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ABSTRACT

ACOUSTIC DROPLET VAPORIZATION: STRATEGIES FOR CONTROL OF
BUBBLE GENERATION AND ITS APPLICATION IN MINIMALLY INVASIVE

SURGERY

by

Andrea Hsio-an Lo

Chair: J. Brian Fowlkes

As a minimally invasive alternative to current cancer treatment, the use of

encapsulated, superheated liquid perfluorocarbon droplets has been proposed to

treat cancer by occlusion therapy. In response to an applied acoustic field, these

droplets, which are small enough to pass through capillaries, vaporize into large

gas bubbles that subsequently lodge in the vasculature. This research investigates

strategies to reduce the required pressures necessary to achieve acoustic droplet

vaporization (ADV), what implications they may have on efficiency, and how the

resulting location of bubbles may alter the acoustic field.

Two methods to lower the ADV threshold were explored. The first method

investigated the role of pulse duration on ADV. The second investigated the role of

inertial cavitation (IC) external to a droplet by adding ultrasound contrast agent

(CA), which has a low IC threshold. At 1.44 MHz, the threshold was found to

xvi



be 5.5-5.9 MPa peak rarefactional pressure (Pr) for short microsecond pulses and

decreased for millisecond pulses to 3.8-4.6 MPa Pr. When CAs were added and long

millisecond pulses were used, the ADV threshold decreased to values as low as 0.41

MPa Pr.

With the help of CA, the same amount of power was necessary to achieve

ADV through an attenuating tissue mimicking (TM) phantom as it was without

attenuation and with only droplets. When comparing ADV pressure thresholds,

where in situ pressures were used when a TM phantom was present, rarefactional

pressure appeared to be the salient determinant. However, careful consideration

must be taken when choosing pulse repetition frequencies and amplitude as inertial

collapse of both ADV and IC bubbles appears to affect efficient droplet conversion.

During in vivo application, treatment planning may be important as backscat-

tering properties of microbubbles created by ADV can augment or obstruct the

sound field in the affected area. With strategic targeting and subsequent conversion

of droplets into microbubbles at one location, constructive interference due to these

effects reduces the transmitted pressures required for ADV proximal to that location.

The attenuation from these bubbles can create a protective boundary for areas distal

to the treatment volume. The potential result can be a confined area for further

treatment by ADV or other acoustic means at lower acoustic output than would

otherwise be required.
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CHAPTER I

Introduction

1.1 Minimally Invasive Surgery

Minimally invasive surgery (MIS) has long since been a movement in the practice

of medicine. With minimal collateral damage, it is a natural progression as less

damage to overlying tissue minimizes chances of infection, facilitates healing, and

reduces scarring, all of which reduce the possible accompanying costs of the surgery

itself. Currently, MIS practice is often considered laparoscopic or endoscopic surgery,

where small incisions are made for insertion of a camera and long surgical instruments

into the body. In a less traditional sense although in no way less established, MIS

also includes extracorporeal treatments that have been developed to perform surgery

without the need of any incision. Examples include shockwave lithotripsy and now,

high intensity ultrasound (US), which has become a new wave of minimally invasive

or perhaps even noninvasive techniques to perform surgery.

This chapter will provide an overview of the current available technologies for

minimally invasive and noninvasive surgery. Of particular interest is the treatment

of renal cell carcinoma (RCC), where unique challenges arise due to the location of

the organ and its high perfusion. A discussion of the current techniques and their

challenges as they apply to RCC is provided and is followed by the introduction of

the thesis topic. This dissertation will describe research into a novel cancer therapy

technique that creates gas emboli to deprive cancer cells of their blood supply. This
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technique uses injectable liquid dispersions that can be vaporized with an acoustic

pulse at a specific target. In comparison to the available alternatives, this method

offers advantages that make it more ideal for treatment of RCC.

1.2 History and Future of Surgical Techniques

1.2.1 Laparoscopy and Endoscopy

With the important benefits reaped from MIS, many advances and innovations

were achieved in a short amount of time. The first laparoscopic cholecystectomy

(gall bladder removal) was performed in France in 1987 by Mouret, and in one

year had spread to the United States and other countries [1]. It became the

standard method of treatment [2] in two years. Around the same time, the

United States Army funded the former Stanford Research Institute to produce a

telesurgical workstation for remote surgery on the battlefield. The outcome from

this project became the prototype for the now commercial da Vinci R© Surgical

System (Intuitive Surgical, Inc., Sunnyvale, CA), which was first cleared by the

United States Food and Drug Administration (FDA) in 2000 for general laparoscopic

surgery. It is currently approved by the FDA to perform certain minimally

invasive urologic, gynecologic, and cardiac surgical procedures. Mitral valve repairs,

joint replacements, prostatectomies, and other surgeries are now performed with

laparoscopic or endoscopic minimally invasive techniques on a regular basis.

Extending the idea to telesurgery, then, does not seem out of reach. With the

capabilities of information technnology (IT) today, the global reach of medicine is

broadened in what has been dubbed “telemedicine”. In the future, surgeons would

be able to extend their technical skill set beyond their own operating room. Because

it is already possible to perform surgery without being in direct contact with a

patient with current commercial systems, these surgical techniques should also be

able to be translated offsite through the use of telecommunications. Research is
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being done to develop these telesurgical workstations, where surgeons perform the

procedure in a remote location while being given the appropriate visual cues. Their

motions and commands are transmitted to the robotic workstation where the patient

is situated. Assistants present in the operating room are responsible for changing

surgical tools as well as following instructions given by the offsite surgeon. With

telecommunications, the potential of this system is global. Experts from all over the

world can work together in a remote operating room. This not only brings together

the best talent to one room, but it also saves resources in air travel and time, and can

be beneficial to the patient who is perhaps too sick to travel. This is telemedicine at

its highest level.

Current implementation of telemedicine allows doctors to share medical

knowledge on a global level. Today, physicians in certain African nations can extend

outside their borders to reach specialists for medical consultations in countries

such as Canada and the United States [3]. Thus, patients traveling to their local

facilities are assured that they will receive world-class care, an attractive service

that encourages more consumers to seek medical attention. Existing collaborations

include King Faisial Specialist Hospital and Research Center in Saudi Arabia and

Massachusetts General hospital, Singapore General Hospital and Stanford University

Hospital, King Hussein Medical Center in Jordan and Amman Surgical Hospital with

the Mayo Clinic, and Arab Gulf States with WorldCare, a private U.S. company [3].

1.2.2 Bloodless Alternatives

Apart from the burgeoning utility that laparoscopic techniques have found in

robotics and telemedicine, bloodless surgery has also been in practice for a number

of years. Some of these technologies are listed and described in the following section.

Extracorporeal shock wave lithotripsy (ESWL) as a treatment of kidney stones

was introduced in 1979 in Germany [4], with the first human clinical trial in 1980
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by the same group [5]. Ultrasound (US) had been used prior to ESWL, but direct

contact between stone and transducer was necessary. Shock waves in ESWL are

generated by spark electrodes placed in one geometric focus of half an elliptical

reflector and refocus to the second focus of the ellipse, where the target (kidney

stone) is situated and disintegrated (Fig. 1.1a). ESWL is now a routine noninvasive

outpatient procedure.

 
 

 

 

A B

C D

US

probe

Figure 1.1: Current available minimally invasive or extracorporeal treatments. (a)
A schematic of the extracorporeal shock wave lithotripter designed by [6]. (b) An
example of cryoablation of an exophytic renal tumor, where two cyroprobes are labeled
along with an US probe for real-time monitoring. Adapted from [7]. (c) As seen in this
frontal angiogram, an RF probe with deployed hooks, as illustrated by long arrows,
is inserted into the nodule of a hepatocellular carcinoma. Blood flow is occluded with
a balloon catheter (short arrow) in the hepatic artery [8]. (d) shows the Model JC
Haifu system (Chongqing Haifu Technology Co., Ltd., Chongqing, China) used for
HIFU treatment [9]. Images were collected from the above cited references.

Among the oldest therapies, cryoablation was conceptually introduced in 1850
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[10] and works by freezing (freeze cycle of the freeze/thaw protocol) the target area

via a vacuum-insulated cryoprobe tip circulated with liquid nitrogen. The freeze

must lower the tissue temperature to -40 to -50◦C [11] to ensure complete cell death.

In order to treat the entire volume, the portion of the cryoablated lesion, or “iceball”

(Fig. 1.1b), at or below the required temperatures must reach the borders of the

tumor. Gill et al. [12] extended the iceball to 1 cm beyond each of the 11 tumors

included in the study with positive results, though all tumors were small, peripheral,

and exophytic. When circulation is restored (thaw cycle), damaged blood vessels

caused by the freeze result in edema, vascular occlusion, and thrombosis [7]. Further

complications include cracking and bleeding of the renal parenchyma during the

thaw phase, which is often mediated with various occlusion methods to achieve

hemostasis. Nevertheless, cyroablation has been shown to be relatively effective and

safe [7].

Radiofrequency ablation (RFA), which heats tissue to coagulative necrosis, has

been in existence since the early 1990s [13], and has shown promise in treatment of

hepatocellular carcinoma (HCC), prostate tumors, and breast tumors. RFA involves

a percutaneous needle electrode that is inserted into the tumor (Fig. 1.1c) under

the guidance of computed tomography (CT) or US. Current flow generated from the

electrode deposits RF energy over the immediately surrounding tissue and creates a

thermal lesion, which in time results in irreversible cell death [14]. Power ranges from

26-50 W, and frequencies range from 460-500 kHz [7]. High impedances, however,

can be caused by tissue desiccation during treatment and limits the size of the

lesion. Polascik et al. [15] found that they could also achieve time-dependent and

predictably sized lesions in lepus kidneys using a cool-tipped system, where saline

was used to couple the electrode to the tissue. Saline was continually infused during

treatment, preventing tissue desiccation and consequently, preventing increases in

impedance in tissues immediately surrounding the electrode. The RF energy could
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then conduct further away without being depleted in high impedance zones.

Focused ultrasound was introduced for therapeutic purposes in the late 1940s

[16]. On a global scale, high intensity focused ultrasound (HIFU) is now becoming a

well-established clinical method of bloodless noninvasive surgery as US can penetrate

through tissue and raise the temperatures in a tight focal region in excess of 56◦C

[17]. This degree of thermal dosage causes coagulative necrosis and cell death in an

area limited by the focal size of the beam. Spatial peak pulse average intensities

(ISPPA) range from 1500-2500 W/cm2 , and duty cycles are normally greater than

50% with pulse durations lasting several seconds. The delineation between healthy

and dead cells are on the order of six to ten cells [18][19]. Commercialized units in

current clinical use for extracorporeal therapy include the Model JC Haifu system

(Fig. 1.1d) from Chongqing Haifu Technology Co., Ltd. (China), ExAblate R©

2000 from Insightec, Ltd. (Israel), and the HIFUNIT-9000 from Shanghai A&S

Science Technology Develoment Co., Ltd. (China). Applications are numerous and

promising, including HCC, uterine fibroids, breast cancer, prostate cancer, bone

tumors, and pancreatic carcinoma. Additionally, it can be used for hemostasis to

seal blood vessels and prevent excess bleeding in open invasive surgeries [20].

In the United States, companies developing extracorporeal therapeutic ultrasound

devices for specific indications have emerged. A few are approved for commercial

use by the FDA such as the Sonotherm 600 Ultrasonic Lesion Generating System

(Focus Surgery, Inc., Indianapolis, IN) and ExAblate R© 2000 (Insightec, Ltd., Israel)

for uterine fibroids, but many are in human clinical trials or are approved for use in

Europe, Australia, and/or Asia. The first HIFU device approved by the FDA was

Sonocare CST-100 Therapeutic Ultrasound System (Sonocare, Inc.) in 1980 and was

designed for the treatment of glaucoma. However, the system became outdated by

the dominance of laser surgery.

Histotripsy [21], a technology emerging from the University of Michigan, takes
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a different route in therapeutic US. Focused US in this case uses low duty cycles

and high intensities (≥9000 W/cm2 ISPPA). Instead of converting ultrasonic energy

into heat energy, the chief mechanism takes advantage of the mechanical forces

produced by inertial cavitation. The human body is almost devoid of cavitation

nuclei, necessitating the use of high intensities; however, histotripsy does not cause

thermal leasions, but rather, tissue fractionation. It was found that the temperature

rise in ex vivo porcine kidneys only increased 6-10◦C at the focus [22]. The lesions

are repeatable, controllable, and well-defined, where the border of the destruction

zones can be on the order of a single cell [23] to delineate live cells from tissue

homogenate.

1.3 Renal Cell Carcinoma

The technologies mentioned in the previous sections have been well documented

for implementation in the breast, prostate, liver, heart, bone, uterus, and pancreas.

However, the kidney is unlike other target applications in its location within the

body and its high vascularity (Table 1.1). This section will provide an overview

of current methods of treatment for renal cell carcinoma (RCC) along with their

implications and then introduce a novel method that can circumvent the challenges

confronting other therapies.

Table 1.1: Distribution of systemic blood flow in the human body at rest.

Tissue Percentage
Brain 13
Heart 4
Skeletal Muscle 20
Skin 9
Kidney 20
Abdominal organs 24
Other 10

Table is reproduced from [24].
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1.3.1 Current Treatments

The National Cancer Institute estimated that about 51,190 new cases of kidney

cancer would arise in 2007 in the United States with an estimated 12,890 total deaths

[25]. This incidence of kidney cancer is an increase of 30% from the estimate given

for 2006, although the total number of estimated deaths has remained relatively

unchanged [26]. RCC accounts for 80-85% of the cases of kidney cancer and

has a five-year survival rate of 65% after diagnosis; however, when caught before

metastasis, the prognosis improves to a 90% five-year survival [26]. The standard

treatment for RCC was initially open radical nephrectomy for containment of the

cancer, but it was later shown that there was no significant change in cancer survival

for patients who underwent radical nephrectomy versus partial nephrectomy [27].

With no notable disadvantage in terms of cancer treatment, nephron sparing surgery

became very desirable because it also considerably reduced the number of cases of

renal insufficiency.

Thus, present day treatment for RCC attempts to preserve kidney function

if possible and can use minimally invasive techniques such as cryoablation, RFA,

microwave and laser thermotherapy, and laparoscopic partial nephrectomies, which

are likely to eventually replace conventional open surgery [28]. Two-thirds of new

RCC occurrences that are detected while asymptomatic as a result of the improved

imaging, half of which are <3 cm [29], have enabled early treatment and improved

diagnosis. Because the detectable masses are small, the growth rate of RCCs are

slow (0.35 cm/year) [30], and diagnosis is frequently among older patients [29], MIS

has been investigated as the preferred mode of treatment. Despite the advantages

garnered by MIS, laparoscopic partial nephrectomies are still associated with high

morbidity, and other techniques in current clinical use require percutaneous access

to the organ and are confined to RCCs no larger than 3 to 4 cm in diameter [31].

These small RCC masses treatable by minimally invasive means would be
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appropriate for the size of tumors that are detected in their early stage, but

treatment still appears unreliable. In a 3.5 year study of RFA treatment of kidney

tumors [13], 36 of the 42 ablated tumors were treated to technical success, which was

defined as the absence of tumor enhancement in postoperative magnetic resonance

or computed tomography images taken one month after the ablation study. The

most successful cases in the study by Gervais et al., though, involved RF ablation

of exophytic or parenchymal tumors. Those extending into renal sinus fat had a

much lower success rate of 45% of the 11 cases versus 100% of the 31 exophytic or

parenchymal cases. Many blood vessels flow near the renal sinus and serve as a heat

sink, which limits the maximum achievable temperature and/or the target volume

[32]. The resulting lesions are unpredictable in shape and volume, depending on the

vascular structure surrounding the tumor.

Cryoablation likewise is confined to small tumors, where larger tumors (>2.5 cm

in diameter) may require multiple probes. Despite the success in peripheral and

exophytic tumors, tumors deep within the kidney require intrarenal probe placement

[33]. It was hypothesized that the cold temperature was dissipated by blood flow

[12], but occlusion of the renal artery during cryoablation did not appear to produce

any significantly different results [33].

Extracorporeal treatment of the kidney has also proven to be a challenge. HIFU,

which has shown success for other indications such as breast or prostate cancer, faces

different obstacles for the kidney, which is situated near the ribs, bowel, and lungs,

moves with respiration, and is highly perfused [34][35]. With optimization, HIFU in

the kidney may prove efficacious, as certain studies have been successful; however, the

impact of ablation on the promotion of metastasis due to cell mobilization remains

controversial [34]. Minor complications can include skin burns and hematuria, but

treatment time and total treatment coverage may still be the larger challenges.

Finally, histotripsy would avoid the problems associated with the “heat sink.”
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Since the therapy is not related to heat but instead mechanical disruption, it

could prove to be a viable treatment method. While some initial results show that

histotripsy does not damage larger vessels, the treatment does disrupt capillaries,

which causes minor hemorrhaging thought to be clinically insignificant. Histotripsy

research is ongoing, and studies are now being conducted with promising results to

evaluate the efficacy of histotripsy in the kidney.

1.3.2 Embolotherapy

Embolotherapy, which is the process of occluding blood flow for therapeutic

purposes, can also be used to treat tumors by obstructing the feeder arteries that

supply the tumor, thereby inducing ischemia and eventually necrosis [36][37][38].

Vascular embolization was first proposed in 1904 by Dawbain [37] and was executed

later in 1960 [39] when embolization of the common carotid artery was performed

with positive outcome for a patient with an arteriovenous malformation in the brain.

Due to reduced peripheral resistance of the arterial feeders, blood flowed favorably

to the malformation [40]; normal blood flow was restored following occlusion of these

feeder arteries. Interest in embolotherapy then escalated in 1963 when hemorrhage

rates of 0.5 mL/min became detectable [41] with improved imaging, enabling early

treatment by means of transcatheter embolization [42]. Advancements in catheter

technology and imaging coincided with advancements in occlusion agents in the

1970s, spurring a movement for embolotherapy in interventional radiology [37].

Current Agents and Applications

The current method for embolization involves catherization and placement of

occlusion agents in the area of interest. Occlusion agents include metallic microcoils

(stainless steel, tungsten, or platinum), acrylic microspheres (embospheres),

polyvinyl alcohol particles (PVA), absolute ethanol, and Gelfoam (Pharmacia &

Upjohn, Kalamazoo, MI) [43]. Embospheres, which are becoming the preferred
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agent, are made from a trisacryl polymer matrix combined with porcine gelatin

and are uniform in size to prevent clogging in the catheter. PVA, which have been

used since the 1970s are 300-700 µm foam particles, where size varies for different

indications. Gelfoam is also made of foam, though they are absorbable and only a

temporary occlusion agent. Microcoils [44] and ethanol [45] promote clot formation.

Schwartz et al. [43] gathered data over a 12-year span beginning in 1993 and

conducted a retrospective study on renal patients who underwent embolotherapy.

From the 121 cases examined, 54.5% had renal artery embolization preceding

nephrectomy of their renal masses. These data were collected only within the Weill

Medical College of Cornell University (New York, New York) and the popularity of

the procedure may be confined to this institution [46]. Nevertheless, it was found

that embolized patients experienced less blood loss during resection as well as a

reduction in preoperative size and level of tumor thrombus. Controversy pertaining

to the necessity of post-embolization nephrectomy remains as the study by Schwartz

et al. [43] cites work done by other groups [47] [48], who found no survival benefit

when renal artery embolization for metastatic RCC was or was not followed by

partial nephrectomy.

Embolotherapy for palliation [37] and to maintain hemostasis due to associated

metastases with RCC, however, is common [46][43][49][50]. Emergent traumatic

gastrointestinal hemorrhage [51][52][53] as well as obstetric and vascular conditions

[54] are among other indications treatable by transcatheter embolization. However,

the efficacy of preoperative embolization remains debatable for vascular tumors, as

opposing data is found in the literature [54][37]. It is maintained that treatment

plans must be patient-based.

Postembolization Syndrome

A common complication resulting from occlusion therapy is postembolization

syndrome (PES), which is marked by fever, nausea, vomiting, and flank pain. From
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a compiled list generated from the literature comprising 55 patients who were treated

for angiomyolipomas, or benign hamartomatous tumors, PES was found to occur in

89% [55] of them. It is thought that PES occurs because of the body’s inflammatory

response to the necrotic tissue caused by embolization. Symptoms resolve in 1-10

days [55][37] and has in the past been treated with analgesics, but PES can be severe

for some patients. Hormone treatment appears to alleviate the effects of PES [55].

1.3.3 Embolotherapy by Acoustic Droplet Vaporization

A novel method to perform embolotherapy was introduced by [56], which provides

the groundwork for this dissertation. The work in [56] developed upon a patented

concept [57], where a liquid perfluorocarbon (PFC) droplet becomes superheated

when placed in an environment above the bulk boiling point of the PFC. This droplet

contains a PFC liquid core and is encased in an albumin shell. The shell serves as

a stabilizer and prevents evaporation, allowing the droplet to remain stable until

perturbed by the environment, when it is subject to vaporization; thus, these droplets

are described in [57] as “activatable infusable dispersions.” Its activation into a gas

bubble in response to an acoustic field is termed acoustic droplet vaporization, or

ADV. These droplets expand into gas bubbles that are 5-6 times larger in diameter

than the initial droplet [58], and if this were to occur in a capillary, these bubbles

would lodge, effectively occluding the blood vessel [59].

