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Disturbance Rejection Using Self-Tuning ARMARKOV Adaptive Control with
Simultaneous Identification

Harshad S. Sane, Ravinder Venugopal, and Dennis S. Bernstein

Abstract—In this paper we present a numerical and exper-
imental investigation of the properties of the ARMARKOV
adaptive control (AAC) algorithm with simultaneous identifica-
tion. This algorithm requires a model of only the secondary path
(control input to performance variable) transfer function which
is identified online using the time-domain ARMARKOV/Toeplitz
identification technique. For a 5-mode acoustic duct model, we
present numerical as well as experimental results for single-tone,
dual-tone, and broadband disturbance rejection. In the simula-
tions and experiments we assume no knowledge of the disturbance
signal.

Index Terms—Acoustic duct, active noise control, adaptive con-
trol, ARMARKOV, discrete-time, disturbance rejection, identifi-
cation.

I. INTRODUCTION

UNCERTAINTY in plant and disturbance modeling often
renders fixed-gain control design based on off-line iden-

tification impractical. Consequently, adaptive controllers have
been developed for active noise control [2], [5], [7]. In this paper
we consider the ARMARKOV adaptive control (AAC) algo-
rithm developed in [11]. The underlying model structure of AAC
is the ARMARKOV model, which is a structurally constrained
ARMA model with explicit impulse response (Markov) parame-
ters[10].Theexperimentalresultsreportedin[6], [8], [9],and[11]
demonstrate the ability of the algorithm to suppress single-tone,
dual-tone, and broadband disturbances with minimal plant and
disturbance modeling. To do this, AAC requires a model of only
the secondary path transfer function from the control input to
the error variables. In particular, AAC does not require a model
of the control-to-measurements transfer function nor does it re-
quire a model of the transfer function from plant disturbances
to sensors and, unlike adaptive feedforward algorithms, it does
not require measurements of the disturbance signals.

For experimental implementation the secondary path model
is obtained by means of off-line identification using the AR-
MARKOV/Toeplitz recursive identification method of [1]. This
identification algorithm yields transfer function models in AR-
MARKOV/Toeplitz form as required by the AAC algorithm.
Least-squares identification based on ARMARKOV models is
considered in [10].

The purpose of the present paper is to extend the AAC al-
gorithm to further reduce the reliance on prior plant modeling.
Specifically, we develop an indirect adaptive control extension
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of the AAC algorithm that includes simultaneous identification
of the secondary path transfer matrix represented by the Toeplitz
matrix . To do this we update the secondary path matrix
at each time stepby means of the ARMARKOV/Toeplitz recur-
sive identification method of [1].

To perform simultaneous identification in the presence of am-
bientdisturbances, it isnecessary to inject into thesystemthrough
the control actuator an additional uncorrelated identification
signal . To oversee the proper functioning of simultaneous
controlandidentification,asupervisorycontroller isusedtomake
mode-switching decisions. These decisions include “switching
controller adaptation,” “toggling control signalON/OFF,” “reset-
ting controller parameters to zero” and “switching simultaneous
identification.” The identification signal is turned OFF

when identification is not being performed. The supervisory
controller,which is a set of binary (ON/OFF) decision rules, makes
its decisions by comparing present and past performance. The
supervisory controller’s decisions are thus based entirely on
measured data so that no prior modeling is required.

II. STANDARD PROBLEM REPRESENTATION

Consider the linear discrete-time system given by

(1)

(2)

where disturbance , the control , the measurement
and theperformance are in and

, respectively. The system transfer matrices (primary
path), (secondary path), (reference path), and
(control path) are in and ,
respectively. The objective of the standard problem is to deter-
mine a controller that produces a control signal

such that a performance measure involving
is minimized. A measurement of is used to adapt .

Next, the ARMARKOV/Toeplitz model of (1)–(2) [11] has
the form

(3)

(4)

where and are block-Toeplitz matrices
defined in [11]. Theextended performance vector , the
extended measurement vector and theextended control
vector are defined by
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where is a positive integer, and the
ARMARKOV regressor vectors and are shown
in the first set of equations at the bottom of the page.

III. ARMARKOV A DAPTIVE DISTURBANCE REJECTION

ALGORITHM

We use a strictly proper controller in ARMARKOV form of
order with Markov parameters so that the control is
given by

(5)

where are the Markov parameters of the con-
troller. Next, define thecontroller parameter block vectoras
shown in (6) at the bottom of the page. Now from (5) it fol-
lows that is given by

(7)

where , , and shown at the bottom of the page, with

and . Thus, from (3) and (7)
we obtain

(8)

To evaluate the performance of the current value of
based on the behavior of the system during the previous
steps, we define theestimated performance by

(9)

which has the same form as (8) but with replaced
by the current parameter block vector . Using (9), we define
theestimated performance cost function

(10)

The gradient of with respect to is given by

(11)

To evaluate , it follows from (3) and (9) that

(12)

The gradient (11) is used in the update law

(13)

where is theadaptive step sizegiven by

(14)

It is shown in [11] that the update law (13) with the step size
(14) brings closer to the minimizer of with each time
step. To implement the algorithm (11), (13), (14), we need only
know the secondary path matrix .

