples. The 

treatment group has a larger reduction of BMI after 3 month (-0.91 (0.09)) compared to 

the control group (-0.45 (0.10)) based on the complete case analysis. The stratified PSPP 

method (model d and e) and the PSPP method with the treatment as a covariate (model b 

and c) yield similar results, with the reduction of BMI ranging from -0.95 to -1.01 for the 

treatment group and -0.40 to -0.46 in the control group. The 95% confidence intervals for 

the treatment group do not overlap with the control group suggesting a treatment effect 

on the weight loss (model b, c, d, e).  On the other hand, the PSPP method without 

treatment as a covariate does not shown the treatment effect (95% CI (-0.96, -0.65) for 

the treatment; 95% CI (-0.76, -0.47) for the control). Adding g function into the model 

does not affect bias but improves efficiency (model c and e).  
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2.7 Discussion 

  We have shown that the PSPP method yields an estimate of the marginal mean of 

Y with a double robustness property, without the need to center the covariates in the g 

function. However the PSPP method lacks this property for conditional mean estimation. 

We have proposed two extensions of PSPP that extend the double robustness property to 

conditional means, namely stratified PSPP for a categorical predictor, and bivariate PSPP 

for a continuous predictor. The key property of these extensions is that they include in the 

prediction model the interaction of the propensity score and the conditioning variable that 

defines the estimand of interest. Simulations are presented as empirical evidence of the 

robustness of these extensions. 

 

We estimate the bivariate function  using a P-spline with a tensor 

product basis, but other spline fitting methods could also be applied. One choice is to use 

a thin plate spline (Green and Silverman, 1994; Wood, 1999). To estimate , we 

need to find the function 

*
2( , )s P X

*
2( , )s P X

1 2( ) ( , )g g t g t t= =  minimizing  

 
2 2 2

2 2 2 2
1 2 1 22 2

1 1 1 2 2

( ( , )) [( ) 2( ) ( ) ]
n

i
i

g g gy g t t dt dt
t t t t

λ
=

∂ ∂ ∂
− + + +

∂ ∂ ∂ ∂∑ ∫∫  

where the g function has the form  

 0 2
1 1

( ) ( ) ( )
M n

j j j j
j j

g t t E t tθ θ φ δ
= =

= + +∑ ∑ −  

with 2
2 3

1( ) ln( )
2

E s s
π

= s ; ( )j tφ  are linearly independent functions of t  with 

2t R∈ and  λ  is the smoothing parameter. This model can be fit using the tpspline 

procedure from SAS (SAS, 1992; Ngo and Wand 2004; Wand 2003). We also fitted thin 

plate splines for the simulation study in section 5 but found some samples failed to yield 

estimates due to negative variance estimates. For the other samples the results from the 

tpsline procedure are comparable to those from a P-spline with a tensor product basis.  

 

 More generally, a PSPP method that yields doubly robust estimates of the 

conditional mean of Y given a subset of the covariates 1( ,..., )sX X , s p< , requires 
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inclusion of the interactions between the propensity score and 1( ,..., )sX X ; clearly the 

curse of dimensionality comes increasingly into play as the size of s increases. A natural 

question is whether these propensity score methods can be extended to yield robust 

estimates for the regression given the complete set of covariates, such as, 1( ,..., )pX X . 

We note that in our setting the cases with Y missing contribute no information to this 

regression, so there is no gain in developing an imputation model. If it is the covariates 

rather than the outcome that have missing values, however, then the incomplete cases do 

include information, and it remains an open question whether propensity methods can be 

used to increase the robustness of inference in such situations. This question deserves 

future study.  

 

We use a smoothing spline function to model the relationship between Y and the 

propensity score and our method has a DR property. The DR property can also be 

achieved by modeling the relationship parametrically. One method is to include the 

inverse of the propensity score as a linear term in the imputation model (Firth and 

Bennett, 1998; Bang and Robins, 2005). Another approach is to calibrate the predictions 

from a parametric model by adding means of the weighted residuals, with weights equal 

to inverse of the propensity scores (Robins, Rotnitzky and Zhao, 1994; Scharfstein, 

Rotnitzky and Robins, 1999). We are currently conducting simulations to compare the 

performance of these methods with the PSPP method, and results will be reported in a 

future paper.  
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Table 2.1 Example 1: Empirical Bias, Standard Deviation (SD) and Root Mean Squared 
Error (RMSE) for (A) Marginal mean of Y , and (B) Conditional Mean of Y given 1X . 
Entries are multiplied by 100. 
 
(A) Marginal Mean of Y 
Methods Bias STD RMSE
BD 0 45 35 
CC 368 58 368 
(a)Correct ANCOVA  [ 1 2X X+

1

] 0 45 36 
(b)Wrong ANCOVA [ X ] 398 58 398 

(c)PSPP  [ s P ] *( )correct
*

1( )corrects P X+
*( )wrong

*
1( )wrongs P X+

-2 50 40 

(d)PSPP  [ ] 0 45 36 

(e)PSPP  [ s P ] -20 47 41 

(f)PSPP  [ ] 0 45 36 

 

 

 

(B) Conditional Mean of Y given 1X  

1 1X =  1X 2=  1 3X =  Methods 

Bias STD RMSE Bias STD RMSE Bias STD RMSE

BD -3  63  51  6  82  67  -1  98  77  
CC 328 78  328  505 118 505  416  124 416  
(a) Correct ANCOVA    
      [ 1 2,X X ] -3  64  51  7  83  68  -1  98  78  
(b)Wrong ANCOVA [ 1X ] 328 78  328  505 118 505  416  124 416  
(c )PSPP [ ] *( )corrs P ect 213 69 214 -271 111 271 -139 141 162 
(d)PSPP [ ]  *

1( )corrects P X+ -3  64  51  7  84  69  -1  99  78  
(e)PSPP  [ ] *( )wrongs P 43  65  63  -44 84  76  -145  107 154  
(f)PSPP  [ ] *

1( )wrongs P X+ -3  64  52  7  84  68  -1  99  78  
 



 

Table 2.2 Example 2: Empirical Bias, Root Mean Squared Error (RMSE) and Coverage rate (Cov) for (A) Marginal mean of , (B) 
Conditional Mean of Y given 

Y
1X , and (C) Intercept and Slopes for Regression of Y on 2X , 2

2X . Entries are multiplied by 100. 
 

Conditional mean given 1X  Coefficients of conditional mean given 2X  
Methods Overall Mean 

1X =1 1X =2 1X =3 Intercept 2X  2
2X  

 Bias RMSE Cov Bias RMSE Cov Bias RMSE Cov Bias RMSE Cov Bias RMSE Cov Bias RMSE Cov Bias RMSE Cov 

 BD -1 30 93 -1 53 93 0 8 94 0 56 95 0 20 95 -2 26 95 1 25 95 

 CC 199 199 7  280 280 15  28 29  71  274 274  38  -21 33  89  81 84  58  -17 35  89  

(a) Correct Model 2  2
1 2 1 2[ ]X X X X X+ + × + -1 30 93  -1 53  93  0  10  94  1  58  95  0  19  95  -2 26  95  

1  
24  95  

(b) PSPP  *[ ( )]s P  -3 34 95  112 116 66  -91 93 43  -154 156 53  -94 94 20  -163 163 1  93 93 20  
(c) PSPP  *

1[ ( ) ]s P X+  -3 33 94  47 69  89  -121 122 28  53 90  94  -100 100 14  -139 139 17  98 99  19  
(d) PSPP  ( * 2

2 2[ ( ) ]s P X X+ + ) -3 33 95  50 70  89  -1 47  97  -137 146  72  37 43  78  17 40  92  -39 48  78  
(e) Stratified PSPP ( )P )  *(c cY I s=∑ -1 31 94  0  54  95  -4 13  92  4  60  96  -81 81  41  -86 87  60  81 81  43  
(f) Bivariate PSPP ( ) ) *

2( ,Y s P X= -1 30 94  10 54  94  18 30  98  -60 87  93  2  22  97  2  29  96  -3 26  96  
(g) Stratified_Bivariate PSPP  

*s P∑ *( ) + )(

24

c cY I= 2( ,s P X ) -2 30 94  -2 53  93  -7 16  98  5  59  96  4  23  96  4  30  95  -5 29  95  
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  Table 2.3 BMI reduction within groups  
Treatment Control Method 

Mean (SE) 95% CI Mean (SE) 95% CI 
Complete Case Analysis 

*
-0.91 (0.09) (-1.09, -0.73) -0.45 (0.10) (-0.64, -0.25) 

(a) PSPP  [ ( )]s P -0.80 (0.08) (-0.96, -0.65) -0.61 (0.07) (-0.76, -0.47) 
(b) PSPP  *[ ( ) treatment]s P + -0.95 (0.11) (-1.16, -0.74) -0.46 (0.10) (-0.66, -0.26) 
(c) PSPP 

*[ ( ) t  reatment + (baseline covariates)]s P g+ -0.97 (0.10) (-1.16, -0.78) -0.46 (0.09) (-0.64, -0.27) 

(d) Stratified PSPP 
2

*

1

[ ( )]c c
c

I s P
=
∑  -1.01 (0.11) (-1.22, -0.79) -0.40 (0.10) (-0.59, -0.21) 

(e) Stratified PSPP 
2

 *

1

[ ( ) (baseline covariates)]c c
c

I s P g
=

+∑ -1.00 (0.10) (-1.20, -0.80) -0.42 (0.09) (-0.60, -0.23) 

  *SE and CI denote empirical standard error and confidence interval. SE and 95% CI are based on 200 bootstrap samples. 
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Appendix  
(1)Proof of Theorem 2. 
 
Lemma 1: Let  

11 21 1 1 2 1 1 1 1

1 2

1 2 1 2 1

1 ( * ) ( *
,  , ,

1 ( * ) ( * )

M M

n n Mn n M n

)
 

n

x x x x x x x y
X X Y

x x x x x x x y

⎛ ⎞ ⎛ ⎞ ⎛
⎜ ⎟ ⎜ ⎟ ⎜= = =⎜ ⎟ ⎜ ⎟ ⎜
⎜ ⎟ ⎜ ⎟ ⎜
⎝ ⎠ ⎝ ⎠ ⎝

K L

M M M O M M O M M

L L

⎞
⎟
⎟
⎟
⎠

 

Where 1X  is a matrix containing variable 1x ; 2X contains the other covariates and 
interactions of 1x  and the other covariates; Y is a vector of the response variable. Let 

and  be 

matrices that contain functions of 

1 1 1 1 1 1

(1)

1 1 1 1

(( ) ) (( ) )

(( ) ) (( ) )

N

n N

f X f X
X

f X f X

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

K

M O M

L n 1 2 2 2

(( ) ) (( ) )

(( ) ) (( ) )

N

n N n

g X g X
X

g X g X

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

K

M O M

L

1 2 1 2 2 1

(2)

1X and 2X  as columns.  
 
 
Suppose we have the following models:  
 

(a) Linear regression model of Y given 
1 2,X X with 1 2 (1) 1 (2) 2*X( | , ) *AE Y X X X γ γ= + , where  1 2 is the 

conditional mean of Y given the covariates 1 2,
( | , )AE Y X X

X X under the assumed model. Let 

1 2ˆ ˆ,γ γ be the least squares estimates of 1γ and 2γ , the predicted values ofY is 

written as 1 1 2 (1) 1
ˆ ˆ ˆ( , ) *X X (2) 2*Y X Xγ γ . = +

(b) Linear regression model of Y given 1X with 1 (1) 1*X( | )AE Y X β= , where 

1( | )A is the conditional mean of Y given the covariates 1E Y X X . Let 1̂β  be the 

least squares estimate of 1β , the predicted values of Y is 2 1 (1) 1̂*Xˆ ( ) .Y X β=  
(c) Linear regression model of 2( )ig X given 1X with 2 1 (1)( ( ) | ) *A i iE g X X X δ= , 

1,..., 2N , where  2 1)X is the conditional mean of 2( )ig X given the 

covariates 1

i = A iE g X( ( ) |

X . Let îδ be the least squares estimates of iδ , the predicted values 

of 2( )ig X is 2 (1)
ˆˆ ( )i ig X * .X δ= 2

ˆ ˆ ˆ[ ( ),...,Let 2 2( )]N(2) 1X g X g= X  and 

1 2
ˆ,..., ]N

ˆ ˆ[δ δ= δ . Substitute (2)X̂  into of model (a) and 

obtain
1 1 2
ˆ ( , )Y X X

*
2 1 (1) 1
ˆ ˆˆ ˆ( ) *X (2) 2*Y X Xγ γ . = +

 
Then . *

2 1 2 1
ˆ ˆ( ) ( )Y X Y X=

 
Proof:  
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To prove , we need to show that *
2 1 2 1
ˆ ˆ( ) ( )Y X Y X= 1 1

ˆ ˆˆ ˆ* 2β γ δ γ= + . 
 
Let . (1) (2)[ , ], 1( )X X X= T TH X X X X−= , 1

1 (1) (1) (1) (1)( )T TH X X X X−=
 
From model (a): (1) 1 (2) 2ˆ ˆ ( )          (1)Y X X I H Yγ γ= + + −  
Multiply (1) by 1I H− and obtain 

1 1 (1) 1 1 (2) 2 1ˆ ˆ( ) ( ) ( ) ( )( )I H Y I H X I H X I H I H Yγ γ− = − + − + − −  
 
Noting that: 
(i) 1 (

ˆ( )I H Y Y X 1) 1β− = −  
(ii)  1 (1)( )I H X− = 0

(iii) 1 (2) (2) (1)
ˆ( )I H X X X δ− = −  

(iv) since that 

 

1
1 (1) (1) (1) (1)( ) ( ) ( )T TH I H Y X X X X I H Y−− = − = 0

01( ) ( ( ) )T T T T TX I H Y X Y X X X X X Y−− = − =
 
We have  

(1) 1 (2) (1) 2
ˆ ˆ ˆ( ) (Y X X X I H Yβ δ γ− = − + − ) , which means 

(1) 1 2 (2) 2
ˆ ˆ ˆ ˆ( * ) (Y X X I H Yβ δ γ γ= − + + − )  

 
So 1 2 1 1 2

ˆ ˆ ˆ ˆˆ ˆ ˆ ˆ* * 1β δ γ γ β δ γ γ− = → = +  
 
Now need to show for the penalized smoothing splines we have the same property. 
 
