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Chapter I 
 

Introduction 
 

Background and Hypotheses 
 

The ability of skeletal muscle and tendon to adapt to environmental 

changes, injury, illness and other physiological conditions is critical in 

determining the overall health, mobility and athletic performance of an individual.  

Determining the cellular and molecular mechanisms behind the adaptation of 

skeletal muscle and tendon provides important insights into basic biological 

processes and the design of therapies for the treatment of diseases and injuries.  

Several cytokines have been identified as important regulators of skeletal muscle 

mass.  One of the most potent cytokines that regulate skeletal muscle mass is 

myostatin (GDF-8).  Myostatin is a member of the TGF-ß superfamily of 

cytokines and the targeted inhibition of myostatin results in an up to two-fold 

increase in skeletal muscle mass (54, 84).  Due to the profound increase in 

skeletal muscle mass that occurs as a result of the deficiency of myostatin, much 

interest has focused on the targeted inhibition of myostatin in the treatment of 

muscle injuries and wasting diseases (81). 

While the inhibition of myostatin results in a clear muscle mass phenotype, 

arguably with as great an impact on muscle mass as any other single cytokine, 

the full range of mechanical consequences of myostatin deficiency are not 

known.  Using classical muscle mechanics experimental techniques in the 
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myostatin-deficient mouse model, along with contemporary molecular biology 

experimental techniques, this doctoral dissertation determined the mechanisms 

by which the deficiency of myostatin regulates the structure and function of 

skeletal muscles and of tendons.  This introductory chapter describes the 

molecular biology of myostatin, the structure, function and adaptation of skeletal 

muscle and tendon tissue, and preliminary experiments that were critical for the 

research studies in Chapters II and III.   

In Chapter II, the impact of the deficiency of myostatin on the contractile 

properties and extracellular matrix composition of skeletal muscle was 

determined.  We hypothesized that the deficiency of myostatin increases the 

maximum tetanic force (Po), but decreases the specific Po (sPo) of muscles and 

increases the susceptibility of muscles to contraction-induced injury.  To test 

these hypotheses, we measured the in vitro contractile properties of EDL and 

soleus muscles from MSTN+/+, MSTN+/- and MSTN-/- mice and subsequently 

subjected the muscles to a lengthening contraction protocol.  We also 

determined the impact of myostatin on the connective tissue composition of 

skeletal muscle.  We hypothesized that the deficiency of myostatin decreases the 

type I collagen content of muscle connective tissue.  The type I collagen content 

of EDL and soleus muscles from MSTN+/+, MSTN+/- and MSTN-/- mice was 

determined, as well as the expression of type I collagen in cultured skeletal 

muscle myotubes treated with myostatin.  The results from Chapter II indicate 

that the deficiency of myostatin increases the Po of muscles, increases the 



3 

susceptibility of muscles to injury and decreases the type I collagen content of 

skeletal muscle connective tissue.   

The experiments on skeletal muscles in Chapter II lead to the exploration 

of the role of myostatin in the regulation of tendon structure and function in 

Chapter III.  We hypothesized that the deficiency of myostatin results in smaller, 

stiffer, and more brittle tendons.  To test this hypothesis, we measured the 

stress-strain relationships of tendons from the tibialis anterior muscles of 

MSTN+/+ and MSTN-/- mice.  We also measured the expression of structural and 

cell cycle regulatory genes in whole tendon tissue and in cultured tendon 

fibroblasts treated with myostatin.  Our studies of tendons lead to the novel 

finding that, in addition to regulating skeletal muscle structure and function, 

myostatin also regulates the structure and function of tendon tissue.  

Skeletal Muscle Structure and Function 

Skeletal muscles consist of hundreds to thousands, and sometimes 

millions, of long, multinucleated fibers organized together by an extracellular 

matrix.  There are three general layers of extracellular matrix, or connective 

tissue, in muscles – the outermost layer is the epimysium, the intermediate layer 

is the perimysium and the inner most layer is the endomysium.  Understanding 

the structure and function of each of these three layers requires a hierarchical 

approach.  The structure and function of the epimysium and perimysium will be 

discussed in a whole body and tissue level biomechanical context, whereas the 

structure and function of the endomysium will be discussed in the context of 

cellular and molecular biomechanics. 
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Epimysium and perimysium.  The epimysium covers the surface of the 

muscle and has important roles in force transmission and insulation of the 

muscle (46).  Processes from the epimysium extend into muscle tissue and form 

the second layer of connective tissue, the perimysium.  The perimysium contains 

blood vessels, nerves and lymphatic ducts, and structurally divides muscle fibers 

into functional groups called fascicles.  The orientation of fascicles are important 

determinants of the direction of the force a muscle can generate (55).  The 

variation in the number of fascicles allows muscles to adopt a complex geometry 

and facilitate complicated movements at joints.  There is a trade-off between the 

angle at which the fascicles are oriented and the amount of force the fascicles 

are able to generate.  The angle at which the fascicles are oriented to the 

insertion is known as the angle of pennation (θ). The force that a muscle fiber 

can generate is proportional to the cosine of θ (50).  As θ goes from 0º to 90º, the 

cosine of θ goes from 1 to 0.  Therefore, a fascicle can generate the greatest 

amount of force when θ is 0º, and can generate no force when θ is 90º.  An 

interesting feature about the angle of pennation is that, as muscle fibers undergo 

hypertrophy, there is an increase in θ (50).  While a muscle that experiences 

hypertrophy is generally able to generate a greater total force, due to the cosine 

relationship between θ and net force development, the muscle must undergo 

relatively greater increases in hypertrophy to generate greater net forces across 

a joint. 

In addition to providing a hierarchical structure to skeletal muscle fibers, 

the epimysium and perimysium may also protect an injured muscle from further 
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damage.  The epimysium and perimysium are composed mostly of the fibrillar 

collagens, type I and type III (43).  These collagens act as molecular springs and 

exist in parallel with the muscle fibers (9).  While some debate still exists on the 

topic, the epimysium and perimysium are thought to protect muscle fibers against 

stretch induced injury by taking up the load during stretch and protecting the 

skeletal muscle fibers from further injury (4).    

Endomysium.  The innermost layer of connective tissue is the 

endomysium.  The endomysium is composed of two layers of mostly type I and 

type III collagen that fuse to form a sheet-like structure that inserts into the 

tendon (43).  The endomysium is important in transmitting forces generated 

within the muscle to the tendon as well as laterally to other muscle fibers (63).  

The endomysium is connected to the basement membrane that directly 

surrounds each muscle fiber.  The basement membrane is composed mostly of 

type IV collagen (43).  Unlike the fibrillar type I and type III collagen, type IV 

collagen forms a mesh-like network that surrounds the muscle fiber (9).  

Embedded within the endomysium and basement membrane are two classes of 

proteins that have important functions.  The first class of proteins are responsible 

for force transmission from the sarcomeres through the intramuscular connective 

tissue and eventually to tendons and bone.  These proteins, such as integrin and 

fibronectin, provide a mechanical link between the structural proteins of muscle 

fibers with the collagen network of the extracellular matrix (37).  The second 

class of proteins are released from the matrix after injury and are important in 

initiating the recovery of muscle from injury (24, 30, 76).  This second class of 
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proteins will be discussed in the section that focuses on contraction-induced 

injury. 

Molecular Mechanisms of Force Transmission in Skeletal Muscle.  The 

structure within muscle fibers that is responsible for the generation of force is the 

sarcomere.  The sarcomere is composed of three major components – the thick 

filament that is surrounded by six thin filaments that are shared with the six 

surrounding thick filaments.  The thin filaments are imbedded in the Z-disks at 

the end of each sarcomere (73).  The thick filament contains the protein that is 

the molecular motor that drives muscle contraction, myosin heavy chain.  The 

head of the myosin molecule interacts with the actin molecules on the thin 

filaments.  The myosin binding sites on the actin molecule are regulated by the 

troponin protein complex.  The thick filaments are anchored to the Z-disks via the 

proteins titin and nebulin.  The Z-disks are responsible for transmitting the force 

generated within the sarcomere to the extracellular matrix (ECM) (11, 67).  The 

Z-disks accomplish this by linking to structures that transmit force both laterally 

and longitudinally.   

For the lateral transmission of force, the Z-disks link with a structure at the 

plasma membrane called the costamere.  The Z-disk interacts with the 

costamere via the dystrophin class of proteins (11, 67).  The dystrophin proteins 

link the membrane bound dystroglycan complex, which is in turn linked to the 

extracellular matrix via laminin and fibronectin.  Longitudinal force transmission is 

accomplished via a mechanical linkage between the Z-disk and the actin 

cytoskeleton of the muscle cell (55).  This force is transmitted to the ends of the 
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fibers at the location where the fibers insert into tendons.  This linkage comes 

about due to the association between the actin cytoskeleton with vinculin and 

talin (12).  Vinculin and talin transmit force across the plasma membrane using 

the fibronectin receptor that is bound to fibronectin in the ECM (3, 12).  The 

contraction of a muscle is therefore dependent upon the effective transmission of 

the forces generated by the interaction between actin and myosin molecules 

through structural proteins, out to the endomysium and eventually to tendons that 

link the muscles  to bone.   

Skeletal Muscle Contraction.  There are three general types of skeletal 

muscle contractions.  The contractions are defined by the change in fiber length 

that occurs subsequent to muscle activation (18).  During a shortening 

contraction, the force generated by the muscle is greater than the load placed on 

the muscle.  Consequently, the distance between the distal and proximal ends of 

a muscle decrease and positive work is performed.  During an isometric 

contraction, the force generated by the muscle is equal to the load on the 

muscle.  Consequently, the length of the muscle fiber does not change 

significantly and no net work is done.  The amount of force a muscle can 

generate is greatest during an isometric contraction and is referred to as the 

maximum isometric tetanic force (Po).  The specific maximum tetanic force (sPo) 

is the value Po normalized to the CSA.   During a lengthening contraction, the 

load on the muscle is greater than the force generated by the muscle.  

Consequently, the distance between the ends of the muscle increases and there 

is net negative work done.  Contraction-induced injury occurs during lengthening 
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contractions when the magnitude of the opposing force is sufficient to disrupt the 

ultrastructure of individual or groups of sarcomeres (18).  Clinically, contraction-

induced injuries are commonly referred to as muscle strains. 

Tendon Structure and Function 

 Tendons are connective tissue structures responsible for the transmission 

of the force developed by muscles to bones, and in doing so, enable the 

contraction of muscles to lead to joint movements and locomotion.  Force 

transmission may also occur in the opposite direction, from bone through tendon 

to muscle.  The transmission of force in this direction allows for the storage of 

elastic energy within the tendon and muscle, but may also lead to damage to the 

muscle.  During a lengthening contraction, tendons may protect muscle from 

injury by limiting the strain placed on muscle fibers (23). 

 Tendon Structure.  Tendon tissue is arranged in an hierarchical order, 

similar to skeletal muscle.  Fibroblasts are the major cellular component of 

tendons and consequently are responsible for the maintenance, repair, 

modification of the tendon ECM (37).  The fundamental anatomical structure in 

tendons is the tendon fiber (31, 82).  The tendon fiber is composed of collagen 

fibrils and other structural proteins and is wrapped in a layer of connective tissue 

that carries nerve endings, capillaries and lymphatic ducts.  Fibers coalesce to 

form fascicles, that are surrounded by a second connective tissue layer that 

contains arterioles, venules and axons of nerve cells.  Tendon fascicles are 

surrounded by a third connective tissue structure called the epitenon.  The 

synovial sheath surrounds the epitenon and secretes synovial fluid that helps to 
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cushion the tendon and reduce friction from adjacent tissues as the tendon is 

stretched and relaxed.  Early damage to tendon tissue can result in an 

overproduction of tendon synovial fluid (42).  Swelling in the synovium is referred 

to as tenosynovitis and is an early clinical diagnostic sign that tendon tissue is 

injured.  Tendons are linked to muscle tissue by myotendinous junctions located 

at the ends of the tendon (82).  Many muscles have an aponeurosis or internal 

tendon, that is an extension of the tendon into the muscle tissue.  At the other 

end, tendons are connected to bone by strong fibrous structures called entheses 

(6).   

Tendon Mechanical Properties.  The proteins and molecules that make up 

the tendon can be divided into two categories, based upon the mechanical 

properties they impart to tendon – stiffness and viscoelasticity.  The stiffness of a 

tendon is an important determinant of the ability of the tendon to store elastic 

energy.  Type I and type III collagens are the major proteins that determine the 

stiffness of a tendon (37).  Both type I and type III collagens are triple helical 

molecules (9).  The amino acid residues that face the inner core of the triple helix 

are able to form hydrogen bonds with each other, and it is this hydrogen bonding 

that provides much of the molecular basis for the stiffness material property of 

tendons (45).  As the tendon is stretched the hydrogen bonds between amino 

acid residues are broken and the breaking of these bonds gives off energy in the 

form of heat (61).  The tendon must be able to dissipate this heat energy, 

because if the energy is not properly dissipated, the structural covalent bonds of 

molecules in the tendon can be broken and this will lead to tendon rupture.   
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The second category of molecules impart the viscoelastic properties of 

tendons.  Viscoelasticity is important because this allows the tendon to resume 

its original shape after the application of a strain (37).  This second category of 

molecules is comprised of elastin, proteoglycans and glycosaminoglycans.  

These molecules are highly hydrophilic, and their ability to bind water molecules 

allows for them to transfer the heat produced by the breaking of hydrogen bonds 

within collagen to the water molecules, that are further able to dissipate heat 

energy into surrounding tissues (61). 

An additional factor that is an important determinant of the mechanical 

properties of tendons is the covalent cross-linking between collagen molecules.  

Cross-linking  reduces the friction between collagen molecules as they are 

stretched (61).  The consequence of greater cross-linking between collagen 

molecules is that the tendon becomes stiffer and can store mechanical energy 

more efficiently without losing this energy in the form of heat.  Cross-linking 

between collagen molecules can occur via an enzymatic or a non-enzymatic 

mechanism.  The lysyl oxidase enzyme generates aldehyde groups on lysine 

residues in collagen molecules (19).  These highly reactive aldehyde groups can 

form stable covalent bonds with other lysine residues.  Non-enzymatic cross-

linking can occur when the amino group on the side-chains of amino acid 

residues come into contact with a reducing sugar (65).  In addition to cross-

linking amino acid residues between collagen molecules, this reaction generates 

compounds called advanced glycation end products (AGEs) (65).  These AGEs 
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accumulate in the tissue and can disrupt the hierarchical structure of tendons and 

lead to tissue damage. 

The structural and mechanical properties of tendons change with aging 

and physical activity.  Compared with younger tendons, aged tendon is stiffer 

(60), has a lower rate of type I collagen synthesis (59) and is more prone to 

rupture (33, 60). The density of fibroblasts in tendon is highest at birth and 

steadily declines throughout the lifespan (56, 59).  While conflicting reports have 

been published (40, 79), tendon typically adapts to chronic physical activity by 

increasing CSA, stiffness, peak stress, peak strain, type I collagen synthesis and 

fibroblast activity (34, 47, 48, 72, 80, 86, 87). 

Regulation of Muscle Growth and Atrophy 

 The regulation of muscle growth and atrophy involves a sensitive balance 

between protein synthesis and degradation.  Minor damage to muscle fibers 

causes an adaptive response in which damaged proteins are removed and new 

proteins are synthesized (20).  With repetitive minor damage, such as the 

damage that occurs during exercise sessions that involve repeated lengthening 

contractions, there is a net increase in protein synthesis (17).  This increase in 

protein synthesis increases both the size and Po of individual fibers.  However, if 

the damage to muscle is of sufficient magnitude, such as the damage that occurs 

following a muscle "strain", there is a robust activation of proteolytic enzymes 

that cause the breakdown of both damaged proteins and healthy, functional 

proteins (21, 30).  The premature breakdown of functional proteins leads to 

muscle atrophy and a decrease in both the size and Po of individual fibers.  
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Understanding the mechanical, cellular and molecular mechanisms that control 

muscle growth and atrophy is critical in improving the current treatments 

available for muscle injuries and diseases, as well as enhancing athletic 

performance and maximizing strength gains in exercise programs.  