(6)
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IV. AAC WITH SIMULTANEOUS IDENTIFICATION

In this section we discuss the self-tuning ARMARKOV/
Toeplitz controller along with simultaneous identification. The
secondary path matrix is obtained on-line using the time-do-
main identification techniquediscussed in [1]. Inorder to identify

in the presence of the disturbance , an uncorrelated
signal is added to the control signal. An estimate of

is obtained at every time instantand passed on to the AAC
algorithm for the gradient update. For implementation, in
(11)–(13) is replaced by the current estimate .

A supervisory controller oversees the operation of simulta-
neous identification and control bymakinghigher level decisions
including toggling the control signal, switching the controller
adaptation, resetting the controller parameter vectorto zero
and toggling the identification process (see Fig. 1). The addi-
tional signal is turnedOFF when the identification process
is OFF. The decisions of the supervisory controller are based
on a measure of performance involving the RMS value of a.
Let be th data-window of a fixed length defined by

. The supervisor has binary states
, , which are updated at the end of

the current data window by comparing the values of and
. A well-defined set of rules shown in Table I is used to

update the control variables (control switch), (adap-
tation switch), (resetting to zero), (toggle
identification) to their respectiveON/OFF values depending on
the states and previous values of control variables.

V. NUMERICAL SIMULATIONS

The numerical simulations are based upon an acoustic duct
model derived using modal decomposition of the acoustic pres-
sure response of the duct to external acoustic inputs [3]. The
modal model of the duct (length 6 ft) is restricted to five modes
(tenth order). The model has two inputs, namely, a disturbance
speaker situated at and a control speaker situated at

being the coordinate along the length of the duct.
The microphone sensorsand are situated at and

, respectively. A schematic diagram of the acoustic duct
is shown in Fig. 2.

The nominal tenth-order plant has its highest modal fre-
quency at 378 Hz. The parameters chosen for simulation are

and . The sampling time chosen is
sec. The AAC algorithm and the time-domain

identification method are programmed in C in the form of a
SIMULINK S-function block for use with MATLAB. The su-
pervisory controller is written in C as a SIMULINK S-function
in the form of a set of if-then-else statements which decide
the ON/OFF values of the binary states , ,

and control variables , , , .
The simulations are performed for three different kinds of
disturbances, namely, single tone (sinusoidal), dual-tone, and
broadband. The controller parameters chosen for adaptation
are , and . For all simulations

are initialized to zero. Initial conditions for the acoustic
duct are assumed to be zero.

In the case of a single-tone disturbance at 320 Hz (see Fig. 3),
the controller magnitude and phase plots (Fig. 4) show that the

Fig. 1. Schematic of the operation of simultaneous identification and control
with the supervisory controller.

controller adapts to an internal model controller by placing high
gain at the disturbance frequency. The plot also shows when the
control variables , , are ON. The horizontal bars
(Fig. 3) indicate the time intervals within which the respective
variables are ON.

For a dual-tone disturbance we choose nonharmonic frequen-
cies 235 Hz and 320 Hz (see Figs. 5 and 6). As in the single-tone
case, the controller adapts to an internal model to reject both
tones. In the case of white noise (Fig. 7), the controller utilizes
high gain in the bandwidth region and achieves up to 10–dB re-
jection of broad-band disturbance.

Next we examine a single-tone disturbance where we change
the frequency of the disturbance (unknown to the algorithm)
during operation. Specifically the disturbance frequency is
changed from 350 Hz to 235 Hz at 5.6 s. Fig. 8 shows
that after a small period of adaptation the new disturbance is
successfully rejected. However it was noted that the algorithm
converges such that the original peak (high gain at 350 Hz)
is kept unchanged. Note that the supervisory controller turns
OFF the adaptation (Fig. 8) when the controller converges and
completely rejects the disturbance. However after the frequency
change, adaptation is resumed to reject the new disturbance.

Finally, we test the ability of the controller to recover sta-
bility in the presence of a destabilizing uncertainty. To induce
instability we change the sign of the control transfer matrix

during the simulation. A single-tone disturbance acts on
the system throughout the simulation. Moreover, we restrict the
allowable control level by saturating the control input so that

. After the instability is introduced, the supervisory
controller resumes controller adaptation. The algorithm man-
ages to converge to a stabilizing controller and rejects the dis-
turbance (Fig. 9). Large transients in theresponse are observed
immediately after changing the sign of the control transfer ma-
trix ( s).