Corollary: 
 

(d) Regress Y on 
1 2,X X with 1 2 1 1 1 2 2 1 1 1 (2) 2X( | , ) ( ; ) ( ; ) ( ; )AE Y X X s X g X s X= γ γ γ γ+ = + , where  

1 2, ) is the conditional mean of Y given the covariates 1 2,( |AE Y X X X X under the 
assumed model; 1 1 1( ; )s X γ  is a spline of 1X  indexed by the parameter 1γ ; 

2 2( ; )g X γ is a parametric function indexed by the parameter 2γ .  Let 1 2ˆ ˆ,γ γ be the 
restricted maximum likelihood estimates of 1γ and 2γ , the predicted values of Y is 

written as 1 1 2 1 1 1
ˆ ( , ) ( ; )X s X (2) 2Y X Xˆ ˆ*γ γ . = +

(e) Regress Y on 1X with 1 1 1 1( | ) ( ; )AE Y X s X β= , where 1( | )A is the conditional 
mean of Y given the covariates 1

E Y X
X under the assumed mode; 1 1 1( ; )s X β  is a spline of 

1X  indexed by the parameter 1β . Let 1̂β  be the restricted maximum likelihood 

estimates of 1β , the predicted values of Y is 2 1 1 1 1̂
ˆ ( ) ( ; )Y X s X .β=  
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(f) Regress 2( )ig X on 1X with 2 1 1 1( ( ) | ) ( ; )A i iE g X X s X δ= , 1,..., 2i N= , where  

2 1 is the conditional mean of 2( )ig X given the covariates 1( ( ) | )X XA iE g X under 
the assumed model; 1 1( ; )is X δ  is a spline of 1X  indexed by the parameter iδ . Let 

îδ be the restricted maximum likelihood estimates of iδ , the predicted values 

of 2( )ig X is 2 1
ˆ( ; ).Xˆ ( )i ig X s δ= ˆ ˆ ),...,Let 2 2ˆ ( )]N(2) 1 2[ (X g X g= X  and 

1 2
ˆ,..., ]N

ˆ ˆ[δ= δ . Substitute (2)X̂ into of model (a) and obtain 1 1 2
ˆ ( , )Y X Xδ

*
2 1 1 1
ˆ ˆˆ ˆ( ) ( ; )Y X s X (2) 2*Xγ γ . = +

n

 
Then as . *

2 1 2 1
ˆ ˆ( ) ( )Y X Y X→ n →∞

 
Proof:  
 
Consider the penalized spline with the linear basis:  
 

Let , , 

 

11 11 1 1

(1)

1 1 1 1

1 ( ) ( )

1 ( ) ( )

n k

n n n k

x x k x k
X

x x k x k

+ +

+ +

− −⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟− −⎝ ⎠

K

M M M O M

L

1 2 1 2 2 1

(2)

1 2 2 2

(( ) ) (( ) )

(( ) ) (( ) )

N

n N

g X g X
X

g X g X

⎛ ⎞
⎜ ⎟= ⎜ ⎟
⎜ ⎟
⎝ ⎠

K

M O M

L

( )(1) (2)X X X=

Then model (a) is: 

1 2 1 1 1 2 2 0 1 1 1 1 (2)
1

( | , ) ( ; ) ( ; ) * ( )
K

A k k
k

E Y X X s X g X x x k X 2γ γ γ γ γ γ+
=

= + = + + − +∑ , the fitting 

criterion is to minimize 2 2 Ty X Dγ λ γ γ− + , where 0 1 2 11 1( , , , ,..., )T
Kγ γ γ γ γ γ= . Using 

mixed model presentation and by the restricted maximal likelihood, the fitted values are 
, 2 1

1 1 2
ˆ ˆˆ ( , ; ) ( )TY X X X X X D X Yλ λ −= + T λ̂ is the estimated penalty and 

0  and 1(Y X X Y X
2 2diag(0 ,1 )N KD += . 

When λ → 1 2
ˆˆ ˆ( , ; ) , ;0) ( )T TX X X X X Yλ −→ = , the least 

squares estimates of model (a).  

k

 n →∞ , ˆ 1
1 1 2

 

Similarly, for model (b), 1 1 1 1 0 1 11 1 11
1

( | ) ( ; ) ( )
K

A k
k

E Y X s X x x kβ β β β +
=

= = + + −∑ , as 

, . n →∞ 1
2 1 2 1 (1) (1) (1) (1)

ˆˆ ˆ( ; ) ( ;0) ( )T TY X Y X X X X X Yλ −→ =
 

For model (c), 2 1 1 1 0 1 11 1 11
1

( ( ) | ) ( ; ) ( )
K

A i i i i i k k
k

E g X X s X x x kδ δ δ δ +
=

= = + + −∑ , as , 

 and  

n →∞

1
2 2 (1) (1) (1) (1) 2

ˆˆ ˆ( ; ) ( ;0) ( ) (T T
i i ig X g X X X X X g Xλ −→ = ) (2) (2)

ˆˆ ˆ( ) (0)X Xλ →
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By lemma 1, , then,  *
2 1 2 1
ˆ ˆ( ;0) ( ;0)Y X Y X=

*
2 1 1 1 1 (2) 2 1 1 1 (2) 2 2 1

ˆ ˆ ˆˆ ˆ ˆ ˆˆ ˆ ˆ ˆ( ; ) ( ; , ) ( ) ( ; ,0) (0) ( ;0)Y X s X X s X X Y Xλ γ λ λ γ γ γ= + → + = →∞

2

as n . 
 
From model (b)  as . 1

2 1 2 1 (1) (1) (1) (1)
ˆˆ ˆ( ; ) ( ;0) ( )T TY X Y X X X X X Yλ −→ = n →∞

 
So as  and the proof is complete.  *

2 1 2 1
ˆ ˆ( ) ( )Y X Y X→ n →∞

 
Based on the corollary, the simplified PSPP method yields consistent marginal mean of 

the missing variable even when the function is not correctly specified. g

 

We prove the case when the function is linear. We can approximate a nonlinear 

function using a linear form and the corollary can be applied directly. 

g

g

 

 

(2) Proof of consistency of the stratified PSPP method under correct specification of 

the propensity score  

 

Model:  

 * * *
1 1 2~ ( ( ) ... ( ) ( , ,..., ), )C C pY N I s P I s P g P X X σ+ + +  

 

For each level of 1X c= , * *
,2 , 1

ˆ ˆ ˆ_ ( ; ) ( , ,...,i c i i i iY stratified s P g P X X ; )pα β−= +   (1)   is the 

predicted value for the ith subject.                            

 

The mean function has the form of a spline on the propensity score with subgroup c, plus 

a parametric function of the other covariates.   

 

Let (ig X ) be the ith component in the g function in (1) with * *( ( ) | ) ( ; )A i giE g X P s P iδ= , 

, where 1,..., 2i = N *( ( ) | )A iE g X P is the conditional mean of ( )ig X given ; *P *( ; )gi is P δ  

is a spline of  indexed by the parameter *P iδ . Let îδ be the restricted maximum 

likelihood estimates of iδ , the predicted values of ( )ig X is * ˆˆ ( ) ( ; ).i ig X s P iδ= Let 
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(2) 1 2
ˆ ˆ ˆ[ ( ),..., ( )]NX g X g X=  and 1 2

ˆ ˆ ˆ[ ,..., ]Nδ δ= (2)
ˆ. Substitute δ X into (1) and obtain 

* *
1 (2)

ˆˆ ˆˆˆ( ) ( ; ) *i cY X c s Y Xα δ= = + .              (2) 

 

Since within each subgroup c, *( ) ( ; )cE Y s P γ=  or Y X *
1

ˆ ˆˆ( )i ( ; )ic s P= = γ        (3)                    

which is consistent for the conditional mean of Y in subgroup c by the balancing property 

of propensity score.   

 

By corollary, as n . *
1 1

ˆ ˆ( ) ( )i iY X c Y X c= → = →∞

 

When the propensity is incorrectly specified while the mean function is correctly 

specified, the predicted conditional means are consistent. Thus the stratified PSPP 

method has the DR property as described in Section 2.2.  

  

 

 

 

 

 

 
 
 
 
 
 

    



 

CHAPTER III 

A COMPARATIVE STUDY OF THE PENALIZED SPLINE 

PROPENSITY PREDICTION METHOD WITH ALTERNATIVE 

DOUBLY ROBUST ESTIMATORS 
 

Abstract 

The goal of this paper is to compare several doubly robust (DR) estimators of the 

mean when missing data exist. An estimator is doubly robust if either the regression of 

the missing variable on the observed variables or the missing data mechanism is correctly 

specified. One method is to include the inverse of the propensity score as a linear term in 

the imputation model (Firth and Bennett, 1998; Scharfstein, Rotnitzky and Robins, 1999; 

Bang and Robins, 2005). Another method is to calibrate the predictions from a parametric 

model by adding mean of the weighted residuals (Robins, Rotnitzky and Zhao, 1994; 

Scharfstein, Rotnitzky and Robins, 1999).  The Penalized Spline Propensity Prediction 

(PSPP) model includes the propensity score into the model nonparametrically (Little and 

An, 2004; Zhang and Little, 2005). All these methods have consistency properties under 

misspecification of regression models, but their efficiency and confidence coverage has 

received little attention. In this paper we compare root mean square error (RMSE), width 

of confidence interval and non-coverage rate of these methods under different mean 

functions and propensity score functions. We also study the effects of sample size and 

misspecification of the propensity scores. The PSPP method yields estimates with smaller 

RMSE and width of confidence interval compared with other methods under most 

situations. It also yields estimates with non-coverage rates close to the 5% nominal level. 
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3.1 Introduction  

 

Missing data problems are very common for statistical research. In this paper we 

focus on the univariate missing data, where missingness confines to a single variable. Let 

1( ,..., , )pX X Y denote a ( 1p )+ -dimensional vector of variables with Y subject to 

missingvalues and 1,..., pX X  fully observed covariates. We consider the problem of 

estimating the mean of Y, E(Y).  

 

The sample mean of Y based on the complete cases, Y , is an unbiased estimate of 

E(Y) if is the missing data mechanism is missing complete at random (MCAR), which 

means  the missingness of Y does not depends on the covariates 1,..., pX X  or Y. MCAR is 

a strong assumption and is usually not realistic. In practice it is very common to assume 

the missingness of Y depends only on the observed covariates 1,..., pX X  but not on Y, 

which is called missing at random (MAR) (Rubin, 1976; Little and Rubin, 2002).  

 

When the missing data are MAR, many methods can be applied to derive the 

marginal mean of Y. One of the standard methods is to fit a parametric model. For 

example, we can derive the marginal mean of Y based on a linear regression model 

0
1

p

i j
j

Y Xij iβ β
=

= + +∑ ε , where iε is the error term,  with 2~ (0, )i Nε σ . We can solve this 

model by maximum likelihood (ML) approach (Little and Rubin, 2002; Anderson, 1957; 

Rubin, 1974). The marginal mean of Y can be derived as , 

with , where 

1
1 1

ˆ ˆ( )r n
i ii i r

Y n y y−
= = +

= +∑ ∑

0
1

ˆ ˆˆ
p

i j
j

y Xβ β
=

= +∑ ij
ˆ

0
ˆ ,..., pβ β are the maximum likelihood estimators based on 

the complete cases. An alternative to the ML estimators is to add prior distributions for 

the parameters 0,..., pβ β and 2σ and derive the posterior distributions of Y given the 

covariates and the unknown parameters 0,..., pβ β  and 2σ , we denote it as  

2
1 0( | ,..., , ,..., , )p pp Y X X β β σ  (Gelman, Carlin, Stern and Rubin, 1995). Missing values 
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of Y and the unknown parameters 0,..., pβ β  and 2σ are drawn iteratively by Gibbs’ 

sampler or by Markov Chain Monte Carlo (MCMC) method (Casella and George, 1992; 

Geman and Geman, 1984). When the posterior distribution reaches stationary condition 

after Nth iteration, M sets of data are created such that within each data every missing 

is substituted by an independent draw from the posterior distribution. For each dataset 

a posterior mean of Y, 

iY

( )lY , 1,....,l M= , is derived as the average of the observed values 

and the posterior draws. The marginal mean of Y is the average the posterior means over 

the M datasets. Usually M needs to be a large number. However, if we can assume 

approximate normality for the posterior distribution of 0,..., pβ β  and 2σ  given the 

observed data, 2
0 1( ,..., , | ,..., )p pp X Xβ β σ , we only need to create a small number of 

datasets to estimate the marginal mean of Y, which is the idea of multiple imputation 

(Little and Rubin, 2002; Rubin, 1978). For each dataset the missing values are replaced 

by independent posterior draws and the complete-data analysis technique is applied to 

each imputed dataset. The marginal mean of Y can be derived using Rubin’s combination 

rules (Rubin 1978, 1987, 1996; Rubin and Schenker, 1986; Barnard and Rubin, 1999). 

Let ˆdμ be the estimated marginal mean of the dth dataset, 1,...,d D= , where D is the 

total number of imputed datasets. The marginal mean of Y is derived as 
1

ˆ ˆ /D
dd

Dμ μ
=

=∑ .  

 

The parametric approach described above is very efficient and yields consistent 

estimates if the model assumptions are correct. But the drawback is that it is very 

sensitive to model misspecification, particularly when data are not MCAR. In recent 

years, researchers have developed robust imputation methods, given concerns with 

effects of model misspecification and a growth of interest in nonparametric and 

semiparametric methods (Robins, Rotnitzky and Zhao, 1994; Rotnitzky, Robins and 

Scharfstein, 1998; Little and An, 2004; Bang and Robins, 2005). An estimator is doubly 

robust (DR) if either the joint distribution of the complete data is correctly specified or a 

model for the missing data mechanism is correctly specified. The Penalized Spline 

Propensity Prediction (PSPP) model is an imputation model with a double robustness 

property. This method includes the propensity score into the imputation model 
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nonparametrically and yields robust estimators for the marginal mean. The DR property 

can also be achieved by including the propensity score into the model parametrically, as 

in the linear in the weight prediction (Firth and Bennett, 1998; Scharfstein, Rotnitzky and 

Robins, 1999; Bang and Robins, 2005) and the calibration method (Robins, Rotnitzky 

and Zhao, 1994; Scharfstein, Rotnitzky and Robins, 1999). We describe these three 

methods in section 3.2. All these methods show consistency property based on 

asymptotic theory, but their efficiency and confidence interval coverage in small and 

moderate sized samples has received little attention. In section 3.3 we compare root mean 

square error (RMSE), width of confidence interval and non-coverage rate of these 

estimators under different mean functions and propensity score functions and varying 

degree of model misspecification. We also include weighted complete-case analysis for 

comparison due to its close relationship with the calibration estimator. We apply these 

methods to an online weight loss study in section 3.4.  Section 3.5 contains concluding 

remarks.  
 

