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Control  Constraints,  Abnormality, and 
Improved  Performance  by  Periodic  Control 

DENNIS S. BERNSTEIN, MEMBER,  IEEE 

A~stract-Second-order  conditions  for steady-state optimality and 
nonoptimality in a periodic control problem are presented. The main 
result i s  a generalization of the Il test, a secnnd-order sufficient condition 
for improved performance by periodic control. Earlier results are 
generalized in two distinct ways: 1) the control constraint set is only 
assumed to be convex  (and, hence, possibly nonopen) thus allowing the 
optimal steady-state control to  be  an element of the control constraint set 
boundary: and 2) auxiliary normality conditions are eliminated. Proofs 
of the results are based upon second-order necessary conditions  for 
nonlinear programming and optimal control obtained recently in [43] and 
1 4 4 1 .  

I. IKTRODUCTION 

F O R  the autonomous infinite-interval control process 

m = f ( m  ~ ( t ) ) ,  r E  [o, 03) 

one may utilize either of the cost functionals 
Ol 

J =  so fW), ~ ( 0 )  dt 

or 
1 

J =  lim - 
7-- 7 

depending upon physical or 
dissipation of transients due to initial conditions or disturbances, 
control strategies should be capable of indefinite application, the 
simplest operation being steady-state, i.e., 

p x w ,  u(t)) dt 

mathematical considerations. After 

0 = f ( f ,  zi), 

where 3 and ~2 are constant. The approach of periodic control is to 
consider controls and states that satisfy a periodicity condition 

x(0) = 47) 
with the goal of minimizing an average criterion 

J = L  i i f ( x ( t ) ,  u(t)) dt. (1.2) 

The reasoning behind (1.1) and (1.2) is  that  any control which  is 
optimal over [0, T] can be repeated in [T ,  27-1, [27, 371, and so 
forth. The central questions of periodic control are: 1) when does 
time-dependent (periodic) control produce better performapce 
than constant (steady-state) control (this situation is called 
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“proper”); and 2) what mechanisms are responsible for effecting 
this improvement. 

Most  of the applications of periodic control have been in two 
areas, namely, chemical process control and aircraft performance 
optimization. Continuous stirred tank reactors provided the 
earliest motivation for “unsteady-state” processing by the pres- 
ence of situations in which periodic control could increase product 
selectivity or yield [1]-[5]. Periodic operation of aircraft has 
focused on the problems of maximum range, maximum endur- 
ance, and peak altitude [6]-[14]. In particular, the nonoptimality 
of steady-state cruise has been a muchdebated issue [6]-[lo]. 
Periodic operation has also been considered for problems in 
unpowered flight, specifically, the soaring of gliders and birds 
[ 151, [ 161. Most surprising  is the possibility of sustained 
unpowered flight in wind possessing a horizontal velocity gradient 
but no vertical velocity component. Other application areas for 
periodic control include solar energy collection [17], economic 
theory [ 181, and cardio-circulatory assist devices [19]. 

Theoretical approaches to periodic control usually  involve 
optimality conditions as tests for proper. Since the periodic 
control problem is a specialized optimal control problem with side 
constraints and boundary conditions, much  of the theory mirrors 
results from the optimal control literature. Interesting issues arise 
because the periodic control problem has embedded within it a 
relatively simpler steady-state problem. First-order conditions to 
detemiine proper [20]-[22] are based upon strong control 
variations, and hence are similar to the maximum principle. Weak 
control variations, on the other hand,  are useless in ascertaining 
proper in a first-variation analysis since the average value of their 
dynamic components (i.e., nonzero-frequency harmonics) is zero. 

A second-arder sufficient condition for proper based  upon weak 
control variations was first given in [23] and was subsequently 
generalized to problems involving side constraints in [24]. This 
condition, called the n test, consists of verifying that a quadratic 
form [involving a frequency-dependent matrix II(w)] satisfies a 
sign condition. It was subsequently shown in [25] and [26] that the 
II test of  [24]  may incorrectly predict proper unless a normality 
condition holds. Also, in [23]-[26] it  is assumed that the optimal 
steady-state control zi lies in  the interior of the control constraint 
set.  This, of course, simplifies matters since local control 
variations can be arbitrarily selected. In certain applications, 
however, zi lies in the boundary of the control constraint set. For 
example, in the presence of an altitude constraint for the 
maximum-range cruise problem, the optimal steady-state cruise 
path can occur at maximum thrust [ 131, [ 141. The purpose of the 
present paper, then, is to extend the n test in two distinct ways: to 
eliminate the normality condition; and to allow the optimal steady- 
state control to lie in the boundary of a (nonopen) convex control 
constraint set. I 

Although first-order optimality conditions such as the maxi- 

the  control  constraint set is of the form { u  E Rm:w(u)  > 0). Since  this 
It  should be noted that a n  test  was  derived in [27] for a problem in which 

assumption  and the convex control constraint set assumption of the  present 
paper are generally different, it  is  difficult to compare directly our results to 
those  of  [271. 
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mum principle allow for general control constraint sets, classical 
second-order necessary conditions assume that the control con- 
straint set is open (see, e.g., [28]). Second-order necessary 
conditions for optimal control with a (nonopen) convex control 
constraint set were first derived in [29]-[31], where weak, strong, 
and “hybrid” variations were treated, respectively. Although  it 
would  indeed be possible to derive a n test with convex control 
constraint set directly from the second-order necessary conditions 
of [29], this would achieve only  half the goal of the present paper 
since the results of [29] involve a normality assumption as in [25] 
and [26]. 

Regularity assumptions such as normality conditions in optimal 
control [28]-[33] and constraint qualifications in nonlinear pro- 
gramming [34] are persistent features of optimality theory. 
Although such conditions often imply the existence of a unique 
Lagrange multiplier with nonzero component corresponding to the 
cost functional, they are usually stronger than necessary and 
unpleasant to verify. Recently, higher order necessary conditions 
for optimization [35]-[43] and optimal control [a] have been 
developed which do not require an auxiliary normality condi- 
tion.2 The idea behind these results is to define a set of “critical 
directions” which, to a first-order approximation, have inferior 
cost and satisfy the problem constraints. The key feature is that 
because of the lack of a normality condition, the multiplier 
satisfying the second-order necessary conditions depends on the 
choice of critical direction. This directly accounts for the 
nonuniqueness of the multiplier and clarifies the role of normality 
conditions when  they hold, i.e., to imply the existence of a unique 
multiplier. 

