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Abstract: This paper considers the mixed-norm H2/Hoo standard problem. Specifically, an LQG control design problem involving a 
constraint on H~ disturbance attenuation is addressed. It is shown that the H2/H~o dynamic compensator gains are completely 
characterized via coupled Riccati/Lyapunov equations. The principal result involves sufficient conditions for characterizing full- and 
reduced-order controllers that satisfy bounds on both H 2 and H~ performance costs. As a special case of this unified result we 
obtain the full-order H~o solution to the standard control problem and the pure reduced-order Hoo solution with no H 2 contribution. 
Further extensions include nonstrictly proper dynamics, a direct transmission term from disturbances to H~ performance variables, 
cross-weighting and sensor noise/plant disturbance correlation, and a treatment of the pure reduced-order H~ control problem. 

Keywords: H2/Hoo design; mixed norm; Ho~ reduced-order controllers. 

1. Introduction 

In a recent paper [1] a unification of the H 2 (LQG) and Hoo control-design problems was obtained in 
terms of modified coupled algebraic Riccati equations. Specifically, the results of [1] address a unified 
solution of the H2/Ho~ standard problem for full- and reduced-order controllers. This mixed-norm 
problem thus permits design tradeoffs between H 2 performance and Ho~ disturbance rejection. 

The goal of the H2/Ho ~ problem is to minimize an H 2 performance criterion subject to a prespecified 
Hoo constraint on the closed-loop transfer function. The Ho~ constraint is embedded within the optimiza- 
tion process by replacing the closed-loop covariance Lyapunov equation by a Riccati equation whose 
solution leads to an upper bound on the H 2 performance. The key idea to this approach is to view this 
upper bound as an auxiliary cost and, for a fixed controller structure, seek compensator gains that 
minimize the H e bound and guarantee that the disturbance attenuation constraint is enforced. The 
principal result is a sufficient condition involving coupled modified Riccati equations whose solutions, 
when they exist, are used to explicitly construct feedback gains for characterizing full- and reduced-order 
controllers with bounded H 2 and H~ costs. Note that, strictly speaking, the problem addressed is 
suboptimal in both the H 2 sense and the H~ sense. However, solving the design equations for progres- 
sively smaller H~ disturbance attenuation constraints should, in the limit, yield an Ho~-optimal controller 
over the class of fixed-structure stabilizing controllers. Although our main result gives sufficient condi- 
tions, these conditions will also be necessary as long as the mixed-norm optimization problem possesses at 
least one extremal over the class of fixed-structure controllers (see Lemma 2.2 and [2]). 
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The solution given in [1] however, was restricted to the case in which the plant was strictly proper and 
there was no direct transmission from disturbances to H,~ performance variables. The main contribution 
of the present paper is to extend the results of [1] to remove these restrictions and to allow further 
generalizations. First, a direct transmission term in the state space plant dynamics is included within the 
problem formulation along with a direct feedthrough term from exogenous disturbances to H~ perfor- 
mance variables. Next, to allow for greater design flexibility we permit correlated plant and measurement 
noise. And, finally, we consider the dual design feature of cross weighting in both the H 2 and H~ 
performance criteria. These generahzations have been studied in [14] for full-state feedback and in [4,5,11] 
for dynamic compensation. However, the results of [4,5,11] are limited to the 'pure '  full-order H~ standard 
problem without the H 2 / H  ~ unification. Furthermore, the results given in [4,5,11] are obtained by indirect 
transformation methods. In the present paper we derive the solution a to mixed-norm H 2 / H  ~ fixed-order 
(i.e., full-, and reduced-order) dynamic compensation problem without employing such transformations. 

It should be noted that the approach developed in [4,5] is quite different from our fixed-structure 
optimization design approach. Specifically, the authors in [4,5] consider a general H~ optimization 
problem of the form II T -  U Q V  11 ~, where Q is a parameterization of all stabilizing controllers that give 
infinity norm better than y. It is shown that the central member  of this set minimizes an entropy 
functional at infinity and yields a set of decoupled Riccati equations that characterize full-order compensa- 
tors satisfying an H~ norm bound [5,8]. Furthermore, the results of [4,5,11] are necessary as well as 
sufficient. In contrast, the approach of [1] and the present paper  is based upon Lagrange multiplier 
methods which permit the fixed-order-constraints as well as different H 2 and H~ performance weights. 

Finally, as a special case of the results given in the present paper  we obtain the full-order H 2 solution 
(LQG), reduced-order H 2 solution [6], full-order H~ solution [3,4,5,11], and the 'pure '  reduced-order H~ 
solution with no H 2 contribution. It is interesting to note that in the full-order H~ controller case with no 
H 2 contribution our results specialize to [3,4,5,11]. Since the results of [3,4,5,11] are necessary as well as 
sufficient, these connections show that our sufficient conditions (at least in this special case) are also 
necessary. 

