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SUMMARY

In this paper, we present a Lyapunov function for systems containing a double integrator and with
controller saturation. This Lyapunov function is composed of a positive-semide"nite quadratic term and an
integral term. The main result provides a su$cient condition that guarantees a system with a double
integrator can be globally stabilized by a saturating linear controller. For a triple-integrator system the
saturated linear controller does not satisfy the su$cient condition, which agrees with the known result.
Copyright ( 1999 John Wiley & Sons, Ltd.
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1. INTRODUCTION

The input saturation problem is intrinsic to automatic control technology. In fact, no technolo-
gical advance can circumvent rate and amplitude constraints on electromechanical actuators.
Furthermore, cost constraints often force control engineers to extract the best possible perfor-
mance from components with limited capability, thus increasing the occurrence of saturation.
The importance and pervasiveness of saturation is re#ected by the extensive research devoted to
the problem. See Reference 1 for a recent bibliography.

In practice saturation manifests itself in two ways. First, a control law may command a control
input that the actuator is unable to produce either in terms of amplitude or rate. When integral
control is used, this situation may entail windup and possible instability. In addition, for chosen
control system hardware it is often desirable to extract the best possible performance. In the
absence of an energy or fuel constraint, this goal may require that the actuators operate at or near
saturation levels in order to maximize performance. In this case actuator operation at saturation



limits is not necessarily to be avoided but rather may be desirable so as to maximize the
e!ectiveness of the available control input.

The distinction between stable and unstable plants is important when addressing saturation
issues. If the plant is open-loop stable, then saturation is only an issue when performance is
quanti"ed since the zero control is unsaturated and stabilizing. On the other hand, global
stabilization of plants with open right half-plane poles is impossible in the presence of saturation.
In fact, a rare disturbance of high magnitude can perturb the state and render the equilibrium
unrecoverable. Therefore, maximizing the domain of attraction for such plants is often the
primary objective.

In the context of linear systems with amplitude saturation, there are several fundamental
questions concerning the saturation problem that warrant consideration, namely:

1. What is the largest class of systems that can be globally stabilized in the presence of
saturation?

2. What is the largest class of systems that can be globally stabilized by a saturated linear
controller?

3. For systems that can be globally stabilized by a saturated linear controller, which un-
saturated linear globally stabilizing controllers are also globally stabilizing in the presence
of saturation?

The "rst question has been resolved in References 2 and 3, where it was shown that a linear
system is globally stabilizable if and only if its poles are contained in the closed left half-plane.
Controllers that achieve this objective have been given in References 4 and 5.

With regard to the second question, it is known that a system with a defective triple (or greater)
imaginary axis eigenvalue cannot be globally stabilized by a saturated linear controller.5 For
systems with a defective double zero eigenvalue, stabilization by saturated linear control is
possible,4 while the case of a defective double nonzero imaginary eigenvalue is open. Therefore, it
remains, in accordance with the third question, to determine which unsaturated linear globally
stabilizing controllers are also globally stabilizing in the presence of saturation.

The goal is of this paper is to present a su$cient condition that guarantees closed-loop global
stability of saturated linear controllers. Our main result (Theorem 2.1) is a Popov-like su$cient
condition based upon a Lure-Posnikov Lyapunov function.6,7 This result can be used either to
verify global stabilizability of a given saturated linear controller or to synthesize a stabilizing
saturated linear controller. Analysis of this su$cient condition shows that it cannot be satis"ed
when the system contains a triple integrator in accordance with the results of Reference 4.

2. ANALYSIS OF SYSTEMS WITH SATURATION NONLINEARITY

We consider the closed-loop system

xR (t)"Ax(t)#Bp(u(t)), x(0)"x
0

(1)

u(t)"Kx(t) (2)

where
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in which x
z
3Rnz, x

s
3Rns, n"n

z
#n

s
, u3Rm is the control input, and A

z
, A

s
, B

z
, B

s
, K

z
, K

s
, are

real matrices. We assume that spec(A
z
)LIA and spec(A

s
)LOLHP. The function p :RmPRm is

an independent symmetric saturation function, that is, p (u)O [p
1
(u

1
)2p

m
(u

m
)]T, where

p
i
(u

i
)O sat

u8 i
(u

i
), i"1,2 , m (3)

