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Higher-Harmonic-Control Algorithm for Helicopter Vibration
Reduction Revisited

Dan Patt,∗ Li Liu,∗ Jaganath Chandrasekar,† Dennis S. Bernstein,‡ and Peretz P. Friedmann§
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The higher-harmonic-control (HHC) algorithm is examined from a control theory perspective. A brief review
of the history and variants of HHC is given, followed by a careful development of the algorithm. An analytic
convergence and robustness analysis is then performed. Online identification with the adaptive variant of the
algorithm is also addressed. A new version of the algorithm, relaxed HHC, is introduced and shown to have
beneficial robustness properties. Some numerical results comparing these variants of the HHC algorithm applied
to helicopter vibration reduction are also presented. The results presented unify and extend previous work on the
higher-harmonic-control algorithm.

Nomenclature
A = matrix relating plant input and output

between updates
A� = adjoint matrix of A, (Ā)T

D = matrix defined to be TT QT + R
Ff = exponential window
In = identity matrix of size n × n
J = quadratic-form cost function
JLS,∞ = converged quadratic-form cost function for

adaptive control
JT,α,∞ = converged cost function for relaxed

invariant control
JT̂ ,∞ = converged cost function for invariant control with

estimate T̂ for T
Kk + 1 = matrix defined to be �uT

k + 1Pk + 1

k = integer index between control inputs
M = matrix defined to be D−1(TT Q + ST )
m = number of harmonics in control input
Nb = number of rotor blades
Pk = matrix defined as (�Uk�UT

k )
−1

p = number of harmonics in measured output
Q = weighting matrix for plant output in cost function

of size 2p × 2p
R = positive-definite weighting matrix for control input

in cost function of size 2m × 2m
rank = matrix rank
/rev = frequency of rotor revolution
S = cross-weighting term in objective function J
spec(A) = spectrum of A, spec(A) = {λA1, . . . , λAn}
T = sensitivity matrix relating control input to plant output
T̂ = estimate of the sensitivity matrix T
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T̂LS = least-squares estimate of the sensitivity matrix T
tk = time of controller update
uk = control input at time tk , vector of length 2m
uk,opt = optimal control law
W = matrix relating plant response to disturbance
Wα = scalar weighting factor used to adjust between

noise and vibration reduction
w = disturbance to plant
zk = plant output at time tk , vector of length 2p
z0 = initial output condition of plant output
α = relaxation factor
Γs = matrix defined to be (I − M̂�T)−1

γ f = exponential window factor
�Uk = matrix composed of relative parameters �uk

�uk = relative parameter uk − uk − 1

�Zk = matrix composed of relative parameters �zk

�zk = relative parameter zk − zk − 1

εk + 1 = vector defined to be �zk + 1 − T̂LSk �uk + 1

ιi = imaginary part of the eigenvalue λi

�max = maximum real part of eigenvalues
�min = minimum real part of eigenvalues
(λA)i = i th eigenvalue λi of matrix A
λαi = αλi + 1 − α
µ = helicopter advance ratio
ρs(A) = spectral radius of A,

max1 ≤ i ≤ n |λAi | = sprad(A) = ρs(A)

σi = real part of the eigenvalue λi

τ = time interval between control updates
0n = zero matrix of size n × n

Introduction

S TRINGENT requirements for low vibration levels (less than
0.05 g) have motivated the development of active control con-

cepts for vibration reduction. The various active control approaches
that have been developed are described in Ref. 1. These control tech-
niques fall into two separate categories: 1) active control approaches
aimed at reducing vibrations in the rotor before they propagate into
the fuselage and 2) active control approaches implemented in the
fuselage using an approach known as active control of structural re-
sponse (ACSR). Within the first category of active control, where the
primary objective is to reduce vibrations in the rotor, two approaches
have emerged. These are 1) higher harmonic control (HHC), where
the blades are activated in the nonrotating swashplate by introducing
pitch commands, and 2) individual blade control (IBC) where each
blade can be controlled independently in the rotating frame. Sev-
eral implementations of IBC are available: 1) the conventional or
earliest implementation based on pitch actuation at the blade root in
the rotating system, 2) actively controlled partial-span trailing-edge
flaps, and 3) the active-twist rotor where the entire blade is twisted
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Fig. 1 Overview of active control techniques.

Fig. 2 Overview of HHC for vibration reduction in rotorcraft.

by piezoelectric fibers embedded in the blade. These approaches
are illustrated schematically in Fig. 1, and additional description of
these approaches can be found in Ref. 1. Both HHC as well as IBC
active control approaches rely on what is known as the conventional
HHC algorithm. Furthermore, even the implementation of ACSR is
based on the HHC algorithm.

One of the most comprehensive overviews of the HHC algorithm
and its variants was written by Johnson.2 This detailed report pro-
vided a history of the development of the algorithm and its imple-
mentation in early experimental and numerical studies. A graphical
description of the algorithm and its implementation on a helicopter
is shown in Fig. 2.

Johnson characterizes the variants of the HHC algorithm as shar-
ing three properties:

1) The first property is a linear, quasi-static, frequency-domain
model of the helicopter response.

2) The model is identified by a least-squared error or Kalman-
filter method. Identification can either be offline (invariant HHC) or
online (adaptive HHC).

3) A quadratic-form cost function is used.
Since this review,2 a considerable amount of research on the HHC

algorithm has been done, and its application has been extended be-
yond swashplate-actuated HHC systems to the IBC and ACSR ap-
proaches as mentioned earlier. Recent research has largely focused
on identification techniques, application of the controller in both
open-loop and feedback forms, and the effects of periodic coeffi-
cients and nonlinearity that are inherent to rotorcraft.

Of particular note among the many experimental studies per-
formed with this algorithm is the work of Shaw and colleagues on
the helicopter vibration problem, extending from the 1970s to the
late 1980s.3−5 Initial open-loop wind-tunnel tests up to µ = 0.3 in-
dicated that vibratory hub loads were essentially linearly dependent
on the harmonic control input, confirming the feasibility of HHC
for this application. This was followed by tests in closed-loop us-
ing real-time identification of the transfer function. In these studies,

three different versions of HHC were considered, each using a dif-
ferent identification procedure: 1) a fixed-gain controller using lo-
cal linearization of the current vibration levels, 2) a scheduled-gain
controller that automatically selected the transfer function matrix
based on the current flight condition, and 3) three adaptive HHC
controllers that automatically update the transfer matrix. A primary
conclusion of this series of tests was that the fixed-gain controller
was highly successful in reducing vibrations throughout most of the
level flight envelope. Shaw et al.5 also found that measurements of
the sensitivity matrix were highly repeatable. Some of Shaw’s suc-
cess might have been because vibration sensors were placed in the
rotating frame.