3.2 Doubly robust estimators 
 

In this chapter we describe three doubly robust estimators, namely the PSPP 

method, the linear in the weight method and the calibration method. We also describe the 

weighted mean of complete cases as an important special case of the calibration estimator. 
 

3.2.1 Penalized Spline of Propensity Prediction (PSPP) 

 Let  denote a vector of variables with Y subject to missing values 

and 

1( , ,..., )pY X X

1,..., pX X  fully-observed covariates. We assume that the missingness of Y  depends 

only on 1,..., pX X , so the missing data mechanism is missing at random (MAR). Let M 

be an indicator variable with 1M =  when Y is missing and 0M =  when Y is observed. 

Define the logit of the propensity score for Y  to be observed as: 

 ( )*
1=logit Pr( 0 | ,..., )pP M X= X . (8) 
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The PSPP method is based on the balancing property of the propensity score, which 

means, conditioning on the propensity score and assuming MAR, missingness of Y does 

not depend on 1,..., pX X  (Rosenbaum and Rubin, 1983). The mean of can be written as Y

 . (9) *[(1 ) ] [ ( | )]y E M Y E M E Y Pμ = − + ×

Thus the missing data can be imputed based on the observed values conditioning on the 

propensity score. This leads to the Penalized Spline of Propensity Prediction Method 

(PSPP) (Little and An, 2004; Zhang and Little, 2005), described in the following model: 

 * * *
1 2( | , ,..., ; ) ~ ( ( ) ( , ,... ; ), )p pY P X X N s P g P X X 2β β σ+ ,  (10) 

where 2( , )N μ σ  denotes the normal distribution with mean μ  and constant variance 2σ . 

There are two components in the mean function. The first part, , consists of the 

propensity score . Since the true relationship of Y and is usually unknown, the 

PSPP method includes propensity score in the mean function nonparametrically. The 

second part of mean function is a parametric function 

*( )s P
*P *P

*
2( , ,... ; )pg P X X β , which includes 

covariates that predict the mean of the Y and the propensity score. One of the predictors, 

here 1X , is omitted from the g - function to avoid multicollinearity.   

 

We can implement this model by a number of spline models with different 

choices of bases (Eilers and Marx, 1996; Ruppert, Wand and Carroll, 2003; Ngo and 

Wand, 2004; Eubank, 1998; Wahba, 1990). In this paper we choose the penalized spline 

with truncated linear basis with the form:  

 * * *
0 1 1

( ) ( )K
k kk

s P P Pβ β γ κ +=
= + + −∑ ,  (11) 

where 1,  is the truncated linear basis; * * *
1, ( ) ,..., ( )kP P Pκ +− −κ + 1 .... Kκ κ< < are 

selected fixed knots and K is the total number of knots.  This model can be fitted using a 

number of existing software packages, such as PROC MIXED in SAS (SAS, 1992; Ngo 

and Wand, 2004, Littell, Milliken, Stroup, and Wolnger. 1996; Ruppert, 2002) and lme() 

in S-plus (Pinheiro and Bates, 2000). The first step of fitting a PSPP model estimates the 

propensity score, for example by a logistic regression model or probit model of M on 

1,..., pX X ; in the second step, the regression of Y on  is fit as a spline model with the *P
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other covariates included in the model parametrically in the g - function. When Y is a 

continuous variable we choose a normal distribution with constant variance. For other 

types of data, extensions of the PSPP are straightforward by using the generalized linear 

models with different link functions.  

 The predicted mean of Y  has a doubly robust property meaning that the predicted 

mean of Y   is  consistent if either (a) the mean of Y given  in model (3) is 

correctly specified, or (b1) the propensity  is correctly specified, and (b2) 

 The robustness feature derives from the fact that the regression 

function 

*
1( , ,..., )pP X X

*P
*( | ) ( ).E Y P s P= *

g does not have to be correctly specified ( An and Little, 2004; Zhang and Little, 

2005).  

 

3.2.2 Linear in the weight prediction (LWP) 

 

The Linear in the weight prediction method includes the weight as a linear term in 

the imputation model (Scharfstein, Rotnitzky and Robins, 1999; Bang and Robins, 2005). 

For continuous Y  it can be written as,  

 2
1 1

ˆ( | ,..., ; ) ~ ( ( ,... ; ) * , )p pY X X N g X X Wβ β α σ+  

The first component of the mean function, 1( ,... ; )pg X X β , is a parametric function with 

covariates that predict the mean of Y. It is the same as a linear regression model. The 

second part of the mean function includes the estimated weight, , as a linear term in 

the model, where 

Ŵ

1
ˆ 1/ Pr( 1 | ,..., )PW R X= = X  is the inverse of the estimated propensity 

score of respondents. Similar approach has been applied in the sample survey setting, 

where the weights are due to sampling rather than nonresponse (Sarndal, Swensson and 

Wretman, 2003 ; Firth D. and Bennett, 1998).  The LWP has a similar double robustness 

property as the PSPP method meaning that if either the mean function of Y given the 

covariates are correctly specified or the weight is correctly estimated,  then the marginal 

mean of missing variable Y will be consistent. Like the PSPP method, the first step of 

fitting a Linear in the weight model estimates the propensity score, for example by a 
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logistic regression model or probit model of M on 1,..., pX X ; in the second step, the 

regression of Y on the weight and the other covariates is fit parametrically. 

 

3.2.3 Calibration method (CAL) 

 

The calibration method calibrates the predictions from a parametric model by 

adding the mean of the weighted residuals, with weights equal to the inverse of the 

propensity scores (Robins, Rotnitzky and Zhao, 1994; Scharfstein, Rotnitzky and Robins, 

1999). The calibration method consists of three steps. Firstly a parametric model is fit to 

the complete cases and predictions are derived for all the subjects based on the regression 

model. Secondly, the propensity score is estimated by a logistic regression model or a 

probit model of M on 1,..., pX X . Then the marginal mean of Y  can be estimated by 

combining mean of the predictions with mean of the weighted residuals, where the 

residual of a complete case is the difference of the observed and predicted values for the 

complete case.  The estimator of the mean is  

 ,  1 1

1 1

ˆ ˆ ˆ( ) ( (
n r

i i i
i i

n y n w y yμ − −

= =

= + −∑ ∑ ˆ ))i

( 1 | ,..., )i i Pw R X X= =where is the estimated weight for the ith subject, and 1ˆ 1/ Pr ˆiy  is  

the regression prediction from a parametric model for the ith subject . This method has a 

double robustness property meaning that if either the prediction model is correctly 

specified or the weight is correctly estimated, then the marginal mean of Y is consistent.  

 

3.2.4 Weighted complete-case analysis (WCC) 

 

If we set the predictions equal to zero we obtain the weighted complete-case 

estimator from the calibration method as follows:  

 
1 1

ˆ ˆ( ) /(
r r

i i i
i i

w y wμ
= =

= ˆ )∑ ∑ ,  

where is the estimated weight for the ith subject. For 

example if a subject in complete cases has a selection probability of 0.1, it will have a 

1ˆ 1/ Pr( 1 | ,..., )i iw R X= = PX
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weight of 10, which means this subject will represent 10 subjects when estimate the mean 

of missing variable.  This estimator is commonly used to handle unit non-response in 

surveys (Little, 1983, 1986, 1991; Little and Rubin, 2002; Horvitz, and Thompson, 1952; 

Cochran, 1968). 

 

3.3 Simulation studies 

 

In this section we conduct simulation studies to compare root mean square error, 

average width of confidence interval and non-coverage rate of the estimators described 

above. In 3.3.1 we assume we have a correctly specified propensity model and we study 

the performance of the estimators when the mean function of the missing variable given 

the covariates is not correctly specified. For the propensity function we have the 

missingness of Y depend on the fully observe covariates, but with different degree of 

dependency. We also study how the properties of the estimators depend on the sample 

size.  

 

In 3.3.2, we study the performance of the various estimators when we have 

wrongly specified propensity scores. When the propensity score is wrong but the mean 

function is correct, we will have consistent estimates of the marginal mean. But when 

both are wrong, none of the estimators yields consistent marginal mean. We conduct 

simulation study to compare these estimators with correctly or wrongly specified mean 

functions. 

 

3.3.1 Performance of the DR estimators when the propensity score is correct specified 

 

We conduct three simulation studies in 3.3.1 with different mean and propensity 

functions. Simulation 1 and 2 concern a simple mean function with a single covariate and 

simulation 3 concerns more complex mean functions with 2 covariates. We vary the 

degree of dependency of the missingness of Y on the covariates, the degree to which the 

regression is misspecified, and the sample size.  
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Simulation 1. A misspecified quadratic mean function. We simulate 500 datasets with 

sample size of 50, 100, 200, 400, 800 and 1,500 respectively, with a fully-observed 

covariate 1X  from standard normal distribution and a continuous response variable Y.  

Let M be an indicator variable with 1M =  when is missing and  when Y is 

observed. We create missing values of Y from the following response propensity model:  

Y 0M =

 1 1logit ( ( 0 | )) *P M X X1δ= = ,  

with two choices of 1δ , 1δ  = 0.1 and 1δ  = 0.5.  The larger 1δ  models a stronger 

dependency of the response propensity and 1X . For both values of 1δ , the overall 

probability of missing values has an expected value of 0.5. The distribution of Y given 

1X  is:  

 
( )1 1

2
1 1 2

| ~ ( ),1 ,

( ) 1 *

Y X N X

1 ,X X X

μ

μ δ= + +
 

with two choices for the coefficient of 2
1X , namely 0.8 and 4. For the parametric 

predictions of the CAL method we assume the regression is linear in 1X , that is 2δ = 0. 

Hence larger values of 2δ  imply more serious misspecification of the prediction model in 

the CAL method. We thus have four different combinations of simulated mean and 

propensity functions based on the values of 1δ  and 2δ , low low (LL) and low high (LH),  

high low (HL), high high (HH) (See Table 3.1). For example for the high low cell, the 

high corresponds to the larger coefficient of the quadratic term in the mean function, 

which leads to greater misspecification of a imputation model without 2
1X ; the low 

corresponds to the smaller coefficient of 1δ  in the propensity model.  This simulation is 

expected to be favorable to the PSPP, since the spline on the propensity score closely 

approximates the true regression function on the covariates. 
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Table 3.1 Simulation 1 classified by degree of misspecification in the mean function and 
the degree of diversity of the propensity function              
 Propensity function 

 

Mean Function 
1

1

logit ( ( 0 | ))
0.1

P M X
X

=
=

 1

1

logit ( ( 0 | ))
0.5

P M X
X

=
=

 

( 2
1 1| ~ 1 0.8 ,1Y X N X X+ + )1 , Low low (LL) Low high (LH) 

( 2
1 1 1| ~ 1 4 ,1Y X N X X+ + ) ,  High low (HL) High high (HH) 

 

We estimate the propensity score by a correctly specified logistic regression  

including the intercept and a linear term in 1X , namely ,  

 . 0 1 1 0 1 1
ˆ ˆ ˆ ˆ( ) ( )

1ˆ ( 0 | ) /(1X Xp M X e eδ δ δ δ+ += = + )

 

We then estimate the marginal mean of missing variable by the following versions 

of PSPP, LWP, CAL and WCC:   

 

(a) The PSPP Method with null g function, which we denote . We use the logit of 

the propensity score in the spline function instead of the propensity score directly. The 

marginal mean of Y is estimated as the average of the observed data and imputed data. 

For the penalized spline method in this paper, we choose 5 equally spaced fixed knots 

when sample size is 50, 10 equally spaced fixed knots when sample size is 100, 20 

equally spaced fixed knots when sample size is 200 or more. A truncated linear basis is 

applied for the spline model, that is,  

*[ ( )]s P

* * *
0 1 1

( ) ( ) .K
k kk

s P P Pβ β γ κ +=
= + + −∑  We fit this 

model using PROC MIXED in SAS with * *
1( ) ,..., ( )kP Pκ κ+ +− −  treated as random 

effects and the intercept and treated as the fixed effects.  *P

 

(b) The linear in the weight model, namely 0 1 ˆ[ * w]α α+ , where is the inverse of the 

estimated propensity score. Missing values are predicted from the regression of Y on the 

ŵ
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inverse of the estimated probability to respond, that is 1 0 1
ˆ( | )E Y X Wα α= + , where 

=Ŵ 1ˆ1/ ( 0 | )p M X= .  The marginal mean of Y is estimated as the average of the 

observed data and imputed data.  

 

(c) The calibration method,  [ ], where is the 

estimated weight of the ith subject and 

1 1

1 1

ˆ ˆ ˆ( ) ( (
n r

i i i
i i

n y n w y yμ − −

= =

= + −∑ ∑ ˆ ))i ˆ iw

ˆiy  is the predicted value of the ith subject from a 

prediction model of Y regressing on 1X .  

 

(d) Weighted complete-case analysis, [
1 1

ˆ ˆ( ) /(
r r

i i i
i i

w y wμ
= =

= ˆ )∑ ∑ ], with  the inverse of the 

estimated propensity score.  

ˆ iw

 

We also include a correctly specified regression model of Y regressing on 1X and 2
1X  and 

a wrongly specified regression model of Y regressing on 1X  for comparison.  

 

To derive confidence intervals we apply the above methods to 200 bootstrap 

samples for each dataset. The variance ( ) of the marginal mean of Y for each dataset 

is estimated as  

bootV

 200 ( )
1

1ˆ ˆ ˆ( )
199

b
boot bootb

V μ μ
=

= −∑  

where ( )ˆ bμ  is the estimated marginal mean of Y  for the bth bootstrap sample, b = 1,…, 

200; ˆbootμ is the average the estimated marginal mean of Y over the 200 bootstrap samples. 

We construct the 95% confidence interval for each data set as 

ˆˆ ˆ( 2* ,  2*boot boot boot bootVμ μ− + ˆ ).V  The non-coverage rate is the percentage of the 500 

samples with the 95% confidence intervals not covering the true value. The average 

width of CI’s, CIW, is the average of ˆ4 * bootV  over the 500 samples.  

