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Abstract. The dynamical equations for a spinning top are derived in which the orientation is specified by a
complex variable using stereographic projection of Poisson's equations. Necessary and sufficient conditions for
Lyapunov stability of the uncontrolled motion of the spinning top are derived using the Energy-Casimir method.
Control laws that globally asymptotically stabilize the spinning top to the sleeping motion using two torque
actuators are synthesized by employing techniques from the theory of systems in cascade form and generalized
using Hamilton-Jacobi-Bellman theory with zero dynamics. In short, this paper provides a nice example where
the interplay between dynamics and control leads to elegant and powerful results.
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1. Introduction

In this paper we examine the problem of the global asymptotic stabilization of a spinning
top with fixed vertex, to a uniform, steady rotation about its axis of symmetry. This motion
of the top is often referred to in the literature as the sleeping top [7]. This terminology
arises because a smooth, axially symmetric top with its symmetry axis vertical, might
appear at first glance to be not moving at all, and hence "sleeping." Stability analysis of the
sleeping motion of a spinning top is well-developed. In [22], the authors summarized the
previous results and gave necessary and sufficientconditions for the Lyapunovstability of
the sleeping motion which simplifiedthe earlier results given by Ge and Wu [6].

The controlled top problem, i.e., applying control inputs to drive the spinning top to
the sleeping motion, was studied in [22]. In [22], the control inputs are inertially-fixed
horizontal forces and the kinematic formulation was based on the 2-1-3 Euler angles.
Asymptotically stabilizingcontrol laws were derived using the feedback linearization and
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the Hamilton-Jacobi-Bellman theory with zero dynamics for the case of two control forces.
In the case of only one control force, if the top is spinning sufficiently fast, asymptotically
stabilizing control laws were developedby the Jurdjevic-Quinn technique.

In this paper, we consider another controlled top problem which uses alternative control
inputs, namely,body-fixed torques. It is well-knownthat the sleeping motion of a spinning
top is Lyapunov stable if its spin rate is sufficientlyhigh [4], [6], [7], [11], [12], [22]. We
give the necessary and sufficientconditionfor stability about the vertical of an uncontrolled
spinning top using the Energy-Casimir method [12], [21]. This condition coincides with
the previous results [6], [22] and implies that the spinning top can be Lyapunov stable,
but a minimum amount of spin rate is necessary in order to achieve Lyapunov stability
for the sleeping motion, when no other control input is available. Here we remove this
restriction and consider stabilization without any requirement on the magnitude of the spin
rate. Moreover, the results hold also for the extreme case when the spin rate remains zero.
Two control torques about the top's transverse principal axes are used in order to achieve
this.

The fonnulation of the problemdeparts fromthe traditional treatment-based on Eulerian
angles-and takesadvantage of anewfonnulation forthe kinematicsof the rotational motion
developed in [14]. This new kinematic fonnulation uses the stereographic projection of
the Riemann sphere on the complex plane in order to derive a very elegant and compact
equation for a complex quantity related to the direction cosines of the local vertical (the
inertial Z-axis) with respect to the local body-fixed system of the top. This kinematic
fonnulation is based on an idea by Darboux [5], where an equation of the same fonn was
derived in connection with some problems in classical differential geometry. However,
its derivation using the stereographic projection and its use in attitude kinematics was
established in [14] and was first applied to attitude control problems of spinning rigid
bodies in [15], [16], [17], [18].

The paper is organized as follows. In Section 2 we give the equations of motion of
a spinning top rotating in a uniform gravitational field and we derive the corresponding
equations using complex variables from the stereographicprojection of the coordinates of
Poisson's equations. In Section 3 we examine the stability of the free motion of the top in
terms of the complex fonnulation and we provide necessary and sufficientconditions for
(nonlinear) Lyapunov stability using the Energy-Casimirmethod. In Section 4 we derive
globally asymptotically stabilizing feedback control laws for uniform rotation of the top
along the local vertical. We first give a list of control laws based on the stereographic
coordinates. In the last part of Section 4 we use some recent results from the theory of
optimal asymptotic stabilization of nonlinear systems with stable zero dynamics based on
Hamilton-Jacobi-Bellman theory [19], [20]. We therefore generalize the previous stabi-
lizing control laws by constructing a family of optimal nonlinear feedback control laws
which globally asymptotically stabilize the spinningtop. The parameters of this family can
then be tuned by the designer to achieve acceptablesystem perfonnance (minimum control
effort, time of response, etc.). Finally, a numericalexample demonstrates the results of the
proposed control laws.
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2. Equations for a SpinningTopUsingStereographicProjection