Mechanical damage to muscle fibers can initiate a series of events that 

lead to muscle hypertrophy and an increase in Po.  Sarcomeres are usually 

damaged only during lengthening contractions (10, 51, 52).  The process of 

mechanical damage to sarcomeres is best explained in terms of the length-

tension relationship of the sarcomere.  The tension a muscle fiber can develop is 

proportional to the amount of overlap between the thick and thin filaments (74).  

The point of maximum tension occurs when the muscle is at a length at which the 

maximum number of cross bridges can be formed.  This is the point at which the 

load opposing the muscle contraction is equal to the tension generated by the 

muscle, an isometric contraction.  As an actively contracting muscle is 

lengthened, the available cross bridge binding sites steadily decreases.  The 

forces transmitted to the sarcomeres from the external load can damage the 

ultrastructure of the sarcomere, and this disruption of sarcomere ultrastructure is 

responsible for the immediate decrease in force production following injury (10, 

16, 41).  In addition to damaging the sarcomeres, lengthening contractions can 

lead to disruption of the plasma membrane and endomysium due to shear forces 

generated during the lengthening contraction (14, 44).  This process of 

sarcomere and membrane damage initiates a response that eventually leads to 

repair of damaged structures and hypertrophy of the damaged muscle fiber.  
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 Cellular Regulation of Muscle Growth and Atrophy.  The nuclei within 

skeletal muscle fibers are arrested at the G1 cell cycle checkpoint and are unable 

to replicate (36).  Following injury to a muscle fiber, the nuclei in the damaged 

area undergo apoptosis (7, 70).  Skeletal muscle stem cells, referred to as 

satellite cells or myoblasts, reside in a space between the sarcolemma and the 

basal lamina (58).  Satellite cells, that normally exist in a quiescent state, become 

activated, migrate to the site of injury, proliferate, and fuse with the damaged 

fiber to repopulate the nuclei lost as a result of injury (24).  Damage to the 

endomysium releases inactive hepatocyte growth factor (HGF) (76).  Reactive 

oxygen species, produced by the nitric oxide synthase (NOS) enzyme, activate 

HGF (77).  Activated HGF binds to the c-met receptor on the plasma membrane 

of satellite cells.  HGF signaling activates the satellite cells from the quiescent 

state and initiates the migration of satellite cells to the site of injury (76).   

 As satellite cells migrate to the site of injury, they also undergo 

proliferation.  The initiation of proliferation is brought on by an increase in the 

expression of the basic helix-loop-helix (bHLH) transcription factor MyoD (24).  

MyoD is one of four members of myogenic regulatory factor (MRF) family, that 

include Myf-5, myogenin and MRF-4.  The MRF family of transcription factors 

initiate the "myogenic program" in these proliferating satellite cells (24).  The 

myogenic program changes the cellular morphology of satellite cells from a 

fibroblastic type morphology to a muscle like morphology (75).  Once in proximity 

of the damaged muscle fiber, satellite cells fuse with each other to form 

multinucleated structures called myotubes.  These myotubes fuse with the 
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existing, damaged muscle fiber and can help bridge the gap between ruptured 

ends of a muscle fiber.  As the myotubes fuse with the muscle fiber, the nuclei 

within the myotubes arrest in G1 (25, 36).  A certain population of satellite cells 

that underwent proliferation do not form myotubes, but instead resume a sub-

basal lamina position and return to quiescence (24).  In addition to satellite cells, 

fibroblasts and immune cells are attracted to the site of injury.  The presence of 

these cells helps to remove cellular debris and repair the ECM.  If there is a 

severe disruption of the ECM, fibroblasts can respond with an overproduction of 

ECM (27).  This overproduction of ECM results in the clinical condition of fibrosis, 

or scar tissue accumulation.  The mechanisms behind the formation of scar 

tissue are of particular interest to clinicians, as this scar tissue is generally 

disruptive to the proper function of muscle tissue and, once formed, is relatively 

permanent (30). 

 Once the myotubes have fused with the damaged muscle fiber, the nuclei 

from these myotubes occupy a centrally located position in the muscle fiber (24, 

52).  While nuclei in an uninjured fiber are typically located just beneath the 

sarcolemma, taking up a central location presumably allows for greater surface 

area contact of the nucleus with ribosomes and endoplasmic reticulum and thus 

enhance the ability of muscle fibers to synthesize new proteins.  During the repair 

stages, the majority of proteins that are synthesized are responsible for repairing 

the damaged fiber (26).  While it is not clear exactly why the nuclei take up a 

subsarcolemmal location after repair, the nuclei do not need as close a direct 

association with endoplasmic reticulum, as mRNA that encodes sarcomeric 
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proteins is trafficked directly to the sarcomere, where translation and processing 

occur (35).  This strategy is likely in place as sarcomeric proteins are relatively 

large, translation at the sarcomere minimizes the need for the muscle fiber to 

have an elaborate protein trafficking system in place.  The location of the nuclei 

within the cytosol therefore provides a way to track the progress of repair in 

skeletal muscle tissue.   

 Molecular Regulation of Muscle Growth and Atrophy.  While the satellite 

cells are undergoing migration, proliferation and fusion, the muscle fiber is 

initiating the underlying processes that are responsible to begin the repair 

process.  Damage to the plasma membrane causes a persistent increase in 

intracellular calcium levels (78).  The influx of calcium initiates the persistent 

activation of sarcomeres distal to the site of injury, and is likely the mechanism 

behind the "muscle spasm" that is observed clinically after a muscle injury.  This 

influx of calcium also activates the proteolytic systems of muscle tissue (5, 29).  

By three days following injury, the plasma membranes of the muscle fibers are 

largely sealed off (64) and calcium homeostasis is restored (5). 

The ubiquitin-proteasome proteolytic system is important in regulating 

skeletal muscle mass and protein turn-over.  Atrogin-1 (MAFbx) is a ubiquitin 

ligase protein expressed in skeletal muscle (20, 32).  Atrogin-1 directs the 

polyubiquination of proteins (8).  Once a protein is tagged with ubiquitin, that 

protein is targeted to the proteasome organelle. The amount of ubiquitin tags on 

a protein appears to be directly related to the speed at which the doomed protein 

is degraded.  Upon reaching the proteasome, the protein is broken down and its 
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constituent amino acids for recycled for use in the synthesis of new proteins.  

The expression of atrogin-1 is regulated by the Forkhead box O (Foxo) family of 

transcription factors (20, 32).  The promoter region of the atrogin-1 gene contains 

binding sites for the Foxo3 transcription factor that acts as a co-activator of 

atrogin-1 transcription (68).  Phosphorylation of Foxo3 by Akt inhibits the ability of 

Foxo3 to enter the nucleus and thus blocks the ability of Foxo3 to act as a 

transcription factor.  

Regulation of Muscle Growth and Atrophy by Myostatin 

Myostatin is a negative regulator of muscle mass (38, 39, 54, 84, 85, 90).  

The myostatin gene consists of three exons, the first two of which encode a 

propeptide, and the third encodes the mature, active form of myostatin (Figure 

1.1).  Compared with MSTN+/+ mice, the MSTN+/- mice used in this study have a 

20% reduction in circulating myostatin levels, and MSTN-/- mice have no 

detectable myostatin (Figure 1.2).  While the masses of the male MSTN+/+, 

MSTN+/- and MSTN-/- mice are similar until 9 months of age, following this time 

point, the masses of the MSTN-/- mice are noticeably greater than MSTN+/+ and 

MSTN+/- mice (Figure 1.3).  The masses of female MSTN+/+, MSTN+/- and MSTN-

/- mice do not differ from one another (Figure 1.3).  Myostatin deficiency 

increases the CSA (cross-sectional area) of muscle fibers from EDL and soleus 

muscles, and also increases the whole muscle CSA (Figure 1.4).  Myostatin 

deficiency does not change the relative myofibrillar protein content of EDL or 

soleus muscles (Figure 1.5). 
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Molecular Signaling Pathways.  Myostatin signal transduction is mediated 

through the activin family of serine/threonine kinase receptors.  Myostatin is 

secreted as a 25 kDa dimer, bound to its 37 kDa propeptide (54).  Upon 

dissociation from its latent complex, myostatin binds the type IIb activin receptor 

(ActRIIB or ACVR2B) (38).  This binding promotes the recruitment and 

phosphorylation of the type Ib activin co-receptor (ActRIB or ACVRB) (38).  The 

activated ActRIIB-ActRIB complex activates Smad2 and Smad3 transcription 

factors, and TAK1, via phosphorylation (Figure 1.6) (62).  Phosphorylation of 

Smad2 and Smad3 allows for these proteins to oligomerize and enter the 

nucleus (57).  Specifically, Smad2 and Smad3 can form homodimers, 

heterodimers and heterotrimers with themselves and an additional transcription 

factor, Smad4 (57).  The Smad oligomers interact with other transcription factors 

and recruit co-activators or co-repressors of gene transcription (57).  The 

activated TAK1 kinase activates the downstream kinases p38 MAPK and Erk1/2 

via MKK3/6 (62, 88).  p38 MAPK and Erk1/2 are able in turn to regulate the 

activity of various transcription factors via phosphorylation.  While the myostatin-

deficient mice have a very clear hypermuscular phenotype, the downstream gene 

targets of myostatin-mediated signal transduction, remain largely unknown.   

Unlike myostatin, IGF-1 (insulin like growth factor-1) is a positive regulator 

of muscle mass.  IGF-1 binds to the IGF-1 receptor that activates PI3K via IRS-1 

(1).  PI3K activates Akt/PKB that activates several downstream transcription 

factors via phosphorylation (1).  Akt appears to regulate muscle mass both by 

promoting satellite cell proliferation and by decreasing protein degradation (20).  
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Akt promotes satellite cell proliferation, at least in part, by increasing the 

expression of MyoD (20).  To inhibit protein degradation, Akt phosphorylates the 

Foxo3 transcription factor that keeps Foxo3 localized in the cytosol (20, 69).  

Foxo3 is a potent activator of atrogin-1, and in the absence of a nuclear localized 

Foxo3 transcription factor, atrogin-1 expression declines (20).  The myostatin and 

IGF-1 pathways can inhibit each other.  Activation of ActRIIB by myostatin blocks 

the IGF-1 mediated phosphorylation of PI3K and Akt (89).  Akt binds and 

prevents the nuclear localization of Smad3 (13).   

Induction of Muscle Atrophy by Myostatin.  The deficiency of myostatin 

results in a profound increase in skeletal muscle mass (38, 39, 54, 84, 85, 90) 

and overexpression of myostatin results in muscle atrophy (66, 91).  While the 

deficiency of myostatin increases protein synthesis (83), it was not known if 

myostatin also increase protein breakdown.  Our preliminary studies of the 

regulation of atrogin-1 by myostatin indicated that, despite no difference in 

relative myofibrillar protein content (Figure 1.5), compared with MSTN+/+ mice, 

the EDL muscles of MSTN-/- mice had a noticeable decrease in ubiquitin tagged 

myosin heavy chain (Figure 1.7A) and a 40% decrease in atrogin-1 expression 

(Figure 1.7C).  For soleus muscles, MSTN-/- mice had only a minor decrease in 

ubiquitin tagged myosin heavy chain (Figure 1.7B) and no difference in atrogin-1 

expression (Figure 1.7D).  The decreased ubiquitination of myosin heavy chain, 

in conjunction with the decrease in atrogin-1 expression, suggests that there is a 

decrease in protein degradation in MSTN-/- EDL muscles.  This may explain why, 

compared with soleus muscles, the deficiency of myostatin leads to a greater 
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relative increase in EDL muscle mass (further discussed in Chapter II). While 

sarcomeric proteins must first be liberated from the sarcomere by calpain 

mediated proteolysis of titin, these results do indicate that myostatin deficiency 

leads to a functional decrease in protein degradation.  Determining the 

expression of the calpain proteases will provide greater insight into this 

mechanism. 

Myostatin increases the expression of atrogin-1 in C2C12 myotubes (53).  

We determined if myostatin could increase the expression of atrogin-1 in primary 

myotubes, and which arm of the myostatin signaling pathway was involved in this 

process.  When  primary myotubes were treated with myostatin, there was a 

dose-dependent increase in atrogin-1 expression (Figure 1.8).  Inhibition of both 

the p38 MAPK and Smad2/3 pathways blocked the myostatin-mediated increase 

in atrogin-1 expression, suggesting that both arms of the myostatin signal 

transduction pathway are important in the regulation of atrogin-1.  While the p38 

MAPK mediated induction of atrogin-1 expression is not clear, Foxo3 can directly 

bind Smad3 to promote gene transcription (22, 69), and the interaction between 

Foxo3 and Smad3 may therefore be necessary for the regulation of atrogin-1 by 

myostatin.  

Methods 

Animals.  All experiments were conducted in accordance with the 

guidelines of the University of Michigan Committee on the Use and Care of 

Animals.  Mice were housed in specific-pathogen-free conditions and were 

provided food and water ad libidum.  The MSTN-/- mice are of a C57Bl/6 
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background and were a kind gift of Dr. Se-Jin Lee (54).  The null MSTN allele 

was generated by replacing a portion of the third exon of the MSTN gene that 

encodes the C-terminal region of the mature myostatin protein with a neo 

cassette (Figure 1.1A).  The genotype of mice was determined by PCR-based 

analysis of DNA samples obtained via tail biopsy (Figure 1.1B). 

ELISA Quantification of Myostatin in Serum.  Approximately 1mL of blood 

was withdrawn from 6 month old male MSTN+/+, MSTN+/-, and MSTN-/- mice, 

allowed to clot and spun at 10,000 × g for 10 minutes to separate serum.  Serum 

was briefly treated with 0.1N HCl to dissociate myostatin from its carrier proteins 

and was subsequently diluted 1:2 in RIPA buffer.  Samples were then subjected 

to sandwich ELISA (R&D Systems) in triplicate. 

Cell Culture.  Satellite cells were isolated from 6 month old male MSTN+/+ 

mice using the methods described by Allen and his colleagues (2).  Mice were 

anesthetized with intraperitoneal injection of Avertin (400 mg/kg) and sacrificed 

by cervical dislocation.  The hindlimb muscles were quickly removed, minced and 

digested in protease solution (1.0 mg/mL of Type XIV Proteinase in PBS, Sigma) 

for 1 hour at 37ºC.  Satellite cells were separated from muscle fiber fragments 

and from tissue debris by differential centrifugation and then plated on fibronectin 

coated 35mm tissue culture plates (BD Biosciences).  Cultures were maintained 

in a humidified environment maintained at 37ºC and 5% CO2.   

Satellite cells were grown in DMEM + 20% FBS + 1% antibiotic-

antimycotic (AbAm) until reaching 80% confluence, at which time the media was 

changed to DMEM + 2% horse serum + 1% AbAm to induce differentiation into 
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myotubes.  Myotubes were maintained in culture for 5 days and then serum 

starved for 24 hours by replacing the differentiation media with DMEM + Insulin-

Transferrin-Selenium Supplement (Invitrogen) + 1% AbAm.  Recombinant murine 

myostatin was produced in NS0 mouse myeloma cells (R & D Systems) and 

dissolved into the starvation media at a final concentration of 250 or 500 ng/mL.  

