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Abstract A discrete-time H 2 static output feedback design problem revolving a constraint on H a disturbance attenuaaon is 
addressed and state space formulae are derived The dual problem of dlscrete-Ume dynarmc estimation with an H~ error bound is 
also addressed_ These results are analogous to results obtained previously for the continuous-time problem 

Keywords H2/H.~ design, static output feedback; H~-estlmatlon. 

1. Introduction 

It  has recently been shown [1,3,5,7,10,12,17] that Hoo-constralned controllers can be characterized by 
means  of algebraic Raccati equat ions  These results comprise a fairly extensive theory encompass ing  both  

static and dynamic  controllers. In  particular,  the results in [1,7] address both  H E and  H~o design aspects 
s imul taneously  within the context  of the s tandard  problem for full- and  reduced-order  controllers.  This 

mixed-norm problem thus permits  design tradeoffs between loop shaping, uns t ructured  uncer ta inty ,  and 
rms performance.  

Al though the results cited above have been developed for cont inuous- t ime plants  control led by analog 
controllers, there has also been some effort directed toward developing a discrete-time version of the H~  
RiccatI equat ion theory [6,9,11,13-15]. The purpose of the present  paper  is to extend the mixed-norm 
HE/Hoo  Riccati equat ion approach of [1,7] to the discrete-time case. 

For  sampled-data  systems that involve cont inuous- t ime  plants  control led by discrete-t ime controllers 
with A / D  and  D / A  interfaces it is often possible to first design analog controllers which can subsequent ly  
be discrettzed for digital implementa t ion .  This m d w e c t  method has the advantage that the sample rate can 
be changed without  redesigning the original analog control  law. However, there are several disadvantages 
to this approach. For  example, if the sampl ing rate is ul t imately l imited (as it usually is m practice), then 
the original cont inuous- t ime design must  have correspondingly l imited bandwidth .  Fur thermore ,  the 
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dlscre t iza t ion ( i .e ,  d lgl ta l lzat lon)  process itself is nontr lvlal  since there are many  a l ternat ive  d lscre t iza t ion  
procedures  exhibi t ing different  characterist ics.  

The  goal of the d iscre te- t ime H J H ~  prob lem is to rmmrmze an H 2 pe r fo rmance  cr i te r ion  subject  to a 
prespecIf ied H~ cons t ra in t  on the c losed- loop t ransfer  function.  As  in the con t inuous - t ime  case, the H~ 
cons t ra in t  is e m b e d d e d  within the op t inuza t lon  process by  replac ing the c losed- loop  covarmnce  L y a p u n o v  
equat ion  by  an app rop r i a t e  d iscre te- t ime Riccat l  equat ion  whose solut ion leads to an uppe r  b o u n d  on  the 
H 2 performance_ The  key idea to tins app roach  is to view the upper  bound  as an aux lhary  cost  and,  for a 
fixed control ler  structure,  seek feedback  gains that  minimize  the H 2 b o u n d  and guaran tee  that  the 
d i s tu rbance  a t tenua t ion  cons t ra in t  is enforced.  The pr inc ipa l  result  is a sufficient  cond i t ion  revolving 
coupled  R l c c a t i / L y a p u n o v  equat ions  whose solutmns,  when they exast, are used to expl ic i t ly  cons t ruc t  
feedback gains for character iz ing full-state and  static ou tput  feedback control lers  with b o u n d e d  H 2 and 
H a costs No te  that, s tr ict ly speaking,  the p rob lem addressed  is subop t ima l  in bo th  the H 2 sense and the 
H ~  sense. However ,  solving the design equat ions  for successively smal ler  H~  dBtu rba nc e  a t t enua t ion  
const ra ints  should,  in the limit,  yield an H ~ - o p t l m a l  cont ro l le r  over the class of f ixed-s t ructure  s tabd iz lng  
control lers  Al though  our main  result  gives sufficient condi tmns ,  these condi t ions  will also be  necessary as 
long as the mixed-norm op t imiza t ion  p rob lem possesses at least one ext remal  over  the class of  f ixed-struc-  
ture control lers  (see L e m m a  2 2) 

Final ly ,  we also consider  the d iscre te- t ime H J H ~  dynamic  es t imat ion  problem_ Specifically,  we ex tend  
the least squares d iscre te- t ime formula t ion  to include a f r equency-domain  b o u n d  (i e., H ~  norm)  on the 
s ta te-es t imat ion  error  F o r  detai ls  on cont inuous- t ime  H 2 / H  ~ es t lma tmn see [2,8]_ As a special  case of  the 
results given in the present  paper  we obta in  the H z s tat ic  ou tpu t  feedback  solution,  d i scre te - t ime L Q R  
prob lem,  and the d iscre te- t ime s teady-s ta te  K a l m a n  filter p roblem.  

