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ABSTRACT 
 

 

This thesis describes the development of a simulation of the interaction of cloth and water 

that takes place inside a washing machine. The simulation consists of four basic parts: a 

large deformation elastic thin plate model for the cloth based on Love (1944), a 

rectangular-Cartesian-mesh solver for the Navier-Stokes equations based on Brown et al. 

(2001), the Immersed Boundary method of Peskin (1972) for cloth/fluid interaction, and a 

domain-mapping technique for representing irregular domain boundaries on Cartesian 

grids.   

 

Although the lack of an accompanying experimental effort prevented its thorough 

validation, the final simulation was subjected to a variety of validation tests involving 

analytical solutions and experimental measurements in simple geometries.  The 

implementation of the thin plate model combined with the Immersed Boundary method 

was able to match the natural frequencies of a vibrating plate within +/- 1%, and was able 

to predict large deformation beam shapes with similar accuracy. In addition, this 

validation effort suggests that the ratio between the Immersed Boundary method‟s 

Lagrangian and Eulerian point-spacings should be approximately unity for better 

accuracy, when accounting for finite bending stiffness.  Furthermore, it was found that 

the Immersed Boundary method formulation may provide better results with a narrow 

desingularization of the two-dimensional cloth onto the three-dimensional Cartesian 

mesh while sacrificing numerical stability.  Complicated moving boundaries are handled 

by a domain-mapping technique that uses a Heaviside function to switch between solving 

the equations for the cloth/fluid mixture and specifying the velocity field for the washing 

machine‟s solid boundaries.  This boundary-condition formulation was benchmarked 

against well-known steady and unsteady flow fields: circular Couette flow, and a uniform 

flow past a cylinder. 



 xviii 

  

Using these individually verified basic components together, two and three-dimensional 

simulations of the washing machine processes are created. A selection of studies 

involving the effect of different numerical and physical parameters on the kinematics of 

cloth motion and the statistics of the cloth stresses in a vertical-axis washing machine are 

reported. In particular, the coarse grid simulations predicted a realistic and qualitatively 

correct pattern for the motion of the cloth pieces. 
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CHAPTER I 

INTRODUCTION 
 

 

Since their invention, washing machines are perhaps one of the most important practical 

tools that have changed our day-to-day life. Their working principle is exceptionally 

simple: the agitation of cloth pieces in a detergent/water mixture. In this sense, its basic 

principle is not very different from hand washing of clothes as done for thousands of 

years. However, detailed physical descriptions of the process are very complex due to the 

coupled three-dimensional motions of the fluid and cloth, the large and complex cloth 

deformations, the cloth permeability, and the unsteadiness of the fluid motion. This limits 

most of the washing machine developments to be driven empirically. In accordance with 

today‟s ever increasing demand for better resource management, it is more important to 

be able to design energy- and water- efficient washing machines. Hence, this requires a 

better understanding of the physics of the washing machine processes than allowed by the 

empirical models.  

 

This work presents the numerical simulation development of the washing machine 

processes based on basic physical models. The simulation consist of a large deformation, 

elastic, thin cloth model based on Love (1944), a Cartesian-grid Navier-Stokes equations 

solver based on Brown et al. (2001), Peskin (1972) Immersed Boundary method to 

couple the cloth/water dynamics, and a domain-mapping technique for representing the 

irregular geometries of the washing machine agitator and drum on a simple Cartesian 

grid. 

 

Ward (1999) modeled horizontal-axis washing machines by describing the clothes as a 

simple single fabric-plug. The motion of the fabric-plug in the basket is modeled for each 

of its three states: 1) as the fabric-plug is pulled through the water (at the bottom of the 



 2 

basket) by drum rotation, 2) as the fabric is lifted out of the water and 3) as the fabric-

plug impacts the air-water interface upon re-entering. Most of the related research on 

cloth mechanics, computational fluid mechanics, and fluid/structure models will be 

presented in subsequent chapters. 

 

The clothes washing process is chaotic and governed by multiphysics, it can be 

considered high Reynolds number, and is in a complex unsteady geometry. As such, the 

computational demands for the simulation are very large. Since this is the first simulation 

of its kind, the emphasis is on model development rather than putting the simulation onto 

a high-performance computing machine.  These simulations were run on one processor at 

a time, and hence, the two-dimensional simulations are only moderately well resolved 

and the three-dimensional modeling is coarse. 

 

This thesis has been organized as follows: 

 

 Chapter 2 presents the numerical solution of the Navier-Stokes equations and in 

particular presents the Brown et al. (2001) fractional step method used in the 

simulation. 

 Chapter 3 presents the cloth model based on Love (1944), the fluid/structure 

interaction model based on Peskin (1972) Immersed Boundary method. 

 Chapter 4 presents a domain-mapping technique to represent irregular domain 

geometries on a simple Cartesian grid. 

 Chapter 5 presents the two- and three-dimensional simulations of the washing 

machine processes. 

 Finally, Chapter 6 summarizes the results, specific conclusions and contributions. 
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CHAPTER II 

NUMERICAL SOLUTION OF 

THE NAVIER-STOKES EQUATIONS 
 

 

2.1 Introduction 
 

As will be discussed in Chapter 3, the fluid-structure interaction between the washing 

fluid and cloth pieces is modeled in such a way that their coupled dynamics could be 

described by variable coefficient Navier-Stokes equations with body forces, so the 

numerical solution of the Navier-Stokes equation acts as the backbone of the simulation. 

Although the present simulation‟s fluid/structure interaction algorithm is reported to have 

a low-order spatial accuracy, higher-order improvements exist in the literature and 

anticipating to update the present solution method in the future, it is desirable to have an 

algorithm that solves the Navier-Stokes equations with high-order of accuracy. 

 

The numerical solution of the incompressible Navier-Stokes equations has been of 

interest for at least the past four decades and although various solution methods exist and 

they have been continuously improved, they still bear issues that attract interest and 

research, some of which will be discussed later in this chapter. Generally speaking, most 

of the solution methods could be roughly categorized into the so-called: 1) projection 

methods, 2) grid based vorticity methods, 3) meshless vortex methods, and 4) artificial 

compressibility methods. The projection methods are further divided into the so-called 

fractional step methods and pressure-correction methods, whereas the vorticity methods 

are further divided into the vorticity-vector potential and vorticity-velocity methods. All 

of these methods have merits and weaknesses, and all the methods except the meshless 

vortex methods use an Eulerian grid. The text of Ferziger and Peric (2002) briefly 

summarizes the projection, vorticity-vector potential and artificial compressibility 

methods. Also, Guj et al. (1993) briefly compares the vorticity-vector potential methods 
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to the vorticity-velocity methods by further referring to Gresho (1991). In addition, the 

recent article by Yokota et al. (2007) and the survey article by Koumoutsakos (2005) 

summarize the current status of the meshless vortex methods with citing several further 

references.  

 

The present simulation code uses a fractional step method because the fluid/structure 

interaction studies in the literature, particularly involving largely deformable solids, most 

frequently used them. 

 

Note that, this chapter is only a summary of established methods and no contribution is 

claimed here. 

 

2.2 Numerical Method 
 

The Navier-Stokes equations for describing the dynamics of a Newtonian and 

incompressible fluid in a bounded domain Ω with boundaries Ω read as: 

 

 

  

0

b

p
t

 



 
       

 

 



2u
u u u f

u

u u



                                                                            (2.2-1) 

 

where u and ub are respectively the velocities inside Ω and on Ω,   is the density,   is 

the viscosity, p is the pressure, and f is the external body force exerted on the fluid. In 

this form, all these variables are parameterized in an Eulerian description with current 

space variable x and time variable t. Interested readers can refer to one of the numerous 

fluid mechanics texts available, such as Kundu et al. (2004), for a derivation of the 

Navier-Stokes equations. 

 

Following Section 2.1 on the various methods for numerically solving the Navier-Stokes 

equations, this section discusses the fractional step method that has been used as a part of 
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the simulation. As it might suggest from its name, fractional step methods attempt to 

solve the Navier-Stokes equations by rewriting them as a set of sequential equations 

which are relatively easier to solve numerically. In general, any fractional step method 

sequence between two discrete time levels t
n
 and t

n+1
 consists of the following steps: 

 

1. Solve the linear-momentum equation part of the Navier-Stokes equations, Eqn. 

(2.2-2), in terms of a velocity field u
*
 at the next time level t

n+1 
without referring 

to the mass-continuity equation.  

 

           
 

   

 

* *
*

*q
t

 
 

         

2u
u u u f                                                          (2.2-2) 

 

The boundary conditions of Eqn. (2.2-2) are discussed in Section 2.2.1. Also as 

will be described later, some fractional step methods omit the pressure term of the 

original Navier-Stokes equations at this step, so in Eqn. (2.2-2) the regular 

pressure term is replaced with a new parameter q, which may or may not be zero. 

Not surprisingly, the computed velocity field u
*
 will not necessarily satisfy the 

mass-continuity equation. 

 

2. Decompose the velocity field u
*
 into its gradient and divergence-free parts as in 

Eqn. (2.2-3). This is done by the Hodge/Helmholtz decomposition, which will be 

discussed in Section 2.2.1 in greater detail. 

 

1
* 1

n n
n t t

p



 

  u u                                                                                      (2.2-3) 

 

In Eqn. (2.2-3), u
n+1

 is the divergence-free and p  is the gradient/curl-free part of 

u
*
. 

 

3. Assign the divergence-free part of u
*
 as the solution of the Navier-Stokes 

equation at time t
n+1

 as u
n+1

. 
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n+1 * t
p




  u u                                                                                              (2.2-4) 

     

4. If necessary, compute the pressure p using p . This is achieved by substituting 

Eqn. (2.2-3) into the time-discrete form of Eqn. (2.2-2) and comparing the 

resulting equation to the Navier- Stokes equations‟ (Eqn. (2.2-1)) linear 

momentum part. 

 

This idea was first proposed by Chorin (1969) and Temam (1968). There are different 

fractional step methods that vary in their numerical details and accuracies. The most 

notable ones are by Kim et al. (1985), Bell et al. (1989, 1991), and Brown et al. (2001). 

Their most important differences are in their approaches to the first and fourth steps 

stated above. In our computations we use the method suggested by Brown et al. (2001). 

 

2.2.1 Decomposing a vector field into its gradient and divergence-free parts 

(Hodge/Helmholtz decomposition) 

 

The Hodge/Helmholtz decomposition uniquely decomposes a vector field into 

divergence-free and gradient vector fields provided that some conditions, which will be 

stated below, hold true. For a vector field u
*
 this decomposition could be written as 

 

* 1n  u u                                                                                                               (2.2-5) 

 

where 

 

 

1 10  0n n dA 



   u u n                                                                                  (2.2-6) 

 

In these and in the following equations n is the normal outward vector at ∂Ω, V is an 

infinitesimal volume in Ω, and similarly A an infinitesimal area on ∂Ω.  
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Stated next is the approach given by Chorin (1990) to prove the decomposition. But first, 

a particular orthogonality condition between the divergence-free and gradient vector 

fields can be defined as 

 

              ,  

1 1 1 1 1  0n n n n ndV dV dV dA        

   

           u u u u u n       

(2.2-7) 

 

This equality is clearly true if u
n+1

 is always parallel to the domain boundaries ∂Ω or   is 

constant on the boundaries. However, note that the integral form of Eqn. (2.2-6) is not 

sufficient to satisfy Eqn. (2.2-7) for a general . 

 

Uniqueness of the Hodge/Helmholtz decomposition 

 

Assume the Hodge/Helmholtz decomposition of u
*
 is not unique, and decompose u

*
 as  

 

       * 1 1

1 21 2

n n       u u u   

 

such that 

 

         

1 1 1 1

1 1 2 2
0  0,    0  0n n n ndA dA   

 

        u u n u u n     

 

This implies 

 

       1 1

2 1 2 1

n n        u u 0                                                                            (2.2-8) 

 

Also, if one defines 
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     

     

1 1 1

2 1

2 1

n n n

diff

diff
  

   

    

u u u

  
 

 

and takes the inner product of Eqn. (2.2-8) with (u
n+1

)diff  and integrates it over Ω, the 

result is 

 

         

2 2
1 1 1 1

 0n n n n

diff diff diff diff diff diffdV dV dV dA    

   

       u u u u n                        (2.2-9) 

 

Observe that the first term in Eqn. (2.2-9) is non-negative and the second term is zero 

provided that either 1 0n
diff
 u n  on ∂Ω or diff  is constant on ∂Ω. Note also that, if 

1* nu n u n   is used as a boundary condition then the condition for 1 0n
diff
 u n on ∂Ω 

would still be satisfied.  

 

As long as the second term in Eqn. (2.2-9) is zero, the rest of Eqns. (2.2-9) with (2.2-8) 

would suggest udiff = 0 and diff  0 , and hence prove the uniqueness of the 

Hodge/Helmholtz decomposition. Interested readers could refer to Denaro (2003) for a 

further discussion on the uniqueness of the Hodge/Helmholtz decomposition and the 

implications of failing to satisfy it. Note that the rather popular application cases for 

solving/testing the Navier-Stokes equations with open boundaries (e.g. flow over a 

cylinder) might not „explicitly‟ satisfy the uniqueness condition above. However, it is 

shown in Chapter 5 that the setups for the simulations inside a washing machine are 

designed such that one can always set 
1 0* n u n u n  . 

 

Implementation of the Hodge/Helmholtz decomposition and a note on its existence 

 

Having discussed the uniqueness of the Hodge/Helmholtz decomposition, the following 

equations describe its implementation. In the scope of designing a fractional step method 
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for solving the Navier-Stokes equations, it is customary to choose
~

in pressure units and 

scale it with the time step and fluid density to find a velocity unit, such as 

 

* 1n t
p



 
  u u                                                                                                        (2.2-10) 

 

Taking the divergence of Eqn. (2.2-10), one gets 

 

*1 1
p

t 

 
   

  
u                                                                                                (2.2-11) 

 

And if the following boundary conditions are chosen for Eqn. (2.2-2) 

 

* 1   on n

b

  u n u n u n                                                                                    (2.2-12) 

 

together with Eqn. (2.2-10) this implies 

 

0  on p  n                                                                                                        (2.2-13) 

 

Equation (2.2-11) with (2.2-13) is the Poisson equation with homogenous Neumann 

boundary conditions, which is solvable in terms of p~  up to a constant. Chorin (1990) 

refers to Courant et al. (1953) for a further discussion on the existence of solutions. 

However to set an important requirement for the existence of solutions, note that the 

following is the weak form of Eqn. (2.2-11) 

 

  

*1 1
dV p dA

t 
 

  
 u n   

 

For the boundary condition given in Eqn. (2.2-13), this would imply 
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*1
0dV

t


 


u                                                                                                       (2.2-14) 

 

which is nothing new, but a trivial statement provided that * 1  on n u n u n   and the 

mass-continuity equation,  

1 0n dA



 u n , hold true. However, depending on the way 

Eqn. (2.2-11) is discretized, this compatibility condition may be violated. This issue will 

be addressed in Section 2.2.6. 

 

Observe that with different boundary conditions selections for Eqn. (2.2-2), such as the 

one in Eqn. (2.2-12), different boundary conditions could be obtained for the Poisson 

equation and any such pair of boundary condition selections needs to be consistent via 

Eqn. (2.2-10).  

 

In a similar way, it seems natural to use the following for the tangential part of the 

boundary conditions for u
* 
in Eqn. (2.2-2): 

 

* 1   on n

b

  u τ u τ u τ                                                                                    (2.2-15) 

 

where τ is a tangent vector along two possible directions on . Note that, Eqn. (2.2-15) 

together with Eqn. (2.2-10) would further imply  

 

0  on p  τ                                                                                                        (2.2-16) 

 

However, Eqn. (2.2-11) can only admit a single boundary condition at a given point on 

, so both Eqn. (2.2-13) and Eqn. (2.2-16) could not be simultaneously enforced. In 

Brown et al. (2001), the authors discuss this issue and argue that if an accurate 

approximation to p could be used for q in Eqn. (2.2-2), u
*
 would not be too different from 

u
n+1

 and using Eqn. (2.2-15) without enforcing Eqn. (2.2-16) would not degrade the 

accuracies of the results. However, some fractional step methods, such as Kim et al. 

(1985), omits the term q in Eqn. (2.2-2), and they use  
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* 1   on n

b

t t
p p

 

    
         
   

u τ u τ u τ                                                   (2.2-17) 

 

with an accurate approximation to p (note that p at the present time step is not yet 

known while solving Eqn. (2.2-2)) to retain accuracy. 

 

As a final remark it is important to point out that although p~ has pressure units, in general 

the actual pressure p is different from it and can be evaluated with a known p~ . As will be 

shown later, the relationship between p and p~ could be revealed by substituting Eqn. 

(2.2-10) into the time-discretized form of Eqn. (2.2-2) and comparing the resulting 

equation to the Navier-Stokes equations‟ (Eqn. (2.2-1)) linear momentum part. 

 

2.2.2 Kim et al. (1985) fractional step method 

 

As mentioned in Section 2.2.1, Kim et al. (1985) neglects the pressure term (i.e. q = 0) 

while solving the linear momentum equations in the first step of the fractional step 

method sequence (Eqn. (2.2-2)). They treat the nonlinear hyperbolic terms explicitly with 

2
nd

 order Adams-Bashforth, and the viscous terms implicitly with the Crank-Nicholson 

expressions. So, their time-discrete equations look like 

 

       

1

1 1 2 * 2
3 1 1

2 2 2

* n n
n n n n n

t
 


 

 
          

u u
u u u u u u f                 (2.2-18) 

 

together with the following boundary conditions  

 

*
b

*
b

t
p





 
   
 

u n u n

u τ u τ

 

 
                                                                                          (2.2-19) 
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Observe that this boundary condition pair is consistent with Eqn. (2.2-10) if using  

0 on p  n   to solve the Poisson equation Eqn. (2.2-11). In the second boundary 

condition of Eqn. (2.2-19), they approximate p  using the p  from the previous time 

step, since its recent value is unknown before solving Eqn. (2.2-11). The second and third 

steps of Kim et al. (1985) fractional method sequence are as given in Section 2.2 and 

2.2.1. They update the pressure with  

 

 

 

 

1

22

2

n t
p p p





 
     

 

Brown (2001) and Brown et al. (2001) report that this method has second-order accuracy 

in time for velocity, but they also add for some problems the pressure has a degraded 

convergence rate. 

 

2.2.3 Brown (2001) and Brown et al. (2001) fractional step method 

 

Brown (2001) and Brown et al. (2001) use the most recently computed pressure field (i.e. 

q = p
n-1/2

) while solving the linear momentum equations (Eqn. (2.2-2)). Using Adams-

Bashforth and Crank-Nicholson expansions for the hyperbolic and viscous terms 

respectively, Eqn. (2.2-2) is time-discretized as 

 

       

1 1

1 1 22 2
3 1 1

2 2 2

* n n n
n n n n * np

t
 

 
 

 
            

u u
u u u u u u f   

   (2.2-20) 

 

They use the following boundary conditions for Eqn. (2.2-20):   

 

buu 


                                                                                                                   (2.2-21) 
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The second and third steps of their fractional method sequence are as given in Section 2.2 

and 2.2.1.They update the pressure by  

 

 

 

 

1 1

22 2

2

n n t
p p p p





  
      

 

and report their method to be second-order accurate in time for both the velocity and 

pressure fields.  

 

2.2.4 Grid choices  

 

This study uses a structured Cartesian finite-volume grid, in particular the „Marker and 

Cell‟ (MAC) grid suggested by Harlow et al. (1965). The advantages of using a 

structured Cartesian grid for fluid/structure interaction problems will be discussed in 

Chapter 3, but in the scope of solving the Navier-Stokes equations, structured grids 

allows using uniform discretizations throughout the fluid domain, while avoiding the 

following nontrivial extra tasks related to the usage of unstructured grids: grid generation, 

bookkeeping the grid points‟ connectivities, and tedious interpolations. On the other 

hand, the advantage of the unstructured grids against the structured ones is their 

conformability to domains with complex geometries. Chapter 4 will present the way the 

simulation handles domains with complex geometries using structured Cartesian grids. 

 

On a MAC grid the pressure variables are defined at the centers of the finite-volumes and 

the velocities are defined on the edges as plotted in 2D in Fig. 2.2-1. 
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Figure 2.2-1: A two-dimensional ‘Marker and Cell’ (MAC) grid for solving the fluid dynamics 

equations 

 

MAC grids are more intuitive when applied to the weak/integral form of the Navier-

Stokes equations and the pressure-velocity coupling is stronger compared to the non-

staggered grids, since the pressure nodes are between the velocity nodes. Furthermore, as 

would be discussed in Section 2.2-6 a discrete compatibility condition required for the 

existence of solutions for Eqn. (2.2-11) is naturally satisfied on a staggered grid, which is 

not necessarily the case for the non-staggered grids without taking special care. 

 

2.2.5 Numerically solving Eqn. (2.2-20) 

 

This study uses the Brown (2001) and Brown et al. (2001) fractional step method and in 

doing so, the integral form of Eqn. (2.2-20), as given below in Eqn. (2.2-22), is 

discretized on a MAC grid. 

 

   

 

     

     

*
1 1

1

*2

3 1

2 2

1
                                                             

2

n
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dV dA
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p dA dA dV
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

 



  
   

  

    

 

  
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 



   

(2.2-22)                                                                                       
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Second-order accurate midpoint methods are used to evaluate the volume and area 

integrals, where the integrands are respectively evaluated at the centers of finite-volumes 

and their surface areas. While doing so, second-order accurate interpolations are used to 

find the midpoint values of the integrands. As a sample illustration, Eqn. (2.2-23) shows 

the result of this discretization on a single component of Eqn. (2.2-22), with constant 

fluid density and viscosity, using a two-dimensional finite-volume grid with a uniform 

mesh width h in both directions as plotted in Fig. 2.2-2. 
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(2.2-23) 

 

 
Figure 2.2-2: A finite-volume around velocity component ui,j 
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Note that Eqn. (2.2-23) needs some adjustments near the domain boundaries. In general, 

there are two different possible configurations near the boundaries, which are shown in 

Fig. 2.2-3. For Case 1 in Fig.2.2-3, Eqn. (2.2-20) is still valid with 
1,i j westu U  ,  but for 

Case 2 the u velocity field is linearly extrapolated through the wall to find ui,j-1 as 

,2 south i ju U u   . This is sometimes called as „reflection technique‟ and Weinan et al. 

(1996) shows that it preserves the second-order spatial accuracy. 

 

  
(a): Case 1 (b): Case 2 

 

Figure 2.2-3: Two different cases at the boundaries on a staggered grid 

 

As could be seen from Eqn. (2.2-23), discretizations to Eqn. (2.2-22) will result in a 

sparse matrix structure with only 5 or 7 nonzero diagonals for two or three-dimensional 

formulations, respectively. The simulation code takes advantage of this sparse matrix 

structure by only storing the non-zero diagonals, allowing any matrix-vector 

multiplication involving a vector with n entities to be done with only O(n) operation 

count. In this study Eqn. (2.2-23) is solved with the Generalized Minimal Residual 

(GMRES) method, whose operation count is O(n). Interested readers could refer to 

Trefethen et al. (1997) for a detailed description of GMRES. In the same source it is 

shown that the convergence speed of the GMRES method increases if the eigenvalues of 

the matrix part of the set of equations are clustered away from 0. Before further 
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proceeding, it is desirable to present Gershgorin‟s circle theorem to assess the 

convergence speed of GMRES applied on the discrete forms of Eqn. (2.2-22). 

 

Gershgorin‟s circle theorem states that for a general complex square matrix A, if λ is one 

of its eigenvalues, then there exists a matrix row index i such that 

 

,

ii ij

j j i

A A


                                                                                                          (2.2-24) 

Denoting u as the eigenvector match of the eigenvalue , Gershgorin‟s theorem could be 

proven as 
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Observe from Eqn. (2.2-23) that the diagonal terms of the matrix of the two-dimensional 

implicit equations of Eqn. (2.2-22) will be 
2

2
1

t

h






 , while the off-diagonal terms will be 

22

t

h






 . In general, the eigenvalues of the set of linear equations will be bounded in one 

of the circles with a center of 
2

2
1

t

h






  and a radius of 

2
1 2

n

i

t

h






  where n is 4 for a two-

dimensional formulation and 6 for three-dimensional formulation. Note that, the terms  

and  may not necessarily be constant, in general. But still one can deduce that with 

higher cell-Reynolds numbers and smaller time steps, the eigenvalues of Eqn. (2.2-22) 

will cluster around a disk that is centered near unity and the convergence of the GMRES 

method will be enhanced. This agrees with this present study‟s observations that, the real 
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computational bottleneck of the simulations is solving the Poisson‟s equation given in 

Eqn. (2.2-11), in contrast to Eqn. (2.2-22). For a quicker alternative to the GMRES 

method one might apply the ADI techniques as described in Kim et al. (1985).  