The paper is organized as follows. In Section U the optimal 
periodic control problem (OPC) and optimal steady-state problem 
(OSS)  are stated along with some preliminary definitions and 
results for use in later sections. First- and second-order necessary 
conditions for OSS are given in Section III. In Section IV we 
present first- and second-order necessary conditions for steady- 
state optimality in OPC in a general form, i.e., for state and 
control variations given by Fourier expansions. The generalized n 
test is given in Section V for sinusoidal control variations. Section 
VI presents some illustrative examples and brief concluding 
remarks are given in Section VII. Appendix A presents technical 
lemmas concerning periodic solutions of linear systems and 
Appendix B contains necessary conditions for optimal control 
based upon results obtained in [MI. Finally, the proof of Theorem 
4.1, the key result in Section IV, is given in Appendix C. 

II. GENERAL NOTATION AND PROBLEM FORMULATION 

Let El, E, and denote, respectively, the real field, complex 
field, and set of positive integers. For w & (wl ,  . . * ,  w,) E R5, 
1 w( 4 C := I wil. If I C 2 is an interval and W C a s ,  then AC(Z, 
W ) ,  M(I, W )  and &(I, W)(p E [ l ,  031)  denote, respectively, 
the set of functions h:Z + W which are absolutely continuous, 
measurable, and &-integrable or essentially bounded, i.e., the 
norm 

llhllp,l 2 1 S I  Ih(t)lP dt 1”’ , Pet19 031, 

2 ess sup Ih(t)l ,  p = m ,  
I E I  

is finite. L e t j  & c a n d  let I, denote the s X s identity matrix. 
If w is a scalar, vector or matrix with elements in C ,  then I?, wT, 
w*, Re w, and Im w denote, respectively, the complex conjugate, 
transpose, conjugate transpose, real part, and imaginary part of 
w. If W C Rs, then int W is the interior of Wand cone W 2 
{ C Y W : ~  > 0, w E W ) .  Throughout this paper, 7 is a positive 
number 

* Actually, in 1942 McShane [45] stated second-order  necessary  conditions 
for a nonlinear programming problem without a normality condition. 

TO state the optimal periodic control problem we require the 
following notation. Let n,  m, I E N,j, k E (0)  U H, X c Rn, 
U C W’”, and Y c W‘ be open, U, c U be convex, gi: Y + W, i 
E ( O ; . . , j ) , h : Y + ~ ~ ( o m i t i f k = O ) , f : X x  U + R n , a n d  
j?X x U + R’. Also define X7 B AC([O, 71, X )  and ’u, 
m o ,  71, UC). 

Optimal  Period  Control  Problem (OPC) 

Find 7 and (x(-), u( e) )  E X7 X ’u, which minimize 

subject to 

h(y)=O (omit if k=O), (2.3) 

When the period 7 is fixed in OPC (and, hence, the optimiza- 
tion is only over X, x TLJ, we denote the problem by OPC (7). 

Optimal  Steady-State  Problem (OSS) 

Find (x, u) E X X U, which minimizes 

subject to (2.2),  (2.3), 

We next conslder some terminology for these problems. The 
triple (x(*), u ( - ) ,  T),  where (x(*), u ( * ) )  E X, x ‘u,, is 
admissible if (2.2)-(2.6) are satisfied; the pair (x ,  u) E X x U, 
is steady-state admissible if (2.2), (2.3),  (2.8), and (2.9) are 
satisfied. A steady-state admissible pair (f, a) is a local  minimum 
of OSS if there exists E > 0 such that for all steady-state 
admissible pairs (x, u)  satisfying ( x  - 21 + Iu - zll < E it 
follows that Js&, zi) I JSS(x, u).  A local  minimum (X, a) of 
OSF is a local steady-state minimum of OPC if there exists E > 
0 such that for all admissible triples (x(*), u ( * ) ,  7) satisfying Ilx(.) 
- f l l , , [ , , 7 1  + Ilu(*) - U l l , , [ ~ . , ~  < E it follows that .Iss@, 0)  I 
Jpc(x(-), u( -1, 7). If a local minimum (X, zi) of OSS is not a local 
steady-state minimum of OPC, then OPC is locally proper at (3, 
a). Thus, OPC is locally proper at (X, zi) if and only if for all E > 0 
there exists an admissible triple (x( - ) ,  u ( - ) ,  7) such that Ilx(.) - 
~llm,Io.,~ + 1 1 4 . )  -  all,,,,,^ < E a n d J ~ ~ ( x ( * ) ,  N-), 7) < Jss(~, 
a). These definitions will also be used  when OPC is replaced by 
OPC(7), i.e., when 7 is fixed. Note that if OPC(7) is locally 
proper, then improving controls can be found with period 7. 

m. NECESSARY CONDITIONS FOR OITIMALITY IN OSS 
* -  

In this section we present -Theorem 3.1, the first- and second- 
order necessary conditions for a local minimum of OSS. Since 
OSS is a finite-dimensional optimization problem with equality, 
inequality, and set constraints, necessary conditions can be 
obtained by applying known results from nonlinear programming. 
In particular, [43, Theorem 6.11 can be used since it possesses 
sufficient generality for our purposes. The derivation of Theorem 
3.1 will be omitted, however, since it is straightforward. We also 
state a specialized version of Theorem 3.1, Corollary 3.1, for the 
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case det A #. 0. Simplification is obtained in this case since state Note that p does not explicitly appear in (3.6) and (3.7) because 
variations are uniquely determined by control variations. The of (3.5) and that Lyy(a) is independent of X. 
remainder of the section concerns normality conditions for To conveniently state the specialization of Theorem 3.1 to the 
determining the existence of a unique multiplier satisfying the case in which det A # 0, define G(w) E G n x m  by 
first-order necessary conditions. 

simplify the notation in this and the following two sections. First, we that all constraints are active at the optimal when the indicated inverse exists. If A is nonsingular, the set 6) 

pa i~ (x ,  a), i.e., i f j  > 0, then gi@) = 0, i = 1, * . -, j, where p 
Aflg,  a). There is no loss of generality in this assumption since 
we are concerned with local optimality. And second, statements of 
the results are confined to the case k > 0. Specialization to the where 
case k = 0 is obvious. 