Notation 

R, R "×', E 
i , , (  )v , (  ) .  
tr 

Omax( X )  

n, m, l, d, r , q ,  d~ 

x, y, x e, Ye' U 

A , B , C  

A~, B~,C~, K 

D, D~, D 1, D 2 

E, El, E 2 

R, R1, R12, R 2 
w(k) 
w~(k) 
v, v,, v2 

real numbers ,  r x s real matrices,  expected value, 
r x r ident i ty  matr ix,  t ranspose,  complex  conjugate  t ranspose,  
trace, 
largest  s ingular  value of mat r ix  X, 
rea l - ra t ional  subspace  of H~,  
posi t ive integers,  
n, I, n, q, m-dimens iona l  vectors, 
n X n, n X m, l x  n matr ices,  
n x n ,  n x l ,  q x n ,  m x l m a t r i c e s ,  
n x d ,  n x d ~ ,  n X d ,  l X d  matrices,  
r X q, q X m, q X rn matr ices,  
E TE, E,TE,, E,TE2, E}E2, R > O, R2 > O, 
d-dimensional discrete-time white noise process, 
12 disturbance signal, 
covarlance of Dw(-), Daw(-), D2w(-); V= DD T, V I = D,D~, V 2 = D2D ~ > O, 
cross covariance of D,w(-), D2w(-); 1112 = D,D T 

2. Problem statement 

In tins section we in t roduce  the d iscre te- t ime stat ic  ou tpu t - f eedback  cont ro l  p r o b l e m  with cons t ra ined  
H~ d is tu rbance  a t tenua t ion  Wi thou t  the H 2 pe r fo rmance  cr i ter ion the p rob l e m cons idered  here corre- 
sponds  to a s tandard  d iscre te- t ime H~ cont ro l  p roblem.  
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H~-constrained static output feedback control problem. Given the nth-order plant 

x ( k + l ) = A x ( k ) + B u ( k ) + D w ( k ) ,  k = 0 , 1 , 2 , . .  , (2.1) 

y ( k )  = Cx(k) ,  (2.2) 

deterrmne a static output feedback law 

u( k ) = Ky( k ) (2.3) 

that satisfies the following design criteria 
(1) the closed-loop system (2.1)-(2.3) is asymptotically stable, x.e, A ~ A + BKC is asymptotically 

stable; 
(i0 the q x doo transfer function 

G(z)  ~= (E, + EzKC)(zI  . - A)- 'D~o (2 4) 

from disturbances w~(k) to performance variables z(k)  = Elx(k)  + Ezu(k) satisfies the constraant 

II a ( z ) I 1 ~  -<v, (2.5) 

where 

I l a ( z ) l l ~ =  sup Ilzll2 sup omaxlla(e~°)l l ,  
w®~12 II w~ II 2 a~[o,2~] 

and "~ > 0 is a given constant; and 
0ii) the performance funcuonal 

J ( K )  ~= llm F-[xT(k)Rlx(k)  + 2xT(k)R,2u(k)  + uT(k)R2u(k)] (2.6) 
k---~ oo 

is rmmrmzed. 
Note  that the closed-loop system (2.1)-(2.3) can be written as 

x( k + 1) = ( A + BKC )x(  k ) + Dw( k ) (2.7) 

and that (2 6) becomes 

J ( K )  = hm e [ ( E l  + E 2 K C ) x ( k ) ] T [ ( E I + E 2 K C ) x ( k ) ]  
k ~ oo 

= hm IF[xT(k)Rx(k)] ,  (2.8) 
k ~ o o  

where 

k ~= R~ + R12KC+ cTKTRT2 + cTKTR2KC. (2.9) 

For convemence we have defined R 1 ~= EITE1 and R 2 ~ ETE2 which appear in subsequent expressions. 
Note  that R12 ~ ETE2 IS a cross-weighting term which is included for greater design flexablllty. Further- 
more, by defining the transfer function 

G(z)  & (E 1 + E 2 K C ) ( z I , - . 4 ) - ' D ,  (2.10) 

it can be shown that when A is asymptotically stable, (2 8) is given by 

J ( K )  = IIG(z)112 2. (2.11) 

Note that for both the H z and Hoo designs, the respective transfer functions (2.10) and (2.4) involve the 
same weighting matrices E a and E z for the state and control variables However, the disturbances w(k) 
and woo(k) are different. Specifically, w(k) is a discrete-time white noise process, whale w~(k) is an l z 
disturbance signal. 
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Next, we note that if ,4- is asymptotically stable for a given feedback law K, then the H 2 performance 
(2 8) is gaven by 

J ( K  ) = tr Q R ,  (2.12) 

where the steady-state closed-loop state covariance defined by 

Q& lim ~ _ [ x ( k ) x V ( k ) ]  (2 13) 

exists and satisfies the n × n algebraic Lyapunov equation 

0 = AQ A'r + V, (2 14) 

where V-& DD T. Finally, we need the following proposition for the statement of the main result of this 
section. 

Proposition 2.1. Suppose A ts asymptottcally stable for  a gwen K G R "~×l. Then 

J ( K )  = tr/SV, (2 15) 

where/5  ts the umque, n × n nonnegatwe-defmtte solutton to 

/5 = A'-r /S A + R . 