Despite this demonstrated success with the simple fixed-gain
controller, other studies have observed unstable behavior with in-
variant HHC.6 In wind-tunnel tests, gain-scheduled and fixed-
gain controllers were shown to saturate the control inputs without
achieving any vibration reduction. However, several adaptive vari-
ants performed very well.7 This test also found that open-loop de-
terminations of the sensitivity matrix were not very repeatable and
did not necessarily compare with the sensitivity matrix found by
adaptive identification.7 In a later simulation study,8 Molusis con-
sidered the effect of nonlinearity on HHC. He attributes the earlier
issues with convergence6,7 to nonlinearity in the system. Multiple
minimum solutions were found in several cases, often causing the
controller to converge to a false minimum. A nonlinear relationship
between HHC input and vibration output was also considered by
means of Volterra series.

The aforementioned wind-tunnel tests were followed by flight
tests.9 An OH-6A helicopter with an HHC system was flown from
zero airspeed to 100 kn, using HHC in both open-loop and closed-
loop modes. These tests showed a significant reduction in helicopter
vibrations. However, in transient flight unsatisfactory results were
observed.10 A HHC system was also flight tested onboard an SA 349
Gazelle.11 Both adaptive and fixed-gain controllers were found to be
quite successful in reducing vibration during flight, and the adap-
tive technique had success in maneuvering flight. The successful
HHC wind-tunnel and flight tests were all performed with articu-
lated rotors. A subsequent numerical study found that to implement
vibration reduction on a hingeless rotor, significantly higher HHC
angles were required, leading to increased blade root moments and
pitch link loads.12

In an attempt to resolve the apparent discrepancy between the
wind-tunnel tests of Shaw and coworkers,3−5 Hammond6 and
Molusis et al.,7 Nygren and Schrage13 conducted a series of numer-
ical simulations with a helicopter aeroelastic response code. This
study suggested that fixed-gain control could achieve satisfactory
results if the helicopter airspeed were within about 20 kn of the
speed at which identification was performed. Constant-thrust ma-
neuvering flight was also studied, where results showed a distinct
advantage for adaptive control. The adaptive controller was also
found to quickly recover from improper initialization.

Jacklin14 has performed an extensive investigation of five system
identification algorithms for HHC. The primary focus of the study
was to compare several least-squares and Kalman-filter techniques.
It was found that generally comparable results were obtained; how-
ever, the Kalman-filter methods required a substantial amount of
parameter tuning, whereas their least-squares counterpart required
much less. The study also found that open-loop identification was the
most reliable and could obtain the best vibration reduction results.
The controller could achieve minimum vibration even before the
sensitivity matrix converged to the correct value. Accurate closed-
loop identification was found to be more difficult than open-loop
identification because the control commands were chosen to con-
trol the helicopter vibrations rather than to provide excitation. As
vibrations approached the minimum value, identification was com-
plicated by the low signal-to-noise ratio. Probing signals improved
the online identification process but produced unacceptable vibra-
tion increases.

Hall and Wereley15 have developed a continuous-time internal-
model principle16 implementation of HHC, which was shown to
be, within first approximation,17 identical to the classical T-matrix
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HHC discussed earlier. This study dealt only with the nonadaptive
(invariant) version of the HHC algorithm. Implementation of this
approach required the transfer functions between input and response
at different flight conditions—information that can be obtained only
experimentally. A similar approach was adopted in Ref. 18 and used
for numerical simulations of algorithm stability during vibration
reduction.

Sometime after most of this research was performed in the rotor-
craft field, an almost identical algorithm was applied in Ref. 19 to
the problem of balancing a rotor on magnetic bearings. In this study,
the term convergent control was used for the HHC algorithm, in ref-
erence to the requirement of achieving a steady-state solution before
feeding back information to the controller. Robustness bounds were
also explored.

The preceding literature review has highlighted some of the more
relevant developments in the history of the HHC algorithm. Recent
applied work with this algorithm includes studies of blade-vortex-
interaction (BVI) noise and vibration reduction,20 dynamic stall,21

a highly nonlinear phenomenon, and also actuator saturation.22 No-
table among these studies is the scarcity of careful examination of
this algorithm from a more rigorous control perspective. The pri-
mary reasons for the success of the HHC algorithm are because of
its relative simplicity, its effectiveness, and, to some extent, its ro-
bustness. For general broadband disturbance rejection, there exist
fundamental tradeoffs that imply that disturbance reduction over a
frequency range entails amplification at other frequencies.23 How-
ever, in the case where disturbances have specific, known frequen-
cies (tonal disturbances), very high gain can be applied at these
frequencies of disturbance, and excellent reduction can be achieved
without significant compromises. Thus, this disturbance rejection
algorithm is particularly suitable for rotorcraft because the distur-
bance is largely tonal, and the frequency of the disturbance is known
a priori.

The paper has the following objectives:
1) Discuss three versions of the HHC algorithm: a) the classical,

invariant version; b) the adaptive version, wherein a recursive-least-
squares method is used for online identification; and c) a new relaxed
variant.

2) Analyze the robustness of all three versions of HHC, including
conditions for stability and convergence. Both additive and multi-
plicative model uncertainty are considered.

3) Illustrate the use of the preceding variants of HHC through sim-
ulations of helicopter vibration control with an actively controlled
flap, and identify differences between the variants.

In achieving these objectives the paper provides a more compre-
hensive theoretical foundation, from a control theory perspective,
for this successful algorithm while enhancing our understanding of
its effectiveness and simplicity.

HHC Algorithm
The HHC algorithm is based on the assumption that the helicopter

can be represented by a linear model relating output z to control
inputs u. In previous studies dealing with a four-bladed rotor,1,20,21,24

the output z consisted of 4/rev vibration levels, while the input vector
u contained harmonic control inputs including 2/rev, 3/rev, 4/rev, and
5/rev components. These relations are illustrated schematically in
Fig. 2. Note that the vector z of length 2p is made up of the sine
and cosine components of the p harmonic elements in the output
signal z(t). Similarly, the vector u of length 2m is made up of the
sine and cosine components of m harmonic elements in the control
input signal u(t).

The stability analyses that follow consider only the stability of the
algorithm, not the closed-loop aeromechanical/aeroelastic stability
of the rotor system when control is engaged. The aeromechanical
stability problem has been examined numerically in Ref. 18.

The HHC algorithm is a frequency-domain approach applied to
disturbances (vibrations or noise) having known frequency content
that is usually associated with the number of blades and is connected
to the blade passage frequency Nb/rev. In the HHC algorithm, the
measurement of the plant output and update of the control input
are not performed continuously, but rather at specific times tk = kτ ,

Fig. 3 Higher-harmonic-control architecture.

where τ is the time interval between updates during which the plant
output reaches a steady level. In actual implementation of the algo-
rithm, this time interval can be one or more revolutions. During the
application of the algorithm, the system is allowed to reach a steady-
state (converged) condition, and measures of the vibratory response
amplitude and phase are used to determine the amplitude and phase
of the required control input signal for vibration reduction. In actual
helicopter flight, maneuvers or other transient behavior could pre-
vent the steady-state condition from being satisfied and compromise
the performance of the algorithm.