uJ
i
'0 is the saturation level of p

i
, and, for a'0,

sata(v)"v, Dv D)a

"sgn(v)a, Dv D'a

For m*2 the saturation function p ( ) ) may change the direction of the control input, that is,
p(u (t)) is not necessarily in the same direction as u (t). Note that p (u) can be written as

p (u)"b (u)u

where b (u)O diag(b
1
(u

1
) ,2 , b

m
(u

m
) ) and b

i
: RP(0, 1], i"1,2 , m, is de"ned by

b
i
(u

i
)"1, Du

i
D)uN

i

"

uN
i

Du
i
D
, Du

i
D'uN

i

Our main result is the following.

Theorem 2.1

Let

R
z
3Nnz]nz , R

s
3Nns]ns ROC

R
z

0

0

R
s
D , R

2
3DNm]m, N"diag (N

1
,2 ,N

m
)3DN m]m,

K"C
K

1
F

K
m D , K

i
3R1](nz`ns), i"1,2 ,m

and assume that either (i) (A, K) is observable, or (ii) (A
s
, R

s
) is observable and (A, K) is detectable.

Furthermore, suppose there exists P3Nn]n satisfying

0"ATP#PA#R (4)

0"BTP#NKA#R
2
K (5)

0(2R
2
!(NKB#BTKTN) (6)

0(P#KTNK (7)

Then the closed-loop system (1) and (2) is globally asymptotically stable with the Lyapunov
function

< (x)"xTPx#2
m
+
i/1
P

Kxx

0

N
i
p
i
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i
) du

i
(8)
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Furthermore, the cost functional

J (x
0
)"P

=

0

[xT(t)Rx (t)#2uT(t)R
2
p (u(t) )!pT (u(t) ) (NKB#BTKTN )p (u(t) )]dt

satis"es J (x
0
)"< (x

0
).

Proof. To show that < (x) is positive de"nite, note that

<~1(0)"Mx3Rn :xTPx"0NWMx3Rn :N
1
K

1
x"0NW2WMx3Rn :N

m
K

m
x"0N

"Mx3Rn :xTPx"0NWMx3Rn :NKx"0N

"Mx3Rn :xT (P#KTNK)x"0N

It then follows from (7) that<~1(0)"M0N. Hence,< is positive de"nite. Next, by using (1) and (2),
the derivative <Q (x) of < (x) along a trajectory of the closed-loop system can be written as

<Q (x)"[xT pT (u)] C
ATP#PA

BTP#NKA

PB#ATKTN

NKB#BTKTND C
x

p (u)D
Adding and subtracting 2pTR

2
[Kx!p (u)] and using (4) and (5) yields

<Q (x)"!xTRx!2pTR
2
[Kx!p (u) ]!pT[2R

2
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)0.

Thus <Q (x)"0 implies that R
z
x
z
"0, R

s
x
s
"0 and u"Kx"K

s
x
s
#K

z
x
z
"0. In this case, the

system dynamics becomes xR (t)"Ax (t). In addition, if (A, K ) is observable, then it follows that the
column vectors of KeAt are linearly independent. Hence the set x3Rn such that <Q (x)"0 consists
of x"0 only. Similarly, the observability of (A

s
,R

s
) implies that x

s
"0, and the detectability of

(A, K) is equivalent to the observability of (A
z
, K

z
), which in turn implies that x

z
"0. Hence in

both cases the invariant set of<Q (x)"0 consists of 0. It follows that< (x (t) )P0 as tPR and the
closed-loop system (1), (2) is globally asymptotically stable. Finally,

J (x
0
)"P

=

0

[xT(t)Rx(t)#2uT (t)R
2
p (u(t) )!pT (u(t) ) (NKB#BTKTN )p (u(t) )]dt

"P
=

0

!<Q (x (t) )dt

"< (x (0)). K

Remark 2.1

Unlike Reference 7 note that P*0 and R
2
*0 instead of P'0 and R

2
'0.
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Remark 2.2

Forming (4)#KT (5)#(5)TK, it follows that

0"(A#BK)T (P#KTNK)#(P#KTNK ) (A#BK)#R#KT (2R
2
!BTKTN!NKB)K.