 

    



 42 

We derive the relative root mean square error (RRMSE) compared with the before 

deletion analysis as 

RRMSE=100*(RMSE(estimator)-RMSE(BD))/RMSE(BD). 

where RMSE(estimator) is the average of the estimated RMSE over the 500 samples of 

the different estimators, RMSE(BD) is the average of the estimated RMSE over the 500 

before deletion samples. Similarly, relative width of confidence interval (RCI) compared 

with the before deletion estimator,  

RCI=100*(CIW(estimator)- CIW(BD))/ CIW(BD), 

where CIW(estimator) is the average of the estimated CIW of different estimators, 

CIW(BD) is the CIW of the before deletion analysis, which is the average width of CI 

over the 500 before deletion datasets.  

 

Values of RRMSE for the above methods are displayed in Figure 1. Among the 

four methods we are comparing (PSPP, LWP, CAL, WCC), the PSPP method yields 

smallest RRMSE in all the cases, which is very close to the correctly specified regression 

model. When the propensity of response is not strongly related to 1X (LL and HL), the 

linear in the weight method, calibration method and weighted complete-case analysis 

yield similar RRMSEs.  The gain of the PSPP method over the other methods is sizeable 

in the LL case, but the difference is even more dramatic in the HL case, where the 

quadratic term in the mean function is more important.  When the missingness of Y 

strongly depends 1X  (LH and HH) and the complete cases are no longer approximately a 

random sample of the original data, the RRMSEs of the different methods are more 

differentiated. The linear in the weight method yields largest RRMSE, follows by the 

calibration method and weighted complete-case analysis.  Again, the gain in RMSE of 

the PSPP method over the other methods is sustained when the coefficient of the 

quadratic term is small (LH case), and even greater in the HH case, where the quadratic 

term in the mean function is more important. The wrong regression model yields much 

larger RRMSE than the PSPP , LWP, CAL and WCC in the LH and HH cases.  

 

The average widths of confidence interval follow similar pattern as the RRMSEs 

(Figure 2). For the LL and HL cases, among the four methods we are comparing, the 
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PSPP method yields the narrowest CI’s on average, and the linear in the weight method, 

calibration method and weighted complete-case analysis yield CI’s with similar width. 

The gain of the PSPP method over the other methods is smaller in the LL case than in the 

HL case. For the LH and HH cases, the linear in the weight method yield largest width of 

CI, followed by the calibration method and weighted complete-case analysis. Again the 

gain of the PSPP method over the other method is smaller in the low misspecication case 

(LH) than in the high misspecification case (HH). The correctly specified regression 

model yields smallest width of CI in all cases. The wrong regression model yields width 

of CI greater than the PSPP, but smaller than the LWP, CAL and WCC in the LH and HH 

cases.  

 

The linear in the weight method yields width of CI’s large with of CI when the 

sample size is small (sample size =50). One possible reason is that it is very sensitive to 

extreme propensity scores when the sample size is small.  A small propensity score 

corresponds to a large weight, which leads to extreme predictions under the linear model. 

The PSPP method, on the other hand, estimates a spline curve through the propensity 

scores and the curvature prevents these extreme predictions for cases with small 

propensity scores.  

 

Figure 3 displays non-coverage rates for the four methods. In general, all methods 

yield non-coverage rates close to the 5% nominal level when the sample size reaches 200 

or more. When the sample size is less than 200, the non-coverage rate of the linear in the 

weight method is smaller than the 5% nominal level, and the other methods yields non-

coverage rate greater than the 5% nominal level. The PSPP method has better coverage 

than the weighted complete-case analysis and calibration prediction in the LH and HH 

cases; for the LL and HL case, the coverage rates of these three methods are similar.  The 

wrong regression model yields large non-coverage rate in the LH and HH cases due the 

bias of the estimates. 

 

Simulation 2. Mean function depends linearly on weight. Simulation 1 concerns a 

situation where the LWP provides a poor fit to the data. Simulation 2 is designed to be 
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more favorable to the LWP method. The PSPP is also expected to do well in this case 

since it can approximate the true regression function on the covariates. We simulate 500 

datasets with the same sample sizes as simulation 1, with one complete covariates 1X  

from standard normal distribution and a continuous response variable Y. As for 

simulation 1, we create missing values of Y from the response propensity model:  

 1 1logit ( ( 0 | )) *P M X X1δ= = , 

with two values of 1δ , 1δ  = 0.1 and 1δ  = 0.5. We derive the weight (W) as the inverse of 

the propensity score and the mean structure of Y depends on the weight as follows:  

 
( )

2
2

| ~ ( ),1 ,

( ) 1 * ,

Y W N W

W W W

μ

μ δ= + +
 

where 2δ  is the coefficient for the quadratic term, chosen to equal to 0.8 or 4. The larger 

2δ  means the greater misspecification of an imputation model without . We thus have 

four different simulation conditions depending on the values of 

2W

1δ  and 2δ  (Table 3.2).  

 
Table 3.2 Simulation 2 classified by degree of misspecification in the mean function and 
the degree of diversity of the propensity score              
 Propensity function 

 

Mean Function 
1

1

logit ( ( 0 | ))
0.1

P M X
X

=
=

 1

1

logit ( ( 0 | ))
0.5

P M X
X

=
=

 

( 2| ~ 1 0.8 ,1Y W N W W+ + )  Low low (LL) Low high (LH) 

( 2| ~ 1 4 ,1Y W N W W+ + )  High low (HL) High high (HH) 

 

 

Like simulation 1, we estimate the propensity score by a correctly specified 

logistic regression including the intercept and a linear term in 1X . We then estimate the 

marginal mean of Y using the following versions of PSPP, LWP, CAL and WCC.  .  
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(a) The PSPP method with null the g function, which we denote *[ ( )]s P . We use the 

same procedure as simulation 1. The marginal mean of Y is estimated as the average 

of the observed data and imputed data.  

(b) The linear in the weight prediction model, namely ]w0 1 ˆ[ *α α+ , where ŵ is the 

inverse of the propensity score. Like simulation 1, we fit the linear regression model 

of Y on ŵ  to the complete cases and the missing values are predicted by the 

regression model. The marginal mean of Y is the average of the observed data and 

the predicted data. 

(c) The calibration estimator,  [ ˆ ))i iy y− ], where ˆ iw is the 

weight for the ith subject and ˆi

1 1

1 1

ˆ ˆ ˆ( ) ( (
n r

i i
i i

n y n wμ − −

= =

= +∑ ∑

y  is the prediction from a linear regression model of Y 

on 1X . 

(d) The weighted complete-case analysis,  [ ˆ/( )iw
1 1

ˆ ˆ( )
r r

i i
i i

w yμ
= =

= ∑ ∑ ] with ˆ iw  the inverse 

of the estimated propensity score.  

We also include a correctly specified regression model of Y regressing on  and  and 

a wrongly specified regression model of Y regressing on 

ŵ 2ŵ

1X  for comparison.  

 

We derive RRMSE, relative width of confidence interval (RCI) and non-coverage 

rate as simulation 1 and the results are shown in Figures 4-6.  For the LL and HL cases, 

where the complete cases resemble a random sample of the original data, all of the 

method yields very similar RRMSE. For the LH and HH cases, the PSPP method and the 

LWP yield smaller RRMSE than the CAL and the WCC. For the LH case, the LWP 

model is very close to the correctly specified mean model, and consequently the RRMSE 

of the LWP model is small; while in the HH case, the quadratic term is more important 

and the LWP model no longer close to the true mean model and thus yields slightly larger 

RRMSE than the PSPP method. The CAL has better RRMSE than WCC, but is 

considerably less efficient than the PSPP for the LH and HH situations. The correct 

regression model yields large RRMSE when the sample size is small because the mean 
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functions depend on  and  and extreme small propensity score corresponds to large 

weight, which leads to large predictions.  

ŵ 2ŵ

 

All methods yield similar width of confidence interval in the LL and HL situation. 

For the LH and HH situation, the weighted complete-case analysis yields largest width of 

confidence interval, followed by the calibration method and the PSPP method yields 

smallest width of confidence interval.  The linear in the weight method, the calibration 

method and the correct regression model yield very large width of confidence intervals at 

sample size of 50.  

 

For the non-coverage rate, all estimators except the wrong regression model yield 

non-coverage rate close to 5% nominal level in the LL, LH and HL situations. For the 

HH situation, the PSPP method, calibration method and the weighted complete-case 

analysis yield non-coverage rate above the 5% nominal level at small sample sizes and 

the wrong regression model yields much larger non-coverage rate compared with other 

methods. 

 

Simulation 3. Mean function include the interaction of the covariates. This 

simulation concerns more complex mean function and is designed to be more favorable 

to the CAL method. We simulate 500 datasets with sample size of 50, 100, 200, 400, 800 

and 1,500 respectively, with independent complete covariates 1X  and 2X  from standard 

normal distribution and a continuous response variable Y. We create missing values of Y 

from the response propensity model:   

 1 2 1 1logit ( ( 0 | , )) 0.25* *P M X X X X 2δ= = −  

where 1δ  equals to 0.1 or 0.5. The mean structure of Y depends on 1X  and 2X  as follows,   

 
( )1 2 1 2

1 2 1 2 2 1 2

| , ~ ( , ),1 ,
( , ) * * ,

Y X X N X X
X X X X X X

μ
μ δ= + +

 

where 2δ  is the coefficient from the interaction term, which is 0.8 or 4. Like simulations 

1 and 2, we thus have four different simulation conditions depending on the values of 1δ  

and 2δ  (Table 3.3). 
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Table 3.3 Simulation 3 classified by degree of misspecification in the mean function and 
the degree of diversity of the propensity score              
 Propensity function 

 

Mean Function 
1 2

1 2

logit ( ( 0 | , ))
0.25* 0.1*

P M X X
X X

=
= −

 1 2

1 2

logit ( ( 0 | , ))
0.25* 0.5*

P M X X
X X

=
= −

 

( )
1 2

1 2 1 2

| ,
~ 0.8* *
Y X X

N X X X X+ + ,1

Low low (LL) Low high (LH) 

( )
1 2

1 2 1 2

| ,
~ 4* *
Y X X

N X X X X+ + ,1
 

High low (HL) High high (HH) 

 

We estimate the propensity score by a correctly specified logistic regression,   

which is  modeled as an additive function of 1X  and 2X  as follows,  

 . 0 1 1 2 0 1 1 2
ˆ ˆ ˆ ˆ( ) ( )

1 2ˆ ( 0 | , ) /(1X X X Xp M X X e eδ δ δ δ+ + + += = + )

]

 

We then estimate the marginal mean of missing variable by the following 

methods.  

 (a) The PSPP Method with null g function, which we denote . We follow the 

same procedure as simulation 1. The marginal mean of Y is derived as the average of the 

observed data and imputed data.  

*[ ( )]s P

(b) Linear in the weight method namely 0 1 ˆ[ * wα α+ , where  is the inverse of the 

estimated propensity score. The marginal mean of Y is the average of the observed data 

and the imputed data. 

ŵ

(c) The calibration method [ ], where is the weight 

for the ith subject and 

1 1

1 1

ˆ ˆ ˆ( ) ( (
n r

i i i
i i

n y n w y yμ − −

= =

= + −∑ ∑ ˆ ))i ˆ iw

ˆiy  is the prediction for the ith subject from a prediction model by 

regressing Y on 1X  and 2X .  

(d) Weighted complete-case analysis [
1 1

ˆ ˆ( ) /(
r r

i i i
i i

w y wμ
= =

= ˆ )∑ ∑ ], is the same as simulation 1.  
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We also include a correctly specified regression model of Y regressing on 1X , 2X  and 

1 * 2X X  and a wrongly specified regression model which does not include the interaction 

term 1 2*X X .  

 

We derive RRMSE, relative width of confidence interval (RCI) and non-coverage 

rate as simulations 1 and the results are shown in Figures 7-9. The correct regression 

model yields much smallest RRMSE at all cases. Among the four methods we are 

comparing, the PSPP method yields smallest RRMSE in the LL, HL and HH situations. 

The gain of the PSPP method over the other methods is minimal in the LL case, but the 

difference is more dramatic in the HL and HH situations. For LH case, the CAL model is 

very close to the correctly specified mean model, and consequently the RRMSE of the 

CAL model is the smallest. In the HL and HH cases, the quadratic term is more important 

for the mean model and thus the CAL model is no longer close to the true mean model 

and yields larger RRMSE than the PSPP method.  

 

The PSPP, LWP, CAL and WCC yield similar widths of confidence interval in 

the LL, HL and HH situations (Figure 8). For the LH situation, the CAL yields smallest 

width of CI’s, which is consistent with the results of RRMSE. The LWP method yields 

estimators with large confidence intervals at the sample size of 50. The wrong regression 

model yields smaller width of CI’s than the PSPP, LWP, CAL and WCC in general and 

the correct regression model yields much smaller widths of confidence interval under all 

situations.  

 

 The PSPP method and the linear in the weight method yield estimators with non-

coverage rate below the 5% nominal level at sample size of 50. Other than that, the PSPP 

method yields non-coverage rates closer to the 5% nominal level than the other methods 

(Figure 9). The wrong regression model yields large non-coverage rate for LH and HH 

cases.  
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3.3.2 Misspecification of propensity score 

In this section we study the performance of different estimators when we 

misspecify the propensity scores. The DR properties of the PSPP, LWP and CAL protect 

against model misspecification of either the regression prediction model or the propensity 

model; but when both models are incorrect, these methods do not yield consistent mean 

estimates.  We use the follow simulation study to show the DR property of the above 

estimators.  

 

Simulation 4. Misspecification of the propensity score. We simulate 500 datasets with 

sample size of 500 each, with independent complete covariates 1X  and 2X  from standard 

normal distribution and a continuous response variable Y. We create missing values of Y 

from the response propensity model:  

 1 2 1logit ( ( 0 | , )) 0.75* 0.5*P M X X X X 2= = −  

The mean structure of Y depends on 1X  and 2X ,  

 
( )1 2 1 2

1 2 1 2 1 2

| , ~ ( , ),1 ,
( , ) 1 *

Y X X N X X
,X X X X X

μ
μ = + + + X

 

The marginal mean of Y is 1 in both settings and the missing percentages are about 50%.  

 

We estimated the propensity score by the following three logistic regressions: 

(A) A correctly specified logistic regression model includes 1X  and 2X  additively, 

namely,  We denote the logit of the 

propensity score as . 