Stock solutions of the p38 MAPK inhibitor SB-203580 (15) and the Smad2/3 

inhibitor SB-431542 (28) were prepared by dissolving these solid anhydrous 

compounds in DMSO at a concentration of 10mM. SB-203580 and SB-431542 

stock solutions were then added to starvation media containing myostatin and 

0.5% DMSO at a final concentration of 10µM for SB-203580 and 5µM for SB-

431542.  Cells were pretreated with SB-203580 or SB-431542 for 1 hour prior to 

treatment with myostatin for 12 hours. 

Myofibrillar Protein Content.  Myofibrillar proteins were extracted from EDL 

and soleus muscles using the methods of Solaro (71), modified to include the 

addition of Leupeptin (Sigma).  The protein content of the isolated myofibrils was 

determined using a DC Protein Assay (Bio-Rad) and normalized to the wet mass 

of the muscle. 

SDS-PAGE and Immunoblot.  Whole EDL and soleus muscles were 

removed from anesthetized 6 month old MSTN+/+ and MSTN-/- mice, flash frozen 

in liquid nitrogen and stored at -80ºC until use.  Muscles and myotubes were 

homogenized in Laemmli's sample buffer with 1:20 β-mercaptoethanol, 1:20 

protease inhibitor cocktail (Sigma) and 1:40 phosphatase inhibitor cocktail 

(Sigma) and then placed in boiling water for 5 minutes. Protein concentration of 
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the samples was determined using an RC DC Protein Assay (Bio-Rad).  Equal 

amounts of protein were loaded into 4% stacking, 7.5% resolving polyacrylamide 

gels and subjected to electrophoresis. To detect total myosin heavy chain, gels 

were stained with Coomassie Brilliant Blue (Bio-Rad).  To detect ubiquitinated 

myosin heavy chain, proteins were transferred from gels to a 0.45 µm 

nitrocellulose membrane and stained with Ponceau S to verify equal protein 

transfer.  Membranes were blocked using casein (Vector Labs), incubated with 

an HRPO tagged anti-ubiquitin antibody (Santa Cruz) and developed with 

SuperSignal West Dura enhanced chemiluminescent reagents (Pierce 

Biotechnology) and visualized using a FluorChem chemiluminescent 

documentation system (Alpha Innotech). 

RT-qPCR.  RNA was isolated from samples using an RNeasy Fibrous 

Tissue kit (Qiagen) and treated with DNase I.  Poly-A mRNA was reverse 

transcribed using an Omniscript RT system (Qiagen) and oligo(dT)15 primers.  

cDNA was amplified using primers for atrogin-1 (forward: 5'- 

ATTCTACACTGGCAGCAGCA-3'; reverse: 5'- TGTAAGCACACAGGCAGGTC-

3') and β2-microglobulin (forward: 5'-ATGGGAAGCCGAACATACTG-3'; reverse: 

5'-CAGTCTCAGTGGGGGTGAAT-3') using a SYBR Green I PCR system 

(Qiagen) with Uracil DNA Glycosylase (Invitrogen) in an Opticon 2 real-time 

thermal cycler (Bio-Rad). qPCR reactions were conducted in quadruplicate for 

each sample.  C(t) values for atrogin-1 were normalized to β2-microglobulin 

using the 2-ΔΔC(t) method.  β2-microglobulin was selected as a normalizing gene 

based on its stable expression in skeletal muscle tissue (49) and because its 
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expression did not differ between groups. The presence of single amplicons from 

qPCR reactions were verified by melting curve analysis as well as 

electrophoresis using a 2% agarose gel.  Genomic DNA contamination was not 

detected in qPCR reactions. 

Statistical Analysis.  Results are presented as means ± SE.  KaleidaGraph 

4.02 software was used to conduct statistical tests.  For ELISA, histology and  

gene expression data from cell culture experiments, differences between groups 

were tested with a one-way ANOVA with α = 0.05.  Fisher’s least significant post 

hoc test was used to identify specific differences when significance was tested.  

For all other data, differences between groups were tested with Student’s t-test 

with α = 0.05.  
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Figure 1.1.  (A) Structure of wild type and null MSTN alleles.  (B) PCR based 
detection of myostatin alleles. 
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Figure 1.2.  Mouse models used in the current study.  Picture of (A) whole 
mouse carcasses and (B) hind limb musculature.  (C) Relative myostatin 
concentration in plasma measured by ELISA. N = 6 mice.  *, significantly different 
from MSTN+/+ at P < 0.05, #, significantly different from MSTN+/- at P < 0.05. 
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Figure 1.3.  Growth curves of male and female MSTN+/+, MSTN+/- and MSTN-/- 
mice. 
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Figure 1.4.  Muscle fiber CSA distributions. EDL muscles of (A) MSTN+/+, (B) 
MSTN+/- and (C) MSTN-/- mice.  Soleus muscles of (D) MSTN+/+, (E) MSTN+/- and 
(F) MSTN-/- mice. N = 3 muscles from each genotype.  *, significantly different 
from MSTN+/+ at P < 0.05, #, significantly different from MSTN+/- at P < 0.05. 
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Figure 1.5.  Relative myofibrillar protein content of (A) EDL and (B) soleus 
muscles of MSTN+/+ and MSTN-/- mice.  (A) There was no difference between the 
myofibrillar protein content (normalized first to muscle mass, and then to levels in 
MSTN+/+ mice) between MSTN+/+ and MSTN-/- mice for (A) EDL and (B) soleus 
muscles.  N = 3 muscles. 
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Figure 1.6.  Myostatin signal transduction pathways. 
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Figure 1.7.  Ubiquitinated myosin heavy chain (Ub-MHC) protein and atrogin-1 
expression from EDL and soleus muscles of MSTN+/+ and MSTN-/- mice.  MSTN-/- 
mice have less Ub-MHC than MSTN+/+ mice in (A) EDL, but there is only a 
minimal difference between genotypes in (B) soleus muscles.  There is a 
decrease in the relative expression of atrogin-1, normalized to β2-microglobulin, 
in (C) EDL muscles of MSTN-/- mice, but no differences in (D) soleus muscles.  N 
= 4 muscles. 
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Figure 1.8.  Atrogin-1 expression in primary myotubes treated with myostatin.  
Treatment of primary myotubes with myostatin for 12h increases the relative 
expression of atrogin-1, normalized to β2-microglobulin. +, 250ng/mL of 
myostatin. ++, 500ng/mL of myostatin.  *, significantly different from control group 
at P < 0.05.  #, significantly different from 250ng/mL group at P < 0.05.  N = 3 
independent experiments. 
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Chapter II 
 

Contractile Properties of Extensor Digitorum Longus and Soleus Muscles 
of Myostatin-Deficient Mice 

 
 
Abstract  

Myostatin is a negative regulator of muscle mass.  The impact of 

myostatin deficiency on the contractile properties of healthy muscles has not 

been determined.  We hypothesized that myostatin deficiency would increase the 

maximum tetanic force (Po), but decrease the specific Po (sPo) of muscles and 

increase the susceptibility to contraction-induced injury.  The in vitro contractile 

properties of EDL and soleus muscles from wild type (MSTN+/+), heterozygous-

null (MSTN+/-) and homozygous-null (MSTN-/-) adult male mice were determined.  

For EDL muscles, the Po of both MSTN+/- and MSTN-/- mice were greater than 

the Po of MSTN+/+ mice.  For soleus muscles, the Po of MSTN-/- mice was greater 

than that of MSTN+/+ mice.  The sPo of EDL muscles of MSTN-/- mice was less 

than MSTN+/+ mice.  For soleus muscles, however, no difference in sPo was 

observed.  Following two lengthening contractions, EDL muscles from MSTN-/- 

mice had a greater force deficit than MSTN+/+ or MSTN+/- mice, whereas no 

differences were observed for the force deficits of soleus muscles.  Myostatin 

deficient EDL muscles had less hydroxyproline, and myostatin directly increased 

type I collagen mRNA expression and protein content.  The difference in the 

response of EDL and soleus muscles to myostatin may arise from differences in 
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the levels of a myostatin receptor, ActRIIB.  Compared with the soleus, the 

amount of ActRIIB was approximately two-fold greater in EDL muscles.  The 

results support a significant role for myostatin not only in the mass of muscles, 

but also in the contractility and the composition of the ECM of muscles. 

Introduction 

Myostatin (GDF-8) is a member of the transforming growth factor-beta 

(TGF-β) family of cytokines and functions as a negative regulator of skeletal 

muscle mass.  Inactivation of the myostatin genes and post-natal inhibition of 

myostatin both result in significant increases in skeletal muscle mass (4, 5, 21, 

42, 47, 65, 68, 69).  Systemic and skeletal muscle specific overexpression of 

myostatin induce skeletal muscle atrophy (52, 71).  The Belgian Blue and 

Piedmontese breeds of cattle have a mutated form of the myostatin gene and are 

characterized by larger skeletal muscles than other breeds (20, 24).  At the time 

of birth, a human child with apparent null mutations in his myostatin genes had a 

thigh muscle volume two-fold greater in size than ten age-matched controls (54).  

The child's mother, who is heterozygous for the mutation, was also reported to be 

hypermuscular (54).   

Myostatin circulates through the blood in a latent form bound to its 

propeptide and to follistatin (2).  The myostatin gene (MSTN) encodes a 

precursor protein that undergoes proteolytic processing to generate a propeptide 

and a mature myostatin dimer (67).  The propeptide binds myostatin 

noncovalently and inhibits the bioactivity of myostatin (42, 57, 67).  Cleavage of 

the propeptide by the BMP-1/tolloid family of metalloproteinases results in the 
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liberation and activation of myostatin (67).  Activated myostatin binds to the 

activin type IIB (ActRIIB) and IB (ActRIB) receptors to initiate the Smad2/3 and 

p38 MAPK intercellular signal transduction cascades (29, 46, 50, 70).  Myostatin 

appears to regulate skeletal muscle mass, at least in part, by inhibiting the 

proliferation, differentiation and self-renewal of myoblasts (28, 39, 56, 58).  Type 

II muscle fibers appear to be more responsive to the myostatin signaling pathway 

than type I muscles, but the mechanism responsible for this difference is 

unknown (10, 37, 41, 43).  

The inhibition of myostatin may be useful in the treatment of muscle 

injuries and muscle wasting diseases by improving the contractile properties of 

muscle (17, 26, 45, 53, 55, 59, 61).  Compared with wild type mice, myostatin 

deficient mice have increased bite force (9) and gross grip strength (65).  

Treating mdx mice with an antibody against myostatin increased the maximum 

tetanic force (Po) of EDL muscles, but did not change the specific maximum 

tetanic force (sPo) (4).  When mdx mice were treated with the propeptide of 

myostatin, both the Po and sPo of EDL muscles increased (5).   

Myostatin may also be useful in treating muscle injuries and disease by 

regulating the collagen accumulation and scar tissue formation in the 

extracellular matrix (ECM) (17, 45).  In addition to enhancing the contractile 

properties of dystrophic muscle, the deficiency of myostatin decreased the 

accumulation of scar tissue and ECM of mdx mice (4, 5, 63).  Type I collagen is a 

major component of muscle ECM (31).  The transcripts of two separate genes, 

col1α1 and col1α2, are used to synthesize the collagen I precursor molecule, 
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procollagen I.  Procollagen I is secreted into the ECM where it undergoes 

cleavage and assembly to form mature collagen I (27).  TGF-β has a well 

established role as a positive regulator of type I collagen protein synthesis via the 

Smad2/3 and p38-MAPK signaling pathways (reviewed in (60)).  As myostatin is 

a member of the TGF-β family of cytokines and utilizes similar signal transduction 

pathways as TGF-β (29, 46, 50, 70), myostatin may have a direct role in the 

regulation of the type I collagen content of skeletal muscle ECM.   

While a few studies have examined the effects of myostatin deficiency on 

the contractile properties and ECM of dystrophic muscles (4, 5, 63), how 

myostatin deficiency impacts on healthy, non-dystrophic muscle is unknown.  

The overall aim of this study was to determine the effect of myostatin deficiency 

on the contractile properties, susceptibility to contraction-induced injury and 

collagen composition of skeletal muscle tissue.  As increases in Po due to 

hypertrophy of muscle fibers often results in a corresponding decrease in sPo 

(15, 25, 30), we hypothesized that a deficiency of myostatin would increase the 

Po, but decrease the sPo.  Based upon the observations that myostatin deficiency 

decreased the ECM accumulation in dystrophic muscle (4, 5, 63), and the 

similarities between the myostatin and TGF-β signal transduction pathways (29, 

46, 50, 70), we formed the hypothesis that myostatin deficient mice would have 

less muscle ECM and that myostatin would directly increase type I collagen 

expression in skeletal muscle tissue.  If these assumptions proved to be correct, 

we hypothesized that the deficiency of myostatin would increase the force deficits 

of muscles following a protocol of damaging lengthening contractions.  
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Methods 

Animals.  All experiments were conducted in accordance with the 

guidelines of the University of Michigan Committee on the Use and Care of 

Animals.  Mice were housed in specific-pathogen-free conditions and fed food 

and water ad libidum.  MSTN-/- mice of a C57BL/6 background were a generous 

gift of Dr. Se-Jin Lee.  The MSTN null allele was generated by replacing the 

portion of the third exon of the MSTN gene that encodes the C-terminal region of 

the mature myostatin protein with a neo cassette (42).  Male MSTN-/- mice were 

crossed with MSTN+/+ C57BL/6 female mice to generate an F1 MSTN+/- 

generation.  The F1 generation was backcrossed to obtain an F2 generation 

containing all three genotypes.  F2 male mice 10 - 12 months of age were used 

in this study.  The genotype of mice was determined by PCR-based analysis of 

genomic DNA samples obtained via tail biopsy.  The MSTN wild type allele was 

detected using a set of primers that generate a 247 bp amplicon from the third 

exon of the MSTN gene, and the MSTN null allele was detected using a set of 

primers that generate a 192 bp amplicon from the neo cassette that replaced the 

third exon of the MSTN gene.  Amplicons from PCR reactions were separated on 

a 2% agarose gel.   

Operative Procedure.  Mice were anesthetized with intraperitoneal 

injection of Avertin (400 mg/kg).  Additional doses were provided as required to 

maintain a deep anesthesia throughout the experiment.  The EDL and soleus 

muscles were removed from both the left and right legs of each mouse.  Muscles 

used for fiber counts, hydroxyproline, histochemistry or protein analysis were 
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flash frozen in liquid nitrogen and stored at -80°C until use.  A 5-0 silk suture was 

tied to the proximal and distal tendons of muscles used in the contractile 

properties experiments.  These muscles were placed immediately in a bath that 

contained Kreb's mammalian Ringer solution with 0.25 mM tubocurarine 

chrloride. The bath was maintained at 25°C and the solution was bubbled with 

95% O2 and 5% CO2 to stabilize pH at 7.4.  Following the removal of muscles, 

mice were euthanized with an overdose of anesthetic and induction of a 

pneumothorax.       

Fiber Counts of Muscles.  To determine the number of fibers present in 

muscles, the extracellular matrices of muscles were digested as described (38).  

Briefly, muscles were placed in a 15% HNO3 solution overnight at room 

temperature.  Following digestion, the HNO3 solution was replaced with 

phosphate buffered saline.  Individual muscle fibers were teased apart from 

bundles and counted under a dissecting microscope.  The lengths of forty 

individual fibers per muscle were measured using digital calipers.      