A diagram of the HHC system as implemented in a helicopter is
shown in Fig. 3. With the introduction of a disturbance w, represen-
tative of the helicopter operating condition, and the observation that
system updates are performed at times tk = kτ , the system dynamics
are now given by

zk = Tuk + Ww (1)

In the initial condition, when k = 0, this can be written as

z0 = Tu0 + Ww (2)

Subtracting Eq. (2) from Eq. (1) to eliminate the unknown w yields

zk = z0 + T(uk − u0) (3)

Equation (3) is referred to by Johnson as the global model of heli-
copter response.2 Note that this model depends on the assumption of
linearity and that the sensitivity T (and the starting condition z0) are
invariant and known without error either through an identification
procedure or direct measurement (offline identification).

The sensitivity T is given by

T = ∂z
∂u

(4)

The controller is based on a general quadratic cost function

J (zk, uk) = zT
k Qzk + 2zT

k Suk + uT
k Ruk (5)

However, in most applications the cross-weighting term in Eq. (5)
is neglected, and the cost function simplifies to

J (zk, uk) = zT
k Qzk + uT

k Ruk (6)

The optimal control law is determined from the requirement

∂ J (zk, uk)

∂uk
= 0 (7)

which yields the optimal control law uk,opt, given by

uk,opt = −(TT QT + R)−1(TT Q)(z0 − Tu0) (8)

Combining Eqs. (6) and (8), the minimum cost is found to be

J (zk, uk,opt) = (z0 − Tu0)
T [Q − (QT)D−1(TT Q)](z0 − Tu0) (9)
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where

D = TT QT + R (10)

This is the most basic version of the HHC algorithm, and it yields
an explicit relation for optimal control input.

It is also useful to consider another, recursive, form of Eq. (3),
where subsequent control updates are written as

zk + 1 = zk + T(uk + 1 − uk) (11)

In this equation, the index k refers to the controller update number,
an integer corresponding to each time the control algorithm gets
new values of the input vector zk and output vector uk . Note that
Eq. (3) is a special case of Eq. (11), where k = 0. However, from
Eq. (8), uk,opt is independent of k and remains constant for all future
control updates k ≥ 1. Equation (11) is referred to by Johnson2 as
the local controller, and it represents a linearization of the response
about the current control value.

Convergence Analysis
A recursive form of the optimal control law is developed to

demonstrate the one-step convergence property of HHC. Substi-
tuting Eq. (8) into Eqs. (3) and (5), the optimal value of zk for all
k ≥ 1 is given by

zk,opt = [I − TD−1(TT Q + ST )](z0 − Tu0) (12)

and thus

J (zk,opt, uk,opt) = (z0 − Tu0)
T [Q − (QT + S)D−1(TT Q + ST )]

× (z0 − Tu0) (13)

These values are attained after the first update.
Using Eq. (3), the optimal control law of Eq. (8) can be expressed

recursively as

uk + 1,opt = −D−1(TT Q + ST )(zk,opt − Tuk,opt) (14)

The state-space representation of the system dynamics with the op-
timal control law is [

zk + 1,opt

uk + 1,opt

]
= A

[
zk,opt

uk,opt

]
(15)

where A is a 2(p + m) × 2(p + m) matrix defined by

A =
[

I2p − TM −(I2p − TM)T

−M MT

]
(16)

and M is a 2m × 2p matrix defined by

M = D−1(TT Q + ST ) (17)

Note that

A2 =
[
(I2p − TM)2 + (I2p − TM)TM −(I2p − TM)2T − (I2p − TM)TMT

−M(I2p − TM) − MTM M(I2p − TM)T + (MT)2

]

=
[

I2p − TM −(I2p − TM)T
−M MT

]
= A (18)

Hence A is an idempotent matrix (a matrix such that A2 = A), and
its eigenvalues are either 0 or 1. To show this, note that A can be
decomposed as

A =
[

I2p T

0 I2m

][
I2p 0

−M 02m

][
I2p −T

0 I2m

]
(19)

which implies that the spectral radius of A

max
1 ≤ i ≤ n

|λi | = sprad(A) = ρs(A) (20)

where A has n eigenvalues λi , can be interpreted as the union of
ρs(I2p) and ρs(02m):

ρs(A) = ρs(I2p) ∪ ρs(02m) (21)

Recall that the eigenvalues of the identity matrix are λI2 p =
{1, . . . , 1}, and for the zero matrix λ02m = {0, . . . , 0}. Observing
the block structure of the three matrices of Eq. (19), all eigenvalues
of the first and third matrix are 1, and eigenvalues of the central
matrix must be 0 or 1. With initial conditions z0 and u0, Eq (15)
implies that [

z1,opt

u1,opt

]
= A

[
z0

u0

]
(22)

[
z2,opt

u2,opt

]
= A

[
z1,opt

u1,opt

]
= A2

[
z0

u0

]
= A

[
z0

u0

]
=

[
z1,opt

u1,opt

]
(23)

Similarly, for all k = 1, 2, . . . ,

[
zk,opt

uk,opt

]
= A

[
z0

u0

]
=

[
(I − TM)(z0 − Tu0)

−M(z0 − Tu0)

]
(24)

This confirms the fact that optimum values uk,opt in Eq. (8) and zk,opt

in Eq. (12) are attained after the first update.

Robustness of the HHC Algorithm
The development of the HHC control algorithm assumed that the

sensitivity matrix T was known without error. In practical imple-
mentation, this is unlikely. Changes in flight condition or nonlin-
earities can easily cause the system behavior to deviate from this
assumption. When T is uncertain, the implementation of HHC with
erroneous T can result in degradation of performance and possible
instability. If T is not known exactly, and only an estimate T̂ of T is
given, the control law defined by Eq. (14) becomes

ûk + 1 = −M̂(zk − T̂ûk) (25)

where

M̂ = D̂−1(T̂T Q + ST ) (26)

To develop a condition for the stability of the algorithm, a state-
space representation of the system dynamics must be introduced,
from Eq. (25): [

zk + 1

ûk + 1

]
= Â

[
zk

ûk

]
(27)

where Â is defined by

Â =
[
(I2p − TM̂) T(M̂T̂ − I2p)

−M̂ M̂T̂

]
(28)

and �T = T̂ − T.
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It is useful to factor Â as