 

2.2.6 Numerically solving Eqn. (2.2-11) 
 

This study follows the approach of Morton et al. (1994) to discretize the elliptic Poisson 

equation given in Eqn. (2.2-11) to compute p~ , which is repeated below in Eqn. (2.2-25). 

In their approach, Morton et al. uses finite-volumes as shown in Fig. 2.2-4 and equate the 

fluxes between the adjacent finite volumes sharing the same faces, in the way as given in 

Eqn. (2.2-26). 
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Figure 2.2-4: An imaginary finite volume used to discretize Eqn. (2.2-23) 

 

Equation (2.2-26) gives 
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1, ,

1 2,
2

i j i j

i j

 
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
                                                                                                   (2.2-27) 

 

Using this result Eqn. (2.2-25) is discretized as 
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(2.2-28) 

 

where d is the dimension of the problem. The pressure fluxes are set to zero near the 

boundaries to enforce  

 

0  on p  n   

 

The simulation code solves the set of linear equations of Eqn. (2.2-28) using the 

Weighted Jacobi method with Geometric Multigrid preconditioning. Interested readers 

could refer to Briggs et al. (2000) for further information on these methods. Solving Eqn. 

(2.2-28) is the bottleneck of the whole simulation, including the yet to be presented 

fluid/solid coupling part. The reason for this is, the eigenvalues of the matrix systems in 

Eqn. (2.2-28) are not necessarily clustered, as was the case for Eqn. (2.2-22), so GMRES 

is not efficient here. The advantage of using Weighted Jacobi method with Multigrid 

preconditioner is for a system of n equations its operation count is O(n log(n)) and it has 

a grid independent convergence rate. However, its convergence speed deteriorates if 

using highly non-uniform fluid densities and with highly anisotropic grids using non-

unity aspect ratios. As a remedy, these difficulties could be tackled with Algebraic 

Multigrid preconditioners as discussed in Briggs et al. (2000). 

 

Moreover, as previously discussed in Section 2.2.1, solving Eqn. (2.2-25) with 

0p n  on  requires the realization of a compatibility condition (Eqn. (2.2-14)), in 

order to ensure existence of solutions. Eqn. (2.2-14) is repeated below 



 20 

*1
0dV

t


 


u                                                                                                       (2.2-29) 

 

This issue is discussed in Briggs et al. (2000), and they show that as long as the matrix of 

Eqn. (2.2-28) is symmetric, the discrete compatibility condition is 
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Note that the sum in Eqn. (2.2-30) is a telescopic sum and if 

 

* 0dA


 u n  

 

is satisfied, so will Eqn. (2.2-30). In practice, due to round-off errors, this might not 

exactly happen, so the simulation code uses a „correction-technique‟ that calculates the 

residual in Eqn. (2.2-30), then divides it to the number of the discrete elements and 

subtracts the result from each of them. The situation is more complicated on non-

staggered grids. Using one-sided differences near the boundaries and central differences 

elsewhere does not necessarily result in a telescopic series in Eqn. (2.2-30) to assure the 

sum to be zero. This issue is discussed in Pozrikidis (2001) and he suggests using the 

„correction-technique‟ discussed above. 

 

2.3 Verification study 
 

In this section the simulation‟s Navier-Stokes equations solver is tested with the two-

dimensional lid driven cavity problem, as described in Fig. 2.3-1. In this problem, a 

Newtonian fluid is enclosed in a square cavity and the horizontal top wall is sliding with 

a constant speed Uo, while all the other walls are stationary. The effect of gravity is 

neglected. At low Reynolds numbers only the central vortex is apparent, but at higher 

Reynolds numbers secondary vortices become apparent at the corners. This problem has 
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been a standard benchmark case for testing the Navier-Stokes equations solvers for 

single-phase fluids in simple geometries. It is simple to implement, but it reveals complex 

patterns of fluid motion at high enough Reynolds numbers.  

 

This problem is non-dimensionalized with the following length, time, and mass scales: 

 

3,    ,    o o o

o

a
l a t M a

U
                                                                                        (2.3-1) 

 

 
Figure 2.3-1: Two-dimensional lid driven cavity 

 

Using these mass, length, and time scales and the boundary conditions shown in Fig. 

(2.3-1) the Navier-Stokes equations can be written in the following dimensionless form  
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where 

 

u = Uo, v = 0 

u = v = 0 u = v = 0 

u = v = 0 
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  oU a
Re




                                                                                                                 (2.3-3) 

 

is the Reynolds number, which is set to 1000 in this study. In Eqn. (2.3-2), the 

dimensionless variables are shown with bars above them. The reason for conducting this 

study at this Re is: 1) to check if the simulation can predict the secondary vortices at the 

corners, which are clearly apparent at this selected Re and 2) to compare the results with 

the available data in literature, which are only tabulated at a few different Re. 

 

In Figs. 2.3-2 and 2.3-3, respectively, the x-component of the velocity at the plane 

0 5x . and the y-component of the velocity at the plane 0 5y .  are plotted together with 

the computational results given in Ghia et al. (1982) using the same uniform grid size 

(129 x 129).  Table 2.3-1 gives quantitative comparisons of the dimensionless velocities, 

where the percent values are given with respect to the common velocity scale Uo. Also, 

Tables 2.3-2 and 2.3-3 give the computed velocities at the same locations reported in 

Ghia et al. (1982). At this Reynolds number, in addition to the major central vortex, two 

minor vortices at the bottom corners were observed in the computations in agreement 

with Ghia et al. (1982) and Kim et al. (1985).   

 

Table 2.3-1: Quantitative comparisons between the results given in Ghia et al. (1982) and our results 

using the same grid size 
 

 rms of the relative 

difference 

max relative difference 

Horizontal velocities at x = 0.5  0.19 % 0.30 % 

Vertical velocities at y = 0.5  0.62 % 0.39 % 
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Figure 2.3-2: Horizontal velocity profile at the plane x = 0.5 for Re = 1000 using an 

Eulerian grid size of 129 x 129. The solid line is the computed solution, 

whereas the filled circles are Ghia et al.  (1982)’s results. 
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Figure 2.3-3: Vertical velocity profile at the plane y = 0.5 for Re = 1000 using an Eulerian 

grid size of 129 x 129. The solid line is the computed solution, whereas the 

filled circles are Ghia et al. (1982)’s results. 
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Table 2.3-2: Computed horizontal velocity values at x = 0.5 , Re = 1000 using a 129 x 129 Eulerian 

grid size 
 

y  u  

0 0 

0.0547 -0.17846 

0.0625 -0.19908 

0.0703 -0.21919 

0.1016 -0.29486 

0.1719 -0.38246 

0.2813 -0.27806 

0.4531 -0.10734 

0.5000 -0.06172 

0.6172 0.05605 

0.7344 0.18631 

0.8516 0.33264 

0.9531 0.46815 

0.9609 0.51329 

0.9688 0.57768 

0.9766 0.66168 

1 1 

 

Table 2.3-3: Computed vertical velocity values at y = 0.5 , Re = 1000 using a 129 x 129 Eulerian 

grid size 
 

x  v  

0 0 

0.0625 0.27561 

0.0703 0.29099 

0.0781 0.30447 

0.0938 0.32729 

0.1563 0.37113 

0.2266 0.33041 

0.2344 0.32201 

0.5000 0.02584 

0.8047 -0.31721 

0.8594 -0.42276 

0.9063 -0.51819 

0.9453 -0.40403 

0.9531 -0.34967 

0.9609 -0.28871 

0.9688 -0.22369 

1 0 
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Table 2.3-4 reports the relative differences in horizontal velocities at the plane 

0 5x . with different grid resolutions, assuming the computed solution using a 257 x 257 

Eulerian grid size is the true solution. Similarly, Table 2.3-5 reports the relative 

differences in vertical velocities at the plane 0 5y . with different grid resolutions. The 

percent values are given with respect to the common velocity scale Uo. The relative 

differences are respectively defined as 

 

finest grid finest grid   u u , v v   

 
Table 2.3-4: Relative differences in horizontal velocities u, at the plane x = 0.5  with different grid 

resolutions, assuming the computed solution at the 257 x 257 Eulerian grid size is the 

true solution 
 

Eulerian grid size rms of the relative difference max relative difference 

33 x 33  3.87 % 7.01 % 

65 x 65  1.31 % 2.13 % 

129 x129 0.26 % 0.46 % 

 

Table 2.3-5: Relative differences in vertical velocities v, at the plane y = 0.5  with different grid 

resolutions, assuming the computed solution at the 257 x 257 Eulerian grid size is the 

true solution 
 

Eulerian grid size rms of the relative difference max relative difference 

33 x 33  5.14 % 8.82 % 

65 x 65  1.69 % 2.83 % 

129 x129 0.37 % 0.61 % 

 

Note that, in Tables 2.3-4 and 2.3-5 the convergence rates are approximately second-

order.  
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CHAPTER III 

MODELING THE FLUID/STRUCTURE INTERACTION AND 

CLOTH MECHANICS 
 

 

3.1 Introduction 

 

3.1.1 Fluid/structure interaction models 

 

The traditional approach for solving problems involving a deformable solid in a fluid 

flow is to first write the equations that describe the individual fluid and solid mechanics 

with the contact forces at their common interface, and then simultaneously solve them 

while applying the necessary initial and boundary conditions. These boundary conditions 

include constraints such as whether or not the fluid can flow/slip through the solid, and if 

so how it does so. These computations are classically done on two sets of grids, one for 

each element of the solid, and one for the fluid. To handle irregular geometries, these 

grids are usually unstructured. Such a method could be found in Chen et al. (2005). The 

major setbacks of these methods are in their expensive requirement to repeatedly 

regenerate the grids, finding the intersection of the solid and fluid grids to impose the 

proper boundary conditions on each grid, and iterating for a solution at every time step. 

This present study involves simulating several cloth pieces in moving water, so one 

would expect this classical approach‟s expensive computational burden to get even 

higher for modeling washing machine processes. 

 

As an alternative, the Arbitrary Lagrangian Eulerian (ALE) method uses moving grids. 

As explained in Van Loon et al. (2007), in ALE method the grid points at the solid/fluid 

interface are set to move with the solid, so the rest of the fluid grid is deformed. The 

relative advantage of this method with respect to the traditional approaches is that the 
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ALE method avoids the requirement to find the intersection between the solid and fluid 

grids, because the interface is explicitly tracked. However, because the fluid grid next to 

the solid may deform unfavorably, the ALE method requires a nontrivial effort to smooth 

the grid deformations away from the solid and this process may get more difficult in the 

presence of multiple solids in fluid. 

 

In the context of vortex methods, fluid-structure interaction can be modeled by placing 

material-bounded vortices on solid surfaces and shedding free vortices from sharp solid 

edges. The strengths of shed vortices are selected to satisfy interface constraints. There 

are many reported studies using this method, but to count a few: Krasny (1990) applied 

this method to model the vortex sheet roll-up due to the motion of a flat plate and Attar et 

al. (2003) used this method to model delta wings and flapping flags in fluid flow. 

Although these studies use an inviscid fluid model, vortex methods can also be applied to 

viscous flow simulations as shown in Yokota et al. (2007) and Zhao et al. (2007). 

 

York et al. (2000) used the Material Point (MP) method for simulating the expansion of a 

pressurized membrane. The MP method uses moving Lagrangian points for advecting 

both the fluid and solid, while interpolating the solid and fluid properties on an Eulerian 

grid to solve the other necessary equations. The MP method is a relatively new method 

and lacks an extensive literature. 

 

On the other hand, the Peskin (1972)‟s Immersed Boundary (IB) method and its 

derivatives use a fixed Eulerian grid for the fluid and moving Lagrangian points for 

solids, approximating them as lower dimensional objects in space. The IB method works 

as follows: first it computes the elastic forces in the solids based on their current shapes, 

then it desingularizes solids‟ elastic and inertial properties onto a higher dimensional 

space by approximate Dirac-delta functions, then it constructs a common equation for 

both the fluid and solids to be solved for a common velocity field, and finally it uses this 

common velocity field to move the solids to their new positions. No-slip and 

impenetrability conditions at the solid/fluid interfaces are automatically satisfied, since 

this method assumes a common fluid and solid velocity. Moreover, since both the solids 
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and fluid use a common velocity field, the solids cannot penetrate into each other, at least 

for the well refined simulations. Generally speaking, the advantage of the IB method is in 

its substantial simplicity and cheaper computational cost with respect to the traditional 

fluid-structure interaction methods. With the IB method it is possible to use non-

conforming structured Cartesian grids as the fixed Eulerian grid and this substantially 

eases the formulation by: allowing the use of regular stencils for the discrete equations, 

allowing the use of fast Geometric Multigrid methods for solving linear sets of 

discretized equations (as long as the solids do not have a large excess mass with respect 

to the fluid), and by keeping the computer code simple.  

 

The Immersed Boundary (IB) method has been widely used for modeling complex flows 

involving flexible structures with irregular geometries. Some applications of the IB 

method that Peskin (2002) cites in his review paper include: heart modeling (Peskin 

(1972), Peskin (1977), Peskin et al. (1989), and McQueen et al. (2000)), platelet 

aggregation during blood clotting (Faucci et al. (1993)), swimming motions of eels, 

sperms, and bacteria (Faucci et al. (1988) and Faucci et al. (1995)), biofilm processes 

(Dillon et al. (1996)), flapping filaments (Zhu et al. (2002) and Zhu et al. (2003)) and 

many others. Moreover, Unverdi et al. (1992) and Tryggvason et al. (2001) used the 

principle of the IB method to model multiphase flows, in which the surface tension of the 

interface between two different fluids is desingularized on a higher dimensional space. In 

addition to flexible solids, the IB method has also been used to simulate fluid flows on 

Cartesian grids involving rigid solids with complex geometries, as will be discussed in 

Chapter 4.  

 

As a disadvantage, the IB method suffers from low-order spatial accuracy because of its 

use of desingularized Dirac-delta functions. As an improvement, the Immersed Interface 

(II) method presented in LeVeque et al. (1997), Lee (2002), and Lee et al. (2003) 

overcomes this issue by reformulating the problem with interface jump conditions. In the 

framework of the IB method, the II method of Lee (2002) and Lee et al. (2003) abandons 

using distributed Dirac-delta functions for the interface normal direction and these studies 

show improved accuracies. Li et al. (2001) went one step further and totally dispensed the 



 29 

usage of the Dirac-delta functions, but their algorithm is no longer a „simple‟ patch to the 

original IB method. The drawback of the II method is the solids‟ inertial effects can no 

longer be represented on the fixed Eulerian grid as an added mass, but are included in the 

interface forces as d‟Alembert forces (at least in the interface normal direction). Such a 

formulation requires guessing/iterating for the velocity of the interface at the next time 

step before formulating the jump conditions, creating inconveniencies. 

 

As another drawback, both the IB and II methods suffer from numerical stiffness for 

problems involving stiff solids and require much smaller time steps than the standard 

CFL (Courant-Friedrichs-Lewy) restriction. Stockie et al. (1999) made the linear stability 

analysis of the IB method and concluded that Runge-Kutta methods are better suited for 

this problem for explicit time-marching formulations. Following earlier attempts, 

LeVeque et al. (1997), Lee (2002) and Lee et al. (2003) suggest a semi-Newtonian 

implicit method for time-marching. 

 

The Immersed Boundary method has been selected as the main solution algorithm for this 

study. The amount of the literature, presence of three-dimensional versions, and most 

importantly, its simplicity are the reasons why it has been selected.  

 

3.1.2 Cloth models 

 

The mechanical modeling of cloth pieces has been of interest in a diverse range of 

applications. For instance, the computer graphics community has been using cloth models 

to incorporate them into the animation movies and computer games (Terzopoulos et al. 

(1987), House et al. (1996), Baraff et al. (1998), Bridson et al. (2003)). Although most of 

them have used physical principals in their models, they are not restricted to do so as long 

as their outputs are „realistic‟, as Breen et al. (1994) and Gibson et al. (1997) mention in 

their papers. Within the engineering community, especially textile engineers have been 

studying cloth mechanical behavior (Chen et al. (1995), Zhao et al. (1997), Mingxiang et 

al. (1998), Yu et al. (2000), and Kang et al. (2004)). 
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This study uses an elastic plate model that can simulate large cloth deformations with 

small strains. The literature on elastic plates is vast, but there are two main classes of 

elastic plate models depending on whether or not the through-thickness (transverse) shear 

deformations are modeled. These plate models are shortcuts to a complete three-

dimensional elastic model. The first class of models assumes the plates to be very thin 

with respect to their length and width dimensions and neglects their transverse shear 

deformations. This assumption is sometimes called as the Kirchhoff-Love hypothesis. 

Although there are many models of this class, Pai et al. (1992) quotes from Koiter (1960) 

saying that these models cannot be substantially different from each other unless traverse 

shear deformations are taken into account. The second class of plate models makes low-

order approximations to the through-thickness shear deformation and is sometimes 

referred as the Mindlin-Reissner formulations. Since cloth thicknesses are very small 

compared to their other dimensions, this present study uses a Kirchoff-Love type of a 

plate formulation, similar to the models presented in Love (1944) and Cerda et al. (2005). 

 

3.1.3 Organization 

 

In this chapter first the Immersed Boundary method for modeling the fluid/structure 

interaction will be presented. Next, a large-deformation/small-strain, isotropic, and elastic 

model for the cloth mechanics will be derived. This will be followed by some verification 

studies including capturing the frequencies of a vibrating plate, capturing the static 

deformed shape of a heavy cantilever beam, and comparing the model with the recorded 

fluttering motion of a plate as it descends in an initially still water under its own weight. 

  

3.2 The Immersed Boundary Method for modeling the fluid/structure 

interaction 
 

This discussion is a summary of the Immersed Boundary method developed by Peskin 

(1972), which models the coupled fluid and solid dynamics. The Navier-Stokes equations 

for an incompressible Newtonian fluid are written as 

 



 31 

 
           

 

 

2
f f

,t
,t ,t p ,t ,t ,t ,t

t
 

 
        

 

u x
u x u x x u x i x w x        (3.2-1) 

 

  0,t u x                                                                                                               (3.2-2) 

 

In these equations x is the current position,  t is the time, f  is the fluid mass density,  

is the fluid viscosity, u is the fluid velocity, p is the pressure, wf  is the external body 

force (e.g. weight) acting on the fluid excluding the interface forces due to immersed 

solids which are denoted by i. On the other hand, for the immersed solids one can write 
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In these equations s  is the undeformed solid mass density, K is the Jacobian of the solid 

deformation (such that   s sc K  , where sc is the deformed solid mass density), U is 

the solid velocity, X is the solid current position parameterized in terms of local 

coordinates xo attached onto the solid at its hypothetical reference position, F is the 

solid‟s internal forces (due to elastic and plastic effects), and Ws represents the external 

body forces (e.g. weight) except the interface forces –I at the solid/fluid interface. If one 

idealizes the solids as lower dimensional objects (e.g. curves in R
2 
or R

3
, surfaces in R

3
) 

then the solids can be represented with Dirac-delta functions in a higher dimensional 

space. Specifically, for a lower dimensional solid in R
m

 we rephrase Eqn. (3.2-3) in a 

higher dimension R
n
 as 
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(3.2-5) 
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where  
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and  is the Dirac-delta function. The term K dxo is the infinitesimal unit 

length/area/volume/… of the lower dimensional deformed solid.  

 

To clarify this process, think about a three-dimensional space-curve parameterized by its 

arclength s, such as 

 

        s , s ,   3
X X R X R  

 

Next, imagine this curve has a mass, and its associated mass density (mass per unit 

length) is given by  s . With the same process described above, in a three-dimensional 

space this mass density could be represented as 
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Turning back to the main discussion, the following is true because of Newton‟s third law 
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which states that the interface forces acting on the solid and on the fluid should be same 

in magnitude but opposite in direction. Using Eqns. (3.2-5), (3.2-6), and (3.2-1) one finds 
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where 
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If the solid is assumed to be impermeable and there is no slip between the solid and fluid 

one can write 
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As a summary, the following set of equations can model the fluid-structure interaction 

between an m dimensional solid and an n dimensional fluid; 
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Eqns. (3.2-10)-(3.2-14) are also called the Immersed Boundary method equations, first 

developed by Peskin in 1972 and applied to heart simulations. 

 



 34 

As stated earlier, the term F in Eqn. (3.2-12) represents the internal forces in the solid. 

For a rigid body the internal forces cancel out each other at every point in the solid, but 

for an elastic solid they might not. Our scope in this research is the deformable solid 

curves and surfaces, so in the next section we will present the elastic models. 

 

3.3 Solid Modeling 

 

3.3.1 Three-dimensional elastic solids 

 

This discussion states some results from the study of the continuum mechanics, and 

interested readers could refer to Malvern (1969) or Fung (1965) to view their detailed 

derivations and discussions.  

 

For finite deformations the Lagrangian (finite deformation/Green) strain tensor, E, is 

given as 
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where  is the Kronecker delta. This strain tensor represents the state of deformation of 

the solid with respect to an unstrained reference state xo. As stated earlier                        

X = (X1, X2, X3) = (X, Y, Z) represents the current position of the solid. 

 

Having defined a strain measure, the strains are related to stresses through a constitutive 

model. If the solid is assumed to have small strains even if it deforms largely, a linear 

stress-strain model can be used. In an index form such a relation can be written as 

 

klijklij ECS                                                                                                                  (3.3-2) 

 

where S is a symmetric stress tensor (sometimes called the 2
nd

 Piola stress or Kirchhoff‟s 

stress), which is defined on the reference state xo, and C is a 4
th

 order elasticity tensor 

which can theoretically have 81 entities (in a three-dimensional space) but could be 
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shown to have only 21 independent terms if a strain energy potential is assumed to exist.  

Furthermore, if the solid is assumed to be isotropic there would be only two independent 

terms in C and the general linear stress strain relationship given in Eqn. (3.3-2) can be 

rewritten as  

 

ijijkkij GEES 2                                                                                                     (3.3-3) 

 

In this equation  and G are the so-called „Lame‟s constants‟ which are given as 
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where E  is the material‟s „Young modulus‟ and  is the material‟s „Poisson‟s ratio‟. 

 

The conservation of linear momentum, relating solid‟s motion to its state of loading, is 
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Similar to Eqn. (3.2-3), Wsi is the external body force acting on the solid except the forces 

applied by the fluid on the solid which are contained in Ii and K is the Jacobian of the 

solid deformation (such that   s sc K  , where sc is the deformed solid mass density) . 

Comparing Eqn. (3.2-3) with Eqn. (3.3-5) reveals the following relationship for F in   

(3.2-3) 
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Having formulated a model for three-dimensional, linearly elastic, and isotropic solids 

undergoing finite deformations but small strains, the next sections will discuss some 

lower dimensional models for 2D surfaces in a 3D space (for three-dimensional washing 
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machine simulations) and 1D fibers in a 2D space (for two-dimensional washing machine 

simulations). Note that, a 1D fiber in a 2D space cannot undergo torsion, but by adding 

this elastic effect to the present 1D fiber / 2D space formulation and by updating the 

lower dimensional curvature expressions one might as well model a 1D fiber in a 3D 

space. 