0 1 1 1 2 0 1 1 1 2
ˆ ˆ ˆ ˆ ˆ ˆ( ) (

1 2ˆ ( 0 | , ) /(1X X X Xp M X X e eδ δ δ δ δ δ+ + + += = + ) ).

*
correctP

(B) A wrongly specified logistic regression including 1X  only, namely, 

 We denote the logit of the propensity score as 

 

0 1 1 0 1 1
ˆ ˆ ˆ ˆ( ) ( )

1 2ˆ ( 0 | , ) /(1Xp M X X e eδ δ δ δ+ += = + ).X

1

*
_wrong xP

(C) A wrongly specified logistic regression including 2X  only, that is, 

 We denote the logit of the propensity score as 

. 

0 1 2 0 1 2
ˆ ˆ ˆ ˆ( ) ( )

1 2ˆ ( 0 | , ) /(1Xp M X X e eδ δ δ δ+ += = + ).X

2

*
_wrong xP
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For each of the propensity score estimated above, we derive the marginal mean of 

missing variable by the following versions of the PSPP, LWP, CAL and WCC. 

 

(I) The PSPP method 

(a) The PSPP method with null g function, which we denote *[ ( )]s P , where *P  is the 

logit of the propensity score described above. This model does not specify the 

mean function of Y given the covariates correctly since none of three propensity 

scores *
correctP , 

1

*
_wrong xP or 

2

*
_wrong xP contains the interaction term of 1X  and 2X . 

The marginal mean of Y is derived as the average of the observed data and 

imputed data.  

(b) Model (a) with 1X  included, which we denote *
1[ ( ) ] . We do not fit this 

model when we estimate propensity score by model B to prevent multicolinearity.   

s P X+

(c) Model (a) with 2X  included, which we denote *
2[ ( ) ] . We do not fit this 

model when we estimate propensity score by model C to prevent multicolinearity.   

s P X+

(d) Model (a) with 2X  and 1 2*X X included, which we denote 

* ]X X . This model correctly specified the mean function of Y 

given the covariates when we estimate the propensity score by mode A and B. We 

do not fit this model when we estimate the propensity score by model C to 

prevent multicolinearity.   

*
2 1 2[ ( )s P X+ +

 

(II) LWP method 

(e) Linear in the weight method namely ]w0 1 ˆ[ *α α+ , where ŵ  is the inverse of the 

propensity score estimated by model A, B, C. The marginal mean of Y is the 

average of the observed data and the predicted data.  

(f) Model (e) with 1X  included, namely ]w X0 1 1ˆ[ *α α+ + .  

(g) Model (e) with 2X  in included,  namely ]w X0 1 2ˆ[ *α α+ + .  

(h) Model (e) with 2X  and 1 2*X X included, namely ]X X0 1 2 1 2ˆ[ * *w X+ + .  +α α
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(i) Model (e) with 1X , 2X , 1 2*X X included, namely, 

2* ]X0 1 1 2 1ˆ[ * w X X Xα α+ + + + .  This model correctly specified the mean 

function of Y given the covariates no matter which methods we use to estimate the 

propensity score.  

 

(III) CAL estimator 

(j) The calibration method, denoted as  [ 1

1

ˆ ˆ( ( ))y y− ], where ˆ iw is the 

weight for the ith subject and derived as the inverse of the estimated propensity 

score, 

r

i i
i

y n wμ −

=

= + ∑

y  is the mean of the complete cases.  

(k) The calibration method, denoted as [ ))i xy− ], 

1_ˆi xy  is the prediction of the ith subject from a regression model of Y on 1

1 1

1 1
_ _

1 1

ˆ ˆ ˆ ˆ( ) ( (
n r

i x i i
i i

n y n w yμ − −

= =

= +∑ ∑

X . 

(l) The calibration method, denoted as [ ))i xy− ], 

2_ˆi xy  is the prediction of the ith subject from a regression model of Y on 2

2 2

1 1
_ _

1 1

ˆ ˆ ˆ ˆ( ) ( (
n r

i x i i
i i

n y n w yμ − −

= =

= +∑ ∑

X . 

(m)  The calibration method, [ ))x x x ], 

2 1 2_ , *ˆi x x xy  is the prediction of the ith subject from a prediction model of Y on 2

2 1 2 2 1 2

1 1
_ , * _ , *

1 1

ˆ ˆ ˆ ˆ( ) ( (
n r

i x x x i i i
i i

n y n w y yμ − −

= =

= + −∑ ∑

X  

and 1 2*X X .  

(n) The calibration method,  [ ))x x x ],   
1 2 1 2 1 2 1 2

1 1
_ , , * _ , , *

1 1

ˆ ˆ ˆ ˆ( ) ( (
n r

i x x x x i i i x
i i

n y n w y yμ − −

= =

= + −∑ ∑

1 2 1 2_ , , *ˆi x x x xy  is the prediction of the ith subject from a prediction model by regressing Y 

on 1X , 2X  and 1 * 2X X . This prediction model is correctly specified.  

 

(IV) WCC method 

(o) Weighted complete-case analysis [ ˆ/( )iw
1 1

ˆ ˆ( )
r r

i i
i i

w yμ
= =

= ∑ ∑ ], with ˆ iw  the inverse of 

the estimated propensity score. 
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We estimate bias, which is the average of the deviations of the estimates from the 

true mean over the 500 simulated data sets, and empirical standard error (SE) that is the 

standard deviation of the estimates over the 500 simulated data sets. We also calculate the 

root mean square error, the mean of the squared difference of the estimates from the true 

value over the 500 data sets (Table 3.4).  

 

When the propensity score is correctly specified all methods yields consistent 

estimates with small bias, empirical standard error and RMSE (Table 3.4, column A). 

When the propensity score is wrongly specified but the mean function is correctly 

specified, the PSPP method (model d), the LWP (model i) and the CAL method (model 

n) yields estimates with small bias, empirical standard error and RMSE (Table 3.4, 

column B&C). When neither the propensity score nor the mean function is correctly 

specified, the PSPP method (model a, b, c), the LWP method (model e, f, g) and the CAL 

method (model j, k, l, m) yield biased estimates.  For model (h) in column B, where the 

propensity score is wrongly specified but the mean function is close to the correctly 

specified form, we find the linear in the weight method yields estimates with small bias, 

empirical standard error and RMSE; but it will yields biased result if the mean function is 

not close to the correct mean function (Table 3.4, column C). The weighted complete-

case analysis (model o) yields biased results (as expected) when the propensity score is 

not correctly specified. 

 

3.4 An Example: Online Weight Loss Study 

We apply the different estimators in this paper to a data from an online weight 

loss study conducted by Kaiser Permanente (Couper et al., 2005). The study randomized 

approximately 4,000 subjects to the treatment or the control group. Subjects in the 

treatment group received tailored weight loss information online. The tailoring 

information was based on their answers to an initial survey, which contained baseline 

measurements such as baseline weight, motivation to weight loss, etc; for the control 

group, information provided online was the same for all the subjects.  A follow-up survey 

was sent to the subjects at month 3, which collected follow-up measurements such as 

current weight. Our goal is to compare the short-term treatment effects; in particular, we 
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compare the reduction of the body mass index (BMI), defined as difference of 3-month 

BMI and baseline BMI. 

 

There were 2059 subjects in the treatment group and 1956 subjects in the control 

group at the baseline. At 3 month 623 subjects in the treatment group and 611 subjects in 

the control group responded to the second survey. We assume the data are missing at 

random. Subjects in the treatment group who remained in the study have much lower 

baseline BMI than those who dropped out  (33.75 vs 35.57; P<0.001), but this differences 

is not seen in the control group (35.22 vs 35.50; P=0.47); On the other hand, for the 

control group subjects who remained in the study have better baseline health, as 

measured by the number of previous diseases, than those who dropped out of the study 

(P<0.01); this differences was not seen in the treatment group (P=0.56). These 

differences suggest that interactions between treatment and baseline covariates need to be 

included when estimating the propensity scores.  

 

We estimate the propensity scores by a logistic regression, with the inclusive 

criterion of retaining all variables with P-values less than 0.20.  The final model includes 

the following covariates: baseline BMI; number of previous disease; baseline self care; 

which is harder–eating less or being active; baseline exercise support; baseline activity 

level; baseline eating topology; education; ethnic identity; treatment; interaction of 

treatment and baseline BMI; interaction of treatment and baseline eating topology; 

interaction of treatment and baseline activity level; interaction of treatment and number 

of previous disease; interaction of treatment and which is harder–eating less or being 

active.  

 

To derive the BMI reduction within each group, we apply the stratified PSPP 

method, which is a straight extension of the PSPP method by fitting different spline 

curves to the different subgroups (Zhang and Little, 2005). For the linear in the weight 

prediction method, calibration method and weighted complete-case analysis we apply the 

method to the treatment or control group separately.  
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The baseline covariates in the stratified PSPP method, linear in the weight 

prediction method and the baseline covariates for the prediction model of the calibration 

estimator include: ethnic identity; baseline medical advice; baseline eating topology; 

baseline cardio exercise; baseline activity level; baseline BMI; number of previous 

disease; number of weigh loss methods tried; motivation of weigh loss; which is harder–

eating less or being active.  

 

We include the result of the complete-case analysis for comparison. Results are 

summarized in Table 3.5. Empirical Standard errors (SE) and the corresponding 

confidence intervals are obtained from 200 bootstrap samples. The treatment group has a 

larger reduction of BMI after 3 month (-0.91 (0.09)) compared to the control group (-0.45 

(0.10)) based on the complete case analysis.  The treatment effect is stronger based on the 

DR estimators than that of the complete-case analysis. The stratified PSPP method, the 

linear the weight prediction method, the calibration estimator and the weighted complete-

case analysis yield similar results, with the reduction of BMI ranging from -1.01 to -1.04 

for the treatment group and -0.40 to -0.42 in the control group. The 95% confidence 

intervals for the treatment group do not overlap with the control group suggesting a 

treatment effect on the weight loss.   

 

It is not surprising that the DR estimators yield similar results for this online 

weight study. We estimate the propensity scores by conditioning on a large number of 

baseline covariates, which characterize the respondents and the nonrepondents well and 

as a results we have a well-defined propensity score. Second, we include a large number 

of baseline covariates in the parametric part of the DR estimators and the same 

parameterization should not lead to results with large discrepancies. More over in this 

study we do not find much different from result of complete-case analysis and those of 

the DR estimators, which suggest that the data is more like the LL case in the simulation 

studies in this paper and as a results the different methods do not differentiate 

significantly.  
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3.5 Conclusion 

                 
We have compared properties of four methods for estimating the mean from 

incomplete data that have double robustness properties, in that they yield consistent 

estimates if either the prediction model or the model for the propensity to respond is 

correctly specified. For the problems simulated, we find a clear advantage for the PSPP 

method over the calibration, linear in the weight and response weighting methods when 

the propensity model is correctly specified. In particular, the PSPP method yields 

estimates with lower mean squared error and narrower confidence intervals based on 

bootstrap standard error and coverage that were similar or closer to the nominal level than 

coverage based on the other methods. 

 

Confidence intervals for the PSPP method did not achieve their nominal coverage 

when the sample sizes were small, particularly when n = 50. However, the alternative 

methods, including calibration, were generally no better than PSPP in this situation.  

When the propensity model was incorrectly specified there was less difference between 

the methods, which (as expected) tended to do well when the prediction model is well 

specified and poorly when it is not. 

 

The results from any simulation need to be interpreted with caution, since they are 

limited to the conditions simulated. We attempted to design our simulations in a way that 

varied the key elements of the problem at hand -- the extent of misspecification of 

prediction and propensity models, and the sample size. We fixed the fraction of missing 

data, which is clearly an important element, at 50%. However, in our experience the 

effect of this factor is predictable, with the performance of all the methods converging to 

the complete-data inference as the fraction of missing cases goes down. We chose a 

relatively high fraction of missing data to accentuate differences between the methods. 

We simulated normal models with constant variance, and hence did not assess the effect 

of alternative variance structures and error distributions. There are many ways in which 

models can be misspecified, and no single simulation can cover all the possibilities. 
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With these caveats, our conclusion based on these simulations is that if robustness 

to restricted parametric models is desired for inferences about means, then it is best 

achieved by a method like PSPP that specifies a flexible mean structure in directions of 

the model space that are vulnerable to model misspecification, here the propensity to 

respond given the covariates. Other methods like calibration do provide robustness 

through the double robustness property, but they were inferior to the robust PSPP 

modeling approach in terms of efficiency and confidence coverage, and they did not 

correct the under-coverage of bootstrap confidence intervals for PSPP in small sample 

sizes. The latter may be better addressed by "biting the bullet" and adopting more 

parsimonious parametric models. An alternative method of computing PSPP confidence 

intervals that might improve on the bootstrap for small samples is to compute Bayesian 

credibility intervals based on Bayesian version of the PSPP model, with non-informative 

priors for the parameters. We did not assess this option in our simulations, to keep the 

number of comparisons manageable. 

It should also be noted that we restricted attention to inference about the 

unconditional mean. The calibration approach can also be applied to achieve double 

robustness for inferences about regression coefficients (Robins, Rotnitzky and Zhao, 

1994;  Rotnitzky, Robins and Scharfstein, 1998; Robins and Rotnitzky, 2001;  Lunceford 

and Davidian, 2004;  Yu and Nan , 2006), a problem where the PSPP method seems less 

useful. Specifically, Zhang and Little (2005) consider extensions of PSPP to handle 

conditional means and simple regression coefficients, but extensions to multiple linear 

regression seem less readily available and appealing. So this is an area where calibration 

methods appear to have the edge. 

 

 

 

 

 



   

 

Figure 1. % Increase of RMSE of simulation 1
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Note: (1) LL: low low ; LH: Low High; HL: High Low; HH: High High.  
          (2) LL 50: Low low cases, sample size 50.  
          (3) Points beyond 150 are not in the real scales, numbers in the parenthesis show the real values.  
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          Note: (1) LL: low low ; LH: Low High; HL: High Low; HH: High High.  
                    (2) Points beyond 150 are not in the real scales, numbers in the parenthesis show the real values.   

Figure 2. % Increase of Width of CI of Simulation 1
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Figure 3. Non-coverage rate of Simulation 1
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Note: (1) LL: low low ; LH: Low High; HL: High Low; HH: High High.  
          (2) LL 50: Low low cases, sample size 50.  
          (3) Points beyond 20 are not in the real scales, numbers in the parenthesis show the real values.   
 