Notation. Note: 
R, R "x', R', E 
I, ,  ( )T ( )* 

o( ) 
N r  ~r,  p~ 

x,  u, y,  x c, 
A , B , C , D  

A, , ,B , . ,Cc 

3" 
E~  
M 
N 
w(.) 
D1, D2 
v~, v2, v,2 
Vlo~,V2oo, Vl2oo 

El, E2 
E, R1, R2 
R12, 

All matrices have real entries. 
real numbers, r × s real matrices, R r× 1, expected value. 
r × r identity matrix, transpose, complex conjugate transpose. 
spectral radius. 
r x r symmetric, nonnegative-definite, positive-definite matrices. 
n, m, l, n c, ~-dimensional vectors. 
n × n ,  n × m ,  l × n ,  l × m  matrices. 

n c × nc, n c x l, m x n c matrices. 

xc BcC Ac + B,DC 
positive constant. 
q~ × d matrix. 
lq -- y -  2Eoc E T, M ~ P q~. 

-2 T d I a -  3' E ~ E ~ ,  N ~ P . 
d-dimensional standard white noise o r  L 2 signal. 
n × d, l × d matrices. 
D1D T, D2D T, DIDT; V z ~ p ' .  
D1N-1D T, D 2 N - a D  T, D1N-1DT; V2~ ~ Pl. 

BcD2 ' By1T By2BTc = b b  T. 

q × n, q × m matrices. 
[E, E2Cc], ETE1, ETEz; R2 ~ P " .  
ETE2, ETIE. 
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Eloo~ E2oo 
/~oo, R1 M, R2oo 
R12oo, Roo 
Roloo, Ro2oo 
a, fl 

qo~ × n, qoo × m matrices. 
[Elo o E:ooC¢], ElooMT -1Eloo ' E~ooM-1E2oo. 

T -1 ~T -1 ~ 
ElooM E2oo, E ~ M  goo. 

nonnegative constants. 

2. Statement of the problem 

In this section we introduce the LQG dynamic output-feedback control problem with constrained Hoo 
disturbance attenuation. Without the H 2 performance criterion the problem considered here is the 
standard Ho~ control problem [3,4,5]. For simplicity, the first part of the paper addresses controllers of 
order n c = n only, i.e., controllers whose order is equal to the dimension of the plant. This constraint is 
removed in Section 6 where controllers of reduced order are considered. Hence, throughout Sections 2-5 
the controller dimension nc and closed-loop plant dimension ~ & n + n~ should be interpreted as n and 
2n, respectively. 

Hoo-Constrained LQG Control Problem. Given the n th-order stabilizable and detectable plant 

2(t )  = Ax( t )  + Bu(t)  + Dlw(t ), (2.1) 

y( t )  = Cx(t)  + Du(t) + D2w(t), (2.2) 

determine an n th-order dynamic compensator 

2(t)  = Acx~(t ) + B~y(t), (2.3) 

u( t ) = Ccxc( t ), (2.4) 

that satisfies the following design criteria: 
(i) the closed-loop system (2.1)-(2.4) is asymptotically stable, i.e., A is asymptotically stable; 

(ii) the q~ × p nonstrictly proper transfer function 

n ( s )  & ff~o~(sI~ - A ) - a b  + E~ (2.5) 

from w(t) to zoo(t ) = Eloox(t ) + EzooU(t ) + Eoow(t) satisfies the constraint 

l[ H(s)  II ~ -< ~', (2.6) 

where y > 0 is a given constant; and 
(iii) the performance functional 

J(A¢, Be, C~)& li_.rnoo 1E( fo t[xT( t )Rlx( t  ) + 2xT(t)R12u(t)+uT(t)R2u(t)]  dt} (2.7) 

is minimized. 
Note that the closed-loop system (2.1)-(2.4) can be written as 

x( t )  = .4x(t) + Dw(t) 

and that (2.7) becomes 

J(Ac, Bc, Cc)= /limoo IF/[J~.~(t)]T[/~.~(/)]) = tlimoo IF[~T(/)/~)7(/)]. (2.8) 

Furthermore, by defining the transfer function 

I~(s) & ff~(sI. - .,,D-'D, (2.9) 
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Fig. 1. The mixed-norm H2/Hoo standard problem includes the H~ standard problem and the LQG problem as special cases. 

it can be shown that when A is asymptotically stable, (2.8) is given by 

J(Ac, Be, C~) = II ~(s)I1: 2. (2.10) 

Note that the problem statement involves both H 2 and Hoo performance weights. In particular, the 
matrices R 1 and R 2 are the H 2 weights for the state and control variables. By introducing the variables 

z ( t )  = E l x ( t ) ,  v ( t )  = E2u( t ) ,  (2.11) 
the H 2 cost (2.7) can be written as 

J(A c, B c, C,.)= lim ~-[zT(t)z(t) + 2zT(t)v( t)  + vT(t)v(t)].  (2.12) 
l---~ O0 

For convenience we thus define R 1 ~= ETE1 and R 2 & E]E 2 which appear in subsequent expressions. Note 
that R12 & E;rE2 is an H 2 cross-weighting term which is included for greater design flexibility. 