In this section we derive the dynamical equations of a spinning top using stereographic
projection of Poisson's equations [14], [15]. Traditionally, the motion of an uncontrolled
spinning top is described by the Euler-Poissonsystem of equations [11], [22] given by

i\w\ -
hW2 -
hW3 -

(h - h)W2W3+ mgtY2

(13- i.)W3W\ - mgtYI
(1\ - h)wI W2

(1a)

(1b)

(1c)

and

YI = YzW3- YJW2

Y2 = Y3WI- YIW3

Y3 = YIW2- YzWI.

(2a)

(2b)

(2c)

Equations (1) describe the dynamics of the motion with respect to a body-fixed reference
frame located at the vertex of the top and equations (2) describe the kinematics. In (1) and
(2) WI.W2.W3are the angular velocity vector components in body coordinates, m is the
mass of the top, g is the gravitational constant and t is the distance from the vertex to the
center of mass. The parameters iI, i2, h represent the principal moments of inertia with
respect to the chosen body-fixed reference frame. The vector (YI,Yz,YJ)represents the
unit vector in the negative gravity direction when expressed in body coordinates. In other
words, Y\. Y2, Y3are the direction cosines of the inertial Z-axis (considered here to point
along the negative gravity direction) with respect to the local body-fixed axes. Therefore,
equations (2) actually describe the tilt angles of the body axes of the top from the inertial
Z-axis, while the azimuth between the projection of the top axis on the horizontal plane
and any axis fixed in the horizontal plane is not determined.

We assume that the top is symmetric, i.e.. il = h ~ i, andthereforefrom(Ic) wefind

that W3 is constant. Define W3 ~ Q, b ~ hQj i and c ~ 2mgtj J. Then the equations (1)
and (2) can be written in the form

(3a)

(3b)

(4a)

(4b)

(4c)

We now introduce a reformulation of the kinematics that will simplify the ensuing analysis
significantly. This new formulation is based on an idea by Darboux [5], and was initially

C
WI = -(b - Q)W2+ -Y22

C
W2 = (b - Q)WI - -YI2

and

YI = YzQ- YJW2

Y2 = Y3WI- YIQ

Y3 = YIW2- YzWI.
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applied to the problem of attitude dynamics in [14], although it appears that Leimanis [11]
was also aware of this possibility. Because of the constraint Y? + yf + yf = 1 the vector
(YI, Y2, Y3) lies on the unit sphere S2 in JR3. If we consider the stereographic projection

S2 -+ Coo of the unit sphere S2 onto the extended complex plane Coo ~ C U {oo}, defined
by

(5)

where i = A, we induce the following differential equation for the complex variable
tl E C [14], [15],

(6)

where the bar denotes complex conjugate and where (J)~ (J)I + i W2. The stereographic
projection establishes a one-to-one correspondence between the unit sphere and the extended
complex plane. It can be easily verified that the inverse map 1/t-+ (YI, Y2, Y3) is given by

where I . 1 denotes the absolute value of a complex number, i.e., zz = Iz12,Z E C. Using
the complex variables (J)and 1/,equations (3) and (4) can be expressed compactly as

. C1/
(J) = I (b - Q)(J)+

1 -
(J) (J) 2

tl = -i Qtl+ - + -1/2 2

(8)

(9)

and the tilt angle e between the top symmetry axis and the inertial Z-axis is

(
1-11/12

)e = cos-I 1 + 11/12. (10)