In its proposed application for embolotherapy, the process would be entirely

extracorporeal. The feeder arteries to the tumor would first be identified and targeted

for insonation by a therapeutic transducer. B-mode US by a separate imaging

transducer would be aligned with the focus of the therapeutic transducer to provide

feedback for correct alignment and successful ADV. For the intended treatment of

RCC, current studies have targeted the renal artery [60], but with adequate imaging

and careful positioning, segmental arteries isolating different poles of the kidney
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should be achievable. Droplets would then be injected intravenously and then

insonified once they reached the targeted vessel, where they would subsequently

vaporize. This process would continue until occlusion was accomplished. Further

therapy could also be achieved when droplets are loaded with potent drugs that

would then be locally delivered to the occluded site.

Embolotherapy by ADV can be both extracorporeal and minimally invasive,

making it an improvement over current treatments including cryoablation, RF

ablation, and transcatheter embolization. Additionally, the treatment is not subject

to the problem of the “heat sink,” but instead, uses blood flow to its advantage.

In fact, ADV can be used as an adjunct to current therapies such as cryoablation,

RF ablation, and HIFU by temporarily introducing an embolus to reduce heat

dissipation caused by perfusion. In a study combining RFA and balloon catheter

embolization (pictured in Fig. 1.1c) [8], lesions ranging from 3.5-5.5 cm in diameter

were attained. The maximum lesion diameter was 2.5 cm without embolization in

a previous study using the same electrode and technique [61]. Another challenge

posed by the kidney, as mentioned previously, is its vulnerability to movement due

to respiration. The required amplitude and time-averaged power (30-1200 W/cm2

ISPPA, 0.3-1.2 W/cm2 spatial peak temporal average intensity, ISPTA) necessary to

achieve ADV are much lower than those required for HIFU or histotripsy, which

allows for movement during treatment without the risk of damaging other tissues.

1.4 Overview of Dissertation

The following chapters will take an in-depth look at the strategies that can be

used to reduce the input energy required to accomplish in vivo and transcutaneous

ADV and how the resulting bubbles might by utilized to achieve therapeutic results.

Each of the chapters in this dissertation contains appropriate background material

for the addressed subject and can therefore be read independently of each other. An
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overview of the chapters is outlined below.

Since the intended treatment via ADV is extracorporeal, it is important to

counteract the effects of attenuation. It was found that pressure threshold required

to induce ADV is inversely related to frequency [62]; however, to be able to penetrate

through several centimeters of tissue, a low frequency is optimal. All studies

presented in this thesis therefore work in this low frequency regime (750 kHz to 1.5

MHz).

Chapter II focuses on strategies to reduce the ADV threshold. Previous studies

[60] have concentrated on high frequencies (3.5 MHz) for proof of principle in small

animal models. Full comprehension of the mechanisms involved in ADV has not yet

been understood, but the findings in Chapter II elucidate in part the contributors in

the process. Appropriate citations for the material in this chapter are:

• A.H. Lo, O.D. Kripfgans, P.L. Carson, and J.B. Fowlkes. ”The Effect of Pulse

Length on Acoustic Droplet Vaporization.” Proceedings IEEE Ultrasonics

Symposium, pp. 285-286, 2006.

• A.H. Lo, O.D. Kripfgans, P.L. Carson, and J.B. Fowlkes. ”Acoustic

Droplet Vaporization Threshold: Effects of Ultrasound Contrast Agent and

Attenuation.” Proceedings of the 7th International Symposium on Therapeutic

Ultrasound, 2007.

• A.H. Lo, O.D. Kripfgans, P.L. Carson, E.D. Rothman, and J.B. Fowlkes.

”Acoustic Droplet Vaporization Threshold: Effects of Pulse Duration and

Contrast Agent.” IEEE Transactions on Ultrasonics, Ferroelectrics, and

Frequency Control, 54(5): 933-946, 2007.

These strategies were then translated to an experimental setup that simulated

in vivo conditions, where an overlying tissue-mimicking phantom attenuated the

applied US field. Chapter III discusses efficiency issues in the application of ADV
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to in vivo conditions. A portion of the material in this chapter is published in the

following proceedings article:

• A.H. Lo, O.D. Kripfgans, P.L. Carson, and J.B. Fowlkes. ”Acoustic

Droplet Vaporization Threshold: Effects of Ultrasound Contrast Agent and

Attenuation.” Proceedings of the 7th International Symposium on Therapeutic

Ultrasound, 2007.

Chapter IV explores the potential of the resulting lodged bubbles to alter

the acoustic field and explores the applications that the altered field may have.

Microbubbles scatter ultrasonic energy, a characteristic that has been employed

in the form of ultrasound contrast agents. The larger bubbles created by ADV

behave similarly, and their effects can be manipulated for therapeutic purposes. The

material in this chapter is published in the following article:

• A.H. Lo, O.D. Kripfgans, P.L. Carson, and J.B. Fowlkes. ”Spatial Control of

Gas Bubbles and their Effects on Acoustic Fields.” Ultrasound in Medicine

and Biology, 32(1): 95-106, 2006.

Finally, Chapter V provides a summary of the findings in the previous

chapters and explores ideas for continuation of this work. Future experiments for

further understanding of the process as well as possible improvements for in vivo

implementation are offered.
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CHAPTER II

Acoustic Droplet Vaporization Threshold: Effects

of Pulse Duration and Contrast Agent

2.1 Introduction

Embolotherapy describes the obstruction of blood flow in the vasculature, which

is caused intentionally for therapeutic purposes. It is currently used in hemorrhage

control and has potential utility in cancer therapy, either as an occlusive treatment to

effect tissue infarction [1] or in the future, as an adjunct to current treatments such as

radiofrequency ablation. A possible implementation of embolotherapy was patented

by Apfel et al. [2], who suggested the use of superheated immiscible liquid droplets.

Variations of such droplets have already been evaluated as potential ultrasound

contrast agents [3], where sub-micron sized droplets of liquid perfluorocarbon (PFC)

were in part vaporized prior to injection into the body [4]. Another formulation

of droplets presented as embolotherapy agents for acoustic droplet vaporization

(ADV) [5] are larger in size (1-10 µm). Injected into the body as stabilized liquid

emulsions, they vaporize in response to an acoustic field into gas bubbles that are

five to size times [5] larger in diameter than that of the original droplet. ADV has

been successfully shown in vivo to produce gas emboli and reduce blood flow [6].

Embolization by ADV is advantageous because it can potentially be performed

transcutaneously with essentially no damage outside the treatment region. However,

the applied ultrasound must be able to overcome attenuation from tissue when the
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target is deep inside the body. Low frequencies are advantageous to reduce the effects

of attenuation, which should increase the range of depths and available aperture at

which ADV can be accomplished. However, previous studies have shown that the

pressures required to produce ADV increase with decreasing frequency [7]. Although

the application is therapeutic and the bioeffects of high amplitude exposure perhaps

an acceptable consequence, it remains favorable to minimize the amplitudes required

to produce the desired effect for the robustness of the technique and from the patient

and the logistic perspective. Hardware necessary to generate high pressures may be

expensive and/or large for feasible use in the operating room.

In order to use low frequency ultrasound, other parameters may be changed

to lower the ADV threshold. It may be possible that inertial cavitation (IC) is

linked to ADV, in which case the opposite relationship would exist. Since IC

threshold decreases with decreasing frequency, ADV threshold may also lower at

a low frequency when droplets are associated with IC. Giesecke et al. [8] showed

that the IC threshold in the presence of various PFC droplets is indeed lower at low

frequencies when using long millisecond pulses. The use of long pulses may also be

advantageous because IC is a stochastic process, and the probability that IC occurs

increases the longer ultrasound is applied [9].

This study investigates the effects of pulse duration and IC on ADV. The

pressures required to induce each phenomenon were found for ultrasound exposures

of microsecond to millisecond pulse durations at a low frequency of 1.44 MHz.

Additionally, contrast agents (CAs), which have a low IC threshold, may lower

the ADV threshold if in fact the two processes are linked. Therefore, a second

experiment measures the ADV threshold when the droplets are in the presence of

CAs.
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2.2 Materials and Methods

Experiments investigating the effects of pulse duration on ADV threshold and

ADV in the presence of CA were conducted in both a static environment and in flow.

Table 2.1 summarizes the experimental conditions, including acoustic parameters

and method of detection for ADV or IC. Details are described subsequently in this

section.

Table 2.1: Summary of Experimental Conditions

Experimental
Condition

Pulse Duration Study Contrast Agent Study
[cm/s]

Static Agents : droplets Agents : droplets and CA
Detection: B-mode, passive
detector

Detection: B-mode, passive
detector

Pulse seq.: single 20 µs -
20 ms tone bursts, multiple
pulses

Pulse seq.: single 20 ms tone
bursts

Flow Agents : droplets Agents : droplets and CA
Detection: B-mode Detection: B-mode
Pulse seq.: single 20 µs tone
bursts

Pulse seq.: single 20 µs - 20
ms tone bursts
*Control : CA only, 20 ms

Pulse duration experiments examined the ADV threshold when only droplets were present. CA
experiments examined the threshold when both droplets and CA were present. A control experiment
in which only CAs were exposed to 20 ms tone bursts also is listed.

2.2.1 PFC Droplets

As described in [5], dodecafluoropentane (DDFP) (09-6182, Strem Chemicals,

Inc., Newburyport, MA) was combined with a 4 mg bovine albumin (A3803,

Sigma-Aldrich, St. Louis, MO) /mL saline solution. The mixture was then shaken

for 30 s in a vial mixer (Vialmix, DuPont, Billerica, MA) for droplet emulsification,

where the DDFP liquid droplets become encased in albumin shells. The DDFP

droplet will remain as a liquid at room temperature and, although DDFP has a

boiling point of 29◦C, will remain a liquid even at body temperature at 37◦C.
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At 37◦C, DDFP is a superheated liquid that is stabilized against spontaneous

evaporation due partially to the albumin shell [5]. All solutions of droplets were

pushed through a series of syringe filters (Whatman, Maidstone, UK) so that the

maximum droplet diameter was 6 µm [6] in order to accommodate in vivo conditions,

where droplets must be able to pass through capillaries. A droplet concentration (as

determined from samples counted using a hemacytometer imaged under microscopy)

of approximately 5.3x107 droplets/mL was used in all experiments by diluting the

stock droplet solution in de-ionized water. The dilution was then stored in the

refrigerator between experiments.

2.2.2 Contrast Agent

In the CA experiments, various concentrations of Definity R© contrast agent (Bristol-

Myers Squibb Medical Imaging, North Billerica, MA), which are microbubbles

consisting of PFC gas in phospholipid shells, were added to solutions with the same

concentration of droplet as mentioned above. The concentrations that were used

were 103, 104, or 105 microspheres/mL and were determined according to appropriate

dilutions of the concentration of Definity R© specified in the package insert. Vials of

Definity R© were activated several days prior to the experiments and were re-used for

separate measurements. PFC gas replaced the headspace as Definity R© was aspirated

from the vial for each experiment. Unless otherwise specified, further mention of CA

will refer to the use of Definity R©.

2.2.3 Acoustics

Single tone bursts of 20 µs, 100 µs, 500 µs, 1 ms, 5 ms, 10 ms, and 20 ms

in duration and 1000 tone bursts (20 µs each in duration) at a pulse repetition

frequency (PRF) of 500 Hz were transmitted at a carrier frequency of 1.44 MHz

with an annular transducer (63 mm focal length, 63.5 mm aperture in diameter, 63.5

mm radius of curvature, Etalon 940501, Lebanon, IN). Pressure waveforms at the
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spatial peak of the annular transducer were calibrated with an in-house fiber-optic

probe hydrophone [10]. Pressure levels ranged from ambient pressure to 6 MPa peak

rarefactional pressure (Pr).

To achieve the long pulse durations used in these experiments, a master function

generator (Hewlett Packard 33120A, Palo Alto, CA) gated a second slave function

generator (Hewlett Packard 3314A, Palo Alto, CA). The slave function generator

then output a 1.44 MHz sinusoid to an amplifier (ENI A300, Rochester, NY),

which was then sent to the annular transducer. The master function generator also

triggered the appropriate detector to begin recording data.

The purpose of the first set of experiments was to explore the effect of pulse

duration on ADV threshold; thus, all pulsing parameters described above were

measured. In the second set of experiments, which explored the influence of CAs on

ADV, only single 20 µs and 20 ms tone bursts were used.

2.2.4 Experimental Setup for Static Experiments

The focus of the annular transducer was positioned inside a closed vessel made of

thin-walled dialysis tubing (5 mm diameter, Spectra/Por R©, Spectrum Laboratories

Inc., Laguna Hills, CA), which was replenished with a new solution of droplets or

droplets with CA between each threshold measurement. A piece of sound absorbing

rubber (SOAB, BF Goodrich, Jacksonville, FL) was placed at an angle on the

distal side of the tube to minimize reflection and the possibility of standing waves.

Experiments were performed in 37◦C de-ionized water (Ex 7, ThermoNESLAB,

Newington, NH). A schematic of the setup is shown in Fig. 2.1a.

Two methods of detection were used, although not concurrently in the actual

experiment (Fig. 2.1b). One of these methods used a diagnostic ultrasound imaging

system (Diasonics VST Series, Milpitas, CA) with a 10 MHz linear array positioned

approximately 30◦ from the annular transducer, to record B-mode images for
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(a) (b)

Figure 2.1: (a) Top view of the experimental setup for measurements performed
in a static environment. The therapeutic transducer and the associated electronics
necessary to create millisecond pulses are shown. Both methods of detection also
are illustrated and labeled as Detector 1 and Detector 2, though they were not used
concurrently. (b) Schematic (side view) of the experimental setup used in studies
measuring ADV threshold in the presence of contrast agents in a flow environment.
Solutions contained either droplets, droplets and 103, 104, or 105 microspheres/mL
of Definity R©, or 105 microspheres/mL of Definity R©. Experiments were performed in
37◦C deionized water.
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detection of bright echoes from large bubbles created by ADV. The second method

was to detect the acoustic emissions from IC, which was achieved with a passive

5 MHz single element transducer (Valpey-Fisher, Hopkinton, MA), positioned 90◦

from and confocal with the annular transducer. An oscilloscope (Lecroy 9310L,

Chestnut Ridge, NY) was triggered with each transmitted pulse and captured the

radiofrequency (RF) signals associated with any acoustic emission or scattering. The

detectors were positioned as mentioned previously to minimize interference from the

direct wave of the annular transducer. Similarly, because of acoustic interference

from the linear array, the two detectors were used separately.

Each ADV threshold measurement was conducted as follows. A new sample was

loaded into the closed vessel, leaving space at the top for gas expansion. The vessel

was then connected to a holder, which oriented the vessel vertically and positioned

it so that it coincided with the focus of the annular transducer. Single tone bursts

or multiple tone bursts were then transmitted from the annular transducer 10-25 s

apart (depending on the pulse duration) with increasing pressure amplitudes. This

process was repeated five times for each acoustic parameter.

Once ADV threshold was reached, subsequent measurements at higher pressures

were affected since lingering bubbles from the previous pulse facilitated further

ADV. Vaporized droplets provided additional cavitation nuclei in the acoustic field

of subsequent pulses if they adhered to the tube wall or if enough bubbles were

produced that they could not clear the beam before the next pulse. Since we were

only concerned with measuring the ADV threshold, the interference from remaining

bubbles with successive pulses at super-threshold amplitudes did not affect the

determined threshold.

Table 2.1 shows that both solutions (droplets and droplets with CA) were

performed in a static environment. The majority of pulse duration experiments

involving only droplets were performed in a static environment, though a limited
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number of experiments were performed in flow for a comparison of the two

environments. However, a static environment is not optimal when CAs are present

because it is difficult to achieve a homogeneous distribution of CA and droplets due

to a difference in buoyancy. Therefore, only a limited number of experiments with

CA and droplets were performed in a static environment.

2.2.5 Experimental Setup for ADV in Flow

The circulating flow system is shown in Fig. 2.1b. A solution of droplets (5.3x107

droplets/mL), droplets and CAs (103, 104, or 105 microspheres/mL), or CA only

(105 microspheres/mL) were continuously stirred in a reservoir and circulated via a

peristaltic pump (Masterflex R© pump and speed controller, Cole-Parmer, Chicago, IL)

and tubing (Tygon R©, Saint-Gobain Performance Plastics Co., Akron, OH) through

the focus of the annular transducer, where a segment of dialysis tubing provided

acoustic access. The pump setting was chosen to achieve a slow average flow velocity

of 3.75 cm/s, which was calculated from a calibration of the volume flow rate of the

pump and cross-sectional area of the tube, in order to maximize opportunity for

ADV and for comparison to static experiments. Pulsatility of the flow was reduced

by including an in-line capacitor in the flow system. The solution, which was first

immersed and allowed to equilibrate to the 37◦C tank water, was changed between

each experiment. For each experiment, two pulses were transmitted one second apart

at a specific amplitude, and the next pair of pulses were fired after five seconds. This

cycle was repeated with increasing pressure amplitudes in both coarse (∼170 kPa)

and fine steps (∼40 kPa) to encompass a large range (0.22-4.43 MPa) and to refine

the threshold measurement in a small range (0.22-1.24 MPa), respectively. These

experiments were repeated five times. Thus, 10 measurements were taken at each

pressure in each of the two amplitude ranges, although 20 measurements existed for

pressures that were equivalent in the separate ranges.
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Only one detection method was used in these experiments. In flow, moving

scatterers would introduce additional noise into the RF signals that are detected

by the passive transducer, significantly reducing the signal to noise ratio (SNR).

Therefore, B-mode images were used to make threshold measurements.

To maintain a nominally homogenous distribution of CA and droplets and to

correctly characterize their behavior in concert, the majority of CA experiments were

performed in flow. These solutions were exposed to 20 ms tone bursts, although an

additional experiment of 105 microspheres/mL and droplet solutions were exposed to

20 µs pulses for a comparison of the effect on threshold due to short pulse duration

in the presence of CAs. An experiment where only droplets were exposed to 20 µs

tone bursts was also performed as mentioned in the previous section.

Although CAs are echogenic and provide substantial signal, scattering from

bubbles with larger cross-sectional area produced by ADV are distinguishable in

B-mode. The focus of the 10 MHz linear array was positioned on the proximal side of

the tube and the output power was maintained at a low setting, thereby (1) reducing

the signals from CA microbubbles while still detecting signal from ADV bubbles

and (2) reducing the possibility of destroying CA and/or affecting the threshold

measurement. Because the ADV threshold is low at a frequency of 10 MHz [7], the

linear array itself is also capable of vaporizing droplets.

2.2.6 Analysis of B-mode Images

B-mode images recorded during the pulse duration and CA studies were analyzed

for echoes from ADV bubbles, which appear as bright pixels in the image when

compared to the background. Detection for the presence of these echoes was

evaluated in terms of mean echo amplitude (MEA) in a given region of interest (ROI)

and is described in [5]. The ROIs, each consistent in size for a given study, were

positioned next to the focus of the annular array in the image and in the direction
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of movement of the bubbles produced by ADV. For the static pulse duration study,

the ROIs were positioned above the focus so that rising bubbles could be detected,

and for the CA study where the droplets and CA were flowing, the ROIs were

positioned downstream of the focus. The signal level at each pixel in the ROI was

then linearized assuming a simple log compression. The MEA, or the mean of the

decompressed pixel signal levels in an ROI, was then calculated and compared to

a baseline MEA value when no pulses were transmitted in order to detect a rise

in MEA and therefore the occurrence of ADV. Separate explanations of how this

analysis for the two studies was evaluated are described in further detail in the

Results section.

2.3 Results

2.3.1 Analysis for Pulse Duration Measurements

Detection with Imager

As described previously, the MEA for each B-mode image was computed. In this

pulse duration study, the MEAs for all images in a given cineloop were averaged.

A baseline mean MEA was then subtracted to compute the relative echo amplitude

(REA), which was then plotted as a function of peak Pr (Fig. 2.2). A large change

in REA indicates the ADV threshold. Therefore, the derivative of the REA vs.

Pr curve was taken to detect a change in slope. The point where the change in

slope exceeded a certain criterion was designated the threshold. This criterion was

established empirically from a small subset of the data and was subsequently applied

to all data. The ADV thresholds were then plotted in terms of pulse duration (Fig.

2.3).

Each data point found in Fig. 2.2 shows the result of consecutive pulses that

increase in amplitude; therefore, these plots reflect the REA as a function of both

time and pressure amplitude. If REA before the apparent ADV event is an indication
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Figure 2.2: Example of REA against Pr for 500 µs pulses. The sharp change in slope
at approximately 5.5 MPa reflects a rise in REA due to bubbles created by ADV.

of the droplet concentration, Fig. 2.2 shows a decrease in droplet concentration as

a function of time, which is expected since DDFP droplets have a higher density

(C5F12, 1.6 kg/m3) than water and would therefore settle to the bottom. However,

no correlation was found between any apparent variation in droplet concentration

and ADV threshold found in the data.