For the H a performance constraint, the transfer function (2.5) involves weighting matrices Ela,  E2~, 
and Eo~ for the state, control, and disturbance variables. The matrices Rla ~= E~raM-1Ela and R z a  & 

zx - 2  T E~aM-1E2o~ are thus the H a counterparts of the Ho~ weights R 1 and R 2. Here M =  Iq~-3' Eo~E~ 
arises due to the feedthrough term to the Hoo performance variables. Although we do not require that Rio ~ 

= 2/~ and R2a be equal to R 1 and R 2, we shall assume for simplicity that R E ~t2/~2 and R2a = fl 2, where 
the nonnegative scalars ct, fl are design variables such that a 2 + r2  ~ 0. As in the H 2 case we allow an H a 

zx T - 1  cross-weighting term R12o~ = E1aM E2o ~. Finally, the dual design feature of plant disturbance and sensor 
noise correlation is also permitted. As in [1], w(t) is interpreted as white noise for the H E design aspect and 
as an L 2 signal for the H a design aspect. Note that without the H 2 performance criterion, i.e., R 1 = 0 and 

= 0, the problem considered here reduces to the 'pure '  H a standard problem (see Figure 1). 
Before continuing, it is useful to note that if A is asymptotically stable for a given compensator (A~, B,, 

C,) then the H 2 performance (2.8) is given by 

J( A c, B,, Co) = tr Q/~, (2.13) 

where the steady-state closed-loop state covariance defined by 

& l im IF[)7( t ) )~T(t)]  (2.14) 
l ~ O O  

satisfies the h x ~ algebraic Lyapunov equation 

0 = AQ + 0 ~T  + 12. (2.15) 

The key step in enforcing the disturbance attenuation constraint (2.6) is to replace the algebraic 
Lyapunov equation (2.15) by an algebraic Riccati equation that overbounds the closed-loop steady-state 
covariance. Justification for this technique is provided by the following result. 
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Lemma 2.1. Let ( A~, Bc, C~) be given and assume there exists .~ ~ R "x" satisfying, 

and 

( D e = + , & ) v  (DE= + "T T 

Then 

(.~, L) ) is stabilizable 

if and only if 

.~ is asymptotically stable. 

In this case, 

II n ( s )  II ~ -< 

and 
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(2.16) 

(2.17) 

(2.18) 

(2.19) 

(2.20) 

{~_<~. (2.21) 

Consequently, 

J(A¢, B,,, C¢) < J ( A  c, Bc, C~, ~) ,  (2.22) 

where 

ag(A~, B c, C~, .~) & tr .~k. (2.23) 

Proof. It follows from [13, Theorem 3.6] that (2.18) implies that 

+,~Eoo ) l,~] 1/2 ) (,,[, - T  T+ 

is also stabilizable. Using the assumed existence of a nonnegative-definite solution to (2.17) and [13, 
Lemma 12.2] it now follows that A is asymptotically stable. The converse is immediate. To prove (2.20), 
replace l~ by/)/3 T and add and subtract j~I~.~ to (2.17) so that (2.17) becomes 

O= (-joaI~ +l~),~ +.~(joaI~ + A)T+ y-2(1)E~ +.~ff~)M-X( i)E~ +.~ff~)T+ l)l) T (2.24) 

or, equivalently, 

DbT = (joH _ ~).~ +.~(_joai _ ~)  v _ y_ Z( b E f  +.~Ef ) M_I(  DE ~ +.~/~f)T. (2.25) 

Next, forming 

/~oo (j oai~ _ .~)- 1(2.25) ( _jo~i n _ ~ ) -  T/~f 

yields 

=/~oo (j~I, - 2)  -'-~/~I + /~oJ  ( -joaI, - A)-T/~ 1 

-- ]t-2]~ec(joa/fi -- a ) - I  [(lIT}El q - ~ e l )  M - I ( / ) E  T + ~/~T)T] ( --jo}Ih -- -~)-T]~T. (2.26) 



190 W.M. Haddad, D.S. Bernstein / Mixed-norm H 2 / H~ standard problem 

Now adding /~(j~I~ - ,~)-1 - T DE~ + E~bT(--j~0I~ -- ,~)-T + E~E~ to both sides of (2.26) yields 

/f~(j~oI~ - - ' "  ~T -1  - A )  DD ( - j e I ~  - - T - T  - A )  + De - T 

+ E ~ b T ( _ j o H  ~ - - T "T T - A ) E ~  + Eo~ Eo~ 

= f f ~ ( j w I ~ - , 4 ) - ' [ / ) E l  +,~/~T] + [ / ) E l  + ~E-~V] T ( - j * o I ~ -  ,~)-T + E~ET 