An easy calculation shows that, if Q = b, i.e., h = J, then the only equilibrium state of
equations (8) and (9) is (J)= tl = O. If Q #- b, then (apart from the trivial case (J)= 1/ = 0)
the equilibrium states of the uncontrolled motion of equations (8) and (9) satisfy

11/12= C - 2Q(b - Q)
C+ 2Q (b - Q)

(11)

YI = i 1/-1/ =_ 21/2
1 + 11/12 1 + Itll2

(7a)

Y2 = 1/ + ij = 21/1
1+ I1/F 1 + 11/12

(7b)

1 - 11/12

Y3 = 1+ 11/12
(7c)
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and

C T/

w = i (b _ 0) 1 + 1T/12.
(12)

The expression (11) can be written equivalently as

20(b - 0)
Y3= (13)

C

Since c > 0, it can be shown that if b2 < 2c then w = T/= 0 is the only equilibrium state.
If, on the other hand, b2 ~ 2c, then two cases need to be considered, namely, 0 > 0 and
0< O.If 0 > o and~(b+Jb2 - 2c) ~ 0 > ~ orO ~ ~(b+.Jb2 + 2c), thenw = T/ = 0
is the only equilibrium state. If 0 > 0 and ~(b + .Jb2 + 2c) > 0 > ~(b + .Jb2 - 2c) and
o # b then there are nonzero equilibrium states corresponding to the solutions of (11) or
(13) and (12). Similarly,if 0 < Oand~(b-.Jb2 - 2c) ~ 0 < ~orO ~ ~(b-.Jb2 +2c),
then w = .,.,= 0 is the only equilibrium state. If 0 < 0 and ~(b - .Jb2+ 2c) < 0 <
~ (b - .Jb2 - 2c) and 0 # b then there are nonzero equilibrium states corresponding to the
solutions of (11) or (13) and (12). It is interesting to note that these nonzero equilibrium
states correspond to a steady precession of the top. In the steady precession, IT/I= canst.
which implies from (10) a constant tilt angle e. Note that if 0 = 0, then from (8) and
(9) one sees that the top degenerates to an inverted spherical pendulum and has only one
equilibrium state w = T/ = O.Note also that the equations for the top reduce to those for a
symmetric spacecraft in the case g = 0 (i.e., c = 0), which has only one equilibrium state,
namely, w = T/= O. Finally, it should be noted that, because of the well-known properties
among the principal moments of inertia, for any physically realizable rigid body, one must

have that 0 > ~ for the case when 0 > 0, while if 0 < 0, then 0 < ~.

3. Stability of the Free Motion of the Spinning Top

In this section we analyze the (nonlinear) Lyapunov stability of the sleeping motion of
the spinning top using Lyapunov's direct method. Stability of the sleeping motion of a
spinning top has been studied in [4], [6], [11], [22]. The present analysis is based upon
the Energy-Casimir method [12], [21]. We give a necessary and sufficient condition for
stability for the system of equations in complex form (8) and (9). The procedure follows
closely [22].

The linearization of the nonlinear top equations (8) and (9) about the equilibrium w =
T/ = 0, corresponding to the sleeping motion, is given by

[
~

]
=

[
i (b - 0) ~

] [
w

]
.

T/ 1/2 -I 0 T/
(14)

As can be easily calculated, the eigenvalues of the system (14) are

, b - 20 1 /

)..1,2= I '" :I: '2\1' -b2 + 2c. (15)
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Obviously, if b2 < 2c, then system (14) has eigenvalues in the open right half plane, which
corresponds to instability of the linearized equation (14), and thus instability of the original
nonlinear system (8) and (9). When b2 2: 2c, (14) has eigenvalues on the imaginary
axis. No conclusion can be drawn for the stability of the original nonlinear system from
its linearization in this case. We therefore resort to Lyapunov function theory in order
to resolve the stability question of the system (8) and (9) for the case when b2 2: 2c.
Specifically,we use the Energy-Casimir method which allowsto draw stability conclusions
about conservative mechanical systems when certain independent integrals of the motion
(Casimirs) are known [12], [21]. According to this method, we augment the energy of the
system with the Casimirs of the motion and we check for critical points of this quantity.
Definiteness of the second variation at the critical points of this augmented quantity is then
sufficient to prove nonlinear (Lyapunov)stability. We will not elaborate more on this issue
since similar results were derived in [22]. Suffice it to say that the quantity

t;,.
V(w,I1) = H(w, 11)- H(O, 0)