Â =
[

I2p T

0 I2m

][
I2p 0

−M̂ M̂�T

][
I2p −T

0 I2m

]
(29)

which shows that

max
1 ≤ i ≤ n

|(λ Â)i | = ρs(Â) = ρs(I2p) ∪ ρs(M̂�T) (30)

Equation (30) yields insight on the stability of the system. Note that
stability of the algorithm requires that the eigenvalues of M̂�T be
such that

max
1 ≤ i ≤ n

|(λM̂�T )i | = ρs(M̂�T) < 1 (31)

Using Eq. (6), the spectral radius ρs(M̂�T) can be evaluated, if an
operator σmax is defined as the largest singular value of the matrix A

σmax(A) = max
1 ≤ i ≤ n

[√
(λA� A)i

]
(32)

where A� is the adjoint or conjugate-transpose matrix of A,
A� = (Ā)T . Similarly, an operator σmin can be defined as the small-
est singular value of matrix. By using these operators to expand the
stability condition,

ρs(M̂�T) = ρs[(T̂T QT̂ + R)−1T̂T Q�T]

≤ σmax[(T̂T QT̂ + R)−1T̂T Q�T]

≤ σmax(T̂)σmax(Q)σmax(�T)

σmin(T̂T QT̂ + R)

≤ [σmax(T) + σmax(�T)]σmax(Q)σmax(�T)

σmin(R)
(33)

and it can be shown that, if

σmax(�T) < −σmax(T)/2 + 1
2

√
σmax(T)2 + 4[σmin(R)/σmax(Q)]

(34)

then sprad (M̂�T) < 1. The matrix Q consists of weights on the
parameters to be reduced (such as vibration or noise levels) while
the matrix R consists of weights on the control inputs (such as flap
deflections). If σmin(R)/σmax(Q) is large (minimum energy control),
then according to Eq. (34) HHC control possesses a high degree
of robustness, and a sufficient condition for the stability of HHC
algorithm is approximately given by

σmax(�T) <
√

σmin(R)/σmax(Q) (35)

However, if σmin(R)/σmax(Q) is small (cheap control), then Eq. (34)
implies that robustness is somewhat compromised.

The explicit stability condition of Eq. (35) lends insight into the
behavior of the algorithm. In a later section of this paper, it will
be shown that the algorithm can be made stable even in situations
where T varies significantly.

The preceding analysis has shown that the stability of the algo-
rithm depends on the degree to which T is correctly estimated or the
choice of control weightings Q and R. The behavior of the objective
function J has not yet been considered. That is, even if the algorithm
is stable, having only an estimate of T can affect the attainable min-
imum. Thus, a convergence analysis is required. Consider Eq. (29),
which can be extended to show

Âk =
[

I2p T

0 I2m

]


I 0

−
k − 1∑
i = 1

(M̂�T)i M̂ (M̂�T)k




[
I2p −T

0 I2m

]

(36)

Now it is assumed that HHC is stable, that is, Eq. (31) is satisfied.
In this case,

lim
k → ∞

(M̂�T)k = 0 (37)

and one can define a matrix Γs such that

Γs = lim
k → ∞

k − 1∑
i = 1

(M̂�T)i = (I − M̂�T)−1 (38)

Hence Eqs. (36–38) imply that

lim
k → ∞

Âk =
[

I − TΓsM̂ T(ΓsM̂T − I)

−ΓsM̂ ΓsM̂T

]
(39)

The limiting values of zk and ûk are given by

lim
k → ∞

[
zk

ûk

]
= lim

k → ∞
Âk

[
z0

û0

]
=

[
(I − TΓsM̂)(z0 − Tû0)

−ΓsM̂(z0 − Tû0)

]
(40)

Next, define the limiting cost JT̂ ,∞ by

JT̂ ,∞ = lim
k → ∞

J (zk, ûk) (41)

Substituting Eq. (40) into Eq. (5) yields

JT̂ ,∞ = (z0 − Tû0)
T
[
Q − QTΓsM̂ − (QTΓsM̂)T + M̂T ΓT

s DΓsM̂
]

× (z0 − Tû0) (42)

Note that(
D− 1

2 TT Q − D
1
2 ΓsM̂

)T (
D− 1

2 TT Q − D
1
2 ΓsM̂

) ≥ 0 (43)

and hence

QTD−1TT Q ≥ QTΓsM̂ + (QTΓsM̂)T − M̂T ΓT
s DΓsM̂ (44)

Assuming û0 = u0, Eqs. (9), (42), and (44) yield

JT̂ ,∞ ≥ J (z, uk,opt) (45)

which confirms the expected fact that the performance is not better
than the optimal performance obtained when T is exactly known.

Now, consider the case where the estimated value T̂ of T involves
a multiplicative error, that is,

T̂ = T(I + �Tmul) (46)

where �T is a 2m × 2m matrix. Then T̂ can be expressed equiva-
lently by T̂ = T + �T, where

�T = T�Tmul (47)

A sufficient condition for stability of HHC is

ρs(M̂T�Tmul) < 1 (48)

Substituting Eq. (47) into Eq. (33) yields

ρs(M̂T�Tmul) = ρs[(T̂T QT̂ + R)−1T̂T QT�Tmul]

≤ σ 2
max(T)σmax(Q)σmax(�Tmul)[σmax(�Tmul) + 1]

σmin(R)

(49)

Finally, it can be shown that the HHC algorithm is stable if

σmax(�Tmul) < −1

2
+ 1

2

√
1 + 4σmin(R)

σ 2
max(T)σmax(Q)

(50)
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Relaxed HHC for Enhanced Robustness
A promising alternative to conventional HHC is designated “re-

laxed HHC,” where a relaxation coefficient is introduced into the
algorithm. This technique was pioneered by Depailler21 and men-
tioned in a computer program user’s manual but never fully devel-
oped. This variation on the HHC algorithm has proved itself useful
under a highly nonlinear condition induced by dynamic stall, where
any estimate of T is uncertain. This variant of the algorithm com-
promises the one-step convergence property of the algorithm shown
earlier, but improves robustness. Recall that when T is known the
optimal control law uk + 1 from Eq. (14) can be expressed as

uk + 1 = uk + �uk (51)

where one can define

�uk = −Mzk + (MT − I)uk (52)

Replacing �uk in Eq. (51) by α�uk,α yields the relaxed control
update law

uk + 1,α = uk,α + α�uk,α (53)

where u0,α = u0. In this case, the state-space representation is given
by [

zk + 1

uk + 1,α

]
= Aα

[
zk

uk,α

]
(54)

where the following definition is used:

Aα =
[

I − αTM −(I − αTM)T + (1 − α)T

−αM αMT + (1 − α)I

]
(55)

Note that for α = 1, A1 = A. The matrix Aα can be factored as

Aα =
[

I2p T

0 I2m

][
I2p 0

−αM (1 − α)I2m

][
I2p −T

0 I2m

]
(56)

which implies

max
1 ≤ i ≤ n

|(λAα
)i | = ρs(Aα) = ρs(I2p) ∪ ρs[(1 − α)I2m] (57)