Measurement of Maximum Isometric Tetanic Force.  Each muscle was 

immersed in the bath solution and the distal tendon was attached to a servo 

motor (model 305B, Aurora Scientific, Aurora, ON).  The proximal tendon was 

attached to a force transducer (model BG-50, Kulite Semiconductor Products, 

Leonia, NJ).  The attachment of tendons to the servo motor and force transducer 

occurred just distal to the myotendinous junctions so that the impact of the 

tendon on the measurement of contractile properties was minimized.  Muscles 

were stimulated by square pulses delivered by two platinum electrodes 
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connected to a high-power biphasic current stimulator (model 701B, Aurora 

Scientific).  An IBM-compatible personal computer and custom designed 

software (LabVIEW 7.1, National Instruments, Austin, TX) controlled electrical 

pulse properties and servo motor activity and recorded data from the force 

transducer.  The voltage of pulses was increased and muscle length (Lo) was 

subsequently adjusted to the length that resulted in maximum twitch force (Pt) 

(6).  The Lo was measured with digital calipers.  Muscles were held at Lo and 

subjected to trains of pulses to generate an isometric contraction.  Pulse trains 

were 300 ms for EDL muscles and 900 ms for soleus muscles.  Stimulus 

frequency was increased until the Po was achieved (6).  The general shape of the 

force traces during twitch and isometric contractions were not different between 

the three genotypes of mice for EDL and soleus muscles, respectively.  The sPo 

was determined by dividing Po by the cross sectional area (CSA).  Following nitric 

acid digestion, both EDL and soleus muscles showed no difference in the ratio of 

fiber lengths to whole muscle lengths among any of the three genotypes.  

Therefore the Lf/Lo ratios of 0.44 for EDL muscles and 0.70 for soleus muscles 

were used to calculate Lf (6).  The physiological CSA of muscles was determined 

by dividing the mass of the muscle by the product of Lf and 1.06 g/cm3, the 

density of mammalian skeletal muscle.         

Contraction-Induced Injury.  Following measurement of Pt and Po, a 

mechanical injury to muscles was produced by two 40% lengthening contractions 

(7, 11, 14).  Muscles were stimulated and held at Lo for 100 ms for EDL muscles 

and 300 ms for soleus muscles to allow muscles to develop Po.  Following the 
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isometric contraction, muscles were stretched through a 40% strain relative to Lf.  

A 40% strain of the EDL plantarflexes the ankle by 12º and the soleus dorsiflexes 

by 16º.  The velocity of the stretch was 1 Lf/s.  The total time of stimulation was 

500 ms.  Following stimulation, muscles were returned to Lo, remained quiescent 

for 1 min, then were subjected to a second 40% strain.  Following 1 min of rest 

the Po was measured.  The general shape of the force traces during lengthening 

contractions were not different for any of the three genotypes of mice.  The 

average force produced during a stretch was calculated by integrating the force-

time curve and dividing this value by the duration of the stretch.  Work was 

calculated by multiplying the average force produced during a stretch by the 

length of the displacement and normalized by the wet mass of the muscle.   

Measurement of Lengths of Tibias.  Hindlimbs from euthanized mice were 

stripped of gross muscle and connective tissue and placed in 20% hydrogen 

peroxide at 55°C overnight to remove remaining soft tissue.  Photographic 

images of tibias were analyzed with ImageJ (version 1.34, NIH, Bethesda, MD) to 

determine length.      

Hydroxyproline Assay.  Hydroxyproline content of muscles was measured 

as described by Woessner (66).  Muscles were dried for 90 min at 110ºC and 

hydrolyzed in 500 µL of 6 M hydrochloric acid for 3.5 hours.  The hydrolysate was 

neutralized with an equal volume of 6 M sodium hydroxide.  Known amounts of 

purified L-hydroxyproline (Sigma, St. Louis, MO) were used to construct a 

standard curve.  Samples were assayed in triplicate using a Genios plate reader 

(Tecan, Mannedorf, Switzerland) at an absorbance of 560 nm.    
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Histology.  Muscles were cryosectioned at their mid-belly and stained with 

Masson's Trichrome.  The areas of 100 muscle fibers randomly selected from 

sections of three muscles of each of the three genotypes were measured using 

ImageJ.    

ActRIIB Immunoblot.  Muscles that did not undergo assessments of the 

contractile properties were homogenized in cold Laemmli's sample buffer with 

1:20 β-mercaptoethanol and 1:20 protease inhibitor cocktail (Sigma) and then 

placed in boiling water for 5 minutes.  Protein concentration of the samples was 

determined using an RC DC Protein Assay (Bio-Rad, Hercules, CA).  Equal 

amounts of protein were loaded into two 4% stacking, 7.5% separating 

polyacrylamide gels and subjected to electrophoresis.  To verify equal protein 

loading, gels that were not used in immunoblotting were stained with Coomassie 

Brilliant Blue (Bio-Rad).  Proteins were transferred to a 0.45 µm nitrocellulose 

membrane and stained with Ponceau S to verify equal protein transfer.  

Membranes were blocked using casein and an avidin-biotin blocking kit (Vector 

Labs, Burlingame, CA), rinsed and incubated with a biotinylated monoclonal 

antibody against ActRIIB (R & D Systems, Minneapolis, MN) and an avidin-

HRPO conjugate (Vector Labs).  Membranes were developed with SuperSignal 

West Dura enhanced chemiluminescent reagents (Pierce Biotechnology, 

Rockford, IL) and visualized using a chemiluminescent documentation system 

(Bio-Rad).   

Satellite Cell Isolation and Culture.  Satellite cells were isolated from adult 

male MSTN+/+ mice as described by Allen and his colleagues (1).  Mice were 
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anesthetized with intraperitoneal injection of Avertin (400 mg/kg) and sacrificed 

by cervical dislocation.  The hindlimb muscles were quickly removed, minced and 

digested in protease solution (1.25 mg/mL of Pronase E in PBS, Sigma) for 1 

hour at 37ºC.  Satellite cells were separated from muscle fiber fragments and 

from tissue debris by differential centrifugation and then plated on fibronectin 

coated 60mm tissue culture plates (BD Biosciences, San Jose, CA).  Cultures 

were maintained in a humidified environment maintained at 37ºC and 5% CO2.  

Satellite cells were grown in DMEM + 20% FBS + 1% antibiotic-antimycotic 

(AbAm) until reaching 80% confluence, at which time the media was changed to 

DMEM + 2% horse serum + 1% AbAm to induce differentiation into myotubes.   

RT-qPCR.  Myotubes were treated with different concentrations of 

recombinant murine myostatin (R & D Systems, Minneapolis, MN) in DMEM + 

1% AbAm for 2 hours.  RNA was isolated from myotubes using an RNeasy Mini 

kit (Qiagen, Valencia, CA), treated with DNase I and reverse transcribed using an 

Omniscript RT kit (Qiagen) and oligo(dT)15 primers.  cDNA was amplified using 

primers for col1α2 (forward: 5'-CCAGCGAAGAACTCATACAGC-3'; reverse: 5'-

GGACACCCCTTCTACGTTGT-3') and β2-microglobulin (forward: 5'-

ATGGGAAGCCGAACATACTG-3'; reverse: 5'-CAGTCTCAGTGGGGGTGAAT-

3') using a SYBR Green I PCR system (Qiagen) with Uracil DNA Glycosylase 

(Invitrogen) in an Opticon 2 real-time thermal cycler (Bio-Rad). qPCR reactions 

were conducted in triplicate for each sample.  C(t) values for col1α2 were 

normalized to β2-microglobulin (β2m) using the 2-ΔΔC(t) method (32).  β2m was 

chosen as a housekeeping gene based on its stable expression in skeletal 
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muscle tissue (35) and because β2m expression did not differ between treatment 

groups.  The presence of single amplicons from qPCR reactions were verified by 

melting curve analysis as well as electrophoresis using a 2% agarose gel.  

Primers for col1α2 generate a 105 bp amplicon from exons 46 and 47 of the 

col1α2 gene.  Intron 46 - 47 of the col1α2 gene is 320 bp which would allow us to 

detect the presence of genomic DNA in qPCR reactions using gel 

electrophoresis.  Genomic DNA contamination was not detected in qPCR 

reactions. 

Procollagen I Immunoblot.  Myotubes were treated with different 

concentrations of recombinant murine myostatin (R & D Systems) in DMEM + 1% 

AbAm for 8 hours, rinsed with PBS and 0.5M EDTA, scraped and homogenized 

in Laemmli's sample buffer with 1:20 β-mercaptoethanol and 1:20 protease 

inhibitor cocktail (Sigma) and subsequently placed in boiling water for 5 minutes.  

Protein concentration, electrophoresis and blotting occurred as described above.  

Membranes were blocked in 10% powdered milk, rinsed and incubated with a 

polyclonal antibody against procollagen I (Santa Cruz Biotechnology, Santa 

Cruz, CA) and an HRPO conjugated secondary antibody (Pierce Biotechnology), 

and developed as described above.  Following detection of procollagen I, 

membranes were stripped and reprobed using a monoclonal antibody against β-

tubulin (Developmental Studies Hybridoma Bank, Iowa City, IA). 

Statistical Analyses.  Results are presented as mean ± SEM.  

KaleidaGraph 4.02 software (Synergy Software, Reading, PA) was used to 

conduct statistical analyses.  Differences between groups were tested using a 
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one-way ANOVA with α=0.05.  Fisher's LSD post-hoc test was used to identify 

specific differences when significance was detected.          

Results 

Morphology.  The body mass, body length, tibial length, muscle mass, 

absolute numbers of fibers per muscle, fiber areas, Lo, Lf, and CSA values of 

EDL and soleus muscles from each of the three groups of mice are shown in 

Table 2.1.  Although no differences were observed for body masses or body 

lengths of the MSTN+/+, MSTN+/- or MSTN-/- mice, the mean mass of the EDL 

muscles of MSTN-/- mice was 66% greater than that of the MSTN+/+ mice and 

51% greater than that of the MSTN+/- mice.  For MSTN-/- mice, the mass of the 

soleus was 36% greater soleus muscle mass than that of the MSTN+/+ mice.   

Conflicting reports have been published regarding the role of myostatin in 

determining the number of fibers per muscle (21, 36, 42, 47, 51, 68, 69).  Each of 

these reports counted the number of muscle fibers present in a cross section of 

muscle.  The counting of the number of fibers present in a cross section of a 

muscle does not necessarily provide an accurate indication of the total number of 

fibers present in that muscle (38).  To address this issue, the absolute number of 

fibers in muscles from MSTN+/+, MSTN+/- and MSTN-/- mice were counted.  The 

EDL muscles of MSTN-/- mice had 60% more muscle fibers than MSTN+/+ mice 

and 39% more fibers than MSTN+/- mice, and the MSTN+/- mice had 16% more 

fibers than MSTN+/+ mice (Table 2.1).  For soleus muscles, MSTN-/- mice had 

31% more fibers than MSTN+/+ mice and 9% more than MSTN+/- mice, and the 

MSTN+/- mice had 20% more fibers than MSTN+/+ mice (Table 2.1).   
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The mean fiber areas and CSA of EDL muscles of MSTN+/- and MSTN-/- 

mice were greater than MSTN+/+ mice.  For soleus muscles, the mean fiber areas 

and CSA of MSTN-/- mice were greater than MSTN+/+ mice (Table 2.1).    

The EDL and soleus muscles of mice both originate on the proximal tibia 

and run the entire length of the tibia before inserting on the phalanges or 

calcaneus, respectively.  No differences in the lengths of tibias of MSTN+/+, 

MSTN+/- and MSTN-/- mice were observed (Table 2.1).  Furthermore, the Lo and 

Lf values of EDL and soleus muscles, respectively, were not different among the 

three genotypes.   

Collagen Content of Muscles.  The amino acid hydroxyproline makes up 

~14% of the dry mass of fibrillar collagens (44) and is commonly used as an 

indicator of collagen content.  The relative hydroxyproline content of EDL 

muscles of MSTN-/- was 75% less than MSTN+/+ mice (Table 2.1 and Figure 2.1).  

MSTN+/- mice had 59% less hydroxyproline than MSTN+/+ mice.  For soleus 

muscles, no difference was observed  for the relative amounts of hydroxyproline 

amongst the three genotypes (Table 2.1 and Figure 2.1).         

Myostatin Mediated Type I Collagen Synthesis.  The marked decrease in 

the collagen content of the EDL muscles from myostatin deficient mice lead us to 

hypothesize that myostatin induces the expression of type I collagen in muscle 

tissue.  We found a dose dependent increase in col1α2 expression (Figure 2.2) 

and procollagen I protein content (Figure 2.2) of primary myotubes treated with 

myostatin.  Similar results were observed in C2C12 myotubes and primary 

fibroblasts isolated from mouse tendon (data not shown). 
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Contractile Properties.  Myostatin deficiency had a more profound impact on the 

contractile properties of EDL muscles than soleus muscles (Table 2.2 and Figure 

2.3).  The Po of MSTN-/- mice was 34% greater than the Po of MSTN+/+ mice and 

19% greater than the Po of MSTN+/- mice.  MSTN+/- mice had a 13% greater Po 

than MSTN+/+ mice.  When Po was normalized by the CSA, MSTN-/- mice had an 

18% lower value for sPo than either MSTN+/+ or MSTN+/- mice.  For soleus 

muscles, the Po of MSTN-/- mice was 30% greater than MSTN+/+ mice, but the 

values for sPo were not different.   

Contraction-Induced Injury.  During lengthening contractions, the average 

force developed by EDL muscles was not different, but compared with MSTN+/+ 

mice, the work done to lengthen the muscles was 12% and 37% less for MSTN+/- 

and MSTN-/- mice, respectively (Table 2.3), indicating a decrease in the stiffness 

of these muscles.   After the lengthening contraction protocol (LCP), muscles 

from MSTN-/- mice had a force deficit that was 15% greater than MSTN+/+ mice 

(Table 2.3 and Figure 2.4).  During stretches of soleus muscles, the average 

force developed by MSTN-/- mice was approximately 18% greater than that of 

MSTN+/+ mice.  During lengthening contractions of soleus muscles, no 

differences in the work done to stretch the muscles were observed.  Following 

the LCP, the force deficits of soleus muscles were not different.   

ActRIIB Content of EDL and Soleus Muscles.  The deficiency of myostatin 

had a more profound impact on the morphological and contractile properties of 

EDL muscles than soleus muscles.  Since myostatin appears to act systemically 

(71), the difference in the amount of ActRIIB present in EDL and soleus muscles 
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was determined.  Compared with soleus muscles, the amount of ActRIIB was 

greater in EDL muscles (Figure 2.5).   

Discussion 

The Po of skeletal muscle can be increased by either hypertrophy of 

existing fibers or by hyperplasia.  In either case, as whole muscle CSA increases, 

the angle of pennation of muscle fibers (θ) also increases (38).  The transmission 

of the force developed by single muscle fibers from tendon to tendon along the 

line of tension development of the muscle is proportional to the cosine of θ.  As θ 

increases from 0º to 90º, the cosine of θ decreases from 1 to 0.  Therefore, as a 

muscle undergoes hypertrophy or hyperplasia, the net force per CSA is expected 

to decrease.  Our hypothesis that myostatin deficiency would increase the Po but 

decrease the sPo of muscles is supported by the observations of the contractile 

properties of the EDL muscles of MSTN-/- mice.  In contrast, for soleus muscles, 

the complete deficiency of myostatin increased the Po less than that of the EDL 

muscle and had no effect on the sPo.  Furthermore, EDL muscles of MSTN+/- 

mice displayed a  greater Po than MSTN+/+ mice, but showed no change in sPo.  

While θ was not measured directly, using a model of muscle architecture that 

estimates θ based upon the number of fibers in a muscle, Lf, Lo and fiber areas 

(38), compared with MSTN+/+ mice, we estimate that MSTN-/- mice had a 38% 

greater θ for EDL muscles, and a 17% greater θ for soleus muscles, respectively.  

The greater increase in θ for EDL than soleus muscles may explain the observed 

decrease in sPo for EDL muscles and the lack of change in sPo for soleus 

muscles.  In terms of the magnitude of the increases in muscle CSA, mass and 
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Po, a threshold appears to exist for initiating a decrease in sPo, wherein large 

increases in muscle CSA, mass and Po initiate decreases in sPo, whereas with 

small increases, sPo does not change.   