1-11112

[
2 _ 1-11112

]- Iwl2 + c. . , ," - b 1+ 11112Im(w11)+ b 1 + 11112- c + b2

is a Lyapunov function for the system (8) and (9), where

(16)

(17)

is constant under the flow of the system. This is true, because the following two expressions
remain constant under the flow of the nonlinear system (8) and (9)

t;,. 2 1 - 11112
hc1(w, 11)= Iwl + c 1 + 11112

(18)

t;,. 2 _ 1 - 11112

hc2(w, 11)= 1 + 11112Im(w11)+ b 1 + 11112

where Im(.) denotes the imaginary part of a complex number. Actually, the first equation
represents the total energy of the system, while the second equation represents the angular
momentum along the inertial Z-axis.

It can be seen that if b2 2: 2c, then V (w, 11)> 0 for all w, 11E C although its Hessian is
only positive semi-definite. Next, recall that if b2 < 2c, then the sleeping motion is unstable.
Therefore we conclude that the sleeping motion of the (uncontrolled) top is Lyapunov stable
if and only if b2 2: 2c [6], [22].

(19)

4. Feedback Stabilization with Two Torque Inputs

4.1. Complex Formulation

We consider the controlled top problem in which two torque actuators u1,u2 along two
transverse principal axes perpendicular to the symmetry axis are applied to the top; that is,
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the equations (3) are now given by

C
WI = -(b - Q)lLI2+ -Y2 + UI2

C
W2 = (b - Q)WI - -YI + U2

2

(20a)

(20b)

Defining the complex control variable Uc~ UI + i U2,equations (20) and (9) yield

The control strategy employed in this subsection is based on the results of [15] and [17].
In [15], [17], globally asymptotically stabilizing control laws were derived for the motion
of a symmetric spinning rigid body in space, using two control actuators. Specifically,
stabilizing control laws were constructed which achieve global asymptotic stabilization
of a symmetric rigid body about its symmetry axis. The control laws of [15] and [17]
were based on the new complex formulation of the kinematics (6) and some well-known
results for the stabilization of systems in cascade form [I], [13]. These control laws were
extended in [16] and [18] in order to achieve complete reorientation from arbitrary initial
conditions, utilizing the constructionof the zero output dynamics manifold, with respect to
an appropriately chosen systemoutput. In [18] it wasalso shownthat the same outputfor the
system kinematics, when considered as a new coordinate, complements the stereographic
coordinates in a natural way, providing a new parameterization of the rotation group of
orthogonal matrices (the configurationspace of the rotational motion).

Note that since the linearization of (21) and (22) is controllable, linear control laws
based upon the linearization of these equations will, in general, only locally asymptotically
stabilize the top to its sleeping motion, corresponding to the zero equilibrium W = 17= 0 of
equations (8) and (9). However, since we are interested in global asymptotic stabilization
we thus resort to Lyapunov function theory to construct globally asymptotically stabilizing
control laws for the system (21) and (22).

Redefining the new control

v~ C17
1 + 11712+ Uc

(23)

equations (21), (22) yield a system in cascade form

W = i(b - Q)w+ v
. W W 2

17 = -I Q17+ - + -17 .2 2

Control laws for the system of equations (24) have been obtained in [15], [17] and can be
summarized as follows.

(24a)

(24b)

W = i (b - Q)w + c17 2 + Uc (21)
1+ 1171

.Q W w2 (22)17 = -I 17+ - + -172 2 .
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THEOREM 4.1 ([15]) The choice of the feedback control law

( W W 2)V = -i(b - Q)W+K i QI1- 2" - 2"11 -a(W+KI1)
(25)

with K > 0 and a > O. globally asymptotically stabilizes system (24).

THEOREM 4.2 ([15]) The choice of the feedback control law

(26)

with K > 0 and a > O.globally exponentially stabilizes system (24) with rate of decay fJ12.
where fJ = min{2a, K}.