Proof. It need only be noted that 

tr OR = tr A-' VA'TR = tr V ~ :~,T/~",  = tr /~ V. 
, = 0  1=0 

[] 

(2.16) 

The key step m enforcing the disturbance attenuation constraint (2 5) is to replace the algebraac 
Lyapunov equation (2.16) by an algebraic Riccatl equation that overbounds /5 given by (2.16). Justifica- 
tion of this technique is provided by the following result 

I_,emma 2.1. Let  K ~ R " × t be gwen and assume there extsts an n x n nonnegattve-deftntte matr ix  P sat ts fymg 

Then 

P=A"VpA + A"rpD~(721d~ - D f P D ~ )  - '  TD~PA~ + k (2.17) 

( A ,  k )  ts detectable (2.18) 

t / a n d  only l /  

ts asymptottcally stable. (2.19) 

In this case, 

II a ( z )  II ~ -< "~ (2.20) 

and 

/5 < P (2 21) 

Consequently, 

J ( K )  < J ( K ,  P ) ,  (2.22) 
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where 

J ( K ,  P )  & tr P V  

Proof. It follows from [16, Theorem 3 6] that (2.18) lmphes that 

(2.23) 

IS also detectable. Using the assumed exastence of a nonnegatlve solution to (2 17) and [16, Lemma 12.2', 
p. 282] it now follows that A is asymptotically stable. The converse is immediate. To prove (2.20) replace 
/~ by/~x/~ where if, & E 1 + E2KC and define M ~ "~2Id~ --  DT-pDao so that (2.17) becomes 

0 = -ffxff~ _ A-rp~ + p _ A-rpD~ M - 1 D ~ A ,  (2 24) 

or, equivalently, 

ffTTff~ = _ A"rp~ + eJOp e-J ° - A-rPD~M -'Dv__ed, (2 25) 

where 0 ~ [0, 2~r]. Next, define z & e J° and add and subtract A"rpA, A-rpz, and 5P.4 to (2 25) so that (2 25) 

becomes 

g T f f = _ A " r p , ~ + z p 2 - A - r P D ~ M - 1 D ~ P ~ + A - r p , 4 - A - r p A + ~ P A - ~ P A + A P z - A " r P z ,  (226)  

or, equivalently 

/ ~ T / ~  = (~I,, - - A ) T p ( z I n  - - A )  "1- (ZI.  - A ) T p , , I + A " T p ( z I , ,  - A )  -A-rpD,,~M-'DT--pA. (2.27) 

Next, formang DT(~I ,  - ,~)-T (2.27) (ZI,  -- A)-ID~ ymlds 

o T  ( ~ln -- A ) -  TIETtff~ ( ZIn -- A ) -  ID = DT pD¢~ q.- DT p A (  zIn - A ) -  ID~ -'1- DT ( ZIn -- A ) -  TA~I'pD¢~ 

- D T ( ~ I - - , 4 ) - r A - r p D ~ M - 1 D T p A ( z I ,  - . 4 ) -aD~ .  (2.28) 

Multiplying (2.28) by - 1 and adding y2Ia= to both sides of (2.28) yields 

- = [ M , : -  M - , : g m ( z , o  - 

[M:- M-.:<m(z,o- 
which lmphes G * ( z ) G ( z ) < _  "~2Id~ This proves (2.20). To prove (2 21), subtract (2.16) from (2.17) to 
obtain 

p - ~ = A"r(e  _ p ) A  + A"rpD=(T:Ia® - D T p D = ) - I D T M  

which, since A is asymptotically stable, is equivalent to 

__ T --1 T - 71 

t = 0  

Finally, (2.23) follows lmme&ately from (2.21). [] 

Lemma 2.1 shows that H~ disturbance attenuation is automatically enforced when a nonnegative-defi- 
nlte solution to (2 17) is known to exist and A is asymptotically stable Furthermore, all such solutions 
provide upper bounds on the H z performance criterion (2.6). Next, we present a partial converse of 
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Lemma 2 1 that guarantees the existence of a unique nonnegatlve-definlte solution to (2.17) when (2.20) is 
sausfied. 

Lemma 2.2. Let K ~  R "×t be gtoen, suppose ,4 ts asymptotwally stable, and let G ( z ) ~ 3 f f  wtth 
II G( z ) II ~ < l '  Then there extsts a umque nonnegatwe-definite solutton P satisfying (2.17) and such that the 

etgem2alues of ,,t + D~(y21a= - D f P D ~ ) D f P , 4  he tn the open umt dtsk. 