Furthermore if (6) is satis"ed and (A, K) is detectable then it follows from (7) that A#BK is
asymptotically stable.

Remark 2.3

Theorem 2.1 can be used to guarantee global stability of a given controller, or it can be used to
construct a saturated linear controller.

3. DOUBLE INTEGRATOR

To shed the light on the structure of solutions when n
z
*1, partition
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P
zs

P
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The following technical lemma is critical to our development.

Lemma 3.1

Let R
z
3Nnz]nz . Then there exists P

z
3Nnz]nz satisfying

0"AT
z
P
z
#P

z
A

z
#R

z
(9)

if and only if R
z
"0.

Proof. If R
z
"0 then choose P

z
"0. Conversely, we transform A

z
into real Jordan form

A
z
"diag(A

zu0
, A

zu1
,2 , A

zuf
), where A

zui
"diag (A

zui (1,1)
,2 , A

zui (ri ,ri )
), i"0, 1,2 , f, and

A
zui ( j, j )

has the structure

A
zui ( j, j )

"0 or Z
2

or Z
3
2, i"0, j"1,2 , r

0

"u
i
J or (u

i
I
2
?J#Z

2
? I

2
) or (u

i
I
3
? J#Z

3
? I

2
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i
(10)
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where u
i
'0. Then it is easy to show that there exists a positive semide"nite solution P

zui ( j, j )
for

the diagonal terms of equation (9), i.e.,

0"AT
zui ( j, j )

P
zui ( j, j )

#P
zui ( j, j )

A
zui ( j, j )

#R
zui ( j, j )

, i"0, 1,2 , f, j"1,2 , r(i)

if and only if R
cui ( j, j )

"0, i"0, 1,2 , f, j"1,2 , r
i
. Indeed for each A

zui ( j, j )
its corresponding

solution P
zui ( j, j )

is in the form of

P
zui ( j, j )

"p
zij

or C
0

0

0

p
zij
D or C

0 0 0
0 0 0
0 0 p

zij
D2, i"0, j"1,2 , r

0

"p
zij

I
2

or C
0

0

0

p
zij

I
2
D or C

0 0 0
0 0 0
0 0 p

zij
I
2
D2 , i"1,2 , f , j"1,2 , r

i
(11)

where p
zij
'0, i"0, 1,2 , f, j"1,2 , r

i
. However, since R

z
is assumed to be positive

semide"nite, it follows that R
z
"0. Note that in this case P

z
"diag (P

zu0
P
zu1

2P
zuf

), where
P
zui

"diag (P
zui (1,1)

2P
zui (r (i),r (i) )

), i"0, 1,2 , f. K

Remark 3.1

Lemma 3.1 can be read as follows: Let P
z
be non-negative de"nite and let A

z
be such that all of

its eigenvalues have zero real part. Then the matrix AT
z
P

z
#P

z
A

z
is either zero or it has at least

one positive and one negative eigenvalue.

Lemma 3.2

Assume that (A
z
, B

z
) is controllable. Then there exists P

z
3Nnz]nz , R

2
3DNm]m, N3DNm]m,

and K
z
3Rnz]m such that rank ([N R

2
])"m and

0"AT
z
P

z
#P

z
A

z
(12)

0"BT
z
P

z
#NK

z
A

z
#R

2
K

z
(13)

0(P
z
#KT

z
NK

z
(14)

if and only if every eigenvalue of A
z
is semisimple, except zero which may appear as a defective

double eigenvalue. Furthermore, in this case (A
z
, K

z
) is observable.

Proof. In order not to be overwhelmed by notation, we can simply assume that A
z
contains one

subsystem, and in this subsystem there is only one Jordan block. We also assume that (A
z
, B

z
) is

in controllable canonical form. We start by proving the su$ciency part, that is, A
z

contains
simple poles on the ju axis or double poles at the origin. It is easy to see that if
(A