THEOREM 4.3 ([ 17]) The choice of the linear feedback control law

v = -KIW - K211 (27)

with KI > 0 and K2 > O.globally asymptotically stabilizes the system (24).

The proofs of these theorems are shown by construction of appropriate Lyapunov functions
for the corresponding closed loop systems and can be found in [15], [17].

Using the previous results and equation (23) we have the following globally asymptotically
stabilizing control laws for the motion of a spinning top about its symmetry axis.

COROLLARY 4.1 The choice of the feedback control law

Uc = -i(b - Q)w - CI1 + K(i QI1- W - i!..112) - a(w + KI1) (28)
1 + 11112 2 2

with K > 0 and a > O.globally asymptotically stabilizes system (21)-(22).

COROLLARY 4.2 The choice of the feedback control law

. CI1 (. W W 2) 2
uc=-z(b-Q)w- +K zQI1 11 -a(W+KI1)-I1(1 + 1111)

1 + 11112 2 2
(29)

with K > 0 and a > O. globally exponentially stabilizes system the (21H22) with rate of
decay fJ/2, where fJ = min{2a, K}.
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COROLLARY 4.3 The choice of the feedback control law

CT/
u = -KIW - K2T/-

c 1 + 1T/12

with KI > 0 and K2> 0, globally asymptoticallystabilizes the system (21H22).

These control laws are obtained by adding an extra term in the control laws of The-
orems 4.1-4.3 in order to cancel the gravitational force, as in (23). Since this obvious
modification of the control laws (25), (26)and (27)depends on the exactcancellation of the
gravity tenn, the problem of robustness of the stabilizing controls of Corollaries 4.1-4.3
need to be addressed before implementationof these results. However,since the proof of
the global asymptotic stability of the correspondingclosed-loop systems was demonstrated
using Lyapunov functions, it is in general not very difficult to robustify the control laws
(28), (29) and (30), since any such uncertainty enters the system in the same way as the
control input (i.e., it is "matched") [to].

Next we present a general theory of stabilizationof the equations (21)and (22) of the con-
trolled spinning top based on Hamilton-Jacobi-Bellman(HJB) theory with zero dynamics
[2], [19], [20].

(30)

4.2. Hamilton-Jacobi-Bellman Theory with Zero Dynamics

We use again the newkinematicequation (6) from the stereographicprojection of Poisson's
equations, but for convenience (and to be consistent with the standard notation in the
literature of nonlinear control theory), we expand equations (21) and (22) into their real
and imaginary parts. Letting XI = WI. X2 = W2,X3 = 171and X4 = T/2,and decomposing
(21) and (22) into their real and imaginary components, the equations can be written in the
familiar form

(31)

where

f (x) ~

-(b - Q)X2+ CX3/(1+ xj + xl)

(b - Q)XI+ CX4/(1+ xj + xl)

QX4+ X2X3X4+ XI(1 + xj - xl)/2

-QX3 + XlX3X4+ X2(1 - xj + xl)/2

g(x) ~

1 0

o 1
o 0
o 0

(32)

where X = col(xl, X2, X3. X4) e JR4,gl (x), g2(X) are the column vectors of g(x) and
u = col(ul, U2) e JR2.Clearly, f, gl and g2 are Coovector fields and f(O) = O. Below

adf g denotes, as usual, the adjoint operation between the two vector fields f and g defined
by [9]

og of
adfg = - f(x) - -g(x)ox ox

(33)
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First we note that the system (32) is not globally feedback linearizable [3], [8]. The deter-

minant of the distribution 6) (x) ~ span {g) (x), g2(X), adfg) (x), adfg2(x)} is 16) (x)1 =
~(l-xj -xl)(l +xj+xl) and thus the distribution 6) (x) looses rank at 1171= 1,i.e.,when
the tilt angle e is :br /2. Therefore, the condition (ii) of Theorem 1 in [3] is not satisfied,
since dim 6) (x) 1: 4 for all x E JR4.The above observation shows that it is not possible
to synthesize a globally stabilizing control law for (32) using the feedback linearization
approach.

