
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 14, NO. 4, JULY 2006 613

Adaptive Tracking of Angular Velocity for a Planar
Rigid Body With Unknown Models for Inertia

and Input Nonlinearity
Nalin A. Chaturvedi, Amit K. Sanyal, Madhusudhan Chellappa, Jean Luc Valk, N. Harris McClamroch, Fellow, IEEE,

and Dennis S. Bernstein, Fellow, IEEE

Abstract—The problem of a planar rigid body, with unknown ro-
tational inertia and an unknown input nonlinearity, tracking a de-
sired angular velocity trajectory is addressed using adaptive feed-
back control. First, an adaptive controller is developed for tracking
a desired angular velocity command, assuming linearly entering
control. Sufficient conditions on the command signal for estimating
the inertia are given. To account for an unknown input nonlin-
earity, a piecewise-linear approximation of the nonlinearity is in-
verted to obtain improved angular velocity tracking and inertia
identification. Finally, a direct adaptive algorithm, incorporating
feedback linearization is proposed, and Lyapunov analysis is used
to show convergence of the angular velocity and inertia estimate er-
rors. The approach is validated by experimental implementation.

Index Terms—Adaptive control, angular velocity tracking, gen-
eralized solution, input nonlinearity, rotating bodies.

I. INTRODUCTION

THE rotational control of a rigid body in three dimensions
is a widely studied and fundamental problem in space-

craft dynamics [1]–[6]. Minimum fuel and minimum time per-
formance have been studied in [7] and [8], while stabilization
of multiple bodies has been studied in [9] and [10]. Although
it is generally assumed that the spacecraft mass distribution is
known, there are limitations in practice on the ability to deter-
mine the exact mass distribution due to fuel usage, moving ap-
pendages, and complex geometry. Hence, it is of interest to de-
velop controllers that can operate reliably with as little inertia
modeling as possible. Adaptive tracking for a three-dimensional
(3-D) rigid body without inertia modeling is considered in [11].

Another common assumption is the affine (linearly entering)
nature of the control input. While adaptive control of affine
control systems has been widely studied, see for example
[12]–[14], there is relatively little in the literature on adaptive
controllers for nonaffine systems. Recent results in the literature
have addressed the above problems under various assumptions
[15]–[18]. The results in these papers involve inversion of the
input nonlinearity assuming that the partial derivative of the
input nonlinearity is bounded away from zero with a constant
sign; this assumption guarantees that there exists a local inverse.
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In the present paper, we develop an adaptive controller, along
with simulation and experimental results, for an adaptive control
problem involving a model of a planar rigid body that is non-
affine in the input. Our approach involves two steps. First, we
ignore the input nonlinearity and address the inertia-uncertainty
problem by deriving an adaptive controller that guarantees that
the angular velocity asymptotically tracks an angular velocity
command without any information concerning the mass distri-
bution of the rigid body. This controller provides asymptotic
tracking of a large class of angular velocity commands. This
adaptive controller has the form of a PI control law. The inte-
grator state, which corresponds to the inertia estimate, is shown
to converge to the actual inertia under persistent excitation.

Next, we include the uncertain input nonlinearity. By parame-
terizing the input nonlinearity we develop an adaptive feedback
linearization controller. Using Lyapunov techniques, we obtain
globally convergent tracking for a large class of command sig-
nals. Simulation results are given to demonstrate the effective-
ness of the adaptive controller.

Next, we implement the adaptive feedback linearization con-
troller on an experimental testbed. To further compare the per-
formance of this controller with other techniques, we compare
the experimental results with an adaptive controller that does not
take into account the nonlinearity of the input and also, with an
adaptive controller that uses an approximation of the inverse of
the input nonlinearity. We also discuss the problem of bursting,
which might occur in such nonlinear adaptive control systems.

Our development also highlights existence and uniqueness is-
sues that arise due to inversion of the input nonlinearity. In par-
ticular, we show that the input nonlinearity, coupled with the
adaptive controller, may lead to discontinuous closed-loop dy-
namics. We state assumptions under which the closed-loop has a
solution. The notion of solution of the closed-loop in these cases
is usually that of a generalized solution, in the sense of Filippov
[19] or Krasovskii [20].

The contents of this paper are as follows. In Section II, we
introduce the problem of adaptive control for a rigid planar
rotating body that has an input nonlinearity and present the first
step in our development of an adaptive controller. We design an
adaptive control scheme that provides angular velocity tracking
for a planar rigid body with unknown inertia. In addition, we
present and illustrate a method for identifying the unknown
inertia. Furthermore, we show global tracking and parameter
convergence for command signals that are not necessarily
bounded. Next, in Section III, we extend the adaptive con-
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troller to include an unknown input nonlinearity. In Section IV,
Lyapunov’s analysis is used to guarantee asymptotic tracking
of the angular velocity command. A description of the testbed
and control hardware used for experiments is presented in
Section V. In Section VI, we present experimental and simu-
lation results for single-degree-of-freedom rigid body rotation
for three different controllers: a nonadaptive proportional con-
troller, an adaptive controller designed to adapt to the unknown
inertia only assuming known linear input, and an adaptive
controller that adapts to unknown inertia only with piecewise
linear approximation of the inverse of the input nonlinearity.
Finally, in Section VII, the performance of the adaptive feed-
back linearization controller is validated by simulations and
experimental implementation.