 

3.3.2 Two-dimensional elastic membranes 

 

Two-dimensional membranes are solid surfaces that can resist stretching and in-plane 

shearing, but lack bending and torsional stiffness. In this development, a surface patch X 

is parameterized with respect to s and r as 

 

 rs,XX   

 

so the infinitesimal distance vector between any two neighboring points could be 

approximated as 
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and the square of the magnitude of this distance vector is 
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If one chooses s and r such that at a hypothetical reference position xo constant s and r 

lines are arclength parameters on two orthogonal directions, then the last expression on 

the reference state reduces to 
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and consequently one can write 
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which is a standard deformation measure in solid mechanics. The Lagrangian strain 

tensor defined in Eqn. (3.3-1) could be rewritten as 
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On the other hand, for the plane-stress state of an isotropic solid, Hooke‟s law relating the 

stresses to strains is given as  
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where S is the 2
nd

 Piola stress or Kirchhoff‟s stress, which is defined on the solid‟s 

hypothetical reference state. Note that stresses computed by Eqns. (3.3-7) and (3.3-8) are 

only in-plane stresses, standing for the solid surface‟s resistance to stretch and in-plane 

shear. For two-dimensional elastic membranes these stresses are assumed to be uniform 

through solid thickness q, so a „two-dimensional stress resultant‟ could be defined by 

integrating these stresses through the solid thickness. Finally, the divergence of these 

stress resultants is computed through Eqn. (3.3-6), which are then used with the solid‟s 

linear momentum equation Eqn. (3.3-5) or in Eqn. (3.2-12) with the IB method. 
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3.3.3 Two-dimensional elastic plates 

 

In addition to solid‟s in-plane elastic resistance to stretch and in-plane shear, it is 

desirable to model out-of-plane effects such as its stiffness to bending and torsion. To do 

so, it is necessary to digress from the previous assumption that the solid had an 

infinitesimal thickness. Instead of using the full three-dimensional elasticity equations, an 

approximate and simplified thin plate model will be presented. This model is from Love 

(1944) and the presentation sometimes uses the notation of Cerda et al. (2005). It 

assumes: 

 

1. The solid has a constant thickness, 

2. The solid is very thin compared to its length and width, 

3. The solid thickness is much smaller than its minimum radius of curvature, 

4. Although the deformations are large, strains are small and Hooke‟s law 

still applies, 

5. Normal planes to the solid element‟s middle-surface stay normal as the 

solid deforms, 

6. The mass moments of inertia of the through thickness cross-sections are 

negligible (which is shown to be true if the velocities of the bending 

deformations are slower than the velocity of the plate natural frequencies) 

 

Assume the solid is not stressed at a hypothetical flat reference state. As before, the solid 

element‟s middle-surface at this reference state is parameterized with s and r, which are 

the arclength parameters of the constant r and s lines, respectively. Again, these constant 

r and s lines are orthogonal to each other everywhere at this reference state. This surface 

is extruded to form a solid volume with a thickness h. Tangent vectors e1 and e2 are 

defined parallel to the constant r and s lines, respectively. The surface normal vector e3 is 

defined as  

 

3 1 2e = e ×e                                                                                                                    (3.3-9) 
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so (e1, e2, e3) form a right handed local coordinate system. Figure 3.3-1 shows an 

arbitrarily deformed surface patch. The area of this surface patch is given as 

 

 

 

 

Figure 3.3-1: An arbitrarily deformed surface patch 
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Define an arbitrary point O on the middle-surface of the shell as 
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and a point A which is at a distance z away from the point O along the e3 direction as 
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Any neighboring point A’ to A could be described as 
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Using Taylor series one can write 
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So the square of the distance between the neighboring points A and A’ could be found as 
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(3.3-13) 
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Since tangent vectors e1 and e2 are respectively defined to be parallel to the constant r and 

s lines, they can be written as  
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Note that e3 was given with Eqn. (3.3-9). Using the following definitions of normal 

curvatures s and r of the constant r and s lines respectively, 

 

s

r

s s

r r





  
  

  

  
  

  

1
3

2
3

e X
e

e X
e




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and noting that the vectors e1 and e2 are orthogonal to e3, the following results hold true 
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In these equations the term 
2

r s

 
 
  

3

X
e  is related to the geodesic torsion of the deformed 

plate. In this development the plate is assumed to be very thin so terms of order z
2

 and 

higher will be ignored in Eqn. (3.3-13). Furthermore, terms of order greater than  
2 
will 

be neglected, since the distance between point A and A’ is infinitesimal. Using the results 

that we just stated, Eqn. (3.3-13) simplifies into 
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Since s and r are selected as arclength parameters on two orthogonal lines on the 

unstressed and flat reference configuration 

 

     
2 2 22

original
s r z    AdX  

 

So the change in the square of length between infinitesimal points A and A’ as the solid 

deforms from the unstressed reference position could be expressed as 
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(3.3-17) 

 

Note that, point A is assumed to always lie along the e3 direction with respect to the point 

O on the middle-surface (through Eqn. (3.3-12)). In other words, normal planes to the 

middle-plane are assumed to stay normal as the solid deforms, which is the Kirchhoff-

Love hypothesis. The Lagrangian strain tensor at point A is given as 
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  2 2 2 ij i joriginal
E x x  A AdX dX  

 

where xi„s are the coordinates of the undeformed reference position (note that we selected 

x1 as s and x2 as r). On the other hand, the Almansi or Eulerian strain tensor at point A, 

which is defined in terms of the current configuration, is given as 
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where Xi„s are the coordinates of the current position. The constant r and s lines on the 

deformed surface are respectively re-parameterized with arclength variables  and  as  
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                                                                                                             (3.3-18) 

 

So the change in the square of length between infinitesimal points A and A’ as the solid 

deforms from the unstressed flat reference position can be re-expressed with current 

position variables  and  as  
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        (3.3-19) 

 

Therefore one can respectively write the Lagrangian and Eulerian strains as 
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                                                                            (3.3-20) 

 

and 
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We will assume that although displacements are large, the strains remain small, so the 

stresses and strains could be linearly related with Hooke‟s law. This will allow us to 

superpose the stresses due to in-plane and out-of-plane deformations after treating them 

separately. In particular, we choose to use a Lagrangian formulation for the in-plane 

deformations and an Eulerian description for the out-of-the plane deformations. 

Equivalent to Section 3.3.2‟s Eqn. (3.3-7), the in-plane components of the Lagrangian 

strains given in Eqn. (3.3-20) are  
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                                                                                     (3.3-22) 

 

and the Eulerian strains due to the out-of-plane deformations (bending and torsion) are  
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The Kirchhoff or 2
nd

 Piola stresses due to the in-plane deformations are calculated by the 

isotropic Hooke‟s law for plane stresses as  
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                                                            (3.3-24) 

 

where E is the Young‟s modulus and  is the Poisson‟s ratio of the solid. Similarly, the 

Cauchy stresses due to the out-of-plane deformations are calculated by the isotropic 

Hooke‟s law for plane stresses as 

 

 
 

 

 
 

11_   2

2

12_   

22_   2

1

1

1

out of plane s r

out of plane

out of plane r s

Ez

Ez

r s s r

Ez

  





  


  


    
    

      

  


3

X X X
e                                                      (3.3-25)                

 

As in Section 3.3-2, we define stress resultants as the integrals of the stresses over the 

solid thickness q. Eqn. (3.3-26) is the divergence of these stress resultants due to in-plane 

deformations, which can be used with the solid‟s linear momentum equation stated in 

Eqn. (3.3-5) or in Eqn. (3.2-12) with the IB method. 
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Next, we define internal moments throughout the thickness of the deformed solid as 
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                                                                                               (3.3-27) 

 

Substituting Eqns. (3.3-25) into Eqns. (3.3-27), and noting that the stresses due to in-

plane deformations are uniform throughout the thickness so they will not contribute to the 

internal moments, we find 
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                                                         (3.3-28) 

 

Additionally, we define M1 and M2 as the internal moments applied on the constant r and 

s lines respectively (via the definition given in Eqn. 3.3-27), so 
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Figure 3.3-2 shows the forces acting on an infinitesimal surface patch, where N denotes 

internal forces per unit length that are exerted by the neighboring surface patches, -I is 

the fluid force per unit area, and Ws is the external body force per unit area. The balance 

of linear momentum on this deformed patch yields to 

 

 

 
 

Figure 3.3-2: Forces acting on an infinitesimal surface patch 
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Here s and sc are respectively the solid surface‟s mass density per unit undeformed and 

deformed area, which are related as   s sc K  . Note that, the form of Eqn. (3.3-30) is 

used only for the out-of-plane elastic effects, whereas Eqns. (3.3-26) and (3.3-5) are used 

for the in-plane effects. Comparing Eqn. (3.3-30) with Eqn. (3.2-3) we find 
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Figure 3.3-3 shows the moments acting on the same infinitesimal surface patch, where M 

denotes internal moments per unit length and Ms is the external applied moment per unit 

area. Denoting the angular momentum per unit area by H, the balance of angular 

momentum on this patch yields to 

 

 
Figure 3.3-3: Moments acting on an infinitesimal surface patch 
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which could be reduced to 

 

 2 2

1 1 1

K s r K r s K s r t

          
         

         
1 1 1 2 s

X X X X H
M M e N e N M     

(3.3-32) 

 

For very thin solid surfaces, such as a cloth, the contribution of the change of angular 

momentum is neglected from Eqn. (3.3-32). To assess the validity of this assumption we 

nondimensionalize Eqn. (3.3-32) with a characteristic length scale L, velocity scale Uo, 

and mass scale sL
2
 where s is the solid surface‟s mass per unit area as before. We scale 

the internal moments by 3Eq L (due to the form of Eqn. (3.3-28)) and drop the external 

applied moment (Ms) for simplicity. Doing so, the nondimensional form of Eqn. (3.3-32) 

can be found as 
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where the symbols with bars denote dimensionless quantities, and  is the angular 

velocity of the plate. This form shows that if   2

s oEq U   the effect of the change in 

angular momentum will be small in Eqn. (3.3-32).  

 

Dropping the effect of change of angular momentum, Eqn. (3.3-32) reduces to 
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Moreover, it can be shown that 
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so if the externally applied moment, Ms, is zero then 
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This result helps us to rewrite the balance of angular momentum as, 
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Summary 

 

As a summary, the sequence of Eqns. (3.3-14), (3.3-15), (3.3-9), (3.3-16), (3.3-28),    

(3.3-29), (3.3-35), (3.3-34) and (3.3-31) models the solid internal forces due to out-of-

plane deformations, whereas the sequence of Eqns. (3.3-22), (3.3-24) and (3.3-26) 

models the internal forces due to in-plane deformations, which are both in turn used with               

Eqn. (3.2-12) in the context of the simulation‟s fluid/structure interaction model. 

 

3.3.4 One-dimensional elastic fibers  

 

One-dimensional elastic fibers can be modeled as lines and we use the results of Section 

3.3.3 to quickly derive the equations of motion. We parameterize a line in R
2
 as 
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 sX = X  

 

and we define the tangent vector to this line as  

 

1
s s

 

 

X X
e                                                                                                            (3.3-36) 

 

We choose 

 

 2 0,0,1e                                                                                                                (3.3-37) 

 

so we restrict the fiber normal vector to construct a right-handed coordinate system e1, e2, 

and e3 as 

 

3  1 2e e ×e                                                                                                                  (3.3-38)         

 

Following Section 3.3.3, but taking the derivatives and variations with respect to r as 

zero, from Eqn. (3.3-22) we find the in-plane Lagrangian strain of the fiber as 

 

 

1
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and we use the one-dimensional Hooke‟s law to find the 2
nd

 Piola stress of the fiber as 

 

   in plane in planeS E E                                                                                                      (3.3-40) 

 

where E  is the fiber Young‟s modulus. Next we find the in-plane internal forces as 
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where q is the solid thickness and K is  
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Again from Section 3.3.3, we find the internal moment on the fiber as 
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where s is the curvature of the fiber that is given as 
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which is equal to 
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Next, the balance of angular and linear momentum equations yield into 
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and 
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1
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K s





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3.3.5 Real cloth 

 

In the previous sections the solid membranes, plates, and fibers are idealized as isotropic 

materials and assumed to obey the Hooke‟s law, which linearly relates their strains and 

stresses. However, real cloth is anisotropic and the material laws relating strains to 

stresses are nonlinear. Cloth consists of wefts and warps. Warps are strong lengthwise 

yarns through which less strong weft yarns are woven
1
. The individual properties of wefts 

and warps and their interwoven structure set the anisotropy of cloth mechanical 

properties. Moreover, the interwoven structure of the cloth causes frictional forces as the 

warps and wefts slide against each other as the cloth deforms. As a simplified but yet 

more advanced assumption than the previous isotropic one, one might apply the 

orthotropic material model to describe the clothes, which is summarized below. 

 

Assume the warp and weft directions to be orthogonal to each other (at least at the 

undeformed, reference state) and denote those directions with unit vectors tx and ty 

respectively. If we choose to align tx and ty with the previously defined e1 and e2 

directions respectively (see Section 3.3.3 for their description) the stresses and strains 

could be linearly related as 
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with 

 

                                                
1 As defined in www.wikipedia.org as of 9/2007 
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where
xxE , yyE are respectively the Young‟s modulus in the warp and weft directions, xyG  

is the in-plane shear modulus between the warp and weft directions, 
xy  is the ratio 

between the shrinkage in the weft direction to the unit extension in the warp direction, 

while 
yx is vice versa. Moreover, if tx makes an angle  with e1 as tx is rotated along the 

positive e3 direction then the equations are 
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Note that, as the cloth deforms the weft and the warp directions would not necessarily 

stay orthogonal to each other, so one needs to update the above stress-strain model to 

accommodate the non-orthogonality between the warp and weft lines if formulating the 

problem on the deformed cloth shape. In Section 3.3.3 the in-plane membrane effects 

were modeled at the undeformed cloth state and the out-of-plane effects such as bending 

and torsion stiffness were modeled at the deformed cloth state. 

 

There are several ways to measure cloth mechanical properties, but to our knowledge the 

most traditional and applied techniques are: “Kawabata Evaluation System for Fabrics” 

(KES-F) developed by Kawabata (1980) for measuring cloth axial and bending stiffness, 

Hu et al. (1997)‟s “Kawabata Shear Test” (KES-Shear) for measuring cloth in-plane 

shear rigidity, and “Fabric Assurance by Simple Testing” (FAST) by Ly et al. (1991). 

Bassett et al. (1999) gives a review of the experimental techniques. Lo et al (2002) offers 

a way of estimating in-plane shear modulus values at directions different than waft and 

weft. There are also micromechanical models on the cloth‟s interwoven structure to 

predict its macro behavior and recent works include Boisse et al. (2006, 2005, 2001), 

Zhang et al. (2003), King et al. (2005), Lu et al. (2005), and Xue et al. (2003) as well as 

the empirical model of Taibi (2001). Interested readers can refer to these works for a 

survey of the older micromechanical and empirical models. 

 

3.3.6 Boundary Conditions for Cloth in Fluid 

 

Unless stated otherwise, the cloth free-ends are modeled to be traction and moment free. 

If the clothes are modeled as membranes without any bending or torsion stiffness, only 

zero tension and in-plane shear boundary conditions are required at the free-edges. See 

Section 3.4.1 for the numerical implementation of these boundary conditions. One might 

question these choices by noting that these clothes are inserted into fluids and they are no 

longer „free in space‟. But note that, as explained in Section 3.2 the reaction forces 

between the fluid and solid are separately modeled, so these free-edge boundary 

conditions still hold true. 
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3.4 Numerical discretization  
 

3.4.1 Discretization of the equations describing the cloth mechanics 
 

This present study uses second-order accurate finite-difference approximations to 

compute the various spatial derivatives in the equations presented in Section 3.3. Doing 

so, to imply the correct boundary conditions various quantities are being computed at 

different locations.  

 

For the case of a one-dimensional cloth, the Lagrangian markers that are used to track the 

cloth pieces are interpreted to form the cloth pieces as shown in Fig. 3.4-1(a) below. The 

first Lagrangian marker is assumed to be half a uniform grid-spacing inside from the edge 

of the cloth. The rest of the markers inside the cloth are regularly spaced. Note that this is 

only true for an unstreched cloth and various correction terms are already included in the 

physical formulations to compensate the stretching of the cloth pieces. Next, cloth‟s 

tension and internal moment are calculated on the staggered positions shown in Fig.    

3.4-1(b). To do so, deformation gradients and curvatures are also being computed at these 

same staggered points. Then, the zero tension and zero internal moment boundary 

conditions are implied at the cloth‟s free-ends as shown in Fig. 3.4-1(c). Using the 

computed tension and internal moment with their boundary values, their derivatives are 

calculated at the Lagrangian markers as sketched in Fig. 3.4-1(d). Note that the derivative 

of the tension is the in-plane elastic force via Eqn. (3.3-41), whereas the derivative of the 

internal moment is the internal shear force via Eqn. (3.3-44). Before computing the out-

of-plane elastic force through Eqn. (3.3-45), to ease implying the zero internal shear force 

boundary condition at the cloth‟s free-ends, internal shear forces are interpolated to the 

staggered locations as shown in Fig. 3.4-1(e). Using the internal shear forces on the 

staggered locations as well as their boundary values at the edges, the out-of-plane cloth 

elastic forces are computed on the Lagrangian markers as shown in Fig. 3.4-1(g). 

 

This methodology is similar for a two-dimensional cloth in a three-dimensional space. 

However, some differences are needed to calculate cloth‟s in-plane shear stress and strain 
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components through Eqns. (3.3-22b) and (3.3-24b) and the internal moments through 

Eqn. (3.3-23), and (3.3-28). To understand the reasons for these modifications, first view 

the positions of the Lagrangian markers and the staggered locations on a two-dimensional 

unstreched and flat cloth, which is parameterized with constant r and s lines as plotted in 

Fig. 3.4-2 below. As noted in Section 3.3, these constant r and s lines are unstreched and 

orthogonal to each other in the cloth piece‟s hypothetical unstressed, undeformed, flat 

hypothetical reference position. Note from Fig. 3.4-2 that the staggered locations on the 

constant r and s lines do not coincide. This obviously creates inconveniences while 

calculating the cloth‟s in-plane shear deformation (through Eqn. (3.3-22b)), curvature 

(through Eqns. (3.3-14), (3.3-15), (3.3-9), and (3.3-16)), and twist (through Eqn. (3.3-28b 

and c)) at these staggered locations.  

 

 
Figure 3.4-1: An illustrative procedure for computing the elastic forces on a one-dimensional cloth 

piece 

 

(b): Staggered locations at which 

tension/deformation gradients, 
internal moments/curvatures are 

calculated 

(c): Imply zero tension and zero 

internal moment boundary conditions 
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(e): Interpolate the internal shear 

forces to the staggered locations 

(f): Imply zero internal shear force 

boundary condition 

Xi 
(a): Lagrangian markers 
 

Xi 

Xi 
(g): Calculate the out-of-plane elastic 

force at the Lagranian markers 
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Figure 3.4-2: The locations of the Lagrangian markers, constant r and s lines, and the staggered 

locations on a two-dimensional cloth piece 

 

 

To avoid these difficulties the cloth‟s in-plane shear deformations are computed at the so 

called „centroid points‟ as shown in Fig. 3.4-3 below. Then, the in-plane shear stresses 

computed through Eqn. (3.3-24b) at these „centroid points‟ are interpolated onto the 

original staggered points by implying the zero in-plane shear stress boundary condition at 

the free edges as shown in Fig. 3.4-3. 

 

On the other hand, curvature/ twist and the internal moment/torsion are computed at the 

positions of the Lagrangian markers, which are then interpolated onto the staggered 

points (only near the free-edges) to conveniently apply the zero moment boundary 

conditions and to proceed computing the internal shear forces on the Lagrangian markers 

via Eqn. (3.3-35).  

 

The rest of the procedure follows the one-dimensional case discussed before.  
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Figure 3.4-3: The locations of the ‘centroid points’  

 

As for implementing Eqn. (3.2-14), we use the forward Euler method in the three-

dimensional simulations, whereas we use the implicit Broyden‟s method (iterative) for 

the two-dimensional computations as suggested in Leveque et al. (1997), Lee (2002) and 

Lee et al. (2003).  

 

3.4.2 Numerical approximation of the Dirac-delta functions 

 

The Immersed Boundary method presented in Section 3.2 desingularizes a lower 

dimensional solid on to a higher dimensional Eulerian grid by approximate Dirac-delta 

functions. This section describes the approximate Dirac-delta function that this present 

study uses with some further considerations. 

 

For  a ,   , 10   , a one-dimensional Dirac-delta function  is defined as 
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Higher-dimensional Dirac-delta functions could be defined by repeatedly multiplying 

one-dimensional forms. For instance, a three-dimensional Dirac-delta function is 

 

                where     and    x X y Y z Z x, y,z X ,Y ,Z         x X x X  

(3.4-3) 

 

It is not possible to use this form of the Dirac-delta function in the numerical 

computations because of the following reasons: (i) one cannot infinitely discretize the 

discrete computational domain to capture an infinitesimal , and (ii) it is not possible to 

work with singular functions on digital computers. As an approximation to the Dirac-

delta function, Peskin (2002) uses the following form for the three-dimensional Dirac-

delta functions  

 

             where  x y z x, y,z    x x                                                              (3.4-4) 

 

where  is a one-dimensional Dirac-delta function approximation. As for   this present 

study uses 
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                                                                    (3.4-5) 

 

with ε = 2h as was mentioned by Peskin (2002), where h is the uniform Eulerian grid 

size. Other than this form, there are some other forms of  that have been used as 

mentioned by Peskin (2002). Note that, the current approximate Dirac-delta function has 

a compact support of four grid spacings. Such a compact support can make closely 

located solid pieces artificially stick to each other. On the other hand, in this research it 

was observed that a narrower compact support has adverse effects on the computational 

stability. 
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3.5 Verification 
 

3.5.1 Matching the natural frequencies of a vibrating plate 

 

In this verification study the simulation‟s solid model is tested using the reported free 

vibration frequencies of a free edged and thin vibrating plate. Doing so, the results given 

in Leissa (1969) and Clark (1972) are used as the true natural frequencies and modes. 

However, some of these reported results are not exact, but are obtained by the 

approximate Ritz method. It is also important to mention that those natural frequencies 

and modes were derived assuming the vibrations are small in amplitude, or in other 

words, the solids are given a very small initial perturbation from their flat and unstressed 

equilibrium states to initiate vibrations. For this reason, the results of this study cannot 

serve to verify our solid formulation with large deformations. 

 

As described in Section 3.2, in the simulation the linear momentum equations of the solid 

are solved together with the linear momentum equations of the fluid in which they are 

immersed in. To reduce the effect of the surrounding fluid on the results, very small but 

non-zero values are set to the fluid density and viscosity.  The reason for not using zero 

fluid density is because the simulation contains terms proportional to the reciprocal of 

fluid density. Also, using very small fluid viscosity values adversely affected the long-

term robustness of the computations, since truncation errors in the finite difference 

approximations might include small anti-viscosity terms accidentally increasing the total 

energy and amplifying the imperfections.  

 

Unless stated otherwise, the results presented below for the bending or torsional modes 

are obtained for a square plate with 
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where Np x Np is the number of the Lagrangian points on the plate, and Kb and Kt is the 

bending and torsional stiffness defined as 
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where E and  are respectively the isotropic Young‟s modulus and Poisson‟s ratio, q is 

the uniform plate thickness and, s is the plate‟s mass density over its surface area. The 

size of the square plate we use in our tests is L x L.  

 

On the other hand, the results presented below for the longitudinal vibration mode is 

obtained for a square plate with 
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Also, unless stated otherwise, the maximum amplitude Δ of the initial perturbations are 

set to satisfy 

 

4( 10 )-O
L


  

 

The two different bending modes used in this study are plotted in Fig. 3.5-1(a) and (b) 

below, whereas Fig. 3.5-1(c) shows the tested torsional mode. 
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Case (a) 

 

Case (b) Case (c) 

Figure 3.5-1: The bending and torsional mode shapes of the vibrating plate used in this study 
 

The distinct regions in each of the mode shapes shown in Fig. 3.5-1 move in opposite 

directions as the plate oscillate. The natural frequencies corresponding to these mode 

shapes are given in Leissa (1969) as, 
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Moreover, the simulation is tested against the lowest natural frequency of a plate due to 

longitudinal/axial vibrations, which is given by Clark (1972) as, 
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which will be referred as „Case (d)‟. For this case, it‟s the plate‟s extensional stiffness 

together with the plate‟s inertia causing the mechanical vibrations. The mode shape of 

this motion is given in Clark (1972). 

 

To save computational time, the pressure-correction step of the fractional step Navier-

Stokes solver (presented in Chapter 2) – the bottleneck part of the whole computer 

program, was „switched-off‟. As a result, the computed velocity field is no longer being 

enforced to be divergence-free anymore. This action is reasonable because in this 

verification study the solid elastic response is tested against the reported results which 

don‟t consider the surrounding fluid. As long as very small but non-zero values are set for 

the fluid density and viscosity, the effect of the surrounding fluid will vanish from the 

results as will be verified below. 

 

In the simulation results, the period of the first vibration cycle in time histories of the 

plate‟s elastic bending or extensional energy was used to report natural frequencies. The 

reason for this is the simulations are run with very small physical damping and the 

numerical anti-damping in truncation errors amplifies the noise in the results as the time 

elapses. 

 

In all the simulations, for every L x L cloth a 2L x 2L x 2L Eulerian domain was used. 

The convergence rate is defined as the slope of the line joining two points with 

coordinates     ln  ln Errorh , , where h is the uniform Eulerian mesh width. 

