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Abstract- Recent papers have considered the problem of rnmffnlzlng an entropy functional subject to an H~ performance constramt_ 
Since the entropy as an upper bound for the H 2 cost, there remains a gap between entropy rrumrmzatlon and H 2 rmnln'uzatlon_ In 
thas paper we consider a generalized cost functional involving both H 2 and entropy aspects This approach thus provades a means for 
optlmlzang H 2 performance within H~o control desxgn. 

Keywords H 2 design, mlmmum entropy, rmxed-norm H 2 / H  ~ design 

1. Introduction 

It  was recently shown in [1] that suboptimal H~o controllers can be characterized by means of modified 
Riccati equations. These equations were obtained by minimizing an H 2 performa/ace bound subject to a 
constraint on the H~ performance Subsequently it was shown that, in the equalized H 2 / H  ~ weight case, 
the H 2 performance bound coincides w~th an entropy functional [4,5]. Although less famlhar than the H 2 
objectwe, the entropy functional is mathematically tractable within the context of H a control theory. 

In many practical applications, however, it may be desirable to minimize the H 2 cost &rectly. That is, 
although the entropy functional bounds the H 2 cost (in the equalized weight case), there may exast a 'gap '  
between these performance measures. Thus, the control law that mlmmizes the entropy need not also 
minimize the H 2 performance. 

The goal of the present paper  ~s to extend the approach of [1] to include both H 2 and entropy 
performance measures within the context of constrained H~  design. This multiobjectlve problem is treated 
by forming a convex combination of both performance measures. This approach is reminiscent of 
scalarization techniques for Pareto optimization [4]. 

For simplicity the present paper  is confined to static full-state feedback control. Full- and reduced-order 
dynamic compensation as in [1] will be considered m a future paper. 

Notation. Note- All matrices have real entries. 
R, Rr×s, ~ r  real numbers, r X s real matrices, ~r×l 
ir ' ( )X, tr r X r identity matrix, transpose, trace 
n, m, d, q, q~ positive integers. 
x, u n, m-dimensional vectors. 
A, B, K n × n , n X m ,  m × n  matrices. 
w(-) L 2 disturbance signal in R d. 
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D , V  

El, E 2 
R1, R2 
h 
EI~, E2~ 
R1~, R2~ 

a,B.~' 

n × d, n × n matrices, V =  DD T 
q × n, q × m matrices; E~E z = 0 
E?E I, E : E  2- 
R l + KXR2 K 
q~ × n, q~ × m matrices, E1To~Ez~ = 0 
e L E I ~ ,  E LE2oe  
RI~ + KTR2~K.  
real numbers,  positive number  

~ ( ~ )  ~ (e,~ + 

from disturbances w(- 

IIG~II~ <v,  

2. Problem statement 

Combined H 2 / H ~ / E n t r o p y  Control Problem Consider the nth-order  dynanuc  system 

~ ( t ) = A ~ ( t ) + B ~ ( t ) + D w ( t ) ,  t ~  [0, ~}, 

with feedback law 

u( t )  = K x ( t ) ,  

and H 2 and H~ performance variables 

g2(/) =ElX(t ) + E2u( t  ), 

z~(t) = E,~x{t) + E ~ ( t )  

Then determine K ~ R m ×~ saUsfymg the following design criteria. 
(x) the closed-loop system (2 1), (2.2) is asymptotically stable, 1.e, A ~ A + BK is Hurwitz,  

(i0 for given y > 0, the q~ × d transfer function 

) to H a performance varmbles z~ saushes the H a - n o r m  constraint  

(rio for ~ ~ [0, 1] the cost funcUonal 

J ( K )  &/~ II 62112 + (1 - t* ) I (a~ ,  "t) 

is minirmzed, where 

G2(s ) a= ( E  1 + E2 K ) ( s I . _  A ) - ' D  

is the q x d transfer function from disturbances w to H 2 performance variables z2, and 

[ fs°  1 ~':f~ lnldet(l.-'y-2G~o(J~o)G*O,o))][s2o +,o2 d,,, 

is the entropy functional for the H a performance variables z~_ 

(2.1) 

(2.2) 

(2 3) 

(2 4) 

(2.5) 

(2.6) 

(2.7) 

(2.8) 

(2 9) 