II. ADAPTIVE CONTROL WITH AN AFFINE CONTROL INPUT

In this section, we introduce the planar rigid body model with
nonaffine input and we define the adaptive control performance
objectives. Subsequently, we consider the first step in the devel-
opment of a controller structure, wherein we design an adap-
tive controller that adapts to the unknown inertia but ignores the
input nonlinearity.

Consider a rigid body constrained to rotate about a fixed axis.
For , the equation of motion is given by

(1)

where is the angular velocity of the body about its axis of ro-
tation, is the moment of inertia of the body about its axis of
rotation, and is the applied torque. We assume that is pos-
itive but is otherwise unknown. Furthermore, where

is a continuous onto function of the control input .
Hence, we can write (1) as

(2)

Remark 1: The fact that is onto guarantees that a control
torque of any magnitude can be generated. However, we do not
require the function to be one-to-one. Thus, there can be mul-
tiple values of that generate the same torque .

Let denote the angular velocity command.
The control objective is to design an adaptive controller that can
track a large class of command signals without knowledge of

and the input nonlinearity .
We first consider the design of an adaptive controller for the

associated affine system, that is, for the case . The
results proved in this section are extended to the nonaffine case
in Sections III and IV.

Defining the angular velocity error , it follows from
(1) that satisfies

(3)

The control objective is to determine such that as
for all initial conditions and without knowledge

of . The following result provides an adaptive controller for
angular velocity based on an estimate of . We denote the

error in the inertia estimate by .

Theorem 1: Assume that is continuous and is piecewise
and bounded. Let and , and consider the adap-

tative control law

(4)

(5)

and the resulting closed-loop dynamics (3), (4), and (5) in error
coordinates given by

(6)

(7)

Then, the zero equilibrium solution of (6) and (7) is Lyapunov
stable and satisfies as for all and .

Furthermore, and exists.

Proof: Using (3), (4), and (5), we obtain the linear time-
varying system given by (6) and (7). Since is piecewise
and bounded, the right-hand side of (6) and (7) is piecewise
in time and globally Lipschitz in and , uniformly in time.
Furthermore, is an equilibrium of (6) and (7).

To prove asymptotic tracking, consider the positive-definite
Lyapunov candidate

(8)

which does not depend explicitly on time and is radially
unbounded. The derivative of along the trajectories of the
closed-loop system is given by

(9)

which shows that is negative semidefinite and is not an ex-
plicit function of time. Theorem 8.4 of [21] then implies that,
for all initial conditions and , the solutions of (6) and
(7) are bounded and approach the set

. Hence, as . Since is glob-
ally positive definite and radially unbounded and is negative
semidefinite, it follows that the system (6) and (7) is Lyapunov
stable.

Since as and is bounded, it follows from

(7) that and, thus as . Further-
more, and , and, hence, , are bounded. Now, since

and for
all , it follows that exists.

Next, (8) can be rewritten along the solutions of (6) and (7) as

(10)

Since exists and , it follows from (10)
that

(11)

Therefore, since is continuous, exists. Hence,

exists.
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Note that the control law (4) does not require knowledge of

the inertia . Although converges to zero and converges,
does not necessarily converge to the actual inertia . We

now give a sufficient condition under which converges to .
Lemma 1 in Appendix A is needed.

Theorem 2: Consider the closed-loop system consisting of
(3) and the adaptive control law (4) and (5), where and

. Assume that is piecewise continuous and bounded
and either or does not exist. Then,

as for all and .
Proof: Theorem 1 implies that as . Then,

implies that

(12)

Since is piecewise continuous and bounded, (6) implies that
is globally piecewise uniformly continuous. Now, applying

the generalized version of Barbalat’s Lemma given in Lemma 2
in Appendix B, yields . Therefore, it follows from

(6) that

(13)

Since, by Theorem 1, exists, and either

or does not exist, we obtain the result from Lemma 1

in Appendix A, that converges to zero.
Note that Theorems 1 and 2 require that be piecewise

and bounded. However, need not be bounded.
Example 1: Consider the angular velocity command

.

Note that is piecewise continuous and bounded. The inertia
of the planar rotating body is taken to be kg m , and
its initial estimate is kg m . Let and

. The initial angular velocity error is given by rad/s.
The angular velocity tracking error, inertia estimate error, and
applied input torque are shown in Fig. 1. Fig. 1 shows that
converges but does not converge to . In fact, does not satisfy
the assumptions of Theorem 2. However, converges to zero.
The torque is seen to have an initial transient. The torque at
time zero N m, where

rad/s .
Example 2: Consider two command signals that satisfy the

conditions given in Theorem 2, namely

(14)

and

(15)

where is a nonnegative integer. Both signals are piecewise ,
and the first one is unbounded. The initial condition for and

Fig. 1. Angular velocity, inertia estimate, and control torque for Example 1.