The notation for derivatives and partial derivatives is standard. g;y(CG(0)+D)~o~O, i€{O,  . * . , J } ,  (3.1)' 
We only note that if y 2 (y,, * - * ,  yb):E c R' + Rb, where E is 
open and e E E, then y'(@:R' + Rb denotes the first (Frechet) hy(CG(0) + D)vO = 0. (3.2) ' 
derivative (Jacobian matrix) of y at Fand y"(e):B' X Ru + Rb,  
the second (Frechet) derivative of y at E ,  is the bilinear map Since (3.6) is equivalent to 
identified with the Hessian matrices of the components of y. 
Specifically, the ith component of 7 ry " (@q2 is 9 ryr (@q2, where 
y:(a E $ j u x u  is the matrix of second partials of yi at e.  
U x Y x R1+j+k  x 3" x R' + 8 defined by 

Before proceeding we shall invoke two assumptions which  will G(w) P ( j d n - - A ) - ' B  

can clearly be replaced by 

X ) +  6 {voEU,-z i :  (3.1)' and (3.2)' aresatisfied), 

X= - (MCA-') 'a ,  (3.9) 

The necessary conditions involve a Lagrangian function L:X X corollary 3. If (g, a) is a local minimum of and det A Theorem 3.1 can now be stated entirely in terms of a. 

# 0 then there exists nonzero a satisfying (3.4),  (3.3,  (3.9) and 
L(x, u, y ,  CY, X, p)  P a Tg(y) + h %x, u )  L,(a)v?O, v E  uc-zi. (3.10) 

+ p T ( f ( x ,  +Y), Furthermore,  for each vo E 9 + there exists nonzero a satisfying 

where 
(3.4), (33, (3.9),  (3.10) and 

v,T[G(O) 'L,(a)G(O)+ 2G(O) T L , ( ~ )  
g(v) P (go(u)v * . 9 gj(U),  N Y )  '1 ' 9  

a P (010, - * * ,  aj, a l )T ,  ayh€ak. 
+~,,(~)+(CG(0)+D)TLyy(~)(CG(O)+D)]~o?O. (3.11) 

Considerable simplification in the statement of Theorem 3.1 
Since several functions will-be evaluted at X, a, and y ,  we employ can be obtained by  defining the set of multipliers 
a super-bar notation as in f f (2 ,  a) and g i y  & giy(J). Also, let 

A p f x ,  B P f,, C 2 &, D P fu, M A g y .  
- - 32 P {(CY, X) : (3.4)-(3.7) are satisfied and I(a, X)/ = 1).  

This normalization represents no loss of generality since the 

variations in the state and control variables. Up to a first-order (3.4)-(3.7) d e t e d e  a (closed) dud  cone, it is readily Seen that 
approximation these "critical directions" have inferior cost and is  The following result is to meorem 3.1. 
satisfy the problem constraints. Thus, define Corollary 3.2: If (2, a) is a local minimum of OSS, then 

The second-order conditions are stated in Of necessary conditions are positively homogeneous in (a ,  A), Since 

33 2 {(roo, vo)€Rnx(Uc-z i )  : (3.1)-(3.3) are satisfied), 

where 

g i y ( C { o + D v o ) ~ O ,  i € { O ,  . e . ,  j ) ,  (3.1) 

i;y (Clo + Dvo) = 0, (3.2) 

A ~ O + B V O = O .  (3.3) 

Henceforth, we assume that g , f ,  andfare C' or C2 depending 
upon whether first- or second-order conditions are being consid- 
ered. 

Theorem 3.1: If (X, a) is a local minimum of OSS, then there 
exists nonzero (a, X) satisfying 

ajzo, i€{O, - . . , J ) ,  (3.4) 

U = MTa. (3.51 

37. #O.  (3.12) 

Furthermore, 

(a, X) E 5ll 
max {t,TL&, w 0 + 2 5 - ; L d ~ ,  X b O +  v;Luu(", X)vo 

+ (cro +Duo) TL,.,.(~)(clo + Dvo)}? 0, ( l o ,  yo)  E 9. 

(3.13) 

For the case det A # 0 define 

3 2 +  P {CY : (3.4),   (3.9,   (3.9) and (3.10) are satisfied 
and 1 0 1  = l } .  

Corollary 3.3: If (X, zi) is a local minimum of OSS and det A 
# 0, then 

Lx(CY, A) = 0, 
(3.6) Furthermore. 

x+ # O .  (3.14) 

L,(a, X)v>O, v E  u,- a. (3.7) 
max (V~[G(O)~'L,(~)G(O)+~G(O)~L,(~) 

Furthermore, for each (c0, vo) E 6) there exists nonzero (CY, X) 
satisfying (3.4)-(3.7) and +L,,(a)+(CG(0)+D)TLyy(~)(CG(O)+D)]~o}~O, 

aEm+ 

(;LACY, vro + 2r;L,(a, X)vo VOED'. (3.15) 

+ v ~ L U U ( a ,  X ) V O +  (C{o+Dvo) T&y(~)(CrO+Dv~)>O. (3.8) Remark3.1: The succinct form of Corollary 3.2 first appeared 
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in  [37]  and  [39] for abstract -optimization  problems. A similar 
result for a general optimal control  problem was  developed  in 
1441. 

Remark 3.2: The following  specialization of OSS, considered 
in  [24]  and  [25], occurs  freipently in examples and  simplifies 
Theorem3.1andCorollary3.1.IfI= 1 + j + k a n d g ( y ) = y ,  
then M = I, ,  p = a and  Theorem 3.1 can  be  modified by 
defining 

L(x, u,  a, X) =a ‘ A x ,  u)  + X Y(x, u) 

and  omitting (3.5). Also, &,(a) = 0 simplifies (3.8). 
We now discuss  several technical aspects of Theorem  3.1.  The 

first-order necessary  conditions  are identical to [26, Theorem 3.  I] 
except that there U, is  assumed to be  open, and  hence (3.7) is 
replaced  by 

L,(a, X) = 0. (3.7)’ 

In both [26,  Theorem 3.11  and  the present  paper no assertion is 
made as to whether (a, X) is  unique or a0 > 0. However,  the 
second-order  necessary  conditions of our  Theorem  3.1  are  more 
general than [26, Theorem 3.21 since  an auxiliary normality 
assumption or constraint qualification does  not appear.  Since it is 
not  known  in advance if there exists a  multiplier (a, X), in 312 
satisfying (3.8) for all ( lo ,  vo) E D, the  multiplier satisfying (3.8) 
may depend on the critical pair (5‘0, vo). A sufficient condition for 
the existence  of (a, X) satisfying (3.8) for all (lo, yo) E 3 is that 
3n consist  of  a  unique element. To this end  we have the  followin 
normality result which is analogous  to [44, Theorem 3.51. Let  J 
denote M with  its first row deleted. 