 

3.5.1.1 Effect of the Eulerian grid size 

 

The effect of the Eulerian grid size was studied using an approximate 1:1 Lagrangian to 

Eularian mesh width ratio. The results obtained for the mode shapes (a), (b), (c), and (d) 

are tabulated in Tables 3.5-1, 3.5-2, 3.5-3, and 3.5-4, respectively. The time step values 

used in the simulations are given in the captions of the tables. 

 



 65 

Table 3.5-1: Effect of the Eulerian grid size on the computed natural frequency for the mode shape of 

case (a), Δt ≈1.3x10
-4

 (1/) 
 

Eulerian 

grid size 

Lagrangian 

grid size 
exact 

[rad/s] 

Relative error Convergence 

rate 

33
3
 15

2
 1.95 8.69 ±0.15 % slower  

65
3 

30
2
 2.09 3.17 ±0.16 % slower 1.49 

129
3
 60

2
 2.16 1.31 ±0.17 % slower 1.29 

 

Table 3.5-2: Effect of the Eulerian grid size on the computed natural frequency for the mode shape of 

case (b), Δt ≈1.4x10
-4

 (1/) 
 

Eulerian 

grid size 

Lagrangian 

grid size 
exact 

[rad/s] 

Relative error Convergence 

rate 

33
3
 15

2
 2.09 8.79 ±0.16 % slower  

65
3 

30
2
 2.24 3.38 ±0.36 % slower 1.41 

129
3
 60

2
 2.32 0.93 ±0.18 % slower 1.88 

 

Table 3.5-3: Effect of the Eulerian grid size on the computed natural frequency for the mode shape of 

case (c), Δt ≈1.5x10
-4

 (1/) 
 

Eulerian 

grid size 

Lagrangian 

grid size 
exact 

[rad/s] 

Relative error Convergence 

rate 

33
3
 15

2
 1.14 5.59 ±0.36 % slower  

65
3 

30
2
 1.22 2.36 ±0.39 % slower 1.27 

129
3
 60

2
 1.27 0.24 ±0.10 % slower 3.33 

 

Table 3.5-4: Effect of the Eulerian grid size on the computed natural frequency for the mode shape of 

case (d), Δt ≈9.3x10
-5

 (1/) 
 

Eulerian 

grid size 

Lagrangian 

grid size 
exact 

[rad/s] 

Relative error Convergence 

rate 

17
3
 7

2
 1.15 7.59 ±0.10 % slower  

33
3
 15

2
 1.37 2.37 ±0.11 % slower 1.75 

65
3 

30
2
 1.47 0.92 ±0.11 % slower 1.40 

 

The results were very noisy when using the mode shape given in Leissa (1969) for Case 

(c). To overcome this issue the „noisy‟ plate was let to vibrate in a very viscous fluid until 

the high frequency noise in its mode shape died-out, and then this „corrected‟ mode shape 

at a predetermined bending energy value was released in a negligibly viscous fluid to 

measure its natural frequency. However, at this predetermined bending energy value the 

mode shape was still noisy for the case with 129
3
 Eulerian and 60

2
 Lagrangian points, so 

for that particular case the „noisy‟ plate was left in the viscous fluid getting damped for a 
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longer duration than the other cases. This might be part of the reason for why the result of 

this case had a very high convergence rate compared to the other cases. 

 

As could be seen in the tabulated results above, the simulation‟s solid model can capture 

the dynamics of a vibrating plate at the small deformation regime. 

 

3.5.1.2 Effect of the ratio between Lagrangian and Eulerian mesh width 

 

The effect of the ratio between Lagrangian to Eularian mesh width was studied for cases 

(b) and (d). These cases were selected because Case (b) captures the out-of-plane bending 

mode, whereas Case (d) captures the in-plane extension mode. The results are 

summarized in Tables 3.5-5 and 3.5-6.  

 
 

Table 3.5-5: Effect of the ratio between Lagrangian and Eulerian mesh width on the computed 

natural frequency for the mode shape of case (b) with Δt ≈1.4x10
-4

 (1/) and using 33
3
 

Eulerian points 
 

Lagrangian to Eulerian mesh width ratio Relative error 

1.18 8.79 ±0.16 % slower 

0.57 results diverged 

0.28 results diverged 

 
 

Table 3.5-6: Effect of the ratio between Lagrangian and Eulerian mesh width on the computed 

natural frequency for the mode shape of case (d) with Δt ≈9.3x10
-5

 (1/) and using 17
3
 

Eulerian points 
 

Lagrangian to Eulerian mesh width ratio Relative error 

1.42 7.59 ±0.10 % slower 

0.61 6.74 ±0.11 % slower 

0.29 6.60 ±0.12 % slower 

 

For Case (b), using a 0.57 Lagrangian to Eulerian mesh width ratio, in its first quarter of 

vibration cycle the plate flattened itself under the effect of its bending stiffness, but then 

failed to complete its oscillation cycle. On the other hand, using a 0.28 Lagrangian to 

Eulerian mesh width ratio the plate developed an artificial surface texture at the shortest 

wave number between its Lagrangian points. In subsequent studies, the time step was 

lowered to Δt/4, the initial amplitude of the mode shape was increased to x4 and x16, and 

the surrounding fluid density was amplified by 4 and 8 times to assess whether or not the 
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divergence of the results of Case (b) using a 0.57 Lagrangian to Eulerian mesh width 

ratio could be avoided. However, the dynamics of the vibrating plate did not change with 

these alterations.  

 

On the other hand, the results of Case (d) were numerically stable (at least for the 

duration of the simulation time before it was ended) and the errors in the results slightly 

decreased with increasing the Lagrangian points with a constant Eulerian grid size. 

 

From these observations one might conclude that although no such limitation is apparent 

for the in-plane (extensional) dynamics, the simulation‟s out-of-plane (bending) 

dynamics favors a Lagrangian to Eulerian mesh width ratio as low as unity. 

 

3.5.1.3 Effect of the ambient fluid‟s density 

 

Keeping all the other parameters same, the ambient fluid density was changed to assess 

its effect on the results using the mode shape of Case (a) with 33
3
 Eulerian grid points 

and 15
2
 Lagrangian points. The presence of a finite ambient fluid density is expected to 

yield into slower natural frequencies due to its added mass effect on the vibrating plate. 

Note from Eqns. (3.5-1), (3.5-2), (3.5-3), and (3.5-4) that increasing mass decreases the 

natural frequencies. The results are presented in Table 3.5-7 below. In the computations 

the Lagrangian to Eularian mesh width ratio was approximately 1. 

 

Table 3.5-7: Effect of ambient fluid’s density on the computed natural frequency for the mode shape 

of Case (a), Δt ≈1.3x10
-4

 (1/) 
 

Fluid density Relative error Convergence rate 

f  x 4 12.26 ±0.15 % slower  

f  x 2 10.03 ±0.15 % slower 0.29 

f   8.69 ±0.15 % slower 0.21 

f / 2   7.94 ±0.15 % slower 0.13 

f / 4   7.50 ±0.15 % slower 0.08 

f / 8   7.35 ±0.15 % slower 0.03 
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Based on the convergent trend in Table 3.5-7, it is clear that the effect of the ambient 

fluid density on the results disappears (relative to the other errors) as it is reduced. The 

results presented in Sections 3.5.1.1, 3.5.1.2, and 3.5.1.4 use an ambient fluid density f. 

 

3.5.1.4 Effect of changing the Dirac-delta function width 

 

As discussed in Section 3.2, the fluid/structure algorithm of the simulation uses spread 

Dirac-delta functions to represent the dynamics of a lower dimensional solid on a higher 

dimensional space. Although this current problem is not a fluid/structure interaction 

problem, the simulation still solves the two-dimensional plate‟s linear momentum 

equations in a three-dimensional space (using the Dirac-delta function form given in 

Eqns. (3.4-4) and (3.4-5)). In this study, the effect of the spreading width 2ε of the 

approximate Dirac-Delta function on the results is examined for the mode shape of Case 

(b) using 33
3
 Eulerian and 15

2
 Lagrangian grid points, corresponding to a Lagrangian to 

Eulerian mesh width ratio of 1.18. Since the formulation uses approximate Dirac-delta 

functions both in Eqn. (3.2-12) for desingularizing the lower dimensional quantities onto 

a higher dimensional space and in Eqn. (3.2-13) for approximating the velocities of the 

Lagrangian points, two different cases are considered: 

 

1) Change ε only in Eqn. (3.2-12) and use ε  = 2.0h for Eqn. (3.2-13), 

2) Use the same ε  value for both Eqn. (3.2-12) and (3.2-13).  

 

The results are given in Table 3.5-8 and Table 3.5-9 below. 

 

Table 3.5-8: Effect of changing Dirac-delta function half width ε in Eqn. (3.2-12) on the computed 

natural frequency for the mode shape of case (b), Δt ≈1.4x10
-4

 (1/) 
 

Dirac-delta function half width ε Relative error  Stable? 

1.5h 19.16 ±0.16 % slower Yes 

2.0h   8.79 ±0.16 % slower Yes 

3.0h 10.07 ±0.16 % slower No 

4.0h  No 
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Table 3.5-9: Effect of changing Dirac-delta function half width ε in both Eqn. (3.2-12) and (3.2-13) on 

the computed natural frequency for the mode shape of case (b), Δt ≈1.4x10
-4

 (1/) 
 

Dirac-delta function half width ε Relative error  Stable? 

1.5h  6.72 ±0.16 % slower No 

2.0h  8.79 ±0.16 % slower Yes 

3.0h 19.32 ±0.16 % slower Yes 

4.0h 31.60 ±0.16 % slower Yes 

 

The results in Tables 3.5-8 and 3.5-9 suggest that the simulation is unstable if the Dirac-

delta function half width ε  in Eqn. (3.2-12) is larger than that in Eqn. (3.2-13). On the 

other hand, using a large ε in Eqn. (3.2-13) increases the relative error, possibly because 

approximating the velocity of a Lagrangian point from a higher number of Eulerian 

points damps-out the results. Not surprisingly, using ε  = 1.5h in both Eqn. (3.2-12) and 

Eqn. (3.2-13) gives a more accurate result than using ε  = 2.0h at the expense of lesser 

robustness.  

 

From the above results, using ε  = 2.0h seems the best option and unless stated elsewhere 

the simulation will use this value. 

 

3.5.2 Matching the static equilibrium position of a deflected beam 

 

The aim of this study is to match the static equilibrium position of a one-dimensional 

deflected cantilever shaped beam. The main differences of this study compared to the 

previous one, in which the code was tested against the natural frequencies of a vibrating 

plate (Section 3.5.1), are: 1) the results of this problem are static shapes, not dynamic 

behavior, 2) the deformations are not limited to be small anymore, so we can test our 

solid model at the large deformation zones, 3) the solid is idealized as a one-dimensional 

beam in a two-dimensional space, and 4) the effect of the ambient fluid is not important 

on the steady-state results. The physical and numerical setups of this problem are as 

given in Fig. 3.5-2 below. 
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(a) (b) 

Figure 3.5-2: Physical (a) and numerical (b) setups of the problem 
 

In Fig. 3.5-2(a) we have a cantilever shaped beam with an arclength parameter s, a 

distributed vertical load w, and a horizontal force P on the beam‟s free end. The local 

slope of this beam is denoted by . Following the derivation given by Bickley (1934), 

such an inextensible beam‟s static equilibrium position can be described by the solution 

of the following differential equations and boundary conditions 
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In Eqn. (3.5-5) Kbending is the bending stiffness of the solid, which is usually proportional 

to the cube of the beam‟s thickness (found as 3 12Eq  in Section 3.3.4, where E  is the 

solid Young modulus and q is the thickness, but will be treated as a lumped parameter 

P 
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x 

y w 
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independent from E in the simulations), and L is the total length of the cantilever beam. 

Apart from being inextensible, Eqn. (3.5-5) was derived assuming the beam‟s internal 

moment is linearly proportional to its curvature by its bending stiffness, and shear 

deformations are negligible (Euler-Bernoulli‟s assumption). These two assumptions agree 

with the assumptions used in the solid models presented in Sections 3.3.3 and 3.3.4. In 

practice, the inextensibility can be enforced in the simulation by selecting a large 

Young‟s modulus. The first boundary condition states that the beam has a zero slope at 

the wall, whereas the second one enforces the beam‟s free-end to have zero curvature and 

hence moment. Furthermore, using the following dimensionless quantities 

 

   =    

o

s c, x c, y c

P wc

  



 


                                                                                       (3.5-6) 

 

 

and by defining a „bending length‟ c as 

 

3 bendingK
c

w
                                                                                                              (3.5-7) 

 

Bickley (1934) non-dimensionalizes Eqn. (3.5-5) as 
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In our computations we use the setup shown in Fig. 3.5-2(b), where the beam is held at its 

midpoint and the right half is used to compare to the theory in Fig. 3.5-2(a). An initially 

flat beam is let to deform under the attached loads w and P in a viscous ambient fluid. 

The viscous fluid helps to damp-out the beam vibrations around its static equilibrium 
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position. The stiffness of the springs shown in Fig. 3.5-2(b) are chosen high enough to 

restrict the movement of the midpoint, but low enough to let the simulations run with 

reasonable time steps. The reason for using such an implicit cantilever beam modeling is 

in the convenience of being able to keep using free end boundary conditions for the 

whole beam. 

 

Throughout this study, o and L s L
 


  are used as the physical control parameters. 

Using the definitions given in Eqns. (3.5-6) and (3.5-7) one can find 

 

3
3

L
bending

wL

K
                                                                                                             (3.5-9) 

 

For the presentation of results, the „theoretical‟ deformed beam shapes are compared to 

the computed ones. The „theoretical‟ deformed shapes are found by numerically solving 

Eqn. (3.5-8) with MATLAB®‟s „ode45‟ differential equation solver. The absolute and 

relative error tolerances of „ode45‟ were set to 10
-15

 and the solver was able to find a 

solution after increasing this error tolerance to O(10
-14

). Since the nature of the 

differential equations of Eqn. (3.5-8) is a boundary-value problem, the value  0 was 

iterated to satisfy the first boundary condition given in Eqn. (3.5-8) within an absolute 

accuracy of O(10
-6

).  

 

As an error measure the root mean square difference between the „theoretical‟ and 

computed deformed beam shapes on all the discrete points of the computations is used. 

The error is normalized by the length of the beam. In other words, 
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where Nbeam is the total number of all the discrete points used on the beam. 
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In the computations the Lagrangian to Eularian mesh width ratio was approximately 1. 

Also, the beam‟s Young‟s modulus and the midpoint‟s spring constant, kspring, satisfy 

 

3 31 27 10    2 52 10
springk LE

. x , . x
wL w

   

 

3.5.2.1 Effect of grid resolution on the beam shapes 

 

We studied the effect of grid resolution on the results for the particular case of 

 

3 10    0L o,    

 

The results are given in Table 3.5-10 and Fig. 3.5-3 below, in which the „theoretical‟ 

shapes are plotted with blue/dashed lines and the computed shapes are shown in red/solid 

lines. The convergence rate is defined as the slope of the line joining two points with 

coordinates     ln  ln Errorh , , where h is the Eulerian mesh width. 
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Figure 3.5-3: Effect of grid resolution on the beam shapes. The ‘theoretical’ shapes are plotted with 

blue/dashed and the computed shapes are shown in red/solid lines. The label ‘65
2
/9’ 

means the computation was done with 65 x 65 Eulerian and 9 Lagrangian points (on 

the half-beam, see Fig.3.5-2)  

 

Table 3.5-10: Effect of the grid resolution on the computed beam shapes with L
3
 =10, o=0 

 

Eulerian grid size Lagrangian points Error Convergence rate 

65
2 

9 5.21x10
-2 

 

129
2 

17 8.5x10
-3

 2.65 

257
2 

33 3.2x10
-3

 1.42 

513
2 

65 1.9x10
-3

 0.75 
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As can be seen above, the results converge to the „theoretical‟ shape with higher grid 

resolution. 

 

3.5.2.2 Effect of changing o on the beam shapes 

 

We also studied the effect of choosing different o values while using 

 

3 10L  , 

 

with an Eulerian grid size of 513 x 513 and using 65 Lagrangian points on the half-beam. 

The results are shown in Fig. 3.5-4 in which the „theoretical‟ shapes are plotted with 

blue/dashed lines and the computed shapes are shown in red/solid lines. As could be seen 

in the plot and in Table 3.5-11 the theoretical and computed beam shapes compare well. 

At high enough o values most of o acts as a tension force and the computed beam 

shapes have a higher elongation. On the other hand, at low o values the beam is largely 

bent and in this case w is increasingly contributing to the beam tension, again causing 

higher extension. However, the „theoretical‟ solution is based on a perfectly inextensible 

beam and this is why we think our results have a relatively lower error for intermediate o 

values. Also note that, this study also benchmarks the coupled nonlinear effects of the 

bending moment and tension at the large deformation/small strain solid deformations. 
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Figure 3.5-4: Effect of changing o on the computed and ‘theoretical’ beam shapes with L

3
 =10. The 

‘theoretical’ shapes are plotted with blue/dashed and the computed shapes are shown 

in red/solid lines. 

 
Table 3.5-11: Effect of changing o on the errors between the computed and 

‘theoretical’ beam shapes with L
3
 =10 
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3.5.3 Simulating a fluttering plate as it descends in water 

 

Beside the previous verification studies in which the solid model (Section 3.3) of the 

simulation was being tested, this study aims to test the coupled fluid/structure interaction 

model (Section 3.2) of the simulation. Unlike the abundant published results for elastic 

plate and beam behavior, there are fewer cases of a „simple‟ coupled fluid/structure 

interaction that we could test our code. In this section the motion of a thin plate falling 
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under its own weight in water is studied. It is known that light and thin sheets do not fall 

straight in air, which is the same case for heavier metal sheet in a heavier fluid such as 

water. Instead, their motion is enriched with fluttering, tumbling, and spinning. Studying 

this phenomenon has been of interest since the 19
th

 century with Maxwell and it still 

continues to be. Since then this problem has been approached analytically, 

experimentally, and numerically. These studies further divide into two major categories. 

In the first one, researchers have been studying falling objects, whereas in the second 

category researches have been studying a pinned plate that is free to rotate around its 

center of mass in an external flow as an analogous but an easier setup. For a detailed 

literature survey interested readers could refer to the recent paper by Andersen et al. 

(2005) and the older review paper by Lugt (1983).  

 

Recently, Belmonte et al. (1998) conducted a „quasi‟ two-dimensional experiment in 

which they dropped plates between the two narrowly spaced walls of an aquarium. They 

also attached two rings to the plates‟ ends to avoid any out-of-plane motions. In their 

study they reported a critical Froude number at which the plate switches from fluttering 

to tumbling. They defined this Froude number as the ratio of a time scale proportional to 

the period of a freely vibrating pendulum to another time scale proportional to the 

terminal velocity of a straightly descending object. They also stated that the Reynolds 

number does not significantly influence the motion above a threshold. Furthermore, they 

highlighted some universal similarities in phase plots of the plate‟s speed components 

versus the dynamically changing descend angle. Later, Andersen et al. (2005) has 

conducted a set of experiments and offered a simplified model to describe the plate 

motion. In their experiments they dropped plates with a very high width to length ratio 

(more than 17), contrary to the study of Belmonte et al. (1998). As well as to the plate‟s 

aspect ratio, they used the plate‟s dimensionless moment of inertia value to characterize 

their results, which is proportional the square root of Belmonte et al. (1998)‟s Froude 

number. 

 

The setup of this problem is as shown in Fig. 3.5-5 below. This problem could be 

described by the gravitational constant g, water density f and viscosity , the plate 
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length l, (out-of-plane) width w, thickness q, and excess two-dimensional mass density 

(with respect to water) s, whose measurement is as explained in Section 5.3. 

 

 
Figure 3.5-5: Initial setup for a plate descending in water  

 

 

Using these variables Andersen et al. (2005) describes the problem with the following 

dimensionless parameters 
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where 

 

2 s

f

g
V




                                                                                                                (3.5-14) 

 

In this study, an experiment was conducted with the dimensionless values given in Table 

3.5-12 below. We used a camera at 15 fps to capture the motion of the plate. 

 

Table 3.5-12: Dimensionless groups used in the experiment 
 

Re 3189
 

I 0.123 

 3.9 

 0.06 

 

Figure 3.5-6 below illustrates the stroboscopic plot of a two-dimensional simulation 

result with h/l = 0.0108, a/l = 11.1, and o = 30, where h is the uniform Eulerian mesh 

width, a is as defined in Fig. 3.5-5 above, and o is the initial descend angle from the 

horizontal. The time step value used in the simulations was such that Vt/h = 0.009. The 

reason for doing the simulation in two-dimensions was the large cost of the three-

dimensional simulations. Figure 3.5-7 shows the Vx vs. θ and –Vy vs. θ plots, where Vx 

and Vy are respectively the horizontal (positive right) and vertical (positive upwards) 

components of the plate‟s center of mass velocity and θ is the dynamically changing 

descend angle of the plate with respect to the horizontal, as shown in Fig. 3.5-5 above. 
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Figure 3.5-6: Stroboscopic plot of the computed motion of a fluttering plate as it descends in water 

with Re = 3189,  I  = 0.123,   = 3.9,   = 0.06 and using h/l = 0.0108,  a/l = 11.1,  o = 30 
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(a) (b) 

Figure 3.5-7: (a) Vx vs. θ , and (b) –Vy vs. θ plots of the computed motion of a fluttering plate as it 

descends in water with Re = 3189,  I  = 0.123,   = 3.9,   = 0.06, a/l = 11.1,  o = 30 and 

using a grid resolution of h/l = 0.0108 

 

While in our own experiments we find the half-oscillation period for the fluttering motion 

as 0.35±0.05 seconds, we found that value as 0.275 s (21 % slower than experiment) in 
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the computations. This half-oscillation period is defined as the elapsed time as the plate 

moves between its farther right and left positions in Fig. 3.5-6. However, that value was 

as slow as 0.21 s (40 % slower than experiment) at a two times coarser grid with            

h/l = 0.0216. On the other hand, the shapes of the velocity components vs. θ phase plots 

(Fig. 3.5-7) agreed with what Belmonte et al. (1998) claim to be universally true shapes 

for a fluttering plate. Specifically, Belmonte et al. (1998) mention that for fluttering 

plates with a wide parameter range the minimum velocity components in both graphs 

approximately occur around 20 descend angle. 

 

It is important mention that the   value used in this experiment (3.9) may not be large 

enough to compare the experiments with a two-dimensional computation. To address this 

issue and also to compare the simulation with other reported outputs than the half-

oscillation period, we performed another computation to test the simulation with one of 

the experiments reported by Andersen et al. (2005), using the dimensionless groups given 

in Table 3.5-13 below. 

 

Table 3.5-13: Dimensionless groups used in the fluttering plate experiment reported in Andersen et 

al. (2005) 
 

Re 1147
 

I 0.16 

 16.75 

 0.0714 

 

 

Figure 3.5-8 below illustrates the stroboscopic plot of the computational result with         

h/l = 0.0086, a/l = 8.8, and o = 30. The time step value used in the simulations was such 

that Vt/h = 0.0165. 
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Figure 3.5-8: Stroboscopic plot of the computed motion of a fluttering plate as it descends in water 

with Re = 1147,  I  = 0.16,   = 16.75,   = 0.0714 and using h/l = 0.0086,  a/l = 8.8,           

o = 30 

 

For this case, time histories of the plate‟s center of mass velocity components are 

compared with the plots given in Andersen et al. (2005). Specifically, in the computations 

the amplitudes of the fluctuations of the horizontal and vertical components of the center 

of mass velocity were respectively 21 and 14 % slower than the values found in Andersen 

et al. (2005). However, at a two times coarser grid with h/l = 0.0172, a/l = 17.6 the same 

values were respectively 56 and 39 % slower than the values found in Andersen et al. 

(2005), showing a first-order convergence trend. On the other hand, the plate did not 

show a uniform fluttering pattern at coarser grids. 
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CHAPTER IV 

REPRESENTING COMPLEX GEOMETRIES  

ON CARTESIAN GRIDS 
 

 

4.1 Introduction 
 

For a fluid domain with complex boundaries, simple structured grids cannot be used to 

discretize equations of motion without additional care. This is because the domain 

boundaries do not necessarily coincide with the grid positions. Such a situation is given 

in Figure 4.1-1, where a fluid domain  with an irregular boundary  is shown together 

with a Cartesian grid. 

 

 
Figure 4.1-1: A fluid domain  with irregular boundaries  on a Cartesian grid 

 

Traditionally, such complex domains are discretized using unstructured grids with finite-

volume or finite-element methods. Using unstructured grids, one can place the grid points 

in such a way that they coincide with the irregular boundaries. However, there are many 

 

FLUID 

 
SOLID 

 

 
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non-trivial issues involving their construction as described in Ferziger and Peric (2002). 