Fig. 2. Angular velocities, inertia estimate, and control torque for (14) in
Example 2.

gains are the same as in the previous example, where as is
chosen to be 10 and 5 rad/s, respectively. The angular velocity
tracking error, inertia estimate error, and applied input torque
are shown in Figs. 2 and 3. In both cases, the inertia estimates
converge to the actual value.

III. ADAPTIVE FEEDBACK LINEARIZATION CONTROL

WITH NONAFFINE INPUT

In Section II, we developed an adaptive controller that glob-
ally tracks angular velocity commands. We now consider the
general case of an unknown nonaffine control input modeled
by (2).

As mentioned in Section II, the single degree of freedom at-
titude dynamics with nonlinear actuation are modeled by

(16)

where is the angular velocity, is the control signal, is
the moment of inertia, and is an unknown input
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Fig. 3. Angular velocities, inertia estimate, and control torque for (15) in
Example 2.

mapping that is continuous and onto, but not necessarily one-to-
one. Thus, may not have an inverse.

Assumption 1: The input nonlinearity is a polynomial.
Thus, the input nonlinearity can be written as

(17)

Assumption 2: The sign of the coefficient in (17) is known,
and there exists a known , such that .

Remark 2: Assumption 2 does not require that the partial
derivative of be bounded away from zero or knowl-
edge of its sign as in [15]–[18]. Indeed, is allowed to
assume any real value.

Define as , where satis-
fies . Then, we define an approximately lin-
earizing feedback control law

(18)

where . Next, we define the input model error
by

(19)

so that and .
Then

(20)

Now write , so that

(21)

where is the torque specified by the adaptive algorithm (4),
(5) for the system (1), given by

(22)

and is the torque used to cancel the model error .

Next, it follows from Assumption 1 and Lemma 3 in
Appendix C that is an odd degree polynomial and there
exists such that, for all

(23)

where . Using (23), (21) can be
written as

(24)

To approximately cancel in (24), we use an estimate
of given by

(25)

where is an estimate of . Hence, it follows from
(24) that

(26)

where is a solution of (25), which can be written as

(27)

Denote as

where and . Furthermore, define

(28)

and initialize and . The estimate
is then updated according to the adaptation law

if either
or if and
else

(29)

(30)

where is a positive-definite adaptation gain matrix,
, and . Notice that (29) guaran-

tees that is an invariant set for and, hence, if
, then for all time .

In summary, the control input is computed from (18), where
is obtained from solving (27) with in (27), given by (22).

The parameters in (27) and in (22) are solutions of (29),
(30), and (4). In the next section, we see that the adaptive feed-
back linearization controller (18), globally tracks an arbitrary
command signal.

IV. ANALYSIS OF THE ADAPTIVE FEEDBACK

LINEARIZATION CONTROLLER

In this section, we analyze the stability of the adaptive feed-
back linearization controller and prove global convergence of
the angular velocity error to zero. Note that since (27) is im-
plicit in , we need to solve an algebraic equation in to com-
pute the control input . Hence, (27) must have at least one real
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solution. As shown in Lemma 4 in Appendix C, the initializa-
tion for given by and ,
where is given by (28), guarantees existence of a solution to
the algebraic (27).

However, since the solution of (27), and, hence, given
by (18), might not be a continuous function of the states , ,
and , the closed-loop vector field might not be continuous
with respect to the states. Note that the closed-loop vector field
can be discontinuous even if the input nonlinearity has an
inverse that is Lipschitz; the discontinuity is due to the fact that
the approximation of the error given by , may
result in a solution of (27), and hence, a feedback control input

in (18) that is not a continuous function of the states.
We, thus, require that the closed-loop system have at least

one generalized solution in the sense of Filippov or Krasovskii
[19], [20], [23], [24]. It may be noted that adaptive controllers
developed in [17], [18], and [22] for nonaffine systems, implic-
itly make the assumption of existence of solutions for a system
whose closed-loop vector field might not be Lipschitz or even
continuous.

Consider the system (16), the control (18), and the adaptation
law (4), (29), and (30), where , , is positive
definite, and . Defining the error , the
closed-loop dynamics (4), (16), (22), (27), (29), and (30) can
be written in error coordinates as

(31)

(32)

if either
or if and
else

(33)

(34)

where

(35)

Next, we prove global convergence of the angular velocity
error to zero for the closed-loop system (31)–(35).