 



   

 

Figure 4. % Increase of RMSE of Simulation 2
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Note: (1) LL: low low ; LH: Low High; HL: High Low; HH: High High.  
          (2) LL 50: Low low cases, sample size 50.  
          (3) Points beyond 100 are not in the real scales, numbers in the parenthesis show the real values. 

 



   

Figure 5. % Increase of Width of CI of Simulation 2
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Note: (1) LL: low low ; LH: Low High; HL: High Low; HH: High High.  
          (2) Points beyond 150 are not in the real scales, numbers in the parenthesis show the real values. 
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Note: (1) LL: low low ; LH: Low High; HL: High Low; HH: High High.  
          (2) Points beyond 200 are not in the real scales, numbers in the parenthesis show the real values  

[22.4] 

Figure 6. Non-coverage rate of Simulation 2
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Figure 7. %Increase of RMSE of Simulation 3
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Note: (1) LL: low low ; LH: Low High; HL: High Low; HH: High High.  
          (2) Points beyond 100 are not in the real scales, numbers in the parenthesis show the real values. 

 



   

 

Figure 8. % Increase of Width of CI of Simulation 3
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Note: (1) LL: low low ; LH: Low High; HL: High Low; HH: High High.  
          (2) Points beyond 100 are not in the real scales, numbers in the parenthesis show the real values.

 



   

Figure 9. Non-coverage rate of Simulation 3
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Note: (1) LL: low low ; LH: Low High; HL: High Low; HH: High High.  
          (2) Points beyond 20 are not in the real scales, numbers in the parenthesis show the real values. 

 



   

  Table 3.4. Empirical bias, empirical standard error and RMSE when propensity function is wrong specified 
 A: 

1 2logit (PS)=X X+  
B: 1logit (PS)=X  C: 2logit (PS)=X  

 Bias SE RMSE Bias SE RMSE Bias SE RMSE
BD -1 9 7 -1 9 7 -1 9 7 
CC 10 13 13 10 13 13 10 13 13 
(a) ]  *[ ( )s Y 1 12 10 -17 11 18 40 14 40 
(b)  *

1[ ( ) ]s Y X+ 0 12 10 -- -- -- 14 13 15 
(c) ]  *

2[ ( )s Y X+ 0 12 10 14 13 16 -- -- -- 
(d) 2 ]  *

2 1[ ( ) *s Y X X X+ + -1 11 9 -1 11 9 -- -- -- 
(e) 0 1[ * ]wα α+  0 12 10 -18 12 19 40 14 40 
(f) 10 1[ * ]w Xα α+ +  5 18 14 -17 12 17 14 13 16 
(g) 20 1[ * ]w Xα α+ +  -3 15 12 14 14 16 40 14 40 
(h) 20 1 2 1

66

[ * * ]w X X Xα α+ + +  -4 15 12 -2 13 10 34 12 34 
(i) 20 1 1 2 1[ * * ]w X X X Xα α+ + + +  -1 11 9 -1 11 9 -1 11 9 
(j) 1

1
ˆ ( ( ))r

i ii
y n w y yμ −

=
= + −∑  0 13 10 -17 12 18 40 14 40 

(k) ˆ−  
1 1

1 1
_ _1 1

ˆ ˆ( ) ( ( ))n r
i x i i i xi i

n y n w y yμ − −
= =

= +∑ ∑ 0 12 9 -17 11 18 10 11 13 
(l) ˆ−  

2 2

1 1
_ _1 1

ˆ ˆ( ) ( ( ))n r
i x i i i xi i

n y n w y yμ − −
= =

= +∑ ∑ 0 15 12 16 14 18 40 14 40 
(m)  

2 1 2 2 1 2

1 1
_ , * _ , *1 1

ˆ ˆ ˆ( ) ( ( ))n r
i x x x i i i x x xi i

n y n w y yμ − −
= =

= + −∑ ∑ 0 12 9 5 12 10 34 12 34 
(n)  

1 2 1 2 1 2 1 2

1 1
_ , , * _ , , *1 1

ˆ ˆ ˆ( ) ( ( ))n r
i x x x x i i i x x x xi i

n y n w y yμ − −
= =

= + −∑ ∑ -1 11 9 -1 11 9 -1 11 9 
(o)  

1 1
ˆ ( ) / )r r

i i ii i
w y wμ

= =
= ∑ ∑ 0 13 10 -17 11 18 40 15 40 
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      Table 3.5 BMI reduction within groups  

Treatment Control Method 

Mean (SE) 95% CI Mean (SE)  95% CI 
Complete Case Analysis -0.91 (0.09) (-1.09, -0.73) -0.45 (0.10) (-0.65, -0.25) 

(a) Stratified PSPP  -1.00 (0.10) (-1.21, -0.80) -0.42 (0.09) (-0.61, -0.23) 

(b) Linear in the weight prediction  -1.01 (0.10) (-1.21, -0.81) -0.42 (0.09) (-0.60, -0.23) 

(c) Calibration estimator -1.02 (0.10) (-1.22, -0.81) -0.42 (0.09) (-0.61, -0.24) 

(d) Weighted complete-case analysis -1.04 (0.11) (-1.27, -0.82) -0.40 (0.09) (-0.59, -0.21) 
      *SE and CI denote empirical standard error and confidence interval. SE and 95% CI are based on 200 bootstrap samples. 
 



   

CHAPTER IV 

THE PSPP METHOD FOR THE MONOTONE PATTERN MISSING 

DATA 
 

4.1 Introduction 

In applications of statistics complete data may not be available for every subject. 

Missing data may arise by experimental design or by happenstance. For example in some 

two stage studies only a subset of the subjects are selected for expensive tests thus 

subjects who have not been chosen will have missing measurements; on the other hand 

some subjects may drop out of the study and make the data collection impossible.   

 

A naïve way to deal with missing data is to discard cases with missing values, and 

analyze the cases that are complete (Complete-Case Analysis, CC). CC analysis is simple 

and yields unbiased estimated if missing values are missing completely at random 

(MCAR), that is, the missingness does not depend on the values of variables in the data 

set (Little and Rubin, 2002). Weighted complete-case analysis is an alternative to CC 

analysis and it can reduce bias when the missing data is not MCAR (Little and Rubin, 

2002; Horvitz and Thompson, 1952). Like CC analysis, weighted complete-case analysis 

discards cases with incomplete information, thus there is a potential loss of information. 

 

Imputation is one common approach to make use of the partial information in an 

incomplete case. For example, consider a data set with variables 1,..., ,p 1X X Y , where 

1,..., pX X  are fully observed covariates and  has missing values. One might impute the 

missing  by a parametric regression of on 

1Y

1Y 1Y 1,..., pX X , for example by a linear model 

                                          2
0 1

, ~ (0, )p
i j ij i ij

Y X N .β β ε ε σ
=

= + +∑                                    (1)
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The parameters 0,..., pβ β  in (1) can be estimated using the complete cases and the 

missing values of is substituted by the predicted values from the regression model.  

Uncertainty in the imputations can be reflected by multiple imputation, where multiple 

sets of draws are imputed from the predictive distribution of the missing values (Rubin, 

1998; Little and Rubin, 2002). This approach is implemented in the SAS software PROC 

MI (1999).  

1Y

 

The parametric approach is very efficient if one can model the relationship of  

and the covariates 

1Y

1,..., pX X  correctly; but it is potentially sensitive to model 

misspecification, particularly when the data deviate from MCAR (Little and An, 2004). 

Nonparametric and semiparametric methods weaken the model assumptions. The 

Penalized Spline Propensity Prediction method of imputation is one such method (Little 

and An, 2004; Little and Zhang, 2007; Zhang and Little, 2005).  Let M  be an indicator 

variable with 1M =  when  is missing and 1Y 0M =  when  is observed. Define the 

logit of the propensity for  to be observed as: 

1Y

1Y

 *
1=logit (Pr( 0 | ,..., ; ))pP M X X 1φ= .                                    

The key property of the propensity score is that, conditioning on the propensity score and 

assuming MAR, missingness of Y does not depend on the covariates 1,..., pX X  

(Rosenbaum and Rubin, 1983). This motives the Penalized Spline Propensity Prediction 

Method (PSPP), which is based on the following model: 

                            * * *
1 1 2( | , ,..., ; ) ~ ( ( ) ( , ,..., ; ), )p pY P X X N s P g P X X 2β β σ+                   (2) 

where is a spline of  on  and *( )s P 1Y *P g  is a parametric function indexed by unknown 

parameter β . One variable, here 1X , is not included in the g  function to prevent 

multicollinearity. A variety of spline fitting methods are possible (Eilers and Marx, 1996; 

Ruppert, Wand and Carroll, 2003; Ngo and Wand, 2004; Eubank, 1998; Wahba, 1990). 

In this paper we choose the penalized spline with truncated linear basis with the form:  

 * * *
0 1 1

( ) ( )K
k kk

s P P Pβ β γ κ +=
= + + −∑ ,  (3) 
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where 1,  is the truncated linear basis; * * *
1, ( ) ,..., ( )kP P Pκ +− −κ + 1 .... Kκ κ< < are 

selected fixed knots and K is the total number of knots.  This model can be fitted using a 

number of existing software packages, such as PROC MIXED in SAS (SAS, 1992; Ngo 

and Wand, 2004, Littell, Milliken, Stroup, and Wolnger. 1996; Ruppert, 2002) and lme() 

in S-plus (Pinheiro and Bates, 2000). We fit this model using PROC MIXED in SAS with 

 treated as random effects and the intercept,  and the 

parametric function 

* *
1( ) ,..., ( )kP Pκ +− −κ +

*P

*
2( , ,..., ; )pg P X X β  treated as the fixed effects.  

 

The predicted mean of  has a doubly robust property meaning that the predicted 

mean of Y  is consistent if either (a) the mean of Y given  in model (2) is 

correctly specified, or (b1) the propensity  is correctly specified, and (b2) 

 The robustness feature derives from the fact that the regression 

function does not have to be correctly specified ( An and Little, 2004; Zhang and Little, 

2005).  

1Y

*
1( , ,..., )pP X X

*P
*( | ) ( ).E Y P s P= *

g

 

The PSPP method can be extend to derive the conditional means of a missing 

variable give a covariate. For subgroup means of a missing variable given a categorical 

covariate, Zhang and Little (2005) proposed the stratified PSPP method which fits 

different spline curves for the different categories of the covariate. Let 1X be a categorical 

variable with C levels. Let 1cI =  if 1X c= ; 0cI =  if 1 ,  X c≠  1,...,c C= . The stratified 

PSPP method is based on the following model:  

 * * *
1 1 1 2 1

1

( | , ,..., ; ) ~ ( ( ) ( , , ,..., ; ), )
C

p c c p
c

Y P X X N I s P g P X X X 2β β σ−
=

+∑  (4) 

Where g is a parametric function indexed by unknown parameter β as before, with pX  

dropped to avoid multicollinearity;  is 

the fitted curves for the cth level of 

* *
0

1 1

( ) ( ( ) ( )  )
q K

j q
c c c c jc qkc k

j k

I s P I P Pγ γ γ κ +
= =

= + + −∑ ∑ *

1X . Within each level of 1X , 

 * * *
1 2 1 1 2 1( | , , ,..., ; ) ( ) ( , , ,..., ; )p c pE Y P X c X X s P g P X c X Xβ β− −= = + = . 
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This method yields consistent estimates for the conditional means of Y given 1X .  The 

marginal mean of Y is a weighted average of conditional means, which again has the 

double robustness property. 

 

In this paper we extend the PSPP method and the stratified PSPP methods for the 

monotone pattern of missing data, where missing data can be arranged in a way that if jY  

is missing in a unit then 1, 2j jY Y+ + , …,  are missing as well.  Let pY 1 1( ,..., , , )P 2X X Y Y  

denote a ( -dimensional vector of variables with 2P + ) 1( ,..., )PX X X=  fully observed 

covariates and  with missing values in a monotone pattern (Figure 10). 1 2,Y Y

 

1 2 1 2                      PatternX Y Y M M   

0  0  
0  1    
1  1 

P00  
P01    
P11 

 

 

 

Figure 10 Example of monotone missing data structure 

 

We assume the missing data mechanism is missing at random through out this paper.  A 

standard way to drive the means of  and  is to model the joint distribution of  and 

 given the covariates 

1Y 2Y 1Y

2Y 1,..., PX X , such as 1 2 1( , | ,..., ; )Pf Y Y X X θ , which can be solved 

by the factored likelihood approach, that is,   

 1 2 1 1 1 1 1 2 2 1 1 2( , | ,..., ; ) ( | ,..., ; ) * ( | ,..., , ; )P Pf Y Y X X f Y X X f Y X X YPθ θ θ= ,  

where 1θ  and 2θ  are unknown parameters (Little and Rubin, 2002).  The estimated value 

of 1θ , 1̂θ , can be derived based on the cases with  observed and the estimated value of  1Y

2θ , 2̂θ  can be derived based on the cases with both  and observed.  This parametric 

approach is efficient if the joint distribution is modeled correctly, but it is very vulnerable 

to model misspecification.  

1Y 2Y
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We propose a stepwise PSPP procedure for the monotone missing data to drive 

robust estimates for the means of missing variables, described in section 4.2. We 

illustrate our method with simulation studies and compare our method with several 

simple alternatives in section 4.3. We apply the stepwise PSPP method to an online 

weight loss study in section 4.4 and we end this paper with a discussion in section 4.5. 