Following contraction-induced injury to muscles, the immediate force 

deficit results from the mechanical disruption of the ultrastructure of sarcomeres 

(8, 18, 33, 34).  The magnitude of this force deficit is a function of strain and the 

work done to stretch the contractile component (CC) of muscle (8).  The 

aponeurosis (intramuscular tendon) and the tendon, composed chiefly of type I 

and III collagen (12, 22, 27), form the series elastic component (SEC) of muscle 

(23).  A positive correlation exists between the collagen content and stiffness of a 

muscle (16, 19, 48).  During a lengthening contraction, the total displacement of 

the muscle is the sum of the displacement of the CC and the SEC, therefore 

displacement of the SEC protects the CC from contraction-induced injury.  During 

a  lengthening contraction, the protection afforded to the CC by the SEC 

increases as the displacement of the SEC relative to the CC increases.  Despite 

this potential for protection, if the strain and work done during a lengthening 

contraction are great enough, the SEC can become damaged and no longer 

provide protection for the CC.  Consequently, an advantageous arrangement for 

a muscle is to have an SEC with a stiffness that allows for a moderate amount of 

displacement during a lengthening contraction, but not too compliant as to 

become damaged during a lengthening contraction.  Our results suggest that for 

EDL muscles, the complete deficiency of myostatin decreases the stiffness of the 
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SEC in such a way that the susceptibility to contraction-induced injury is 

increased.   

  The effect of myostatin deficiency on the structure and function of EDL 

and soleus muscles was quite different.  Compared with the content of the 

primary myostatin receptor, ActRIIB, in the soleus muscles of MSTN+/+ mice, the 

content in the EDL muscles was ~ two-fold greater.  The greater quantity of 

ActRIIB in the EDL muscles of MSTN+/+ mice appeared to make the EDL 

muscles more responsive than soleus muscles to the presence of myostatin.  

Consequently, with the absence of myostatin in the MSTN-/- mice, the EDL 

muscles experience a much greater relative increase in mass and number of 

fibers than experienced by the soleus muscles.   

The treatment of muscle injuries and disease often involves a two-pronged 

therapeutic regimen of improving the strength of muscle and decreasing the 

formation of collagenous scar tissue (13, 49).  Much of the interest behind the 

potential use of myostatin inhibitors is the ability of these inhibitors to enhance 

the regeneration of skeletal muscle and also decrease the accumulation of scar 

tissue in murine models of muscle injuries and disease (17, 40, 45, 61-63).  

Myostatin inhibitors may therefore be a useful therapeutic adjunct to traditional 

athletic training and physical therapy by directly improving contractility and 

decreasing fibrosis.  The enhanced regenerative capacity of myostatin-deficient 

muscle is likely due to an increase in satellite cell activity, as myostatin is a 

negative regulator of satellite cell proliferation and migration (28, 39, 40, 56, 58, 

62).  The increased satellite cell activity produced by the deficiency of myostatin 
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does not explain how myostatin deficiency decreases the fibrosis normally 

present in dystrophic muscle (4, 5, 63) and following snake venom-induced 

muscle injury (40, 62).  The decreased content of collagen in otherwise healthy 

myostatin-deficient muscles, along with the observation that myostatin increases 

directly the expression of type I collagen in cultured muscle tissue, suggest a 

direct role for myostatin in the signal transduction pathways that regulate the 

collagen content of the ECM of skeletal muscle tissue. 

Pharmaceutical inhibition of myostatin likely suppresses, but does not 

eliminate myostatin signaling completely.  The haploinsufficient MSTN+/- mouse 

provides a useful model for the investigation of the effects of partial suppression 

of myostatin signaling.  In the present study, compared with their MSTN+/+ 

littermates, the EDL muscles of MSTN+/- mice developed a greater Po, but unlike 

the MSTN-/- mice had no difference in sPo or force deficit after injury.  The 

collagen content and stiffness of the EDL muscles of MSTN+/- mice was less than 

that of MSTN+/+ mice, but this did not increase the susceptibility of these muscles 

to contraction-induced injury.  Such a decrease in the stiffness of muscle might 

be beneficial in the treatment of diseases that involve severe muscle fibrosis, 

such as Duchenne muscular dystrophy (DMD).  Patients with DMD suffer from 

respiratory insufficiency due to impaired contractility of the diaphragm muscle 

and to the increased stiffness of the diaphragm muscle (3, 64).  Therefore, partial 

inhibition of myostatin may provide a useful treatment for fibrotic muscle diseases 

through an increase in the contractile forces and a decrease in the stiffness of 

the muscles.    
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Figure 2.1.  Relative hydroxyproline content of EDL (A) and soleus (B) muscles 
from MSTN+/+, MSTN+/- and MSTN-/- mice.  (A) Compared with MSTN+/+ mice, the 
amount of hydroxyproline per mg of dry EDL muscle mass was less for MSTN+/- 
and MSTN-/- mice.  (B) There was no difference in the amount of hydroxyproline 
per mg of dry soleus muscle mass between MSTN+/+, MSTN+/- and MSTN-/- mice.  
Values are means ± SE.  N = 5 muscles per genotype.  *Significantly different 
from MSTN+/+ at P < 0.05.   
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Figure 2.2.  Myostatin increases (A) col1α2 expression and (B) procollagen I 
content of primary skeletal muscle myotubes.  (A) RT-qPCR: Myostatin increases 
the expression of col1α2 normalized to β2m in a dose-dependant fashion.  
Values are means ± SE.  *Significantly different from the 0 ng/mL group at P < 
0.05.  #Significantly different from the 10ng/mL group at P < 0.05.  (B) 
Immunoblot: Myostatin increases the procollagen I protein content of myotubes in 
a dose-dependant fashion.  β-tubulin is shown as a loading control. 
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Figure 2.3.  Force values for EDL muscles (A, B) and soleus muscles (C,D) from 
MSTN+/+, MSTN+/- and MSTN-/- mice.  (A) The Po of EDL muscles of MSTN-/- 
mice is greater than the Po of MSTN+/+ and MSTN+/- mice.  (B) When Po is 
normalized to CSA, the sPo of EDL muscles of MSTN-/- mice is less than the sPo 
of MSTN+/+ and MSTN+/- mice.  (C) The Po of soleus muscles of MSTN-/- mice is 
greater than the Po of MSTN+/+ and MSTN+/- mice.  (D) When Po is normalized to 
CSA, there is no difference in sPo of soleus muscles.  Values are means ± SE.  N 
= 6 muscles per genotype.  *Significantly different from MSTN+/+ at P < 0.05.  
#Significantly different from MSTN+/- at P < 0.05.  
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Figure 2.4.  Force deficits following contraction-induced injury to EDL muscles 
(A) and soleus muscles (B).  (A) Muscles from MSTN-/- mice had a force deficit 
that was greater than MSTN+/+ mice after the first lengthening contraction, and a 
force deficit that was greater than MSTN+/+ and MSTN+/- mice after the second 
lengthening contraction.  (B) There was no difference in the force deficits 
between soleus muscles following the lengthening contractions.  LC = 
Lengthening contraction.  Values are means ± SE.  N = 6 muscles per genotype.  
*Significantly different from MSTN+/+ at P < 0.05.  #Significantly different from 
MSTN+/- at P < 0.05.  
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Figure 2.5.  ActRIIB protein content of EDL and soleus muscles from MSTN+/+ 
mice.  Compared with soleus muscles, the amount of ActRIIB protein is greater in 
EDL muscles (immunoblot).  Sarcomeric myosin proteins are shown as loading 
controls (Coomassie Brilliant Blue staining).   
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 MSTN+/+ MSTN+/- MSTN-/- 
Body Mass (g) 32.39±1.32 36.63±1.11 35.01±1.27 
Body Length (mm) 93.33±0.53 95.00±0.59 92.75±0.92 
Tibia Length (mm) 17.91±0.10 17.74±0.13 18.07±0.15 
EDL Muscles    
Wet Mass (mg) 11.62±0.29 12.82±0.25* 19.32±0.52*# 
Fibers per muscle 1462±12 1693±58* 2351±87*# 
Fiber area (µm2) 1231.12±28.64 1315.38±24.55* 1512.14±29.00*# 
Lo (mm) 13.13±0.43 12.78±0.22 13.38±0.23 
Lf (mm) 5.78±0.19 5.63±0.10 5.89±0.10 
CSA (mm2) 1.90±0.04 2.15±0.05* 3.10±0.07*# 
Hyp / Muscle Mass (µg/mg) 1.90±0.14 0.77±0.09* 0.47±0.08* 
Soleus Muscles    
Wet Mass (mg) 10.45±0.44 11.97±0.78 14.22±0.73* 
Fibers per muscle 985±37 1185±33* 1292±34*# 
Fiber area (µm2) 1148.99±20.89 1162.28±20.66 1316.45±36.12*# 
Lo (mm) 12.42±0.30 12.55±0.25 12.98±0.46 
Lf (mm) 8.82±0.21 8.91±0.18 9.22±0.33 
CSA (mm2) 1.12±0.06 1.27±0.07 1.45±0.03* 
Hyp / Muscle Mass (µg/mg) 0.71±0.10 0.61±0.09 0.54±0.09 
 
Table 2.1.  Anatomical properties of animals.  Values are means ± SE.  N = 12 
for tibia length and body length.  N = 300 fibers from 3 muscles for each 
genotype.  N = 5 muscles per genotype for fibers per muscle and hydroxyproline.  
N = 6 muscles per genotype for all other values.  *Significantly different from 
MSTN+/+ at P < 0.05.  #Significantly different from MSTN+/- at P < 0.05.   
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 MSTN+/+ MSTN+/- MSTN-/- 
EDL Muscles    
Pt (mN) 110.78±4.84 136.76±12.33 160.87±8.07* 
sPt (mN/mm2) 58.20±1.75 63.27±5.10 52.25±3.38 
TTPT (ms) 23.68±2.80 20.91±1.32 23.86±2.46 
½RT (ms) 22.56±1.48 20.80±1.02* 15.51±0.25*# 
dP/dt (mN/ms) 13.07±0.05 15.64±1.29 19.00±1.24*# 
Po (mN) 461.19±14.69 520.53±18.48* 616.93±17.10*# 
sPo (mN/mm2) 243.32±10.04 242.12±8.22 199.86±7.37*# 
Soleus Muscles    
Pt (mN) 47.12±2.78 60.43±5.00 65.52±5.85* 
sPt (mN/mm2) 42.08±1.90 47.51±2.30 45.06±3.81 
TTPT (ms) 40.61±4.68 32.41±0.99 27.38±3.75 
½RT (ms) 50.10±5.42 47.55±2.13 37.57±1.92 
dP/dt (mN/ms) 4.20±0.21 4.91±0.33 6.08±0.80 
Po (mN) 295.84±7.49 324.94±18.52 385.06±17.57*# 
sPo (mN/mm2) 265.81±10.10 257.15±6.34 264.84±8.50 
 
Table 2.2.  Contractile Properties of EDL and Soleus Muscles.  Values are 
means ± SE.  N = 6 muscles per genotype.  Pt = peak twitch force; sPt = specific 
Pt; TTPT = time to peak twitch tension; ½RT = half-relaxation time; dP/dt = 
maximum rise in tension.  *Significantly different from MSTN+/+ at P < 0.05.  
#Significantly different from MSTN+/- at P < 0.05.  
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 MSTN+/+ MSTN+/- MSTN-/- 
EDL Muscles    
Stretch 1    
  Average Force (mN) 648.07±8.21 644.48±15.74 664.56±8.63 
  Work (J/kg) 129.00±3.66 113.05±1.85* 81.31±2.65*# 
  Force Deficit (% of Pre-injury Po) 15.74±0.81 18.19±2.78 24.14±3.03* 
Stretch 2    
  Average Force (mN) 631.03±8.43 632.78±14.93 651.86±9.00 
  Work (J/kg) 125.58±3.39 111.01±1.76* 79.76±2.65*# 
  Force Deficit (% of Pre-injury Po) 30.10±1.71 29.59±2.46 45.23±6.52*# 
Soleus Muscles    
Stretch 1    
  Average Force (mN) 509.53±26.93 537.37±33.60 620.89±28.49* 
  Work (J/kg) 173.21±11.68 160.60±5.56 161.15±5.39 
  Force Deficit (% of Pre-injury Po) 18.21±3.63 19.18±4.38 18.60±2.52 
Stretch 2    
  Average Force (mN) 455.83±14.49 480.13±29.67 569.29±31.98*# 
  Work (J/kg) 154.89±8.35 143.33±3.96 147.60±6.21 
  Force Deficit (% of Pre-injury Po) 20.68 ± 4.93 20.21 ± 3.45 25.08 ± 3.76 
 
Table 2.3.  Mechanical Injury of EDL and Soleus Muscles.  Values are means ± 
SE.  N = 6 muscles per genotype.  *Significantly different from MSTN+/+ at P < 
0.05.  #Significantly different from MSTN+/- at P < 0.05.  
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Chapter III 
 

Tendons of Myostatin-Deficient Mice are Small, Brittle and Hypocellular 
 
 
Abstract 

Tendons play a significant role in the modulation of forces transmitted 

between bones and skeletal muscles and consequently protect muscle fibers 

from contraction-induced, or high strain, injuries.  Myostatin (GDF-8) is a 

negative regulator of muscle mass.  Inhibition of myostatin not only increases the 

mass and maximum isometric force of muscles, but also increases the 

susceptibility of muscle fibers to contraction-induced injury.  Furthermore, the 

expression of myostatin and the myostatin receptors, ACVR2B and ACVRB, 

were detectable in the tendons.  We hypothesized that myostatin would regulate 

the morphology and mechanical properties of tendons.  Surprisingly, compared 

with wild type (MSTN+/+) mice, the tendons of myostatin-null mice (MSTN-/-) were 

smaller, had a decrease in fibroblast density and a decrease in the expression of 

type I collagen.  Tendons of MSTN-/- mice also had a decrease in the expression 

of two genes that promote tendon fibroblast proliferation, scleraxis and 

tenomodulin.  Treatment of tendon fibroblasts with myostatin activated the p38 

MAPK and Smad2/3 signaling cascades, increased cell proliferation and 

increased the expression of type I collagen, scleraxis and tenomodulin.  

Compared with the tendons of MSTN+/+ mice, the mechanical properties of tibialis 
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anterior tendons from MSTN-/- mice had a greater peak stress, lower peak strain 

and a increased stiffness.  We conclude that in addition to the regulation of 

muscle mass and force, myostatin regulates the structure and function of tendon 

tissues. 

Introduction 

Tendons are a critical component of the musculoskeletal system.  

Situated, as tendons are, between bones and skeletal muscles, tendons are in a 

position to transmit forces generated within skeletal muscle fibers to bone and 

conversely transmit to skeletal muscle external loads placed on bone.  The 

extracellular matrix (ECM) of tendon tissue is composed primarily of type I 

collagen, as well as type III collagen, elastin and various proteoglycans and 

mucopolysaccharides.  Tendons are in series with both the contractile and non-

contractile elements of skeletal muscles as well as with bone.  Consequently, 

tendons are able to both store elastic energy during locomotion and protect 

muscle fibers from stretch-induced and contraction-induced injuries (15, 28).  

While considerable research has been conducted on the effects of exercise, 

immobilization and aging on the structure and function of tendons (19, 20), much 

less is known about the specific cytokines that regulate the structure and function 

of tendons. 