Theorem 3: Assume that is and is bounded on
. Consider the closed-loop system (4), (16), (18), (29),

and (30), where , , is positive definite, and
, written in the error coordinates (31)–(35). Assume that

(31)–(34) has a local generalized solution for all , ,
, , and , where is given

by (28). Choose . Then, the closed-loop
dynamics of (31)–(35) have a generalized solution that satisfies

for all , and the zero equilib-
rium solution of (31)–(35) is Lyapunov stable. Furthermore,

, , and for all ,

, and .
Proof: Lemma 5 in Appendix C implies that there exists

a generalized solution of (31)–(35) over some maximal interval
that satisfies the constraint . We shall

next show that this solution is contained in a compact set for all
. Then by standard continuation arguments, it is clear

that is arbitrarily large and, hence, this generalized solution

exists for all . Then clearly, this generalized solution also
satisfies the constraint for .

We next prove that a solution of (31)–(35) lies in a compact
set over the maximal interval of existence . Consider the
radially unbounded, positive-definite Lyapunov candidate

(36)

Then, along a trajectory of the system

(37)

Substituting (31)–(35) into (37) yields

if either
or if and ;
else.

In the first case . In the second case,
. We now show that in the second case,

and hence, for both cases.
Consider the second case. Since the first case holds for
, it follows that for the second case, since
for all from Lemma 5 in Appendix C. Therefore,

. However, from Lemma 6 in Ap-
pendix C, we know that , and hence, .
Next, if the second case holds true then since the nega-
tion, namely, , implies the first case. Thus, ,
and hence, , which shows that is negative
semidefinite. Thus, the solution is contained in the compact set

Hence, the solution exists for all and satisfies
for . Clearly, the zero equilibrium solution of

(31)–(35) is Lyapunov stable.
Next, [[21], Th. 8.4] implies that, for all initial conditions

, , and , the solutions of (31)–(35)
are bounded and approach the set

. Hence, as .
Since as and is bounded, it follows from

(32) and (33) that and as . Thus,

and as .
Since the vector field of (31)–(35) is not necessarily

Lipschitzian, the uniqueness of the solution cannot be
guaranteed.

Remark 3: Note that [[21], Th. 8.4] requires that the vector
field of the closed-loop be locally Lipschitz and continuous for
all , which is not true for the closed-loop system given by
(31)–(35). However, the requirement of a continuous and locally
Lipschitz vector field can be weakened to the vector field being
bounded over every compact subset of the state space. In the
case of the closed-loop system given by (31)–(35), since is

, the image of the function given by the vector field of the
closed-loop (31)–(35) is bounded over every compact subset of

. Hence, [[21], Th. 8.4] is applicable to the
system given by (31)–(35).
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Fig. 4. Triaxial air bearing testbed. This testbed, which is based on a spherical
air bearing, allows low friction, 3-D motion with unrestricted roll and yaw, and
�45 pitch.

V. TRIAXIAL ATTITUDE CONTROL TESTBED

A. Mechanical Setup

The experimental testbed (see Fig. 4) is based on a spherical
air bearing manufactured by Space Electronics, Inc., Berlin, CT.
An aluminum sphere of 11-in diameter floats on a thin film of
air that exits from holes located in the surface of the cup. Air
at 70 psi is supplied to the cup by means of a hose that passes
through the center of the vertical support.

A one-piece 32-in stainless steel shaft passes through the
center of the sphere and extends between a pair of 24-in circular
mounting plates. This shaft is designed to withstand stresses that
might otherwise distort the sphere. All mounting plates are made
from 1/4-in aluminum alloy with 1/4–20 holes tapped in a 1-in
grid. The 14-in aluminum extension shafts connect the circular
mounting plates to the 30-in 30-in square mounting plates.
The distance between the square plates is 5 ft. All shafts have
hollow interior to allow wiring through the sphere and between
any two points. The total weight of the levitated components de-
scribed thus far is 180 lb. At 70 psi air pressure, the air bearing
can support an additional 180 lb of components.

The spherical air bearing allows unrestricted motion in yaw
(rotation about the vertical axis) and roll (rotation about the lon-
gitudinal shaft axis). The plates and shafts are designed to allow

pitch (rotation about a horizontal axis) at all roll and yaw
angles.

Once the main components are mounted, additional masses
can be added to modify the final mass distribution. For planar
rotation experiments, the center of mass is located along the ver-
tical line that passes through the rotational center. This mass dis-
tribution balances pitch motion. However, when the center of
mass is not located at the rotational center, the body possesses
pendulum dynamics in roll, and thus, yields predominantly yaw
dynamics for one-dimensional (1-D) experiments. For 3-D ex-
periments, the center of mass can be located at the rotational
center to balance the system in both roll and pitch.

B. Control Hardware

The Triaxial Attitude Control Testbed uses onboard sensors in
the attitude control experiments. A three-axis magnetometer de-
termines the direction of the Earth’s magnetic north; a three-axis
accelerometer measures gravitational and centripetal accelera-
tion; and a three-axis gyro measures angular velocity. Only the
gyros are needed for this paper.