z
, B

z
)"([0], [1]), then (P

z
, K

z
, N, R

2
)"(0, k, 1, 0) or (!k, k, 0, 1) satis"es (12)}(14), where

k(0. If

(A
z
, B

z
)"AC

0 1

0 0D , C
b
1
1 DB
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where b
1

is arbitrary, then

(P
z
, K

z
, N, R

2
)"AC

0

0

0

!k
1
D , [k

1
k
2
] , 1, 0B

satis"es (12)}(14) where k
1
(0 and k

2
is arbitrary. If A

z
"u

1
J, where u

1
'0, and (A

z
, B

z
) is

controllable but otherwise B
z
is arbitrary, then (P

z
, K

z
, N, R

2
)"(p

z11
I
2
, !p

z11
R~1

2
BT

z
, 0, R

2
)

satisfy (12)}(14), where p
z11

'0, R
2
'0. We prove the necessity part by contradiction. First

consider a triple pole at the origin so that

A
z
"C

0 1 0
0 0 1
0 0 0 D

Then

P
z
"C

0 0 0
0 0 0
0 0 p

c0
D

where p
c0
'0, and it can be seen that, for all values of B

z
, equation (14) cannot be satis"ed, and

hence the solutions of (12)}(14) do not exist. Next, for non-zero double poles on the ju axis,

A
z
"C

u
1
J

0

I
2

u
1
JD

where u
1
'0, it follows that

P
z
"C

0

0

0

p
z11

I
2
D

where p
z11

'0. Again it is easy to see that, for all values of B
z
, (14) cannot be satis"ed, and hence

the solutions do not exist. Similarly, for three or more poles located at the same place on the ju
axis, it can be shown that solutions of (12)}(14) do not exist. Through the structure of the solution
K

z
, it can be seen from the PBH test that (A

z
, K

z
) is observable. This completes the proof. K

Remark 3.2

The proof of Lemma 3.2 suggests that a non-zero defective double pole on the ju axis cannot be
globally stabilized by using a saturated linear state feedback controller. However, this problem
remains open.

From the above lemmas, we have the following result which provides a necessary condition for
the existence of a solution to (4)}(7).

Theorem 3.1

Suppose that P and R satisfy (4)}(7). Then P and R are of the form

P"C
P
z

0

0

P
z
D , R"C

0

0

0

R
s
D
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where P
z
3Nnz]nz , P

s
3Nns]ns , R

s
3Nns]ns , and every eigenvalue of A

z
is semisimple, except the

one at the origin which can be a double defective eigenvalue.

4. EXAMPLES

Example 4.1

Consider the second-order open-loop asymptotically or Lyapunov stable system

xR (t)"C
0

a
1

1

a
2
D x (t)#C

0

1D p (u(t) )

u(t)"[k
1

k
2
] x (t)

where a
1
(0, a

2
)0, k

1
(0, k

2
(0. Letting

N"1, R"C
r
1
0

0

r
2
D

where

r
1
"G

2a
1
(a

1
K

2
#R

2
K

1
)

0

if a
2
O0,

if a
2
"0

r
2
"G

2a
2A

r
1

2a
1
a
2

#R
2
K

2
#K

1
#a

2
K

2B
0

if a
2
O0,

if a
2
"0

and R
2

satis"es

A!
a
1
K

2
K

1

(R
2B and A!a

2
!

a
1
K

2
K

1
#a

2
K

2

(R
2B if a

2
O0 and K

1
#a

2
K

2
'0

!

a
1
K

2
K

1

(R
2
(!a

2
!

a
1
K

2
K

1
#a

2
K

2

if a
2
O0 and K

1
#a

2
K

2
(0

R
2
'!

a
1
K

2
K

1

if a
2
O0 and K

1
#a

2
K

2
"0

R
2
"!

a
1
K

2
K

1

if a
2
"0

it can be shown that (4)}(7) are satis"ed. In addition, we have the required conditions that either
(i) (A, R) is observable and (A, K) is detectable (when a

2
O0), or (ii) (A, K) is observable (when

a
2
"0). Hence, Theorem 2.1 implies that x"0 is a globally asymptotically stable equilibrium

point of the saturated closed-loop system for every saturation level uN
1
'0.
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Example 4.2

Consider the open-loop asymptotically stable system

xR (t)"Ax (t)#Bp(Kx(t) ) (15)

where A3Rn]n, B3Rn]m, K3Rm]n, and (A, B) is controllable. Consider LQR design with

J"P
=

0

[xT(t) (R#PBR~1
2

BTP)x (t)#uT(t)R
2
u (t)]dt

where R3Pm]m, R
2
3Pm]m, and R

2
is diagonal, P3Pn]n, satis"es ATP#PA#R"0 and

K"!R~1
2

BTP. Note that (A, R) is observable. Then it is straightforward to see that (4)}(7) are
satis"ed with N"0. Hence the resulting closed-loop system is globally asymptotically stable.