Proposition 3.1: If 

then (yo > 0 for  each (a,  A) E 3n. Furthermore, if (a, X) E 3n 
and 

where 

v i i { v€U, -a :  LJa, X ) v = O ) ,  

then a. > 0 and (a, X) is the  unique element of 3n. 

(3.10) of [26] is obtained. 
Specializing to the  case E int U,, the  normality condition 

Corollary 3.4: Suppose zi E int U,. If 

The set of “nonharmonic”  periods is  given  by 

3 P 7 :  7 # i - - ,  iEPJ, I .  2a 

where 

h2 B {a > O : io is an eigenvalue of A } , 

and,  for T E 3, the set of “dynamic” critical directions is 

The  Fourier coefficients vi of u [see (A.811 will  be  needed  in  the 
theorem  statements. When E 3 the  second part of Theorem A.  1 
shows that the  pair ({o, u) can be thought of as determining a 
unique solution z of (A.5) and (A.6). 

For CJ 2 0 such  that G(w) exists and for (a, X) E 312, define the 
II matrix n(w, a, X) E G m x m  by 

n(w, a, X) P G(w)*I,(a, X)G(w) + G(~)*t , (a ,  X) 

+L,(a, X)G(w)+L,,(a,  X). 

When  det A # 0 denote n(w ,  a, X) by n ( w ,  a). 

(T ) ,  where T E 3, then 312 # 0 and 
Theorem 4.1: If (X, a) is  a local steady-state  minimum of OPC 

(a, max A) E 5Il [ T r ~ ( a ,  X)co+ 2p,~t,(cr, X)vo+ v i t U u ( a ,  X)vo 

+ (CTO + Dvo) ‘ ~ y y b ) ( ‘ i . o  + Dvo) 

If T € 3 and det A # 0, then by Theorem  A. 1 the solution z of 
(A.5) and (A.6) is uniquely determined by the  control  variation u. 
Thus, the set of critical directions is given by 

9; = uEL,([O, T I ,  U,-U) : vo 2 - u(t)  & E D -  [ T O  I T  3 
and Theorem 4.1 specializes to the  following result. 

(T ) ,  where T E 3, and  det A # 0, then M -  # 4~ and 
Corollary 4. I:  If (X, a) is a local steady-state minimum of OPC 

max [vi[II(O, a)+ (CG(0) +D) ‘&Ja)(CG(O) + D)]vo 
U E 3 R +  

then 9lZ consists of a unique element (a, X) and a. > 0. 

w. NECESSARY CONDITIONS FOR STEADY-STATE OPnMALITY IN 
OPC 

In this section we present  Theorem 4.1, first- and second-order 
necessary  conditions  for a local steady-state minimum of OPC(r). 
The result follows  from  second-order weak-variation  necessary 
conditions  for a general optimal control  problem given  in 
Appendix E. The proof  of Theorem 4.1 appears in Appendix C. 

An interesting and  useful feature  of the  necessary conditions is 
that  if r is excluded  from a  set of “harmonic”  periods, then  the 
first-order necessary  conditions for a  steady-state solution of OPC 
(T)  coincide with the  (generally  simpler) first-order necessary 
conditions  for a local minimum  of OSS. This restriction on T is 
also  largely  responsible  for the particularly simple form of the II 
test. These  points will be discussed at the  end  of this section. 

Note that the  steady-state  part of (4.1) coincides with  the 
expression in (3.8). Also  for the case det A f 0 note  that (3.15) 
can be written as 

aE3R* 
max, (v,’[n(O. a ) + ( C G ( 0 ) + D ) T . & y ( a ) ( C G ( O ) + D ) ] ~ ~ } ~ O ,  

v o E 9 + ,  (4.3) 

which corresponds to the steady-state terms in (4.2). 

U, - zi) implies that vo E U, - zi. This follows from a suitably  modified 
Note that  there is a slight redundancy in th is  definition  since u E L,([O, 71, 

version of [46. Theorem 1.6.13. p. 1451. 
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To help motivate the assumption 7 E 3 in Theorem 4.1 we  now 
present the first-order necessary conditions for a local steady-state 
minimum of OPC(7) in the absence of this assumption. This 
result follows from the proof of Theorem 4.1 (see Appendix C). 

Proposition 4.1: If (X, 22) is a local steady-state minimum of 
OPC(7), then there exists nonzero (a ,  X) satisfying (3.4),  (3.5), 

~ , ( a ,  X) ear dt=o, (4.4) 
‘7 

- 0  

[L,(a, h)- t , (a ,  X) sf e - A o  duB vro ,  
0 1 

v E U , - U ,  a.a t € [ O ,  71. (4.5) 

Clearly, when 7 E 3 (4.4) and (4.5) coincide with (3.6) and 
(3.7) since det jieardf # 0 (see Lemma A.l)  implies Lda, X) = 
0. Another way  of seeing this is to note that (4.5) is equivalent to 
(see Appendix C) 

L,(a,p(t)) v r O ,  u E U , - u ,  a.a. t € [ O ,  71, (4.6) 

where p(t)  is an adjoint state. As shown in Appendix C, the 
assumption 7 E 3 implies p( t )  = X. 