The three-axis gyro is comprised of three Gyrochip Horizon
rate sensors manufactured by Systron Donner, Concord, CA.
The input range of these sensors is 90 /s and, according to
specifications, their bandwidth is greater than 18 Hz. Under
static conditions, that is, , we measured the rms gyro noise
to be about 1.3 mV, which corresponds to 0.06 /s. Since the gyro
measurement range is 0–5 V, the sensor dynamic range is found
to be 71.7 dB, or 12 analog–digital conversion bits. Operation
of fan thrusters does not affect the gyro noise significantly.

We use an embedded processor developed by Quanser Con-
sulting for realtime onboard processing. This processor is based
on a 586 processor with 256 MB RAM, 4 GB solid state hard
disk, and Multi-Q I/O boards allowing up to 24 A/D channels,
24 D/A channels, and 16 encoder channels. The A/D and D/A
channels have a resolution of 13 bits over a 5 V range. The
A/D sampling occurs sequentially with an acquisition time of
20 s/channel, while the D/A conversion also occurs sequen-
tially with a latency of 5 s/channel. The operating system is
based on the Quanser Consulting WinCon realtime controller,
which is compatible with the MathWorks RealTime Workshop
for implementing controllers programmed in Simulink. Com-
munication with the host PC for experiment monitoring, param-
eter modification, and data acquisition is accomplished through
a wireless ethernet connection.

The Triaxial Attitude Control Testbed uses propeller thrusters
for control actuation. The experiments described here use four
propeller thrusters. These thrusters are based on Maxon motors
and Copley amplifiers. Without the encoders mounted, these
motors have a dual protruding shaft to which a pair of propellers
is mounted to obtain direction-symmetric thrust. The Copley
amplifiers for the thrusters are operated in velocity mode to pro-
vide a commandable torque.

VI. EXPERIMENTAL RESULTS

A. Preliminary Analysis

In this and the subsequent section, we present experimental
results performed on the Triaxial Attitude Control Testbed for
the following cases:

1) simple proportional controller with no adaptation to the
inertia or to the input nonlinearity;

2) adaptive controller designed, as in Section II, that adapts
only to the unknown inertia but does not compensate for
the input nonlinearity;

3) adaptive controller, as in Section II, that adapts only to
the unknown inertia and does compensate for the input
nonlinearity, using a piecewise linear approximation of
the inverse of the input nonlinearity; and
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4) adaptive feedback linearization controller, as in
Section III, that provides adaptation for the unknown
inertia and for the unknown input nonlinearity.

As already mentioned, we consider only yaw motion of
the testbed with two thrusters for actuation and one gyro for
yaw-rate sensing. Experimental results pertaining to cases (1),
(2), and (3) are presented in this section, while case (4) is
considered in the next section.

To relate physical signals to measurements, let

(38)

where is the voltage output of the gyro, is the con-
version coefficient from in volts to in /s, is the
voltage input to the thruster amplifiers, and is the con-
version coefficient from in volts to the control torque in
newton meters. From (1), we see that , where

the scaled inertia . Note that the units of

are seconds. We define and .
We can, thus, rewrite (4) as

(39)

where and is the estimate of . The adap-
tive law (5) can be written as

(40)

where . Comparing (4) and (5) with (39) and
(40), it follows that the conversion coefficients are incorporated
within the constants and . It can be seen that is dimen-
sionless and has units of V/s . Hence, we can apply the adap-
tive control algorithm of Section II without further calibration.
However, to relate our results to physical motion, we calibrated
the gyro voltage and found (V s). For the re-
mainder of this section, we view as the control signal.

B. Experiments Using Proportional Controller and
Using Adaptive Controller Without Compensation for
Input Nonlinearity

When is constant, the adaptive controller specializes to the
proportional controller

(41)

Since the plant (1) is an integrator, the closed-loop system with
the proportional controller (41) would yield zero steady-state
error for step commands if the control input were affine.

The angular velocity for the sinusoidal command
/s and a proportional gain of s/V is shown in

Fig. 5. The angular velocity converges to a periodic signal
with rms value of about 2.6 /s.

Now we use the second controller identified in Section VI-A
for the same command. Fig. 6 shows and for ,

s/V , and initial scaled inertia estimate s.
The angular velocity error shown in Fig. 7 converges to a

Fig. 5. Angular velocities !(t) and �(t) using proportional controller for
�(t) = 10 sin :2t /s.

Fig. 6. Angular velocities !(t) and �(t) using the adaptive controller for � =
10sin :2t /s.

periodic signal with rms value of about 0.25 /s and mean value
of 0.0061 /s. Fig. 8 gives the scaled inertia estimates obtained
with s and s. The scaled inertia estimate
converges to a periodic signal with mean value of about 37.9 s
and a peak-to-peak amplitude of about 4.5 s. Simulations and
experiments (not shown) indicate that the value of the inertia
estimate varies with the frequency of the command signal as a
consequence of the nonaffine control input.