Example 4.3

Consider system (15) where A3Rn]n, B3Rn]m, K3Rm]n, (A,B) is controllable and A is skew
symmetric. Consider LQR design with

J"P
=

0

[xT (t)BR~1
2

BTx (t)#uT (t)R
2
u (t)]dt

where R
2
3Pm]m is diagonal, and K"!R~1

2
BT. The PBH test and the controllability of (A,B)

imply

rankC
jI!A

K D"rank C
jI#AT

!R~1
2

BTD"rank [jI#A !BR~1
2

]"n, j3C

which implies that (A, K) is observable. Then it is straightforward to see that (4)}(7) are satis"ed
with P"I

n
, and N"0. Hence the resulting closed-loop system is globally asymptotically stable.

Example 4.4

Consider the double integrator plant (4.1) where

A"C
0 1

0 0D , B"C
0

1D , x"C
x
1

x
2
D , K"[k

1
k
2
]

Let N"1, R
2
"0, R"0 and consider the Lyapunov function

< (x)"xTPx#2 P
Kx

0

p (u)du

where P3N2]2. Solving (4) and (5) gives

P"C
0

0

0

!k
1
D

Inequalities (6) and (7) then require k
2
(0 and k

1
(0, respectively. This shows that for arbitrary

k
1
(0, k

2
(0, the origin of the corresponding closed-loop system with u"k

1
x
1
#k

2
x
2

is
globally asymptotically stable. Note that in this example, R

2
must be 0 since otherwise inequality
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Figure 1. Response x
1
(t) of the system given in Example 4.4

(7) cannot be satis"ed. For illustration purpose, Figure 1 shows the system response x
1
(t) with

initial condition x (0)"[10 10]T, controller gain K"[!1 !2] and saturation level uN
1
"1.

Example 4.5

Consider a system, taken from Reference 11, containing a double integrator,

xR (t)"C
0 1 0 0
0 0 1 0
0 0 0 1
0 0 !2 !2 D x (t)#C

0
0
0
1D u (t), x(0)"C

0
0

10
!15 D

u(t)"sat (Kx(t) )

Choose

R"C
0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 1 D , R

2
"0 and N"1
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Figure 2. Response x
1
(t) of the system given in Example 4.5

The solution P of (4) has the form

P"C
0 0 0 0
0 p p 1

2
p

0 p p#5
4

1
2
p#1

4
0 1

2
p 1

2
p#1

4
1
4
p#3

8
D

where p*0. The gain KO [k
1

k
2

k
3

k
4
] is required to satisfy equation (5), which is

equivalent to

0"[0 1
2
p 1

2
p#1

4
1
4
p#3

8
]#[0 k

1
k
2
!2k

4
k
3
!2k

4
]

Hence

K"[!1
2
p 2k

4
!1

2
p!1

4
2k

4
!1

4
p!3

8
k
4
] (16)

To satisfy (6), k
4
(0 is required. Finally, since det (P#KTNK )" 13

128
p3, we have

P#KTNK'0 if p'0. This shows the state feedback controller u (t)"sat (Kx (t)) is globally
stabilizing with K given by (16), where p'0 and k

4
(0. For illustration purpose, Figure 2 shows

the system response with p"2, k
4
"!1 and saturation level uN

1
"1.
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Example 4.6

Although Theorem 2.1 is a su$cient condition, the following example illustrates that a triple
integrator cannot be stabilized globally by means of a saturated linear controller which agrees
with the known result proved also by Fuller.8 Consider the triple integrator system (16) where

A"C
0 1 0
0 0 1
0 0 0 D , B"C

0
0
1 D

and K3R1]3. Again, by letting R"0, N"1 equations (4)}(6) can be written as

0"C
0 p

11
p
12

p
11

2p
12

p
13
#p

22
p
12

p
13
#p

22
2p

23 D
0"[p

13
#R

2
k
1

p
23
#k

1
#R

2
k
2

p
33
#k

2
#R

2
k
3
]

0(R
2
!k

3

in which we have de"ned P"[p
ij
] and KO [k

1
k
2

k
3
]. From the above two equations and

the requirement P*0, we have

P"C
0 0 0
0 0 0
0 0 p

33 D
where p

33
'0, and R

2
k
1
"0, k

1
#k

2
R

2
"0. Note that if R

2
'0, then we have k

1
"k

2
"0.