The basic ingredients of the HJB theory with zero dynamics [2], [19], [20]are given next.
Consider a nonlinear controlled system which is affine in the control of the form

x = f(x) + g(x)u = f(x) + g)(x)u)+... + gm(x)um (34)

wherex E JRn, U =col(u), . . . , um) E JRmand g) (x), ... ,gm(x) arethecolumnvectorsof
g(x). We assume f and g), ..., gmare sufficientlysmooth and, without loss of generality,
we assume that the origin is an equilibrium state of the uncontrolled system, namely,
f (0) = O. In order to apply the HJB theory with zero dynamics, we define an artificial
output function

y = h(x) (35)

where y E JRmand h(x) = col(h) (x), h2(x),..., hm(x». For the system (34), (35),
consider the performance functional

1:.

1
00

J(xo, u(.» = 0 L(x(t), u(t» dt
(36)

where

(37)

and L): JRn -+ JR, L2: JRn-+ JR)xmwith L2(0) = 0, and R E JRmxmis a positive-definite
matrix. The superscript T denotes, as usual, the transpose.

The following definitions can be found in [9].

Definitions.

(i) The zero dynamics of the nonlinear system (34), (35) are the dynamics of this system
subject to the constraint that the output y(t) be identically zero for all t 2: O.

(ii) The system (34), (35) is said to be minimumphase if its zero dynamics are asymptoti-
cally stable.

Let Lfh(x) ~ Vh(x) . f(x) denote the Lie derivative of a function h along the vector
field f. We recall the following lemma from [2] for minimumphase systems with relative
degree {I, 1, . . . ,I} [9], which implies that the m x m matrix

I:.

[
Lgl~) (x) ~.. Lg.~) (x)

]
Lgh(x) = : '. :

Lg.hm(x) ... Lg.hm(x)

(38)
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is nonsingular for all x E JRn;see also [20]. Recall that a vector field f is said to be complete
if the flow of f is defined for all times t E JR[9].

LEMMA4.1 Assume that the nonlinear system (34), (35) is minimum phase with relative

degree {I, 1,..., I}. lfthe vector field g (Lgh)-I is complete, then there exists a global
diffeomorphism (): JRn~ JRn,a Coofunction fo: JRn-m~ JRn-m,and a Coofunction
r: JRn-m X JRm~ JR(n-m)xmsuch that, in the coordinates

(39)

the differential equation (34) is equivalent to the normal form

[~ ]= [fo(z) + r(z, y)y
]

+
[

0
]

u.
Y Lf hex) Lghex)

(40)

The next theorem gives the main result for optimal nonlinear feedback of minimum phase
systems with relative degree {I, 1, . . . ,I}. The optimality of the feedback control law is
guaranteed through the Hamilton-Jacobi-Bellman equation. The performance functional is
assumed to include a nonquadratic state weighting and a quadratic control weighting.

THEOREM 4.4 ([20]) Consider the nonlinear system defined by equations (34), (35). Assume

that the system is minimum phase with relative degree {I, 1,..., I} and the vector field

g (Lgh)-I is complete. Furthermore, let Po E JRmxmand R E JRmxmbe positive definite
and let Yo: JRn-m~ JRbe a CI positive definite function such that DVo(z) fo(z) < O,for
Z E JRn-m, Z i: O. Then define

(41)

Vex) = Vo(z) + yTPoy (42)

where z, y and r(z, y) are defined in Lemma 4.1. Then V (x) is a Lyapunov function for the
closed-loop system with the control law

1
4>(x)= -2[Lgh(x)rl[Po-lrT (z, y)DVo(Z)T+ 2Lfh(x)] - R-1[Lgh(x)]TPoh(x)

(43)

which globally asymptotically stabilizes (34) and minimizes J(xo, u(.» in the sense that

J(xo, 4>(x(.») = min J(xo, u(.» = V(xo), for all XoE JRn,
u(o)eS(xo)

(44)

where J(xo, u(.» is defined in (36)-(37), S(xo) is the set of asymptotically stabilizing
control laws, and

(45)
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The performance integrand corresponding to the optimal control law (43) is [20]

L(x, u) = {u + ~(Lgh)-I[Po-lrT (z, y)DVO(Z)T+ 2Lf h]r R

x {u + ~(Lgh)-I[Po-lrT(z, y)DVO(Z)T+ 2Lf h)}

- DVo(z)!o(z)+ hT(x)Po(Lgh)R-I(Lgh)TPoh(x) (46)

which is nonnegative for all x e Rn and u e Rm. In the above expressions D Vo(z) denotes
the Jacobian of Vo with respect to z.