Note that

Ak
α =

[
I2p T

0 I2m

]


I 0

−α

[ k∑
i = 1

(1 − α)i − 1

]
M (1 − α)kI




×
[

I2p −T

0 I2m

]
(58)

To analyze Eq. (58), assume that 0 < α < 2. In most practical cases,
α < 1, as the step size is reduced by multiplying by the factor α.
This assumption allows the evaluation of the limits

lim
k → ∞

α

[ k∑
i = 1

(1 − α)i − 1

]
= 1 (59)

lim
k → ∞

(1 − α)k = 0 (60)

hence it follows from Eqs. (58–60) that

lim
k → ∞

Ak
α = A (61)

and the steady-state values of zk and uk,α are given by

lim
k → ∞

[
zk

uk,α

]
= lim

k → ∞
Ak

α

[
z0

u0

]
=

[
zopt

uopt

]
(62)

Again, one has to compare the final value of the objective func-
tion with its value without the relaxed control. To do so, define the
limiting cost JT,α,∞ as

JT,α,∞ = lim
k → ∞

J (zk, uk,α) (63)

It thus follows from Eqs. (9) and (62) that

JT,α,∞ = J (z, uopt) (64)

Hence, the steady-state values of zk and uk for the relaxed HHC
algorithm are the same as the optimal values obtained in a single
step using conventional HHC.

Relaxed HHC is only useful in the cases where T is uncertain (it
increases convergence time in all other cases), and thus it is useful
to perform a robustness analysis in the presence of relaxed control,
following the procedure described in the preceding section. When
only an estimate T̂ of the sensitivity is known, the relaxed HHC
update law is given by

ûk + 1,α = ûk,α + α�uk,α (65)

where �uk,α is defined by

�uk = −M̂zk + (M̂T̂ − I)ûk,α (66)

and û0,α = u0. The state-space representation of the system dynam-
ics is given by [

zk + 1

ûk + 1,α

]
= Âα

[
zk

ûk,α

]
(67)

where Âα is defined by

Âα =
[

I − αTM̂ −αT(M̂T̂ − I2p)

−αM̂ αM̂T̂ + (1 − α)I

]
(68)

The matrix Âα can be factored as

Âα =
[

I2p T

0 I2m

][
I2p 0

−αM̂ αM̂�T + (1 − α)I2m

][
I2p −T

0 I2m

]

(69)

where �T = T̂ − T. It follows from Eq. (69) that

spec(Âα) = spec(I2p) ∪ spec[αM̂�T + (1 − α)I2m] (70)

Hence the relaxed HHC algorithm is stable if and only if

ρs[αM̂�T + (1 − α)I2m] < 1 (71)

Next, consider the eigenvalues of (M̂�M),

spec(M̂�T) = {λ1, . . . , λ2m} (72)

such that the eigenvalues of the matrix [αM̂�T + (1 − α)I2m] can
be written as

spec[αM̂�T + (1 − α)I2m] = {
λα1 , . . . , λα2m

}
(73)

where, for all i = 1, . . . , 2m,

λαi = αλi + 1 − α (74)

Hence Eq. (74) implies that∣∣λαi

∣∣2 = 1 + α2(σi − 1)2 + 2α(σi − 1) + α2ι2
i (75)

where σi = Re(λi ) and ιi = Im(λi ) such that λi = σi + ιi . Next, de-
fine �min and �max as the minimum and maximum real part of the
eigenvalues of [αM̂�T + (1 − α)I2m] by

�min = min
i = 1,...,2m

σi (76)

�max = max
i = 1,...,2m

σi (77)



924 PATT ET AL.

Assuming �max < 1, it follows that, for i = 1, . . . , 2m,

σi < 1 (78)

Hence it follows from Eqs. (75) and (78) that if

0 ≤ α <
2(1 − σi )

(1 − σi )2 + (ιi )2
(79)

then |λαi | < 1. Define

αmax = min
i = 1,...,2m

2(1 − σi )

(1 − σi )2 + (ιi )2
(80)

Hence for all 0 ≤ α < αmax and i = 1, . . . , 2m, it follows from
Eqs. (79) and (80) that ∣∣λαi

∣∣ < 1 (81)

and it follows from Eq. (73) that the condition of Eq. (71) is satisfied.
Alternatively, if �min > 1, then for all i = 1, . . . , 2m,

σi > 1 (82)

Hence Eqs. (75) and (82) imply that if

2(1 − σi )

(1 − σi )2 + (ιi )2
< α ≤ 0 (83)

then ∣∣λαi

∣∣ < 1 (84)

Define

αmin = max
i = 1,...,2m

2(1 − σi )

(1 − σi )2 + (ιi )2
(85)

Hence for all αmin < α ≤ 0, and i = 1, . . . , 2m, it follows from
Eqs. (83–85) that ∣∣λαi

∣∣ < 1 (86)

and finally it follows from Eq. (73) that Eq. (71) is once again
satisfied. Hence if either �max < 1 or �min > 1, then there exists α
such that stability of relaxed HHC control can be guaranteed.

Note that

Âk
α =

[
I2p T

0 I2m

]

×




I 0

−α

k − 1∑
i = 1

[αM̂�T + (1 − α)I]i M̂ [αM̂�T + (1 − α)I]k




×
[

I2p −T

0 I2m

]
(87)

Assuming α is chosen so that Eq. (71) is satisfied, it follows that

lim
k → ∞

[αM̂�T + (1 − α)I]k = 0 (88)

lim
k → ∞

k − 1∑
i = 1

[αM̂�T + (1 − α)I]i

= [I − αM̂�T − (1 − α)I]−1 = 1

α
Γs (89)

where Γs is defined in Eq. (38). Hence from Eqs. (87–89), it follows
that

lim
k → ∞

Âk
α =

[
I − TΓsM̂ T(ΓsM̂T − I)

−ΓsM̂ ΓsM̂T

]
(90)

If Eq. (31) is satisfied, then comparing Eqs. (39) and (90) yields

lim
k → ∞

Âk
α = lim

k → ∞
Âk (91)

and hence by using Eq. (40), the steady-state values of zk and ûk,α

are given by

lim
k → ∞

[
zk

ûk,α

]
= lim

k → ∞
Âk

α

[
z0

u0

]
= lim

k → ∞
Âk

[
z0

u0

]

=
[
(I − TΓsM̂)(z0 − Tu0)

−ΓsM̂(z0 − Tu0)

]
(92)

Define the limiting cost JT̂ ,α,∞ by

JT̂ ,α,∞ = lim
k → ∞

J (zk, ûk,α) (93)

Assuming Eq. (31) is satisfied implies that JT̂ ,∞ exists, and it follows
from Eqs. (45) and (92) that

JT̂ ,α,∞ = JT̂ ,∞ ≥ J (z, uopt) (94)

Hence if �T satisfies the condition of Eq. (31) and that of Eq. (71)
for an appropriate α, then the limiting value of the objective function
obtained using HHC control and relaxed HHC control are the same.