When 7 ($5 3, det j;e”‘dt = 0 and (4.4) may  be satisfied even if 
L,(a, X) # 0. Hence, the set of (a, X) satisfying (3.4),  (3.5), 
(4.4), and (4.5) may  be larger than the set of (a ,  X) satisfying 
(3.4)-(3.7). The second-order necessary conditions for the case 7 

3 (which are not stated here) are thus complicated in  two  ways: 
the possibly larger set of “dynamic” multipliers (a, X) is more 
difficult to characterize than the “steady-state’’ multipliers 
because of the time dependency in (4.3, and the simple form of 
(4.1) is lost because p( t )  is not constant. 

v. THE GENERALIZED n TEST 

In this section we obtain a second-order sufficient condition for 
locally proper from the second-order necessary conditions for a 
local steady-state minimum of OPC. The generalized n test, 
Theorem 5.1, is simply the converse of Theorem 4.1 specialized 
to the case most useful in practice in which the control variation 
consists of a steady-state term and a single sinusoidal term. We 
also consider the limiting cases of high and low frequency to 
obtain simplified tests for proper. 

The following results involve the set of admissible fundamental 
frquencies 

197 & { w > O  : iw 0, i E M }  

which corresponds to the set 3 of admissible periods. Note  that w 
E W if and only if  27dw E 3. 

Theorem 5.1: Suppose (X, a) is a local minimum of OSS. If 
there exist o E W, ( l o ,  YO) E 9 and v l  E 3“‘ satisfying 

a+vo+Re vlejrEU,,  tE[O, 2 ~ 1 ,  (5.1)4 

and 

rnax {i-,TLu(ar h)i-0+2i-,TLm(a, h)v0+vlLUU(a, X)vo 
(e. A ) € X  

+(c~~++vo)~L,(a)(c~~+Dvo)+~/2v~n(w, a, A)v,}<O, 

(5.2) 

then OPC(2dw) is locally proper at (X, a). 
For the case det A # 0 we have the following result. 
Corollary 5.1: Suppose (X, a) is a local minimum of OSS and 

det A # 0. If there exist w E W, vo E 9 +, and v I  E C” 

In accordance with (5.1) implies yo E U, - P. 

satisfying (5.1) and 

max {vi[n(O, a)+(CG(0)+D)7~~y(a)(CG(O)+D)]v~ 
u€.M+ 

+ ‘ /2vfn(w,  cY)v,) <o, (5.3) 

then OPC(2dw) is locally proper at (X, a). 
Theorem 5.1 generalizes previous results from the literature in 

two important respects. As discussed in Section 111, the “ m a ”  
function in (5.1) reflects the absence of a normality condition. If a 
normality condition is satisfied (see Section 111) then 317. has a 
unique element, and hence “max” can be omitted. This is the 
case considered in [25] and [26]. The second feature of Theorem 
5.1 is the presence of the steady-state terms in (5.1) involving lo 
and vo which allow the II test to be used  when 0 is an element of 
the boundary of U,. In previous results [23]-[26] a is in the 
interior of U,, and hence arbitrary weak variations in U, are 
permitted. In the present case the steady-state control component 
vo may be required so that the “perturbed” control remains inside 
UC. This point  is illustrated by an example in the next section. It  is 
important to  note that because of (3.13) the steady-state terms 
render (5.2) less likely to be satisfied. This is to be expected since 
(X, a) is assumed to be optimal over steady-state controls. Hence, 
loosely speaking, the generalized II test for locally proper is 
satisfied when the dynamic control variation has a greater effect 
on improving system performance than the steady-state control 
variation has on degrading it. 

With regard to satisfying the control constraint (5 .  l),  f i s t  note 
that v I  in (5.1) corresponds to 2vl in (4.1). This substitution 
eliminates the need to carry along a factor of 2 in the succeeding 
development. If v 1  is real, then it can be seen that the control a + 
v0 + Re vlej‘ = 12 + vo + vlcos I lies on the line segment 
connecting 17 + vo - v 1  to a + vo + v 1  and thus, since U, is 
convex, (5.1) is equivalent to 

( l i + v , - u , ,  a + u , + v , )  c u,. (5.4) 

If v I  is purely imaginary, then (5.1) is equivalent tG (5.4) with v 1  
replaced by  Im vi. In the general case v l  E C”, Re vl  and Im vI  
linearly independent, then the control a + uo + Re vleif traces 
out a two-dimensional ellipse in the affine subspace a + PO + 
span {Re v l ,  Im vI>. Thus, in general, it is  not possible to replace 
(5.2) with a finite condition such as (5.4). 

We now generalize observations made in [24] and [26] 
concerning the limiting cases of high and low frequency to deduce 
simplified tests for locally proper. Since C(w)  + 0 as w + 03 and 
L is linear in (a ,  X), it follows from elementary limit and 
continuity arguments that 

lirn n(w, a ,  h) = &,,(a, X) (5 .5)  

uniformly for (a ,  X) € ‘X. The following result is a corollary of 
Theorem 5.1. 

Corollary 5.2: Suppose (X, 17) is a local minimum of OSS. If 
there exist (lo, yo) E 9 and vI  E G m  satisfying (5.1) and 

max {i-lLu(a, h)i-o+ 2<,TLm(a, X ~ O +  v iLuu(a ,  

w - m  

(n, A ) E I  

+(c<,+Dvo)~Ly,~(cY)(C<~++vo)+’/2v~t,,(a, X)v,}<O, 

(5.6) 

then there exists (j > 0 such that OPC (2a/o) is locally proper at 
(x, a) for all o > 6. 

For the low-frequency limiting case we assume det A # 0 so 
that 

lim n(w, a)  = n(0, a) (5.7) 
W - 0  

uniformly for a E 312. +. 
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Corollary 5.4: Suppose (X, a) is a local  minimum of OSS and 
det A # 0. If there exist vo E a ) +  and v I  E fern satisfying (5.1) 
and 

max+ { v ,'fl(O, a) + (CG(0) + D) 'L,(a)(cG(O) + 0 1 ~ 0  
a€% 

+ v 2 v p 0 ,  ( Y ) V I }  <o, (5.8) 

then there exists 6 > 0 such that OPC (27dw) is locally proper at 
(x, 17) for all w E (0, 6). 

VI. EXAMPLES 

In this section we present examples to illustrate certain features 
of the results developed thus far. For each example it is as_sumed 
that X = R", U = Rm,Y = a'and the components off, f ,  x, u, 
and y are given by A, A, - - * , etc. 