Another traditional method is using curvilinear, boundary-fitted grids, which are also 

non-trivial to construct and cumbersome to use with multiple moving solid boundaries. 

 

In the context of using structured grids with complex geometries, Morton and Mayers 

(1994) discusses a technique for general finite-differences that modifies the regular 

stencils near the complex boundaries at the expense of a restricted stability requirement, 

which also requires measuring distances from the Cartesian grid points to the boundaries 

along the horizontal and vertical grid lines. For inviscid flows, DeZeeuw et al. (1993) and 

Coirier et al. (1995) have attempted to model irregular solid boundaries with Cartesian 

grids using an adaptive mesh refining technique with a check criteria to decide when the 

mesh needs to be further refined. Later, Coirier et al. (1996) applied this technique to the 

Navier-Stokes equations. Ye et al. (1999) and Udaykumar et al. (2001) suggested a 

method for solving the Navier-Stokes equations that reshapes the structured grid-cells 

near the solid boundaries and requires performing interpolations to evaluate various 

fluxes leaving and entering those reshaped grid-cells. However, for complex or 3D 

geometries reshaping the grid-cells near the solid boundaries might be nontrivial and for 

problems involving moving boundaries these complex alterations would be repeated at 

every time step. A similar method formulated by Kirkpatrick et al. (2003) truncates the 

Cartesian cells near the solid boundaries.  

 

Starting with Goldstein et al. (1993), other researchers have applied the Immersed 

Boundary method, which was presented in Chapter 3 for flexible solids in fluids, to 

model rigid irregular domain boundaries. In particular, Goldstein et al. (1993) suggested 

covering both the fluid and solid regions with the same regular grid and using an excess 

force field near the boundaries to satisfy the no-slip and no-penetrability condition there. 

Literally, for the Navier-Stokes equations he offered is 
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where 


u is the actual velocity and ub is the desired velocity at the boundary . This 

formulation resembles a simple spring-damper system and the free constants   and  can 

be viewed as the solid boundary „spring‟ and „damping‟ constants. However, as Goldstein 

et al. (1993) indicate, this formulation needs to be calibrated for each different problem to 

ensure the numerical natural frequency of the elastic boundary to be as different as 

possible from the physical flow frequencies. On the other hand, using a stiffer „spring‟ 

constant would add to the numerical stability concerns. Next, Mohd-Yusof (1997) and 

Fadlun et al. (2000) used the following alternative to Goldstein et al. (1993): 
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which doesn‟t require any numerical „spring‟ and „damping‟ constant values. An exact 

evaluation of Eqn. (4.1-2) gives 
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Fadlun et al. (2000) use a linear interpolation scheme to couple the boundary velocity ub 

with the regular structured grid points. However, the interpolation direction choices can 

be shown to be non-unique. The authors claimed their method to be second-order 

accurate in space. Kim et al. (2001) offered a technique assigning the mirror image of the 

fluid velocity near a stationary boundary to the grid points inside the solid, so the fluid 

velocity on  is zero. For non-stationary boundaries their method extrapolates the fluid 

velocity to the grid points inside the solid. They also enforced mass conservation near the 

boundaries with special mass sinks or sources and reported significantly lower errors. For 

cases with and without enforcing mass conservation near the boundaries, they reported 

second-order spatial accuracy. In a similar method to Fadlun et al. (2000) and Kim et al. 

(2001), Tseng et al. (2003) extrapolated the fluid variables to the grid points inside the 

solid in such a way that both the velocity and pressure boundary conditions are satisfied 

on the solid surface. Yokoi (2003) published a similar method to Tseng et al. (2003), 

using level-set representation for the solid boundary to ease the formulation of 

extrapolations. However, he didn‟t extend his method for the pressure-correction part of 

solving the Navier-Stokes equations and he reports first-order accuracy in space. Silva et 

al. (2003) calculated the force f in Eqn. (4.1-2) on the discretized boundary surface by 

interpolating the required quantities from the structured grid to do so and then 

interpolated f back to the structured grid points. Recently, Marella et al. (2005) suggested 

another method, which is claimed to be second-order accurate in space. Their technique 

uses the level-set formulation to represent the solid boundaries, which in turn enables the 

convenient computation of the closest distance between the solid boundary and each 

neighboring structured grid point. Using these closest distances the authors formulated an 

automated scheme that locally modifies the finite-difference approximations near the 

solid boundaries. 

 

4.2 Current approach 
 

In this study a spatially less than second-order accurate method (in terms of its 

convergence properties) has been implemented for representing the complex geometries 

of the washing machine on Cartesian grids. Note that, it would be meaningless to adopt a 
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spatially second-order accurate method for this problem while the fluid-structure 

interaction part of the simulation code is first-order accurate. However, as will be 

discussed later, the currently used method could be modified to be second-order accurate 

(similar to the technique of Kim et al. (2001)) with little extra effort. Therefore, this work 

will serve as a useful background for further improvements. 

 

The solid boundary interface is described in such a way that at all times it corresponds to 

the zero level-set/contour of a scalar function that is defined on all grid points. Using 

such a description, the shortest distance between every grid point to the solid boundary is 

computed using Eqn. (4.2-1) as suggested by Sussman et al. (1994). 

 

sgn sgno o

*t


  


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
                                                                                            (4.2-1) 

 

where  is the scalar function whose zero level-set is on the solid boundary and also is a 

distance function. On the other hand,  
o
 is also a scalar function whose zero level-set is 

on the solid boundary, but is not necessarily a distance function.  
o
 is the result of the 

construction of the level-set function by combining simple geometric shapes. 

Additionally, t
*
 is an artificial time variable that serves as an iteration parameter for 

solving Eqn. (4.2-1) to steady-state. For computing the solution of Eqn. (4.2-1),  
o
 is set 

to be the initial condition of . Lastly, sgn 
o
 is the sign function of  

o
, which is equal to 

1 if  
o 
> 0, -1 if  

o 
< 0, and 0 if  

o 
= 0. Note that, the steady-state condition of Eqn.   

(4.2-1) is 

 

 1 sgn 0      1o                                                                                    (4.2-2) 

 

which implies  is the signed distance function of the solid boundary. In the simulation, 

the solution of Eqn. (4.2-1) is computed through a spatially first-order, consistent and 

monotone scheme that is known to be converging to a unique „viscosity solution‟, as used 
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by Sussman et al. (1994). Specifically, the simulation solves Eqn. (4.2-1) in 2D, using 

Russo et al. (2000)‟s notation, as 
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and i,j denotes the value of  at the (i, j)
th
 grid point location (see Fig. 2.2-2). As before h 

is the uniform grid spacing. The 3D formulation is analogous and is not explicitly 

repeated here. In their paper, Russo et al. (2000) report that the above scheme for solving 

Eqn. (4.2-1) has a deficiency of shifting the true position of the zero level-set location of 

 to the nearest grid point, and they suggested an improved scheme. Although it is 

simple, this fix has not been implemented yet in the current simulation code. 

 

Having described the solid boundary with such a signed distance function, the 

computational domain is divided into fluid and rigid solid regions as in Fig. 4.1-1. The 

initial level-set function is chosen such that it is negative inside the rigid solid domain s 

and positive inside the fluid domain f . For the fluid and solid domains one can write 
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Note that 0 u  is true for rigid body motions. In this study, Eqns. (4.2-4) and (4.2-5) 

are augmented as a single equation for both s and f as 
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(4.2-6) 

 

where H( ) is the Heaviside function of  ; being 0 if  is negative, 1 if  is positive and 

1/2 if  is zero. In Eqn. (4.2-6) k is a free constant having units of mass/ (time x length
3
). 

 

In the present simulation k was selected in such a way that the diagonal term of the set of 

linear equations given in Chapter 2‟s Eqns. (2.2-22) or (2.2-23) is same in both fluid and 

solid. As described there, solving Eqn. (2.2-22) is a part of the solving the Navier-Stokes 

equations and the iterative solver of that set of equations favors the eigenvalues of the 

matrix to be clustered, which is assured by selecting k as explained above.  

 

The formulation given in Eqn. (4.2-6) with using a discontinuous Heaviside function will 

result in a stair shaped non-smooth interface, but will converge to the true geometry as 

the grid is refined. To test if this formulation could be improved by diffusing the solid 
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interface onto a few grid points along the normal direction of the interface, a modified 

Heaviside function  H   is also used for H( ) as 
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where 2 is the width of the smooth interface and is selected to be 4 grid spacings (note 

that the original H( ) uses  = 0). As will be shown in the next section, the „diffuse‟ 

interface was not any more accurate than the „sharp‟ interface, at least for the test cases of 

Section 4.3.1 and 4.3.2 on coarse grids. Another idea is to set  to include more and more 

grid points as the grid is refined. However, test cases showed that it is again no better 

than that of the „sharp‟ interface. Hence, in the washing machine simulations the 

simulation uses the „sharp‟ Heaviside function. Although, the idea of Eqn. (4.2-6) is also 

in Al-Rawahi et al. (2002) and Son (2005), it was independently developed here. 

 

In the scope of using a fractional step method to solve the Navier-Stokes equations, Eqn. 

(4.2-6) could be solved through the following steps: 
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(4.2-7) 

 

with the following boundary conditions 
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 *   on the grid boundariesbu u  

 

2. Observe that  
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where 1 0n u . This equation is the generalized Hodge/Helmholtz 

decomposition and is true because in the solid domain s Eqn. (4.2-7) sets          

u
* 
= usolid, and u

n+1
 is also desired to be equal to usolid. 

 

3. Compute p (up to an arbitrary constant) from 
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by using 

 

0p n   

 

at the grid boundaries if the fluid domain has access to there. If the fluid domain 

has no access to there, no boundary condition is necessary, but for simplicity the 

above boundary condition could be retained in the simulation, since it will have 

no adverse effect. 

 

4. Compute u
n+1

 from 

 

 1 *n t
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5. Lastly, compute the real pressure p from 
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Note that, Eqns. (4.2-7) to (4.2-11) are analogous to those presented in Chapter 2 for 

solving the Navier-Stokes equations in „all-fluid‟ domains. Instead of these illustrative 

differential forms of Eqns. (4.2-7) and (4.2-9), the simulation uses their integral forms in 

the computations as discussed in Chapter 2, but the main idea is same. It is noteworthy 

that Eqn. (4.2-9) is the Poisson equation with a non-constant coefficient H( )/ρ, 

changing from 0 to 1/ρ. Hence, the computational difficulty of solving Eqn. (4.2-9) is 

equivalent to solving a multiphase flow with an infinite density jump. The computational 

difficulty of solving elliptic partial differential equations with non-constant coefficients 

by using Geometric Multigrid methods is discussed in Briggs et al. (2000). To avoid this 

complication, one could truncate H( ) at a positive small value inside the solid domain 

for Eqn. (4.2-9) and (4.2-10), before it reaches to zero. Due to the computational 

difficulty of solving Eqn. (4.2-9), even with truncating H( ) at a positive small value, the 

simulation rather solves the following equations instead of Eqn. (4.2-9) and (4.2-10) for 

the washing machine simulations: 
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which are the original fractional step sequence equations that are used to solve the 

Navier-Stokes equations in „all-fluid domains‟ as presented in Chapter 2. Using Eqns. 

(4.2-12) and (4.2-13) rather than Eqns. (4.2-9) and (4.2-10) is substantially cheaper. 

Although solid* u u  is implied by Eqn. (4.2-7), 
1n

solid
 u u  is not explicitly implied 

anymore by using Eqns. (4.2-12) and (4.2-13). However, as long as usolid is constructed in 

such a way that 0solid u  , Eqn. (4.2-12) would imply 0p   in s and hence Eqn. 

(4.2-13) would implicitly give 
1n

solid
 u u  in s. 

 

4.3 Verification 
 

4.3.1 Simulating 2D circular Couette flow 

 

In this verification study, the simulation‟s method of representing complex geometries on 

Cartesian grids is tested against steady, axisymmetric Couette flow. The setup is as 

shown in Fig. 4.3-1, where the Cartesian grid is also plotted. In this flow, a fluid is 

enclosed between two circular and concentric inner and outer walls whose radii are 

respectively ri and ro. In addition, the inner and outer walls are rotating counterclockwise 

with angular speeds of i and o, respectively. θ is the angle measured counterclockwise 

from the x-axis, which spans horizontally right from the common center of the cylinders. 

The exact solution is 
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Figure 4.3-1: 2D circular Couette flow with a Cartesian grid 
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                                                                                                                (4.3-1) 

 

where 

 

 
2 2 2 2

2 2 2 2
   i i o o i o

o i

i o i o

r r r r
A , B

r r r r

 
   

 
 

 

In Eqn. (4.3-1) uθ and eθ are respectively the velocity component and unit vector in the 

positive θ direction. This result is from the simplified form of the Navier-Stokes 

equations 

 

2

2 2

1
0

u u u

r rr r

   
  


                                                                                                (4.3-2) 

 

The constants A and B are determined by applying the no-slip boundary conditions at the 

inner and outer walls. It is noteworthy that Eqn. (4.3-2) contains only the diffusive terms 

of the Navier-Stokes equation. 

 

rroo  
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We choose the following length, time and mass scales to non-dimensionalize this 

problem 

 

 
3

      o o oo i
o i f o i

o o

r r
l r r , t , M r r

r





                                                                 (4.3-3) 

 

The Navier-Stokes equations for the 2D circular Couette flow geometry is written in the 

following dimensionless form 
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t Re
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
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u
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

                                                                                      (4.3-4) 

 

where the Reynolds number Re is defined as 

 

   o o o ir r r
Re

 




                                                                                                (4.3-5)                    

 

This form of the Navier-Stokes equations includes all the terms excluded in Eqn. (4.3-2), 

since this is what the simulation solves for. Specifically, in the simulations the inner and 

outer walls‟ angular velocities are suddenly applied at t = 0 as 

 

      i i o oH t , H t                                                                                       (4.3-6) 

 

where H is a Heaviside function and the simulation marches towards the steady-state 

solution given in Eqn. (4.3-1). The other dimensionless scales defining this problem are 
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o o

r

r




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In this study, in addition to testing the general validity of the method of representing 

complex solid boundaries on Cartesian grids, the effect of the Heaviside function 

thickness  (see Section 4.2) will also be assessed on the accuracy of the results. 

 

4.3.1.1 Effect of the Heaviside function thickness 2 
 

In this test case, the effect of the modified Heaviside function thickness 2 in Eqn. (4.2-6) 

is tested. The following physical and numerical parameters are used: 

 

3131    6 13    0 34    2 5 10i i

o o

r
Re , . , . , t . x

r


    


 

 

The maximum CFL number at the finest grid was 0.6156. Using the definitions of the 

maximum and the rms errors as in Eqn. (4.3-7) and (4.3-8) below, where N is the total 

number of grid points in the fluid domain, Tables 4.3-1 and 4.3-2 report the results with  

 = 0 and  = 2h, respectively. The convergence rate is defined as the slope of the line 

joining two points with coordinates     ln  ln Errorh , , where h is the Eulerian mesh 

width. 

 

Maximum error: 
computed exact

exact

u u
max

u

 



 
 
 
 

                                                             (4.3-7) 

 

1
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Rms error:  
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Table 4.3-1: Effect of the grid resolution on the accuracy of the 2D steady, laminar, and circular 

Couette flow with  = 0 
 

Eulerian 

 grid size 

h/ri Maximum 

error 

Convergence 

Rate 

Rms  

error 

Convergence 

Rate 

129
2 

0.0646 0.0365  0.0105  

257
2 

0.0324 0.0309 0.24 7.95x10
-3 

0.40 

513
2 

0.0162 0.012 1.4 3.47x10
-3 

1.2 

 

Table 4.3-2: Effect of the grid resolution on the accuracy of the 2D steady, laminar, and circular 

Couette flow with  = 2h 
 

Eulerian 

 grid size 

h/ri Maximum 

 error 

Convergence 

Rate 

Rms  

error 

Convergence 

Rate 

129
2 

0.0646 0.1133  0.0469  

257
2 

0.0324 0.04 1.5 0.0167
 

1.5 

513
2 

0.0162 0.01 2.0 4.0x10
-3

 2.1 

 

In Tables 4.3-1 and 4.3-2 above, h/ri is the ratio between the grid size and the maximum 

radius of curvature of the solid boundaries. Note that the overall convergence rate with    

 = 2h appears higher than that of  = 0. On the other hand, on coarser grids the method 

with  = 0 produces significantly lower errors. 

 

4.3.1.2 Comparison with method of Yokoi (2003) 

 

In this study the method of Yokoi (2003) was also coded and tested against the current 

formulation. It is worth mentioning that starting from the current formulation it is 

possible to adapt the formulations of Yokoi (2003) and Kim et al. (2001) with a very little 

extra effort. The method of Yokoi (2003) can be summarized as 

 

1. Identify an Eulerian grid point in the solid domain s, 

2. Compute the vector     between the closest point on the solid/fluid interface 

and the grid point,  

3. Originating from the same grid point in solid, mark a point in the fluid domain f 

that is h  away from the grid point along the     direction , 

4. Using bilinear (in 2D) or trilinear (in 3D) interpolations compute the velocity at 

the marked point in fluid, 
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5. Finally, using the velocities of the marked fluid point and the solid/fluid interface, 

extrapolate the fluid velocity field to the solid grid point along the     

vector direction. 

 

Using the method of Yokoi (2003), the maximum error defined in Eqn. (4.3-7) was 

0.0215 and the rms error defined in Eqn. (4.3-8) was 0.0040 on a 129 x 129 Eulerian grid. 

Observe that these errors are significantly lower than those computed with the current 

method using Heaviside functions in Tables 4.3-1 and 4.3-2. However, the method of 

Yokoi (2003) is not being used in the simulation for the washing machine simulations. 

This is because Yokoi‟s method uses the interface normal vector     , but for the 

three-dimensional washing machine simulations using coarse-grids this interface normal 

vector estimate was poor causing fictitious oscillations in the velocity field near the solid 

boundary (See Chapter 5, Figure 5.5-4 for this geometry). 

 

4.3.2 Simulating a 2D flow past a circular cylinder 

 

Unlike the 2D, steady, laminar and axisymmetric Couette flow, the fluid flow past a 

circular cylinder bears the coupled effects of pressure, diffusion and convection in its 

physics. In this problem, using a Reynolds number Re based on the cylinder diameter, Ye 

et al. (1999) mentions that for flows with Re greater than approximately 46 the wake 

behind the cylinder is unstable and vortices are shed at a certain frequency. The 

numerical setup of this problem is as given in Fig. 4.3-2 below. 
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Figure 4.3-2: Numerical setup of the simulations of a 2D flow past a circular cylinder 

 

This problem is nontrivial because the numerical domain has a finite size and appropriate 

far-field boundary conditions should be specified. Appropriate choices of the far-field 

boundary conditions have been a topic of interest in the literature including the report of 

Sani et al. (1994). To minimize the effect of these far-field boundary conditions on the 

accuracy, it is desirable to place the boundaries as far as possible from the cylinder. 

Moreover, as discussed in Chapter 2, numerically solving the Navier-Stokes equations by 

using fractional step methods requires the application of the Hodge/Helmholtz 

decomposition, but for problems with open-boundaries the Hodge/Helmholtz 

decomposition may not be unique. However, in the scope of assessing the simulation‟s 

performance of handling irregular rigid solid boundaries on Cartesian grids, the results of 

this test case can be compared with the other numerical computations in the literature, 

since the same difficulties apply to them as well. 

 

In this work the following velocity boundary conditions are selected:  

 

1. u = Uo and v = 0 on the upstream-end of the domain,  

a/4 3a/4 

d 

a/2 

a/2 

x 

y 

Uo 
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2. ec
t x

 
 

 

u u
0  on the downstream-end of the domain, where ce is the space 

averaged horizontal velocity component u on a column of grid points that are one 

mesh space inside from the downstream-end, as suggested by Kim et al. (2001), 

3. a. 0n

v v
c

t y

 
 

 
 for the convection terms on the top-side of the domain, where cn 

is the space-averaged vertical velocity field v on a row of grid points that are one 

mesh space inside from the top-side,  

 

b. such a velocity field for the diffusion terms on the top-side that the fluid 

viscous stresses are continuous, 

4. a. 0s

v v
c

t y

 
 

 
 for the convection terms on the bottom-side of the domain, 

where cs is the space averaged vertical velocity field -v on a row of grid points 

that are one mesh space inside from the bottom-side,  

 

b. such a velocity field for the diffusion terms on the bottom-side that the viscous 

stresses are continuous. 

 

As for the boundary conditions for the pseudo-pressure variable p (see Chapter 2 for its 

definition), 0p n   is used on all boundaries of the computational domain, where n is 

the outward normal vector of each boundary. As could be verified in Chapter 2‟s Eqn. 

(2.2-10), such a pseudo-pressure boundary condition is not necessarily compatible with 

the non-Dirichlet velocity boundary conditions. However, since this point has been 

overlooked in the similar studies of the literature and the only goal of conducting this 

study is to verify the simulation‟s capability of representing irregular solid boundaries on 

Cartesian grids through comparing the results with the other reported studies in the 

literature, no attempt was made to seek a more suitable pseudo-pressure boundary 

condition. 
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In reporting the results of the simulations the following outputs are used: i) drag 

coefficient CD, lift coefficient CL, and Strouhal number St. Their definitions together with 

the definition of the Reynolds number are as given below. 
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                                   (4.3-9) 

 

where Fx and Fy are respectively the horizontal and vertical forces applied on the fluid by 

the solid cylinder, while f is the time-frequency of the vortex-shedding. These forces are 

measured by drawing rectangular control volumes around the cylinder and using the 

integral form of the linear momentum part of the Navier-Stokes equation given in Eqn. 

(4.3-10) below with the previously computed velocity and pressure fields. 
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  
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     
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u

u u n n u n F                                    (4.3-10) 

 

In Eqn. (4.3-10) A and V denotes the surface areas and volumes of the control-volumes 

and n is the unit outward vector from the surfaces of the control-volumes. To verify the 

consistency, the CD, CL, and St numbers were separately computed on three different 

control volumes in different sizes. Note that, the control volume for Eqn. (4.3-10) 

includes the volume inside the solid cylinder as well. However, since u = usolid  is 

specified inside the solid cylinder via Eqn. (4.2-6) and it implies 0
t






u
, the inclusion of 

the solid cylinder in the control volume will not effect the measurement of the drag and 

lift forces through Eqn. (4.3-10). 

 

4.3.2.1 Effect of the location of the far-field domain boundaries on the results 

 

As discussed above, appropriate far-field boundary conditions are required for the 

numerical simulations of this problem. This test case attempts to assess the effect of the 

location of the far-field boundaries on the accuracy of the results. Tables 4.3-3 and 4.3-4 
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report the maximum CL and time averaged CD values with different domain sizes at       

Re = 100 and using 34 2d h .  with using sharp ( = 0) and smooth ( = 2h) Heaviside 

functions, respectively. Note that, h is the uniform Eulerian mesh width. 

 

Table 4.3-3: Effect of the location of the far-field domain boundaries on the results with                           

  = 0 at Re = 100  (See Fig. 4.3-2 for the definition of a) 
 

a/d 
DC  CL 

15 1.53 ±0.38 

30 1.39 ±0.35 

60 1.34 ±0.33 

 

 
Table 4.3-4: Effect of the location of the far-field domain boundaries on the results with                       

  = 2h at Re = 100  (See Fig. 4.3-2 for the definition of a) 
 

a/d 
DC  CL 

15 1.63 ±0.45 

30 1.48 ±0.40 

60 1.41 ±0.37 

 

Tables 4.3-3 and 4.3-4 suggest a convergence trend in the results as the far-field 

boundaries are pulled away from the cylinder. As will be shown later, these a/d values 

are sufficient to compare the results with the other studies in the literature. 

 

4.3.2.2 Effect of the grid resolution on the results 

 

In this part, the effect of the grid resolution on the results is studied at Re = 100 and 

using 30a d  . The converging results are given in Tables 4.3-5 and 4.3-6 below. 

Interestingly, the results with  = 0 converge from lower CD and CL values to higher 

values, while the results with  = 2h converge from higher CD and CL values to lower 

values. Again, h is the uniform Eulerian mesh width. 