Adaptive Control
Another version of the HHC algorithm, discussed in Ref. 2, is also

available. It is known as adaptive or recursive HHC; in this version,
the sensitivity T is identified online and is used to implement an
adaptive extension of HHC. To pursue this, relative parameters are
defined, �zk with length 2p and �uk with length 2m, by

�zk = zk − zk − 1, �uk = uk − uk − 1 (95)

and �Zk of size 2p × k and �Uk of size 2m × k by

�Zk = [�z1 · · · �zk], �Uk = [�u1 · · · �uk] (96)

The relation between the successive updates of vibration levels zk is

zk + 1 = zk + T(uk + 1 − uk) (97)

This can be represented in another form:

�zk = T�uk (98)

Hence, it follows from Eqs. (95) and (98) that

�Zk = T�Uk (99)

Assuming �Uk�UT
k is nonsingular, one can define

Pk = (
�Uk�UT

k

)−1
(100)

and from Eq. (99) the least-squares estimate T̂LSk of T is given by

T̂LSk = �Zk�UT
k Pk (101)

The recursive least-squares method is used to iteratively update
T̂LSk based on the past and current values of �zk and �uk . From
Eq. (100), it follows that

P−1
k + 1 = �Uk + 1�UT

k + 1 =
k + 1∑
i = 1

�ui�uT
i

=
k∑

i = 1

�ui�uT
i + �uk + 1�uT

k + 1

= P−1
k + �uk + 1�uT

k + 1 (102)
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rewriting Eq. (101) as

T̂LSk =
( k∑

i = 1

�zi�uT
i

)
Pk (103)

and replacing k by k + 1 in Eq. (103) yields

T̂LSk + 1 =
( k + 1∑

i = 1

�zi�uT
i

)
Pk + 1

=
( k∑

i = 1

�zi�uT
i + �zk + 1�uT

k + 1

)
Pk + 1 (104)

Hence substituting P−1
k from Eq. (102) into Eq. (103) yields

k∑
i = 1

�zi�uT
i = T̂LSk

(
P−1

k + 1 − �uk + 1�uT
k + 1

)
(105)

Substituting Eq. (105) into Eq. (104) yields

T̂LSk + 1 = [
T̂LSk

(
P−1

k + 1 − �uk + 1�uT
k + 1

) + �zk + 1�uT
k + 1

]
Pk + 1

(106)

= T̂LSk + [�zk + 1 − T̂LSk �uk + 1]�uT
k + 1Pk + 1 (107)

= T̂LSk + εk + 1Kk + 1 (108)

where

εk + 1 = �zk + 1 − T̂LSk �uk + 1 (109)

Kk + 1 = �uT
k + 1Pk + 1 (110)

By using the matrix inversion lemma in Eq. (102) (Ref. 25), Pk + 1

can be expressed recursively as

Pk + 1 = Pk − Pk�uk + 1

(
1 + �uT

k + 1Pk�uk + 1

)−1
�uT

k + 1Pk (111)

Combining Eqs. (110) and (111) yields

Kk + 1 = �uT
k + 1Pk

(
1 + �uT

k + 1Pk�uk + 1

)−1
(112)

Because ukuT
k is positive semidefinite for all k, Eq. (102) implies

that if �Uk0�UT
k0

is nonsingular, then �uk�UT
k is nonsingular for

all k > k0. Hence the recursive procedure to determine TLSk for all
k > k0 is given by

Kk + 1 = (
1 + �uT

k + 1 Pk�uk + 1

)−1
�uT

k + 1 Pk (113)

T̂LSk + 1 = T̂LSk + εk + 1Kk + 1 (114)

Pk + 1 = Pk(I − �uk + 1Kk + 1) (115)

Note that

rank
(
�Uk�UT

k

) = rank(�Uk) ≤ min(k, 2m) (116)

Because �Uk�UT
k is 2m × 2m, it follows from Eq. (116) that

�Uk�uT
k is singular for all k < 2m. Hence the recursive procedure

(113–115) cannot be used for k < 2m.
A suboptimal approach for determining an estimate T̂k of T is to

replace Pk in Eqs. (113–115) by P̂k , that is,

Kk + 1 = (
1 + �uT

k + 1P̂k�uk + 1

)−1
�uT

k + 1P̂k (117)

T̂k + 1 = T̂k + εk + 1Kk + 1 (118)

P̂k + 1 = P̂k(I − �uk + 1Kk + 1) (119)

where P̂0 is positive definite but otherwise arbitrary. It follows from
Eqs. (117–119) that P̂k is positive definite for all k ≥ 0 and is given
by

P̂k = (
P̂−1

0 + �Uk�UT
k

)−1
(120)

Furthermore T̂k is given by

T̂k = �Zk�UT
k

(
P̂−1

0 + �Uk�UT
k

)−1
(121)

In this approach, because P̂0 is positive definite the inverse in
Eq. (121) always exists, and hence the recursive procedure can be
used for all k ≥ 0. The updated estimate T̂k is used at each control
update step to calculate the control law uk + 1, which is given by

uk + 1 = −M̂k(zk − T̂kuk) (122)

where M̂k is defined by

M̂k = (
T̂T

k QT̂k + ST T̂k + T̂T
k S + R

)−1(
T̂T

k Q + ST
)

(123)

Assuming (�Uk�UT
k )−1 exists, it follows from Eq. (120) that if

P̂0 → ∞ then P̂k → (�Uk�UT
k )−1, and hence Eqs. (101) and (121)

imply that T̂k → T̂LSk .
A convergence analysis for adaptive HHC is provided in the

Appendix.

Illustrative Results
A numerical study was performed to evaluate the use of the re-

laxation factor in highly nonlinear flight conditions, when the con-
ventional invariant version of HHC is unable to reduce vibrations.
Simulations were also performed where the initial identification of
the sensitivity matrix T is poor, to judge controller response.

Description of Simulation
An aeroelastic code, described in Refs. 20 and 24, was used to

perform simulations on a helicopter that resembles an MBB BO-
105; model parameters are listed in Table 1. The helicopter is flying
with an advance ratio of µ = 0.15, a flight condition where a large
amount of BVI is experienced, inducing high levels of vibration
and noise. Two flight conditions at the same advance ratio were
considered: 1) a condition corresponding to 6-deg descending flight
in heavy BVI, and 2) level flight where BVI effects are reduced. Most
of the results presented are for the descending flight case where the
degree of nonlinearity is larger.