The placement of the ROIs vertically above the focus in the B-mode images

was important in order to detect rising bubbles. At near-threshold amplitudes,

long millisecond pulses created echogenic scatterers, which could be misinterpreted

as echogenic bubbles if they did not fall with gravity. Three frames in a B-mode

cineloop illustrating this process are shown in Fig. 2.4(a). One hypothesis is

that these sinking scatterers are DDFP droplet aggregates similar in concept to

aggregated forms of CAs during an acoustic pulse [11]. Further experiments would

be needed to test this hypothesis. The formation of such scatterers, henceforth

32



3.5

4

4.5

5

5.5

6

6.5

10 100 1000 10
4

10
5

T
h

re
sh

o
ld

  
P

r [
M

P
a]

Pulse Duration [!s]

*

Figure 2.3: Threshold in Pr as detected in B-mode images. Error bars reflect the
standard error of the mean. (∗) Refers to 1000 pulses (20 µs each in duration) at a
PRF of 500 Hz. All other data points are the thresholds for single pulses with pulse
durations indicated along the abscissa.

referred to as sinking scatterers, only occurred during millisecond pulses. For

super-threshold amplitudes, ADV was confirmed with the persistence of bubbles

after insonification. Fig. 2.4(b) shows three frames after a super-threshold pulse was

transmitted. Echogenic scatterers seemed to disperse above and below the focus

due to radiation force (Frame 3), but scatterers in this case moved against gravity,

confirming the production of ADV bubbles (Frames 10 and 20).

Passive Detection

A 5 MHz single element transducer recorded the acoustic emissions and scattering

to detect IC. IC is defined as the growth and the subsequent collapse of a gas bubble

during an ultrasonic wave. Its acoustic emission is characterized by the appearance

of broadband noise. To specifically identify such an event, the Fourier transform was

computed for the entire RF waveform, and two frequency bands were analyzed by
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the techniques described in [12], where the root-mean-square (RMS) was calculated

to quantify spectral content. These values were then plotted as a function of Pr.

To detect broadband noise, a frequency band between 2 and 2.4 MHz was chosen

because it lies between the fundamental frequency at 1.44 MHz and the second

harmonic at 2.88 MHz. A smaller more specific frequency band (between 0.7 and

0.74 MHz) was chosen to detect the subharmonic frequency at 0.72 MHz, which is

an indicator of the presence of bubbles. Bubbles in this case may be created either

by cavitation or ADV.

Two curves were then generated for each experiment. The RMS values for the

two frequency bands described above were plotted as a function of Pr. Fig. 2.5a is a

plot of the RMS values of the subharmonic range. Unlike the plots measuring REA

(Fig. 2.2), the plots for spectral content varied from experiment to experiment due to

variability in the number of inertial cavitation events that may occur with each tone

burst and also between the different pulse durations. Therefore, a criterion computed

from the baseline or pre-threshold RMS value was used for each separate experiment.

A histogram for each curve like that in Fig. 2.5b was used to determine the baseline

value. Since the increase in acoustic emission within a band is significant, a bimodal

distribution should exist. RMS values for a baseline value are then determined and

used as the criteria for ADV threshold as indicated by the dotted line (Fig. 2.5a)

and arrow (Fig. 2.5b).

Because of the statistical nature of IC, some events occurred at low amplitudes.

For example, a spike in RMS that met the criterion for ADV may have occurred but

did not recur with the following pulse at a higher amplitude. In order to choose a

threshold value that would reliably predict when IC would occur, these events were

not considered threshold. We required that at least two consecutive events occur to

be classified as threshold. Therefore, a median filter of size three was used (Eq. 2.1).

yi = median(xi, xi + 1, xi + 2), i = [1, N − 2] (2.1)
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Once the median value yi met the criteria, a threshold was determined. Fig. 2.6

shows the mean IC threshold for five measurements taken for each pulse duration.

Thresholds detected by both the presence of subharmonics and broadband noise are

shown.

Effects of Total “on-time” on Cavitation

To visualize the occurrence of IC and how it relates to pulse duration and on-time,

time-frequency plots were generated from the RF waveforms for both 20 ms pulses

and for 1000 pulses (20 µs each in duration). These two pulse sequences have

the same on-time, which is the cumulative duration of all tone bursts. Fig. 2.7a

shows three examples of scattering from 20 ms pulses at different amplitudes, and

Fig. 2.7b shows four examples from the series of 20 µs pulses also at different

amplitudes. Time-frequency plots for 20 ms pulses were generated by short time

Fourier transforms with the spectrogram function in Matlab (The Mathworks, Inc.,

Natick, MA) using 20 µs segments for comparison between the two pulse sequences.

RF waveforms in Fig. 2.7b were acquired in segmentation mode on the oscilloscope,

and each segment was time-gated to capture only the scattering during the short

transmitted pulse. Fourier transforms were then taken of each segment and also

displayed against time in Fig. 2.7b. Fig. 2.7c shows the results for 3.24, 4.20, and

4.85 MPa in Fig. 2.7b when the baseline spectrum (from the first time segment) is

subtracted from each of the spectra of the remaining pulses in the sequence.

2.3.2 Analysis for CA Studies

Similar to the analysis performed on the B-mode images in the pulse length

studies, ROIs were drawn in the images to detect a rise in pixel intensity and

therefore bubble production. In flow experiments, any bubbles created by ADV

would be quickly carried away after each pulse due to flow instead of buoyancy.

Therefore, an ROI positioned downstream of the focus was used to capture the
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transit of the ADV bubbles. Fig. 2.8 shows the MEA of such an ROI and how it

changes with time. The steady-state MEA can be seen during the first nine frames

and is then followed by two transient increases in MEA that characterize the passage

of bubbles and therefore successful ADV. Acoustic interference from the annular

transducer manifesting as white bands in the B-mode image is seen in frames 10, 11,

30, and 31, and the corresponding MEAs are therefore omitted from the MEA vs.

time plots.

From these plots, a threshold can be determined. Since the occurrence of each

of the two pulses is known beforehand, time intervals for a baseline MEA (first

nine frames), first pulse (frames 12-15), and second pulse (frames 32-35) can be

defined. Thus, MEA of the first and second pulses can be compared and evaluated

for successful ADV according to a threshold criterion computed from the statistics of

the baseline. Calculation of the criterion for ADV threshold is described as follows.

An accurate depiction of the baseline MEA was first obtained. Bubbles

unassociated with ADV occasionally traveled through the acoustic window, were

recorded in the B-mode cineloops, and were represented as aberrant spikes in the

MEA vs. time plots. These bubbles appeared to be vapor bubbles that formed in

tubing located beyond the acoustic beam. By comparing only the frames that were

expected to reflect either the first pulse (frames 12-15) or second pulse (frames 32-35)

to the baseline (frames 1-9), the probability that these spurious bubbles would affect

ADV detection was minimized. However, these bubbles can skew the data if they

appeared in the time frame used to calculate a baseline value. In order to accurately

represent the baseline value, an outlier detection method was used to identify spikes

in MEA in the baseline time interval and remove them from further calculations.

The box plot method, a standard method used for outlier detection, was applied

to the first nine MEA data points to detect an outlier. The points were first

rearranged in ascending order such that x1 < x2 < . . . x8 < x9. The interquartile
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range (IQR) was defined as Q0.75 − Q0.25, where Q0.25 = 1/2 · (x2 + x3) and

Q0.75 = 1/2 · (x7 + x8). An outlier was detected if it exceeded 1.5 · IQR above the

third quartile, Q0.75. Bubbles unassociated with ADV typically appeared as single

spikes (echogenic bubbles that raise the MEA), so the criterion was only applied for

the highest data point, or x9. Therefore, if x9 > 1.5 · IQR + Q0.75, then x9 was an

outlier and discarded from the baseline measurement. Outliers were detected 5% of

the time when using this method.

After any potential outliers were removed, the mean and standard deviation (SD)

were calculated for the baseline. An ADV event occurred if the MEA associated

with a pulse exceeded a criterion, which was computed from the mean and SD of

the MEA baseline values and which was assessed for reliability as follows. The

results (N=10 or 20 as explained in the Methods section) according to various

criteria, which differed only in the number of SDs above the mean, were compiled

and plotted as a probability for each Pr and for each CA concentration (103, 104, or

105 microspheres/mL) in Fig. 2.10a). To evaluate the reproducibility of the results,

we compared the results of an applied criterion with predictions based on a binary

logistic regression model (SPSS Ver.14, Chicago, IL) (Eq. 2.2). The predictors

in the binary logistic regression were based on exogenous factors including the

concentration of CA and applied pressure. The model is expressed below,

ln
P (E)

1− P (E)
= m1 +m2 · I1 +m3 · I2 +m4 · p (2.2)

where m1, m2, m3, m4 are constants, I1 and I2 = 0 or 1 and are indicators for CA

concentration, and p is pressure. Though the agreement between the results using a

specified criterion was high (>90%) when the number of standard deviations varied

between three and eight, the best overall results were obtained with a criterion MEA

that exceeded the mean by five SDs (Fig. 2.9). The model is plotted alongside

the data in Fig. 2.10a using a five SD criterion and shows 50% probability of
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vaporization at 0.67, 0.51, and 0.41 MPa and 95% probability at 2.0, 1.92, and 1.8

MPa for CA concentrations of 103, 104, and 105 microspheres/mL, respectively. All

results are statistically significant (p<0.01). A control experiment that measured

the threshold in a solution with only 105 microspheres/mL of CA and no droplets

was evaluated according to the same five SD criterion and plotted with the previous

data (Fig. 2.10b). The threshold for the control experiment is substantially higher

than those for solutions containing both droplets and CA of any concentration,

suggesting that the thresholds measured here are in fact due to ADV and not the

CA themselves. Fig. 2.11a also further supports this argument in that a highly

echogenic signal appears only with the combination of droplets and CA, whereas

insonation at the same pressure amplitude actually decreases the signal level when

only CA are present (Fig. 2.11b). In addition, the thresholds measured when only

CAs are present may only reflect an increase in echogenicity due to CA aggregates

[11] that form in the side lobes of the acoustic beam (Fig. 2.11c).

2.3.3 ADV in Flow (Droplets Only)

A comparison was also made to observe any effects of flow on ADV. Fig. 2.12

shows the results of an experiment with only droplets in flow along with the ADV

threshold found in the static experiments for 20 µs pulses. Because of the possibility

of forming echogenic scatterers other than ADV bubbles during long 20 ms pulses, it

would be difficult to differentiate between the bright echoes due to bubbles and those

due to sinking scatterers in flow since both move in the direction of flow. Therefore,

20 µs pulses were used for this comparison. Fig. 2.12 shows that an average flow

velocity of 3.75 cm/s does not significantly affect ADV threshold for 20 µs pulses,

the shortest tone burst used in this paper. Because the annular transducer has a

6 dB lateral beam width of 1.14 mm and a single droplet will have moved 750 nm

in 3.75 cm/s flow, nominally all droplets in the beam will have been exposed to the
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entire 20 µs pulse. Thirty-four percent of the droplets in the 6 dB lateral beam width

will have been exposed to an entire 20 ms pulse, which may result in an elevated

threshold measurement due to limited detector sensitivity. Additionally, the results

for an ADV threshold experiment for 20 µs pulses in the presence of CA were plotted

in Fig. 2.12, illustrating a reduction in threshold for short pulses as well.

2.3.4 ADV in a Static Environment (Droplets and CA)

A limited number of experiments with CAs (105 microspheres/mL) and droplets

were performed in a static environment with 20 ms pulses since, as mentioned

previously, it is difficult to differentiate bubbles from sinking scatterers in a

flow environment. From these static experiments, we can confirm from B-mode

cineloops that at 0.43 MPa, echogenic scatterers rise after insonification. This is

the same pressure that generates echogenic scatterers in a flow experiment and is

approximately 20% that of the pressure required to generate sinking scatterers in

a static environment. The results from the static case support the claim that the

echogenic scatterers detected in the flow environment are in fact buoyant bubbles

produced by amplitudes as low as 0.43 MPa (MI=0.4).

Passive detection of acoustic scattering was also used in these limited static

experiments where droplets were mixed with CA at a concentration of 105

microspheres/mL. The apparent threshold for broadband noise in these experiments

was approximately 0.8 MPa, which is just above the range of the transition of

probability from 0 to 1 in the flow experiments. This difference may be due to the

inhomogenous distribution of CAs and droplets, which results from a difference

in buoyancy and consequently a separation of material. The elevated threshold is

not likely due to a difference in detector sensitivity since there is good agreement

between the thresholds detected by the imager and passive detector in the static

experiments (Figs. 2.3, 2.6). Nevertheless, these results indicate that IC is occurring
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at these low pressure amplitudes.
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Figure 2.4: (a) Sequential frames of a B-mode movie show effects of a 20 ms pulse at
1.86 MPa Pr . Frame 2 immediately follows the tone burst in Frame 1, during which
acoustic interference was seen and thus is not shown here. The tube was oriented
vertically, and the imager as well as the annular transducer was positioned to the left
of these images. Echogenic scatterers, nonbubbles, sink toward the bottom of the tube
as indicated by the circles in Frames 10 and 20. (b) Sequential frames of a B-mode
cineloop show effects of a 20 ms pulse at 3.74 MPa Pr . Frame 3 immediately follows
the tone burst, during which acoustic interference was seen. Acoustic interference
may span from one to two frames; in this case, interference spanned from Frame 1 to
2. Due to radiation force, the echogenic scatterers were pushed against the tube wall,
then dispersed above and below the beam. However, the scatterers in these images
rise toward the top against gravity, indicating the creation of bubbles, and therefore,
the occurrence of ADV.
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Figure 2.5: ADV threshold experiment for 10 ms tone bursts. (a) Example of the
spectral content of a subharmonic frequency band in terms of Vrms plotted against
Pr. A histogram of the Vrms values is seen in (b), in which the lowest Vrms values can
be separated (↓) as the baseline values. Vrms values greater than the baseline value
(-) are determined as above threshold.
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Figure 2.6: Threshold in Pr as detected by the passive 5 MHz passive transducer.
Error bars reflect the standard error of the mean. (∗) Refers to 1000 pulses (20 µs
each in duration) at a PRF of 500 Hz. (a) Shows threshold measurements based
on RMS values of the subharmonic range from 0.7-0.74 MHz. (b) Shows threshold
measurements based on the presence of broadband noise.
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Fig. 7. RF signals are displayed for single (a) 20 ms tone bursts and for (b) 1000 pulses (20 µs each in 

duration) at a PRF of 500Hz for various pressure amplitudes.  The associated time-frequency plots of the 

acoustic emissions are shown to the right in (a) and (b). (a) are examples of scattering at pressures 

above ADV threshold. (b) shows four examples of RF signals, where 3.24 and 4.20 MPa are considered 

below ADV threshold and 4.85 and 6.21 MPa are considered above threshold. (c) better illustrates the 

change in time-frequency plots for waveforms in (b) when subtracting the spectra of the scattering from 
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Figure 2.7: RF signals are displayed for single (a) 20 ms tone bursts and for (b) 1000
pulses (20 µs each in duration) at a PRF of 500 Hz for various pressure amplitudes.
The associated time-frequency plots of the acoustic emissions are shown to the right
in (a) and (b). (a) Examples of scattering at pressures above ADV threshold. (b)
Four examples of RF signals, for which 3.24 and 4.20 MPa are considered below
ADV threshold and 4.85 and 6.21 MPa are considered above threshold. (c) Better
illustrates the change in time-frequency plots for waveforms in (b) when subtracting
the spectra of the scattering from the first 20 µs pulse. The time-frequency plot for
6.21 MPa is not shown in (c) because there is no clear baseline spectrum because IC
is occurring during the entire pulse sequence.
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Figure 2.8: Data points reflect the MEA of a given ROI through consecutive frames
in a B-mode cineloop. Statistics drawn from the mean MEA of the baseline, defined
here as the first nine data points, are used as criteria for ADV detection. Pulses
of the same amplitude are shown on the top and illustrate the timing of the pulse
firing during a given cineloop. Frames associated with acoustic interference with the
passive detector during pulse transmission are omitted (10, 11, 30, and 31).
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Figure 2.9: Percentage of correct predictions made by a binary logistic regression
model for different criteria (number of SDs). Displayed on two different scales are
true negatives (no ADV) on the right ordinate and on the left ordinate, true positive
as well as an overall accuracy percentage (ADV, Overall). The maximum overall
percentage is 91.7% when using a criterion of five SDs above mean, meaning data
and model have the best agreement for this criterion.
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Figure 2.10: (a) Probability for ADV computed in the presence of 103 , 104 , and 105

microspheres/mL of Definity R© according to a criterion of five SD above mean. Data at
a given pressure amplitude show the result for N = 10 or 20 measurements. The entire
dataset, including results for Pr > 2 MPa, is not shown in order to better display the
transition of probability from 0 to 1. Curve fits are taken from the regression model
described in the text. (b) The entire dataset for the experiments in (a) is displayed
here along with data that were collected with only CA present (+), which show a
higher threshold than the solutions containing droplets. Data for (+) reflect N = 10
measurements.
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Figure 2.11: Frames immediately following acoustic interference are shown when
solutions containing both (a) droplets and CA and (b), (c) CA only are exposed to
20 ms pulses. ADV occurs in (a) at 1.24 MPa as indicated by the circle. At the
same pressure, CAs are destroyed as indicated by low echogenicity when droplets are
absent (b). Increasing the pressure to 5.46 MPa further causes high echoes in areas
surrounding the focal zone, which may be the aggregation of CA microspheres in the
side lobes.
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Figure 2.12: Probability results for ADV using 20 µs tone bursts. CA concentration
is 105 microspheres/mL. Circles and diamonds are data collected from ADV in flow
conditions. The white vertical line and the gray region indicate the mean ADV
threshold in Pr with no CA present and the associated standard error, respectively,
found in the static experiments using detection by B-mode cineloops.
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2.4 Discussion

The results show that the ADV threshold can be lowered by both lengthening

pulse duration as well as by adding CA. In evaluating these two methods in the

following sections, the occurrence and role of IC are also examined.

2.4.1 ADV Threshold with Droplets Only

From the static experiments, it appears that the ADV threshold remains relatively

constant (5.5-5.9 MPa) for pulse durations shorter than 1 ms for a 1.44 MHz carrier

frequency (Fig. 2.3). The threshold drops for pulse durations longer than 1 ms,

whereupon it appears to reach a plateau (3.8-4.6 MPa). Although 20 ms may

vaporize droplets at a lower Pr than microsecond pulse durations, it may not be

optimal for in vivo conditions because of heat deposition on overlying tissue layers.

Thus, we investigated if the total on time,” or the cumulative duration of all tone

bursts, had an effect on the ADV threshold by transmitting 1000 pulses at 20 µs

duration each (20 ms on time) at a PRF of 500 Hz (1% duty factor). Fig. 2.3

illustrates that the threshold for this case (mean of 4.25 MPa) is not statistically

significant from the threshold found for a 20 ms tone burst (mean of 3.96 MPa).

2.4.2 The Role of Inertial Cavitation in ADV

To investigate the role of inertial cavitation, where broadband noise signifies the

occurrence of an event, the acoustic scattering from the exposure of droplets to

ultrasound was recorded and compared to the data captured by the imager. The

thresholds as determined by the two different detection methods as well as the

threshold trends seen in terms of pulse duration (Figs. 2.3, 2.6) agree. A constant

threshold for pulse durations less than 1 ms is seen in Figs. 2.3 and 2.6 and is

consistent with the literature [13], where the time-averaged cavitation activity in

blood remained constant for pulse durations from 20 µs-1 ms at 1 MHz. Both curves
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also show that the threshold drops for pulse durations longer than 1 ms. There

is no indication in the data presented here nor in the literature that suggest that

the threshold would drop further for pulse durations longer than 20 ms [8]. This

consistency amongst the data suggests at least that IC plays a role in ADV at

frequencies below several MHz, though it is not clear whether the inertial cavitation

occurs inside or outside of the droplet in the experiments when only droplets are

exposed to ultrasound.

The elevated threshold for broadband noise of 4.5 MPa (MI=3.8) for 20 ms

pulses as compared to the results found in the literature [8] may be explained

when considering that IC and ADV are linked. With a lower f/number transducer

(1 versus an f/number of 2 in [8]), fewer higher harmonics accumulate because of

reduced time for high amplitude ultrasound propagation. Since high frequencies are

associated with a reduced ADV threshold, it may be more difficult for a low f/number

transducer to vaporize droplets. As this difference in threshold is shown in in vitro

experiments, transducer geometry and the effects of nonlinear propagation must

be further investigated for in vivo applications, where tissue provides substantial

attenuation. Although the nonlinearity coefficient β is similar for both water and

tissue (3.6 and 4-6.2, respectively [14]) the Goldberg number is much higher in water

than in tissue [15]. High harmonics generated during propagation through water

would be attenuated to some degree if instead the medium were tissue.

2.4.3 IC and “On-time”

The decrease in ADV threshold with increasing pulse duration along with the

comparable thresholds of equivalent on-time pulses is reminiscent of the behavior of

IC. It was shown that hemolysis, which reflects the quantity of IC, increased with

longer pulse duration and total “on-time” [9]. It may take as few as one available

nucleus to induce IC [9], and the opportunity for this to occur increases with longer
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pulse durations.