C. Experiments Using Adaptive Controller With Approximate
Compensation of Input Nonlinearity

To determine whether the oscillation of in Fig. 8 is due to
the nonaffine control input, we plot (see Fig. 9) in volts
per second (obtained by numerically differentiating the mea-
sured ) versus in volts as computed by the adaptive
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Fig. 7. Angular velocity tracking error using the adaptive controller for �(t) =
10 sin :2t /s.

Fig. 8. Scaled inertia estimate using the adaptive controller for �(t) =
10 sin :2t /s, Ĵ(0) = 0 s, and Ĵ(0) = 100 s.

Fig. 9. _V versus V for �(t) = 10 sin :1t /s.

Fig. 10. Simulated angular velocity error with actuator nonlinearity.

algorithm during an experiment. Fig. 9 shows that is a
nonlinear function of the computed moment , that is

(42)

The input nonlinearity observed in the actuators is largely due to
the aerodynamics of the propeller which generates the required
thrust. The data are fit by the cubic polynomial

(43)

as shown in Fig. 9. From (5), (38), and (42), we have

(44)

Hence, from (1) the torque input is given by

(45)

To check whether the nonlinearity (43) could cause the
residual oscillations in Fig. 8, the cubic nonlinearity (43) is
included in a simulation of the adaptive closed-loop system
for the command /s. Figs. 10 and 11 suggest
that this nonlinearity could indeed cause oscillations similar
to those observed from the testbed. The angular velocity error

, shown in Fig. 10, converges to a periodic signal with rms
value of about 0.14 /s and mean value of 0.0066 /s. The scaled
inertia estimate converges to a periodic signal with value of
39.15 s and a peak-to-peak amplitude of about 3 s.

For the periodic command signal /s,
Figs. 10 and 11 show the resulting and . We obtain a
piecewise linear approximation of the cubic nonlinearity, and
invert this piecewise linear function. The cubic nonlinearity and
the inverse of the piecewise linear approximation are shown in
Fig. 12.

The simulated response of the closed-loop system (see
Figs. 13 and 14) indicates that the piecewise linear inverse ap-
proximately linearizes the nonlinearity and reduces oscillations
in the angular velocity error and scaled inertia estimate. The
rms value of is about 0.02 /s, and the mean value is 0.01 /s,
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Fig. 11. Simulated scaled inertia estimate with actuator nonlinearity.

Fig. 12. Cubic actuator nonlinearity (43) and an approximate piecewise linear
inverse.

which is below the noise level of the gyro. The mean value of
the scaled inertia estimate is about 40.5 s with a peak-to-peak
amplitude of about 0.9 s. Furthermore, simulations (not shown)
indicate that the scaled inertia estimates converge to the same
value for different values of the frequency of .

The inverted actuator nonlinearity with the adaptive con-
troller is implemented on the triaxial testbed and the results are
shown in Figs. 15–17. The rms value of is about 0.15 /s and
the mean value is 0.011 /s. The mean value of the scaled inertia
is about 39.6 s and the peak-to-peak amplitude of oscillation
is about 2.5 s. Although oscillations in the angular velocity
error and inertia estimates are reduced, they are not entirely
eliminated. Sensor noise may account for some part of the
oscillations in Fig. 15.

D. Inertia of the Triaxial Testbed

To determine the actual inertia in kg m , test masses are
added at known distances from the rotational axis. Let , ,
and denote the change in inertia, the scaled inertia, and the

Fig. 13. Simulated angular velocity error with inverted actuator nonlinearity.

Fig. 14. Simulated scaled inertia estimate with inverted actuator nonlinearity.

scaled inertia from an experiment with added test masses, re-
spectively. Hence

(46)

and the inertia in kg m is given by

(47)

A total mass of 5.11 kg is added to the two square mounting
plates of the testbed, each at a distance of 0.75 m from the rota-
tional axis. Hence, kg m . Since the scaled inertia
estimate is about 39.6 s, it follows from (47) that the actual
moment of inertia is kg m .

VII. EXPERIMENTS USING ADAPTIVE FEEDBACK

LINEARIZING CONTROLLER

In this section, we discuss implementation issues concerning
the adaptive feedback linearization controller and compare the
simulation with experimental results. These results are also



622 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 14, NO. 4, JULY 2006

Fig. 15. Experimental angular velocity error with inverted actuator
nonlinearity.

Fig. 16. Experimental scaled inertia estimate with inverted actuator
nonlinearity.

compared with the results obtained for the three cases presented
in Section VI. As discussed in Section IV, the adaptive feedback
linearization controller involves the algebraic (27) which is
guaranteed by Lemma 1 to have at least one real solution for
all , and . For the input nonlin-
earity, it is clear from (43) that and . Therefore,

was chosen to be . For the controller, was chosen to
be the identity yielding . Since (27) is cubic, it can have
more than one real root, and hence, the controller can track any
one of the real roots.