4.3. The Spinning Top

In the statement of Theorem 4.4 is implicit the fact that there exists an output for the
nonlinear system with respect to which the overallsystem has relative degree {1, 1, . . . , 1}.
Therefore, the existence of such an output is crucial for the Theorem 4.4 to be applicable.
Note that as in the case of feedback linearizable systems the desired output may not be
necessarily the given output of the system. Instead it is often up to the control designer
to choose such an output in order to achieve relative degree one with respect to all output
channels. This is not necessarily a trivial task, and a judicious choice may facilitate the
analysis and the control design.

For the controlled spinning top problem, let the output function be

y = h(x) =
[

hi (x)

]
~

[
Xl + klX3

]h2(x) x2 + k2X4
(47)

where kl > 0 and k2 > O. Defining z = col(zl, Z2) ~ col(x3,X4),we have

z = !o(z) + r(z, y)y (48)

where

(49)

[

4(1+zi-z~) ZlZ2

]
r(z, y) = I 2 2 .

ZlZ2 2(1 - Zl + Z2)

It can be shown that the zero dynamics corresponding to Z = !o(z) is globally asymptot-
ically stable and the corresponding Lyapunov function is

(50)

P3 > O. (51)

Furthermore, Lgh(x) = 12,where 12is the 2 x 2 identity matrix. Hence (32) and (47) form
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a minimum phase system with relative degree {I, I}. Next, by taking

[
PI 0

]
,

Po = 0 P2
(52)

with PI, P2 > 0 and rl, r2 > 0, and applyingTheorem 4.4 to the system (32) and (47) the
optimal control law <I>(x)=col(<I>1(x), <f>2(x»is computed from (43) to be

<1>1(x) = (b - Q)X2 - cX3/(1+ xj + xl)

[
XI 2 2

]- kl QX4+ X2X3X4+ "2(1 + x3 - X4)

- (P3X3/2pI)(1+ xj + xl) - (pJ/rl)(xI+ k1X3) (53a)
<f>2(x) = -(b - Q)XI- cX4/(1+ xj + xl)

[
X2 2 2

]- k2 -QX3 + XIX3X4+ "2(1 - x3 + x4)

- (P3X4/2p2)(1+ xj + xJ) - (P2/r2)(X2+ k2X4). (53b)

The Lyapunov function that guarantees asymptotic stability of the closed-loop system with
the control law (53) is given from (42)

V (x) = P3(xj + xJ) + PI(XI + k1X3)2+ P2(X2+ k2X4)2 (54)

while the performance integrand (46) is

L(x,u) = [U+~R-ILI(x)r R [U+~R-ILI(x)]
+ p3[klxj(1 + xj) + k2xl(1 + xl) + (kl + k2)xjxJ]

2 Z
PI

( k )
z pz k )

z+ - XI + IX3 + -(xz + ZX4
rl rz

(55)

where

rl {P3x3(1+ xj + xl)/ PI - 2(b - Q)xz+ 2cX3/(1+ xj + xl)

+2kl[QX4+ XZX3X4+ XI(1+ xj - xl)/2]}

rZ{P3x4(1+ xj + xl)/p2 + 2(b - Q)XI + 2CX4/(1+ xj + xl)

+2kz[ -QX3 + XlX3X4+ X2(1 - xj + xl)/2]}

Equation (53) provides afamily of feedback stabilizing control laws for the system (32),
which are optimal with respect to the performance functional (55). This 7-parameter family
(kl, k2, rl, rz, PI, pz, P3) allows for great flexibility in the design of optimal feedback con-
trollaws for the spinning top. It can be easily checked that by taking k I = kz = K,PI/ rl =
pz/rz = exand P3/ PI = P3/ P2 = 2, the control law (53) reduces to (29). Notice, however,
that the control laws (28) and (30) cannot be derived form (53) by any admissible choice
of the parameters.