Note that the problem statement involves both H 2 and H a per formance  variables where for generality 
z 2 is not  necessarily equal to z~. For  convenience we onut  H 2 and H a cross weighting terms by assurmng 
EVE 2 = 0 and E ~  E2~ o = 0 

As discussed in [5,6], the entropy functional (2.9) can be viewed as a measure of the distance from 
[I G~ [I ~ to 7- Like the H 2 norm, but unlike the H a norm, however, the ent ropy I(G~, ¥) accounts for 

G~(j~0) at all frequencies. Furthermore,  it can be shown [2] that the entropy functional at infinity is 
equivalent to the exponential-of-quadratic cost of the Rask-Sensitxve L Q G  Control  Problem [8] 
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Remark 2.1. Note that (2.7) revolves a convex combination of two scalar costs. By varying/~ E [0, 1], (2 7) 
can be viewed as the scalar representation of a multiobjective cost (see, e,g, [4]) By setting # = 0 we obtain 
an en t ropy /H~ control problem as in [1] However, it is important to stress that if/~ = 1 then the entropy 
functional is excluded from the cost functxonal (2.7) so that the optirmzatlon procedure is unable to 
enforce (2 9). In this case the bound (2.6) plays no role and the standard H 2 LQR problem is obtained. 
The practical value of tins formulation is the case t~ = 1 m winch the role of the entropy functional (2.9) is 
deemphasized and the optimization problem corresponds to rmnirruzing the actual H 2 cost while enforcing 
the H~ constraint (2.6) 

3. Reformulation of the control problem 

In tins section we reformulate the combined H z / H ~ / E n t r o p y  Control Problem to facihtate the 
development of optimahty condmons. First, we present a sufflcxent condxtion that enforces the disturbance 
attenuation constraint (2.6). For arbitrary K ~ R T M  define the notation 

A= R1 + K-rR2K,  

Lemma 3.1. Let K E R "x~  
satisfying 

O = X.~ + .~ A-r + y -  2.~ h ~ . ~  + v .  

Then 

ko~ ~ Rlo~ + K'rR 2 ~ K ,  V & D D  T. 

be gwen and assume there exists a nonnegative-defintte matrtx , ~  R "×n 

( A ,  D ) ts stabllizable 

t f  and only i f  

ts Hurwitz .  

In thts case, the fol lowmg statements hold 
O) the transfer function Go~ sattsftes 

II G~ II ~ -< r ;  

(i 0 tf l] a~  II ~ < ~' then 

I ( G ~ ,  "r) < tr .~h~;  

0il) the transfer functton G 2 tS gwen by 

II G2 II~ = tr QR, 

where the n × n matrtx  Q sattsfles 

0 = A Q  + QA-r+ V, 

(iv) the solutton Q to (3.7) sattsftes the bound 

Q <_.~ 

and hence 

II G2112 z < tr .~k;  

(v) all real symmetrtc soluttons to (3.1) are nonnegatwe definite; 
(vi) there extsts a (untque) minimal  solutwn to (3.1) m the class of  real symmetric  soluttons; 

(3.1) 

(3.2) 

(3 3) 

(3 4) 

(3 5) 

(3.6) 

(3 7) 

(3.8) 

(3.9) 
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(vn) ~ ts the minimal solutton to (3.1) if and only tf 

Re X , ( A + 3 ,  2,-~t~:~) ~<0; (3 10) 

(wfi) II G~ II ~ < Y tf and only tf .4 + y - 2 . ~ k ~  ts Hurwttz, where ~ ts the mlntrnal solution to (3.1); 
(ix) tf ~ ts the mmtmal  solutton to (3 1) and II G~ II ~ < Y, then 

I ( G ~ ,  V) = tr . ~ / ~ .  (3.11) 

Proof The proof  of (3 2)-(3.4)  and (3.6)-(3.9) is similar to the p roof  of L e m m a  2.1 given m [1] Assuming 
,4 is Hurwitz,  (v) follows by writing ~ = f0 ~ e A r [ ' / - 2 ~ / ~  + V] e A-~' dt.  Result  (v 0 is given by Theorem 
2 1 of [3], whale (w0 follows f rom Theorem 2.1 of [3] and Theorem 2 of [7]. S ta tement  (vii0 follows f rom 
[6]. Finally, 0x) as given in [5,6], while (3 5) follows f rom (3 11). [] 