VI. EXPERIMENTAL RESULTS

This section presents the results of an experimental study con-
ducted on a one-dimensional acoustic duct. The duct of length
4.5 ft has a disturbance speaker and a control speaker attached



104 IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, VOL. 9, NO. 1, JANUARY 2001

TABLE I
DECISION RULES FORSIMULTANEOUS IDENTIFICATION AND CONTROL WITH THE SUPERVISORYCONTROLLER. HERE � AND � ARE

SUPERVISORDESIGN PARAMETERS

Fig. 2. Schematic of the acoustic duct system.

near opposite ends (see Fig. 2). Microphones measuringand
are placed near the disturbance speaker and control speaker,

respectively. The AAC algorithm, identification algorithm and
the supervisory controller are programmed in C in the form of
MATLAB S-functions and implemented on a dSPACE system
with two 500 MHz real-time Alpha procesors. One Alpha pro-
cessor is used to implement the AAC algorithm, while the other
Alpha processor is used to implement the identification algo-
rithm and supervisory controller. The architecture of the system
allows data transfer between the processors as well as transfer
from and to the acoustic duct system at each time step. Hence,

Fig. 3. Closed-loop response of the 5-mode acoustic duct to a sinusoidal
disturbance at 320 Hz.

at each time step, an estimate of the matrix is
transferred to the controller for gradient update. The sampling
rate is chosen to be 1000 Hz. We use an SRS signal generator
to generate the disturbance.
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Fig. 4. Frequency response magnitude of the adapted controller for a
sinusoidal disturbance at 350 Hz.

Fig. 5. Open-loop and closed-loop response of the 5-mode acoustic duct to a
dual-tone disturbance (235 Hz, 320 Hz).

Fig. 6. Frequency response magnitude of the adapted controller for a dual-tone
disturbance (235 Hz, 320 Hz).

Firstly, we consider single-tone disturbance rejection. A si-
nusoidal disturbance of frequency 190 Hz is injected into the
system using the disturbance speaker. Next we change the fre-
quency of the disturbance using the HP signal generator from

Fig. 7. Open-loop(G ) and closed loop( ~G ) magnitude plots for a
broadband disturbance.

Fig. 8. In this simulation we change the frequency of a single-tone disturbance
at an arbitrarily chosen time to demonstrate the ability of the controller to adapt
to a change in the disturbance spectrum.

Fig. 9. In this simulation we destabilize the system by changing the sign of
G at an arbitrarily chosen time (t = 4:75 sec) and allow the controller
to adapt so as to restabilize the closed-loop system and reject the external
disturbance.

190 Hz to 250 Hz. After the change in frequency at
seconds, the supervisory controller performs identification for a
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Fig. 10. Experimental result: In this experiment we change the frequency (190
Hz to 250 Hz) of the single-tone disturbance at an arbitrarily chosen time to
demonstrate the ability of the controller to adapt to change in the disturbance
spectrum.

Fig. 11. Experimental result: In this experiment we change the feedback sign
of the loop transfer functionG at an arbitrarily chosen time (t = 5:1 s).

Fig. 12. Experimental result: In this experiment we change the feedback sign
of the secondary path transfer functionG at an arbitrarily chosen time (t =
6:1 s).

fixed time window. The controller then adapts to reject the new
disturbance (see Fig. 10).

Next we investigate the performance of the combined control
and identification algorithms under destabilizing conditions. To
create these scenarios we change the sign of the control transfer
function and the secondary path transfer function .
We do this by inverting the polarity of the microphone signals
using the microphone preamplifiers. With replaced with by

, the supervisor initiates identification of , which is
unaffected. After a period of identification the instability in the
system is overcome and the sinusoidal disturbance is rejected
(see Fig. 11).

Next, with replaced with by , the sign of is
inverted and hence the supervisory controller needs to reidentify
the plant several times to obtain a satisfactory estimate
of (Fig. 12).

VII. CONCLUSION

In this paper we performed computational and physical exper-
iments involving the AAC algorithm with simultaneous identifi-
cation. The performance of AAC was considered under a diverse
set of conditions representing plant and disturbance uncertainty
including perturbed disturbance spectrum, control input satura-
tion, and control feedback and secondary path sign inversion.
A supervisory controller was constructed to implement higher
level control decisions for simultaneous control and identifi-
cation. Experimental implementation validated the numerical
results. A dual Alpha processor dSPACE system was used to
simultaneously implement the identification and control algo-
rithms. The properties illustrated by the present study will be
useful in theoretical investigations of such guarantees.
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