+ x)-l[(be  X)-Te . (2.27) 
Note that the left hand side of (2.27) is equal H(jo~)H*@o) and the right hand side of (2.27) can be 
written as 

2 S + S*  - T-2SM-1S * + y (lq,~ - M )  (2.28) 

where 

and E ~ E f  is replaced by "¢2(Iq~ - M) .  Hence, it follows from (2.27) and (2.28) that 
$ 

2 H ( j t o ) H * ( j w )  = - [ ( y M  1 /2 -  y-1SM1/2)( 'yM 1 / 2 -  3~-1SM '/2) ] + Y Iq~ > O, (2.29) 

2 which implies H( jw)H*( j to )<  "~ I q .  This proves (2.20). To prove (2.21), subtract (2.15) from (2.17) to 
obtain 

~ T  T 0 = A( . ~ -  Q) + ( - ~ -  (~) xT  + 7 - 2 ( / ) E f  + ~/~f  ) M - l ( / ) E l  + .~E~ ) (2.30) 

which, since .4 is asymptotically stable, is equivalent to 

~ - 0  = f e TM V - 2 ( b E  T +.~f f~T)M-I (DET - - I - .~ET)  T eAV'd t>0 .  
.'0 

Finally, (2.22) follows immediately from (2.21). [] 

Remark 2.1. An equivalent form of (2.17) is given by 

0 =  ( 2 + 7 - 2 D E T M - l f f , ~ ) , . ~ + . ~ ( / t + 7 - 2 D E T M - l f f ~ ) T + 7 - 2 . ~ f f f f M - l f f , ~ . . ~ + D N - 1 L ) T .  (2.31) 

The equivalence of (2.17) and (2.31) is easily shown by noting that (2.17) can be rewritten as 

0 ----- (.4 + 7 -2 / )ETM-  lg~).~ +.~ (.4 + 7-  2/~)ETM- 1/~oo) T 

+ 7-2..~ff~TM-'ff,~,.~ + 7 - 2 D E f M - 1 E ~ I )  T + D b  T (2.32) 

and noting that b[ 'y -2ETM-1E~ +ld]D T is equal to D N - ' b  T since E~MT - i  = N-1E~T and 
N-I(v-2ET E~ + N) = N -I. 

Lemma 2.1 shows that Hoo disturbance attenuation is automatically enforced when a nonnegative-defi- 
nite solution to (2.17) is known to exist and z{ is asymptotically stable. Furthermore, all such solutions 
provide upper bounds for the actual closed-loop state covariance {~ along with a bound on the H 2 
performance criterion. Next, we present a partial converse of Lemma 2.1 that guarantees the existence of a 
unique minimal nonnegative-definite solution to (2.17) when (2.20) is satisfied. The minimal solution is 
desirable since it yields the tightest performance bound in (2.22). This was first pointed out in [7]. 

Lemma 2.2. Let (Ac, B~, C~) be given, suppose A is asymptotically stable, and assume the disturbance 
attenuation constraint (2.20) is satisfied. Then there exists a unique nonnegative-definite solution .~ satisfying 
(2.17) and such that the eigenvalues of .4+ "/-21)E~M-lff~oo + "/-2.~ff~M-lf f~ lie in the closed left half 
plane. Furthermore, this solution is also minimal. 
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Proof. The result is an immediate extension of [2, pp. 150 and 167], using Theorems 3 and 2. The proof of 
minimality of given in [12]. [] 

3. The Auxiliary Minimization Problem 

As shown in the previous section, replacing (2.15) by (2.17) enforces the H~o disturbance attenuation 
constraint and yields an upper bound for the H 2 performance criterion. That is, given a compensator 
(Ac, Be, C~) for which there exists a nonnegative-definite solution to (2.17), the actual H 2 performance 
J (A  c, B~, C~) of the compensator is guaranteed to be no worse than the bound given by J (A~,  B~, C c, .,~). 
Hence, J(A~,  B~, C¢, .~) can be interpreted as an auxiliary cost which leads to the following optimization 
problem. 

Auxiliary Minimization Problem. Determine ( Ac, B~, C~, ~)  which minimizes J ( A c ,  B~, C~, ~)  subject to 
(2.17) with .~ ~ N ~. 

It follows from Lemma 2.1 that the satisfaction of (2.16) and (2.17) along with the generic condition 
(2.18) lead to: (1) closed-loop stability; (2) prespecified Hoo performance attenuation; (3) an upper bound 
for the H 2 performance criterion. Hence, it remains to determine (Ac, B~, Co, .,~) that minimizes 

J(A~,  B~, C~, .~), and thus provides an optimized bound for the actual H 2 performance J(A~, B~, C~). 