Proof. The assumptions that G(z )  ~ ~ ) F  and II G(z)l] ~ < "¢ imply that 

Id= - y - Z G * ( z ) G ( z )  > O, 

for all z such that I zl = 1 This guarantees the existence of a spectral factor N ( z )  such that 

ld®--y  2 G * ( z ) G ( z ) = N * ( z ) N ( z ) ,  

for all z, where N -+ l ( z ) ~  ~ , 9 ~ .  It is easily verified that (see [4, Theorem 4_1]) 

N ( z )  = y  'M ' / 2 -  y - 1 M  1/2DTpA(zIn -.~) looo 

where P = pX satisfies (2 17). The proof  that the eigenvalues of A + D~(y2Ia~ - D f P D ~ ) D V P A  lie in the 
open unit disk and the uniqueness of P is gaven in [6]. [] 

3. The auxiliary minimization problem 

As shown in the previous section, replacing (2.16) by (2.17) enforces the H~ disturbance at tenuation 
constraint  (2.20) and yields an upper  bound for the H 2 performance criterion. That  is, gaven a controller  K 
for which there exists a nonnegative-definite solution to (2.17), the actual H 2 performance  of  the controller 
is guaranteed to be no worse than the bound  given by J ( K ,  P) .  Hence, J ( K ,  P )  can be interpreted as an 
auxthary cost which leads to the following optimization problem 

Auxiliary minimization problem. Determine K ~ R m×l that  minimizes , if(K, P )  subject to (2.17). 

It  follows from Lemma 2.1 that the satisfacuon of (2.17) along with the genenc con&t ion  (2.18) leads 
to' (1) closed-loop stablhty, (2) prespecified H a performance at tenuation;  and (3) an upper  bound  for the 
H 2 performance cnter lon Hence, it remains to determine (K,  P )  that rmnlmazes J ( K ,  P )  and thus 
provides an optimized bound for the actual H z per formance  J ( K )  

4. Sufficient conditions for / /~  disturbance attenuation 

In this section we state sufficient conditions for characterizang static output  feedback controllers 
guaranteeing closed-loop stability, constrained H a disturbance attenuation, and an optlrmzed H 2 perfor- 
mance bound.  For  arbitrary P, Q ~ R ~×n define the notat ion 

R2o & R 2 + BvPB + BvPD~( TZla= - DT pD I D T p R  

zx T 1 T 
Po = B PA + + - D'_PD ) D PA, 

v a - - Q C T ( C Q C T ) - ' C ,  v ± = I  - v ,  

when the indicated inverses exist. 
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Theorem 4.1. Suppose there extst n × n nonnegatwe-defimte matrices P, Q such that CQC T > 0 and 

. - D ,  P D . )  D ,  PA - pTR;2P o + v± p = A T p A  + RI + ATpD..~(.yZla v - '  T T pTR~2Pav . (4.1) 

T --1 T l T 

. . - -  T - 1  T T ( 4 2 )  

and let K be gwen by 

= - R 2PoQCT( C Q C ) - '  (4.3) 

Then ( A, R)  ts delectable if and only if A Is asymptoncally stable. In this case, the closed-loop transfer 
functton G( z)  sattsfies the Hoo disturbance attenuatwn constramt (2.20) and the H 2 performance cnterton 
(2.6) sansfies the bound 

J ( g )  = II a ( z ) 1 1 2 -  < tr P V  (4.4) 

we obtain necessary conditions for the auxihary minirmzation problem and then show by 
that these conditions serve as sufficient conditions for closed-loop stability and prespecified 

Proof.  First 
construction 
disturbance attenuation. Thus, to optimize (2.23) subject to (2.17) over the open set 

. T r - stable},  5 a& { (K,  P )  P >  0 and , 4 + D ~ ( v 2 I u  - D ,  P D ~ ) D ,  PA IS asymptotically 

form the Lagran~an  

A= D ,  P D , )  D ,  PA + R P ) Q ] ,  (4.5) _ £P(K, P, Q, ~) 

where the Lagrange multipliers h > 0 and Q ~ R "×" are not both zero. By viewing K, P as independent 
variables and using the identity O/OY t r (XY-  aZ) = - ( Y -  ~ZXY-  1)T, we obtain 

0.~ T ' T D.(~2Ia® D v P D . ) - ' D T p I T _ Q + X V "  

(4.6) 

Since ,4 + Oo~(]/2Id T -1DT ~ ®- D ,  PD~) ~PA is assumed to be asymptotically stable, ~ = 0 implies Q = 0 
Hence it can be assumed without loss of generality that X = 1 Furthermore, note that Q is nonnegatlve- 
defimte. Thus the stationary conditions with ~ = 1 are given by 

- 1  T T 
. [ I , + D ~ ( - t 2 I a  -DT~pD~)  D_P] + V - Q - O ,  (4.7) 

0__~= R2KCQC T + BTpBKCQC T + BTpD.o(V2Ia _ D~PD.o ) - 'DT_BKCQC T 
DK ® 

+ BTpAQC T + Rf2QC T + BTPD.(y2Id® -- D ~ P D , ) - ' D Y _ P A Q C  T= 0 (4.8) 