Examples of RF waveforms and the associated time-frequency plots are shown in

Fig. 2.7. Given adequate time for insonification, the chances of a cavitation nucleus

passing through the acoustic beam increases, and with increasing amplitude, the

initiation delay for cavitation decreases [16]. At 3.98 MPa, IC occurs only a portion

of the time during the 20 ms pulse (Fig. 2.7a). The duration of IC increases with

increasing amplitude and is eventually occuring during the entire pulse at (6.21

MPa). This increase in IC duration can also be seen in the multiple 20 µs pulses at

4.85 and 6.21 MPa (Fig. 2.7b). These amplitudes are considered above threshold,

where there is a spread in the spectral content indicating broadband noise. Fig. 2.7b

also shows RF waveforms at amplitudes below ADV threshold (3.24, 4.20 MPa) that

contain an interesting characteristic that is not seen in single 20 ms pulses. For the

case at 3.24 MPa, the scattering amplitude increases at approximately two thirds

into the duration of the pulse sequence and may appear to reflect the accumulation

of sinking scatterers, which was seen in B-mode cineloops. This is consistent with

an increase in scattering only at the fundamental frequency of 1.44 MHz. At 4.20

MPa, spikes in the scattering signal occur at two time points and appear to reflect

the generation of only a few bubbles per spike. Although there is a slight spread into

frequencies lower than the carrier frequency, it was not sufficient to meet threshold

criterion for subharmonics. The change in acoustic emissions during insonification

is better realized in Fig. 2.7c. Since the imaging array and passive single element

transducer could not be used concurrently, there is no direct evidence coupling the

aforementioned events though they can be seen during separate experiments at the

same amplitude.
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2.4.4 Inertial Cavitation External to a Droplet

The possibility that cavitation outside of the DDFP droplet may trigger ADV was

investigated by the addition of CA to the solution. CAs such as Albunex R© ([12],

[17][18][19]) and Levovist R© [18] have been shown to lower the IC threshold of the

host medium and in the case of Optison
TM

, lower it even further than the broadband

emission threshold for PFC droplets [8]. At diagnostic power levels, ultrasound

exposure of Definity R© has been shown to cause bioeffects thought to be associated

with cavitating microbubbles. These bioeffects include an increase in troponin T at

MI=1.2 [20] and petechial hemorrhages at an apparent threshold of 0.37 MPa for 1.7

MHz, or MI=0.3 [21]. These thresholds are significantly lower than the cavitation

threshold found with droplets present at MI=3.8 for 20 ms pulses. If cavitation is

linked to ADV as an initiator of the phenomenon, then there could be a reduction

in ADV threshold with the presence of CAs. We see that in Figs. 2.10 and 2.12,

there is indeed a reduction in threshold with the introduction of CA. In fact, it is

lowered by an order of magnitude for 20 ms pulses for the three CA concentrations

investigated here and by a factor of three for 20 µs pulses and 105 microspheres/mL

of CA. Although IC in the host medium may not always be the trigger for ADV,

these results indicate that it can be.

With a higher concentration of CA, there is a higher probability of cavitation

occurring with each pulse since there are more nuclei present [22]. As such, 105

microspheres/mL provide more nuclei and therefore there is a higher chance of IC,

and a higher chance that the event occurs in proximity to a droplet. The initial

threshold is considered here as the amplitude where there is at least one event

(Fig. 2.10a. Although this threshold is similar for all concentrations of CA, the

transition to achieving a probability of 1 rises more quickly with increasing Pr for

105 microspheres/mL. The logistic binary regression model showed that the results

of all three CA concentrations were statistically significant relative to each other
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(p<0.01), with the probability of an occurrence of an ADV event increasing with

the concentration of CA Fig. 2.10a. A similar result was seen with Levovist R© and

Albunex R© CAs, each of which had an IC threshold (detected by H2O2 production)

of 0.41 MPa independent of the concentration of CA added [18]. There was no

statistical difference in the amount of cavitation activity when comparing activity

increase from various dilutions of one or the other CA that were added to denucleated

phosphate buffered solution. However, when Albunex R© was added to a solution with

higher gas content, a notable rise in cavitation activity resulted. The solutions in the

experiments described in this paper were not degassed, and perhaps the combination

of higher gas content, droplets, and Definity R© provided substantially more nuclei to

show a significant difference between the three CA concentrations.

While the results of the CA studies in this section have been discussed in

comparison to thresholds of other types of CA, they do not reflect the effects of

all types of CA. It has been shown that CA oscillations differ with the type of

stabilizing shell [23][24], and we can reason from bubble dynamics that the type of

gas will also affect the contrast agent behavior. However, it has also been shown in

[21] that the bioeffects (petechial hemorrhages) resulting from IC occur at the same

pressure amplitude for Optison
TM

, Definity R©, and Imagent R©, and that the degree of

bioeffects depends on the number of microbubbles and is independent of the type

of CA. Since our passive detection method was used to identify the occurrence of

IC and the thresholds for IC and ADV were similar, the effect of CA on the ADV

threshold may be the same regardless of the type of CA.

2.4.5 ADV Threshold In Vivo

It is noted here that the findings of these studies may not represent droplet

behavior in blood. It has been shown in vitro that the ADV threshold increases when

blood is the host medium [5], although further investigation is required to determine
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the effects of blood flow in vivo. Additionally, the solutions in these experiments

were not degassed and were expected to be either at equilibrium with air as they

were circulated in the flow system, or slightly supersaturated in the static system,

where gas dissolved into the solution during refrigeration before being placed into

the 37◦C water bath. However, there did not appear to be a significant difference in

ADV threshold between the two systems (Fig. 2.12). However, human arterial blood

has a PN2 of 571 mmHg, PO2 of 102 mmHg and a PCO2 of 40 mmHg [25]. Arterial

blood, which is the target location for embolotherapy for cancer treatment, would

therefore have a slightly different gas content than that found in these experiments.

Still, with the addition of CA and consequently an even lower IC threshold, the

ADV threshold is likely to be also reduced in blood.

Additionally, for successful therapy in vivo, the bubbles resulting from ADV

must expand to an appropriate volume to be able to occlude arterial feeder vessels

to the cancer. While there has been success in a lepus kidney model [6] as mentioned

previously, verification of sufficient bubble sizes is necessary for applicability in

humans.

2.5 Conclusions

In order to achieve ADV at a low ultrasonic frequency and reduced input energy,

ADV threshold was measured as a function of pulse duration for single tone bursts

and for multiple pulses fired at a given PRF. By increasing pulse duration at 1.44

MHz, both the ADV and IC thresholds decreased in a similar trend. It was also

found that repetitive pulsing could induce the same effect at similar amplitudes as a

single pulse if the two have equivalent on-times. This may suggest a link between the

two phenomena, though proof of a causal relationship and determination of whether

IC occurs inside or outside of the droplet remains for future investigation.

In testing for the influence of IC on ADV, further experiments were conducted to
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evaluate the role of IC external to a droplet by the addition of CAs. The presence of

CAs greatly reduced the ADV threshold by an order of magnitude for 20 ms pulses

and by a factor of three for 20 µs pulses. Perhaps, with the use of CAs and by choice

of an appropriate pulse duration that reduces ADV threshold while minimizing input

power, routine ADV can be feasible at a range of useful locations in the body.
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CHAPTER III

Consideration of Attenuation and Efficiency in

Acoustic Droplet Vaporization for Embolotherapy

3.1 Introduction

The acoustic droplet vaporization (ADV) threshold is dependent on independent

variables such as frequency and pulse duration as discussed in the Chapter II. One of

the tradeoffs that arises from choosing a high versus low frequency, or short versus

long pulse duration is acoustic power. At high frequencies, less acoustic power is

required to achieve ADV [1] but considerably more may be needed when attenuation

is present. Smaller amplitudes are required to vaporize with long pulses than with

short pulses [2]; on the other hand, long pulse durations lead to increased time

average power and consequently increased risk of heating.

The addition of ultrasound contrast agent (CA) alleviates many of the decisions

that must be made to weigh these tradeoffs because the inertial collapse of CA

microbubbles appears to trigger the vaporization of a neighboring droplet [2]. For

lower frequencies, CAs have a low inertial cavitation (IC) threshold and can collapse

at pressures that are lower than thresholds for ADV. Thus, a significant reduction in

pressure amplitude is required to achieve ADV under these conditions if the inertial

collapse of CA is a trigger.

Having the ability to lower the ADV threshold with the addition of CA or

with lengthening pulse duration, we must now consider the effects of overlying
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tissue when attempting to vaporize droplets transcutaneously. Because the current

demonstrational target of embolotherapy by ADV is renal cell carcinoma (RCC),

we consider the acoustic access to the kidney. Three options are viable: through

the (1) abdomen, (2) intercostal space, or (3) retroperitoneum. The intercostal

space limits the effective aperture size of the transducer as sound will not easily

penetrate through bone; additionally, ultrasound (US) must first propagate through

the renal parenchyma, where acoustic shadowing by bubbles could effectively block

further distal ADV [3]. If the target is to vaporize droplets in the cortex, intercostal

penetration may be a reasonable option. Acoustic access through the abdomen or

retroperitoneum is more ideal for targeting the renal or a segmental artery; of these

two options, retroperitoneal access must penetrate through a larger portion of renal

parenchyma before reaching the arterial supply, and the position of the rib cage

and spine may confine positional adjustments necessary for anatomical variability.

Abdominal access also penetrates through some parenchyma and must contend with

the proximity of the bowel. Patient orientation and gravity can be used to reduce

possible interference from gas in the bowel.

Thus, in vivo studies will concentrate on acoustic access through the abdominal

wall, which is composed of layers of skin, fat, and muscle. On average, the human

abdominal wall as a whole has been found to be 2.4 ± 0.6 cm thick with a mean

attenuation of 1.13 dB MHz-1 cm-1 [4]. The set of experiments presented in this

chapter assess the success of ADV in an in vitro environment that simulates

abdominal transcutaneous ADV. In a simplified representation, overlying tissue

layers are simulated by using a 6 cm thick tissue-mimicking (TM) phantom

equivalent to 3 dB attenuation at 1 MHz, or approximately 3 cm human abdominal

wall. Under these conditions, ADV thresholds are measured with and without the

presence of CAs. The efficiency of the process is also measured with varying droplet

concentrations and pulse repetition frequencies (PRFs).
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3.2 Materials and Methods

3.2.1 Perfluorocarbon Droplets and Contrast Agents

Liquid perfluorocarbon droplets with albumin shells were manufactured according

to Kripfgans et al. [1]. Bovine albumin (A3803, Sigma-Aldrich, St. Louis, MO)

was first combined with saline at a concentration of 4 mg/mL. The albumin-saline

solution (750 µL) and dodecafluoropentane (250 µL) (09-6182, Strem Chemicals,

Inc., Newbury Port, MA) were then amalgamated (Wig-L-Bug, Crescent Dental

Mfg. Co., Lyons, IL) to form droplet emulsions. Immediately before performing

experiments, 1 mL stock droplet solution was diluted in 10 mL saline and filtered

with syringe filters (Whatman, Maidstone, UK) that were connected in series

and ordered in decreasing pore size (20, 16, 8, and 5 µm; Whatman, Maidstone,

UK). Based on previous measurements using a hemacytometer and imaged under

microscopy [5], a droplet concentration of 2.85 x 106 droplets/mL resulted from

this process and was designated as the standard concentration in this study. Other

concentrations, which are diluted after droplet filtration, are described in reference

to this standard value, such as a half, a quarter, and a tenth.

Definity R© (Bristol-Myers Squibb Medical Imaging, North Billerica, MA)

ultrasound CA, which consists of lipid shelled octafluoropropane gas microspheres,

was used in this study. Based on the appropriate dilution of the reported stock

concentration on the label, a concentration of 105 microspheres/mL in saline was used

for these experiments. Definity R© was activated 1-14 days prior to the experiment,

and gently agitated to a milky white color immediately before the experiments. PFC

gas replaced the headspace in the vial after CA was drawn from it. Four different

formulations were used in these experiments: droplets only, droplets and CA, CA

only, and saline only.
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3.2.2 Experimental Setup

The setup used in this study was similar to the flow environment setup described in

[2] and Chapter II. A 1 MHz annular array (10 cm aperture, 9 cm focus, 16 concentric

rings; Imasonic, Besançon, France) was focused in the center of a flow tube, where

a segment of thin-walled dialysis tubing provided acoustic access (5 mm diameter,

Spectra/Por R©, Spectrum Laboratories Inc., Laguna Hills, CA). All elements were

driven in phase for these experiments. Droplets and/or CA were continuously stirred

in a reservoir and circulated with a peristaltic pump (Masterflex R© pump and speed

controller, Cole-Parmer, Chicago, IL) through the flow tube and acoustic window,

where they were exposed to ultrasound. The maximum flow speeds were nominally 8

and 16 cm/s, and an in-line bubble trap served as a capacitor to ostensibly maintain

constant flow and remove large bubbles from circulation.

For simulation of overlying tissue, a tissue-mimicking (TM) phantom consisting

of two layers of 16 x 16 cm2 Zerdine R© slabs (1540 m/s sound speed, 0.5 dB MHz-1

cm-1 attenuation, CIRS, Inc., Norfolk, VA), one 2 cm thick and the other 4 cm thick,

was positioned between the annular array and the flow tube. A frame to hold the

phantom was put in place prior to any measurements for simple insertion of the

Zerdine R© slabs between measurements. Because Zerdine R© is hydrophilic and any

uptake of water would alter its acoustic properties, the slabs were contained in a

re-sealable plastic bag with castor oil (CA208, Spectrum Chemical Manufacturing

Corp., Gardena, CA) (c = 1.477 mm/µs, ρ = 0.969 g/cm3 (Onda Corp., Sunnyvale,

CA)) for coupling. Excess air was suctioned from the bag. As will be described later,

the total insertion loss was measured. The entire setup was situated in degassed

and deionized water that was heated and maintained at approximately 37◦C (Ex 7,

ThermoNESLAB, Newington, NH).

A 5 MHz phased array (FPA 5 MHz, System Five, General Electric Vingmed,

Milwaukee, WI) inserted into the center hole of the annular array was used to
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align the focus of the annular array with the target. For alignment purposes, high

amplitude pulses were transmitted from the annular array to induce IC in degassed

deionized water and consequently bubble clouds at the focus. These clouds were

visible in the B-mode images from the 5 MHz phased array, and their location was

noted for alignment with the flow tube.

The ADV threshold was determined by transmitting successive US exposures with

increasing applied pressure amplitudes in a step-wise fashion, starting at ambient

pressure and ending at pressures beyond the ADV threshold. Each US exposure

at each pressure amplitude consisted of 10-cycle pulses that were transmitted at a

specified pulse repetition frequency (PRF) for approximately five seconds. A 10 MHz

linear array (FLA 10 MHz, System Five, General Electric Vingmed, Milwaukee, WI)

was positioned 90◦ from the annular array and on the distal side of the TM phantom

to image any bubbles resulting from ADV. The 10 MHz linear array was used for

ADV detection rather than the 5 MHz phased array for two reasons: (1) it provided

superior images and (2) its placement allowed imaging to remain uncompromised by

additional attenuation introduced by the TM phantom. However, because the 10

MHz imager itself is capable of vaporizing droplets, the power output of the imager

was minimized by setting the mechanical index (MI) to 0.3. The B-mode images

were then transferred via video output to a desktop computer, where frame grabbing

software (NIH Image Version 1.61, U.S. National Institutes of Health, Bethesda,

MD) captured the images at a 20 Hz frame rate and recorded them in TIFF format.

This image transfer was ideal for efficient data storage due to the larger memory

capacity of the desktop computer. The B-mode TIFF movies were then analyzed to

determine the ADV threshold.

Table 3.1 summarizes the acoustic parameters for each formulation tested. For

formulations containing CA, a slower flow rate was used for better detection of

the resulting bubbles and because it has been shown to be successful in the past
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Table 3.1: Summary of Experimental Parameters

Agents Attenuation Velocity [cm/s] PRF [Hz] N
Droplets no 8 100 5

10-500 1
500 4

yes 16 100 5
Droplets + CA no 8 10 7

yes 8 10 7
16 20 5

CA only yes 16 20 5
8 10 5

Saline only no 16 20 1
yes 16 20 1

Threshold experiments were conducted for the acoustic parameters for the specified agent(s) listed,
where velocity refers to flow velocity, PRF refers to pulse repetition frequency, and N refers to
the number of repetitions. Two Zerdine R© slabs totaling 6 cm in thickness were used to provide
attenuation.

for measuring ADV thresholds; however, in order to make a comparison to the

formulations containing only droplets, the flow velocity also was matched at 16 cm/s

and the PRF was increased proportionally. The implications of the range of PRFs

used is discussed subsequently in the Results and Discussion sections. Although the

presented results were attained using the 10 MHz linear array, a limited number

of experiments were performed using the 5 MHz phased array to detect bubbles

produced by ADV from a different imaging plane.

3.2.3 Transducer Calibration

The 1 MHz annular array was calibrated with an in-house fiber optic probe

hydrophone (FOPH) [6] in de-ionized and 80% degassed water. The output pressures

resulting from a 10-cycle excitation pulse and a range of applied voltages were

measured at the spatial maximum. After a free water calibration, where the spatial

maximum was located and named Position 1, the setup for in vitro experiments was

reproduced by inserting the Zerdine R© slabs immersed in castor oil, along with its
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holder between the annular array and the hydrophone. The derated pressures were

measured again at Position 1 with the attenuating layers in place. With greater

nonlinear absorption, the location of the spatial maximum in fact changes with

the presence of the TM phantom. The shifted spatial maximum was then located

(Position 2), and the resulting pressures were measured again for a range of applied

voltages. During in vitro experiments, the flow tube was always aligned with the

spatial maximum in the acoustic field.

A theoretical fit derived from the Khokhlov-Zabolotskaya-Kuznetsov (KZK)

equations was used to characterize the transducer response in peak rarefactional

pressure (Pr) to the range of applied voltages. The true attenuation provided by the

TM phantom was also characterized since the addition of the castor oil, re-sealable

plastic bag, and discontinuity between the slabs are causes of additional absorption

and/or scattering. These results are provided below.

3.2.4 Image Analysis

The TIFF images recorded by the frame grabber were converted to the appropriate

linear grayscale before threshold analysis. Because the grayscale of the images saved

in TIFF format was different from that used by the System Five diagnostic scanner

(echoPAC format), the appropriate conversion was needed to recover the original

image which is quantified in terms of the relative echo amplitude.

A calibration was performed in order to determine the correct grayscale conversion

from TIFF to echoPAC format. Several images of the same Zerdine R© slabs used

in the experiments were captured and saved in both echoPAC and TIFF format.

Gain, time gain compensation, and focal depth were varied for each image. The

combination of attenuating medium and variation in imaging parameters allowed

for testing of the full dynamic range and any change in conversion with imaging

parameters. The echoPAC pixel intensities were extracted using proprietary software
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(General Electric, Milwaukee, WI) operating in Matlab (The MathWorks, Inc.,

Natick, MA) and were then decompressed according to the algorithm provided by

the manufacturer. The pixel values between the TIFF images and the decompressed

echoPAC images were compared and a quadratic function was fit to the conversion

curve. This grayscale conversion was applied to all images.

3.3 Results

3.3.1 Sound Field through Zerdine R©

Fig. 3.1a shows results of four acoustic field calibrations performed in degassed

deionized water and measured with an FOPH. A theoretical curve for achievable

Pr was generated using time-domain methods to solve the KZK equation [7], where

the annular array was modeled as a single element transducer. Attainable pressures

were simulated from a range of source pressures, and assuming a linear relationship

between source pressures and applied voltages, a fit was produced.

The attenuation effects from the TM phantom can be seen in Fig. 3.1b, where

the derated pressures (Position 2) as measured by the FOPH is plotted as a

function of the expected pressure in a water path. Otherwise stated, for an applied

voltage, the maximum pressure attained in a water path and the maximum pressure

attained through the TM phantom is shown. The slope of the fit in Fig. 3.1b is

0.7 and corresponds to -3.1 dB in pressure, indicating that there was no significant

contribution from the layer of castor oil, bag, or gap between Zerdine R© layers.

Additionally, a calibration confirmed that the same pressures were achieved with

and without the phantom holder.

With the insertion of Zerdine R©, there is a slight shift in the spatial maximum in

the proximal direction by approximately 1.5 mm (Fig. 3.2). In order to understand

the effects of the TM phantom, the spectral composition of two waveforms with the

same Pr, one traveling through water and one traveling through the phantom, were
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Figure 3.1: a) Data from four different free water calibrations, where pressure was
measured with a fiber optic probe hydrophone. The data was fit with a simulated
curve derived from the KZK equation. b) For a given pressure attained in a water
path, the corresponding in situ pressure from the same acoustic source achieved
through an attenuating gel is plotted.

examined. The Fourier transforms of the waveforms are compared in Fig. 3.3, where

it appears that the amplitudes at the fundamental frequency and harmonics are

nominally equivalent with the exception of the third harmonic at 3 MHz.