4. Sufficient conditions for H a disturbance attenuation 

In this section we state sufficient conditions for characterizing full-order controllers guaranteeing 
closed-loop stability, constrained H a disturbance attenuation, and an optimized H 2 performance bound. 
For arbitrary Q, P, Q ~ R" ×" and a,/3 > 0 define the notation 

- 2 ~ T  ~ T  QQ&QCT+V12oo, Pa~=[BT+y /x02~/.) 1 + y - 2 R ~ 2 ~ ( Q + O ) ] p + R T 1 2 ,  

S & (a2I. +/32y- 20p)-1  

when the indicated inverse exists. 

Theorem 4.1. Suppose there exist Q, P, Q. ~ N" satisfying 

0 = (A  + y-2DIRo,~o)Q + Q(A  + y-2D1Ro,oo) T + "y-2QRI~ Q + 111o ~ - QQV2~Q~ , (4.1) 

0 = (A + ./-2[ a + Q] Ra~ + 7-  2DIRo,~ - Y-ZO.sTpTR21RT2o~)TP 

+ P ( A + 7 - 2 [ Q + O . ] R , ~ + y - 2 D 1 R o , ~ - y - 2 0 s T p T h 2 1 R T 2 ~ ) + R 1 - - s T p T R 2 ' P ~ S ,  (4.2) 

0 = (.4 -- BR21pa S -q- "y-2Q[Rloo_ R12oo~21pa S] jr..y-2[ D1R01m_ D1Ro2oo~21paS])O 

q- O( a - BR21pa S "~ "~-2Q[ Rloo_ R12ook21pas] q_ .,/-2[ D, Rm ~ _ D, R o 2 ~ 2 , p ~ S ]  )T 

4- y - 2 0 ( R l o  ¢ -- R12~/~21PaS - sTpJa21RT12m +/32sTpjR21pas)O q- QaV22Q T, (4.3) 

and let ( A c, Bc, C~, .~) be given by 

A¢ = a - BRz 'PaS  - QaVz-~aC - QaV~-gDR;1P~S 

+ y-2(QRlo o + D1Rm= - DaRo2ook~ap,,s - QR12=R21pas 

-QQV~D2Rolo~ + QoVg~DzRo2~R~Ipos ), (4.4) 



192 W.M. Haddad, D.S. Bernstein / Mixed-norm He / H~,~ standard probh'm 

B, = Q . ~ ,  C c = - [ ~ P , , S ,  (4.5), (4.6) 

0 " /4.7t 

Then (.,t, D) is stabilizable if and only if A is asymptotically stable. In this case, the closed-loop transfer 
function H(s)  satisfies the H~ disturbance attenualion constraint (2.20) and the H 2 performance criterion 
(2.7) satisfies the bound 

J( A, ,  B c, C,.) < tr[(Q + Q ) R ,  - 2R,2R21PaSO + s'rpr~R2'R2R21P, SO].  (4.8) 

Proof. The proof follows as in the proof given in [1]. [] 

Remark 4.1. Theorem 4.1 presents sufficient conditions for designing controllers with a prespecified H~ 
constraint on the closed-loop transfer function. These sufficient conditions comprise a system of three 
modified algebraic Riccati equations in variables Q, P, and Q. The Q and P equations are similar to the 
estimator and regulator Riccati equations of LQG theory, while the Q equation has no counterpart in the 
standard theory. Note that the Q equation is decoupled from the P and Q equations and thus can be 
solved independently. The P equation, however depends on Q. Thus, regulator/estimator separation holds 
in only one direction which clearly shows that the certainty equivalence principle is no longer valid for the 
mixed H z / H  ~ design problem. Finally, note that if the H~ disturbance attenuation constraint is 
sufficiently relaxed, i.e., - / ~  ~ ,  then the P equation becomes decoupled from the Q equation and thus the 

equation becomes superfluous. Furthermore, the remaining Q and P equations separate and coincide 
with the standard LQG result. Alternatively, note that if both/3 = 0 and RI~ = 0, then Theorem 4.1 also 
specializes to the standard LQG result. 

Remark 4.2. The results of [1] are a special case of Theorem 4.1. To see this set the plant/measurement 
noise correlation to zero (Vl2 = 0), set both the H 2 and H~ cross weighting terms to zero (R12, Ra2 ~ = 0), 
set the direct transmission term in the plant dynamics to zero (D = 0) and set the feedthrough term from 
disturbances to H~ performance variables to zero (E~ = 0). This yields Theorem 3.1 of [1]. 

Remark 4.3. When solving (4.1)-(4.3) numerically, the H~ constraint can be adjusted to examine tradeoffs 
between H 2 performance and disturbance rejection. Specifically, 7 can be varied systematically to 
determine the region of solvability of the design equations (4.1)-(4.3) and to study tradeoffs between the 
H 2 / H  ~ performance criteria (see [1]). 