Remark  3.1. Consider the equalized weight case z 2 = z~ so that G 2 --- G~. In this case it follows f rom (3.9) 
and (3 11) that 

II 62 []2 _< l ( a 2 "  .y), (3 12) 

Le., the en t ropy as an upper  bound  for the H 2 cost (see also [5,6]) If  the H ~  dis turbance a t tenuat ion 
constraint  ~s sufficiently relaxed, 1.e., ~, ~ ~ ,  then it can be shown [5,6] that  the en t ropy  functional  (2.9) 
coincides with the H 2 cost, 1.e, 

I (G2,  oo) = [1G 2112 = tr QR (3.13) 

Remark  3.2. The t rea tment  of the en t ropy functional  appears  to be difficult when II G~ I[ ~ = "Y- This case 
was not considered in [6]. 

L e m m a  3.1 shows that  the H ~  d~sturbance a t tenuat ion constraint  is enforced when a nonnegauve-def i -  
nite solution to (3.1) Is known to exast and A is Hurwitz.  Fur thermore ,  all such solutions provide upper  
bounds for the H 2 pe r fo rmance  [I G2 [I 2 Also, if -~ is the m i m m a l  solution to (3.1), then the en t ropy 
functional (2.9) is given by (3 11) Then,  the combined  H 2 / H ~ / E n t r o p y  Control  Problem can be recast as 
the following Auxahary Opt imizat ion Problem We shall say K ~ R " ×" is admissible if A is Hurwi tz  and 

II a ~  II ~ < ' r -  

Auxiliary Optimization Problem. For /~ ~ [0, 1], determine admissible K ~ R " ×" that  minimizes 

J (  K ) =/~ tr Q/~ + (1 - ~t ) tr .~/~ ~,  (3.14) 

where Q, ~ > 0 sansfy (3 7) and (3.1) 

4. Sufficient conditions for optimality 

In thas section we state suf f ioent  condit ions for characterizing full-state feedback controllers guarantee-  
mg closed-loop s tablhty and constrained H ~  dis turbance at tenuat ion.  For  convemence  in stating the main  
result we assume 

R2 = aER2 , g 2 ~  = ]~2/~2, (4 1) 

where a, fl are real numbers  and k ~ R rex" is positive definite The  general case m which (4.1) does not  
hold is discussed later m Remark  4.1. Also define 

~, ~= B k ] I B  T (4.2) 
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Theorem 4.1. Suppose there exist n × n nonnegative-defmtte matrtces Q, P, .~., ~ sattsfymg 

0 = (A  - Z M ) Q  + Q ( A  - ~ M )  x + V, (4.3) 

0 = (A - .Y,M)Tp + P(A  - ~,M) + #R, + Iza2MTZM. (4 4) 

0 ~ (A - ,~M)-~ +.~(A - ~ M )  T + "y-2.~Rlc~.~ + T-2~Z.~MTZM~ + V, (4.5) 

O = ( A - ~ M  +'y-2.~[RI~o + f l 2 M T ~ , M ] ) T ~ + ~ ( A - Z M  +'),-2~.[R]~ + f l2MTZM])  

+ (1 - /z )R,~  o + (1 - I~)fl2MTY~M, (4.6) 

and 

Iza2Q + (1 -/z)fl2-~ + ~,- 2f12~#L~ > 0, (4.7) 

where 

M & ( e o  + ~ ) ( I z a 2 Q  + (1 - / z ) f l  2-~ + v-2fl 2-~-~)-1,  (4.8) 

and let K be gwen by 

K =  -k ;1BXM.  (4.9) 

Then (3, D) ts stabtlizable tf and only t ea  ts Hurwttz In thts case, 

II G2 I1~ = tr Q(R 1 + aZMT~,M), (4.10) 

II a~o II ~ -< ~', (4.11) 

and, tf II 6 4  II ~ < "/, then 

I( G~, "~ ) <_ tr -~( Rl~o + fl=MT ~ M  ). (4.12) 

If, m addttton, A - ~,M + y-2~(Rlo ~ + fl2MT~,M) is Hurwttz, then 

I(G,¢, "/) = tr ,~( R,~ + f l2MTNM). (4.13) 

Proof. First we obtmn necessary conditions for the Auxaliary Optimization Problem and then show, by 
construction, that these conditions serve as sufficient conditions for closed-loop stability and prespecified 
disturbance attenuation. Thus, to optimize (3.14) subject to (3.1) and (3.7), form the Lagranglan 