3.3.2 Threshold Analysis

After grayscale conversion and decompression, the B-mode images captured by

the 10 MHz linear array were analyzed to detect the creation of bubbles according to

procedures described in [1] and Chapter II. A region of interest (ROI) in the B-mode

images was chosen downstream of the focus to capture persisting bubbles. The mean

echo amplitude (MEA) was then computed by averaging the pixel values within the

ROI for each frame, and subsequently over all 100 frames in a given movie. This

calculation was performed for each movie, where each movie captured US exposures

at different pressure amplitudes. Thus, an MEA was calculated for each Pr tested
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Figure 3.2: Axial beam profile with Zerdine R© insertion. Each data point indicates the
Pr at each location normalized to the maximum value of the second degree polynomial
fit (line). Position 1, or the spatial maximum in a water path, is located at 0 mm.
When the majority of the water path was replaced with an attenuating medium, the
spatial maximum shifted approximately 1.5 mm (Position 2) toward the transducer.
The amplitude at Position 2 was only 2% greater than that at Position 1 when the two
locations were measured in the presence of Zerdine R©. This ratio, however, increases
with amplitude.

in a given experiment. The baseline MEA, i.e. the MEA during no US exposure,

was subtracted from all MEAs within an experiment to obtain the relative echo

amplitude (REA).

The pressure amplitudes along with their associated REAs were then plotted

and analyzed to detect the ADV threshold. Fig. 3.4 shows examples of REA vs. Pr

curves for droplets only and for droplets with CA. When only droplets were present,

a sharp rise in REA indicated the ADV threshold and was preceded by a slight linear

decrease in the sub-threshold REA, the reasons for which will be discussed shortly.
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Figure 3.3: The Fourier transforms of two waveforms with an in situ Pr of 5.4 MPa.
One waveform was measured in a water path, and the other through a Zerdine R© TM
phantom.

Thus, the curve could be defined by two line segments (Eq. 3.1) [1],

REA(p) = (a1 · (p− ptheshold + b) · w1 + (a2 · (p− ptheshold + b) · w2 (3.1)

where p is Pr, and an and wn are the slopes and windowing functions for each line

segment, respectively. An example of an REA vs. Pr curve with its associated curve

fit is shown in Fig. 3.4a. This threshold detection technique was also applied to

curves associated with experiments with only saline. In this case, a rise in REA was

due to bubbles generated by IC.

With the presence of CAs, the REA vs. Pr curve takes a different shape. Contrast

disruption occurs at low amplitudes in comparison to ADV, manifesting as a loss in

echogenicity. The loss also results in a decrease in REA, which is illustrated in Fig.

3.4b. Although the REA also decreases when only droplets are present (Fig. 3.4a),

the decrease appears linear and unlike the rapidly diminishing curve for droplets and

CA. The decrease in REA in this case is most likely due to the loss of droplets as
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Figure 3.4: REA vs. Pr curve for formulations of (a) droplets, where the associated
curve fit is also plotted, (100 Hz PRF) and (b) droplets with CA (10 Hz PRF). Both
experiments were conducted in the absence of a TM phantom.

the solution is circulated.

Fig. 3.5 plots a normalized REA, REA/|REAmin|, to compare the functional

dependence between the case of droplets with CA and CA only. With different

imaging parameters such as gain, focal depth, and experimental variation in dilution,

the absolute loss in REA may change from experiment to experiment. The point

at which the two REA/|REAmin| curves deviate suggests new bubble production.

Because REA/|REAmin| for only CA exponentially decays and does not rise with

increasing pressures within the range of Pr tested, the possibility that the bubble

production is due to coalesced or aggregated CA, or even from IC, can be excluded.

This rise in REA/|REAmin| is most likely due to ADV.

Therefore, the ADV threshold in the presence of CAs was determined as the Pr

at which the REA/|REAmin| began to deviate from the REA/|REAmin| curve for

only CA. This point was consistently the point at which REA/|REAmin| began to

increase. In order to find the shift from negative to positive slope, a second degree

polynomial was fit to the REA/|REAmin| vs. Pr curve, and the minimum value
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Figure 3.5: Example of REA/|REAmin| vs Pr curve for when droplets are mixed with
CA and for CA only. Both experiments were conducted in the presence of a TM
phantom. As such, Pr values are in situ.

signified the ADV threshold.

The threshold results in terms of in situ pressures and applied voltage to the

transducer are summarized in Fig. 3.6. Using a t test for unequal variances, the

difference when comparing the results for ADV with and without attenuation when

only droplets were present were statistically significant (p<0.01). The thresholds for

formulations with CA were much lower (p<0.001) such that approximately the same

amount of source power was necessary to achieve ADV through an attenuating tissue

mimicking (TM) phantom as it was without attenuation and with only droplets. The

threshold when droplets and CA were circulated at a flow velocity at 8 cm/s was

slightly reduced when the TM phantom was inserted (p<0.04). With a flow velocity

of 16 cm/s and with attenuation, the threshold when compared to the slower velocity
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at 8 cm/s with attenuation was different (p<.01) but was statistically the same as

the 8 cm/s case without the TM phantom.

(a) (b)

Figure 3.6: Summary of threshold results. Results in terms of in situ Pr and voltage
applied to the transducer are in (a) and (b), respectively. The IC threshold was
measured with only saline, and in all other measurements, the ADV threshold was
measured. For the cases when there were droplets and CA (D+CA) or only saline,
the PRF was 20 Hz for a 16 cm/s flow rate; when only droplets were present, the PRF
was 100 Hz. For an 8 cm/s flow rate, a 10 Hz PRF was used. Error bars indicate
standard deviation.

In order to confirm that the presence of the phantom holder did not affect the

measurements, a limited number of experiments with only droplets were conducted

without the phantom holder. The thresholds measured under these conditions were

not statistically different from the thresholds measured with the phantom holder.

3.3.3 Image Analysis for Efficiency

ADV efficiency was explored with varying PRFs and droplet concentrations. In

order to evaluate efficiency, B-mode movies were compared within a given setup,

where equivalent imaging planes were captured. Small variations in alignment,
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although insufficient to affect the detection of the ADV threshold, can capture

different parts of the parabolic flow profile within the tube and may affect an

accurate comparison of droplet conversion. Therefore, B-mode movies from different

setups were not used in the same analysis. Four lines of pixels (similar to four partial

M-mode lines) positioned in the flow tube were taken from each image, namely

upstream of the focus and at the focus, as well as two cross-sections downstream of

the focus (Fig. 3.7). The decompressed pixel intensities were integrated across these

lines and were then averaged over the 100 frames in the movie. The integrated lines

upstream of the focus, at the focus, just downstream of the focus (“Downstream”),

and further downstream of the focus (“Downstream 2”) will henceforth be referred

to as IMup, IMf, IMd1, and IMd2, respectively. IMf, IMd1, and IMd2 were normalized

to IMup in order to compute an efficiency factor associated with each of the three

positions. Any differences in IMx for different depths due to focusing effects of the

imager were corrected by simple multiplication based on baseline measurements

taken without the application of the ADV field. Here, efficiency factor is only a

relative metric, and does not describe the efficiency of droplet conversion in terms of

an absolute value. Previous measurements have shown that at a higher frequency

of 4 MHz, approximately 26% of droplets are converted to gas bubbles with each

pulse [8]. It has not yet been determined whether this conversion efficiency holds for

different frequencies.

The efficiency factor is plotted in Fig. 3.8 for 100 and 500 Hz PRFs and different

droplet concentrations. The efficiency factor for both PRFs remains relatively

constant for the two downstream values, but at the focus, the efficiency factor

(IMf/IMup) decreases with increasing concentration. IMf, however, is the same

regardless of the droplet concentration; generally speaking, absent of any ADV, IMx

increases with increasing droplet concentration. Consequently, the ratio between IMf

and IMup decreases with increasing droplet concentration.
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Figure 3.7: a) Lines of pixels taken upstream of the focus, at the focus, and two
downstream of the focus are used to evaluate efficiency of ADV. This single frame is
taken from a B-mode movie capturing events during an US exposure with 5.4 MPa
Pr and 100 Hz PRF. b) The pixel values in these lines are displayed. The lines
positioned at the focus and downstream of the focus show elevated pixel intensities
when compared to the upstream baseline position.

When comparing PRFs, the efficiency factor is 2-3 times greater at 100 Hz than

at 500 Hz. Upon closer examination of the role of PRF (Fig. 3.9), we find that a

monotonic relationship does not exist between PRF and efficiency factor; instead, an

optimal PRF is apparent.

Fig. 3.10 shows the calculated efficiency factor for US exposures of different

amplitudes in an experiment. These data were collected when droplets were mixed

with CAs. Unlike the cases in Fig. 3.8 and in the data collected for high PRFs

(>100 Hz) in Fig. 3.9 where the efficiency factor at the focus was generally higher

than that calculated for either downstream value, the efficiency factors for both

downstream lines were in fact higher than that at the focus when CAs were present.

73



1

2

3

4

5

6

7

8

9

0 0.2 0.4 0.6 0.8 1

100 Hz, Focus
100 Hz, Downstream
100 Hz, Downstream 2
500 Hz, Focus
500 Hz, Downstream
500 Hz, Downstream 2

E
ff

ic
ie

n
cy

 F
ac

to
r

Relative Droplet Concentration

Figure 3.8: The pixels in each cross-sectional line were integrated and normalized to
the baseline, i.e. the integrated value of the line placed upstream of the focus, to
compute the efficiency factor. Thus, the efficiency factor is the multiplicative factor
of the baseline droplet echogenicity. The efficiency factors for the focus, downstream,
and downstream 2 positions are plotted against relative droplet concentration where
a value of 1 indicates a concentration of 2.85 x 106 droplets/mL. A flow speed of
16 cm/s and an amplitude ∼40% higher (5.4 MPa Pr) than the ADV threshold was
used for the measurements shown here. Data points represent single experiments in
a given setup where the same imaging plane was used.

This inversion could logically be attributed to the difference of an order of magnitude

in PRF as droplets and droplets with CA received pulses at PRFs of 100 Hz and

10 Hz, respectively. However, Fig. 3.11 compares sequential IMx values in a movie

for a formulation of droplets and CA (Fig. 3.11a) and droplets only (Fig. 3.11b).

Unlike the majority of CA and droplet experiments, the same PRF of 100 Hz was

used for these two experiments. The pressure amplitude in these examples for the

case of droplets and CA was 200% greater than the measured ADV threshold for

said formulation, and the applied pressure for the case of only droplets was 40%

74



101 102 1030.5

1

1.5

2

2.5

3

3.5

4

4.5

5

PRF [Hz]

Ef
fic

ie
nc

y 
Fa

ct
or

 

 

Focus
Downstream
Downstream 2

Figure 3.9: A comparison of the efficiency factor for varying PRFs for US exposures
at 5.4 MPa Pr. The same calculated droplet concentration of 2.85 x 106 droplets/mL
were used for these measurements. No CA were added.

greater than the measured ADV threshold for only droplets. Even at an amplitude

significantly greater than the ADV threshold, IMf,d1,d2 is more sporadic with CA and

does not exhibit a clear separation from IMup (Fig. 3.11a). Reducing the PRF to 10

Hz (Fig. 3.11c) shows a more apparent separation of IMup and was therefore used

for the majority of experiments involving CA. Nevertheless, the distinct behavior of

IMf,d1,d2 seems to suggest a different ADV mechanism when CAs trigger the process.

A prevailing trend seen in Figs. 3.8 - 3.10 is that the for the “Downstream

2” M-mode line is greater than or equal to the “Downstream” M-mode line.

This increase could be caused by bubble growth, which will cause an increase

in echogenicity. The vaporized droplets have traveled a longer distance to reach

“Downstream 2” and therefore have had more time to take on gas. For a mean flow

rate of 8 cm/s (16 cm/s maximum flow rate), droplets will take approximately 100

ms on average to reach the “Downstream 2” M-mode line, which is more than double

the time to reach “Downstream”. According to [1], carbon dioxide will begin to
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Figure 3.10: The efficiency factor for a range of amplitudes is plotted for US exposure
of a combination of droplets and CAs of the same concentration.

diffuse into the bubble at 100 ns while others begin to diffuse at 1 ms, allowing the

bubble to exponentially reach its maximum size at 2 s. The bubbles would double

their size in 100 ms.

It was considered that radiation force may have played a role in the different

efficiency factors at high PRFs. The data evaluated for droplet conversion were all

collected with the 10 MHz linear array that was oriented perpendicularly to the

direction of propagation of the annular array, and any droplets/bubbles that were

created could have been pushed beyond the imaging plane. Thus, a limited number

of experiments were performed with the 5 MHz phased array that was situated in the

center hole of the annular array. If bubbles experienced radiation force, they would

still be detected by the 5 MHz imager. However, the data collected with the 5 MHz

imager, which captured the axial plane of the annular array, produced similar results

as the 10 MHz imager, which captured the lateral plane. It is therefore unlikely
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Figure 3.11: IM for sequential frames in a B-mode movie for (a) droplet and CA and
(b) droplets only. PRF for both US exposures was 100 Hz. (c) shows IM values for
a solution of droplets with CA for US exposures of 10 Hz PRF.

that the reduced number of bubbles detected downstream of the focus was due to

radiation force.

3.4 Discussion

3.4.1 ADV Threshold

The threshold experiments that were summarized in Fig. 3.6 show that droplets

were reliably vaporized through a TM phantom with 3 dB of attenuation and

that ADV is highly dependent on the value of Pr for all formulations. Although

the threshold measurements for only droplets with and without attenuation were

statistically different, the mean values differed by only 11%. Since the rarefactional

half-cycle is dominated by low frequencies, the fundamental frequency appears to
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have a large effect on ADV rather than the higher harmonics, although the harmonic

content was not substantially altered by the presence of the attenuating material as

evidenced by Fig. 3.3.

For the solutions containing CA and droplets, there is inconsistency within the

data. When comparing thresholds for the 8 cm/s flow velocity, the same trend as

seen with only droplets might be expected. However, the inverse relationship exists

as the threshold decreases with the addition of the TM phantom. Increasing the flow

velocity to 16 cm/s increases the threshold, which is expected since faster flowing

bubbles are more difficult to detect. Still, this threshold is not statistically different

than that for droplets and CA at 8 cm/s flow velocity. This inconsistency seems to

suggest variability in the interaction of droplets and CA due to perhaps dilution or

a focus whose level of aberration changes from experiment to experiment with the

propagation path through the TM phantom.

The addition of CA reduced the ADV threshold such that approximately the

same amount of input power was required when droplets were vaporized with

CA and attenuation, as when droplets were vaporized without CA and without

attenuation (Fig. 3.6b). CA lowered the ADV threshold by 1.5-2 times, which is

also similar to the results found for repetitive short microsecond pulses at 1.44 MHz

in [2]. As discussed in [2] and in Chapter II, the lowered ADV threshold with CAs

present indicates that IC external to the droplet may be an initiator for ADV. It

appears from Fig. 3.5 that there may be one of two effects that must occur before

a vaporization event occurs. First, the fall in REA/|REAmin| may be initially due

to the disappearance of CA unassociated with IC, but upon reaching threshold, the

CAs inertially collapse and trigger the surrounding droplets. Secondly, a certain

amount of IC may be required before ADV can be triggered. The diminishing CA

levels may be due to contrast disruption. However, ADV does not occur until higher

pressures are reached, perhaps due to the increased amount of IC that occurs within
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the widening contrast disruption zone or that the strength of the IC collapses are

sufficient. In any case, once a requisite amount of IC occurs, ADV thresholds do not

change significantly, which was witnessed when an increase in CA concentration did

not substantially lower the ADV threshold [2].

It is also possible that IC is the initiator when CA are absent. In this case, the

threshold for ADV absent of any CA is half that of IC in saline indicating that the

droplets, in providing inhomogeneities in the liquid, could lower the IC threshold

in the host fluid. However, it has been shown through high speed photography

that cavitation can occur inside the droplet itself [9]. These two mechanisms may

be dominant in their own frequency domain as with higher frequencies (or larger

droplets), the droplet may interact more with the ultrasound wave.

3.4.2 Efficiency

The efficiency of droplet conversion for a solution of droplets and CA was difficult

to quantitatively assess in comparison to results from a solution with only droplets.

As discussed in the previous section, the effective disruption zone for CA is larger

than the effective vaporization zone for ADV once the ADV threshold is reached.

The PRFs used for droplet and CA experiments were therefore lowered by an order

of magnitude in order to ensure that the intended population of CA and droplets

was replenished for each US pulse. However, a maximum flow rate of 16 cm/s and

a 20 Hz PRF seems to be the apparent optimal PRF even when only droplets are

present. It may be that, with the flow parameters and center frequency used in

these experiments, a slow PRF of 20 Hz (Fig. 3.9) will allow optimal efficiency with

minimal power input into the system. However, further investigation is required

to compare droplet conversion efficiency with and without the presence of CAs.

The amount of bubbles following an US pulse must be measured and differentiated

from the remaining droplet and CA population. Optical measurements in a static
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environment would allow for single bubble detection for counting, as well as the

ability to differentiate between converted droplets and the remaining agents.

When considering that IM is a direct indication of echogenicity, it has been seen

that the echogenicity at the focus remains the same when the PRF was high (100,

500 Hz) regardless of droplet concentration (Fig. 3.8). It may be inferred that the

same amount of bubbles were generated in the focal region, be it from IC or ADV.

However, if pulsing was too frequent, the bubbles that were created at the focus may

have been destroyed before leaving the field. With a PRF of 100 Hz, a maximum

flow rate of 16 cm/s assuming a parabolic flow profile, and full width half maximum

(FWHM) of ∼1.5 mm, each droplet that passed through the field was exposed to

at most one US pulse. For average flow, each droplet was exposed to two pulses. A

decrease in the efficiency factor is observed if the exposure is increased to 4 pulses per

droplet on average. In fact, as mentioned previously, for a 1 MHz carrier frequency,

a 20 Hz PRF is more efficient at converting droplets to gas bubbles than higher or

lower PRFs (Fig. 3.9).

A simple equation can be used to calculate the optimal PRF for any flow rate

and beam width. Assuming that 20 Hz is the optimal PRF, or PRFopt, based on the

data points in Fig. 3.9, the ratio between the average transit time for the FWHM

beam width ((beamwidth)/(flowrate) =18.7 ms) and the pulse repetition period

(PRP) (50 ms) is 0.375 for the parameters used in these experiments. Thus, given

an average flow rate v and beam width d,

PRFopt =
0.375v

d
. (3.2)

It is noted here that this change in efficiency appears not to be applicable to other

frequencies most likely because the threshold for IC increases for higher frequencies

and with bubble size [10]. At 4 MHz, data has shown that efficiency increases with

PRF as each sequential pulse continues to vaporize a percentage of the remaining
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un-vaporized droplets [8]. The efficiency saturates at high PRFs as the remaining

droplet population diminishes but does not decrease as in the case with a 1 MHz

carrier frequency.

From literature [10][11][12][13], pressure thresholds for inertial collapse can be

theoretically predicted. Based on the perfect gas law and an assumed adiabatic

collapse, attained temperatures can be related to bubble size (Eq. 3.3)

T ′ = T0

(
R′

R0

)3(1−γ)

(3.3)

where γ is the ratio of specific heats, T0 is the initial temperature, T ′ is the maximum

temperature, R0 is the initial bubble radius, and R′ is the minimum bubble radius.

The analytical theory in [12] improves upon that presented in [11], which applies

to bubble sizes greater than 10 µm for frequencies below 2.5 MHz. Apfel [12] includes

the consideration of surface tension and viscosity, expanding the relevance of the

model to bubble sizes greater than 0.5 µm in radius and to frequencies representative

of biomedical applications. Holland and Apfel [13] further examined the effects of

surface tension to be able to consider bubbles as small as 0.1 µm in radius. Since the

bubbles produced by ADV are large, we use the prediction presented in [12],

f =

1
3πR0

√
P0(p−1)

ρ

(√
2(p−1)
p

+
√

2(p−pb)
p

)
(
T ′/((γ−1)T0)

1+ 2
3
(p−1)

) 1
3

+ 8µ
3R0

√
1

ρPo(p−1)
− 0.46

(3.4)

where f is the insonating frequency, ρ is density, P0 is the ambient pressure, p is

the peak acoustic pressure amplitude normalized to ambient pressure, and pb is the

Blake threshold normalized to ambient pressure.

The theoretical thresholds were computed (Mathematica, Wolfram Research,

Inc., Champaign, IL) for various bubble sizes and frequencies (Fig. 3.12) for an

initial temperature (T0) of 310 K, or 37◦C, and attained temperatures (T ′) of 2500

K. The ADV threshold at 1 MHz is slightly higher than the threshold for inertial
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Figure 3.12: a) Collected data for ADV thresholds and theoretical predictions [12]
for inertial collapse for bubbles 10, 20, and 60 µm in diameter. (•) are collected data
from [14], (4) are from previous publications for microsecond repetitive pulses [3][2].
b) Theoretical predictions for inertial collapse for bubbles of a range of diameters for
insonation at 1 MHz. Bubbles resulting from ADV span the range of 10-60 µm in
diameter [14].

bubble collapse at 3 MPa for a bubble with a 60 µm diameter (Fig. 3.12a), the

largest bubble size measured from ADV of filtered droplets [14]. Bubbles can be as

small as 10 µm, where the threshold for inertial collapse is approximately 0.6 MPa

and is lower than the measured ADV threshold (Fig. 3.12b).