Remark. It should be pointed out that the control laws obtained above are globally asymp-
totically stabilizing for all x E JR4.Physically, this implies global asymptotic stability for

LI (x) = . (56)
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the closed loop system from all initial configurations, except in the case when 17= 00.

This case corresponds to direction cosines (Yl, Y2, Y3) = (0,0, -1) in equation (5), that
is, the top symmetry axis is along the downward direction. Therefore, global stability here
implies stability from all initial conditions except the initial condition corresponding to this
singular "upside-down" configuration. (Note that by the global stabilizing nature of the
control laws of the system in (co, 17)coordinates, one has that 17(t) < 00 for all t 2: 0 as
long as 17(0)#- 00.) If the top is initially upside down, then one can apply an arbitrary input
to drive the top to any nonsingular orientation. The stabilizing control laws obtained above
can then be applied from this new orientation. Thus, the top can be globally asymptotically
stabilized to the sleeping motion, including the singular one.

s. Numerical Examples

In this section we apply the control laws obtained in Section 4 to stabilize the spinning top
to the sleeping motion. We assume that the top parameters are J1 = i = I, mg = 3 and
h = 0.2. If Q = 1then b = 0.2, C= 6, which corresponds to a unstable top. If the initial
conditions are x (0) = (0,0,0.01,0.01)Twhich implies initiallythe slowly spinning top has
zero transverse angular velocity with tilt angle e = 1.62 deg. Obviously,without external
control inputs the top will fall toward the downward position. To demonstrate the effect of
the control laws, we apply the control laws (53) at t = 3.1 sec when the tilt angle is about
150 deg. Figures 1-3 show the time history of the tilt angle e, the states X3, X4 and the
control effort" 1, "2, respectively. It is seen from Figures 1 and 2 that before the controls
are applied (t < 3.1 sec), the tilt angle e grows rapidly and the statesx3, X4decrease rapidly
to large negative values, which correspond to the upside down configuration, and after the
controls are applied the tilt angle e and the states X3, X4 are driven to zero asymptotically
which correspond to the sleeping motion of the top.

As another example, we consider a stable top which is initially under steady precession.
The specifications of the top are It = i = 1, mg = 3 and h = 4/3.5. If Q = 3.5
thenb = 4, C= 6. The initialconditionsarex(O)= (11.47,3.45,-.407, 1.354)T,which
implies that the top is initially precessing with tilt angle e = 109.47deg. The control laws
(53) are applied at t = 15 sec. Figures 4-6 show the tilt angle e, the states X3, X4 and the
control effort" 1, "2, respectively. It is seen from Figures 4 and 5 that before the controls are
applied (t < 15 sec) the tilt angle e is constant and the states X3, X4 are periodic functions.
After application of the feedback control law the tilt angle e and the states X3, X4 are driven
to zero asymptotically.

We note in passing that, without loss of generality, the gain and control parameters in
these simulations were all taken equal to unity.

6. Conclusions

In this paper, the stability and stabilization of a spinning top were examined. A new
formulation of the kinematics, which facilitates the design of feedback control laws is
introduced. In particular, the use of stereographic coordinates is shown to be extremely
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Figure 3. Control history for u\ and U2.
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helpful, facilitating the analysis and control design for problems in rotational dynamics.
Stabilizing control laws using only two torque actuators were synthesized by employing
techniques from the theory of cascade systems and from Hamilton-Jacobi-Bellman theory
with zero dynamics. The final result is a methodology which leads to a construction
of a family of optimal, nonlinear feedback control laws, which provide great flexibility
in the control synthesis. Although the methodology is demonstrated using the spinning
top example, it is believed that this theory will be helpful for a broad class of problems
encountered in rotational dynamics and kinematics.
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