During embryonic development of the limb, early tendon development can 

be categorized into three phases, with each phase corresponding to an 

upregulation of the bHLH transcription factor scleraxis (13, 40).  Scleraxis is a 

marker of the tendon cell lineage (38, 40) and mice deficient in scleraxis display 
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severe tendon defects, have impaired locomotion and a complete inability to use 

their tails (34).  Scleraxis promotes the formation of tendon ECM by inducing the 

expression of type I collagen (23) and increases tendon fibroblast proliferation by 

the upregulation of the expression of the type II transmembrane protein, 

tenomodulin (41).  During the final stages of early tendon development, FGF-4 

and FGF-8, are secreted by adjacent myogenic cells and induce the expression 

of scleraxis  (5, 14). While FGF-4 and FGF-8 can induce scleraxis expression in 

the final phase of early tendon development, they do not appear to be 

responsible for the first and second phases of scleraxis expression (13).  In fact, 

another member of the GDF family may be a candidate for the regulation of 

scleraxis expression during the first and second phases of early tendon 

development (13), but the specific member of the GDF family has not been 

identified.   

Three members of the GDF family have been reported to influence the 

development of tendon tissue.  The placement of matrices coated with GDF-5, 

GDF-6 and GDF-7 into skeletal muscle induce the ectopic formation of tendon-

like tissue (50).  The tendons of GDF5-/- mice are smaller and display decreases 

in type I collagen content, peak stress, stiffness and energy absorption to yield 

(32).  The GDF5-/- mice also have severe bone and joint defects (32), but 

whether these changes in tendon mechanical properties arise due to a direct 

effect of GDF-5 on tendon cells or the associated skeletal defects is not clear.  

Compared with wild type mice, GDF7-/- mice have a minor tendon phenotype, 

with a decrease in proteoglycan content and smaller collagen fibrils, but no 
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differences in Achilles tendon mechanical properties, type I collagen content, or 

gross morphology (31).  Some evidence supports roles for GDF-5, GDF-6 and 

GDF-7 in tendon development, but whether other members of the GDF family 

influence tendon development has not been established.    

Myostatin (GDF-8) is a member of the TGF-ß superfamily of cytokines and 

is a negative regulator of skeletal muscle mass.  Myostatin binds to the activin 

type IIB (ACVR2B) and type IB (ACVRB) receptors and activates the Smad2/3, 

p38 MAPK and Erk1/2 signal transduction pathways (22, 37, 39, 51, 53).  

Myostatin regulates muscle mass by inhibiting the proliferation and differentiation 

of satellite cells (21, 26, 45), in addition to decreasing myofibrillar protein 

synthesis (49) and increasing the expression of the E3 ubiquitin ligase atrogin-

1/MAFbx (27).  Myostatin has a well established role in regulation of the structure 

and function of skeletal muscle, but the contribution of myostatin to the regulation 

of the structure and function of tendon has not been established. 

In addition to the regulation of muscle mass, myostatin has a profound 

impact on the contractile properties of skeletal muscles.  Inhibition of myostatin 

increases the maximum isometric force of skeletal muscles (3, 4, 30) and the 

susceptibility of muscles to contraction-induced injury (30).  During a lengthening 

contraction, the series elastic component (aponeurosis and tendon) of a muscle 

protects muscle fibers from damage by reducing the strain on fibers (15).  The 

MSTN-/- mice are much more susceptible to contraction-induced injury than the 

MSTN+/+ mice, an observation that is consistent with the possibility that myostatin 

might play a role in the regulation of the structural and functional properties of the 
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tendons. Our prior study (30) focused on the mechanical and contractile 

properties of the muscle and aponeurosis, but did not investigate the mechanical 

properties of the tendons of  MSTN-/- mice directly.  The overall aim of this 

investigation was to determine the role of myostatin in regulation of the 

mechanical and morphological properties of tendons.  We hypothesized that a 

deficiency in  myostatin results in smaller, stiffer, and more brittle tendons.    

Methods 

Animals.  All experiments were conducted in accordance with the 

guidelines of the University of Michigan Committee on the Use and Care of 

Animals.  Mice were housed in specific-pathogen-free conditions and were 

provided food and water ad libidum.  The line of MSTN-/- mice used in this study 

are of a C57Bl/6 background and were a kind gift of Dr. Se-Jin Lee.  The null 

MSTN allele was generated by replacing a portion of the third exon of the MSTN 

gene that encodes the C-terminal region of the mature myostatin protein with a 

neo cassette (29).   The wild type (MSTN+/+) littermates of the MSTN-/- mice 

served as controls.  The genotype of mice was determined by PCR-based 

analysis of DNA samples obtained via tail biopsy. 

Mechanical Testing of Tendons.  To evaluate the mechanical properties of 

the tibialis anterior tendon, the entire tendon unit (from the myotendinous junction 

to the base of the first metatarsal bone) was used.  The tibialis anterior tendon 

was chosen based on its relative uniformity of diameter, minimal aponeurosis 

and long gauge length (2).  Six month old male mice were anesthetized with 

intraperitoneal injection of Avertin (400 mg/kg).  Braded silk sutures were tied 
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around the distal end of the tibialis anterior muscle just superior to the 

myotendinous junction and at the very distal end of the tendon, just superior to 

the first metatarsal. The length (Lo) of the tibialis anterior tendon was measured 

using digital calipers while the ankle was placed in maximal plantarflexion.  The 

tendon was removed by cutting the muscle just superior to the proximal suture 

and by removing the first metatarsal bone that was inferior to the distal suture.  

The tendon was immediately submerged in PBS maintained at 25º C.  The 

tendon was held at Lo and cross-sectional area (CSA) was calculated from 10 

evenly spaced width and depth measurements from high resolution digital 

photographs of both top and side views of the tendon.  Side views were obtained 

using a 90º prism embedded in the side of the bath.  These measurements were 

fitted to an ellipse and the ellipse area was used as the tendon CSA. 

The proximal end of the tendon was attached to a dual-mode servo 

motor/force transducer (model 305C, Aurora Scientific) and the distal end was 

attached to a fixed post.  Custom designed software (LabVIEW 7.1, National 

Instruments) controlled the servo motor motion and recorded force and strain 

data at a sampling rate of 20 kHz.  The tendon was stretched to a 100% strain 

relative to Lo at a velocity of 1 Lo × s-1.  Peak stress was defined as the stress 

that further increases in length resulted in a rupture of the tendon or the point at 

which yield strength had been reached without a frank rupture of the tendon.  

Peak strain was defined as the strain at which peak stress was reached. The 

data were fitted by either a fourth or fifth order polynomial function with an R2 ≥ 

0.9995.  Peak tendon stiffness was calculated by differentiating the fitted 
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polynomial and then determining its maximum value between Lo and peak strain.  

Average tendon stiffness was calculated as the mean value of the differentiated 

polynomial between Lo and peak strain.  The energy absorption to the yield point 

was calculated by integrating the force-displacement function from Lo through 

peak strain and normalizing this value by the mass of the tendon. 

Histology.  To determine the density of fibroblasts in tendon tissue, tibialis 

anterior tendons were removed from 6 month old anesthetized mice, placed in 

embedding media and snap frozen in using isopentane cooled with dry ice.  

Sections were obtained from the proximal, middle and distal thirds of the tendon 

and stained with hematoxylin and eosin.  Fibroblast density for the entire tendon 

was calculated by taking the mean value of the counts from each of the three 

regions of the tendon.   

Tendon Fibroblast Isolation, Culture And Treatment With Myostatin.  

Hindlimb and forelimb tendons were isolated from anesthetized 4 month old male 

MSTN+/+ mice, carefully trimmed of muscle and fat tissue, finely minced and 

placed in DMEM + 0.05% Type II Collagenase (Invitrogen) in a shaking water 

bath for 2 h at 37º C.  Following dissociation, fibroblasts were pelleted by 

centrifugation, resuspended in DMEM + 2% fetal bovine serum (FBS) + 1% 

antibiotic-antimycotic (AbAm) and expanded in 100 mm culture dishes coated 

with type I collagen (BD Biosciences).  Fibroblasts were passaged twice upon 

reaching 70% confluence.  Following the last passage, 2 × 104 fibroblasts were 

plated in 35 mm culture dishes coated with type I collagen and expanded until 

reaching 80% confluence.  Fibroblasts were then starved of serum for 24 hours 
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prior to treatment by replacing serum containing media with DMEM + 1% AbAm 

+ 1× Insulin-Transferrin-Selenium supplement (ITS, Invitrogen).  Recombinant 

murine myostatin, produced in NS0 mouse myeloma cells (R & D Systems), was 

dissolved into the serum-free media at a final concentration of 500 or 1000 

ng/mL.  Stock solutions of the p38 MAPK inhibitor SB-203580 (10) and the 

Smad2/3 inhibitor SB-431542 (17) were prepared by dissolving these solid 

anhydrous compounds in DMSO at a concentration of 10mM.  These stock 

solutions were then added to serum-free media containing 1% DMSO at a final 

concentration of 10µM for SB-203580 and 5µM for SB-431542.  Fibroblasts were 

pretreated with SB-203580 or SB-431542 for 1 hour prior to treatment with 

myostatin.   

Cell Proliferation and Immunocytochemistry.  Following serum starvation, 

fibroblasts were incubated in serum free media containing 20µM of the thymidine 

analog 5-bromo-2′-deoxyuridine (BrdU, Sigma) for 3 hours.  Fibroblasts were 

rinsed twice with serum free media and treated with myostatin, SB-203580 and 

SB-431542 as described above.  Following 24 hours of treatment, fibroblasts 

were rinsed with PBS, fixed in ice cold methanol and permeabilized with 0.5% 

Triton X-100.  The BrdU epitope was exposed by digesting DNA with 200U/mL of 

EcoRI and denaturing DNA with 2N HCl.  BrdU was visualized using an anti-

BrdU antibody (G3G4, SJ Kaufman, Developmental Studies Hybridoma Bank) 

and a Cy3-conjugated secondary antibody (Jackson ImmunoResearch).  DAPI 

(Sigma) was used as a non-specific nuclear stain.  Twenty five random fields 
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were counted per dish.  Cell proliferation data presented are the mean ± SE 

values of three independent experiments.   

RT-PCR.  RNA was isolated from samples using an RNeasy Mini Kit 

(Qiagen).  When isolating RNA from whole tendons, the tissue was treated with 

type II collagenase and proteinase K prior to vigorous homogenization in 

guanidine thiocyanate buffer.  Due to the smaller size of the tibialis anterior 

tendons, we were unable to consistently obtain adequate quantities of RNA 

with an A260/A280 ratio between 1.8 and 2.0.  We instead used RNA from Achilles 

tendons, as we were able to obtain RNA with A260/A280 ratios between 1.8 and 

2.0 from these tendons.  RNA was treated with DNase I and reverse 

transcribed using an Omniscript RT kit (Qiagen) and oligo(dT)15 primers.  

Primers for PCR reactions (Table 3.1) were designed to generate amplicons that 

span multiple exons.  For standard PCR, 250ng of cDNA underwent 42 rounds of 

amplification using GoTaq Green (Promega).  PCR products were separated 

using a 2% agarose gel.  For real-time PCR, cDNA was amplified using a 

QuantiTect SYBR Green I PCR system (Qiagen) with Uracil-N-Glycosylase 

(Invitrogen) in an Opticon 2 real-time thermal cycler (Bio-Rad).  qPCR reactions 

were conducted in quadruplicate for each sample.  We used the methods of 

Livak and Schmittgen (25) to determine optimal loading quantities of cDNA and 

in the validation of GAPDH as a housekeeping gene.  Gene expression was 

normalized to GAPDH expression using the 2-ΔΔC(t) method (25). The presence of 

single amplicons from qPCR reactions was verified by melting curve analysis as 
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well as electrophoresis using a 2% agarose gel.  qPCR data presented is the 

combined means ± SE of three independent experiments. 

Immunoblot.  Tendon fibroblasts, prepared as described above and 

starved of serum for 24 hours, were treated for two hours with myostatin, SB-

203580 and SB-431542 for 2 hours.  Following treatment, cells were rinsed with 

PBS and scraped and homogenized in Laemmli's sample buffer with 1:20 ß-

mercaptoethanol, 1:20 protease inhibitor cocktail (Sigma) and 1:40 phosphatase 

inhibitor cocktail (Sigma), and then placed in boiling water for 5 minutes. Protein 

concentration of the samples was determined using an RC DC Protein Assay 

(Bio-Rad).  Equal amounts of protein were loaded into polyacrylamide gels and 

subjected to electrophoresis using a 4% stacking, 10% resolving gel.  Proteins 

were transferred to a 0.45 µm nitrocellulose membrane, stained with Ponceau S 

to verify equal protein transfer and blocked using casein (Vector Labs).  

Antibodies against p38 MAPK and phospho-p38 MAPK were purchased from 

Cell Signaling.  Primary antibodies against Smad2/3 and phospho-Smad2/3 were 

purchased from Millipore.  Biotinylated secondary antibodies were purchased 

from Pierce Biotechnology.  Avidin-HRPO conjugates were purchased from 

Vector Labs.  Membranes were developed using SuperSignal West Dura 

enhanced chemiluminescent reagents (Pierce Biotechnology) and visualized 

using a FluorChem chemiluminescent documentation system (Alpha Innotech). 

Statistical Analysis.  Results are presented as means ± SE.  KaleidaGraph 4.02 

software was used to conduct statistical tests.  For gene expression and cell 

proliferation data from cell culture experiments, differences between groups were 
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tested with a one-way ANOVA with α = 0.05.  Fisher’s least significant post hoc 

test was used to identify specific differences when significance was tested.  For 

all other data, differences between MSTN+/+ and MSTN-/- mice was tested with 

Student’s t-test with α = 0.05.  

Results 

MSTN-/- mice have greater muscle masses but smaller tendons.  We first 

determined the impact of myostatin deficiency on the mass of tendons.  Although 

the mass of the tibialis anterior (TA) muscles of MSTN-/- mice were 72% greater 

than MSTN+/+ mice, the TA tendons of the MSTN-/- mice were 40% smaller 

(Table 3.2).  When the tendon mass was normalized by the muscle mass, the 

MSTN-/- mice had a 64% decrease in the tendon/muscle mass ratio.  Similar 

results were observed for soleus muscles and Achilles tendons.  The mass of the 

soleus muscles of MSTN-/- mice were 82% greater than MSTN+/+ mice, but the 

Achilles tendons of the soleus muscles of MSTN-/- mice were 44% smaller than 

those of MSTN+/+ mice.  Consequently, for MSTN-/- mice the Achilles 

tendon/soleus muscle mass ratio was decreased by 69%.   Furthermore, for the 

MSTN-/- mice, the CSA of the TA tendons were 50% smaller than those of the 

MSTN+/+ mice (Table 3.3).  The lengths and densities of the TA tendons of 

MSTN-/- and MSTN+/+mice were not different.  CSA and the lengths and densities 

of Achilles tendons were not determined, as the Achilles tendons were not used 

in testing of mechanical properties. 

Tendon fibroblasts express the myostatin receptors and activate the p38 

MAPK and Smad2/3 signaling pathways in response to myostatin treatment.  
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Subsequently, the expression of the myostatin receptors, ACVR2B and ACVRB, 

was examined in tendon fibroblasts.  Transcripts for both ACVR2B and ACVRB 

were identified in whole tendon tissue, as well as in cultured tendon fibroblasts 

(Figure 3.1A).  The myostatin transcript was also detected in tendon tissue and in 

cultured fibroblasts.  Due to the close anatomical proximity between muscle and 

tendon tissue, the purity of tendon samples was verified by probing for the 

presence of type IIa myosin heavy chain and MyoD.  Neither muscle specific 

gene was detected in tendon samples. 

The next step was to determine whether cultured tendon fibroblasts 

activate intracellular signaling cascades in response to myostatin treatment.  

Myostatin induced the phosphorylation of both p38 MAPK and Smad2/3 (Figure 

3.1B).  When cells were treated with myostatin in the presence of the p38 MAPK 

inhibitor SB-203580 (10), the phosphorylation of p38 MAPK did not occur.  