Vibration reduction is achieved by means of a single partial-span
actively controlled flap located at the trailing edge on each blade,20,24

as shown in Fig. 1. The control input vector uk consists of sine and

Table 1 Elastic blade configuration

Variable Value

Rotor data
Nb 4
ωF1 1.123
ωL1 0.732
ωT 1 3.17
θtw −8 deg
γ 5.5
Precone angle, deg 2.5
c 0.05498Lb
Cdo 0.01

Cmo 0.0
ao 2π

σ 0.07

Helicopter data
CW 0.005
XFA 0.0
XFC 0.0
µ 0.15
ZFA 0.3
ZFC 0.3
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Fig. 4 Representative vibration reduction process in the aeroelastic
simulation.

Fig. 5 Comparison of adaptive and classical HHC algorithms when T is well identified.

cosine components of 2/rev, 3/rev, 4/rev, and 5/rev harmonics. The
vector zk consists of the sine and cosine components of the six 4/rev
hub shears and moments. Thus, uk has length 2m = 8, whereas zk

has length 2p = 12.
The aeroelastic response code computes steady-state solutions

over several revolutions; typically eight are used to reach a con-
verged solution, and thus there are eight revolutions between con-
troller updates k and k + 1. The HHC algorithm requires that a
steady state be reached between control updates, as described ear-
lier in this paper. To determine the effect of a poorly estimated T
matrix on HHC, only one revolution is used in the identification pro-
cess instead of the typical eight. This results in a T matrix with an
error that does not strictly correspond to the additive or multiplica-
tive error types used in convergence analysis described earlier in
this paper. However, this error can represent real-time measurement
error experienced on an actual helicopter.

Both invariant and adaptive HHC algorithms are considered. The
rotor response is calculated by first finding the trim condition, then
proceeding to system identification. The T matrix is identified before
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Fig. 6 Comparison of adaptive and classical HHC algorithms when T is poorly identified.

closed-loop control is engaged for both the invariant and adap-
tive HHC algorithms. Following trim and identification, closed-loop
control is turned on, with updates between every eight rotor revolu-
tions to allow the system to return to a steady state. The simulation
is allowed to proceed for 10–25 control updates (values of k), and
the cost function J is tracked. A representative plot of the changes
in the nondimensional 4/rev vertical hub shear during this process
is shown in Fig. 4, for the level flight case.

The primary goal here is to quantify the effect of the relaxation
factor on robustness. Four categories of simulations were performed:
classical invariant HHC with both good and poor estimates of T and
adaptive HHC with both good and poor estimates of T. For each
of these cases, the relaxation coefficient was varied from α = 0.1 to
1.0 (unrelaxed control), resulting in a total of 40 simulations. The
relaxed adaptive variant is implemented with the same update rule
as for the invariant case:

uk + 1,α = uk,α + α�uk,α

An analytic robustness and convergence analysis of relaxed adaptive
HHC is not considered at this time. An exponential window2 is also
implemented for adaptive control. The exponential window acts as
a “forgetting factor,” emphasizing the more current data:

Ff = γ k
f (124)

where γ f is the exponential window parameter varying 0 < γ f < 1,
with γ f = 0.8 used in this study. This is implemented by modifying
Eqs. (117–119) with Eq. (124):

Kk + 1 = (
γ k

f + �uT
k + 1P̂k�uk + 1

)−1
�uT

k + 1P̂k (125)

T̂k + 1 = T̂k + εk + 1Kk + 1 (126)

P̂k + 1 = P̂k

[(
1
/

γ k
f

)
I − �uk + 1Kk + 1

]
(127)
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Fig. 7 Effect of flight condition on controller performance.

Fig. 8 Comparison of the variants of the HHC algorithm.

Simulated Results
The adaptive and invariant versions of the HHC algorithm are

compared in Fig. 5 over the range of relaxation coefficients α = 0.1
to 1.0 for the descending flight case. When α = 1.0 (unrelaxed con-
trol), the invariant algorithm fails to converge to the optimal value
of the objective function, probably because of the operating non-
linearities of the descending flight condition. However, the adaptive
algorithm achieves a near-optimal value in only five control updates.
As the relaxation factor α is reduced, the classical (invariant) algo-
rithm displays consistently improving convergence to the desired
minimum.

Figure 6 illustrates the effect of poor estimation of the T matrix
using the procedure outlined earlier, also for the descending flight
case. In this case, the invariant algorithm is never stable, not even
with a relaxation coefficient of α = 0.1. The adaptive algorithm dis-
plays problems achieving good minimum solutions. In the unrelaxed
adaptive case, no vibration reduction is achieved. This highlights the
importance of achieving steady-state solutions between control up-
dates. With the relaxation factor introduced at α = 0.1, the adaptive
algorithm does approach the minimum in a stable, albeit slow, man-
ner. Interestingly, for the unrelaxed invariant case Eq. (34) suggests
that a small increase in the weighting R on flap deflections could
make the algorithm stable.

The effect of the flight condition on controller stability is shown
in Fig. 7. Two conditions are shown: 1) the 6-deg descent case
discussed earlier and 2) a simplified level flight case. It is seen
that the unrelaxed invariant HHC algorithm achieves good vibration
reduction for the level flight case. The adaptive variant also performs
well. These results confirm experimental observations5 on fixed-
gain HHC effectiveness.

Conclusions
This paper has summarized the basic features of the HHC algo-

rithm that has been frequently used for active vibration reduction
on helicopter rotors in forward flight. Figure 8 presents an overview
of the different variants of the HHC algorithm, which facilitates
a unified view of the various versions of the algorithm. From this
figure, it is apparent that the relaxed, adaptive, or adaptive-relaxed
versions of the algorithm are best suited to actual flight conditions,
when identification is difficult and response might not be linear.

Some specific conclusions can be drawn from this paper:
1) The invariant HHC algorithm converges to the optimum value

in a single control update in the ideal case.
2) The adaptive variant of the algorithm quickly recovers from

poor initialization.
3) The new relaxed version of the algorithm was shown to have

potentially beneficial effects on the performance of the algorithm.
4) Explicit stability conditions were developed for several variants

of HHC, and it was noted that changing control weighting, relaxation
factor, or accuracy of identification could affect algorithm stability.

5) From the simulation studies, it is clear that even in cases where
identification is poor and model nonlinearity is important, the adap-
tive algorithm combined with a well-chosen relaxation coefficient
can be effective at reducing the objective function.

6) At flight conditions where the model has a linear input-output
response, the simulations indicate that the unrelaxed invariant HHC
algorithm can achieve reductions in the cost function.

This paper provides a sound theoretical basis for this widely used
algorithm. Such a comprehensive foundation will be useful for fur-
ther research on active vibration and noise reduction in rotorcraft.