£P(K, Q,-~, P, ~ ) &  tr[X[/zQk + ( 1 - # ) a h ~ ]  

+ ( A Q +  o a r +  V ) P +  (2.~+.~A-r+v-zak=a+ V)~], (4.14) 

where the Lagrange multipliers ~ >_ 0 and P, ~ R ~×~ are not all zero. By viewing K, Q, and -~ as 
independent variables, we obtain 

0 ~  = ~Zp + PA + X/~/~, (4 15) 
0 Q  

~"----~ = ( 3  + y-2..~/l~zo )r/~.+_/~(24 + . y - 2 ~ / ~ )  "4- X(1 - # ) / ~  (4.16) 

If both A and z{+ .y-2~/~¢ are Hurwitz, then ~, = 0 implies P = 0 and 9 ~= 0. Hence, it can be assumed 
without loss of generality that h = 1. Furthermore, note that P and 9 ~ are nonnegative-definite. Thus the 
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stanonary conditions with X = 1 are gwen by 

3Q _ .~Tp + p ~  +/z/~ = O, (4 17) 

( d  T - = 
O.~- + y - . ~ R ~ )  ~ + , - @ ( J + V  2 - ~ h ~ ) + ( 1 - / z ) k ~  0, (4.18) 

a£# 
O--g = t~R2KQ + (1 - t~)R2~K-~ + v 2 R 2 ~ K - ~ - ~  + BT( p Q  + ~Z~ ) = O. (4.19) 

Assuming (4.1), (4.19) lmphes (4.9). Next, with K given by (4.9), (4 3)-(4.6) are eqmvalent to (3.7), (4.17), 
(3.1), and (4.18), respectively It now follows from Lemma 3 1 that the stabihzablhty condition is 
equivalent to the stability of A In this case the H a &sturbance attenuation constraint (4 11) holds, the 
entropy is bounded as in (4 12), and the H 2 cost is given by (4.10) If, finally, ,,~ +-y 2~/}~ is Hurwltz, 
then the entropy is given by (4.13), which is a restatement of (3.11) [] 

Remark 4.1. Condition (4 1) was assumed for convemence only When (4 1) does not hold, K is given by 

K = - vec-a { ~2-1 vec[ BT(pQ + ~.~)] }, (4.20) 

where 'vec' denotes the column stacking operator, and $2 Is defined by 

& p.R 2 ® Q + (1 - / , ) R 2 ~  ®~ + -y-2R2~ ® ~.~-~, (4.21) 

where ® denotes Kronecker product. Since /2 > 0, (4 20) is valid if /2 > 0, which is a generahzation of 
(4 7). When (4 1) does not hold, however, (4 3)-(4 6) cannot be used and must be replaced by (3.7), (4 17), 
(3.]) and (4.18), respectively. 

5. Specializations of Theorem 4.1 

To draw connecnons with the existing literature, a senes of speciahzations of Theorem 4.1 ts now given 
We begin by consldenng the case of an entropy functional only, 1 e., tz = 0 In this case, set R a = 0, a -- 0 
(i e., R 2 = 0) so that (4.3) is superfluous and (4.4) implies P = 0. Furthermore, (4.9) becomes 

r =  -R  BT S (5 1) 

and -~, ~ satisfy 

0 = (.4 - Z ~ e a S ) ~  + ~ ( A  - Z ~ e a S )  ~ + v 2 4 R , 3  + V - 2 ~ 2 ~ S T ~ Z ~ S a  + V. (5.2) 

0 =  ( a  + ~,-2-~RI~)T~+ ~ ( A  + y -2~R,~)  + R , ~  - s T ~ , ~ B z S ,  (5 3) 

where 

S ~ (I,, + y 2fl2~..~)-', 

,Y,• & B R 2 ~ B  T. 

Next, by introducing the transformation Z = ~ S =  (~a-1 + y-2f12~)-i 
f12),-2(4.2)]Z, (5.1)-(5 3) collapse to 

g ~  1 T -R2o~B  Z,  (5 6) 

0 = A T z  + ZA + RI~  + " y - 2 Z V Z  - Z~_ ,~zZ  , (5.7) 

(5.4) 

(5.5) 

and forming Z [ ~ - l ( 5  3 )~  -1 + 
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which lS the result given in [9]. Furthermore,  it can be shown that 

II G2 [I 2 -< I ( G ~ ,  V) = tr Z V .  