 

Table 4.3-5: Effect of the grid resolution on the results with  = 0 at Re = 100  
 

Eulerian grid size d/h 
DC  CL 

513
2 

17.1 1.33 ±0.29 

1025
2 

34.2 1.39 ±0.35 

2049
2 

68.3 1.40 ±0.35 
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Table 4.3-6: Effect of the grid resolution on the results with  = 2h at Re = 100  
 

Eulerian grid size d/h 
DC  CL 

513
2 

17.1 1.59 ±0.45 

1025
2 

34.2 1.48 ±0.40 

2049
2 

68.3 1.43 ±0.37 

 

 

4.3.2.3 Effect of the time step on the results 

 

To confirm the results above are insensitive to the time step value used in the simulations, 

one of the cases was computed again by using half of the original time step Δt
*
. The 

results given below in Table 4.3-7 suggest that further reducing the previously used time 

step value does not change the results, at least using the same number of significant 

figures as in Sections 4.3.2.1 and 4.3.2.2. 

 

Table 4.3-7: Effect of the time step on the results with Re = 100, a/d = 30, d/h = 34.2, and   = 0 
 

Time step 
DC  CL 

Δt
* 

1.39 ±0.35 

Δt
*
/2

 
1.39 ±0.35 

 

4.3.2.4 Comparison with the other results in the literature 

 

In Table 4.3-8 below, the present results are compared with the other results in the 

literature. 
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Table 4.3-8: Comparison of the present results with the others in the literature at Re = 100     
 

 
DC  CL St Domain size 

Present ( = 0)
 1.40 ±0.35 0.166±0.0098 30d x 30d 

Present ( = 0)
 1.34 ±0.33 0.166±0.0098 60d x 60d 

Present ( = 2h)
* 1.43 ±0.37 0.166±0.0098 30d x 30d 

Present ( = 2h)
* 1.41 ±0.37 0.166±0.0098 60d x 60d 

Williamson (1996)   0.163 experiment 

Kim et al. (2001) 1.33 ±0.32 0.165 70d x 100d 

Silva et al. (2003) 1.39  0.16 30d x 15d 

Tseng et al. (2003) 1.42 0.29 (rms) 0.164 32d x 16d 

Le et al. (2006) 1.37 ±0.323 0.160 30d x15d 

Su et al. (2007) 1.40 ±0.34 0.166 29.9d x 16.7d 
* Note that, the results with  = 2h presented here were yet to converge with respect to the grid size (a grid 
size of 1025 x 1025 was used for a domain size of 60d x 60d and a grid size of 2049 x 2049 was used for a 

domain size of 30d x 30d ), but the results presented here with  = 0 are converged, as could be seen in 
Sections 4.3.2.1 and 4.3.2.2. 

 

Table 4.3-8 suggests that the results with  = 0 are within the range of the others. On the 

other hand by using the same grid resolutions with the results of  = 0, the CD and CL 

values computed with  = 2h are rather higher than most of the other results in the 

literature, and also they were still not fully converged. 

 

4.3.3 Simulating a cloth draped on a solid prism in 3D 

 

In this verification study an initially flat, horizontal, and square cloth is released on top of 

a solid prism, whose top surface is also a square, and the cloth final draped shape on the 

prism is visually examined. The cloth mechanical model and the fluid/cloth interaction 

models are presented in Chapter 3, while the cloth/fluid mixture interaction with the solid 

prism is modeled by the method in Section 4.2 using a sharp Heaviside function ( = 0). 

The cloth elastic parameters were selected to be consistent with those of the real clothes 

in their principal axes, but anisotropy effects are neglected. The physical and numerical 

parameters used in this problem are given in Table 4.3-9 below. Doing so, following the 

standard convention, the elastic constants of thin fabrics are reported as lower 

dimensional quantities. For instance, the cloth extensional stiffness ( Ke ) is proportional 
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to cloth‟s Young‟s modulus times cloth thickness q (i.e. Eq  ). This study uses a two times 

finer Eulerian grid along the solid prism‟s height direction than its lateral directions. 

 

Table 4.3-9: Physical and numerical parameters used in the simulations 
 

Cloth extensional stiffness ( eK ) 8x10
2

 N/m 

Cloth bending stiffness ( bK ) 1x10
-5

 N.m 

Cloth mass density  0.97 kg/m
2 

Initial square dimension of the cloth 50 cm x 50 cm 

Dimensions of the top square surface of the prism 25 cm x 25 cm 

Fluid density ( ρf ) 0.01 kg/m
3 

Fluid dynamic viscosity ( μ ) 1x10
-5

 kg/(m.s) 

Dirac-delta function half width ( ε ) 2hlateral or 2hheight
 

Heaviside function half width ( ε ) 0 

Minimum Lagrangian to Eulerian mesh size ratio 1.08 

hlateral / hheight 2 

 

Even though, it is desirable to conduct this study without the fluid, due to the similar 

reason mentioned in Chapter 3, Section 3.5.1, small but nonzero values are used for the 

fluid density and viscosity values. Figure 4.3-3 below shows the result of this study with 

three different grid resolutions.  

 

   
(a)  (b) (c) 

Figure 4.3-3: Effect of grid resolution on the shape of a draped cloth on a solid prism;                                

a) 15
3
 Eulerian/15

2
 Lagrangian points, b) 33

3
 Eulerian/30

2
 Lagrangian points, and               

c) 65
3
 Eulerian/60

2
 Lagrangian points 

 

Figure 4.3-3 clearly shows the improvement of the draped cloth shape with grid 

refinement as evidenced by the decreasing penetration into the solid prism with 

refinement.  The reason for the cloth penetration into the rigid solid could be explained as 

follows. As discussed in Chapter 3, Section 3.2, in the context of the Immersed Boundary 

method, cloth inherits its velocity field from the Eulerian grid points by using a weighted-
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averaging via the discrete form of Eqn. (3.2-13) as it deforms into its static equilibrium 

position under its own weight from an initially horizontal and flat configuration. 

However, since the neighboring Eulerian grid points close to the rigid solid may have 

velocities pointing into the solid prism and the Eulerian grid points in the solid have zero 

velocities (by definition), the cloth may also inherit a velocity that points into the solid 

causing it to penetrate. This is also the reason why the penetration is more severe near the 

corners and edges; the corners and edges are exposed to more neighboring Eulerian grid 

points with nonzero velocities than the other faces of the prism. Naturally, such a 

penetration will scale by the Eulerian grid resolution. Specifically, in this study the 

maximum penetration was estimated to be approximately 0.3h. 
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CHAPTER V 

NUMERICAL SIMULATIONS OF 

 WASHING MACHINE PROCESSES 
 

 

5.1 Introduction 
 

This chapter presents washing machine simulations with multiple cloth pieces. The 

previous chapters on the numerical solution of the Navier-Stokes equations (Chapter 2), 

modeling the fluid/structure interaction and cloth mechanics (Chapter 3), and 

representing complex geometries on Cartesian grids (Chapter 4) serve as the foundation 

for this application study as well as an aid to verify the simulations under simplistic 

conditions. Since it is nontrivial to conduct a washing machine experiment to assess the 

accuracies of the results (due to difficulties in controlling the initial conditions and 

visualization) and this research timeline lacked the dedicated time to perform such 

experiments, only numerical results will be given in this chapter. On the other hand, 

based on the previous simple verification studies it may now be possible to expect the 

washing machine simulations to model the washing processes provided that the 

individual fluid and cloth models are appropriate and the massive required computational 

resources are available.  

 

Actual washing machine processes involve mechanical agitation of many cloths with 

different mechanical properties in various different geometries (e.g. trousers, shirts, bed 

sheets, etc.) in a detergent/water mixture. The wash-fluid does not fill the whole washtub, 

so the washtub includes a dynamically evolving wash-fluid/air interface. In general, there 

are two types of washing machines: vertical and horizontal-axis washing machines. The 

vertical-axis washing machines use a mechanical agitator to drive the wash-fluid/cloth 

mixture, where on the other hand the horizontal-axis washing machines drive the 

fluid/cloth mixture by basket rotation and gravity. 
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The present simulation capabilities are as follows. The simulation uses an elastic, and 

nonporous thin cloth model with an incompressible, viscous, and Newtonian fluid model. 

The cloth elastic model includes extensional, in-plane shear, bending, and torsional 

stiffness. Cloth deformation can be large, but cloth strains are assumed to stay small. 

Detailed information on the cloth elastic model is given in Chapter 3. The simulation 

solves the coupled dynamical equations of the fluid and the cloth pieces on a fixed 

structured Cartesian grid and uses moving Lagrangian points to trace the cloth pieces as 

explained in Chapter 3. Due to the nature of the fluid/cloth modeling technique used in 

the simulation, the cloth inherits the same local velocity field of the fluid, so unphysical 

inter-penetration between two different cloth pieces as well as any self-penetration within 

a single cloth piece can be avoided with well-resolved simulations. However, as will be 

discussed later, the nature of the fluid/cloth modeling technique makes the cloth pieces 

artificially „sticky‟ for the poorly resolved simulations. As for the wash-fluid/air 

interface, the simplified simulation presented here uses a fixed, impenetrable slip-free 

surface. Hence, this research only studies vertical-axis washing machines. Doing so, a 

mechanical agitator, presently used by the Whirlpool Corporation in some of their 

modern washing machines, is incorporated into the simulations using the technique 

described in Chapter 4. 

 

For actual washing machine processes the Reynolds number (Re) based on the washing 

machine agitator radius, maximum agitator speed, and single phase water properties is in 

the order of 10
5
. For turbulent flows, the ratio of the largest eddy scale to the smallest 

flow scale where energy is dissipated is proportional to Re
3/4 

as explained in Pope (2000). 

Assuming the largest eddy size in a washtub is the washtub diameter, this result suggests 

that fully capturing the flow details (without cloth) requires an approximate grid size of 

10
4
 x 10

4
 x 10

4
 points. As a practical alternative to the direct numerical simulations, 

„shortcut‟ turbulence models simulate large Re flows such as the Large Eddy Simulation 

(LES) methods and Reynolds Averaged Navier-Stokes (RANS) approaches. 

Unfortunately, their performances are problem-dependent and their development is an 

active topic of research. The present simulation is not equipped with any turbulence 

models and due to the computational constraints mentioned above it is unlikely to give 
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accurate results at the parameter range of the realistic washing machine processes. 

However, the present simulation may simulate lower Re washing machine processes and 

even these simulations may be able to provide ideas to washing machine designers, while 

anticipating upgrades to the simulation and the computational hardware that it runs on. 

Also note that, the Reynolds number based on the tight inter-cloth spacing might be much 

lower than the previous estimate based on the washing machine agitator radius, 

supporting the values of the coarse grid simulations.  

 

A second way to evaluate grid requirements is to consider the direct numerical 

simulations with imbedded cloth pieces. A fully resolved computation requires a fine 

scale grid spacing on the order of the cloth separation spacing.  This is almost certainly 

approaching molecular distances, especially when permeable cloth is considered that can 

allow cloth surfaces to merge more easily.  This is further complicated by our 

computational technique that distributes the cloth effect of several grid points.  

Obviously, this is well beyond any computation resources for some time to come. 

 

This chapter is organized as follows. First, different measures to characterize the 

simulation outputs will be given. This will be followed by the presentation of the two- 

and three-dimensional simulations. 

 

 5.2 Characterization of outputs 
 

The most important output one may get from a washing machine simulation is the typical 

motion of the cloth pieces. To describe the cloth motion for a given washing machine 

operating condition, this study uses: the trajectories of cloth pieces‟ center of mass 

positions, the average tumbling rate of the cloth pieces (i.e. how often does a specially-

colored cloth piece rise and then sink), and visual observations on the average distance 

between cloth pieces to describe whether or not if they get clustered or remain well-

dispersed. 
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As mentioned in Chapter 3, cloth pieces are described in a Lagrangian manner, i.e. all the 

deformations are measured with respect to a reference configuration. For convenience, 

this reference configuration is selected as a flat and stress-free state. As described there, 

at this reference configuration the cloth is parameterized by two orthogonal and straight 

constant s and r lines as shown below in Fig. 5.2-1. By measuring and reporting the 

statistics of their dynamically changing arclengths, normal curvatures, and their 

intersecting angles, it is possible to build insightful global deformation measures for each 

cloth.  

 

 
Figure 5.2-1: Constant r and s lines on a cloth piece at its undeformed reference state 

 

It may also be of interest to report loading statistics of the cloth pieces. As derived in 

Chapter 3, Section 3.3.3, the Eulerian strains are given as 
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where X denotes the coordinates of a point on cloth, s and r are respectively the normal 

curvatures of the constant r and s lines, and z is a local cloth coordinate along thickness 

direction, which is zero at cloth‟s mid-plane. The form of Eqn. (5.2-1) suggests that the 

maximum strains will occur at either 2z q  , where q is the cloth thickness. So the 

absolute largest strains could be predicted as 
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                              (5.2-2) 

 

Note that, there is a slight theoretical complication for estimating the absolute maximum 

cloth stresses using the strains given in Eqn. (5.2-2): the absolute maximum strains 

maxsse or 
maxrre may not occur at the same point (z = q/2 or z = -q/2) if s and r has 

different signs. However, for a cloth with relatively high membrane stiffness, the 

deformed geometry will always be developable, assuring the Gaussian curvature (the 

product of s and r) to be always zero and avoiding this situation (Ventsel et al. (2001)). 

So one might use the following relation to estimate the absolute maximum cloth stresses 
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                                                               (5.2-3) 

 

where E is the cloth Young‟s modulus and  is the cloth Poisson‟s ratio. For a one-

dimensional fiber this relation reduces to 
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ss ssmax max
E e                                                                                                       (5.2-4) 

 

For estimating cloth stresses, we define stiffness constants associated with each different 

type of deformation. Specifically, we define 
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which are respectively the cloth extensional, in-plane shear, bending, and torsion 

stiffness. For each of them, we use representative values similar to the reported constants 

in the textile journals. 

 

In some of the simulation results of this chapter, the statistics of the absolute maximum 

cloth stresses will be discussed. Doing so, these statistics are taken for all the cloth 

pieces‟ all discrete points as in 

 

1

1 1cloth

k
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ij ij kmax max
cloth kk A
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 


                                                                         (5.2-5) 

 

where Ncloth is the total number of cloth pieces, A is each cloth‟s surface area, and 
k

ij max
  

is the time average of the absolute maximum cloth stress ij . 

 

5.3 Estimating the cloth’s average thickness q and excess mass density ρs  

 

To estimate the cloth average thickness q and excess mass density ρs with respect to the 

fluid we conducted a simple measurement as explained below: 

 

1. Fill a test tube with water and record the water volume. 
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2. After recording their total dry mass and surface area, immerse several small cloth 

pieces into this test tube, stir the mixture to let any trapped air to escape, and then 

note the new steady water level in the tube to calculate the displaced water volume. 

 

3. Use this displaced water volume, to estimate the mass of the displaced water. 

 

4. Divide the displaced water volume by the total cloth surface area to find the „average‟ 

cloth thickness q. 

 

5. Divide the difference between the total dry mass of the cloth pieces and the mass of 

the displaced water to the total surface area of cloth pieces and estimate the cloth 

excess mass density ρf . 

 

Specifically, for a sample polyester cloth in water within two digits of accuracy we 

measured: 

 

2 29 3 10    kg ms . x   
 

                                                                                          (5.3-1)                      

 

 42 4 10    mq . x                                                                                                       (5.3-2) 

 

5.4 Two-dimensional simulations 
 

This study on the two-dimensional washing machine simulations is intended to be only 

illustrative, because two-dimensional simulations cannot capture the vertical tumbling 

motion of the cloth pieces in a vertical-axis washing machine, recognized to be highly 

correlated with effectiveness of the washing processes
2
. However, compared to the three-

dimensional simulations these simulations can cheaply verify some aspects of the 

simulation development. 

 

                                                
2 Private communication - Whirlpool Corporation‟s technical personnel 
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5.4.1 Washtub and the initial cloth placements 

 

The numerical setup of the two-dimensional simulations is as given in Fig. 5.4-1 below. 

The washtub consists of an outer nonmoving cylinder and a rotating agitator. This 

geometry is represented on a Cartesian grid using the method given in Chapter 4.  Figure 

5.4-2 shows the initial placement of twenty cloth pieces, whose lengths are either 25.92 

cm or 17.28 cm. In all two-dimensional simulations shown here, the geometry of the 

washtub and the initial cloth placements are same. 

 

 
Figure 5.4-1: The washtub geometry used for the two-dimensional simulations 
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Figure 5.4-2: The initial placements of twenty cloth pieces inside the washtub, whose lengths are 

either 25.92 cm or 17.28 cm 

 

5.4.2 Operating conditions, physical properties and numerical parameters used in 

the simulations 

 

Unless noted elsewhere the operating conditions
3
, physical and numerical properties 

given in Table 5.4-1 are used in the simulations. The elastic constants of thin fabrics are 

reported as lower dimensional quantities following the standard convention. For instance, 

the cloth extensional stiffness ( Ke ) is proportional to cloth‟s Young‟s modulus times 

thickness q (i.e. Eq  ). As mentioned in Chapter 3, Section 3.4.1, the simulation uses the 

implicit Broyden‟s method to numerically solve Eqn. (3.2-14). 

 

 

 

 

 

                                                
3 The operating conditions of the agitator are as suggested by the Whirlpool Corporation. 
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Table 5.4-1: Operating conditions, physical and numerical parameters used in the simulations 
 

Peak impeller rotation speed of the agitator (max) 120 rpm 

Number of agitator revolutions  

in each direction before reversing 

1 

Cloth extensional stiffness ( eK ) 8x10
3

 N/m 

Cloth bending stiffness ( bK ) 1x10
-5

 N.m 

Cloth excess mass density (ρs) 

(with respect to water) 

9.3x10
-2

 kg/m
2 

Length of the cloth pieces 25.92 or 17.28 cm 

Average cloth thickness ( q ) 2.4 x 10
-4

 m 

Water density ( ρf ) 1x10
3
 kg/m

3 

Water dynamic viscosity ( μ ) 1x10
-3

 kg/(m.s) 

Number of cloth pieces 20 

Dirac-delta function half width ( ε ) 2h
 

Heaviside function half width ( ε ) 0 

Average Lagrangian to Eulerian mesh size ratio 1 

 

The Lagrangian mesh size mentioned in Table 5.4-1 is measured on the unstreched cloth. 

With a simple calculation, the operating conditions of the agitator given in Table 5.4-1 

can be implied by the following form of angular velocity 

 

    2    max sin f t                                                                                                  (5.4-1) 

 

with 

 

 4    rad smax                                                                                                      (5.4-2) 

 

    1 s
2

f


                                                                                                               (5.4-3) 

 

where  is the angular velocity of the agitator, f is the frequency of agitator‟s rotation 

cycle, and t is time. In Eqn. (5.4-1)  and t respectively have the units of rad/s and s, if 

using Eqns. (5.4-2) and (5.4-3). 
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5.4.3 Dimensionless groups 

 

To describe the physics of the two-dimensional washing machine processes the following 

length, time and mass scales are selected: 

 

3   1    o o o
o max f ol r , t / , M r                                                                              (5.4-4) 

 

Note that, especially for such a complex geometry these choices are non-unique. Using 

these basic scales, the following velocity and pressure scales are defined 

 

2 2   o o
max o f max ou r , p r                                                                                      (5.4-5) 

 

As a reminder, the mathematical model presented in Chapter 3, Section 3.2 assumes the 

solids are infinitesimally thin and uses Dirac-delta functions   to formulate the 

fluid/structure interaction. The units of these Dirac-delta functions are inverse length, but 

an appropriate choice to non-dimensionalize this length is unclear. To work around this 

difficulty, we step back from assuming cloth pieces to be infinitesimally thin and use the 

average cloth thickness q to scale , whose measurement is described in Section 5.3. So 

in this development, the desingularized cloth quantities (Chapter 3, Eqn. 3.2-12) will be 

scaled by inverse q. 

 

Using these characteristic scales, the dimensionless equations are given below. For sake 

of clearness, all the non-dimensional variables are kept in their previous dimensional 

notations. In the equations below x = (x, y) is a non-moving point in space, X = (X, Y) is a 

material point moving with a cloth piece, s is the cloth‟s unstreched arclength parameter, 

and p is the fluid pressure. 

 

21
p

t


      



u
u u u f

Re
                                                                                 (5.4-6) 

 

0 u                                                                                                                       (5.4-7) 
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    2sin t  St                                                                                                        (5.4-15) 

 

where 
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s

f

In
q




                                                                                                                   (5.4-19) 

 

max

f
St


                                                                                                                  (5.4-20) 

 

with a predefined washtub geometry. The dimensional values given in Section 5.4.1 and 

5.4.2 correspond to the dimensionless values given in Table 5.4-2, which are used in the 

simulations unless noted elsewhere. 

  

Table 5.4-2: Dimensionless groups used in the simulations unless reported elsewhere 
 

Re 1.3 x 10
6 

Te 2.1 x 10
3
 

Be 2.6 x 10
-5

 

In 0.3875 

St 0.125
 

 

5.4.4 Results 

 

5.4.4.1 Effect of changing the Eulerian mesh size h 

 

Aref (1984) argues that the advection of particles even within laminar flows is chaotic as 

long as the velocity field is unsteady. Chaotic systems have different resulting details 

with slightly different initial conditions. However, their statistics can be well-defined. 

Since finite-difference approximations of the differential equations give truncation errors 

proportional to the time-step and mesh-width, the effect of lowering time-step or mesh-

width may be enough to trigger a slight difference to yield a totally different result as 

explained by Teixeira et al. (2007). As expected, the present washing machine 
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simulations gave different cloth locations with a successive lowering of the time-step and 

mesh-size.  

 

Keeping a constant Lagrangian to Eulerian mesh width ratio, Table 5.4-3 shows the effect 

of changing the uniform Eulerian mesh size h on the statistics of the absolute cloth 

stresses of all the discrete points of all the cloth pieces (as defined in Section 5.2) with   

Re = 1.3 x 10
3
 and Δt = 9.45 x 10

-5
. The statistics are given up to the first 1.5 agitator 

rotation cycles, due to the limited data available at the finest grid resolution. On the 

electronic pdf version of this document, click here to view the cloth motion with       

h/2ro = 4.2 x 10
-3

 as an embedded movie file. 

 

Table 5.4-3: Effect of changing the Eulerian mesh size on the statistics of the absolute cloth stresses 

up to the first 1.5 agitator rotation cycles with Re = 1.3 x 10
3

   and Δt = 9.45 x 10
-5 

 
 

h/2ro Average absolute cloth stress [MPa] Standard deviation [MPa] 

3.39 x 10
-2 

1.492 0.511 

1.70 x 10
-2 

0.386 0.171 

8.5 x 10
-3

 0.135 0.034 

4.2 x 10
-3

 0.087 0.017 

 

Table 5.4-3 shows that the average cloth stresses decrease with refining the resolution, 

while converging to a finite value. This might be due to the more accurate capture of the 

complex shapes of the cloth pieces by increasing the grid resolution, in turn decreasing 

the effect of the unresolved wrinkles on the cloth bending stresses. 

 

Using the same grid sizes as that used here, one might expect to have larger errors in the 

average cloth stresses at higher Re numbers, because of the more complex fluid mixing. 

The reason for conducting this study in such a low Re is the robustness of the 

simulations. At high Re the deformed cloth shapes get very complex, challenging the 

robustness of the simulation without using small time steps or without allowing more 

numerical iterations (see Chapter 2, Sections 2.2.5, 2.2.6 and Chapter 3, Section 3.4.1 for 

the use of numerical iterations in the simulation). 
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5.4.4.2 Effect of changing the time step Δt 

 

Table 5.4-4 shows the effect of changing the time step on the statistics of the absolute 

cloth stresses up to the first 1.5 agitation cycles with Re = 1.3 x 10
3

, defining                 

Δt
* 
= 1.885 x 10

-4
, and using h/2ro = 8.5 x 10

-3
, where h is the uniform Eulerian mesh-

width.  

 

Table 5.4-4: Effect of changing the time step on the statistics of the absolute cloth stresses with               

Re = 1.3 x 10
3
, h/2ro = 8.5 x 10

-3
, and defining Δt

*
 = 1.885 x 10

-4 
 

 

Time step Average absolute cloth stress [MPa] Standard deviation [MPa] 

Δt
* 

0.137 0.042 

Δt
*
/2 0.135 0.034 

Δt
*
/4 0.147 0.048 

 

As can be seen in Table 5.4-4, within two digits of accuracy, the results were not very 

sensitive to changing the time step, at least for the time step values used here. Note that, 

the errors due to the spatial grid resolution might be big enough to mask the sensitivity of 

the results to time step. 