It therefore appears advantageous to choose the lowest possible frequency that,

for the bubble size distribution created by ADV, has a higher threshold for inertial

collapse than it does for ADV. This frequency would be the optimal frequency for

tissue penetration while retaining high conversion efficiency. For a 1 MHz insonating

frequency, the threshold for inertial collapse increases by almost a factor of three for

bubbles ranging from 10-60 µm. It appears that in Fig. 3.12a, bubbles created by

ADV may only be safe from inertial collapse upon the arrival of the second US pulse if

the frequency is above 4 MHz and the applied pressure is just above ADV threshold.

However, 10 µm bubbles only comprise a small percentage of the total number of
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bubbles and perhaps are not worth the sacrifice in frequency. The population of 20

µm bubbles is the largest [14], and perhaps should dictate the optimal frequency.

Further investigation is needed to ascertain the most advantageous balance between

droplet conversion efficiency, insonating frequency, and ADV pressure threshold.

3.5 Conclusion

Transcutaneous ADV was simulated in vitro in the experiments presented in this

study. It was found that ADV was reliably achieved through 6 cm of attenuation,

and that, with the annular array used, there is sufficient power capacity to overcome

the effects of even more attenuation. The option to reduce the power input while

retaining the ability to vaporize droplets is available with the use of CAs. However,

with CAs, PRF must be reduced in order to ensure that a fresh supply of CAs

accompany a fresh supply of droplets. PRF also becomes important at these low

frequencies where the bubbles created from droplets are subject to inertial collapse if

they remain in the acoustic field. At 1 MHz, PRF must be reduced in order to avoid

subsequent bubble destruction. Thus, for the different conditions under which ADV

may be optimal, there are considerations that must be understood.
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CHAPTER IV

Spatial Control of Gas Bubbles and their Effects

on Acoustic Fields

4.1 Introduction

Insonified microbubbles can serve as various tools for tissue treatment. They

play beneficial roles in creating lesions by both cavitation and the enhancement

of thermal ablation, though the mechanisms for these two classes of therapeutic

regimes are distinct.

In inertial cavitation, ultrasound (US) pulses cause bubbles to oscillate nonlinearly

and collapse, producing mechanical forces and potentially thermal and chemical

effects that impact the surrounding tissue. These effects of cavitation can cause

desirable damaging bioeffects in the case of therapeutic targets such as cancerous

tissue. With the use of microbubbles, more effective and predictable lesions can be

produced than when only treating tissue with high intensity US. [1] demonstrated the

useful applications of microbubbles, particularly contrast agents (CA), by showing

that the damage thresholds for lesions created in their presence were lowered because

of the active role that CA served as cavitation nuclei. Not only were lower intensities

required (threshold intensity for a visually apparent biological effect from a single

250 ms burst decreased by a factor of two when microbubbles were in circulation),

but also the threshold for producing nonthermal lesions was also more predictable.

Additionally, as higher intensities were applied, shorter burst lengths of 48 µs were
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required to create lesions with microbubbles present as compared to the 18 ms

required without microbubbles, resulting in a reduction in energy by more than two

orders of magnitude.

In another application, bubbles insonified by long pulses and/or high pulse

repetition frequency (PRF) as considered for imaging or Doppler [2], absorb enough

acoustic energy to cause thermal bioeffects. Wu [3] used continuous wave conditions

to simulate the temperature rise from a Gaussian beam and a perfectly absorbing

disc model for Albunex R© contrast agent. Wu found that temperature rises with

increasing perfusion lengths, time duration, focal gain, and acoustic power. The

highest computed temperature rise was approximately 12◦C for a perfusion length

of 3 mm, 60 s time duration, 1.67 focal gain, and total acoustic power of 110

mW. Applications such as hyperthermia would benefit from the controlled thermal

therapy that microbubbles would provide [4]. Holt and Roy [4] proposed that the

use of bubbles would allow for thermal bioeffects with reduced input energies, which

in turn provides another advantage of reducing heat deposition in overlying tissues.

Both cavitational and thermal methods of bubble-mediated therapy are

compelling arguments for the utility of microbubbles. It would seem even more

advantageous if the spatial locations of these bubbles could be controlled, thereby

dictating the location of the desired therapy. For example, if the target tissue were a

cancerous tumor, the placement of preexisting bubbles in the area of interest would

aid in applying therapy to that specific region. This spatial localization is difficult to

accomplish when restricted to the vasculature as CA are, although some formulations

of CA and droplets may be small enough to be passed into the extravascular space,

particularly in the case of cancer with its higher vascular permeability. Attempts to

produce bubbles in tissue without pre-existing nuclei present may be undesirable or

perhaps counterproductive if the exposures require the application of long durations

and/or high pressure amplitudes to generate bubbles through cavitation activity.
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One way to control the spatial distribution of microbubbles is through the use of

droplets that are subsequently vaporized in situ to form bubbles. As developed by [5],

these droplets, which are used in the experiments presented in this paper, are filled

with dodecafluoropentane (DDFP) liquid and encased in albumin shells. They are

superheated at body temperature and can vaporize during insonification, a process

known as Acoustic Droplet Vaporization (ADV). When unfiltered, droplet sizes

range from <1 µm to 18 µm [6] and produce bubbles that are 20-85 µm in diameter

[7]. However, droplets filtered to <6 µm diameter [6] produce bubbles that are

approximately 15-45 µm [7], compared to the already formed CA bubbles that are on

the order of < 5 µm. Though droplets are not more favorably distributed throughout

the body than CA are, they remain as droplets until insonifcation, whereupon they

vaporize, grow, and have the potential to lodge. Whether it is simply the localized

bubble production or the resulting lodged bubbles, subsequent microbubble-mediated

treatment also becomes localized both spatially and temporally.

The generation of bubbles can be spatially controlled with droplets distributed

in tissue or in the bloodstream, as focused US can specifically target a location and

subsequently vaporize droplets. The bubbles resulting from ADV in the capillary

bed would be trapped where the vaporization occurred, as these bubbles are large

compared to the capillary diameter. Although spontaneous vaporization is possible

(implications discussed in [7], filtering droplets to smaller sizes (<5 µm) reduces

these chances because of increased surface tension. As a source of cavitation nuclei,

in one experiment using the field of a shockwave lithotripter, Miller et al. [8] showed

larger bubbles from ADV to be more effective in producing bioeffects than US

contrast agents (CA). Miller and Song [9] also showed that bubbles created by ADV

persisted in mouse tumors four days after intravenous droplet injections. It is unclear

how long liquid droplets persist in vivo since their longevity in circulation depends

on the type of animal model, the degree in which the lungs filter the droplets [6], and
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their route of excretion, which may be similar to that of perfluorocarbon emulsions

[10].

In this investigation, the vaporization of droplets in tissue-mimicking polyacry-

lamide gels is studied. The manner in which bubble clouds grow due to ADV in

tissue or gel may be in part due to bubbles that scatter acoustic energy. When

several bubbles are insonified, backscatter can cause an enhanced field in areas

adjacent to the pre-existing bubbles, creating conditions favorable for additional

ADV and therefore growth in cloud size. Thus, the concept of a plane of bubbles, or

“bubble wall, can also create an environment where backscatter can cause further

ADV. At the same time, the wall can cause interference in the beam pattern to

diminish pressure amplitudes past the wall, thereby lowering the possibility of ADV

beyond the wall. Bubble generation can therefore potentially be confined, and

consequently, therapy can be localized. Thus the process of bubble cloud generation

and the effects of a bubble wall, including specifically its effect on the threshold for

ADV, are studied. The preliminary results are presented in this chapter.

4.2 Materials and Methods

4.2.1 Manufacturing Polyacrylamide Gels with DDFP
Droplets

DDFP droplets were manufactured according to the process described by [5]. A

solution of bovine albumin (A3803, Sigma-Aldrich, St. Louis, MO) and saline at a

concentration of 4 mg albumin/ml saline was made and vigorously shaken with a

VWR Scientific Vortex Genie (Model G-560). A pipette was then used to distribute

750 µl of the albumin-saline solution into separate vials. Due to rapid evaporation,

liquid DDFP was added to each albumin-saline containing vial according to weight.

After 425 µg (slightly more than the target volume of 250 µl to provide a margin for

evaporation) of DDFP was measured, the vials (Cat. No. 223693, Shamrock Glass
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Co., Seaford, DE) were immediately sealed with a rubber stopper and metal cap

(Cat. No. 224100-094 and 224177-01, Shamrock Glass Co.) to prevent the further

evaporation of DDFP. Lastly, the vials were shaken for 30 s at 5000 cycles/min with

an amalgamator (Crescent Dental Mfg. Co., Lyons, IL).

Polyacrylamide gels (7.5% w/v) were made using a stock solution of bis-

acrylamide (A3449, Sigma-Aldrich, 19:1, 30% w/v) solution diluted with deionized

water at a ratio of 1:3 (bis-acrylamide to water). This solution was degassed for

20-25 min in a vacuum chamber with approximate pressures of 50 mm Hg. The

DDFP droplets were then added to the solution and immediately followed by 10%

ammonium persulphate (A3678, Sigma-Aldrich) and tetramethylenediamine (T8133,

Sigma-Aldrich) to initiate cross-linking. The solution (80-100 ml) was gently stirred

to minimize the reintroduction of gas and poured into a plastic container 5 x 5 cm2

in cross-sectional area. Upon completion of cross-linking (approximately 20 min), a

layer of deionized water was added to the surface of the gels to prevent dehydration.

In order to produce a reasonable number of microbubbles, a concentration of

5000 droplets/ml was used for all gels. The stock droplet solution of 107 droplets/ml

[5] was diluted to 106 droplets/ml, and 5 µl of this diluted solution was added for

each ml of polyacrylamide gel. Gels contained droplets of one of three size ranges:

(1) unfiltered droplets with a mean diameter of 4 µm [5], (2) droplets that were

filtered with a 20 µm and 16 µm syringe filter (Whatman, Maidstone, England) in

series, or (3) droplets that were filtered further by the addition of 8 µm and 5 µm

filters. After using a 5 µm filter, the maximum droplet diameter is 6 µm [6]. The

syringe filters used consisted of filter paper of varying pore sizes contained in housing

compatible for syringe use. Droplet solutions were pushed through these filters, and

larger droplets were eliminated at each filter according the pore size.
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4.2.2 Acoustic Source

An annular array transducer (Imasonic, Besançon, France) was used, which

contains 9 annuli of equal area that are bisected to produce 18 elements. The array

contains a central hole such that the active outer and inner diameters are 145 mm

and 68 mm, respectively. The radius of curvature for the array is 100 mm and is

operated at 750 kHz. The array is driven with custom electronics (photograph of

system seen in Fig. 4.1) where, for these experiments, all elements were driven

in-phase. This produced the nominal focal position assumed for all experiments and

a field calibration, which was performed with an in-house fiber-optic hydrophone

[11]. The data was fit with a third degree polynomial and the resulting range of

pressures is shown in Fig. 4.2.

Figure 4.1: 18-element annular array with associated amplifier.

4.2.3 Experimental Setup

The array was mounted on a motorized positioning system (S83-136-MO motors,

Compumotor; DRP60-1 controller, Parker; 120 V power supply, Daedal-Hannifin

Corp., Rohnert Park, CA), which was used to accurately target locations inside a
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Figure 4.2: Calibration of the 18-element annular array with operating frequency
of 750 kHz and geometric focus of 10 cm. The data were fit with a third order
polynomial. This array is the therapy transducer used to create bubble clouds.

polyacrylamide gel. A 5 MHz phased array (FPA 5 MHz 2B, System Five, General

Electric Vingmed, Milwaukee, WI) was placed inside the center of the annular array

to acquire on-axis images. The gel was mounted in a fixed position in front of the

annular array. The setup is shown in Fig. 4.3a. Fig. 4.3b illustrates another aspect

of the experimental setup and will be described later in this section.

Each gel was exposed approximately 40 times with US, with each exposure placed

in a single different location 5-10 mm apart depending on the size of the resulting

cloud, and varying in pressure amplitude and number of pulses. Three conditions

were studied: cloud generation by US exposure (1) in the absence of a bubble wall,

(2) focused at a previously formed bubble wall, and (3) focused past a previously

formed bubble wall. In Cases 2 and 3, exposures were made 15-60 min after the

formation of the bubble wall. These experiments were performed with droplets of

the various sizes described earlier. A B-mode frame from the central 5 MHz phased

array was captured before and after each exposure, and the images were quantified

and compared in Matlab (The MathWorks, Inc., Natick, MA). The phased array was
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Figure 4.3: Experimental setup. The schematic drawing in (a) shows a side view
of the arrangement for an ADV threshold experiment where the phased array is
used to detect droplets vaporized by the annular array. (b) shows a frontal view of
the arrangement for creating a bubble wall. After making a wall, the gel is then
repositioned to the configuration in (A) for further threshold experiments. The same
holder is used in both cases and is depicted in two views here.

operated at low power with a mechanical index (MI) of 0.4 to minimize its acoustic

effects on the existing bubble wall during exposures from the annular array.

4.2.4 Analysis of B-mode Images

Fig. 4.4 shows three examples of B-mode images acquired from the 5 MHz phased

array used for monitoring bubble activity. Regions of interest (ROI) were defined

for each bubble cloud generated and were then compared with the same ROIs in the

B-mode images acquired before US exposure. Four ROIs were chosen as numbered

in Fig. 4.4 for the three different conditions that were previously described. For

ROIs 2-4, where the bubble wall contributed to backscatter in the acoustic field,

the position of each ROI was chosen to exclude the bubble wall in order to improve

detection of new bubble formation.

Cloud size and average pixel intensity were then determined from each ROI.

First, a threshold requirement for pixel intensity was applied to discern which

pixels constituted part of the cloud and which were background scatter from the gel

containing unconverted droplets. This threshold was determined as two standard
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deviations above the mean pixel intensity in an ROI containing a gel and bubble

clouds. Statistics of the distribution of pixel intensities were not taken into account

in determining the threshold value, though a histogram of the pixel intensities inside

an exemplary set of ROIs, as seen in Fig. 4.5, show that the value is sufficient in

order to eliminate background noise and determine ADV threshold. The number of

pixels above this threshold defined the bubble cloud size. To find the average pixel

intensity, a mean pixel value of the ROI was computed after the thresholding was

applied.

The data were then fit in Kaleidagraph (Synergy Software, Reading, PA). The

data for experiments excluding a bubble wall were fit with three linear lines (Eq. 4.1)

and those including a bubble wall were fit with two lines (Eq. 4.2). The reason for

the two different fits will be discussed subsequently. The equations are shown below,

where y is a characteristic of the cloud (intensity or size), p is pressure, and a1 to a6

are adjustable parameters that define the equation of the line segment. A windowing

rect function wk is multiplied to each line segment and defines the threshold value.

y = (a1 · (p− a2) + a3) · w1 + (a4 · (p− a5) + a3) · w2 + a6 · w3 (4.1)

y = (a1 · (p− a2) + a3) · w1 + (a4 · (p− a5) + a3) · w2 (4.2)

4.2.5 Creating the Bubble Wall

The bubble walls were created as shown in Fig. 4.3b with a 10 MHz linear array

(FLA 10 MHz 1A, System Five, GE Vingmed, Milwaukee, WI) since the ADV

threshold has been shown to be lower at higher frequencies [7]. The MI was 1.2. The

wall was created in the plane orthogonal to the central axis of the annular array. The

imager was mounted on a motorized system to create walls of varying thicknesses.

To create a plane of bubbles and in order to prevent shadowing, the electronic focus

of the imaging transducer was manually moved from the lower region of the gel
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(furthest from the transducer) to the upper (closest to the transducer). The focus

was shifted every 3-5 s when no further ADV was visualized. The imaging plane was

also translated in 0.5 mm steps up to 1 mm in the elevational direction on either

side of the initial position to create bubble walls of 1-2 mm in thickness. As the

imaging probe was translated to a new plane to increase the thickness of the bubble

wall, the method of moving the electronic focus to prevent shadowing was followed

for each plane. Variations in the bubble number density occurred due to variability

in the droplet distribution and possibly inhomogeneities in the gel matrix.

The wall was characterized in terms of its backscattering and attenuation

properties. The experimental setup to determine these characteristics, as shown in

Fig. 4.6, is similar to that shown in Fig. 4.3a, with the exception that the holder was

positioned at a 180 degree rotation about the rod to minimize interference with the

hydrophone. For these measurements, the sound absorbing rubber was removed from

the setup, and a window on the back of the holder was created to allow transmission

of US. A single element passive transducer (Valpey Fisher, Hopkinton, MA) with a

nominal center frequency of 5 MHz and nominal focus of 10 cm placed in the center

of the array received backscatter signals with the associated weighting of harmonic

signals from the bubbles. A hydrophone (NTR Systems, Model TNU100A, Seattle,

WA) operating approximately between 1 MHz and 20 MHz was positioned on the

opposite side of the gel sample to receive the US signals transmitted through the gel.

We note that the carrier frequency of 750 kHz lies outside of the nominal range of the

hydrophone, but only relative measurements are considered for the characterization

of the bubble wall. The annular array was used as the transmit source (driven with

11 cycles or 15 µs pulses, 200 Hz PRF, 3 MPa rarefactional pressures) while the

hydrophone received the transmitted acoustics through the bubble wall, and the 5

MHz passive transducer received the echoes off of the bubble wall. The backscattered

and transmitted signals were recorded from a digital oscilloscope (LeCroy 9384L,
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Chestnut Ridge, NY) from a droplet-containing gel lacking a bubble wall, then

with the focus positioned at a bubble wall, and with the focus positioned distally

to the same wall. The gel was translated in the transverse plane to evaluate the

homogeneity of the bubble wall.

Since the eventual application of the bubble wall is in vivo, these measurements

(and experiments) were made with a low frequency of 750 kHz. Higher frequencies

may show similar or stronger results in attenuating and backscattering properties of

the bubble wall because of off-resonance and/or greater distal attenuation.
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Figure 4.4: Examples of B-mode images taken from a 5 MHz phased array placed in
the center of the annular array. These images were used to characterize bubble clouds
as a function of rarefactional pressure. US exposures for three different conditions
(as labeled) are pictured here, and the ROIs surrounding them (numbered 1-4) are
defined by the dotted lines. The pixels in each ROI were evaluated in terms of pixel
intensity and number of pixels per cloud.
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Figure 4.5: Histogram of the pixel intensity of four gels. Threshold was set at 0.67,
which is approximately two standard deviations above the mean pixel intensity as
indicated by 2 (mean) and → (two standard devations).

Figure 4.6: Experimental setup for the characterization of a bubble wall. The annular
transducer transmitted ∼15 µs pulses at a PRF of 200 Hz and rarefactional pressure of
∼3 MPa. The echoes and the transmitted US were received by the 5 MHz transducer
and hydrophone, respectively. A window in the vertical wall of the holder that was
approximately the size of the cross-sectional area of the gel allowed US transmission
through the gel.
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4.3 Results

The parameter space associated with US pulses that can produce ADV is large.

Frequency, PRF, pulse length (and consequently duty cycle), and amplitude along

with their relationship to droplet size and acoustic medium all potentially affect

ADV. To begin to understand the impact of these parameters on the creation

of bubble clouds, only the effects of the number of pulses applied and pressure

amplitudes of these pulses on three ranges of droplet sizes were investigated. Each

pulse contained 15 cycles at 750 kHz for a pulse duration of 20 µs. The PRF was

held constant during all experiments at 100 Hz, which maintained a low duty cycle

(0.2%) and correspondingly low time average power. These pulse parameters prevent

local heating that could arise from higher time average powers, though it has been

shown that increasing the ambient temperature alone up to 60◦C [5] does not cause

droplets to vaporize. It is thus probable that ADV is not due to local heating.

The images presented in this section of the paper were taken with a digital

camera. Before each photograph, the gels were sectioned to reduce the amount of

overlying gel but to include the entire bubble cloud.

As might be expected intuitively, as pressure amplitudes increased, so did the

size cross-sectional area of the resulting bubble cloud. A comparison between the

resulting clouds from pressures of 9.8 MPa and 14.7 MPa peak rarefactional pressures

is seen in Fig. 4.7c and 4.7d. The figure also shows various ranges of droplet sizes

(Fig. 4.7a-4.7c) vaporized with the same pressure amplitude. Both clouds generated

with 9.8 MPa rarefactional pressures in gels with 16 µm and 5 µm droplets are

approximately 7 mm in length (Fig. 4.7b and 4.7c) while the cloud formed from

unfiltered droplets is approximately 10 mm in length (Fig. 4.7a). Measure of length

is defined in the longitudinal direction in all photographs.