5. The pure H~ standard problem 

As shown in Theorem 4.1, the Riccati equations (4.1)-(4.3) provide sufficient conditions for explicitly 
synthesizing controllers (A c, B c, C,.) satisfying both H 2 and Hoo performance bounds. The main purpose 
of this section is to completely eliminate the/-/2 aspect in the design problem. This section also provides 
connections between our approach and the recent results obtained in [3,4,6]. In [1] it was shown that by 
equalizing the H 2 / H  ~ weights the three coupled Riccati equation form could be transformed into two 
decoupled Riccati equations as in [3,7]. Furthermore, it was shown in [7] that the auxiliary cost (2.23) is 
equivalent to an entropy integral. However, it is important to note that, as noticed in Remark 2.1, the 
results of [7] cannot consider a general direct transmission term from disturbances to H~ performance 
variables in order to guarantee that the minimum value of the entropy evaluated at infinity is finite. In the 
present paper we utilize a simpler approach wherein we eliminate the H 2 contribution by letting R a, R12, a 
(and thus R2) approach zero. By eliminating the H 2 contribution to the problem, the resulting setting 



W.M. Haddad, D.S. Bernstein / Mixed-norm H2 / H ~ standard problem 193 

corresponds to the H~ standard problem. In order to state the main result we require some additional 
notation. For arbitrary Y~ ~ R "×n define the notation 

Y~a " BTy~ -2 T T = + y Ro2ooD1 Y~ + RT2~. 

Theorem 5.1. Suppose there exist Q ~ N" and Y~ ~ pn satisfying 

- 2  T o = (A + v-2D, go,=)O + Q(A + ~ D,nol~) + Vl= + v 2 Q R , ~ Q -  -1 T QaV2~Qa, (5.1) 

- 2  T o = (.4 + "t D1Rol=) r= + Y=(A + "t-2D1Roa=) + RI~ + v-2Y V  Y  - T - 1  Y~aR2~Y~a, (5.2) 

p(QY~)  < 3, 2, (5.3) 

and let ( A¢, B~, C~) be given by 

a c = A  - - 1  ( i  n 2 - 1  - V -  QY~) - -1 -1 aaV2ooC + aaV2ocOR2ocY~a(In y-2Oyo¢) -1 BR 2ooY~ 

+ y-2 [QRlc ¢ + OlRoloo-  OlRo2ooR2-1~yma(In - y-2aYo¢)-I  

- 1  - 1  - QRI~=R==Y~o(In v-~QY=)-I _ _ QaVE~D2Rol ~ 

- 1  - 1  2 - 1  
+QaVz~D2Ro2~REwY~a(In- y -  QY~) ], (5.4) 

= Q~V2o¢, C~ = - R 2 ~ Y ~ ( I  . - Y-  QY~) • (5.5), (5.6) Bc - 1  - 1  2 - 1  

Then ( A, D) is stabilizable if and only if z[ is asymptotically stable. In this case, the closed-loop transfer 
function H( s ) satisfies the H~ disturbance attenuation constraint (2.20). 

Proof. First let R1, R12, a---~0 in equations (4.1)-(4.3) so that S ~ f l - 2 y Z P - l O - 1 .  Next, note that 
P~S = f l -2"/2~0-1 , where 

- 2a,~T r ~ T  
Z LX B T jr_ ~ /K02cc / - J l  ..[_ . - 2 R T = ~ ( Q  + 0_). 

Now define Z~ ~ ,/20-~ and substitute into (4.3) to obtain 

0 = (A + ~/-2QR,o o + v-2D1Roloo)Tzoo + Zoo(A + y-2QR,o¢ + y-2D1R01~¢ ) + Rio o 

2 - 1  T T - 1  + v Z ~ Q o V ~ Q a Z ~  - Z~oR2~oZ®~, 

where Z ~  & ~Z~.  Now note that (5.2) follows by forming Yo~ & (Z~ 1 + .yEQ)-l. The gain expressions 
(5.4)-(5.6) follow as a direct consequence. [] 

Remark 5.1. The solutions Q and Y~ of (5.1) and (5.2) are analogous to the matrices S and P of [5] and Y~ 
and X~ of [4], while (5.3) corresponds to condition 5.2 (iii) of [4]. 

Remark 5.2. By setting R12oo, E~, and D to zero, the results of Theorem 5.1 specialize to Theorem 6 of [3] 
and Proposition 5.7 of [1] without the/-/2 performance bound. 

6. Mixed-norm reduced-order dynamic compensation 

In this section we extend Theorem 4.1 by expanding the formulation of Sections 2 and 3 to allow the 
compensator to be of fixed dimension n c which may be less than the plant order n. Hence, in this section 
define ~ = n + no, where n~ < n. As in [1,6] this additional constraint leads to an obhque projection that 
introduces additional coupling in the design equations along with an additional equation. The following 
lemma is required for the statement of the main theorem (see [1].) 
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Lemma 6.1. Let Q, t3 ~ I%1" and suppose rank 0/3 = n,.. Then there exist n c × n G, F, and n, × n, invertible 
M, unique except for a change of basis in R",, such that 

0/3 = GTMF, FG T = 1 . .  

Furthermore, the n × n matrices 

"r = G T F, "r I = I~ - 

are idempotent and have rank n~ and n - n C. 