 

5.4.4.3 Effect of using a sharp vs. a smooth Heaviside function  

 

In this part, the effect of using a sharp (ε = 0) versus a smooth (ε = 2h) Heaviside function 

is examined by using Re = 1.3 x 10
3
, h/2ro = 8.5 x 10

-3
, and Δt= 1.885 x 10

-4
. As a 

reminder, the simulation uses Heaviside functions to represent the agitator and the outer 

drum on a Cartesian Eulerian grid as explained in Chapter 4. The sharp Heaviside 

function appeared to provide better results in the verification studies of Chapter 4. On the 

electronic pdf version of this document, click here to view the cloth motion using a sharp 

and click here to view the motion using a smooth Heaviside function as an embedded 

movie file. In particular, note that the cloth pieces come very close to the agitator if using 

a sharp Heaviside function. Figure 5.4-3 illustrates regularly taken snapshots from these 

two different cases, where the snapshots in the left column are for a sharp and the 

snapshots in the right column are for a smooth Heaviside function. The time duration 

between each snapshot is approximately a quarter period of the agitator rotation cycle, 
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which means the agitator rotates 180 between each snapshot. The sequence could be 

followed by the sequence number at the right bottom corner of each snapshot. 
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Figure 5.4-3: Effect of using a sharp (ε = 0) and a smooth (ε = 2h) Heaviside function on cloth motion 

with Re = 1.3 x 10
3
, h/2ro = 8.5 x 10

-3
 and Δt= 1.885 x 10

-4
. The snapshots in the left 

column are for a sharp (ε = 0) and the snapshots in the right column are for a smooth  

(ε = 2h) Heaviside function. Snapshots differ by a quarter period of the agitator cycle 

corresponding to 180 rotation 

 

The snapshots in Fig. 5.4-3 illustrate that using a smooth (ε = 2h) Heaviside function, 

cloth pieces do not come as close to the tip of the agitator as in the case of using a sharp   

(ε = 0) Heaviside function, where they sometimes accidentally slightly penetrate into the 

agitator. The reason why cloth pieces can escape from the agitator after a slight 

penetration is due to the numerical form of Eqn. (5.4-9), which is a weighted averaging to 

estimate the velocities of the cloth pieces from the velocities of the Eulerian grid points.  

 

5.4.4.4 Effect of changing the cloth bending stiffness 

 

In this study, the effect of changing cloth bending stiffness on the motion of the solids is 

examined with Re = 1.3 x 10
3
, h/2ro = 8.5 x 10

-3
 and  Δt= 1.885 x 10

-4
. On the electronic 

pdf version of this document, click here to view the cloth motion with Be = 2.6 x 10
-2

 

and click here to view the motion with Be = 2.6 x 10
-5

 as an embedded movie file. In 

particular, note the relative smoothness of the solid shapes with higher Be. The left 

column of Fig. 5.4-4 illustrates the shapes of the solid fibers in the washtub with            

Be = 2.6 x 10
-2

, which can be compared to the snapshots in the right column with          

Be = 2.6 x 10
-5

. Again, the time duration between each snapshot is approximately a 
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quarter period of the agitator rotation cycle, so the agitator rotates 180 between each 

snapshot. 
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Figure 5.4-4: Effect of changing bending stiffness on cloth motion with Re = 1.3 x 10
3
,                     

h/2ro = 8.5 x 10
-3

 and Δt= 1.885 x 10
-4

. The snapshots in the left column are for               

Be = 2.6 x 10
-2 

and the snapshots in the right column are for Be = 2.6 x 10
-5

. Snapshots 

differ by a quarter period of the agitator cycle corresponding to 180 rotation 

 

5.5 Three-dimensional simulations 
 

Unlike the previously presented two-dimensional simulations, the three-dimensional 

simulations are the ultimate goal of this study. As said before in Section 5.1, this study so 

far involves only vertical-axis washing machines. As also noted in Section 5.1, the 

Reynolds number estimate of the washing machine processes based on the washtub drum 

radius requires a very fine grid to resolve all the rich physical details (including the 

length scale where energy is dissipated), and this current study lacks the required 

computing power for using such a fine grid or a shortcut turbulence model to be used 

with coarse grids. Note that, the Reynolds number prediction based on the tight inter-

cloth spacings might be orders of magnitude lower than the estimate based on the 

washtub drum radius. The expected operation count of the simulation is of order 

nlogn+m, where n is the number of the grid points of the fixed Eulerian grid and m is the 

total number Lagrangian points of all the cloth pieces in the washtub. This suggests that 

for n >> m (which may not be true in general) doubling the Eulerian grid resolution slows 

the simulation almost 8 times. So the following simulations are done by using a coarse 

grid size of 33 x 33 x 33, but as will be shown later, even these simulations reveal some 

of the intuitive characteristics of the washing machine processes.  
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Also as will be shown later, with dense cloth loads cloth pieces tend to move together, 

lacking individual motions. Part of the reason for this is the cloth pieces‟ „artificial 

stickiness‟ due to the nature of the Immersed Boundary method, as will be discussed 

later.  

 

5.5.1 Washtub geometry 

 

Figure 5.5-1 below illustrates the washing machine agitator geometry that this simulation 

approximates and uses in the following studies. This agitator is currently used in modern 

Whirlpool washing machines. Unlike many other agitators, this agitator model is almost 

totally submerged in water. Note that, the agitator shown in Fig. 5.5-1 has a three-fold 

symmetry. The approximate shape and dimensions of this agitator are given in the 

projected views of Fig. 5.5-2 and 5.5-3, where z denotes the height from the bottom of the 

washtub, and x’ y’ are local Cartesian axes on the one-third symmetric part, orthogonally 

spanning the horizontal plane with an origin at the radial center of the agitator. To 

simplify its description, only one-third of this symmetric geometry is plotted in the 

simplified drawings of Figs. 5.5-2 and 5.5-3. 

 

For simplicity, the present simulation neglects the fillets and details with large curvatures. 

Due to the nature of the numerical method used for representing complex geometries on 

Cartesian grids (Chapter 4), the simulation cannot accurately represent geometries with 

relatively large curvatures on coarse grids. The holes on the agitator are also neglected. 

Also, a half sphere is added to the top-pole of the agitator to simplify the geometry.  
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Figure 5.5-1: A mechanical agitator the Whirlpool Corporation uses in its modern washing machines 

 

 
Figure 5.5-2: 120

o
 partial simplified top view of the agitator shown in Fig. 5.5-1, with most of the 

small details and holes neglected. All dimensions are in millimeters. See Fig. 5.5-3 for 

any missing dimensions. The blue crosses denote the actual position of the surface edges 

that are approximated by a polynomial fit.  
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Figure 5.5-3: A partial simplified front view of the agitator shown in Fig. 5.5-1, with most of the small 

details and holes neglected. All dimensions are in millimeters. A half sphere with a 

radius of 27.5 mm is added to the top-pole of the agitator. 

 

In addition to the agitator, the washtub has an outer nonmoving (except for the spin cycle 

not modeled here) cylinder with a radius of 31 cm. 

 

The form of the washtub used in the simulations is as shown in Fig. 5.5-4 below. As 

shown there, the water height is assumed be fixed at a distance 23.76 cm away from the 

bottom wall of the washtub. 

 
Figure 5.5-4: The form of the washtub used in the simulations 
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5.5.2 Initial cloth positions 

 

Figure 5.5-5 shows the initial cloth positions in all the reported simulations of this study. 

The square cloth pieces are positioned in a radial arrangement with respect to the center 

of the washtub. The reason for choosing such an arrangement is in its simplicity to 

automate the cloth positioning mechanism, while ensuring them to not cross into each 

other or into the washtub geometry. However, to quickly obtain individual cloth motions 

this symmetric position is slightly perturbed by shifting the radial centers of the cloth 

pieces and tilting them across a normal axis through their centroids.  

 

 
Figure 5.5-5: Initial cloth positions in all the simulations of this study 

 

5.5.3 Operating conditions, physical properties, numerical parameters, and other 

numerical details used in the simulations  

 

Table 5.5-1 below tabulates the operating conditions
4
, physical and numerical properties 

used in the simulations, unless noted elsewhere. The computational domain is much 

wider in its lateral directions than its height direction. For this reason, the simulation uses 

a three times denser Eulerian grid in the washtub height direction. In Table 5.5-1 hlateral 

denotes to the Eulerian mesh width along the washtub lateral directions, whereas hheight is 

the mesh width along the washtub height direction. Note that, as mentioned in Briggs et 

al. (2000), using such a non-uniform grid slows down the convergence characteristics of 

the Geometric Multigrid solver used to solve the pressure-correction part of the Navier-

Stokes equations solver, - the bottleneck part of the simulation as explained in Chapter 2, 

Section 2.2.6. 

                                                
4 The operating conditions of the agitator are as suggested by the Whirlpool Corporation. 
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Table 5.5-1: Operating conditions, physical and numerical parameters used in the simulations 
 

Peak impeller rotation rate (max) 120 rpm 

Number of revolutions  

in each direction before reversing 

1 

Cloth extensional stiffness ( eK ) 8x10
5

 N/m 

Cloth in-plane shear stiffness ( sK  ) 3x10
2
 N/m 

Cloth Poisson‟s ratio ( ) 0 

Cloth bending stiffness ( bK ) 1x10
-5

 N.m 

Cloth torsional stiffness ( tK ) 1x10
-5

 N.m 

Cloth excess mass per unit surface area ( ρs ) 

(with respect to the density of water) 

9.3x10
-2

 kg/m
2 

Cloth dimensions ( L x L ) 15 cm x 15 cm (square) 

Average cloth thickness ( q ) 2.4 x 10
-4

 m 

Water density ( ρf ) 1x10
3
 kg/m

3 

Water dynamic viscosity ( μ ) 1x10
-3

 kg/(m.s) 

Dirac-delta function half width ( ε ) 2hlateral and 2hheight 

Heaviside function half width ( ε ) 0
 

Minimum Lagrangian to Eulerian mesh  

size ratio on the undeformed cloth 

1.15 

hlateral / 2ro  3.48 x 10
-2

 

hlateral / hheight 3 

 

The Lagrangian mesh size mentioned in Table 5.5-1 is measured along the constant r and 

s lines defined in Section 5.2. To follow the standard convention, the material constants 

are reported as lower-dimensional quantities. For instance, the cloth extensional stiffness 

( Ke ) is proportional to cloth‟s Young‟s modulus times thickness q (i.e. Eq  ). Again, with 

a simple calculation the operating conditions of the agitator given in Table 5.5-1 can be 

implied by the following form of angular velocity 

 

    2    max sin f t                                                                                                  (5.5-1) 

 

with 

 

 4    rad smax                                                                                                      (5.5-2) 
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    1 s
2

f


                                                                                                               (5.5-3) 

 

where  is the angular velocity of the agitator, f is the frequency of agitator‟s rotation 

cycle, and t is time. In Eqn. (5.5-1)  and t respectively have the units of rad/s and s, if 

using Eqn (5.5-2) and (5.5-3). 

 

In all the simulations the upper surface of the washtub (Fig. 5.5-4) is modeled as a 

nonmoving, slip-free, and impermeable boundary to approximate a free surface. As 

shown in Fig. 5.5-5, for simplicity, all the cloth pieces are modeled as squares. The 

simulation uses the forward Euler method to numerically solve Eqn. (3.2-14). 

 

5.5.4 Dimensionless groups 

 

The dimensionless groups describing the three-dimensional washing machine processes 

will be deduced from the lower dimensional development of Section 5.4.3. Doing so, the 

following length, time, and mass scales are used 

 

3   1    o o o
o max f ol r , t / , M r                                                                             (5.5-4) 

 

where 2ro is the washtub diameter as shown in Fig. 5.5-4. As before, the average cloth 

thickness q, whose definition and measurement is as given in Section 5.3, is used to scale 

the desingularized cloth properties.  

 

Using these scales, the following dimensionless groups could be deduced using the 

results given in Section 5.4.3. 

 

2
f o maxr

Re
 


                                                                                                          (5.5-5) 
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 
2

e

f max o

K
Te

r q 
                                                                                                    (5.5-6) 

 

 
2

s

f max o

K
Se

r q 
                                                                                                    (5.5-7) 

 

2 4
b

f max o

K
Be

r q 
                                                                                                       (5.5-8) 

 

2 4
t

f max o

K
To

r q 
                                                                                                       (5.5-9) 

 

s

f

In
q




                                                                                                                   (5.5-10) 

 

max

f
St


                                                                                                                  (5.5-11) 

 

In above, Se and To are dimensionless groups related to the cloth in-plane shear and 

torsional stiffness. The dimensional values given in Section 5.5.1 and 5.5.3 correspond to 

the dimensionless values given in Table 5.5-2 below, which are used in the simulations 

unless noted elsewhere. 

 

Table 5.5-2: Dimensionless groups used in the simulations unless reported elsewhere 
 

Re 1.2 x 10
6 

Te 2.2 x 10
5
 

Se 82.4 

Be 2.9 x 10
-5

 

To 2.9 x 10
-5

 

In 0.3875 

St 0.125
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5.5.5 Results 

 

5.5.5.1 Effect of changing the time step t 

 

In this study the effect of changing the simulation time step on the statistics of the 

absolute cloth stresses and the stability of the code is examined. Tables 5.5-3 to 5.5-5 

respectively tabulate the statistics of ss max
 , rr max

 , sr max
 (as defined in Section 

5.2) up to the first 2 agitation cycles. The results are given for 16 cloth pieces,               

Re = 1.2 x 10
4
, and defining Δt

*
 = 1.01 x 10

-3
. 

  

Table 5.5-3: Effect of changing the time step on ss max
 during the first 2 agitation cycles for 16 

cloth pieces with Re = 1.2 x 10
4
 and defining Δt

*
 = 1.01 x 10

-3 
 

 

Time step Average ss max
  [MPa] Standard deviation [MPa] 

Δt
* 

0.418 0.242 

Δt
*
/2 0.615 0.317 

Δt
*
/4 0.699 0.366 

 

Table 5.5-4: Effect of changing the time step on rr max
 during the first 2 agitation cycles for 16 

cloth pieces with Re = 1.2 x 10
4
 and defining Δt

*
 = 1.01 x 10

-3 
 

 

Time step Average rr max
  [MPa] Standard deviation [MPa] 

Δt
* 

0.424 0.244 

Δt
*
/2 0.630 0.307 

Δt
*
/4 0.747 0.358 

 

Table 5.5-5: Effect of changing the time step on sr max
 during the first 2 agitation cycles for 16 

cloth pieces with Re = 1.2 x 10
4
 and defining Δt

*
 = 1.01 x 10

-3 
 

 

Time step Average sr max
  [MPa] Standard deviation [MPa] 

Δt
* 

0.0375 0.0169 

Δt
*
/2 0.0409 0.0188 

Δt
*
/4 0.0441 0.0208 

 

The above tables show that the average absolute cloth stresses increase with lowering the 

time step, but with a hint of convergence for ss max
 and rr max

 . In all the simulation 

results reported here the cloth shapes were very crumpled, suggesting the effect of the 
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unresolved wrinkles on the cloth bending stresses can get significantly lower with using a 

higher spatial resolution to better capture the complex deformed cloth geometries.  

 

Furthermore, the simulations using Δt
*
 and Δt

*
/2 crashed after the 2.9

th
 and 5.3

rd
 agitation 

cycle, respectively, but on the other hand the simulation using Δt
*
/4 was still running at 

the end of its 7.4
th
 cycle. The reason why these simulations crashed seems to be a 

„geometric‟ problem and is explained using the representative pathlines of the motion of 

the cloth pieces inside the washtub as plotted in Fig. 5.5-6 below. The inertial effect of 

the agitator pushes the cloth pieces towards the outer drum at the bottom of the washtub 

(1). However, mass continuity requires these same cloth pieces to elevate near the outer 

drum and then to move towards the center of the washtub (2). While the cloth pieces 

descend towards the bottom center of the washtub, if the time step is not small the cloth 

pieces accidentally come very close to the agitator and sometimes slightly penetrate into 

it (3). Since the agitator is moving relatively fast compared to the surrounding fluid, the 

agitator may cause the cloth to deform very irregularly, which in turn leads to very high 

cloth elastic forces crashing the simulation. This problem will be referred as the 

„geometric‟ instability, since it is caused by the cloth pieces movements inside the 

washtub. 

 

 
Figure 5.5-6: The representative pathlines of the cloth pieces inside the washtub 

 

 

 

 

 

2 
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5.5.5.2 Effect of changing the Reynolds number 

 

This study examines the effect of changing the Reynolds number Re on the cloth motion 

using the same Eulerian grid size. On the electronic pdf version of this document click on 

the blue colored Re value to view the cloth motion as an embedded movie file:               

Re = 1.2 x 10
2
, Re = 1.2 x 10

3
, Re = 1.2 x 10

4
, Re = 1.2 x 10

5
, and Re = 1.2 x 10

6
. 

Specifically, look for the relative speed of the tumbling motion. These simulations use 16 

cloth pieces and Δt = 5.03 x 10
-4

, except for the case Re = 1.2 x 10
4
 with Δt = 2.51 x 10

-4
. 

 

Figure 5.5-7 shows snapshots of the cloth motion for Re = 1.2 x 10
4

 (left column),         

Re = 1.2 x 10
3
 (middle column), and Re = 1.2 x 10

2
 (right column). The snapshots differ 

by a half agitation cycle, corresponding to the full rotation of the agitator in one direction. 

As mentioned above, look for the relative speed of the tumbling motion (as described in 

Fig. 5.5-6) of the two dark colored cloth pieces.  
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Figure 5.5-7: Illustrative snapshots of the motion of 16 cloth pieces with Re = 1.2 x 10
4
 (left column), 

1.2 x 10
3
 (middle column), and 1.2 x 10

2
 (right column). Snapshots differ by a half 

agitation cycle, corresponding to the full rotation of the agitator in one direction. 

 

It is visually apparent from the snapshots and their accompanying movies that with 

higher Re the tumbling motion of the cloth pieces gets slower, while they show a more 

pronounced rotational motion with the agitator. This is not surprising, since the local 

agitator motion will diffuse farther away in a more viscous fluid. In addition, Figs. 5.5-8 

to 5.5-12 illustrate the trajectories of : i) all the cloth pieces‟ common center of mass 

position (left column) and ii) each of the 16 cloth pieces‟ center of mass position (right 

column) on a plane spanned by the height  z from the bottom of the washtub and the 

horizontal radius rxy. This horizontal radius is defined as 

 

2 2
xyr x y                                                                                                            (5.5-12) 

 

where x and y are the horizontal Cartesian coordinates of the center of mass positions 

measured from the radial center of the agitator (Fig. 5.5-4). 
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Figure 5.5-8: All the cloth pieces’ (left column) and each cloth piece’s (right column) center of mass 

trajectories up to 5.5 agitation cycles at Re = 1.2 x 10
6
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Figure 5.5-9: All the cloth pieces’ (left column) and each cloth piece’s (right column) center of mass 

trajectories up to 5.5 agitation cycles at Re = 1.2 x 10
5
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Figure 5.5-10: All the cloth pieces’ (left column) and each cloth piece’s (right column) center of mass   

trajectories up to 5.5 agitation cycles at Re = 1.2 x 10
4
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Figure 5.5-11: All the cloth pieces’ (left column) and each cloth piece’s (right column) center of mass   

trajectories up to 5.5 agitation cycles at Re = 1.2 x 10
3
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Figure 5.5-12: All the cloth pieces’ (left column) and each cloth piece’s (right column) center of mass   

trajectories up to 5.5 agitation cycles at Re = 1.2 x 10
2
 

 

At Re = 1.2 x 10
6
 some of the cloth pieces stayed at the bottom of the washtub or at the 

corner between the bottom wall and the outer drum for most of the simulation time 

(possibly due to the insufficient simulation resolution). Observe in the left column of 

Figs. 5.5-8 to 5.5-12 that all the cloth pieces‟ center of mass positions move across a 

significantly wider area at higher Re (1.2 x 10
6
, 1.2 x 10

5
, and 1.2 x 10

4
) compared to the 

trajectory at Re = 1.2 x 10
3
. At Re = 1.2 x 10

3
 the cloth pieces still tumbled, but they 

moved around tight rings formed of multiple cloth pieces as illustrated in Fig. 5.5-13 

below, where the cloth pieces were at a different phase position and the average center of 

mass position of all the cloth pieces was approximately stagnant. These rings were still 

present at Re = 1.2 x 10
4
, but they were not as dominant on the overall cloth motion. On 

the other hand, at Re = 1.2 x 10
2
 the cloth pieces had a very low tumbling rate and the 

center of mass positions of most of the cloth pieces were aligned with respect to each 

other (for at least up to the first 11 agitation cycles). 
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Figure 5.5-13: Cloth pieces moving in different phases around circular rings at Re = 1.2 x 10
3
 

 

Tables 5.5-6 to 5.5-8 tabulate the statistics of ss max
 , rr max

 , and sr max
 (defined in 

Section 5.2) up to 8 agitation cycles using the same grid size. 

 

Table 5.5-6: Effect of changing Re on the statistics of ss max
 after 8 agitation cycles for 16 cloth 

pieces using the same Eulerian grid size and Δt = 5.03 x 10
-4

 (except the case                 

Re = 1.2 x 10
4
, which uses Δt = 2.51 x 10

-4
) 

 

Re Average ss max
  [MPa] Standard deviation [MPa] 

1.2 x 10
2 

0.069 0.021 

1.2 x 10
3
 0.160 0.096 

1.2 x 10
4
 0.651 0.345 

1.2 x 10
5
 1.022 0.286 

 

Table 5.5-7: Effect of changing Re on the statistics of rr max
 after 8 agitation cycles for 16 cloth 

pieces using the same Eulerian grid size and Δt = 5.03 x 10
-4

 (except the case                 

Re = 1.2 x 10
4
, which uses Δt = 2.51 x 10

-4
) 

 

Re Average rr max
  [MPa] Standard deviation [MPa] 

1.2 x 10
2 

0.061 0.018 

1.2 x 10
3
 0.153 0.079 

1.2 x 10
4
 0.847 0.340 

1.2 x 10
5
 1.067 0.836 

 

 

 

 

: cloth piece 
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Table 5.5-8: Effect of changing Re on the statistics of sr max
 after 8 agitation cycles for 16 cloth 

pieces using the same Eulerian grid size and Δt = 5.03 x 10
-4

 (except the case                 

Re = 1.2 x 10
4
, which uses Δt = 2.51 x 10

-4
) 

 

Re Average sr max
  [MPa] Standard deviation [MPa] 

1.2 x 10
2 

0.0280 0.0084 

1.2 x 10
3
 0.0268 0.0086 

1.2 x 10
4
 0.0516 0.0171 

1.2 x 10
5
 0.0723 0.0178 

 

At high Re (especially higher than 1.2 x 10
4
) the cloth pieces showed a very noisy 

motion. In particular, for Re = 1.2 x 10
6
 the stress statistics were discontinuous after the 

2
nd

 agitation cycle. For this reason the statistical results are repeated in Tables 5.5-9 to 

5.5-11 for the first two agitation cycles (but this time including Re = 1.2 x 10
6
). 

 

Table 5.5-9: Effect of changing Re on the statistics of ss max
 after 2 agitation cycles for 16 cloth 

pieces using the same Eulerian grid size and Δt = 5.03 x 10
-4

 (except the case                 

Re = 1.2 x 10
4
, which uses Δt = 2.51 x 10

-4
) 

 

Re Average ss max
  [MPa] Standard deviation [MPa] 

1.2 x 10
2 

0.077 0.028 

1.2 x 10
3
 0.096 0.055 

1.2 x 10
4
 0.699 0.366 

1.2 x 10
5
 1.119 0.477 

1.2 x 10
6
 1.308 0.571 

 

Table 5.5-10: Effect of changing Re on the statistics of rr max
 after 2 agitation cycles for 16 cloth 

pieces using the same Eulerian grid size and Δt = 5.03 x 10
-4

 (except the case                 

Re = 1.2 x 10
4
, which uses Δt = 2.51 x 10

-4
) 

 

Re Average rr max
  [MPa] Standard deviation [MPa] 

1.2 x 10
2 

0.062 0.022 

1.2 x 10
3
 0.103 0.049 

1.2 x 10
4
 0.748 0.358 

1.2 x 10
5
 1.608 1.535 

1.2 x 10
6
 1.294 0.532 
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Table 5.5-11: Effect of changing Re on the statistics of sr max
 after 2 agitation cycles for 16 cloth 

pieces using the same Eulerian grid size and Δt = 5.03 x 10
-4

 (except the case                   

Re = 1.2 x 10
4
, which uses Δt = 2.51 x 10

-4
) 

 

Re Average sr max
  [MPa] Standard deviation [MPa] 

1.2 x 10
2 

0.0270 0.0093 

1.2 x 10
3
 0.0197 0.0073 

1.2 x 10
4
 0.0441 0.0208 

1.2 x 10
5
 0.0525 0.0201 

1.2 x 10
6
 0.0697 0.0307 

 

In the above results, the average absolute cloth stresses increased with increasing Re. 