Varying the number of pulses does not significantly change the size of the bubble

cloud. Shown in Fig. 4.8, clouds created with rarefactional pressure amplitudes of
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Figure 4.7: Optical images of bubble clouds generated with 200 pulses in 7.5% poly-
acrylamide gels. (a) unfiltered droplets; (b) droplets filtered to 16 µm; (c) droplets
filtered to 5 µm all at 9.8 MPa (rarefactional); (d) 14.7 MPa, droplets filtered to 5
µm. A discussion of the cloud shape is included in the text.

9.8 MPa were approximately 9 mm in length. The cloud created with 20 pulses

(left) takes the characteristic cigar shape of the focal zone whereas the cloud created

with 1000 pulses (right) appears to take the teardrop shape that is typical of lesions

distorted by enhanced prefocal absorption associated with cavitational processes

[12][13][14]. Thus it appears that with 20 pulses, ADV occurs in the focal zone,

where the acoustic field is at its highest intensity. Further distal ADV is prevented

during additional insonification by the shadowing caused by the initial droplets

vaporized by the first few pulses; instead, energy is backscattered, causing the cloud
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Figure 4.8: (left) Image of the cigar-shaped cloud generated by rarefactional pressures
of 9.8 MPa with 20 pulses, and (right) teardrop-shaped cloud generated by 9.8 MPa
with 1000 pulses. Droplets were unfiltered in both cases.

to grow toward the transducer. Since ADV occurs when pressures reach a certain

threshold, it seems unlikely that additional pulses will cause further ADV, and thus,

the cloud eventually stops growing.

When comparing Figs. 4.7 and 4.8, some variability in cloud shape and size is

observed. This may be due to inhomogeneity in droplet and/or bubble distributions

as well as in the gel structure. However, a tendency of growth toward a teardrop

shape exists with increasing amplitudes and pulse numbers.

Observing the growth of these clouds (Figs. 4.7-4.8) shows that ADV occurs

in a backward propagating direction toward the transducer. Considering that

backscattered signals can enhance the proximal field, it seems that backscatter could

help create conditions for ADV. If, perhaps, the scattering bubbles already existed,

spatially localized ADV could occur. In other words, bubbles might be strategically

placed to cause further bubble generation in a controlled fashion. A plane of bubbles,

in particular, can scatter US energy in a way to produce superthreshold ADV

pressure amplitudes in desired locations. This concept of using a plane of bubbles, or

“wall,” is demonstrated in Figs. 4.9 and 4.10. The ability to achieve these conditions
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favorable for the creation and use of a bubble wall in vivo will depend on the tissue

selected, flow conditions, and the appropriate placement of the acoustic field. These

issues are considered further in the Discussion section.

Figure 4.9: Both images show clouds generated by rarefactional pressures of 14.7
MPa with 200 US pulses propagating from the top of the photograph. On the left,
the focus of the annular array is positioned on a nominally 1 mm wall, where some
leakage occurs. On the right, the focus is positioned past the wall, exposing the
bubble wall to the lower prefocal amplitudes, which are less likely to leak through the
wall.

Fig. 4.9 shows two US exposures of 14.7 MPa pressure amplitudes in a gel

containing droplets with interference from a nominally 1 mm thick bubble wall. The

image on the left shows the resulting cloud when the focus, where the amplitude

is the greatest, is positioned at the wall. With these high amplitude pulses,

some leakage and ADV occurs past the wall. The image on the right shows that

when focused past the bubble wall, leakage is less likely to occur because pressure

amplitudes roll off prefocally and the wall is more effective at preventing leakage

when it coincides with the location of the lower prefocal pressures.

Distal ADV may be prevented by increasing the backscatter and attenuation of

the bubble wall, properties which can be varied by increasing the thickness and/or

density of the wall. However, since density is dictated by the already high droplet
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Figure 4.10: Optical photographs demonstrating the effects of a bubble wall created
in a gel with droplets filtered to 5 µm. Pressure amplitudes for each exposure is the
same for a given photograph and are stated as follows: (A) 1 mm thick bubble wall,
9.8 MPa; (B) 2 mm thick wall, 9.8 MPa; (C) 2 mm thick wall, 14.7 MPa (D) 2 mm
thick wall, 14.7 MPa. The numbers indicate the sequence of US exposures, where
the focus of the therapy array (annular transducer) is first translated laterally from
positions 1 to 2, and then axially from 2 to 3. The direction of US propagation is
from the top of all photographs. Locations labeled 1 correspond to exposures in the
absence of a bubble wall, those labeled “2 correspond to exposures focused past a
wall, and those labeled “3 correspond to exposures focused in front of a wall.

concentration used in these experiments, only wall thickness was changed. Fig. 4.10

compares the size and shape of bubble clouds in the presence of ∼1 and ∼2 mm

thick bubble walls. Three cases, as numbered in Fig. 4.10, were demonstrated in

the same gels in the following order: a 200 pulse US exposure (1) in the absence

of a wall (left side), (2) focused past a wall (translated only laterally to the right,

where the circles indicate the location of the focus), and (3) focused in front of the

wall (subsequently translated only axially toward the transducer). The images show

these three cases side by side in the same gel, where the direction of US propagation
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is from the top of each photograph. Figs. 4.10a and 4.10b show all three cases while

Fig. 4.10c and 4.10d show the first two.

The clouds created in Fig. 4.10a and 4.10b were vaporized by the same

rarefactional pressures of 9.8 MPa with the varying parameter being a difference in

wall thickness, where the nominal thickness in Fig. 4.10a is 1 mm and that of Fig.

4.10b is nominally 2 mm. Figs. 4.10c and 4.10d show two examples of clouds created

by larger pressures of 14.7 MPa and show how they are affected by 2 mm thick walls.

For smaller rarefactional amplitudes of 9.8 MPa, a 1 mm thick wall is sufficient

to prevent ADV past the wall (Fig. 4.10a, Case 2) as is a 2 mm thick wall (Fig.

4.10b, Case 2). However, a 1 mm wall is of insufficient thickness to completely block

pulses of higher amplitudes, as demonstrated previously in Fig. 4.9, while a 2 mm

wall (Fig. 4.10c) shows that it is effective in preventing ADV on the distal side

of the wall with US of higher amplitudes. In essence, the wall seems to serve the

same purpose as the bubbles created during the first few US pulses; both create

backscattering conditions that cause ADV propagation back towards the transducer.

It is necessary, though, that the plane of bubbles be large enough to span the beam

of the transducer to provide sufficient interference. Fig. 4.10d (Case 2) shows that

US can still cause ADV to occur if it propagates partially around the side of the wall

without any aberration.

Fig. 4.10c shows that while there is distal shielding, ADV still occurs on the

proximal side of the wall (Case 2) due perhaps to the backscattering and the

resulting enhanced field. Because of this cloud formation, exposures in which the

US was focused in front of the bubble wall were not performed in the experiments

seen in Figs. 4.10c and 4.10d. Additionally, US with rarefactional pressures of 9.8

MPa focused on the proximal side of the bubble wall (Figs. 4.10a and 4.10b, Case 3)

create bubble clouds that are larger at the base (near the focus) than those created

in the walls absence (Case 1). This may be accounted for by the post-focal beam
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reflecting off of the bubble wall, creating superthreshold pressure conditions on the

proximal side of the wall to cause further ADV and therefore enlarge the cloud base.

4.3.1 ADV Thresholds

Plots shown in Fig. 4.11 illustrate quantification of the threshold level of ADV for

three cases for gels with droplets with wall and focus cases as follows: (1) no bubble

wall, (2) with US focused at a bubble wall, and (3) with US focused distal to a

bubble wall. The extrapolated threshold values are listed in Table 4.1. These cases,

all with exposure to 200 pulses, were performed for droplets filtered to 16 µm and

for 5 µm to investigate the impact of size on bubble wall properties and thresholds.

The data were obtained from B-mode US images taken from the 5 MHz phased

array placed in the center of the therapeutic array as was described in Fig. 4.4.

Table 4.1: Summary of threshold values extrapolated from curve fits.

US focused
Threshold Gel containing US focused at distal to wall,
detection droplets bubble wall (MPa) ROI proximal
method (MPa) (MPa) to wall (MPa)
5-µm droplets

Cloud size 7.51±0.02 3.93±0.50 11.61±0.81
Pixel Intensity 7.53±0.18 4.17±0.42 11.63±0.80

16-µm droplets
Cloud size 7.50±0.15 3.53±0.78 9.91±1.89
Pixel Intensity 7.79±0.01 3.97±0.21 9.79±3.94

Values indicate the best fit approximation ± standard error values. In the case of analyzing an ROI
at the focus with a prefocal bubble wall in place, the curve fits are almost completely linear, making
distinguishing a threshold value unclear.

As previously mentioned, the data were fit to either two or three line segments

(Eqs. 4.1 and 4.2), the reasons for which are discussed here. Three line fits are

required when no bubble wall is present because the first droplets that are converted

to gas bubbles vaporize in the spatial peak of the acoustic field, the focus. The

spatial extent of the focus occupies a certain volume, thereby causing perhaps a
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localized group of the droplets to vaporize at approximately the same time, a process

that can be reflected in the jump in cloud size around the ADV threshold. This may

not be the case with the presence of a scattering bubble wall, where the data lacks

the jump apparent in the aforementioned data. In this case, a two-line regression fit

the data well, as there was no step function at the threshold for detectable bubbles.

Because existing bubbles interfere with the acoustic field of the annular array, it

is possible that the field of the imaging phased array could be disturbed as well. To

confirm echoes that may originate from the proximal side of the bubble wall, further

B-mode images were taken with a 10 MHz linear array during some experiments,

where the transverse plane was oriented along the axis of the annular array. Fig. 4.12

shows the results from such an experiment for droplets filtered to 16 µm (Fig. 4.12a)

and 5 µm (Figs. 4.12b and 4.12c). Average cloud pixel intensities were analyzed

from the 5 MHz phased array and 10 MHz linear array and roughly correspond,

though discrepancies may occur due to the different point spread functions, speckle

patterns, and viewing directions of the two imaging probes. Individual data points

demonstrate the variations that may occur in the bubble wall and how it may affect

ADV when pressures are above the threshold. Fig. 4.12a shows the results from one

experiment, and Fig. 4.12b and 4.12c both show data from a second experiment

with the smaller sized droplets.

4.3.2 Characterization of Bubble Wall

As shown in Fig. 4.13, the increase in mean backscatter when the bubble wall

is formed in the gel is approximately 25.5 dB and 22.7 dB for the two locations of

the focus. The higher backscattered signal when focused at the bubble wall (Fig.

4.13a) is most likely due to the high amplitudes in the focal zone that are reflected

back off the wall, whereas moving the focus past the wall (Fig. 4.13b), will reflect

lower prefocal amplitudes in the beam. Both cases show a maximum backscatter of
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approximately 40 dB and the minimum to be almost 0 dB, indicating an apparently

large variability in bubble density and/or bubble size distribution. Values expressed

in dB are relative to backscatter and attenuation measurements made in a gel with

unvaporized droplets.

Measurements of the transmitted signals show similar mean attenuation of

12.4 dB and 12.5 dB as well as similar standard deviations of 4 to 5 dB when

focused at the bubble wall (Fig. 4.13c) and when focused past the wall (Fig.

4.13d), respectively. Maximum attenuation values are approximately 27 dB, though

non-attenuating areas are also present.

Though US is backscattered and attenuated similarly on average for both

positions of the focus with respect to the bubble wall, it appears that focusing past

the bubble wall defocuses the beam. Thus the spatial distribution of wall attenuation

is more uniform (Fig. 4.13d), as evidenced by the fewer finely defined areas of

minima and maxima that are seen in Fig. 4.13c when the focus is positioned on the

wall.
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Figure 4.11: Plots of cloud size and intensity as a function of rarefactional pressure
for two droplet distributions. Data were taken from B-mode images from a 5 MHz
phased array, where the imaging and therapeutic planes were aligned. Both size and
intensity increase with pressure, indicating that the overall cloud size grows as well
as the echogenicity.
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Figure 4.12: Results from experiments involving a prefocal bubble wall. The plot
in A shows data from focal ROIs with 16 µm filtered droplets, and B and C show
averaged data from focal and proximal ROIs, respectively, with 5 µm droplets. B-
mode images were taken from an on-axis 5 MHz phased array (axial view) and a 10
MHz linear array, where the transverse plane was oriented parallel to the axis of the
annular array (coronal view). Data from the two imaging probes confirm that the
bubble wall can both reflect and consequently shield distally. Data points illustrate
the variability that can occur in bubble walls and their resulting efficacy in serving
as a shield, at least with high pressure beams.
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Figure 4.13: Backscattered and transmitted signals from and through a ∼2 mm thick
bubble wall. The results are shown for two cases: (A, C) the focus of the annular array
is positioned at the bubble wall , and (B, D) the focus is positioned approximately
1 cm past the bubble wall. In the comparisons of the backscattered signals (A, B),
bright regions indicate high backscatter, and in the comparison of the transmitted
signals (C, D), bright regions indicate high transmission. Signals in dB are calculated
relative to the backscattered and transmitted signals from a gel with no bubble wall.
The top sidebar indicating the dB scale corresponds to backscattered signals (A, B),
and the bottom sidebar corresponds to transmitted signals (C, D).
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4.4 Discussion

Both the size of the bubble clouds and threshold for ADV can change with the

presence of a preexisting bubble wall. It appears that backscattering and the resulting

field pattern generate pressures sufficient to cause ADV. Without the presence of

a bubble wall in both size ranges of droplets, ADV occurs at approximately 7.6

MPa on average at this low, 750 kHz frequency, while the placement of a bubble

wall in the focus produces ADV at applied pressures of approximately 3.9 MPa on

average. The reduction in transmitted pressures is approximately half and seems to

suggest that some constructive interference is occurring at least locally and even if

the scatter from the wall is incoherent. Preexisting bubbles apparently enhance the

proximal acoustic field, creating an environment that enhances the ADV effect or

enables the achievement of a desired effect with approximately half the acoustic input

originally required. In addition to constructive interference, harmonic backscatter

from the bubbles may play a role, as the threshold for ADV decreases with increasing

frequency [7]. Though pressures here could achieve an MI of ∼4 when using a bubble

wall as compared to 1.9 as allowed by the Food and Drug Administration [15] for

diagnostic purposes, we only propose these methods for therapeutic use for which

the possibility of collateral damage may be acceptable to achieve the desired results.

The bubble wall can also serve as a protective layer, as simulated in these

experiments where the bubble wall is prefocal. There is no apparent threshold for

distal ADV as seen in Fig. 4.11 for the case of prefocal placement of the wall and

ROIs placed at the focus. However, if the wall is not extensive enough to obstruct the

lateral beam width, it is possible that ADV will occur at the focus (Fig. 4.10d). For

higher pressures, increasing the wall thickness and/or bubble density can increase

attenuation and backscatter. The effectiveness of the existing wall depend on the

incident US since high pressures can still cause distal ADV if the attenuation and

backscattering are not sufficient.
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It would appear that when droplets are filtered to 5 µm (versus 16 µm), the

bubble wall, when placed in the prefocal beam, is more effective in preventing ADV

on the distal side and also in reflecting back energy to cause ADV on the proximal

side. When examining cloud size, US pulses of 19 MPa produce clouds of 0.8 cm2

cross sectional area in gels with 5 µm droplets (Fig. 4.11a, ROI proximal to wall)

and 0.05 cm2 in gels with 16 µm droplets (Fig. 4.11c, ROI proximal to wall). The

increased effectiveness of the bubble wall from 5 µm droplets may be due to a higher

and more uniform bubble density.

Increasing the thickness and density of the wall can reduce the inhomogeneities

found in thinner walls. A 2 mm thick bubble wall can vary by 4 and 6 dB in

attenuation and backscatter (Fig. 4.13), respectively, thus affecting the ability to

vaporize droplets on the proximal side and to prevent ADV on the distal side. The

presence or absence of droplets in a particular location dictates the possibility of

a vaporization event. The irregular distribution of droplets within the gel affects

the creation of the bubble wall and also the creation of subsequent clouds. These

issues need to be considered when using a bubble wall as a shield or as a reflector,

since generating clouds with transmitted sub-threshold US requires sufficient

backscatter. In order to successfully take advantage of the constructive interference

patterns, droplets must be located in proximity of the focus because the resulting

super-threshold volume is small.

While the structure of a bubble wall may be achievable in a tissue-mimicking

gel, its ideal form will be more difficult to attain in vivo. For example, consider

the situation of the vascular bed within perfused tissue. The spatial distribution of

accumulated bubbles resulting from ADV will depend on many factors including the

portion of the bed spanned by the acoustic field and the droplets vaporized within

it. In capillaries, bubbles produced by ADV may become lodged as they are larger

than the capillary diameter. If the bubbles are not large enough to immediately
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lodge, they can lodge downstream, spreading the thickness of the wall, or lodge

even further downstream into vasculature where their diffuse distribution does not

substantially contribute to wall formation. Bubbles that are generated in the veins

may also exit the insonified area and would not contribute to the wall at all. The

lodging or containment of these bubbles in the structure of the wall may result in a

higher bubble density in highly perfused tissues such as in the kidney and liver.

A second area of interest is tissue. Droplets can become extravascular if they

pass through leaky capillaries, like those found in tumors or otherwise removed from

the vascular system such as by the reticulo-endothelial system of the liver. In this

case, a bubble wall can be created in a similar fashion as those in the experiments

in this paper, but it is uncertain if the homogeneity in the distribution of droplets

is adequate to produce a wall that is capable of acoustic field enhancement and

shielding. The preliminary results presented in this paper in an in vitro environment

are promising for in vivo application, though further investigation is needed.

4.5 Conclusions

The backscattering properties of microbubbles can augment or obstruct the sound

field in the affected area. Constructive interference due to these effects reduces the

transmitted pressures required for ADV, and the attenuation from these bubbles can

create a protective boundary for distal areas. The potential result can be a defined

area for therapy created by low pressures and amounts of energy. However, it is also

important to take into account properties of the backscattering bubbles and how

their spatial uniformity may affect subsequent US exposures.
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CHAPTER V

Conclusions and Future Work

5.1 Summary of Thesis Contribution

5.1.1 Introduction

The collected work presented in Chapters II-IV contribute to the transition of

embolotherapy by acoustic droplet vaporization (ADV) to the intended in vivo

conditions. Much of the fundamental science underpinning the manufacturing and

behavior of droplets in response to an acoustic field was explored in a series of

published journal articles [1][2][3]. The information gleaned from these findings

forged the way to successful application of concept and execution in a small animal

model [4].

However, in translating these findings to a larger animal model that is on the

scale of human beings, additional issues needed to be addressed. The attenuation

from overlying layers is a constant issue in any type of ultrasound, and likewise,

it must be contended with here. Knowing that ADV is achievable in vivo but

without any overlying tissues, two avenues can be approached: (1) ensure that the

therapeutic transducer has enough acoustic power to achieve the necessary in situ

pressures, and (2) to devise a strategy to reduce the necessary pressures for ADV. A

single transducer may not have the capacity to effectively treat the high variability

of patient types; therefore, tackling the latter solution is the simpler, less expensive,

and perhaps more elegant approach.
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Therefore, this dissertation explored strategies to reduce the requisite pressures

for ADV. First, the role of inertial cavitation (IC) in ADV was investigated and

then in turn, IC was induced, via the disruption at low amplitudes of ultrasound

contrast agent (CA) to try to trigger ADV. This strategy involving CAs was then

tested under in vitro transcutaneous conditions, where both threshold pressures were

measured and droplet conversion efficiency was evaluated. A different strategy in

which prudent targeting of droplets already situated in either the capillary bed or in

tissues created spatially localized microbubbles. These microbubbles were found to

serve as a “bubble wall,” which could prevent further distal ADV and at the same

time, could reduce the acoustic output necessary for proximal ADV.

5.1.2 Experimental Conclusions

Acoustic Droplet Vaporization: Effects of Pulse Duration and Contrast
Agent

The role of IC in ADV was explored by a series of experiments that examined the

effects of pulse duration from microsecond to millisecond pulses as well as the effects

of ultrasound contrast agent (CA). ADV, contrast disruption, and broadband noise

emissions, which are the acoustic signature of IC, were detected and compared for

correlation to each other.

It was found that at 1.44 MHz, an almost bimodal relationship existed when

pulse durations for single pulses ranged from 20 µs to 20 ms. ADV thresholds

(as detected by B-mode US) were relatively constant until they dropped for pulse

durations lasting longer than 1 ms. Repetitive 20 µs pulses had the same ADV

threshold as single long 20 ms pulses when total on-time remained constant. The

thresholds for broadband noise followed similar trends as the thresholds for ADV,

as well as similar values of pressure. There has been no indication that any further

change in broadband noise threshold exists for pulse durations lasting longer than

20 ms [5][6], the longest duration tested in these experiments. Therefore, it was
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concluded that IC played a role in ADV, although it remains undetermined in what

capacity.

The addition of CAs verified that IC external to a droplet can be a mechanism

of ADV. CA concentrations from 103, 104, and 105 microspheres/mL all reduced

the threshold by an order of magnitude when 20 ms pulse durations were used.

Although the probability of ADV was the largest with the highest concentration of

CA, the actual differences in threshold were modest. The decrease in ADV threshold

with CA was less substantial with 20 µs pulses, which reduced the threshold by

a factor of three (9.5 dB). Nonetheless, this reduction in threshold is appreciable

when considering the amount of attenuation that is expected when treating a target

transcutaneously, which is 10.75 dB on average for the human abdominal wall [7].