Theorem 6.1. Let n ~ < n ,  suppose there exist Q,  P ,  Q , / 3  ~ [N~ satisfying 

0 = ( A  + y-2DaRolo~)O + Q ( A  + 3,-2DIRm~) T + 2/ 2ORlooO 

- O~V2~Oo + ~± OaV2~O~'ci, q_ Vloo -1 T -1 T T 

O= ( A + v-2[Q + Q] R~ + v-2DIRol~- V-2OSTPJk;1R~2~)TP 

+ P ( A  + y-2[O + 0]R1~ + y-2D1Ro, ~ - y-20sTp~R21RT2~) 

T s T p T k ; I P a S ,  ± + R 1 - sTp:R21pa S + "r± 

(6.1), (6.2) 

(6.3), (6.4) 

(6.5) 

(6.6) 

o = ( A -  8k;leos + y-20[ R,2 k;%S] + r-2D,[ Rol - Ro  k;'PoS])O 

"4- Q(  A -- BR 21pa S -[- "~- 2Q [ Rloo _ R12oo~ 21pa s ] _}_ ,~ 2D1 [ R01oo _ R 0 2 ~ / ~  2 l eaS])  T 

+ y - 2 0 ( R I ~  - R12~R~1pas - sTpT~;1RT2o ° + ~2sTpTR;1paS)O 

+ QaV;2Q T - ¢. Q~V;2Q~r ~ , (6.7) 

o = (A - OoVi2C + ~,-~D, Rol~ + ~-20Rl~  - ~,-~OoV~2D2Ro,~)T/3 

+ sTpTR~'P~S - ¢~sTpTR~IP~S,r. ,  (6.8) 

rank 0 = rank /3 = rank 0/3 = n~, (6.9) 

and let (A ~, Bc, Co, .,~) be given by 

Then 

a c = F [ A  - BR21pa S - QaV2-2C + QaV2~DR~IPoS + y-2(QR1~ + D1Rol~ 

- DaRo2~h 21P~S - QR12~h ~ lpos - aaV21O2 Roloo + QaV21D2Ro2~R 21pas ) ] G T, 

(6.10) 

B c = FQ~V2~, Cc = - h 2 1 P ~ S G  T, (6.11), (6.12) 

~=[Q+0FQ r O r  TOFT ] (6.13) 

(.~, D) is stabilizable if and only if A is asymptotically stable. In this case, the closed-loop transfer 
function H(s)  satisfies the H~ disturbance attenuation constraint (2.20) and the H 2 performance criterion 
(2.7) satisfies the bound 

J ( A  e, Be, Co) < t r[(O + 0 ) R a  - 2R12R21pasO + sTpTaR-21PaSO]. (6.14) 

Proof. The proof follows as in [1] with the additional terms arising due to cross weighting, 
disturbance/measurement noise correlation, and direct feedthrough terms. [] 
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Remark 6.1. It is easy to see that Theorem 6.1 is a direct generalization of Theorem 4.1. To recover 
Theorem 4.1, set n¢ = n so that "r = G = F = I n and % = 0. In this case the last term in each of (6.5)-(6.8) 
can be deleted and (6.8) becomes superfluous. Furthermore, (6.5)-(6.7) now reduce to (4.1)-(4.3), as 
expected. Alternatively, setting y = o¢ and retaining the reduced-order constraint n¢ < n yields the result 
of [6]. Finally, to recover Theorem 6.1 of [1] s e t  V12 = 0 ,  Rlz = 0, R12oo --- 0, D --- 0, and Eoo = 0. 

Remark 6.2. As was noted earlier, the assumption that R 2 =  a2/~2 and R2o ¢ = fl2R 2 was made for 
simplicity. If it is desired that R E and R2~ ¢ be independent then (6.12) is given by 

C c =  - v e c - l [ ~ v e c ( e a G T ) ] ,  

where 

~ R 2 ® In,. + y - 2 R 2 o  o ® F Q P G  T, 

'vec' is the column stacking operation, and ® denotes K.ronecker product. In this case, the compensator 
dynamics (6.10) along with the design equations (6.5)-(6.8) have to be changed accordingly. However, due 
to lack of space this result is not given. Similar remarks apply to the full-order mixed-norm problem given 
by Theorem 4.1. 