We next present simulation and experimental results for the
adaptive feedback linearization controller that adapts to both
the unknown inertia and the unknown input nonlinearity. The
control parameters in the adaptive control law are chosen to be

, , and . Fig. 18 shows simulation results
for tracking the command signal . The simulated angular
velocity tracking error given by is shown in Fig. 19.

Fig. 17. Experimental control signal with inverted actuator nonlinearity.

Fig. 18. Simulated angular velocities !(t) and �(t) using adaptive feedback
linearization for �(t) = 10 sin(0:1t) /s.

The simulation results in Fig. 19 for the adaptive feedback
linearization controller for the nonaffine system with (43) show
that the angular velocity tracking error converges to zero. By
comparison, Figs. 10 and 13 show that residual oscillations
remain in cases 2 and 3. In case 3, better results can be obtained
if the exact inverse of (43) is chosen rather than the piecewise
linear approximation. However, in either case, this method
requires knowledge of the input nonlinearity. In contrast, the
adaptive feedback linearization controller does not require
knowledge of the input nonlinearity.

Next, the adaptive feedback linearization controller is imple-
mented on the Triaxial Attitude Control Testbed. The angular
velocity is plotted in Fig. 20, while the angular velocity tracking
error is plotted in Fig. 21. As can be seen, the angular ve-
locity tracks the command signal , and the angular ve-
locity error converges to zero.

In Figs. 22 and 23, experimental anomalies can be seen.
In particular, a transient excursion away from zero occurs at
around 300 s in both plots. The system soon recovers, and
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Fig. 19. Simulated angular velocity error ~! with adaptive feedback
linearization for �(t) = 10 sin(0:1t) /s.

Fig. 20. Experimental values for angular velocities !(t) and �(t) using
adaptive feedback linearization for �(t) = 10 sin(0:1t) /s.

the angular velocity error converges to zero again. This
behavior is similar to the phenomenon of bursting observed in
other adaptive algorithms [25], [26]. One possible explanation
for the bursting is the presence of noise in the output signal

. Specifically, if , where is the
true value of and is the noise present in the signal,
then contains the term , where is a real
solution of

(48)

In (48), the noise becomes significant for small values of .
Since might not depend continuously on , the magnitude
of can change discontinuously by a large value
even for small variations in , causing to jump discon-
tinuously to a large positive value.

To test the hypothesis that the bursting in the angular velocity
error is caused by noisy measurements, simulations were per-
formed with artificial noise added to the output . Figs. 24

Fig. 21. Experimental values for angular velocity error ~! with adaptive
feedback linearization for �(t) = 10 sin(0:1t) /s.

Fig. 22. Experimental values for angular velocities !(t) and �(t) using
adaptive feedback linearization for �(t) = 10 sin(0:1t) /s.

and 25 show simulation plots for tracking of and angular
velocity error , respectively, for the plant with noise at the
output. The similarity between Figs. 22 and 24 and between
Figs. 23 and 25 suggest that the bursting in the output is due
to noisy angular velocity measurements. A possible solution to
the problem of bursting is to use a deadzone to disable adapta-
tion when the angular velocity error drops below a chosen
threshold [27], [28].

VIII. CONCLUSION

An adaptive feedback control algorithm is developed to pro-
vide global tracking of commanded angular velocity signals for
a planar, rigid body which has an input nonlinearity. The first
result is for the design of an adaptive controller assuming an
affine control input. This controller assumes no prior knowledge
of the inertia and is, thus, unconditionally robust with respect to
this parametric uncertainty with global convergence. It is shown
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Fig. 23. Experimental values for angular velocity error ~!(t) with adaptive
feedback linearization for �(t) = 10 sin(0:1t) /s.

Fig. 24. Simulated angular velocities !(t) and �(t) using adaptive feedback
linearization for �(t) = 10sin(0:1t) /s with sensor noise effect.

using Lyapunov methods that the angular velocity tracking error
converges to zero. Furthermore, the control algorithm is used to
identify the inertia when the commanded angular velocity signal
has a piecewise continuous derivative and does not converge to
zero. The command signal need not be bounded. Numerical sim-
ulations demonstrate tracking and identification of the inertia.

Next, the design of an adaptive controller including an un-
known input nonlinearity is developed. Precise conditions for
the convergence of the angular velocity error using Lyapunov
analysis have been presented. Four different controllers have
been implemented on the Triaxial Attitude Control Testbed for
planar rotation, and their performance is compared. Improved
results for angular velocity tracking are achieved for constant
and sinusoidal command signals using the adaptive control
algorithm that ignores the input nonlinearity, compared to the
proportional controller. Inertia estimates are obtained using the
same adaptive controller for command signals with character-
istics as mentioned above. An actuator input nonlinearity is

Fig. 25. Simulated angular velocity error ~!(t) with adaptive feedback
linearization for �(t) = 10 sin(0:1t) /s with sensor noise effect.

identified and its effects are studied by simulation. A piecewise
linear approximation of the nonlinearity is inverted and this
inverse is experimentally found to improve angular velocity
tracking by 37.5% and inertia identification by 33.3% for
sinusoidal commands.