Next, to recover the s tandard L Q R  result f rom Theorem 4.1, set RI~  = 0, fl = 0 (i e., 

119 

(5.8) 

R2~ = 0) and 
/~ = 1 or, effectively (see Remark  2.1), 3,--* oe In  this case (4.3) and (4.5) are superfluous while (4.6) 
implies ~ = 0. Furthermore,  (4.9) becomes 

K =  - R ~ I B T p ,  (5.9) 

where P satisfies the s tandard regulator Riccatl  equation 

0 = A ' r p  + PA + R 1 - PY,2P,  (5.10) 

where 

~2 ~= B R 2  lB'r. (5.11) 

Furthermore,  

II G2 112 = I ( G ~ ,  ~ )  = tr PV.  (5.12) 

Note  that in this case the H~  performance bound  (2.6) is not  enforced since the ent ropy functional  is 
excluded f rom the optimality criterion. 

Finally, it is impor tant  to point  out a generahzation of  (5.1)-(5.3) Specifically, suppose as m [1] we seek 
to nunimlze an overbound on the H z cost while enforcing the dis turbance at tenuat ion constraint  with 
performance variables z 2 4= z~,  i.e., (3.14) replaced by tr .~/} and # = 0 so that the actual H 2 cost is not  
considered Note  that in this case tr -~/~ is not  generally equal to I(G~o, "y) and the entropy Interpretat ion 
of  the performance Is no longer valid. In  this case, (4.3)-(4.6) and (4.8) become 

K = - k~aBV#~g, (5.13) 

where -~, ~ satisfy 

0 = (A - X P g ) . ~  + . ~ ( A  - X ~ S )  T + y-2.~Ra~.~ + y -  2flZ.~S'rt~z~S.~ + V, (5.14) 

0 = (A + 3 , - 2 ~ R , ~ ) T ~ +  ~ ( A  + T-a .~R,~)  + R,  - S a ' ~ Z ~ g ,  (5.15) 

and 

S~= (a2I ,  + ~ - 2 f l z - ~ )  -1 (5.16) 

Furthermore,  

II G2 112 -< tr ~ ( R ,  + g ' r ~ I : ~ ) .  (5.17) 

It is interesting to note that the full state feedback overbound  H 2 / H  ~ unequalized weights case involves 
two coupled equations, one modif ied Riccati  equation, and one modif ied L y a p u n o v  equation, unhke the 
e n t r o p y / H ~  (equalized weights) case, which involves one modif ied Rlccatl  equat ion given by (5 7) 

References 

[1] D S Bernstem and W_M Haddad, LQG control with an H~ performance bound A Raccatt equation approach, IEEE Trans 
Automat Control 30 (1989) 293-305 

[2] K_ Glover, Mlrumum entropy and nsk-sensmve control The continuous time case, Proc 1EEE Conf Dects~on and Control, 
Tampa, FL (Dec 1989) 388-391 



120 W M Haddad, D S Bernstem / t t , / H ~  gap m H~ control 

[3] I Gohberg, P Lancaster and L Rodman, On Herrmtlan solutions of the symmetric algebraic RaccaU equation, SIAM J Control 
Optlm 5 (1986) 132-1334 

[4] P_P. Khargonekar and M A Rotea, OpUmal control with multtple objectives The H 2 case, Proc Amer Control Conf, Pittsburgh, 
PA (1989) 171-176 

[5] D Mustafa, Relations between maximum entropy/Ho,, control and combined Hoo/LQG control, Systems Control Lett 12 (1989) 
193-203 

[6] D Mustafa, Mlmmum Entropy H~ Control, Ph D Dissertation, Dept of Eng_, Umverslty of Cambndge, Cambridge (1989) 
[7] H K Wlmmer, Monotonlclty of maxamal soluuons of algebraic Raccatl equations, Systems Control Lett 5 (1985) 317-319 
[8] P Whittle, Rask-sensltwe hnear/quadratlc/Gausslan control, Adv m Appl Probab 13 (1981) 764-777 
[9] K Zhou and P_P Khargonekar, An algebraic ILtccatl equation approach to H ~° optlrmzaUon, Systems Control Lett 11 (1988) 

85 -91_ 