7. The pure H~ reduced-order dynamic compensation problem 

In this section we eliminate the H 2 aspect of the reduced-order design problem to obtain reduced-order 
controllers for the pure H~ standard problem. As in the full-order controller case (Section 5) we eliminate 
the H E contribution by letting R 1, R12, a (and thus R2) approach zero. In order to state the main result we 
require some additional notation. For arbitrary Q, Q, P ~ N n, and G, F ~ R"cx n define 

- 2  T T ?aoo ~ BTP "[- ]1 Ro2~D1P + ]t-2RT2~(Q + Q ) P ,  (7.1) 

M~ ~= (FOFT)  -1, N~ A= ( G P G T ) - I ,  (7.2), (7.3) 

S a v 2 N ~ M ~ ,  W a 4 T r T -1  r = =3' F S~GPS~R2~Pa~G SooF. (7.4), (7.5) 

Theorem 7.1. Suppose there exist Q, P, 0., P ~ N" satisfying (6.9), GPG v > O, and 

0 = ( A  + v-2DaRol~)O + Q(  A + v-2D1Rol~) r 

+ Vl~ + v-2QRI~Q - QaV2~Q~ + % Q~Vf~Q~zV~, (7.6) 

0 = ( A  + ),-2[Q + 0]  Rloo + v-2DiR01oo- V-2OFTS~GPj.R~RT2. + V-2Ow.)Tp 

+ e (A  + e + O_]R1. + v- O, R o l . -  r- er s2Ge:.R;' RS. + 

+ Ra~ - P ~ R 2 2 P ~  + ( I ,  - G~S~F)VP[~R22P~( In  - G s.r), (7.7) 

-1  T 0 =  (A  - BR22P,=GTS=F + "I-2Q[RI= - R12=R2=P~=G S=F] 

+ r-s[ lRol. - Ro =R  eo=G s.r])O. 

+ O.(A - BR~P. .GrS . r+  V-2Q[R1. - RI:=R~2Po=GvS=r] 

+ v - 5 [ D 1 R o I =  - Ro:.R :ea.G s.r]) 

4" ' ~ - 2 0 ( R l o o  - R12=R2~P.=GTSooF - FTsTpTaooR22RT2= + Wo~)O_ 

--1 T -1  T T + Q~V~Q~ - ~± QaV2~QaT±, (7.8) 
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0 = (A  - QaV~-~C + 3' 2D1Rm~ + v-2QR1~ - Y-2QuV2~D2Rm~) l f i  

+ f i (A  - QaVf~C + y-2D1Rm~ + "y 2QRa~ - 3, 2QaVf~D2Ro,~) 

+ P f ~ R z ~ P a ~ -  ( I ~ - G T S ~ F ) s P V , ~ R z d P , ~ ( I ~ - G v S ~ F )  - y - Z ( w ~ O P  + POW~) ,  (7.9) 

and let ( A c, B,, C, ) be given by 

A c = F[A - Rz~Pu~GVS~F - QaV21C + QoVf2DRz~Po~GTS~F 

+y-2(QR1 ~ + DIR01~ -1 X -1 T -- DIRo2~Rz+cPa~G S++F- QRlz~Rz~Pa++G S~F 

- QaVf2DzRol~ + QuVz2D2Roz~Ri~P,~GTS~F)] G T, (7.10) 

Bc = FQ:V2~ C~ - ,  T , = -Rz+P=+G S+. (7.11), (7.12) 

Then (+~, D)  is stabilizable if and only if +~ is asymptotically stable. In this case, the closed-loop transfer 
function H(  s ) satisfies the H+ disturbance attenuation constraint (2.20). 

Proof. The proof follows from Theorem 6.1 by using the relation G T s F = S r ,  where S&(a21, + 
y-2f lZPOpGT)-I  and letting R1, R12 , a --~ 0. [] 

Remark 7.1. Theorem 7.1 presents sufficient conditions for designing reduced-order controllers with a 
prespecified Ho~ constraint on the closed-loop transfer function with no H 2 contribution. Thus, Theorem 
7.1 addresses the pure reduced-order H~-standard problem. Note that considerable simplification can be 
achieved in the design equations by setting R~2o~, Eo~, and D to zero. 

8. Numerical solution of the design equations 

Although the design equations appearing in Theorems 4.1, 6.1 and 7.1 appear formidable, they are, in 
fact, quite numerically tractable. One of the principal motivations of the Riccati equation approach to the 
mixed norm problem is the opportunity it provides for developing efficient computational algorithms for 
control design. In particular, the goal is to develop numerical methods that exploit the structure of these 
modified Riccati equations. It should be noted, however, that existing methods for solving standard 
Riccati equations cannot account for the additional terms that appear in the modified equations such as 
(6.5)-(6.8). Therefore, a new class of numerical algorithms has been developed based upon homotopic 
continuation methods. These methods operate by first replacing the original problem by a simpler problem 
with a known solution. The desired solution is then reached by integrating along a path (homotopy path) 
that connects the starting problem to the original problem. The advantage of such algorithms is that they 
are based on theories which are global in nature. In particular, homotopy methods facilitate the finding of 
(multiple) solutions to a problem, and the convergence of the homotopy algorithms is generally not 
dependent upon having initial conditions which are in some sense close to the actual solution. These ideas 
have been illustrated for the H 2 reduced-order problem in [9] and the Hoo constrained problem in [1] where 
the additional coupling terms preclude standard solution techniques. A complete description of the 
homotopy algorithm is given in [10]. 
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