Consequently, SB-203580 was specific to the p38 MAPK pathway, as this 

inhibitor did not block the phosphorylation of Smad2/3.  For cells that were 

treated with myostatin in the presence of the Smad2/3 inhibitor SB-431542 (17), 

the phosphorylation of Smad2/3 was blocked with no effect on the 

phosphorylation of p38 MAPK.  These results indicated that tendon fibroblasts 

expressed the myostatin receptors, were responsive to myostatin treatment and 

this response could be blocked by the use of SB-203580 and SB-431542. 

Myostatin induces the proliferation of tendon fibroblasts.  To determine 

whether myostatin induced the proliferation of tendon fibroblasts, fibroblasts were 

pulsed with BrdU and the cells were subsequently treated with myostatin, SB-
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203580 and SB-431542 for 24h.  Treatment with 1000 ng/mL of myostatin 

increased tendon cell proliferation by 37% over controls (Figure 3.2A).  While the 

inhibition of the p38 MAPK pathway was sufficient to decrease the myostatin-

mediated increase in fibroblast proliferation, the inhibition of the Smad2/3 

pathway did not block the myostatin-mediated increase in fibroblast proliferation.  

Compared with MSTN+/+ mice, the density of fibroblasts in whole tendon tissue 

was 47% less than for the MSTN-/- mice (Figure 3.2B).  These results indicated 

that myostatin was a potent regulator of tendon cell proliferation. 

Myostatin induces the expression of scleraxis, tenomodulin and type I 

collagen in tendon fibroblasts.  The next step was to determine if myostatin 

regulated the expression of scleraxis and tenomodulin, the two genes that induce 

the proliferation of tendon fibroblasts.  Treatment with 1000 ng/mL of myostatin 

resulted in a greater than two-fold increase in scleraxis expression (Figure 3.3A).  

Inhibiting the p38 MAPK pathway resulted in a 70% decrease in scleraxis 

expression, while the inhibition of the Smad2/3 pathway resulted in a 50% 

increase in scleraxis expression.  Myostatin treatment doubled the expression of 

tenomodulin, and inhibition of both the p38 MAPK and Smad2/3 pathways to 

blocked the myostatin-mediated increase in tenomodulin expression (Figure 

3.3B).  Compared with MSTN+/+ mice, MSTN-/- mice had a 64% decrease in 

scleraxis expression (Figure 3.3D) and a 63% decrease in tenomodulin 

expression (Figure 3.3E).  These results indicated that the mechanisms 

responsible for the myostatin-mediated increase in fibroblast proliferation were 

due to an upregulation of scleraxis and tenomodulin. 
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Due to the smaller mass and CSA of the tendons of MSTN-/- mice, the 

impact of myostatin on the major structural protein of tendon, type I collagen, was 

determined.  Treatment with 1000 ng/mL of myostatin resulted in a 67% increase 

in the expression of type I collagen (Figure 3.3C).  The inhibition of either the p38 

MAPK, or the Smad2/3 pathway was sufficient to block this increase in type I 

collagen expression.  Compared with MSTN+/+ mice, a 54% decrease in type I 

collagen expression was observed in the tendons of MSTN-/- mice (Figure 3.3F).  

Taken together, the cell proliferation and gene expression data indicated that the 

smaller tendons of the MSTN-/- mice depended on a decrease in tendon 

fibroblast proliferation and on the production of the constituents of the ECM. 

MSTN-/- mice have stiff, brittle tendons.  The profound impact of myostatin 

on the structure of tendons indicated that myostatin-deficiency likely influenced 

the mechanical properties of tendons.  Consequently, the stress-strain 

relationships of tendons from MSTN+/+ and MSTN-/- mice were measured (Figure 

3.4A).  Compared with the tendons of MSTN+/+ mice, those of MSTN-/- mice 

reached a greater than two-fold higher peak stress before yielding, but reached 

less than half of the peak strain before yielding (Table 3.3).  Tendons of MSTN-/- 

mice also demonstrated a fourteen-fold greater peak stiffness and average 

stiffness values than those of MSTN+/+ mice (Figure 3.4B and Table 3.3).  

Despite the different stress-strain and stiffness properties of tendons from 

MSTN+/+ and MSTN-/- mice, the tendons absorbed the same amount of energy 

before reaching the yield point (Figure 3.4C and Table 3.3).   These results 
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indicated that the loss of myostatin had a major impact on the mechanical 

properties of tendons. 

Discussion 

Myostatin has a well characterized role in the regulation of the structure 

and function of skeletal muscles.  Although the myostatin transcript has been 

detected previously in tendons (16), our results provide the first evidence that 

myostatin  regulates directly the structure and function of tendons.  For the 

MSTN-/- mice, the deficiency in myostatin resulted in small, brittle, hypocellular 

tendons.  The difference in tendon phenotypes between the MSTN-/- and 

MSTN+/+ mice is clearly not attributable to any indirect influence of a greater 

muscle mass of the MSTN-/- mice, as both genotypes were limited to cage 

sedentary activity levels and the two genotypes showed no differences in body 

masses.  Consequently, the tendons of both groups of mice experienced very 

similar mechanical loads throughout their lifespan and the dramatic change in the 

structure and function of tendons could be attributed directly to the effect of 

myostatin on tendon fibroblasts.  In addition, this conclusion is supported further 

by the concurrent cell culture experiments.  

While myostatin promotes the synthesis of intramuscular collagen content 

and skeletal muscle fibroblast proliferation (30, 52), whether myostatin regulated 

the collagen content and proliferation of fibroblasts of tendon was not 

immediately evident.  The inhibition of myostatin in mdx mice, a murine model of 

Duchenne muscular dystrophy, decreased fibrosis and increased maximum 

isometric force production (3, 4, 48).  Compared with MSTN+/+ mice, a decrease 
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in the type I collagen content of EDL muscles of MSTN-/- mice was observed 

(30).  Myostatin also induced the expression of type I collagen in skeletal muscle 

myotubes (30) and muscle-derived fibroblasts (52) and increased the 

proliferation of cultured muscle-derived and NIH/3T3 fibroblasts (52).  The 

current investigation indicated that myostatin also promotes fibroblast 

proliferation and type I collagen synthesis in tendons, both in vivo and in vitro.  

A rapidly growing body of literature supports the role of scleraxis and 

tenomodulin in the embryonic development of tendons (5, 12-14, 23, 34, 38, 40, 

41), but little is known regarding their function in adult tendons.  FGF-4 and FGF-

8 directly induced the expression of scleraxis in tendon fibroblasts (5, 6, 14, 43).  

Furthermore, TGF-ß induced the expression of scleraxis in osteosarcoma cells 

(24) .  Overexpression of scleraxis in tendon fibroblasts either directly or 

indirectly resulted in the upregulation of tenomodulin (41). The relative 

expression of scleraxis and tenomodulin in the tendons of MSTN+/+ and MSTN-/- 

mice in this study were in good agreement with the data on tendon mass and cell 

density. Similar to tenomodulin deficient mice, the tendons of MSTN-/- mice were 

hypocellular (12).  The results from the current study indicate that scleraxis and 

tenomodulin are expressed in adult tendons and that both genes are downstream 

targets of myostatin, that activates similar signal transduction cascades as TGF-

ß and FGF.  

During several stages of embryonic development, myogenic cells and 

tendon precursor cells interact with each other to ensure proper spatial alignment 

and proper timing of differentiation events (13, 18).  While myostatin was 
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expressed in myogenic cells and decreased the expression of the myogenic 

genes MyoD, Myf-5 and Pax3 in these cells, myostatin was also expressed in 

non-myogenic cells of the ectoderm (1) but the reason for the expression of 

myostatin in non-muscle cells was not known.  Scleraxis expression occurred in 

three phases of tendon development (13, 40), with the final phase initiated by 

FGF-4 and FGF-8 (5, 14) produced in adjacent myogenic cells.  The signal that 

initiated the first phase of scleraxis expression in tendon progenitor cells is not 

known, but this signal does not come from muscle cells, as removal of myogenic 

cells does not alter scleraxis expression (14).  The ectoderm appeared critical to 

the induction of the first stage of scleraxis expression, as ablation of the 

ectoderm abolished the first phase of scleraxis expression (40).  Myostatin was 

expressed in the ectoderm around the time of the first phase of scleraxis 

expression (1) and removal of the ectoderm resulted in a downregulation of 

scleraxis.  Consequently, myostatin may play a direct role in the development of 

tendons by regulating the initial expression of scleraxis.  

One of the most striking differences between the mechanical properties of 

MSTN+/+ and MSTN-/- mice was the fourteen-fold increase in the stiffness of 

tendons in MSTN-/- mice.  The stiffness of tendons is a critical factor in 

determining the damage to muscle fibers during lengthening contractions.  

Immediately following a two-stretch lengthening contraction protocol, the EDL 

muscles of MSTN-/- mice had a 15% greater force deficit than MSTN+/+ mice (30).  

The force deficit following a contraction-induced injury is directly related to the 

strain on the muscle fibers during the lengthening contraction (7). Consequently, 
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the series elastic component of a muscle protects the sarcomeres from damage 

by limiting the strain of the muscle fibers during the contraction (15). Similarly, 

the increased stiffness of tendons increases the strain on the muscle fibers plays 

a direct role in the greater force deficit observed for the muscles of MSTN-/- mice 

compared with MSTN+/+ mice following a lengthening contraction protocol (30).  

While the mechanisms responsible for the increased stiffness of tendons from 

MSTN-/- mice are not known, the stiffening of tendons is thought to arise as a 

result of the increased crosslinking between type I collagen molecules (47).  

Future studies that evaluate the biochemical and molecular differences between 

the tendons of MSTN+/+ and MSTN-/- mice are necessary to determine the 

mechanisms behind the regulation of tendon mechanical properties by myostatin.  

Considerable interest has focused on the potential use of myostatin 

inhibitors in the treatment of muscle wasting diseases such as Duchenne 

muscular dystrophy (8, 35, 46).  Muscles of mdx mice (9, 11, 33, 36, 44) and 

patients with Duchenne muscular dystrophy (42) are highly susceptible to 

contraction-induced injury.  A profound increase in the stiffness of tendons would 

likely further increase the susceptibility of dystrophic muscles to contraction-

induced injury and exacerbate the symptoms of muscular dystrophy.  A careful 

evaluation of the long term impact of myostatin suppression on the mechanical 

properties of tendons of dystrophic muscles, and the susceptibility of dystrophic 

muscles to contraction-induced injury, is warranted.  
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Figure 3.1.  Tendon fibroblasts expressed the myostatin receptors and activated 
signal transduction cascades in the presence of myostatin.  (A) PCR analysis of 
cDNA libraries from whole tendon tissue and cultured tendon fibroblasts 
indicated that tendon fibroblasts expressed both of the myostatin receptors 
(ACVRB and ACVR2B) as well as myostatin (MSTN) itself.  MHC2A and MyoD 
were used as negative controls to indicate purity of tendon samples.  (B) 
Treatment of tendon fibroblasts with myostatin for 2h results in the 
phosphorylation of both p38 MAPK and Smad2/3.  The p38 MAPK inhibitor SB-
203580 was able to specifically block the myostatin-mediated phosphorylation of 
p38 MAPK, and the Smad2/3 inhibitor SB-431542 was able to specifically block 
the myostatin-mediated phosphorylation of Smad2/3. +, 500ng/mL of myostatin. 
++, 1000ng/mL of myostatin. 
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Figure 3.2.  Myostatin induced the proliferation of tendon fibroblasts.  (A) 
Treatment of tendon fibroblasts for 24h with myostatin increases cell proliferation 
as measured by the relative incorporation of the thymidine analog BrdU.  N = 3 
independent experiments.  +, 500ng/mL of myostatin. ++, 1000ng/mL of 
myostatin.  *, significantly different from control group at P < 0.05.  (B) Cell 
density data from tibialis anterior tendon sections stained with H&E.  MSTN-/- 
mice a lower fibroblast density than MSTN+/+ mice.  N = 6 tendons per genotype.  
*, significantly different from MSTN+/+ at P < 0.05. 
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Figure 3.3.  Myostatin induces the expression of scleraxis, tenomodulin and 
collagen Iα2 genes in tendon fibroblasts.  Treatment of cells with myostatin for 
24h increases the relative expression of scleraxis (A), tenomodulin (B) and 
collagen Iα2 (C) normalized to GAPDH. +, 500ng/mL of myostatin. ++, 
1000ng/mL of myostatin.  *, significantly different from control group at P < 0.05. 
There is a decrease in the expression of scleraxis (D), tenomodulin (E) and 
collagen Iα2 (F) normalized to GAPDH in tendons of MSTN-/- mice.  N = 4 
tendons per genotype.  *, significantly different from MSTN+/+ at P < 0.05. 



 92 

 
Figure 3.4.  Mechanical properties of tibialis anterior tendons of MSTN+/+ and 
MSTN-/- mice.  (A) The stress-strain relationship of tendons from MSTN+/+ and 
MSTN-/- mice indicate that MSTN-/- mice develop a higher peak stress but have a 
lower peak strain.  (B) MSTN-/- mice have a greater peak stiffness and average 
stiffness than MSTN+/+ mice.  (C) The energy absorbed to the yield point is not 
different between MSTN+/+ and MSTN-/- mice. N = 5 tendons per genotype.  *, 
significantly different from MSTN+/+ at P < 0.05. 
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Gene Forward Primer (5' - 3') Reverse Primer (5' - 3') 

ACVRB GCTGGAAAGCCCTTCTACTG TGATGACCAGGAAGACGATG 
ACVR2B GAAGATGAGGCCCACGATTA GGAGGTCACCAGAGAGACGA 
COL1A2 CCAGCGAAGAACTCATACAGC GGACACCCCTTCTACGTTGT 
GAPDH TGGAAAGCTGTGGCGTGAT TGCTTCACCACCTTCTTGAT 
MHC2A CCAAGTCAGAGGCAAAGAGG TCTTTGATTTTGGCCTCCAG 
MSTN TGCAAAATTGGCTCAAACAG GCAGTCAAGCCCAAAGTCTC 
MYOD CGCTCCAACTGCTCTGATG TAGTAGGCGGTGTCGTAGCC 
TNMD TGTACTGGATCAATCCCACTCT GCTCATTCTGGTCAATCCCCT 

 
Table 3.1.  PCR primer sequences.  Primers for RT-PCR and RT-qPCR.  
Primers are designed to generate an amplicon which spans two or more exons 
and can discriminate cDNA from genomic DNA. 
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 MSTN+/+ MSTN-/- 
Mouse Mass (g) 33.8±1.1 36.8±1.1 
TA Tendon Mass (mg) 1.30±0.10 0.78±0.05* 
TA Muscle Mass (mg) 51.84±1.58 89.34±3.92* 
TA Tendon/Muscle Mass Ratio 0.025±0.002 0.009±0.001* 
Achilles Tendon Mass (mg) 2.34±0.10 1.32±0.10* 
Soleus Mass (mg) 8.10±0.29 14.80±0.21* 
Achilles Tendon/Soleus Muscle Mass Ratio 0.291±0.005 0.090±0.008* 
 
Table 3.2.  Whole animal, muscle and tendon masses.  Values are means ± SE.  
N = 5 for each genotype. *Significantly different from MSTN+/+ at P < 0.05. 
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 MSTN+/+ MSTN-/- 
Lo (mm) 6.78±0.28 6.12±0.10 
CSA (mm2) 0.16±0.03 0.08±0.01* 
Density (mg/mm3) 1.54±0.42 1.63±0.06 
Peak Strain (ΔL/Lo) 0.75±0.02 0.33±0.04* 
Peak Stress (kPa) 8250±1223 20300±1067* 
Peak Stiffness (mN/mm2) 95.0±17.1 1386±212* 
Average Stiffness (mN/mm2) 49.6±8.3 711±253* 
Energy Absorption (mJ/mg) 1.93±0.56 1.89±0.27 
 
Table 3.3.  Morphological and mechanical properties of tibialis anterior tendons.  
Values are means ± SE.  N = 5 for each genotype. *Significantly different from 
MSTN+/+ at P < 0.05. 
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Chapter IV 

 
Summary and Conclusion 

 
Overview 

 Prior to the studies described in this dissertation, myostatin was known to 

be a negative regulator of muscle mass.  What was not clear was whether or not 

the deficiency of myostatin had an impact on the function of either skeletal 

muscles or the structure of function of tendons.  To clarify the role of myostatin 

deficiency on the function of skeletal muscles the structure and function of 

tendons, a combined approach was utilized that involved the use of transgenic 

animals for structural and functional studies and of cell culture work to establish 

the molecular mechanisms responsible for the structural and functional changes.  