Since CQC T is invertlble (see Remark 4.5), (4 8) lmphes (4.3). Next, with K given by (4.3), equations (4.1) 
and (4.2) are equivalent to (2.17) and (4 7), respectively. It now follows from Lemma 2.1 that the 
detectability condition (2.18) is equivalent to the stability of ,4. In this case the H~o disturbance 
attenuation constraint (2.20) holds, and the H 2 cost is bounded from above and is given by (2.23) or, 
equivalently, (4.4) [] 
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Remark  4.1. Theorem 4.1 presents  sufficient condi t ions  for des lgmng discre te- t ime stat ic  ou tpu t  feedback  
control lers  with a p r e s p e o f i e d  H~ cons t ra in t  on the c losed- loop transfer  funct ion.  These  sufficient  
condi t ions  compr i se  a system of  two algebraic  equaUons, one modi f ied  d iscre te- t ime Raccatl equa t ion  and  
one modi f ied  d iscre te- t ime Lyapunov  equat ion If  the H ~  d i s tu rbance  a t t enua t ion  cons t ra in t  is suff icient ly 
relaxed,  i e ,  3' ~ oo, then (3"2Id~ -- D ~ P D ~ )  1 _) 0 and thus equat ions  (41) ,  (4.2) col lapse  to the s t anda rd  
H 2 discre te- t ime ou tpu t  feedback  result. 

Remark  4.2. In app ly ing  Theorem 4.1 it is not  actual ly  necessary to check (2.18) which holds  gener ical ly  
Rather ,  it suffices to check the s tabi l i ty  of A direct ly  which is guaran teed  to be equivalent  to (2.18). 

Remark  4.3. In  apply ing  Theorem 4.1 the pr inc ipa l  issue concerns  condi t ions  on the p r o b l e m  da t a  under  
which equat ions  (41 )  and (42 )  possess nonnega t lve-def imte  solutions.  Thus,  if I [G(z)I loo < 3' can be 
sat isf ied for a given 3' > 0, it  is of interest  to know whether  one such contro l ler  can be ob t a ined  by  solving 
(4.1), (42 )  L e m m a  2.2 guarantees  that  (2.17) possesses a solut ion for any  cont ro l le r  sat isfying II G ( z ) I I  ~o 

< 3'. Thus, our  sufficient condi t ion  will also be necessary as long as the auxi l iary  mln i rmzat lon  p r o b l e m  
possesses at least one extremal  over 6 p. 

Remark  4.4. The set ~ in the proof  of Theorem 4.1 const i tutes  sufficient  condi t ions  under  which the 
Lagrange  mul t ip l ie r  technique is app l icab le  to the auxaliary mimrmza t lon  prob lem.  Specifically,  the 
requi rement  that  P > 0 replaces P > 0 by  an open set constra int ,  while the s tabi l i ty  of  A + D~(3"2Ia= - 
D ~ P D ~ )  1 D f P A  serves as a normal i ty  condi t ion  

Remark  4.5. The def ini teness  condi t ion  C Q C  T > 0 holds if C has full row rank  and  Q is posi t ive  definite.  
Conversely,  if C Q C  T > 0, then C must  have full row rank  but  Q need not  necessar i ly  be posi t ive  definite.  
As  shown in the p roo f  of  Theorem 41 ,  this c o n d m o n  implies  the existence of the s ta t ic-gain  pro jec t ion  v. 

Remark  4.6. As shown in the p roo f  of  Theorem 41 ,  equat ions  (4.1) and (42 )  are ob ta ined  by  minirmzlng 
J ( K ,  P )  = tr P V  thus p rov id ing  a min imized  upper  b o u n d  for the ac tual  H 2 cost  J ( K )  = t r / 3 V  since 
p>_F 

Next ,  we specialize Theorem 4.1 to the ful l-s tate  feedback  case. When  the full s tate is avai lable  C = I ,  
so that  the pro jec t ion  v = I n and v I = 0. In  this case (43 )  becomes  

K = - R 2 ~ P  . (4.9) 

and  (4 1) specializes to 

P = A T p A  + R 1 + A T P D ~ ( Y 2 I d ~  - D ~ P D ~ )  ' D T p A  - PT~R22P a (4.10) 

while (4.2) is superf luous and can be ormtted Fur the rmore ,  the H 2 cost  is b o u n d e d  by  

J ( K )  < tr P V  (4.11) 

Final ly ,  to recover the s t andard  d iscre te- t ime L Q R  resul t  let 3'--, oo so that  (4.10) co r re sponds  to the 
s t anda rd  d iscre te- t ime regula tor  Rlccat l  equat ion  

5. D y n a m i c  e s t i m a t i o n  wi th  an H a error cons tra int  

In this sect ion we in t roduce  the d iscre te- t ime nuxed  no rm H 2 / H  ~ es t imat ion  p r o b l e m  with an H ~  
cons t ra in t  on the H ~  norm of  the s ta te -es t imat ion  error  Specifically,  we cons t ra in  the t ransfer  funct ion  
between d is turbances  and error  states to have H a no rm less than 3'. 