Furthermore, the resulting gain matrix K cannot satisfy (7) for all values of k
3
. Similarly, if

R
2
"0, it follows that k

1
"0, so that again (7) cannot be satis"ed for all values of k

2
and k

3
.

Example 4.7

Finally, we consider a stable linear system with stabilizing linear feedback that when saturated
is not globally stabilizing.12 Consider (15) where

A"C
0 1 0
0 0 1

!6 !11 !6 D , B"C
0
0
1 D , K"[!l3#6 !3l2#11 !3l#6]

Note that the Jordan form of A#BK is

C
!l 1 0

0 !l 1
0 0 !l D

which indicates that the unsaturated closed-loop system is globally asymptotically stable for
l'0. Letting R"diag[r

11
r
22

r
33

], P"[p
ij
] and solving (4), (5) yields

r
11
"N (!216l#432)#R

2
(12l3!72)

r
22
"N (22l3!36l2!294l#588)#R

2
(!12l3#66l2!36l!98)

r
33
"N (!2l3#36l2!150l#180)#R

2
(!6l2#36l!50)
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and

p
11
"N (6l3!396 l#756)#R

2
(11l3#18l2!132)

p
12
"N (18l2!216l#366)#R

2
(6l3#18l!72)

p
13
"N (!18l#36)#R

2
(l3!6)

p
22
"N (6l3#33l2!378l#599)#R

2
(!l3#18l2#33l!126)

p
23
"N (l3!33l#60)#R

2
(3l2!11)

p
33
"N (3l2!18l#25)#R

2
(3l!6)

Solving (6) yields

0(R
2
#N(3l!6)

In addition to this, we need also that R'0, or equivalently, r
11
'0, r

22
'0, r

33
'0. All these

conditions constitute the constraint on the parameter l. At "rst, if N"0, then it is easy to show
that the range of l which provides globally asymptotic stability is 2)18(l(3)82. Then, without
loss of generality, we choose N"1. It can be shown that if 0)93(l(12)3 then there
exists R

2
that satis"es the required conditions and the resulting closed-loop system is globally

asymptotically stable in the presence of saturation. This demonstrates that the addition of the
integral term to the Lyapunov function used by Theorem 2.1 helps to improve the prediction
of the required range of l. Note that through numerical experiment, we found that if
x
0
"[100!100 100]T, saturation level uN "10, and 0(l)28)5, then we have a globally

asymptotically stable system. However, if, l"28)6 a limit cycle will be observed.

5. CONCLUSION

In this paper, we presented a Lyapunov function given in Theorem 2.1 for a system with
a saturated controller. This Lyapunov function is composed of a positive semide"nite quadratic
term and an integral term. By using this Lyapunov function we showed that a double integrator
system can be globally stabilized by a saturating linear controller, whereas, for a triple-integrator
system the saturated linear controller does not satisfy the conditions of Theorem 2.1, which agrees
with the known result. Several examples are given to illustrate the usage of the main theorem.

APPENDIX

Notation

Rn set of n]1 real vectors
Pn]n set of n]n positive-de"nite matrices
Nn]n, DNn]n set of n]n non-negative-de"nite, diagonal non-negative-de"nite matrices
DDM DD norm of matrix M
M* complex conjugate transpose of M
spec(A) set of eigenvalues of A
Re(z) real part of complex variable z
M*0 symmetric matrix M is positive semide"nite
M'0, M(0 symmetric matrix M is positive de"nite, negative de"nite, respectively
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Z
2
, Z

3
,2 OC

0 1

0 0D , C
0 1 0
0 0 1
0 0 0 D ,2

J,I
r

OC
0

!1

1

0D , r]r identity matrix

vec( ) ), ?, = column-stacking operator, Kronecker product and sum
IA, OLHP imaginary axis, open left half-plane
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