The first example, given in 1261 to show that the results of [25] 
may fail in the absence of a normality condition, is now treated 
with the results of Sections III and N. Let n = rn = k, = 1, j = 0, 

+ 4u, and f2(x, U )  = (u - 2)2 .  Since the only steady-state 
admissible pair is (X, a) = (0, 2), it  is a local minimum of OSS. 
Using Remark 3.2 and det A # 0, it follows that a) + = R, 
= L40, 71, Rh and 

I = 2, u, = 3, g(y) = y ,  f(X, U) = U 2  + XU - 4,fl(X, U) = 2X 

Since 312' = {(a,, ah}:ao + a h  = 1 1 ,  we have 

clErn+ 
max {n(w, a)]=n(w, (0, I))=& 020, 

which shows that (4.2) and (4.3) are satisfied. 
The next example shows that in the absence of a normality 

condition the multiplier satisfying (3.8) may depend on the critical 
direction. This example is based upon [40, Example 2.11 which 
illustrates this phenomenon for nonlinear programming. Let n = 
j = 2 , 1 = m = 3 , k = 0 , W c = ~ 3 , g ( y ) = y , f l ( x , u ) = u ~ ,  

+ 1/wf - 1/2u$ and&(x, u) = b 2 u I  + I/=: - V2u3. That 
(X, a) = (0,  0) is a local minimum of OSS can be seen in the 
following way. Of course, z12 = a3 = 0. If one of the variables xl, 
x2, or uI is zero then the others must also be zero in order to 
satisfy (2.2) and not exceed the performance value of zero. 
Hence, the only remaining possibility is xlr x2, and uI all nonzero. 
However, this requires xlxz, xIul ,  and x2uI to be negative which 
is a contradiction since (xIx~)(xIuI)(x2uI) = ( x ~ x ~ u ~ ) ~  > 0. 
Applying Theorem 3.1 we find that 3n = {(a, X):X = 0, ao, al ,  
a2 1 0, a0 + aI + cy2 = I} anda) = {(lo, yo) E R2 x W:10 = 

6) (3.8) has the form 

h(X,  u)  = U3,J(X, u) E 2XlX2 + v2u: - u$,fi(x, u) = 2XIUl 

(roll  f02)r PO = (vO1, v029 PO319 PO2 = YO3 = 0) -  Then for ((0, E 

I I 

a2 2ao  2a1 0 0 

2a0 a1 2a2 0 0 

ti-,', v;) (:).o. 
2a1 2a2 a0 0 0 

0 0 0 -2ao-a1 0 

- 0  0 0 0 -a2, 

(6.1) 

To show that a satisfying (6.1) depends on (To, vo), suppose (6.1) 
holds for some a and all (lo, vo) E a). As shown in [MI, choosing 
(lo, vo) successively to be (0, 1, - 1 ,  0, 0) T ,  (1, 0, - 1 ,  0, 0) T ,  
and (- 1,   1 ,  0, 0,  0)' and adding the results from (6.1) it follows 
that (Y = 0, which is a contradiction. 

To determine if OPC is locally proper we consider only 

dynamic variations since Uc is open. Noting 

- - 4 0 - 2 - 1 ,  w > o ,  

it follows from Theorem 5.1 that OPC(2dw) is locally proper for 
w > 2. Note that this result agrees qualitatively with Corollary 
5.2 since 

0 
tu&, X ) =  lim rI(0, a, X)=  0 - 2 a 0 - c r 1  0 

u- m [: 0 - a2 " 1  
and hence 

v ;Luu(cr, X)v1= - 1, (a, X)€ 311. 

The next example illustrates the need for a constant component 
of the control variation when the optimal steady-state control lies 
on the boundary of the control constraint set. Let n = m = 2, j 

u)  = x2,h(x,  u) = -xI -x2 + uI + u2, andfix, u)  = 2u: + 
1 / 2 4  - 3 / 4 .  It is easily seen that (X, 12) = (0, 0) is a local 
minimumofOSS,detA # 0,X = 0,312' = { l } , D L  = U,and 

= k = 0,1 = 1, iJc = {(u,, ~ 2 )  E Zi2:u2 2 O],g(y) = y, f l (~ ,  

where 

W Z O .  

We can avoid a constant component of the control variation (vo 
= 0) by taking v l  = (y, O ) T ,  y # 0, so that the control variation 
lies in the boundary of U,. In this case 

v : ~ ( u ,  ~ ) Y I = Y ~ [ ~ - ~ ( w ) ~ ~ Y ~ > O ,  U>o,  

and, thus, (5.2) does not hold. Suppose now  we choose vo = vI = 
(0, y) T ,  where y > 0, so that vo E a) + and (5.4) holds.  It follows 
that 

v i I I (0 ,  I)VO+V;II(W, l)vl=y2[2-Q(0)], w > O .  

Setting CJ = 1 leads to the conclusion that OPC(2a) is locally 
proper. This example clearly illustrates the mechanism for proper 
discussed previously, i.e., the improvement due to the dynamic 
component of the control variation outweighs the degradation 
caused by  the steady-state component. 

VI. CONCLUDING REMARKS 

Since the II test is essentially a specialization of weak-variation 
second-order necessary conditions for a general optimal control 
problem, further tests for proper can be  obtained  by applying 
recently obtained results from  the optimal control literature. In 
particular, second-order necessary conditions exploiting strong 
control variations were given in [30], [44] and second-order 
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necessary conditions involving “hybrid” variations (weak and 
strong simultaneously) appeared in [31]. New tests for proper 
based on these results may be useful in analyzing “chattering” 
solutions which arise,  for example, in aircraft cruise problems 
161,  [111-[141, [@I. 

Sufficiency conditions for steady-state optimality in OPC were 
given in  [26]  but were not considered in this paper. Since the 
results in [26] assume an open control constraint set and an 
auxiliary normality condition, generalization in the spirit of 
Theorem 5.1 appears possible. However, this is not feasible at the 
present time since higher order sufficiency theory for optimal 
control is not so advanced as necessity theory. The results of [41], 
which  apply to general optimization problems and appear to be the 
strongest obtained thus far, may be applicable with some 
modification. 

Finally, it should be stressed that the Il test, being an optimality 
criterion, does not take into account system properties such as 
stability which govern the feasibility of utilizing local oscillations 
to improve system performance. As the results of [5] indicate, 
implementation of periodic controls can lead to both complex and 
unexpected behavior. 