W M_ H a d d a d  et al  / Dtscrete-t tme H 2 / H ~  synthests 243 

H -constrained Kalman filter problem. Given the n th-order observable dynarmc system 

x ( k + l ) = A x ( k ) + D , w ( k ) ,  k = 0 , 1 , 2 , .  , (5.1) 

y (  k ) = Cx(  k ) + Dzw(  k ), (5.2) 

deterrmne an n th-order state estimator 

x e ( k  + 1) = A e x e ( k  ) + B e y ( k  ) , (5.3) 

y e ( k )  = C~x~(k) ,  (5 4) 

that satisfies the following design criteria: 
(1) A~ is asymptotical ly stable, 

(11) the r x d transfer function 

n ( z )  a= EL(z I , ,  - A e ) - l (  Oa - BeDz) 

f rom disturbances w ( k )  to error states E [ L x ( k ) - y ~ ( k ) ]  saUsfies the constraint  

II a ( z )  II ~ -< v, (5 5) 

where 3' > 0 is a given constant;  and 
(in) the H 2 state-estimation error cnter ion 

J ( A  e, B e , Ce) ~= hm E [ L x ( k )  - y ~ ( k ) ] T R [ L x ( k )  - y ~ ( k ) ]  (5.6) 
k ~  oo 

is minimized and 

hm [ x ( k )  - x e ( k ) l  = 0, (5.7) 
k~oo 

for all x(0) and xe(0 ) when D 1 = 0 and D z = O. 

Note  that (5 6) is the usual least-squares es t imanon criterion whereas (5.7) implies that  perfect 
observat ion is achieved at steady state for the plant  and observer dynamics  under  zero external 
disturbances and arbitrary lnanal condiUons 

To satisfy the observat ion constraint  (5 7), define the error states e ( k )  = x ( k )  - x e ( k  ) satisfying 

e ( k  + 1) = x ( k  + 1) - x e ( k  + 1) 

= (A  - O e C ) x ( k  ) - A , x ( k )  + ( D  1 - B ,  D z ) w ( k  ) (5.8) 

Next, note that the explicit dependence of the error states e ( k )  on the states x ( k )  can be ellrmnated by 
constraining 

A~ = A - B~C, (5.9) 

so that (5.8) becomes 

e(  k + 1) = ( A - B~C ) e (  k ) + ( D 1 -- B e D z ) w (  k ). (5 10) 

Ttus formulat ion permits the state x ( k )  to contain unstable modes, i.e., A can be unstable. Analogously,  
note that the H 2 least-squares s tate-est imanon error criterion can be written as 

J ( A  e, B e , C~) = hm F [ L x ( k )  - C e x e ( k ) ] T R [ L x ( k )  - C~xe(k)]  (5 11) 

so that the explicit dependence of  the estimation error criterion on the state x ( k )  can be ehrmnated by 
cons t rmmng 

C~ = L.  (5.12) 
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Hencefor th ,  we assume that A e and C~ are given by (5 9) and (5.12). In this case, (5.11) becomes  

J ( A  e, B e , C e ) =  lim t r E [ L T R L e ( k ) e V ( k ) ] .  (5.13) 

Next,  if A~ is asymptot ical ly  stable, then the H 2 es t imat ion-error  criterion (5.13) is g~ven by 

J( Ae, Be, Ce) = II H(z)112 2 = tr O LTRL,  (5.14) 

where the s teady-state  error covanance  defined by 

0 =  hm ~ _ [ e ( k ) e T ( k ) ] ,  (5 15) 
k ---~ ot~ 

exists and satisfies the n × n algebraic Lyapunov  equat ion 

0 = ( A  - B e C ) O ( A  - BeC) T + I, 7, (5.16) 

where 17 is the n × n nonnegatwe-def ini te  intensity of  ( D  1 - B e D z ) w ( k  ) given by 

IT"& V -  V,2B f - BeV, T + B~V2B T (5.17) 

Finally, note that  by defining 

~ ( k )  = E [ / ~ x ( k )  - Cexe(k) ]  = ELe ( / , ) ,  (5.18) 

It follows f rom (5.10) and (5 18) that the t ransfer  funct ion f rom disturbances w ( k )  to error states E L e ( k )  
is given by  H ( z )  A novel feature of  this mathemat ica l  formulat ion is the dual in terpre ta t ion  of the 
dis turbance w ( k ) .  Specifically, within the context  of H 2 opUmali ty  the dis turbances are in terpreted as 
white noise signals whale, s imultaneously,  for the purpose  of H~  error es t imat ion the very same 
dis turbance signals have the alternative interpretat ion of l 2 dis turbance signals. 