 

4.2 PSPP for the monotone pattern of missing data 

We first consider the case with two missing variables. Let 1 1( ,..., , , )P 2X X Y Y  

denote a ( -dimensional vector of variables with 2P + ) 1( ,..., )PX X X=  fully observed 

covariates and  with missing values in a monotone pattern (Figure 10). Let 1 2,Y Y 1M  and 

2M be indicator variables, with 0iM = when  is present and  when  is 

missing, . We can divide the dataset into three parts based on the missing data 

pattern. The first part contains subjects with both  and  present, denoted as P00; the 

second part contains cases with  present and  missing, denoted as P01; the third part 

contains cases with both  and  missing, denoted as P11.  

iY 1iM = iY

1,2i =

1Y 2Y

1Y 2Y

1Y 2Y

We assume the missingness of  depends only on the fully-observed covariates 1Y

X , which can be represented by the conditional distribution of 1M given X , 

1( | ;f M X 1)φ .  Define the logit of the propensity for  to be observed as: 1Y

 *
1 1 1=logit (Pr( 0 | ,..., ; ))pP M X X 1φ= ,  

and *
1 1 1

ˆˆ =logit (Pr( 0 | ,..., ; ))pP M X X 1φ= , where 1̂φ  is estimated from logistic regression of 

1M  on X  from all cases. When  is present, under MAR, the missing of  depends on 1Y 2Y

X  and , which can be represented by the conditional distribution of 1Y 2M  given X ,  

and , that is 

1Y

1 0M = 2 1 1( | , , 0;f M X Y M 2 )φ= . Define the logit of the propensity for  to 

be observed as: 

2Y

 *
2 2 1 1 1=logit (Pr( 0 | ,..., , , 0; ))pP M X X Y M 2φ= = ,  

 and *
2 2 1 1 1

ˆˆ =logit (Pr( 0 | ,..., , , 0; ))pP M X X Y M 2φ= = , where 2̂φ  is estimated from  logistic 

regression of 2M  given X ,  from cases in P00 and P01.  1Y
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 The natural way to implement PSPP in this setting (by analogy with parametric 

methods, as in Little and Rubin 2002, chapter 7) is to (a) impute missing values of  in 

P11 by regression of on 

1Y

1Y X  and the spline of and then (b) impute missing values of 

 in P01 and P11 by a regression of  on 

*
1̂P

2Y 2Y X ,  and a spline of , where missing 

values of in P11 are replaced by estimates from (a). This methods yields DR estimate 

of the mean of , but does not yield DR estimates of the mean of , since (a) the 

estimates of the imputed values of  in P11 need to be based on a correct prediction 

model, and (b) the propensity score only applies to cases in P01 and not to cases in 

P11, since conditional on 

1Y *
2̂P

1Y

1Y 2Y

1Y

*
2̂P

1 1M = , the probability that  observed is 0, given the 

monotone pattern. We propose an alternative stepwise PSPP approach that preserves the 

DR property for the mean of . 

2Y

2Y

 

The stepwise PSPP procedure imputes (a) the missing  in P01 by a regression 

of  on 

2Y

2Y X ,  and a spline of  estimated using cases in P00. After filling in the 

missing values in this part, we have a two-patterns data structure, where  and  are 

missing for the same set of cases. So we can borrow the propensity score of  to impute 

the last part of missing . This is the general idea of the stepwise PSPP procedure and 

the key is to derive  of P01 to be a random sample of the original data conditioning on 

the propensity scores.    

1Y *
2̂P

1Y 2Y

1Y

2Y

2̂Y

 

To derive consistent marginal mean of  we need to condition on the propensity 

score  when filling in the missing  in P01; in addition, we also need to condition on 

the propensity score of , , in this step due to the fact that we want to fill in the last 

part of missing  conditioning on . There are two ways to impute the missing  in 

P01:  

2Y

*
2̂P 2Y

1Y *
1̂P

2Y *
1̂P 2Y
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(1) Imputation based on the conditional propensity scores. We impute the missing  in 

P01 by a bivariate spline , where  and  are conditional propensity scores. 

Estimation of the bivariate smoothing function  requires bivariate basis 

functions, which can be derived in several different ways. We choose the tensor product 

basis (Ruppert, Wand and Carroll, 2003) to estimate in this paper. With this 

basis, the bivariate function  can be written as  

2Y

* *
1 2
ˆ ˆ( , )s P P *

1̂P *
2̂P

* *
1 2
ˆ ˆ( , )s P P

* *
1 2
ˆ ˆ( , )s P P

* *
1 2
ˆ ˆ( , )s P P

1 2

1 2 1 2

* * * * * * * *
1 2 0 1 1 1 1 1 2 2 2 ' 2 2 ' 3 1 2

1 ' 1

* * * * * *
3 2 1 1 4 ' 1 2 2 ' 5 ' 1 1 2 2 '

1 ' 1 1 ' 1

ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( , ) ( ) ( )

ˆ ˆ ˆ ˆ ˆ ˆ                  ( ) ( ) ( ) ( )

K K

k k k k
k k

K K K K

k k k k kk k
k k k k

s P P P P P P P P

P P P P P P

α α γ κ α γ κ α

γ κ γ κ γ κ κ

+ +
= =

k+ + +
= = = =

= + + − + + − +

+ − + − + − −

∑ ∑

∑ ∑ ∑∑ +

  (4) 

where 
111 1... Kκ < < κ and 

221 2... Kκ κ< <  are selected fixed knots for  and  

respectively. We choose 5 equally spaced knots for  and   respectively.  When we 

have more than two missing variables, we can follow the same idea but the high 

dimensional spline models will be hard to fit.  In that case we can impute the missing 

values based on the marginal propensity function as described below.  

*
1̂P *

2̂P

*
1̂P *

2̂P

 

(2) Imputation based on the marginal propensity scores.  We impute the missing of 

P01 by a penalized spline , where 

2Y

*
2 _
ˆ( ms P )

 *
2 _ 1 2 1 1
ˆ ˆ ˆlogit ( ( 0 | ) * ( 0 | , , 0))mP P M X P M X Y M= = = =  

 is the estimated marginal  propensity score for . It is the probability of  to be 

observed in the end. This marginal propensity score can be derived easily and we do not 

need high dimensional spline functions to fill in the missing values.  

2Y 2Y

 

After fill in the missing  in P01 we can impute the last part of missing  by a 

penalized spline of .  We can enrich the imputation model by adding the parametric 

2Y 2Y

*
1̂P

g function. The above stepwise procedure can be easily extended to derive the subgroup 

means of a missing variable. We can apply the stratified PSPP method in a stepwise 
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procedure to fit different spline curves for different subgroups. For the conditional 

stepwise procedure, we first impute missing  by the following model: 2Y

2 * *
2 1 2 11

ˆ ˆ( )* ( , )  rr
Y I X r s P P ε

=
= =∑ 2~ (0, )N+ ,ε σ , where is bivariate spline of 

form (4) for subgroup r. For the second step, we apply stratified PSPP as follows: 

* *
2 1
ˆ ˆ( , )rs P P

2 *
2 1 11

ˆ( )* ( )rr
Y I X r s P ε

=
= = +∑ 2~ (0, )N, ε σ , where  is a penalized spline for 

subgroup r. For the marginal stepwise procedure, we first impute missing  by the 

following model: 

*
1̂( )rs P

2Y

2 *
2 1 2 _1

ˆ( )* ( )r mr
Y I X r s P ε

=
= = +∑ 2~ (0, )N, ε σ )

0Binomial 2 ~ (0,1)X N 2

, where is a 

penalized spline of the marginal propensity scores for subgroup r.  The second step is the 

same as the conditional stepwise procedure described above. We illustrate the stepwise 

PSPP method in a simulation study in section 4.3.  

*
2 _
ˆ(r ms P

 

4.3 Simulation study 

We report results of a simulation study to evaluate the performance of the 

stepwise PSPP procedure. We generate 500 datasets with 1000 subjects, with two fully 

observed covariates as follows: X , , where 1 ~ ( .4) 1,X X  are 

independent. We simulate response variables  and  from normal distributions with 

mean of  as  

1Y 2Y

1 2,Y Y

 2
1 1 1 2| ~ ( ( 1)  5* ( 0)     ,  1)Y X N I X I X X X= + = + + 2

)

 

 2 1 2 1 2 1 1| , , ~ (    -  ( 1),  1Y X X Y N X Y I X+ =  

where I() is an indicator variable.  The missing data mechanism is missing at random 

with the propensity model:  

  *
1 1 1 2( 1) 0.5* ( 0)   P I X I X X= = − = + +1

  *
2 1 1 10.5* ( 1) - * ( 0) 0.5* - 0.7P I X I X Y= = = +

where about 30% of  and 50% of  are missing. We can impute the missing  by 

applying the stratified PSPP method directly, and we will omit the results for  in this 

paper.  We derive the marginal and conditional means of  based on the following 

methods:  

1Y 2Y 1Y

1Y

2Y
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(1) Before deletion analysis (BD) 

(2) Complete case analysis (CC) 

(3) Correctly specified linear regression models for 1 2,Y Y  respectively, namely, 

2 , , where 1̂Y  is the imputed values of 1Y  from the 

model 2 .  

1 1 2 2[ : , , ]Y X X X 2 1 2 1̂[ :  ,  , ]Y X X Y

1 1 2 2[ : , , ]Y X X X

(4) Wrongly specified linear regression models for 1 2,Y Y  respectively, namely, 

, . The first model does not have the quadratic term 

2

1 1 2[ : , ]Y X X 2 1 2 1̂[ :  ,  , ]Y X X Y

2X  thus is wrongly specified.  

(5) Stratified stepwise PSPP method based on the conditional propensity scores 

described in part 2 with null g  function, namely: 

1( , )P P , 1̂* ( )r P2 * *
2 1 21

ˆ ˆ[step 1: ( )* ]rr
Y I X r s

=
= =∑ 1

[Step 2: ( ) ]
r

Y I X r s
=

= =
2 *

2 1∑  

(6) Stratified stepwise PSPP method based on the marginal propensity scores 

described in part 2 with null g  function, namely: 

2 _
ˆ( )]r mP , 1̂[ * ( )r P2 *

2 11
[step 1: ( )*

r
Y I X r s

=
= =∑ 1

Step 2: ( ) ]
r

Y I X r s
=

= =
2 *

2 1∑  

(7) For imputation of missing 2Y , we compared our method with the weighted 

complete-case analysis.  The marginal mean of 2Y  is calculated based on 

weighted mean of the complete cases, that is 
2,

1

r

2

1

ˆ*
ˆ

ˆ
i

i
i

i i

r

y w

w
μ =

=

=
∑

∑
, where ˆ iw  is the 

weight for the thi subject, which equals to the inverse of the marginal propensity 

score as follows: 1, 2, 1 1,
ˆ ˆˆ 1/[ ( =0| )* ( =0| , ,i i iM X P M X Y M= =0)]iw P , where 

1,
ˆ( =0| )i X  and P M 2, 1 1,

ˆ ( =0| , , =0)iM are estimated from correctly specified 

logistic regression models. For the conditional means we apply the above formula 

to each subgroup.  

iP M X Y

 

We derived the marginal mean and conditional means of  given 2Y 1X .  Empirical 

bias, empirical standard error (SE) and root mean square error (RMSE) are summarized 
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in Table 4.1. The complete case analysis yields estimates with large bias and RMSE 

compared to the before deletion analysis. Correctly specified ANCOVA models yields 

estimates with small bias and RMSE. The wrongly specified ANCOVA model yield 

biased results for both marginal and conditional means. The two stepwise PSPP methods 

yield estimates with small bias and RMSE for both marginal and conditional means of . 

The results are very close to each other based on the conditional and the marginal 

propensity scores at the first step. The weighted complete-case analysis yields estimates 

with small bias and RMSE for both marginal and conditional means.  

2Y

 

4.4  Example 

We apply the stepwise PSPP method to an online weight loss study conducted by 

Kaiser Permanente (Couper, Peytchev, Little, Strecher, Rothert, 2005). Approximately 

4,000 subjects were randomly assigned to the treatment or the control group. The weight 

loss information was posted online and the participants were encouraged to read the 

posted health related topics. Tailored information was available to the treatment group 

subjects. For the control group, all the subjects have the same untailored information.  At 

3, 6 and 12 month, follow-up surveys were sent to the participants, which collected 

measurements such as current weight. Our goal is to compare short-term and long-term 

treatment effects; in particular, we compare the reduction of the body mass index (BMI), 

defined as the difference of the follow-up BMI and the baseline BMI. 

 

There were 2059 subjects in the treatment group and 1956 subjects in the control 

group at the baseline. At 3 month 623 subjects in the treatment group and 611 subjects in 

the control group responded to the second survey. At 6 month 438 subjects in the 

treatment group and 397 subjects in the control group remained in the study. At 12 month 

277 subjects in the treatment group and 314 subjects in the control group responded to 

the last survey.  We assume the data is missing at random. Comparisons of the baseline 

measurements between subjects remained in the study and those dropped out at 3 month 

indicate subjects who remained in the study have much lower baseline BMI than those 

who dropped out of the study for the treatment group (P<0.001), but this differences is 

not seen in the control group (P=0.47); On the other hand, subjects who remained in the 
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study at 3 month have better baseline health, as shown by the number of previous disease, 

than those who dropped out of the study for the control group(P<0.01), but this 

differences was not seen in the treatment group (P=0.56). Similarly, subjects who 

remained in the study at 6 month have much lower baseline BMI than those who dropped 

out of the study for the treatment group (P<0.001), but this difference is not seen in the 

control group (P=0.82). These differences suggest interactions between treatment and 

baseline covariates are included when estimating the propensity scores.  

 

We estimate the propensity scores by logistic regressions and we keep all the 

variables with P-value less than 0.20 to get best estimates of the propensity scores. Table 

4.2 contains the covariates in the propensity models. We apply the PSPP methods to the 

data to derive the BMI reduction of 3, 6, and 12 month. For BMI reduction at 3 month, 

we apply stratified PSPP method to the data as follows.   

(a) Stratified PSPP method with null the g function, denoted as )]c c

2
*

1
1

ˆ[ (
c

I s P , where 

*
1̂P is the estimated propensity scores of the 3 month.  

=
∑

2 _
1 1

ˆ ˆ[step1: ( ),step2 :c c m c
c c

I s P I
= =
∑ ∑

∑ ∑

(b) Stratified PSPP method with baseline covariates in the g function, denoted as 

. 
2

*
1

1

ˆ[ ( ) (baseline covariates)]c c
c

I s P g
=

+∑

 

For BMI reduction at 6 month, we apply stepwise stratified PSPP method as follows.   

(c) Stepwise Stratified PSPP method with null the g function, denoted as 

*
1( ), ]cs P , where *

2 _
ˆ

mP is the estimated marginal 

propensity scores of 6m, *
1̂P is the estimated propensity score of 3m.  