APPENDIX A 

This Appendix contains basic results concerning periodic 
solutions of the system i = Az + Bu. We begin with a pair of 
technical lemmas concerning the imaginary eigenvalues of A E 
R n x n  

Lemma A.1: The condition 

det J T  eAr d?#O (A.1) 
0 

holds if and  only if 

Proof. The result is easily obtained by considering the 
Jordan canonical form for A .  0 

eAT- I,,=A S T  eAr dt 64.3) 

Noting the identity 

leads us to the following result. 
Lemma A.2: The condition 

det (eAr - I,) # 0 (‘4.4) 

holds if and only if det A # 0 and (A. 1) [or equivalently (A.2)] is 
satisfied. 

Now consider the system 

i ( t )  =Az(t)  + Bu(t), a.a. tE  [0, TI, (A.5) 

z(0) = z(7) I (‘4.6) 

where A E Rnxf l ,  B E W X m ,  z E AC([O, 71, Bn), and u E 
Ll([O, 71, am). It is well known (see, e.g., [47, p.  1481 or [26,  p. 
6801) that  when (A.4) holds, (AS) and (A.6) have a unique 
solution for each u E Ll([O, 71, am). However, when (A.4) does 
not hold, multiple solutions may exist for a given u. To 
characterize these solutions let u E Ll([O, 71, Rm) have the 
Fourier expansion 

where vo E Rm, vi E 2”’ and v - i  = vi, i E SI, are given by 

Since z is absolutely continuom it possesses a uniformly and 
everywhereconvergent Fourier series (see, e.g., [48, p. 1421) 
denoted by 

m 

z(t)= l; exp , I €  [0, TI, (A.9) 
I =  -m  

where the coefficients are defined as in (A.8). 
7’heorem A.2: Let u E L1([O, 71, Rm) have the Fourier 

expansion (A.7). If z E AC([O, 71, W) satisfies (AS) and (A.6), 
then the Fourier coefficients lo E an and {{;}El C Gn of z 
satisfy 

-AJb=Bvo, (A.  10) 

( 2 :  1 ji- I , , -A l i=Bvi ,  iE $1. (A. 11) 

Conversely, if l o  E W” and {3;.)im_l c C”, i E RI, satisfy (-4.10) 
and (A. 1 l) ,  then lo, 3;, * . * are the Fourier coefficients of an 
absolutely continuous function z:[O, 71 --f Rn which satisfies (AS) 
and (A.6). 

Proof: Since term by term integration of the Fourier series 
of an integrable function is permissible (see, e.g., [48, p. 142]), 
(A.5) and (A.6) yield 

1 o=-  1‘ [A z(t)+Bu(t)l dt=Alo+Bv,. 
T O  

(A.12) 

Multiplying (AS) by exp (-ji27rt/7) where i E N, applying (1/ 
7)j; and using integration by parts, it can be seen that (A. 11) 
holds. 

To prove the converse we first show that lo, 11, 5;, - * - are 
square summable, and hence are the Fourier coefficients of a 
function in L2([0, 71, Rn). To see-this, note that (ji2h-1, - A )  - I  

exists for all but a finite subset I C M, and hence that 

(A.  13) 

Since lvil + 0 as i --f a-and I(ji27r/71n - A )  - ‘ I  5 K / i  for some 
K > 0 and all i E N/I,  the right-hand side of (A.13)  is finite. 

Let z denote the function in L,([O, TI, Rn) whose Fourier 
coefficients are lo, S;, * - . Since z is integrable, q : [ O ,  71 + Rn 
defined by 

q(t) = 1: [Az(s) + Bu(s)l ds (A. 14) 

is absolutely continuous. Term by term integration in (A.14) 
along with (A.10) and (A.ll) implies that, for f E [0, 71, 

d f )=  Ti [ exp (ji? t )  - 1 1  , (A.15) 
m 

i =  - m  

where the convergence is everywhere since q is absolutely 
continuous. 

Now, let 1’ E [0, 71 be a point at which the Fourier series for z 
converges [49, p. 1531. Then we compute 

m 

z ( t ’ ) -q( t ’ )=  x s;., (A. 16) 
I =  -m  

which shows that this sum exists. Hence, from (A.15) we  can 
write 
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or, with z(0) redefined if necessary, ~ ( t )  - z(0) = q(t), a.a r E 
[0, 71. Now redefine z on a set of measure zero so that z(r) = q(t) 
+ ~ ( 0 )  for all f E [0, 71. Hence, z is absolutely continuous and, 
by (A. 14), satisfies (AS). Finally, since q(7) = 0, (A.6) holds, as 
required. c 

APPENDIX B 

This section presents first- and second-order necessary condi- 
tions for optimal control which, with  minor changes, appear as 
[44, Theorem 3.11. This result is used in Appendix C for the  proof 
of Theorem 4.1. 

Let  A,  f i  E H,j? k E (0) U M, 2 C ;2', 8 c ~3''' and 0 C 
Bfi be open, T P [ t l ,  tz], where - 05 < t i  < t2 < 05, Eii: & { x  E 

a', di:B + 2,  i E (0 ,  * ,  j>, and $:B -+ $3' (omit if k = 0). 

Optimal Control Problem (OC) 

AC@, .f):(i(r,), 2(t2)) E B ) ,  % c M(T, O,$T x 2 x 0 + 

Find (2, a) E 9 X a which minimizes 

Joc(2, a)  2 40(2(rl), W 2 ) )  (B. 1) 

subject to 

4;(2(tl), f ( f 2 ) )  SO, iE ( 1, a ,  ~7 (omit if I= 0), (B.2) 

$(2(tl), f i r &  = 0 (omit if L= O), (B.3) 

f i r )  = f ( t ,  i((t), a(()), a.a. r E  T. 03.4) 

The necessary conditions require the following assumptions. 
Define the set 

0' 4 (a([ )  : EiETl, [ € T I .  

Assumption B.1: For all r E f , f ( t ,  * , a )  is C 1  on 2 x 0; for 
aU (2, 6)  E 2 X Of, the components off( - , 2, t i ) ,  f,(. , 2, a )  
and ffi(-, i, 6)  are measurable on f; there exists E L l ( f ,  
R) such that for all ( r ,  2, li( e) )  E x 2 x %, If(t, 2, ii(t))l + 
If,$ 2, fi(t))l + lfi<t, 2, f i (r)) l  I Bdt) ;  40, - * ,  4jand $ (omit 
if k = 0) are C 1  on B .  