Once again, the key step m enforcing (5.5) ~s to replace the error covariance equat ion (5.16) by an 
algebraic Riccati  equat ion that enforces the Hoo norm constraint  and overbounds  the error covanance  Q- 

L e m m a  5.1. Let  B e ~ R "×1 be gtoen and assume there extsts an n × n nonnegattoe-defimte matrix Q sattsfylng 

Q = ( A - B , C ) Q ( A  - B~C) T 

+ ( A  - B~C)QLTE'V('/Zlr -- E L Q L T E T ) - I E L Q ( A  - B~C) T + I7" (5.19) 

Then 

( A - BeC, ~') ts stabthzable (5 20) 

t f  and only t f  

A e ts asymptotically stable. (5 21) 

In thts case, 

II n ( z )  II ~ < "r (5.22) 

and 

< Q- (5 23) 

Consequently, 

J ( A , ,  Be, Ce) ~ J ( h e ,  Be, Ce, Q) ,  (5.24) 

where 

aCt( Ae, Be, Ce, Q) = tr QLTRL (5.25) 
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Finally, t f  H ( z )  6 hRJt°~ and II H ( z )  II ~ < T, then there exists a umque nonnegative-defintte solution Q 
satisfying (5.19) and such that the etgenvalues of  

( A - BeC) -6 ( A - BeC )QLTET(  y Z l r -  E L Q L T E T )  E L  

he tn the open umt  disk. 

Proof.  The proof  is completely analogous to the proofs of Lemma 2 1 and Lemma 2.2. [] 

Lemma 5.1 shows that the Hoo estimation error constraint  is enforced when a nonnegative-deflni te  
solution to (5.19) Is known to exist and A~ is asymptotically stable Furthermore,  all such solutions 
provide upper  bounds  for the H 2 estimation error II H ( z )  Ill- Thus, as in the first par t  of  the paper,  the 
combined H z / H  ~ estimation problem can be recast as an auxiliary rmmmizat ion problem. 

6. Sufficient conditions for combined least-squares and frequency-domain error estimation 

In this section we state sufficient condit ions for characterizing discrete-time dynamic  estimators 
guaranteeing H~-cons t ra ined  est imation with an optimized bound  on the least-squares state-estimation 
error criterion. For  convenience in stating this result define the addit ional notat ion 

V2a ~ V 2 + C Q C  T + c Q L T E T ( y 2 I r  -- E L Q L T E T ) - I E L Q C T  ' 

Qa zx A Q C  T + [i12 -6 A Q L T E T ( y 2 I r  -- E L Q L T E  T)  - 1 E L Q C T ,  

for arbi t rary Q 6 R "×" 

Theorem 6.1. Suppose there exists an n × n nonnegatwe-defmtte matrix  Q sattsfymg 

Q = A Q A  "r + V I + A Q L V E r (  72Ir -- E L Q L r E  T ) - I E L Q A r  _ QaV2-1Q~, 

and let ( Ae, B e, C e) be gwen by 

14 e = A -- OaV2alC, 

B e = Q,Vfo 1 , 

C e = L .  

(61) 

(6 2) 

(6.3) 

(6.4) 

Then (Ae, l ,~) ts stabihzable if  and only i r a  e is asymptotically stable. In this case, the transfer function H(  z ) 
sattsfws the H ~  estimation error constramt (5.22) and the H 2 least-squares state-esttmatwn error criterion 
(5.6) satisfies the bound 

J ( A e ,  Be, Ce) = 11H(z ) I I ]  < tr QLTRL (6.5) 

Proof.  As in the proof  of  Theorem 4.1 we first obtain necessary condit ions for the auxallary minimizat ion 
problem and then show by construct ion that these condit ions serve as sufficient condit ions for stability of  
the estimator dynamics  and a prespecifled H~-cons t ra ln t  on the state-estimation error. Thus, to optimize 
(5 19) subject to (5.25) over the open set 

5a & {(Ae,  Be, Ce, Q) -  ( A - BeC ) + ( A - BeC)QLTET(72Ir  -- E L Q L T E T ) E L  

IS asymptotical ly stable and 

( A e + AeQL ' rE ' r ( ' t 2 I r -  E L Q L ' r E ' r ) - I E L ,  Ce) is observable}, 
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form the Lagranglan 

, ~' [ B T . ~ ( B  e Q, P, X ) = t r { X Q L T R L + I ( A - B e C ) Q ( A -  eC) 

+ (A  - BeC)QLTET(y2 I r -  ELQLIE  T) - ' E L Q (  A - BeC) T + 17"- Q] p } ,  

( 6 6 )  

where the Lagrange multlphers X > 0 and P ~ R "×~ are not both zero By viewing B e, Q as independent  
variables we obtain 

a.Lp_ [I .  + QLTET( 'y2I , -  E L Q L E T ) E L ] T  ( A - -  B e C ) T p (  A - BeC ) aQ 

[ I , , +  QLTET(3"2Ir-- E L Q L T E T ) - ] E L ]  -- P + XLTRL- (6.7) 

Since (A - BeC ) + (A - BeC)QLTET(~,2I~-- E L Q L T E T ) - l E L  IS assumed to be stable, X = 0 lmphes 
P = 0. Hence, it can be assumed without loss of generality that X = 1. Thus the stat ionary condit ions with 
2, = 1 are given by 

0 - ~ _  [In + QLTET(T2I r -- E L Q L T E T ) - I E L ] T (  A - BeC)Tp( A - BeG ) aQ 

[I,  + QLTET(~,zI, - ELQLTE T) 'EL] + LTRL - P = O ,  (6.8) 

0£/) _ PB~V 2 + PB~CQC T + PB~CQLTET(3,2I ~ - ELQLTE T) ' E L Q C  T 
3Be 

-- P A Q C  T - PV~2QC T - P A Q L T E T ( y 2 I r -  ELQLTE T) ' E L Q C T = O  (6_9) 

Next, note that (6 8) is equivalent to 

-[Ae+ AeQLTET('y2Ir  - E L Q L T E  T ) l E t ]  -1- CTRCe _ ( 6 . 1 0 )  

Now, since ( A e + A eQLTE T(~, 21r -- ELQLTE T)-  ~EL, C e ) IS observable it follows from standard discrete- 
time Lyapunov  theory that P is posit~ve-deflmte. 