2 2
*

(d) Stepwise Stratified PSPP method with the g function, denoted as 

.  
2 2

* *
2 _ 1

1 1

ˆ ˆ[step1: ( ) (covariates),step2 : ( ) (covariates)]c c m c c
c c

I s P g I s P g
= =

+ +

 

For BMI reduction at 12 month, we apply stepwise stratified PSPP method as follows.   
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(e) Stepwise stratified PSPP method with null the g function, denoted as 

*
1̂( )]c

2 2 2
* *

3_ 2 _
1 1 1

ˆ ˆ[step1: ( );step2 : ( );step3 :c c m c c m c
c c c

I s P I s P I
= = =
∑ ∑ ∑

3_ 2 _
1 1 1

ˆ ˆ[step1: ( ) ;step2 : ( ) ;step3 : (c c m c c m c c
c c c

s P , where *
3_
ˆ

mP is the 

estimated marginal propensity scores of 12m, *
2 _
ˆ

mP is the estimated marginal 

propensity scores of 6m, *
1̂P is the estimated propensity score of 3m.  

(f) Stepwise Stratified PSPP method with null the g function, denoted as 

*
1̂ ) ]

2 2 2
* *I s P g I s P g s P

= = =

+ +∑ ∑ ∑ I g+ .  

For the parametric function g in models (b), (d), (f), we include baseline covariates which 

predict the outcome, the reduction of BMI. Table 4.3 contains the list of covariates in the 

g functions. For the variables with missing values, we include that variable in the g 

function when it is available. For example, to estimate BMI reduction at 12 month, we 

include 6m BMI in the first step of the stepwise PSPP method, but exclude it in the 

second and third steps. 

 

In addition to the PSPP methods, we fit regression models to impute the missing 

BMI reductions for 3, 6 and 12 month sequentially. The covariates in the regression 

models are the same as the covariates in the g-functions of the PSPP methods, with an 

extra categorical variable, which indicates the subject is in the treatment or the control 

group. We also include weighted complete cases analysis for comparison. We estimated 

the weights based on the same logistic regression model as in the PSPP methods and 

apply the weighting procedure to the treatment or the control group separately.  

 

We compare our method with complete case analysis. Empirical Standard errors 

(SE) and the corresponding confidence intervals are obtained from 200 bootstrap samples. 

Results are summarized in Table 4.4. The treatment group has a larger reduction of BMI 

after 3 month (-0.91 (0.09)) compared to the control group (-0.45 (0.10)) based on the 

complete case analysis. The 95% confidence intervals for the treatment group do not 

overlap with the control group suggesting a treatment effect on the weight loss. At 6 and 

12 month, the difference between the two groups is not statistically significant. The PSPP 
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methods yield the same conclusions, except that treatment effects at 3 and 6 months are 

stronger after imputation and the BMI reductions for the treatment and control groups 

increase monotonically.  Adding g function into the model does not affect bias but 

improves efficiency. We did not find much difference for the methods with and without 

the parametric function in the weight loss study, except for the 12-month BMI reduction, 

where adding parametric function g reduces variance of the estimates significantly. 

Weighted complete cases analysis and the sequential regression models yield similar 

conclusions as the PSPP methods. 

 

The results show that the treatment group has a fast response in terms of BMI 

reduction. But later on, subjects in the control group catch up and the two groups show 

similar levels of weight loss. These results suggest that the tailoring information does 

help subjects to lose weight, especially in the beginning. Later on, if the subjects 

continues trying to lose weight, then tailoring and untailoring information does not matter 

that much. It is very reasonable since people who have a long-lasting motivation to lose 

weight will practice weight loss method continuously and benefit from it thus tailoring 

information does not have much gain over the untailored information.  

   

4.5 Conclusion 

The Penalized Spline Propensity Prediction method imputes the missing values 

conditioning on the propensity score of being observed and the fully-observed covariates. 

It yields robust estimators for the marginal and conditional means of a missing variable. 

We extend it to the monotone pattern missing data by apply the PSPP method in a 

stepwise procedure. When the missing variables are low dimensional, for example when 

we have two missing values in a monotone pattern, we apply bivariate spline in the first 

step of imputation. But when we have a high dimensional missing data, we will have 

problems fitting non-parametric models due to the curse of dimensionality. In that case, 

we propose to derive marginal propensity scores and impute the missing values by the 

penalized spline functions. The bivariate spline conditioning on the conditional 

propensity scores yields estimates with smaller bias and RMSE than the penalized spline 

conditioning on the marginal propensity scores. But since it fit high dimensional spline 
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This stepwise PSPP method based on the marginal propensity scores is similar to 

the linear in the weight method (Bang and Robins, 2005), where the weight or the inverse 

of the propensity scores is included in the imputation model parametrically. For the 

monotone pattern of missing data, the linear in the weight method can also be applied in a 

stepwise procedure by including the inverse of the marginal propensity scores in the 

imputation model. But unlike the PSPP method, the linear in the weight method does not 

extend to derive the subgroup means easily. We can include the subgroup indicator 

variable in the imputation model, but it does not guarantee the consistent estimates of the 

conditional means (Table 4.1, last row).  An alternative is to apply the linear in the 

weight method to each subgroup separately but it will be less efficient due the smaller 

sample size within the subgroups.  

 

 

 
 

 

 

functions it requires large sample size. The marginal propensity score approach reduces 

the high dimensional propensity scores to one dimension and is easier to fit and usually 

requires smaller sample size than the bivariate spline functions.  

 

 

 



  

Table 4.1. Bias, STD and RMSE for the marginal and conditional means.   

82

E Y X 2( )E Y  2 1( | 1)=  2 1( | 2)E Y X =  

 Bias STD RMSE Bias STD RMSE Bias STD RMSE

(1) BD 0  11  9  2  14  11  0  11  9  

(2) CC 71  18  71  81  21  81  106 19  106  

(3) correct ANCOVA ] , 2
1 1 2 2[ : , ,Y X X X 2 1 2 1̂[ :  ,  , ]Y X X Y -1  12  10  1  15  12  0  12  10  

(4) wrong ANCOVA ] , 1]  1 1 2[ : ,Y X X ˆ[ :  ,  ,Y X X Y2 1 2 -20 13  21  -13  16  17  -23 14  24  

(5) Conditional Stepwise PSPP  
2 * *

2 1 2 11
ˆ ˆ[step 1: ( )* ( , )]rr

Y I X r s P P  
=

= =∑
2 *

2 1 11
ˆ[Step 2: ( )* ( )]rr

Y I X r s P
=

= =∑  -2  12  10  1  15  12  -2  13  10  

(6) Marginal Stepwise PSPP  
2 *

2 1 2 _1
ˆ[step 1: ( )* ( )]r mr

Y I X r s P
=

= =∑  

2 *
2 1 11

ˆ[Step 2: ( )* ( )]rr
Y I X r s P

=
= =∑  2  12  10  4  16  13  3  13  11  

(7) Weighted complete case analysis 1 13 10 2 17 14 0 14 11 

(8) Linear in weight  4  26  21  38  21  38  -18 36  31  

 

 

 

        
   



    

Table 4.2. Covariates in the propensity model 

3month propensity 
model 

(1) baseline BMI;   
(2)  number of previous disease;  
(3) baseline self care;  
(4) which is harder –eating less or being active; baseline exercise support;  
(5) baseline activity level;  
(6) baseline eating topology;  
(7) education;  
(8) ethnic identity;  
(9) treatment;  
(10) interaction of treatment with the following covariates: baseline BMI; baseline eating topology; baseline 
activity level; number of previous disease; which is harder –eating less or being active. 

6month propensity 
model 

(1) ethnic identity; 
(2)  baseline weight past year;  
(3) which is harder –eating less or being active;  
(4) baseline eating topology;  
(5) baseline activity level;  
(6) baseline TV time;  
(7) education;  
(8) baseline motivation;  
(9) treatment;  
(10)interaction of treatment with the following covariates:ethnic identity; baseline weight past year; which is 
harder – eating less or being active; baseline eating topology; education; baseline motivation. 

12month 
propensity model 

(1) ethnic identity;  
(2) baseline activity level;  
(3) baseline number of meals per day 
(4) Baseline BMI 

      (5) 3 month BMI 
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Table 4.3. The baseline covariates in the function of model b, d and f. g
 Covariates in the g function 
3 month BMI reduction  (1) ethnic identity;  

(2) baseline medical advice;  
(3) baseline eating topology;  
(4) baseline cardio exercise;  
(5) baseline activity level;  
(6) baseline BMI;  
(7) number of previous disease;  
(8) number of weigh loss methods tried;  
(9) motivation of weigh loss;  
(10) which is harder –eating less or being active.  

6 month BMI reduction (1) ethnic identity;  
(2) Education 
(3) Baseline BMI 
(4) 3month BMI 
(5) Age 

      (6) Baseline hip length 
12 month BMI reduction (1) BMI_0m        

(2) BMI_3m        
(3) BMI_6m                 
(4) Baseline eating pattern 
(5) Treatment 
(6) Interaction of treatment with the following variables:  baseline BMI, 3 month BMI,
      6 month BMI 
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Table 4.4. BMI reduction within groups. 

Treatment  Control  

Mean (SE) 95% CI  Mean (SE) 95% CI 

CC -0.91(0.09) (-1.09, -0.73)   -0.45(0.10) (-0.65, -0.25)

Stratified PSPP, null the function g -1.01 (0.11) (-1.23, -0.78)  -0.40 (0.10) (-0.60, -0.20)

Stratified PSPP, with the g function -1.00 (0.10) (-1.21, -0.80)  -0.42 (0.09) (-0.61, -0.23)

Sequential Regression -0.97 (0.09) (-1.16. –0.78)  -0.46 (0.10) (-0.66, -0.27)

3m  

Weighted complete case analysis -1.04 (0.11) (-1.27, -0.82)  -0.40 (0.09) (-0.59, -0.21)

CC -0.88 (0.15) (-1.18, -0.58)  -0.63 (0.15) (-0.93, -0.33) 

Stepwise Stratified PSPP, null the function g -1.11 (0.22) (-1.56, -0.67)   -0.57 (0.18) (-0.93, -0.21)

Stepwise Stratified PSPP, with the functiong -1.18 (0.19) (-1.57, -0.80)   -0.54 (0.17) (-0.89, -0.19)

Sequential Regression -1.01 (0.13) (-1.27, -0.76)   -0.61 (0.15) (-0.92, -0.30) 

6m 

Weighted complete case analysis -1.11 (0.22) (-1.55, -0.67)   -0.54 (0.17) (-0.88, -0.19)

CC -1.24 (0.17) (-1.58, 0.91)   -0.93 (0.23) (-1.40, -0.47)

Stepwise Stratified PSPP, null the g function -1.63 (1.30) (-4.23, 0.98)  -0.82 (0.50) (-1.82, 0.18) 

Stepwise Stratified PSPP, with the functiong -1.29 (0.25) (-1.79, -0.79)   -0.97 (0.31) (-1.58, -0.36)

Sequential Regression -1.24 (0.17) (-1.59, -0.89)   -0.91 (0.22) (-1.34, -0.48)

12m 

Weighted complete case analysis -1.42 (0.37) (-2.15, -0.69)   -0.65 (0.54) (-1.73, 0.43) 

*SE and CI denote empirical standard error and confidence interval. SE and 95% CI is based on 200 bootstrap samples. 

 



   

CHAPTER V 
 

CONCLUSION AND THE FUTURE WORK 
 
 Many methods have been proposed in applications of missing data problems. The 

parametric methods are efficient when the model assumptions are correct but yield biased 

results when the assumptions are wrong. Non-parametric and semiparametric methods 

weaken model assumptions and capture the non-linear relationship between the response 

and the predictors but they face the curse of dimensionality when the number of 

covariates increases. The PSPP method addresses the curse of dimensionality by focusing 

on the propensity score of the missing data. It yields unbiased marginal mean estimates 

with a double robustness property. 

 

We simplify and extend the PSPP method in Chapter II and IV.  In Chapter II, we 

simplify the PSPP methods by including the covariates into the model without centering. 

We also describe the extensions of the PSPP methods, namely stratified PSPP method 

and bivariate PSPP method, which yield unbiased conditional means of the missing 

variable given a covariate.  The key of the extended PSPP methods is to add the 

interactions of the propensity score and the covariate in the model. We propose to use the 

PSPP methods in a stepwise procedure for the monotone missing data in Chapter IV. This 

stepwise procedure yields consistent mean estimation as shown in the simulation study.  

 

 We compare the PSPP method with several similar double robustness estimators 

in Chapter III. All these method yields consistent estimates when the propensity score is 

correctly specified, but the PSPP method yields estimates with smaller RRMSE and 

width of confidence interval when the complete cases is not a random sample of the 

original data. The linear in the weight method and calibration method are very sensitive 

to extreme propensity scores when the sample size is small and yield large confidence
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 intervals. This is because that the small propensity score corresponds to the large weights 

which will lead to out-of-range predictions. The PSPP method, on the other hand, 

estimates a spline curve through the propensity scores and the curvature prevents extreme 

predictions with the small propensity scores.  

 

 We show the PSPP method yields doubly robust estimates of the conditional 

mean of a missing variable given a covariate.  More generally, a PSPP method that yields 

doubly robust estimates of the conditional mean of Y given a subset of the covariates 

1( ,..., )sX X , s p< , requires inclusion of the interactions between the propensity score 

and 1( ,..., )sX X ; but the curse of dimensionality will be a challenge, especially when the 

sample size is small. In that case we do not recommend the PSPP method. Parametric 

approach should be considered instead. 

 

 We use bootstrap method to estimate the confidence interval and non-coverage in 

the study. It is easy to implement but it is computational intensive for large samples. An 

alternative method is to derive the inference by Bayesian method. Instead of using mean 

predictions we can impute the missing values by posterior draws. It requires proper 

specification of the prior distributions for parameters in the model.  

 

We study the case where the response variable has missing values and we assume 

the missing data mechanism is missing at random. If it is the covariates rather than the 

outcome that have missing values, the PSPP method may still be useful to increase the 

robustness of inference. This question deserves future study. When the missing data is 

not missing at random, the balancing property of the propensity score no longer holds. It 

remains an open question if the PSPP method can be extended to such setting.  

 

We study the case where the missing data is continuous, extensions to other types 

data is straightforward by using the generalized linear models.  

 

Another interesting question is whether we can apply the PSPP method to the 

general pattern of missing data. One possible way is to delete some observed values to 
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derive the monotone pattern but information contained in the deleted cases is lost thus it 

is not efficient especially when the missing percentage is high. An alternative approach is 

to combine the PSPP method with iterative methods of computation, such as EM 

algorithm or the Bayesian methodology.  The feasibility of this approach needs more 

research.  
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