Assumption B.2: For all t E F , f ( f ,  . , - )  is C2 on 2 x 0; for 
aU (2, 6 )  E 2 X 0' the components off'(. ,2,  Q, f?,(. , i 6, 
andfGC( * ,  2, li) are measurable on T,  thus  there  exists p2( -) E L l ( f ,  
R) such that for all (r, 2, a( - ) )  E P x 2 x %, Ifit(t, 2, ii(t))l 
+ Ifx(t, i, f i ) l  + lfi&t, 2, f i ) l  5 M t ) ;  do, . . -, djand $ (omit 
if k = 0) are C2 on B.  

A super-bar notation denotes evaluation on a solution (..?(a), 

;( *)) of OC. We regard the elements of B as pairs (il, Z2) E 3'' 
X R', and hence the notation &.,, 6+, etc., is interpreted 
accordingly. 

The set of control variations is any convex set Ti satisfying 

OE% c (aL-(.)) n L..,,(T, P I ,  (B.5) 

and the set of critical directions is 

53 P ((2, C)€AC(T, R ' ) x i i  : 

(2, 6) satisfies (B.6)-(B.8)}, 

& i ( t l )  + E ; s 2 i ( r 2 ) ~ o ,  i~ gAO, 03.6) 

$z,2(tl) + $if2i(rz)  = 0 (omit if L= o), 03.7) 

=j?;(t)?(t) +A(t)~(t), a.a. t~ T,  (B.8) 

where 

and 

3AO d {O}, I = o ,  
2 {O} u (iE(1, . . . , J> : &=O},  ;>o. 

Finally, define a Lagrangian function C:B X + R by 

where 

If, in addition, Assump_tion  B.2 js satisfied, then fqr each (2, 5) E 
9 there exist nonzero I E $ll*'+k and 8 E AC(T,  2") such that 
(B.9)-(B. 13) are satisfied and 

a t l )  T=C,121(~)~~rl) + 2 i ( r , )  r=C:a,,2(0i(t2) 

APPENDIX C 

To prove Theorem 4.1, first note  that  the local optimality 
assumption can be treated by replacing X and U, by X n N,- and 
U, n Nu, where yi and N, are sufficiently small neighborhoods 
of 2 and U. Because the necessary conditions are homogeneous in 
state and control variations, N,- and N, play  no role in the results. 
For convenience, we  set N,- "= $1" and Nu = $Irn. 

L e t A = - n + l , m = m , j , = j , k = k + n , T = [ O , r ] , ~ =  
X X a', U = U, 'u = L,([O, 71, U,) and l? = (Rn x N l )  x 
(>2" X N2) ,  where N1 and Nz are neighborhoods of 0 E and 
~ y .  respectively, sufficiently small so that 7-I(N2 - yl) c Y. 
Also, let 2 = (x, f), 6 = u, f ( t ,  2, ii) = ( f (x ,  u) r, f (x .  u)? 
and,  for 2, = (xl ,  f,), 22 = (x2, f2), di(gl, Z2) = 7gi(7-I(f2 - 
f1 )) and $ ( i 1 , 2 2 )  = (7h(7 - '(.f2 - f i  )) T ,  (x2 - xI )  3 T. It  is easily 
seen that A_ssumption €3.1 and B.2 are satisfied. 

Letting = (aT, A q T ,  C(g1, Z2, I )  = cxr7g(7-I(f2 - 2,)) + 
@;(x, u),  we see that (B.9) is equivalent to (3.4) and (B.11) 
becomes p(0) = p(7) = A and @(O) = @(7) = ( ( Y ~ M ) ~ .  From 
(B.12) it follows that p ( ( Y ~ M ) ~ ,  j ( t ) T  = -p(r)rA - 

X ' L X ~  - X I ) ,  j = ( p ,  @) and X ( t ,  2, ti, a)  = P ~ ( x ,  U) + 
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arMC, and hence 

p ( t ) T =  XT-aTMC eAr do e-A1 [ 1: 1 
=X7- L,(a, X) 1: eAu due-”‘, (C. 1) 

where p in Lx(a, A) is given by (3.5). From p(7) = X we obtain 
(4.4). Since 7 E 3, Lemma A.l implies det j;e”’dt # 0, and 
hence (3.6)-holds. 

Next  let U = L,([O, 71, U, - a) and note that by [44, Remark 
3.61 (B.13) is equivalent to 

&.,(t,fl(t))G(t)20, ;E‘%, a.a. te[O, 71. (c.2) 
Choosing E ( t )  u E U, - a, it can be seen that (C.2) is 
equivalent to (4.6). Since (3.6) and (C.l) imply p(t)  A, (3.7) 
follows from (4.6). Alternatively, (3.7) can be obtained by 
writing (4.5) in the equivalent form (4.5) and  using (3.6). 

For the second-order necessary conditions we see that 5 
consistqof pairs (2, u), where 2 = (2, f), (z, u) satisfies (A.5) and 
(A.6), Z(t) = Cz(t) + Du(t), a.a. t E [0, 71, and (lo, u)  E a)7. 
Since 7 E 3, Lemma A. l ,  (3.3) and Theorem A.l imply that the 
solution z of (AS) and (A.6) is uniquely determined by (lo. u). 
Moreover, since (as will be seen) the only term involving 2 needed 
in the evaluation of (B. 14) is 

f (7)  - f(0) = 7(c{0 + &), (C.3) 

5 is completely characterized by a),. 
From (C.3), the first three terms of (B.14) become 

7 ( G o  +Duo) T&y(a)(Cb +Duo). (C .4) 

Next, using p( t )  E X and @ = (a ‘M) the terms under the 
integral in (B.14) are 

z(f)TL,(a,  h)z(t) + 2z(t) TLm(a, h)u(f) 

+ U(f )TL&,  X)u(f). (C.5) 

Using the Fourier expansions for z and u ,  noting that, since 7 E 
3, (A. l l )  can be written as 

and integrating (C.5) term by term (this is permissible since z and 
u are  square integrable), the integral in (F3.14) becomes 

Finally, adding (C.4) and (C.7) and dividing by 7 yields the 
expression in (4.1). 
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