The studies described in the previous three chapters indicate that myostatin 

regulates the structure and function of both skeletal muscles and tendons. 

Discussion of Findings and Future Directions - Skeletal Muscle 

 Prior to the preliminary studies described in Chapter I and the study 

described in Chapter II, the deficiency of myostatin was known to increase the 

mass of skeletal muscles (10, 17).  Furthermore, although myostatin deficiency 

improved the function of dystrophic muscles (1), the role of myostatin in the 

regulation of the function of healthy, non-dystrophic muscle tissue had not been 

determined.  Consequently, the findings from the first and second chapters can 

be divided into two separate categories – structure and function. 
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 Structure.  The genetic deficiency of myostatin leads to both hypertrophy 

and hyperplasia of fast-fibered muscles (17).  In prior studies, the measurements 

of the number of fibers in the skeletal muscles were determined from cross 

sections of muscles that might not provide an accurate indication of the true 

number of fibers (15).  By digesting the ECM of EDL and soleus muscles and 

counting all of the fibers present in the muscle, we have now demonstrated that 

the deficiency of myostatin leads to a bona fide hyperplasia.   

 In addition to a greater number of fibers, myostatin deficiency leads to an 

increase in the CSAs of fibers.  While myostatin inhibition increases satellite cell 

proliferation (12, 16, 27), this satellite cell inhibition does not appear to be wholly 

sufficient to explain the hypertrophic response that occurs with the inhibition of 

myostatin.  Administering mice an inhibitory antibody against myostatin resulted 

in a 14% increase in muscle mass in only two weeks (29).  This increase in 

muscle mass is unlikely to occur simply by modulating satellite cell activity.  The 

preliminary study presented in Chapter I demonstrated that the deficiency of 

myostatin leads to a marked decrease in ubiquitinated myosin heavy chain and a 

decrease in atrogin-1 expression.  No difference in relative myofibrillar protein 

content was observed between the muscles of MSTN+/+ and MSTN-/- mice.  

These results suggest that the inhibition of myostatin leads to muscle fiber 

hypertrophy by the inhibition of protein degradation.   

 The deficiency of myostatin reduced collagenous fibrosis in mdx mice (1, 

2, 28), but whether myostatin regulate the expression of type I collagen directly 

was not clear.  The cell culture studies from Chapter II demonstrated that 
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myostatin increased directly the expression of type I collagen.  Additionally, 

myostatin-deficient EDL muscles showed a decrease in whole muscle collagen 

content.  These results indicated that, in addition to regulating the numbers of 

fibers in a muscle, myostatin regulated the ECM of skeletal muscle.   

 Function.  In addition to the profound impact on the structure of skeletal 

muscle, myostatin had an impact on the function of skeletal muscle through the 

hypertrophy and hyperplasia present in the skeletal muscles of myostatin-

deficient mice, and the impact these changes had on the contractile properties of 

muscles.  The studies from Chapter II demonstrated that the deficiency of 

myostatin increased the Po of both EDL and soleus muscles.  When Po was 

normalized to the CSA of the muscles to calculate sPo, an unexpected finding 

was observed.  As a muscle undergoes hypertrophy and is able to generate a 

greater Po, the sPo will usually decrease due to the increase in θ (15).  Despite 

having a greater number of fibers, fiber CSA, Po and θ,  the EDL muscles from 

MSTN+/- and soleus muscles from MSTN-/- mice did not show a decrease in sPo.  

In contrast, the EDL muscles of the MSTN-/- mice, that had a greater number of 

fibers, fiber CSA, Po and θ did suffer from a decrease in sPo.  For a muscle that 

undergoes hypertrophy, a threshold appears to exist above which a decrease in 

sPo occurs.  In contrast, for small increases in muscle CSA, mass and Po, sPo 

does not change. 

 Furthermore, the deficiency of myostatin was found to increase the 

susceptibility of muscles to contraction-induced injury.  Following contraction-

induced injury, the EDL muscles of MSTN-/- mice had greater relative force 
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deficits than those of MSTN+/+ mice.  Despite having a greater force deficit 

following injury, the work done to stretch the muscles of MSTN-/- mice was less 

than MSTN+/+ and MSTN+/- mice.  As the series elastic component of muscles 

can protect fibers from injury (9), we initially hypothesized that the series elastic 

component of muscles of the MSTN-/- mice were more compliant, exceeded their 

elastic limit during the lengthening contractions, and therefore no longer acted as 

mechanical springs.  This lead to a subsequent study of tendon structure and 

function, presented in Chapter III.  After completion of the investigation of the 

properties of tendon structure and function, the initial hypothesis as to why the 

EDL muscles of MSTN-/- mice are more susceptible to contraction-induced injury 

was rejected.  The rejection was based on the observation that the tendons of 

MSTN-/- mice were fourteen times stiffer than the tendons of MSTN+/+ mice and 

the peak stiffness occurred at an early strain value.  These findings suggested 

that the series elastic component of the tendons of the MSTN-/- mice were so stiff 

that they acted as a rigid body and did not take up much, if any, strain as the 

muscle was stretched.  Extremely stiff tendons appear to be the reason why the 

deficiency of myostatin increases the susceptibility of the fast-fibered EDL 

muscles to contraction-induced injury.   

 Future Studies.  An interesting finding from the studies presented in 

Chapter II is that the EDL muscles of MSTN+/- mice developed a greater Po than 

the MSTN+/+ mice, but unlike the MSTN-/- mice, no difference was observed in 

sPo, or force deficit, after the injury.  Even though the collagen content of the EDL 

muscles of MSTN+/- mice was less than that of MSTN+/+ mice, this did not 
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increase the susceptibility of these muscles to contraction-induced injury.  As the 

MSTN+/- mice have a 20% decrease in circulating myostatin levels compared to 

MSTN+/+ mice, this suggests that the partial suppression of myostatin is able to 

increase force production of muscles without making the muscles more 

susceptible to injury.  Based on the preliminary data in Chapter I that showed that 

myostatin increased protein degradation and the data in Chapter II that showed 

that myostatin increased type I collagen expression, the use of a pharmaceutical 

inhbitor of myostatin might be beneficial in the treatment of severe contraction-

induced injuries.  Following the induction of a severe lengthening contraction 

injury to the muscles of a mouse, the administration of a pharmaceutical inhibitor 

such as a monoclonal antibody against myostatin, the propeptide of myostatin, or 

a small peptide that blocks the interaction of myostatin with its receptors, the 

effect of myostatin inhibition on the recovery from a severe contraction induced 

injury could be determined.  Based on the findings from Chapters I and II, the  

hypothesis that inhibition of myostatin promotes the long-term recovery of muscle 

from severe injury by blocking protein degradation and reducing fibrosis appears 

promising.     

Discussion of Findings and Future Directions - Tendon 

The study described in Chapter III demonstrated, for the first time, that 

myostatin has a profound impact on the structure and function of tendon tissue.  

The study not only described and characterized the phenotype of tendons from 

myostatin-deficient mice, but also demonstrated that myostatin can directly 

activate intracellular signal transduction cascades in tendon fibroblasts and 
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explored the possible cellular and molecular mechanisms behind the tendon 

phenotype.  In addition to showing that myostatin can directly regulate tendon 

structure and function, Chapter III demonstrated for the first time that the bHLH 

transcription factor scleraxis continues to be expressed in adult tendon 

fibroblasts and that myostatin increases the expression of scleraxis directly.  

Tenomodulin was also shown to be a downstream target of myostatin signaling.  

While tenomodulin deficient mice displayed hypocellular tendons with no change 

in ECM structure or size (3), the mechanisms behind the control of cell 

proliferation by tenomodulin are not known.  Three future studies are suggested 

that would provide further insight into the regulation of tendon physiology. 

Study 1 – Myostatin-mediated regulation of scleraxis expression during 

development.  During the development of tendon structures in the limb, tendon 

development can be categorized into three phases, each phase corresponding to 

an upregulation of scleraxis (4, 25).  While FGF appears to be responsible for the 

third phase of scleraxis expression, FGF does not appear to be responsible for 

the first and second phases of scleraxis expression (4).  Edom-Vovard and 

Duprez (4) suggested that a member of the GDF family is a likely candidate for 

the regulation of scleraxis expression during the first and second phases of early 

tendon development.  To determine if myostatin induces the expression of 

scleraxis during the first and second phases of early tendon development, a 

double transgenic animal model could be utilized.  Crossing the myostatin 

deficient mice with the ScxGFP line of mice that contain a GFP reporter linked to 

the scleraxis promoter (23) to obtain MSTN-/-ScxGFP mice would create a model 
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organism that would allow for the visualization of scleraxis expression in the 

absence of myostatin at various stages of development.  Comparing GFP 

intensity between MSTN+/+ScxGFP and MSTN-/-ScxGFP mice would be a useful 

first step to determine if myostatin is the cytokine that induces the first two 

phases of scleraxis expression.  The most likely interpretation is that compared 

with MSTN+/+ScxGFP mice, the GFP intensity in the tendon primordia of MSTN-/-

ScxGFP mice is severely depressed. 

Study 2 – Myostatin-mediated biochemical modifications of tendons. 

Compared with MSTN+/+ mice, the tendons of MSTN-/- mice had a two-fold 

greater peak stress, less than half of the peak strain, and a fourteen-fold greater 

peak stiffness.  Furthermore, the fibroblast density of the tendons of the MSTN-/- 

mice was only half that of the MSTN+/+ mice.  While the hypocellularity may 

explain the increase in stiffness, as fibroblasts can break the spontaneous cross-

links that form between collagen molecules, changes in the activities of other 

enzymes might also occur that regulate tendon mechanical properties.  Lysyl 

oxidase is the chief enzyme that can form cross-links between collagen 

molecules (6).  In addition, elastin is a structural protein that allows tendon to 

have a greater peak stress (8).  Determining the expression of lysyl oxidase and 

elastin in tendon might reveal the molecular mechanism behind the myostatin-

mediated regulation of tendon mechanical properties.  Based on the stiffness and 

peak strain data, myostatin might promote the expression of lysyl oxidase and 

elastin in tendon tissue. 
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Study 3 – Regulation of Tendon Fibroblast Proliferation by Tenomodulin.  

Tenomodulin is a type II transmembrane protein that promotes the proliferation of 

tendon fibroblasts (3), but the molecular mechanisms behind the actions of 

tenomodulin are not known.  The tenomodulin protein consists of two domains, 

an N-terminal transmembrane anchor domain and a C-terminal extracellular 

domain (26).  The C-terminal peptide is cleaved and presumably interacts with 

other receptors on the plasma membrane, but the identities of these receptors 

are not known.  To determine if the C-terminal peptide of tenomodulin interacts 

with receptors on the plasma membrane, recombinant c-myc tagged C-terminal 

tenomodulin peptide could be incubated with tendon fibroblast cells followed by 

treatment with a crosslinking reagent.  The cell homogenates would then be 

subjected to immunoprecipitation with an antibody against c-myc.  The pull down 

would then be treated with a reagent to reverse the crosslinking and samples 

would be separated using 2D SDS-PAGE.  Proteins would be removed from the 

gel and subjected to N-terminal sequencing.  The amino acid sequence data 

could then be used to search for possible receptors with which the C-terminal 

peptide of tenomodulin interacts.  The underlying mechanism could be that the 

C-terminal tenomodulin peptide interacts with a receptor that controls cell 

proliferation, but currently there is no basis for the selection of a particular 

receptor.  Identifying the receptors with which tenomodulin interacts is the first 

step in determining the molecular mechanisms behind the tenomodulin-mediated 

increase in tendon fibroblast proliferation.    
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Summary  

 The studies described in this thesis demonstrate that myostatin not only 

has a profound impact on the structure and function of muscle tissue, but also on 

the structure and function of tendon tissue.  While initially characterized as a 

cytokine that regulates skeletal muscle function, myostatin also has important 

roles in tendon, cardiac, bone, mammary and adipose tissue (5, 11, 18, 20, 30).   

 From an evolutionary perspective, an interesting question is:  Why is there 

a gene for myostatin?  The presence of larger, stronger muscles would appear to 

be beneficial for many aspects of everyday life.  All vertebrate species have a 

myostatin gene (22), and fish have two copies (14).  While myostatin has a 

controversial role in metabolism, one potential role of myostatin in metabolism is 

to divert food energy to fat, instead of to muscle (5, 7, 13, 18, 19, 30, 31).  

Diverting food energy to fat instead of muscle would presumptively better enable 

an animal to survive during periods of low food availability.  A recent study 

explored the adaptive evolution of myostatin in the human genome (24).  The 

authors of this study concluded that positive natural selection has acted on the 

myostatin gene, but acknowledged that the amount and rate of polymorphisms at 

the myostatin locus may suggest an evolutionarily recent decline in natural 

selective pressure for myostatin.  While not all polymorphisms lead to a loss of 

function mutation, the greater the rate of polymorphisms, the greater the chance 

of developing a loss of function mutation.  The authors rejected this decline in 

selective pressure at the myostatin locus based entirely on the long history of 

conservation of the myostatin gene across all vertebrate species (24).  The 
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results of this thesis argue against a decline in the natural selective pressure at 

the myostatin gene.  The studies in Chapter II indicate that the MSTN+/- mice 

generate greater forces, without incurring an increased susceptibility to injury.  In 

the Whippet breed of racing dogs, a natural loss of the functional mutation in the 

myostatin gene has arisen (21).  The MSTN+/- and MSTN-/- whippets are known 

as "Bully Whippets" and are considerably faster than their MSTN+/+ counterparts 

(21).  While we did not directly assess the amount of adipose tissue, the MSTN+/- 

mice appear to be leaner than their MSTN+/+ littermates.  We are currently 

conducting a longevity study of MSTN+/+, MSTN+/-, and MSTN-/- mice.  While the 

study is still ongoing, our preliminary results indicate that the MSTN+/- mice have 

an 8 month longer maximum longevity than either the MSTN+/+ or MSTN-/- mice.  

While the long history of selective pressure being applied at the myostatin locus 

may have helped our ancestors survive through periods of famine, in the 

developed world, currently most humans have access to a virtually unlimited 

source of food energy.  The increased rate of polymorphisms does suggest a 

decline in selective pressure at the myostatin locus.  With an unlimited access to 

food energy, the "larger, faster, stronger, leaner, longer-lived" phenotype of 

MSTN+/- organisms has clear advantages over the wild type phenotype.  A 

pharmaceutical inhibitor of myostatin, Stamulumab (Myo-029, Wyeth), is 

currently in clinical trials in the USA and Europe.  Stamulumab is not yet 

available for prescription in the USA, but is available for purchase in China and 

Korea.  Inhibition of myostatin appears to be a practical and potentially useful 

treatment for many muscle wasting conditions and to counteract the decline in 
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muscle mass that occurs with aging.  Future studies that determine the long term 

safety and efficacy of the use of myostatin inhibitors are warranted.  Doping 

control policies and procedures for myostatin inhibitors must also be developed 

to ensure equality in athletic performance.   
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