Finally, the adaptive feedback linearization controller is used
to compensate for the unknown input nonlinearity and the
resulting controller is tested on the Triaxial Attitude Control
Testbed. Simulation and experimental results provide validation
of the effectiveness of the adaptive technique and highlight the
effect of sensor noise.

APPENDIX A

Lemma 1: Let and and
assume that exists and

(49)

Furthermore, suppose that either or

does not exist. Then, .

Proof: First, consider the case in which .

Then, . Hence,

.

Next, let and assume that does not

exist. Since exists, it follows that, for every ,

there exists such that, for all , .
Similarly, it follows from (49) that, for every , there exists

such that, for all , . Now, since
does not exist, there exists a positive constant such

that, for every , there exists such that .
Now, assume that and let . Then,

there exists such that, for all ,
. Thus, for all . Therefore, for

all , . Now, choose
. Then, (49) implies there exists such that, for all

, . Defining ,
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it follows that, for all , .
Thus, for all , . However, there exists
such that , which is a contradiction. Hence .

APPENDIX B

Definition 1: Let and let be an
increasing sequence in such that .
Let denote a norm on . Then is globally piecewise
uniformly continuous if there exists such
that, for every and , for all ,

, such that .
Lemma 2: Let be globally piecewise

uniformly continuous and assume that exists. Then
as .

Proof: It suffices to consider . Suppose does
not converge to zero as . Then, there exists a positive
constant such that, for every , there exists such
that .

Next, let be the increasing sequence of points of dis-

continuity of as in Definition 1. Let ,
and let be given by

(50)

The function gives the index of the interval in which re-
sides. Thus, . Furthermore, note that ei-
ther or .

Assume that . Now, since
is globally piecewise uniformly continuous, there exists

such that, for every ,
. Hence, for every

(51)

Note that has the same sign for all . Thus

(52)

It can similarly be shown that, if ,
then there exists such that

(53)

Hence, denoting , (52) and (53) imply that,
for every , there exist and positive constants
and such that either

or

Therefore, does not exist, which is a contradiction.

APPENDIX C

Lemma 3: Consider (18) and (19) where is an
onto polynomial of order and is given by

, where . Then is odd and

for all , where and .
Proof: Suppose is even. Then

(54)

Since is onto, there exists such that
. Furthermore, (54) yields that . Therefore, it

follows from intermediate value theorem that there exist
and , such that .

Next, consider the restriction of . Since is
continuous and is compact, attains a minimum on

. However, , and ,

which is a contradiction. Hence, is odd.
Now, from (18) and (19), it follows that

. Since is an odd order poly-
nomial function, is a polynomial of order less than or
equal to . The result then follows.

Lemma 4: Consider the algebraic (27) where .

Denote , where and . Then
for all where is defined in (28),
and , (27) has at least one real solution.

Proof: Consider (27) for the case . Then, (27) is
equivalent to

Since, and , therefore,
. Thus, is a solution

of (27).
Next, consider the case . Then (27) is equivalent to

(55)

Since and , therefore
. Thus, since (55) is an odd order polynomial, there

exists a real root of (55). Thus, (27) has a solution. Therefore,
for all , and , the algebraic (27)
has a solution .

Lemma 5: Consider the closed-loop (31)–(35). Assume that
(31)–(34) has a local generalized solution for all , ,

, , and , where is given by
(28) and is and is bounded. Choose .
If is and is bounded, then the closed-loop dynamics
of (31)–(35) has a generalized solution that satisfies

over some maximal interval of existence .
Proof: We first show that whenever the solution of the

closed-loop (31)–(35) exists for , , and
a solution of (35) exists. Hence, the solution remains
contained in the domain where local existence of a generalized
solution of (31)–(34) is guaranteed. Then, by standard contin-
uation arguments and local existence of a generalized solution
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of (31)–(34), it follows that there exists some maximal interval
, such that the closed-loop (31)–(35) has a generalized so-

lution for all . Clearly, it satisfies
for all .

Whenever the solution of the closed-loop (31)–(35) exists, the
first condition for all follows from the
fact that and at . To see
this, consider (29). If , then either for
or for and hence, .

Whenever the solution of the closed-loop (31)–(35) exists,
the second condition that the algebraic (35) has a solution for all

follows from identifying (35) with (27) and combining the
result from Lemma 4 and the condition that
for all . The result then follows.

Lemma 6: Assume that Assumptions 1 and 2 hold true and
define as , where satisfies
sign . Consider (17), (18), (19), (23), and (28).
Then, , where .

Proof: From (23) and (19), note that
, where and

.
First consider the case . Therefore, from Assumption 1,

and . Thus

Therefore, . Since and

Thus from (28) and
hence, .

For , , where
. Thus,

Therefore, . Since is odd and

Therefore, from (28) and
hence, . Thus, .
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