Thus, since P is lnvertlble (6.9) lmphes (6.3). Now (6.2) is a restatement of (5.9) with B~ gaven by (6 3) 
Next, with B e given by (6.2), equation (6.1) is equivalent to (5 19). It now follows f rom Lemma 5 1 that the 
stabihzabflity condit ion (5.20) is equivalent to the stability of A e. In this case the H ~ - n o r m  constraint  on 
the state-esumatlon error (5 22) holds, and the H z state-estimation criterion is bounded  from above and is 
given by (5.25) [] 

Remark 6.1. Theorem 6.1 presents sufficient conditions for designing full-order discrete-time dynarmc 
estimators with a prespeclfied H ~ - n o r m  constraint  on the state-estimation error These condit ions involve 
one modified Raccatl equation s~rmlar to the discrete-t~me observer Rlccati equat ion with addit ional 
quadratic terms of  the form A QLTET(yEIr -- ELQLTET)  -1ELQAT which enforce the H~  constraint.  No te  
that if the H~ estimation constraint  is suff ioent ly  relaxed, i.e., ~,---, ~ ,  (6 1) reduces to the s tandard 
observer Riccati equation of steady-state discrete-time Kalman filter theory. 

Remark 6.2. The principal issue in applying Theorem 6 1 concerns condit ions on the problem data under 
which the modified observer Raccati equation possesses nonnegative-defimte solutions. For  ~/ sufficiently 
large, (6.1) approximates the s tandard discrete-time Kalman filter result so that existence is assured. 
However, the important  case of interest involves small ), so that significant H~ esumat lon is enforced The 
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l a s t  p a r t  o f  L e m m a  5.1 i m p l i e s  t h a t  (6.1) p o s s e s s e s  a s o l u t i o n  fo r  a n y  d y n a r m c  e s t i m a t o r  s a t i s f y i n g  

II H ( z ) I I  ~ < T- T h u s ,  i t  f o l l ows  t h a t  t h e  s u f f i c i e n t  c o n d l U o n s  o f  T h e o r e m  6.1 a re  a l so  n e c e s s a r y  as l o n g  as  

t he  a u x i l i a r y  r m m m i z a t l o n  p r o b l e m  p o s s e s s e s  a t  l e a s t  o n e  e x t r e m a l  o v e r  ~e" 

R e m a r k  6.3. E q u a t i o n s  (4 10) a n d  (6 1) g ive  the  s o l u t i o n s  to t h e  m i x e d  n o r m  H 2 / H  ~ r e g u l a t i o n  a n d  

e s t i m a t i o n  p r o b l e m s .  A l t h o u g h  the  f o r m  of  (4.10),  (6.1)  w o u l d  l e a d  o n e  to s u r m i s e  t h a t  t he  m i x e d - n o r m  

H 2 / H o ~  o u t p u t  f e e d b a c k  d y n a m i c  c o m p e n s a t i o n  r e s u l t  w o u l d  i n v o l v e  e q u a t i o n s  (4 .10)  a n d  (6.1),  th i s  is n o t  

g e n e r a l l y  t h e  ca se  s ince  s e p a r a t i o n  b e t w e e n  r e g u l a t i o n  a n d  e s t i m a t i o n  d o e s  n o t  h o l d  for  t h e  n ' a x e d - n o r m  

H 2 / H o ~  p r o b l e m  as was  p o i n t e d  o u t  in  [1] for  the  c o n t i n u o u s - t i m e  ca se  O f  cou r se ,  u n d e r  c e r t a i n  

s i m p l i f y i n g  a s s u m p t i o n s  (see [1], S e c t i o n  5) o n e  m a y  o b t a i n  s e p a r a t i o n .  H o w e v e r ,  t he  r e s u l t i n g  s t r u c t u r e  o f  

t h e  c o m p e n s a t o r  g a i n s  d i f f e r s  m a r k e d l y  f r o m  the  s t a n d a r d  L Q G  g a i n s  As  s h o w n  in  [15], t he  H ~  d y n a m i c  

c o m p e n s a t i o n  p r o b l e m  w i t h o u t  a n y  H 2 c o n t r i b u t i o n  r e v o l v e s  two  d e c o u p l e d  e q u a t i o n s  g i v e n  b y  (4 .10)  a n d  

(6.1).  
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