However, as a note of caution, the low Re results were better resolved thanks to the 

straightforwardness of the fluid motion, which in turn leads to smoother cloth geometries 

resulting into lower bending stresses. 

 

5.5.5.3 Effect of changing the cloth loading 

 

In this case study, the effect of changing the cloth loading in the washtub on the cloth 

motion and statistics of the cloth stresses is examined using a fixed Eulerian grid size at 

Re = 1.2 x 10
3
, and  Δt = 5.03 x 10

-4
. The ratio of the total dry mass of the cloth pieces to 

the mass of the water in the washtub is approximately 1.7 x 10
-3

, 3.3 x 10
-3

, and 6.6 x 10
-3

 

for the simulations with 16, 32, and 64 cloth pieces, respectively. This suggests that the 

heaviest cloth loading studied here is roughly ten times lighter than a real laundry load. 

On the electronic pdf version of this document click on the blue colored cloth load in the 

washtub to view the cloth motion as an embedded movie file: 16 cloth pieces,                

32 cloth pieces, and 64 cloth pieces. In particular, compare the relative speeds of the 

cloth pieces‟ tumbling motion. 

 

The left, middle, and right columns of Fig. 5.5-14 respectively show snapshots from the 

motion of 16, 32 and 64 cloth pieces. The snapshots differ by a half agitation cycle, 

corresponding to the full rotation of the agitator in one direction. In particular, compare 

the relative speeds of the two dark colored cloth pieces‟ tumbling motion. 
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Figure 5.5-14: Illustrative snapshots of the motion of 16 (left column), 32 (middle column), and 64 

(right column) cloth pieces with Re = 1.2 x 10
3
, Δt = 5.03 x 10

-4
. Snapshots differ by a 

half agitation cycle, corresponding to the full rotation of the agitator in one direction. 

 

Also, Figs. 5.5-15 to 5.5-17 illustrate the trajectories of: i) all the cloth pieces‟ common 

center of mass position (left column) and ii) each cloth piece‟s center of mass position 

(right column) on a plane spanned by the height  z from the bottom of the washtub and 

the horizontal radius rxy up to the first 6 agitation cycles. This horizontal radius was 

defined in Eqn. (5.5-12). Since all these trajectories span the same time period, one can 

compare their shapes to estimate the relative tumbling rates, which is easier by using the 

trajectories of all the cloth pieces‟ common center of mass positions (left column). In 

particular observe that, the trajectory for the case with 64 cloth pieces completes a quarter 
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tumbling cycle, while the trajectory completes more than one tumbling cycle for the case 

with 16 cloth pieces. 
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Figure 5.5-15:  All the cloth pieces’ (left column) and each cloth piece’s (right column) center of mass 

trajectories for a cloth loading of 16 pieces at Re = 1.2 x 10
3
, up to the first 6 agitation 

cycles 
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Figure 5.5-16:  All the cloth pieces’ (left column) and each cloth piece’s (right column) center of mass 

trajectories for a cloth loading of 32 pieces at Re = 1.2 x 10
3
, up to the first 6 agitation 

cycles 
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Figure 5.5-17:  All the cloth pieces’ (left column) and each cloth piece’s (right column) center of mass 

trajectories for a cloth loading of 64 pieces at Re = 1.2 x 10
3
, up to the first 6 agitation 

cycles 

 

Also, by comparing the snapshot sequences in Fig. 5.5-14 and by viewing the movies, it 

is clear that the cloth pieces move together, lacking individual motions, when the cloth 

loading is increased in the washtub with a fixed grid resolution. Although part of the 

reason for this might be the increased viscous effects that occur with smaller cloth 

spacings, another reason is the effect of the artificial cloth stickiness due to the 

overlapping Dirac-delta function approximations used in the formulation of the 

simulation. This will be further discussed in the next section. The use of the Dirac-delta 

functions in the mathematical formulation of the fluid/structure interaction algorithm was 

given in Chapter 3, Section 3.2 and their numerical implementation in the simulation was 

given in Chapter 3, Section 3.4.2. 

 

Tables 5.5-12 to 5.5-14 tabulate the statistics of the maximum absolute stresses. The 

statistics are for the first 5 agitation cycles. 
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Table 5.5-12: Effect of the cloth loading on the statistics of ss max
 after 5 agitation cycles with            

Re = 1.2 x 10
3
,   Δt = 5.03 x 10

-4
, and using the same Eulerian grid size 

 

Number of 

cloth pieces 

Cloth to water 

mass fraction 
Average ss max

  

[MPa] 

Standard deviation [MPa] 

16  
 

1.7 x 10
-3 

0.119 0.069 

32   3.3 x 10
-3 

0.143 0.080 

64   6.6 x 10
-3 

0.163 0.119 

 

Table 5.5-13: Effect of the cloth loading on the statistics of rr max
  after 5 agitation cycles with           

Re = 1.2 x 10
3
,   Δt = 5.03 x 10

-4
, and using the same Eulerian grid size 

 

Number of 

cloth pieces 

Cloth to water 

mass fraction 
Average rr max

  

[MPa] 

Standard deviation [MPa] 

16  
 

1.7 x 10
-3 

0.127 0.066 

32   3.3 x 10
-3 

0.131 0.077 

64   6.6 x 10
-3 

0.170 0.114 

 

Table 5.5-14: Effect of the cloth loading on the statistics of sr max
 after 5 agitation cycles with            

Re = 1.2 x 10
3
,   Δt = 5.03 x 10

-4
, 

  
and using the same Eulerian grid size 

 

Number of 

cloth pieces 

Cloth to water 

mass fraction 
Average sr max

  

[MPa] 

Standard deviation [MPa] 

16  
 

1.7 x 10
-3 

0.023 0.007 

32   3.3 x 10
-3 

0.027 0.012 

64   6.6 x 10
-3 

0.028 0.014 

 

The results in the above tables show a very slight increase in the cloth average absolute 

stresses with increased cloth loading using the same Eulerian grid size. 

 

5.5.5.4 Effect of changing the Dirac-delta function width 

 

As explained in Chapter 3, Section 3.5.1.4 there are two possible places to alter the 

Dirac-delta function width, 2 , in the formulation: 1) in Eqn. (3.2-12) for 

desingularizing the infinitesimally thin cloth model onto the Eulerian grid, and 2) in Eqn. 

(3.2-13) for approximating the velocities of the Lagrangian cloth points from the Eulerian 

grid. Also, as examined in the verification study for capturing the natural frequencies of a 

vibrating plate, using smaller Dirac-delta function widths for desingularization gives 

more accurate but less stable results. On the other hand, using the same or a larger delta 
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function width for the velocity approximation than the width used for desingularization 

yielded to more stable but less accurate results. 

 

The effect of changing the Dirac-delta function width, 2, was also examined in the 

washing machine simulations. Similar to the conclusions of Chapter 3, using 2  = 2h 

and 3h (h is the Eulerian mesh size) gave unstable results, likely because the 

desingularized forces were too discontinuous. However, using 2 = 3h for the case of 64 

cloth pieces with Re = 1.2 x 10
3
,  Δt = 5.03 x 10

-4
, the cloth pieces hinted an increased 

individual mobility compared to the result with 2 = 4h in Section 5.5.5.3 until the 

simulation crashed in the manner described in Section 5.5.5.1. This improvement might 

also be evidenced from Figs. 5.5-18 and 5.5-19 below, which plots the trajectories of: i) 

all cloth pieces‟ common center of mass position (left column) and ii) each cloth piece‟s 

center of mass position (right column) on a plane spanned by the height  z from the 

bottom of the washtub and the horizontal radius rxy (defined in Eqn. 5.5-12) for the first 

agitation cycle. Since all these trajectories span the same time period, one can compare 

their relative lengths to verify the increased mobility of the cloth pieces with a narrower 

Dirac-delta function width. 
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Figure 5.5-18: All cloth pieces’ (left column) and each cloth piece’s (right column) center of mass 

trajectories with  = 1.5h, 64 cloth pieces, Re = 1.2 x 10
3
 and up to the first agitation 

cycle 
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Figure 5.5-19: All cloth pieces’ (left column) and each cloth piece’s (right column) center of mass 

trajectories with  = 2h, 64 cloth pieces, Re = 1.2 x 10
3

 and up to the first agitation 

cycle 

 

Additionally, the simulation using 2 = 3h with 16 cloth pieces at Re = 1.2 x 10
3 
crashed 

after the first agitation cycle, possibly due to numerical instability of the „traditional‟ 

manner, in which the unbounded errors amplified in time and destroyed the simulation. 

 

5.5.5.5 Effect of changing the Lagrangian to Eulerian mesh width ratio 

 

As shown in Chapter 3, Section 3.5.1.2, predicting the natural frequencies of a vibrating 

plate‟s bending modes requires the Lagrangian to Eulerian mesh width ratio to be greater 

than or equal to unity. However, the same study showed that the predictions of the 

extensional vibrations were not adversely affected by using a Lagrangian to Eulerian 

mesh width ratio lower than unity. 

 

In this study, by using a 1:2 Lagrangian to Eulerian mesh width ratio for a simulation 

with 16 cloth pieces, Re = 1.2 x 10
4
, Be = 2.9 x 10

-8
, To = 2.9 x 10

-8
, and Δt = 5.03 x 10

-4
, 

the motion of the cloth pieces showed an ambiguous pattern (with lesser tumbling 

motion) compared to the reference solution using a minimum 1:1 Lagrangian to Eulerian 

mesh width ratio up to the first 3 agitation cycles. On the electronic pdf version of this 



 155 

document click on the blue colored Lagrangian to Eulerian mesh width ratio to view the 

cloth motion as an embedded movie file: 1:2   and   1:1. 

 

In addition, Figs. 5.5-20 and 5.5-21 plot the trajectories of: i) all cloth pieces‟ common 

center of mass position (left column) and ii) each cloth piece‟s center of mass position 

(right column) on a plane spanned by the height  z from the bottom of the washtub and 

the horizontal radius rxy (defined in Eqn. 5.5-12) for the first three agitation cycles. 

Specifically, note in the right column of these figures that by using a minimum 1:1 

Lagrangian to Eulerian mesh width ratio the center of mass trajectories of each cloth 

piece draw circular orbits in the way shown in Fig. 5.5-6, but the same trajectories show a 

more complex pattern with irregular cusps by using a ratio of 1:2. This verifies the 

previous observation on using the minimum ratio between the Lagrangian to Eulerian 

grid spacings as unity. 
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Figure 5.5-20: All cloth pieces’ (left column) and each cloth piece’s (right column) center of mass 

trajectories using a minimum 1:1 Lagrangian to Eulerian mesh width ratio with 16 

cloth pieces, Re = 1.2 x 10
4
, Be = 2.9 x 10

-8
, To = 2.9 x 10

-8
 and up to the first 3 

agitation cycles 
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Figure 5.5-21: All cloth pieces’ (left column) and each cloth piece’s (right column) center of mass 

trajectories using a minimum 1:2 Lagrangian to Eulerian mesh width ratio with 16 

cloth pieces, Re = 1.2 x 10
4
, Be = 2.9 x 10

-8
, To = 2.9 x 10

-8
 and up to the first 3 

agitation cycles 

 

Also, the cloth surfaces developed a rich and noisy texture using a minimum 1:2 

Lagrangian to Eulerian mesh width ratio, while consuming more than two times more 

computational time than what was required to simulate the same time duration using a 1:1 

ratio. 

 

5.5.5.6 Effect of using a sharp vs. a smooth Heaviside function 

 

As mentioned in Chapter 4, the simulation uses Heaviside functions to represent the 

complex geometries of the agitator and washtub on a Cartesian Eulerian grid with two 

choices: by using a sharp/discontinuous or a smoothed Heaviside function. It was found 

in Chapter 4 on computing the drag and lift coefficients on a circular cylinder in a 

uniform external flow that using a sharp Heaviside function gives more accurate results 

than using a smoothed function.  

 

In this study the difference of using a sharp and a smooth (across 4 Eulerian grid 

spacings) Heaviside function is assessed on the cloth motion in the washtub with 16 cloth 

pieces, Re = 1.2 x 10
4
 and t = 1.01 x 10

-3 
up to the first 2.9 agitation cycles. Note that, 

all the previously reported three-dimensional washing machine simulations in this chapter 
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used a sharp Heaviside function (as stated in Table 5.5-1). Figures 5.5-22 and 5.5-23 plot 

the trajectories of: i) all cloth pieces‟ common center of mass position (left column) and 

ii) each cloth piece‟s center of mass position (right column) on a plane spanned by the 

height  z from the bottom of the washtub and the horizontal radius rxy (defined in Eqn. 

5.5-12). Specifically, note that with using a sharp Heaviside function the trajectories 

follow the expected circular orbits of Fig. 5.5-6, while they show an ambiguous pattern 

with using a smooth Heaviside function. This verifies the effectiveness of using sharp 

Heaviside functions for the simulations. 

 

0 0.25 0.5 0.75 1
0

0.25

0.5

0.75

1

r
xy

 / r
o

z / r
o

 
0 0.25 0.5 0.75 1

0

0.25

0.5

0.75

1

r
xy

 / r
o

z / r
o

 
Figure 5.5-22: All cloth pieces’ (left column) and each cloth piece’s (right column) center of mass 

trajectories using sharp Heaviside function with 16 cloth pieces, Re = 1.2 x 10
4
 up to 

the first 2.9 agitation cycles 
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Figure 5.5-23: All cloth pieces’ (left column) and each cloth piece’s (right column) center of mass 

trajectories using a smooth Heaviside function with 16 cloth pieces, Re = 1.2 x 10
4
 up 

to the first 2.9 agitation cycles 
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CHAPTER VI 

SUMMARY, CONCLUSIONS, AND CONTRIBUTIONS 
 

 

6.1 Summary 
 

In developing a simulation of the washing machine processes, cloth, fluid, and 

fluid/structure interaction in arbitrary complicated three-dimensional geometries have 

been separately modeled and the performances of these models have been individually 

compared to relevant but simpler problems reported in the literature. In particular: 

 

- Chapter 2 presents the simulation‟s Navier-Stokes equations solver, namely the 

method of Brown et al. (2001). The simulation implements this algorithm with a 

staggered Cartesian Eulerian grid and solves the linear sets of equations with the 

iterative Generalized Minimum Residual (GMRES) and the Weighted Jacobi 

method with Geometric Multigrid preconditioning. 

 

This implementation was successfully verified with the two-dimensional lid-

driven cavity problem 

 

- In Chapter 3, a large deformation one- and two-dimensional thin cloth model was 

developed by adapting the existing model of Love (1944). It further assumes: 

1) the cloth is elastic, 

2) the strains are small and Hooke‟s law is applicable,  

3) the smallest radius of curvature of the deformed cloth is much larger 

than the cloth thickness, and 

4) the change of the cloth‟s angular momentum is negligible (i.e. the 

Euler assumption), which is true if the bending deformations are 

slower than the velocity scales of the cloth natural frequencies. 
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The solid model‟s flexible-dynamics were successfully compared against some of 

the natural frequencies of a vibrating plate in its small deformation zone, whereas 

the solid model‟s performance within its large deformation zone was 

demonstrated with static beam bending tests. 

 

- Again in Chapter 3, the fluid/structure interaction algorithm of the simulation, the 

Immersed Boundary method of Peskin (1972), was presented. Using moving 

Lagrangian points to trace thin solids, this method desingularizes infinitesimal 

solid material properties on an Eulerian grid and then solves the coupled solid and 

fluid dynamics together by forming a single, variable-coefficient Navier-Stokes 

equation. This method assumes the cloth is impermeable. 

 

This part of the simulation was tested against the motion of a fluttering plate as it 

descends under its own weight in water. Although the results of this test problem 

were not as closely matched as the previously mentioned verification studies, a 

clear convergence trend in the results to the experimental observations was 

apparent by increasing the numerical resolution.  

 

- In Chapter 4, a method for using irregular rigid geometries at boundaries of the 

fluid/cloth mixture was presented. This part of the simulation allows simple 

structured Cartesian grids to be used with irregular domains such as the agitator 

and washtub of a washing machine. This formulation uses sharp or smoothed 

Heaviside functions to formulate a single equation describing both the fluid/cloth 

mixture and the solid boundary. Although developed independently, a very 

similar algorithm was also found to exist in the literature (Al-Rawahi et al. (2002) 

and Son (2005)). Note that, these existing methods used smooth Heaviside 

functions, while in this study it was shown that the sharp functions are superior to 

the smooth ones. 
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This part of the simulation was successfully verified with test problems involving 

the measurement of drag and lift coefficients on a cylinder in a uniform cross flow 

and predicting the velocity field of an axisymmetric Couette flow. 

 

Assembling these different modules, Chapter 5 presents the two- and three-dimensional 

simulations of cloth pieces in a vertical-axis washing machine, whose agitator and outer 

drum are modeled using the technique mentioned above for irregular rigid geometries at 

boundaries of the fluid/cloth mixture. In addition, the present simulation uses a non-

moving, slip-free surface for the dynamically evolving water-air surface in the washing 

machine.  

 

The results of the three-dimensional washing machine simulations do not contain a grid 

convergence study due to the computational restrictions. On the other hand, the current 

study lacked time and resources for an experimental comparison. For these reasons no 

conclusions can be given on the accuracies of the quantitative results reported here. 

However, the two-dimensional simulations showed convergence trends in the statistics of 

the maximum absolute cloth stresses by increasing the grid resolution in a viscous wash-

fluid, while the viscous three-dimensional simulations predicted a realistic and 

qualitatively correct pattern for the motion of the cloth pieces, hinting the simulation‟s 

capability to give predictions if computational resources are provided. 

 

6.2 Specific conclusions 

 

1) It was determined in Chapter 5, Section 5.5.5.2 that in a vertical-axis washing 

machine with a rotating agitator at the bottom of the washtub, cloth pieces move 

in a way that is shown in Fig. 6.2-1 below. Furthermore, it was determined that 

within more viscous wash-fluids all the cloth pieces‟ center of mass position is 

nearly immobile and the cloth pieces retain a relatively simple shape, while they 

slowly tumble around small rings as shown in Fig. 6.2-2 below. On the other 

hand, in less viscous wash-fluids these rings are not as strong and cloth pieces 

move more independently on the orbits shown in Fig. 6.2-1. 
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Figure 6.2-1: The representative orbits of the cloth pieces inside a vertical axis washing machine 

 

 
 

Figure 6.2-2: Cloth pieces moving in different phases around circular rings at low Re  

 

2) It was determined in Chapter 5, Section 5.5.5.3 on the three-dimensional washing 

machine simulations that the effect of increasing cloth loading using the same 

Eulerian grid size leads nearby cloth pieces to interact and behave more like a 

single deformable solid. Although this might be due to the increased viscous 

stresses, using a narrower desingularization width at the same dense cloth loading 

showed an improvement of the individual cloth motions at the expense of reduced 

numerical stability. 

 

3) In the context of the Immersed Boundary method, it was shown in Chapter 3, 

Section 3.5.1.2 that the simulation cannot predict the natural frequencies of a 

vibrating plate corresponding to its bending mode by using a Lagrangian to 

Eulerian mesh width ratio smaller than 1. On the other hand, the simulation was 

able to predict the natural frequency corresponding to the extensional vibrations 

by using a ratio of 0.29. Furthermore, the motion of the cloth pieces inside a 

: cloth piece 
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vertical-axis washing machine by using a 1:2 Lagrangian to Eulerian mesh width 

ratio was rather ambiguous compared to the qualitatively correct motion (as 

illustrated in Fig. 6.2-1) computed by using a 1:1 ratio. So it is recommended that 

the minimum Lagrangian to Eulerian mesh width ratio should be 1 in simulations. 

 

4) It was shown in Chapter 3, Section 3.5.1.4 that, at least in the context of 

predicting the natural bending frequencies of a vibrating plate, the Dirac-delta 

function approximate used in the Immersed Boundary method formulation favors 

a full desingularization width of 4 Eulerian mesh spacings. Using a narrower 

width gives more accurate but less stable results using the same numerical 

parameters. It was also found that using a narrower Dirac-delta function width in 

Eqn. (3.2-13) (for approximating the solid points‟ velocities) than in Eqn. (3.2-12) 

(for desingularizing the solids) increases the vulnerability of the simulation to 

numerical instabilities. This last issue was also observed in the washing machine 

simulations. 

 

5) It was shown in Chapter 3, Section 3.5.1 that the simulation is able to predict the 

natural frequencies of a plate‟s bending, torsion, and extensional modes for small 

amplitude vibrations. In addition, Section 3.5.2 shows agreement between the 

theoretical and computed large deformation deflected beam shapes. As expected, 

increasing the grid resolution while holding a constant Lagrangian to Eulerian 

mesh width ratio increased the accuracies of both of the results. To our 

knowledge, this is the first time the Immersed Boundary method formulation has 

been verified with such solid mechanics problems. 

 

6) It was shown in Chapter 4, Section 4.3.1 for simulating an axisymmetric Couette 

flow that using a sharp Heaviside function for the simulation‟s algorithm to 

represent circular walls on a Cartesian grid gave slightly more accurate results on 

coarse grids than using a smooth function. Also, it was shown in Chapter 4, 

Section 4.3.2 for predicting the drag and lift coefficients on a cylinder in a 

uniform cross fluid flow that the algorithm using a sharp Heaviside function 
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predicts more accurate results than using a smooth function at the same grid size. 

Therefore, it is determined that sharp Heaviside functions are better suited for 

representing complex geometries on Cartesian grids. 

 

7) It was shown in Chapter 5, Section 5.4.4.3 on the two-dimensional washing 

machine simulations that using a sharp Heaviside function within the simulation‟s 

algorithm to represent an agitator on a Cartesian grid permits the cloth pieces to 

come very close to the agitator and even sometimes slightly penetrate into it. On 

the other hand, by using a smooth Heaviside function the cloth pieces are kept at a 

small distance away from the agitator. Additionally, it was shown in Chapter 5, 

Section 5.5.5.6 that the realistic and qualitatively correct pattern for the motion of 

the cloth pieces in a vertical-axis washing machine shown in Fig. 6.2-1 could only 

be predicted by using a sharp Heaviside function. 

 

8) It was shown in Chapter 3, Section 3.5.3 that the simulation is able to take a very 

large bending stiffness parameter and simulate a rigid plate. Also, the simulation‟s 

fluid/structure interaction model captured the fluttering phenomena of a plate 

descending in water under its own weight. The computed time histories of the 

plate‟s center of mass velocity components were found to be converging to the 

experimental values reported in Andersen (2005). 

 

9) It was shown in Chapter 5, Section 5.5.5.1 on the three-dimensional washing 

machine simulations that unless the time step is small enough, the cloth pieces 

might sometimes penetrate into the agitator as they proceed to the bottom of the 

washtub in a way shown in Fig. 6.2-1. When this happens, the trapped cloth piece 

moves with the agitator causing the cloth to get very crumpled and this challenges 

the robustness of the simulations. 
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6.3 Contributions 

 

The contributions of this dissertation can be counted as: 

 

- This is the first such detailed computational study including the mechanical 

effects of wash-fluid/cloth coupling on the motion of the cloth pieces in a washing 

machine. The model was able to predict a realistic and qualitatively correct 

pattern for the motion of the cloth pieces in a vertical-axis washing machine. The 

final model is a combination of established simulation techniques and theories for 

both thin plates and fluids. 

 

- This is, to our knowledge, the first time a large deformation thin plate/shell model 

has been used with the Immersed Boundary method formulation. This study also 

includes thorough verification studies to test the consistency of the model for 

reduced complexity fluid and cloth motions. Note that Givelberg (2004) has 

previously used a small deformation shell model with the Immersed Boundary 

method. 

 

- A domain-mapping technique has been developed to represent irregular 

geometries on simple Cartesian grids. Although developed independently, a very 

similar algorithm was also found to exist in the literature (Al-Rawahi et al. (2002) 

and Son (2005)). However, these previous studies have used smooth Heaviside 

functions to switch between solving the fluid equations and specifying the 

boundary conditions, while in this study it is shown that using sharp 

(discontinuous) Heaviside functions are superior compared to the smoothed 

functions. 

 

- It was found that a minimum Lagrangian to Eulerian mesh width ratio of 1 should 

be used in simulations using the Immersed Boundary method if solids are 

modeled with a finite bending stiffness.
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