Attenuation and Efficiency Considerations in Acoustic Droplet Vaporiza-
tion for Embolotherapy

The relationships found between ADV threshold and contrast agent were

reconfirmed in the next set of experiments. A different transducer with a 1 MHz

operating frequency, higher focal gain and greater power was used for its capability

to be able to reach a target at depth for ADV.

It was found that approximately the same amount of power was necessary to

achieve ADV through a water path as it was through an attenuating tissue-mimicking

(TM) phantom when CA were added. Repetitive pulsing with 10 µs pulse durations

were used for these experiments. When comparing pressures necessary to achieve

the desired effect, the rarefactional pressure appeared to be the salient determinant

of ADV. Although high frequencies are able to vaporize droplets more easily when

propagating through a water path [1], the higher harmonics did not appear to be

significant contributors in the presented results.

Pulse repetition frequency (PRF) was found to play a pivotal role in the efficiency

of droplet conversion when only droplets were present and also when they were
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combined with CA. In either case, an optimal PRF was apparent. When droplets

were combined with CA, a low PRF was necessary such that a new supply of CA

would be replenished within the acoustic beam. When amplitudes increased above

the measured threshold, the effective volume above threshold also increased as the

portion of the acoustic beam that was at amplitudes above threshold expanded. Since

the threshold for inertial collapse of CA was much lower than the ADV threshold,

the effective disruption zone for CA was larger than the effective vaporization zone

for droplets when amplitudes were at or above ADV threshold.

Absent of any CA, an optimal PRF was also found. When PRFs were too high,

bubbles that were visualized through B-mode US in the focus of the vaporizing

transducer were absent downstream. Orthogonal imaging planes confirmed that

the disappearance of bubbles was not due to radiation force. Previous experiments

showed that at a higher frequency, an optimal PRF was not apparent [8], but

instead, there existed an exponential rise with PRF with eventual saturation.

A hypothesis was proposed to explain these findings. Several papers in the

literature [9][10][11][12] theoretically developed and experimentally tested the

pressure threshold for inertial collapse of bubbles for a given insonating frequency,

bubble size, ambient pressure, ambient temperature, and attained temperature at

collapse. These works assessed the likelihood of cavitation for diagnostic US. When

applying this theory to the bubble sizes expected from the droplet size distribution

to be used in vivo, it was found that most of the bubbles would have been destroyed

when pressures exceeded the ADV threshold. Thus, there are competing phenomena

when PRF is too high; the bubbles created by ADV can be subsequently destroyed

with the next US pulse. For a 1 MHz center frequency, the threshold for inertial

collapse for a 60 µm bubble at 3 MPa Pr is lower than the ADV threshold at 3.8

MPa Pr.
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Spatial Control of Gas Bubbles and their Effects on Acoustic Fields

Droplets can be vaporized in the vasculature, or for some droplets of smaller size,

they can pass through leaky vessel walls and traverse into the tissue. Discussion thus

far has concentrated on the vaporization of droplets in feeder arteries, but it does not

preclude the possibilities of targeting other areas. In fact, targeting in areas such as

capillary beds or in droplet-embedded tissue can be advantageous as it enables the

ability to guide bubble placement. In capillaries where the diameter is small and in

restricted environments such as the tissue, an ADV event could create a bubble that

would more or less lodge in its present location. Manipulation of bubble placement

could then be used for further therapeutic purposes.

The behavior of ADV in a constrained environment was explored in a

polyacrylamide gel. It was found that the bubble clouds generated in the gel

matrix resembled the types of lesions documented previously in other experiments

[13][14][15]. Few pulses (∼ 20 cycles) created bubble clouds resembling a cigar shape,

while additional pulses would cause the bubble cloud to resemble a tear drop. It

was observed that after the formation of a cigar shaped bubble cloud, further ADV

would occur proximally and cause the bubble cloud to grow toward the transducer.

It appeared that shadowing occured after the creation of the first bubbles, and

subsequent acoustic pulses were backscattered.

Thus, the same effect was artificially devised. A bubble wall, which was created

in the lateral plane of and prior to insonation by the vaporizing transducer, created

an environment of shadowing distal to the wall and of backscatter proximal to the

wall. It was found that the bubble wall, with diminished distal fields, could serve as a

protective barrier against further distal ADV. The backscattered energy enhanced the

proximal acoustic field, enabling proximal ADV to occur at approximately half the

applied pressures necessary when no bubble wall was present. When focusing distal

to the bubble wall, it was found that some “leakage” could occur through the wall
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when insonating at higher amplitudes. However, increasing the thickness of the wall

prevented these effects. Thickness, expansiveness, and homogeneity of the bubble

wall affected its efficacy as an acoustic shield and enhancer. However, despite the

variability found within a thicker (∼2 mm vs. ∼1 mm) bubble wall in backscattered

and transmitted signal, it appeared that ample constructive interference occurred to

consistently enhance the acoustic field for subsequent vaporization with lower energy

input.

Summary of Results

Transcutaneous in vivo ADV can be effective. When optimizing the process,

careful consideration must be taken when designing pulse parameters and treatment

strategy. The results from this dissertation are summarized below:

• ADV threshold decreases with acoustic exposure.

• ADV threshold decreases with the addition of CA. With long pulses, the

introduction of CA can decrease the threshold by an order of magnitude,

whereas with short microsecond pulses, CA can decrease the threshold by a

factor of 2-3.

• ADV threshold is dependent on in situ peak rarefactional pressure.

• The relationship between PRF and maximum efficiency for droplet conversion

when only droplets are present appears to be frequency dependent. At low

frequencies, an optimal PRF exists. At high frequencies and below the

threshold for inertial collapse, efficiency increases with PRF until bubble

production saturates.

• There is an optimal PRF for maximum efficiency when droplets are combined

with CA.
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• Lodged bubbles produced by ADV can behave as a shield and reflector for

further US therapy. Choice of a target artery or volume is important in order

to prevent obstruction of further US treatment. Location of an ADV bubble

wall can also create an advantageous acoustic field such that less pressure is

required for further proximal US treatment.

5.2 Future Work

5.2.1 Further investigation of the Mechanisms of ADV

The mechanisms for ADV are not fully understood. We have found that inertial

cavitation (IC) can occur within and outside of the droplet [5], each of which

triggers a vaporization event. As summarized in the previous section, it was shown

in Chapters II and III that IC external to a droplet could trigger ADV via the

inertial collapse of CA microbubbles. In the absence of CA, evidence from high

speed photography (Fig. 5.1) shows that for large droplets on the order of 344 µm

in diameter, nucleation sites do occur within the droplet, ultimately forming a gas

bubble. However, for these large droplets, these nucleation sites do not trigger the

vaporization of the entire droplet. Instead, the droplets become biphasic; it contains

both a liquid and gas within it. For smaller droplets (18-45 µm in diameter),

dipole motion and gas inception was seen also through high speed photography [3].

However, it was not proven that these nucleation sites emerged from within the

droplet, as the bubbles may have been superimposed and may have laid outside

of the lateral plane (with respect to the camera) of the droplet. In the case for

the larger droplet, the bubbles coalesced within the droplet itself, implying that

nucleation occurred within the droplet.

The difference between the two mechanisms may lie in the relationship between

droplet size and wavelength. As frequency increases, the acoustic wave has more

interaction with the droplet, as exhibited by the dipole oscillation that occurs in
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Figure 5.1: ADV of a 344 µm droplet. The duration of insonation is approximately
10 ms and begins with the first frame at 0.0 ms. Images are taken with a high speed
camera. Data was presented at [16].

sync with the acoustic pulse [3]. We do not yet have any evidence as to what occurs

during ADV at low insonating frequencies when CA are not present.

However, it was shown in Chapter II that aggregates can form at low frequencies

for long pulse durations or “on-time.” In this case, aggregates may have behaved like

a large droplet, and perhaps the collective size allowed for more interaction with the

ultrasound. If the albumin proteins were not fully cross-linked on the shell of a single

droplet, they could even have cross-linked with proteins from neighboring droplets

within the aggregate. The ultrasound wave could interact with the droplets as an

aggregate as well as individually, with each droplet imposing mechanical forces on

the other. These aggregates could perhaps be compared to work by Matsumoto et

al. [17], who have shown that individual bubbles interact with each other in a bubble

cloud to generate a collapse with higher energy than individual bubbles collapses.
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These clouds have a lower resonant frequency than the bubbles that comprise it.

Likewise, for a given low frequency and pressure amplitude, there could in fact

exist a “critical” size for aggregation that allows for interaction with the ultrasound

wave and subsequent vaporization. The relative size of these aggregates to the

insonating wavelength could be compared to the relative size of a single droplet

with a wavelength at a higher insonating frequency, such as the droplet imaged

in Kripfgans et al. [3], which vaporized in the absence of surrounding droplets.

Using Stokes law and given the rate that the aggregates are falling, the size of

the aggregates can be calculated. For repetitive pulsing at below ADV threshold

amplitudes (Chapter II), calculated aggregate sizes ranged from 118-150 µm in

diameter. Further investigation must be conducted to evaluate what aggregate sizes

are necessary for vaporization and at what pressures.

Whether this aggregation occurs in a flow environment remains unknown for

these acoustic parameters, and thus it is undetermined whether aggregates are a

necessary component of ADV. An experiment much like those performed in this

dissertation, with the exception of a horizontally oriented flow tube rather than a

vertically oriented tube, may allow for differentiation between aggregated droplets

that would sink to the bottom of the tube from buoyant bubbles that would rise

to the top of the tube. Gradually increasing the flow speed from a standstill while

maintaining an amplitude known to produce aggregates may also reveal whether

aggregates can form in flow and at what flow rates they’re visible through B-mode

ultrasound. Using microscopy, it has been shown that CA microbubbles form

transient aggregates in flow due to the presence of pulsed ultrasound [18]. It remains

to be determined whether this would occur with droplets under flow condition tested

here or in vivo.

Investigation of the behavior of perfluorocarbons (PFCs) of higher boiling

points (BP) may further elucidate the mechanisms at play in this vaporization
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process. PFCs of higher boiling point would make more stable droplets as the level of

superheat is not as high if not nonexistent. If IC external to the droplet is responsible

for triggering a vaporization event, then ADV threshold could be the same for

either dodecafluoropentane (DDFP) droplets (BP = 29◦C) or droplets of another

PFC, such as 1,1,2-trichlorotrifluoroethane (BP = 47-48◦C) or perfluorohexane (BP

= 58-60◦C) if vaporization occurs at all. If vaporization does occur, it should be

temporary, and the PFC should return to liquid phase. As PFCs with higher BP

than the ambient temperature (either room or body temperature), they may not

undergo phase transition at all. In this case, passive acoustic detection of broadband

noise would determine if IC occurred. The amplitudes at which IC occurs for these

high boiling point PFC droplets can be compared to those found in Chapter II if

the same transducer is used and if the droplets are of the same size distribution

and concentration. A secondary study may be required to understand the droplet

yield from manufacturing different PFC droplets as it has been shown that ADV

threshold decreases for larger droplets [3] and IC threshold decreases with increasing

concentrations of nuclei [19].

5.2.2 Effects of the Inertial Collapse of CAs on ADV

On the same note, it would be beneficial to understand the direct interaction

between CA and droplet. The inertial collapse of CA can trigger a vaporization

event, but it is undetermined how they interact. From these initial exploratory

experiments, it was found that a small amount of CA in comparison to the amount

of droplets that were present was required to achieve the desired effect. It would be

beneficial to understand the ratio required for optimal droplet conversion.

A simple solution can be employed to understand the mechanism between droplet

and CA. Because the CA concentrations tested in this thesis were above the apparent

minimum quantity of CA necessary to facilitate the ADV process, the ratio of the
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two agents can be further adjusted to ascertain the threshold concentration. Given

a certain droplet concentration, what is the minimum number of CA microbubbles

required to trigger a detectable ADV event? In other words, how many droplets can

the collapse of one CA microbubble affect?

Since the concentrations of each agent are known, the average distance between

each droplet and CA can also be calculated assuming a homogenous distribution.

For the concentrations used in Chapter III, the average distance between a CA

microbubble and its surrounding droplets was approximately 86 µm. In this manner,

minimum proximity of the agents can be measured. The required proximity can be

estimated by lowering the concentration of both droplets and CA but at the same

time maintaining the ratio of the two agents. The ADV threshold measurements

with CA in this dissertation provide a baseline ratio of concentrations. Reducing

the concentrations increases the average distance between agents, and the threshold

quantity to trigger ADV would indicate the minimum distance necessary between

CA and droplet.

This measurement of minimum distance between CA microbubble and droplet can

perhaps provide insight into the mechanisms involved. Several events accompany an

inertial collapse including high temperatures at the core, jet streams, and secondary

shock waves. Jet streams are formed from asymmetrical collapses when bubbles

are near a solid surface and cause considerable local damage to the surface [20].

Although droplets cannot be considered a solid surface, they may behave similarly to

a bubble, which imposes secondary Bjerknes forces on a neighboring bubble. Thus,

this interaction between CA and droplet may promote an asymmetrical collapse and

the formation of jet streams, and requires that the two agents be in close proximity.

This jet stream may then, due to its proximity, be able to disrupt the albumin shell of

the droplet, exposing the previously encapsulated superheated liquid to the medium

for subsequent vaporization. However, if secondary shock waves are responsible for
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or act as an additional perturbational source for triggering an ADV event, the two

agents may not need to be as close. The statistics involved in chance collisions or

even movement to the appropriate proximity must also be taken into consideration.

It is possible that one chance vaporization event could launch a cascade of events.

High speed shadowgraphy is an ideal option to capture such situations when, for

example, (1) microbubble and droplet are situated close together, (2) microbubble

and droplet are situated farther apart, and (3) when two droplets surround one

microbubble. High speed shadowgraphy would provide direct visual evidence of the

interaction between the inertial collapse of a CA microbubble and a surrounding

droplet, where both jet streams and shock waves can be perceived (Fig. 5.2). Aside

from visualizing the consequences of an inertial collapse, if a jet stream disrupted

the CA shell, the resulting events leading to the vaporization of a droplet would look

much different than a droplet’s response to a sound wave, where nuclei can form

within the droplet (Fig. 5.1) or dipole oscillation may occur [3]. Likewise, similar

behavior could occur if a secondary shock wave were emitted from the inertial

collapse of a microbubble. Shadowgraphy would also reveal if a combination of the

two is necessary. Positioning of the CA and droplet in the field of view may be

difficult; however, laser induced optical breakdown (LIOB) has been previously used

to create bubbles in precise locations [21] and can be used as a tool in this case to

create bubbles in desired locations with respect to preexisting droplets.

An additional experiment can be performed to test the hypothesis that the

inertial collapse of CAs causes ADV by means of disrupting the albumin shell.

Under current conditions where ADV occurs in saline, it is possible that the shell is

disrupted and that the consequent vaporization occurs before the shell can repair

and cross-link again. If this is the case, then an experiment can be designed to allow

optimal conditions for shell repair; a medium saturated with albumin may provide

the necessary building blocks for the albumin shell to repair before vaporization. If

127



saturating the medium with albumin significantly alters the ADV threshold, it would

appear that shell disruption is the mechanism for ADV with CAs. However, a minor

shift in threshold may only be a result of a change in the medium’s viscosity due

to high albumin concentration. In order to compensate for this potential difference,

acoustic emissions can be monitored and used as a feedback mechanism to adjust

the level of cavitation activity such that it is the same in both saline and in a high

albumin medium. Once the level of cavitation activity, or amount of “trigger,”

is matched, any differences in ADV threshold can be attributed to the change in

shell properties. Alternatively, modifying the shell composition of the droplet and

measuring changes in the ADV threshold would also demonstrate the role of shell

disruption in ADV.

Figure 5.2: Zhong et al. produced high speed shadowgraphs of the inception and
collapse of bubbles produced by a shock wave generated by a shock wave lithotripter
[22]. The numbers at the top of the images indicate frames captured at 164, 245, 600,
and 1100 µs after spark discharge. A microjet is seen at 164 µs and is marked by “J.”
Bubble growth and/or coalescence are seen at 245 and 600 µs, and secondary shock
waves are seen at 1100 µs.

5.2.3 Optimization

The work presented in this dissertation investigates the effects of acoustic

parameters that will aid in being able to cause ADV in vivo transcutaneously.
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However, further experimental work can be done to refine the value for optimal PRF

for any given beam width and flow rate. It may be more advantageous to insonate

at a higher frequency if it allows more frequent pulsing, in which case a large beam

width would also be favorable. However, at these higher frequencies, increasing

the pressure amplitude could also enter the regime where ADV bubbles could

collapse. An in-depth investigation of efficiency as it relates to carrier frequency,

amplitude, beam width, and its optimal PRF would be extremely beneficial to

in vivo applications where rapid occlusion and maximum droplet conversion are

desirable.

5.2.4 Targeted Droplets

Targeted Droplets for Drug Delivery

Targeted agents including CAs have been the subject of recent scientific research

for effective cancer therapy [23][24][25]. Likewise, the ability for great specificity

would improve the efficacy of ADV in therapy. Development of droplets for targeted

drug delivery is ongoing and aims to manufacture targeted drug-bearing droplets

that would release the drug only during ADV to a specific site. Concurrent vascular

occlusion could further localize the drug therapy. Incorporation of Paclitaxel into a

droplet and its subsequent vaporization has already been successful [26][27].

Biphasic agent

As droplets can be targeted with appropriate ligands for drug delivery, CA can also

be paired with the droplets in a similar manner. Since it has been shown that the

insonation of CA microbubbles can trigger ADV, it may be possible to combine the

two agents such that each droplet is bound to a microbubble. The incorporation of a

microbubble into the droplet may be another alternative [28], but the microbubbles’

response to the acoustic field is stabilized, as the superheated liquid DDFP is, by

the albumin shell. Experiments proposed in Section 5.2.2 would contribute to the
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design of these droplets.

Some of the complications when droplets were combined with CA included the

need for PRF to be reduced in order for the supply of CA to be replenished as they

were destroyed in larger volumes than droplets were vaporized. If a microbubble

were attached to these droplets, then a vaporization event could occur with every

collapse of a microbubble. Seemingly, the effective zone for ADV would expand to

the effective zone for inertial collapse of CAs.

If successful ADV is attained with these coupled agents, a new and perhaps more

convenient method of ADV is available. Many US systems are currently equipped to

employ a technique to monitor local blood flow information by measuring real-time

refill curves [29]. In this technique, CAs flow through the vasculature and are allowed

to populate the volume of interest. Subsequently, a series of high mechanical index

(MI) pulses, employing the maximum acoustic power allowed by the diagnostic

machine, are fired transcutaneously and destroy all CAs in the imaging plane. The

refill of CA is then monitored. Because CA can be destroyed by an imager when

imaging an organ at depth, ADV could be also achieved with high MI pulses.

Exact alignment between therapy and imaging feedback, since they are the same

transducer, allows for simple targeting. The use of an imaging transducer can

additionally allow intercostal penetration to the kidney and electronic scanning for

complete occlusion of the target.

5.2.5 In vivo Demonstration

Thus far, in vivo demonstrations of ADV have been confined to a small animal

model without any acoustic attenuation from overlying tissue [4] . With the findings

from the in vitro work presented in this dissertation relating to attenuation effects

and strategies to reduce thresholds, current in vivo work applies these techniques to

a large animal model, where treatment is transcutaneous. CA are combined with
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droplets for injection, and PRF has been noted in vivo to have a deleterious effect if

it was too high. Like the previous study by Kripfgans et al. [4], droplet injections

are being performed intraarterially, but future work will transition to intravenous

injections, which will require much higher doses [2].

Phase Aberration Correction

Abdominal access for treatment of the kidney was considered here as the preferred

acoustic window. The abdominal wall was shown to cause appreciable attenuation,

but furthermore, appreciable aberration was also measured [7]. Microstructures

within the abdominal wall due to both muscle and fat tissue cause wavefront and

focus distortion. The ability to focus accurately will change from patient to patient

as both muscle and fat layers vary.

Thus, it will become important in transcutaneous treatment to be able to

refocus the beam for both accurate targeting and to achieve sufficient pressures.

Current research uses the bubbles created by ADV as point beacons to perform

time reversal [30] in order to penetrate through the skull and focus in the brain.

In time reversal, pulses are fired from individual elements on an US transducer.

As each wave propagates through a different path, it is aberrated and attenuated.

Consequently, the waves arrive asynchronously at the focus. Given a point beacon,

the asynchronous echoes can be recorded and time reversed. With the next pulse,

time delays are applied to each element such that the echo received last is transmitted

first, and the echo received first is transmitted last. Thus, temporal and spatial pulse

compression is achieved.

For ADV through the abdominal wall, echoes from the first bubbles created by

ADV could be time reversed and employed for subsequent insonation. For patients

with a highly aberrating abdominal wall, time reversal would significantly reduce

the amount of power output required by the system as well as provide a dependable

focal size and location. This consistency would increase repeatability and reliability
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of ADV treatments between patients, both of which are important for clinical

application.
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