Appendix: Convergence Analysis of the Estimate T̂k

Define �Tk of size 2p × 2m by

�Tk = T̂k − T (A1)

where T̂k is updated by using Eqs. (117–119). Next, define the func-
tion V(�T, P̂) by

V(�T, P̂) = �TP̂−1�TT (A2)

and �Vk by

�Vk = V(�Tk + 1, P̂k + 1) − V(�Tk, P̂k) (A3)

where P̂k is updated by using Eqs. (117–119) and P̂0 is the positive-
definite matrix used to initialize Eq. (119). Subtracting T from both
sides of Eq. (118) yields

�Tk + 1 = �Tk + εk + 1Kk + 1 (A4)
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whereas substituting Eqs. (102) and (A4) into Eq. (A3) yields

�Vk = (�Tk + εk + 1Kk + 1)
(
P̂−1

k �uk + 1�uT
k + 1

)

× (�Tk + εk + 1Kk + 1)
T − �Tk P̂−1

k �TT
k

= �Tk�uk + 1�uT
k + 1�TT

k + �Tk�uk + 1�uT
k + 1KT

k + 1ε
T
k + 1

+ �Tk P̂−1
k KT

k + 1ε
T
k + 1 + εk + 1Kk + 1P̂−1

k �TT
k

+ εk + 1Kk + 1P̂−1
k KT

k + 1ε
T
k + 1 + εk + 1Kk + 1�uk + 1�uT

k + 1�TT
k

+ εk + 1Kk + 1�uk + 1�uT
k + 1KT

k + 1ε
T
k + 1 (A5)

By using Eq. (A1), εk + 1 in Eq. (109) can be expressed as

εk + 1 = −�Tk�uk + 1 (A6)

Substituting Eq. (A6) into Eq. (A5) yields

�Vk = εk + 1

[
1 − 2�uT

k + 1P̂k�uk + 1

1 + �uT
k + 1P̂k�uk + 1

− 2

1 + �uT
k + 1P̂k�uk + 1

+ �uT
k + 1P̂k�uk + 1(

1 + �uT
k + 1P̂k�uk + 1

)2
+

(
�uT

k + 1P̂k�uk + 1

)2

(
1 + �uT

k + 1P̂k�uk + 1

)2

]
εT

k + 1

= − εk + 1ε
T
k + 1

1 + �uT
k + 1P̂k�uk + 1

(A7)

and hence V(�Tk, P̂k) is nonincreasing. Because V(�Tk, P̂k) ≥ 0,
it follows that limk → ∞ V(�Tk, P̂k) exists and is nonnegative.
Hence,

lim
k → ∞

− εk + 1ε
T
k + 1

1 + �uT
k + 1P̂k�uk + 1

= lim
k → ∞

�Vk = 0 (A8)

Next it is shown that �uk is bounded. Substituting Eq. (99) into
Eq. (121) yields

T̂k = T �Uk�UT
k

(
P̂−1

0 + �Uk�UT
k

)−1
(A9)

Postmultiplying Eq. (A9) by P̂−1
0 + �Uk�UT

k yields

�Tk = −TP̂−1
0

(
P̂−1

0 + �Uk�UT
k

)−1
(A10)

Note that

σmax(�Tk) ≤ σmax(T)σmax

(
P̂−1

0

)
σmax

[(
P̂−1

0 + �Uk�UT
k

)−1]

≤ σmax(T)

σmin(P̂0)σmin

(
P̂−1

0 + �Uk�UT
k

) (A11)

if �Uk0�UT
k0

is nonsingular, then for all k ≥ k0, Eq. (A11) implies
that

σmax(�Tk) ≤ σmax(T)

σmin(P̂0)σmin

(
�Uk0�UT

k0

) (A12)

Hence, if P̂0 is chosen to be sufficiently large, then σmax(�Tk) can
be made sufficiently small to satisfy the condition given by Eq. (34).
For this case, Eq. (33) implies that, for all k ≥ k0,

σmax(M̂k�Tk) < 1 (A13)

The state-space representation of the system dynamics with the
control law, given by Eq. (122), is[

zk + 1

uk + 1

]
= Âk

[
zk

uk

]
(A14)

where Âk is defined in Eq. (28) with T̂ and M̂ replaced by T̂k and
M̂k , respectively. Hence for all k ≥ k0

[
zk

uk

]
=

k∏
i = k0

Âi

[
zk0

uk0

]
(A15)

Note that
∏k

i = k0
Âi can be factored as

k∏
i = k0

Âi =
[

I2p T

0 I2m

]

×




I 0

−M̂k0

[
I +

k − 1∑
i = k0

(
i∏

j = 0

�T j M̂ j + 1

)]
k∏

i = k0

(M̂i�Ti )




×
[

I2p −T
0 I2m

]
(A16)

From Eq. (A13) it follows that

σmax

[ k∏
i = k0

(M̂i�Ti )

]
≤

k∏
i = k0

[σmax(M̂i�Ti )] < 1 (A17)

and from Eqs. (A15–A17) one obtains that zk and uk are bounded.
Hence, for all k = 0, 1, . . . , with γ > 0

‖uk‖ < γ (A18)

and thus

‖uk‖ = ‖uk + 1 − uk‖ < 2γ (A19)

From Eq. (102) it follows that P̂k + 1 ≤ P̂k , which implies that

P̂k ≤ P̂0 (A20)

Hence, it follows from Eqs. (A19) and (A20) that

1 + �uT
k P̂k�uk ≤ 1 + λmax(P̂0)�uT

k �uk ≤ 1 + 4γ 2λmax(P̂0)

(A21)

and thus Eq. (A9) implies that

lim
k → ∞

εk = 0 (A22)

Taking the limit as k → ∞ of Eq. (118) yields

lim
k → ∞

(T̂k + 1 − T̂k) = lim
k → ∞

εk + 1�uT
k + 1P̂k

1 + �uT
k + 1P̂k�uk + 1

(A23)

From Eqs. (A19–A22) it follows that

lim
k → ∞

εk + 1�uT
k + 1P̂k

1 + �uT
k + 1P̂k�uk + 1

= 0 (A24)

and hence

lim
k → ∞

(T̂k + 1 − T̂k) = 0 (A25)

Thus, {T̂k} is a Cauchy sequence, and hence T̂k converges. However,
there is no guarantee that T̂k will converge to T. In fact, it can be
shown that there are certain choices of P̂0 and T̂0 such that T̂k will
not converge to T. For example, if u0 = 0, S = 0, and T̂0 = 0, then
Eq. (122) implies that u1 = 0. Hence, it follows from Eqs. (117)
and (118) that T̂k = 0 for all k ≥ 0. Conditions on T̂0 and P̂0 that
guarantee convergence of T̂k to T are not available.
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