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Abstract- Recent papers have considered the problem of mimmzing an entropy functional subject to an H,, performance constraint.
Since the entropy is an upper bound for the H; cost, there remains a gap between entropy mumimuzation and H, mumnuzation. In
this paper we consider a generalized cost functional involving both H, and entropy aspects This approach thus provides a means for
optimzing H, performance withun H_, control design.
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1. Introduction

It was recently shown 1n [1] that suboptimal H_ controllers can be charactenzed by means of modified
Riccati equations. These equations were obtained by mimimizing an H, performapnce bound subject to a
constraint on the H,, performance Subsequently it was shown that, in the equalized H,/H_ weight case,
the H, performance bound coincides with an entropy functional [4,5]. Although less farmiliar than the H,
objective, the entropy functional is mathematically tractable within the context of H_ control theory.

In many practical applications, however, i1t may be desirable to mimmize the H, cost directly. That is,
although the entropy functional bounds the H, cost (in the equalized weight case), there may exst a ‘gap’
between these performance measures. Thus, the control law that minimizes the entropy need not also
minimize the H, performance.

The goal of the present paper 1s to extend the approach of [1] to include both H, and entropy
performance measures within the context of constramned H_ design. This multiobjective problem 1s treated
by forming a convex combination of both performance measures. This approach is remimiscent of
scalarization techniques for Pareto optimization [4].

For simplicity the present paper 1s confined to static full-state feedback control. Full- and reduced-order
dynamic compensation as in [1] will be considered 1n a future paper.

Notation. Note- All matrices have real entries.

R, R R’ real numbers, r X s real matrices, R,
L,()% r X r identity matrix, transpose, trace
n, m, d, q, q., positive integers.

X, u n, m-dimensional vectors.
A, B, K nXn,n X m, mX n matrices.
w(-) L, disturbance signal in R
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D,V nXxd. nXn matrices, V=DD"V

E. E, g X n, g X m matnces; EE,=0

R,. R, EFE,. EJE,.

R R, +K"R,K

E . Ey . q.. X n, q,. X m matrices, Elesz =0
Rlao‘ R2ac EILElx’ E2TooE2cxo

R, R, +KTR, K.

a, B,y real numbers, positive number

2. Problem statement

Combined H,/H_ /Entropy Control Problem Consider the nth-order dynamic system

i(r)=Ax(t)+ Bu(t)+ Dw(r), r€]0, o), (2.1)
with feedback law

u(r) = Kx(t), (2.2)
and H, and H_ performance varnables

z,(2) = Eyx(t) + Eju(t), (23)

z {t)=E, x(t)+ E, u(t) (24)

Then determine K € R™*" satisfying the following design critena. _
(1) the closed-loop system (2 1), (2.2) is asymptotically stable, 1.6, 4 2 4 + BK 15 Hurwitz,
(i1) for gtven y > 0, the g, X d transfer function

1

Go(s)2(Ey, +Ey K)(sl,—A) D (2.5)
from disturbances w(-) to H_ performance vanables z satisfies the H_-norm constraint
NG ll o < Y- (2.6)
(1) for p €0, 1] the cost functional
J(K) 2l Goll3+ (1 - u) (G, v) (2.7)

1s minimized, where

Gy(s) & (E, + E,K)(sI,- A) 'D (2.8)
15 the g X d transfer function from disturbances w to H, performance vanables z,, and
R A o 5q
(G, v)= — ITL Ef_wm]det(ln— Y Gw(Jw)G;(Jw))‘Lg N wz} dw] (29)

1s the entropy functional for the H__ performance variables z_ .

Note that the problem statement involves both H, and H,_ performance variables where for generality
z, 15 not necessarily equal to z_. For conveience we omut H, and H,_ cross weighting terms by assuming
E'E,=0and E_E,_ =0

oo

As discussed 1n [5,6], the entropy functional (2.9) can be viewed as a measure of the distance from
(G to y. Like the A, norm, but unlike the H_ norm, however, the entropy I(G,_, y) accounts for

ol o

G_(w) at all frequencies. Furthermore, 1t can be shown [2] that the entropy functional at nfinity is
equivalent to the exponential-of-quadratic cost of the Risk-Sensitive LQG Control Problem [8]



W M Haddad, D S. Bernstein / H,/H, gap m H_ control 115

Remark 2.1. Note that (2.7) mnvolves a convex combination of two scalar costs. By varying p €[0, 1], (27)
can be viewed as the scalar representation of a multiobjective cost (see, e.g , [4]) By setting p = 0 we obtain
an entropy/H_ control problem as in [1] However, 1t is important to stress that if u =1 then the entropy
functional 1s excluded from the cost functional (2.7) so that the optimization procedure 1s unable to
enforce (2 9). In this case the bound (2.6) plays no role and the standard H, LQR problem is obtamned.
The practical value of this formulation is the case p = 1 1n which the role of the entropy functional (2.9) 1s
deemphasized and the optimization problem corresponds to minimuzing the acrual H, cost while enforcing
the H_, constramt (2.6)

3. Reformulation of the control problem

In this section we reformulate the combined H,/H, /Entropy Control Problem to facilitate the
development of optimality conditions. First, we present a sufficient condition that enforces the disturbance
attenuation constraint (2.6). For arbitrary K € R™™" define the notation

R2R,+K"R,K, R_2R, +K™R, K, VADD"
Lemma 3.1. Ler K€R™™" be gwen and assume there exists a nonnegative-definite matrix 2€ R"*"
satisfying

0=A2+24T+y %2R 2+ V. (3.1)
Then

(A, D) 1s stabilizable (3.2)
if and only if

A 15 Hurwitz. (3.3)

In this case, the following statements hold
(1) the transfer function G, satisfies

G Il o <73 (3 4)
(i) f 11Gy [l o < then
I(G,,y)<tr 2R_;: (35)
(1) the transfer function G, is giwen by
G, 113 = tr OR, (3:6)
where the n X n matrix Q satisfies
0=AQ+ QA"+ V, (37)
(1v) the solution Q to (3.7) satisfies the bound
0<2 (3.8)
and hence
G |13 < tr 2R; (3.9)

(v) all real symmetric solutions to (3.1) are nonnegative definite;
(Vi) there exists a (unique) minimal solution to (3.1) n the class of real symmetric solutions;
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(vu) 2 1s the muimimal solution to (3.1) if and only 1f
Re A, (4+v %2R,) <0; (3 10)

(vii) |G || w <7 if and only if A +y 22R  1s Hurwitz, where 2 1s the numimal solution to (3.1);

(1x) ¢f 2 1s the muumal solution to (31) and |G || » <. then

I(G,.,y)=tr 2R _. (3.11)

Proof The proof of (3 2)-(3.4) and (3.6)—(3.9) 1s simular to the proof of Lemma 2.1 given 1n [1] Assuming
A is Hurwitz, (v) follows by writng 2= [° e™[y"22R_2+ V] e? " dr. Result (v1) 1s given by Theorem
21 of [3], while (vi) follows from Theorem 2 1 of 3] and Theorem 2 of [7]. Statement (vin1) follows from
[6]. Finally, (1x) 1s given 1n [5,6], while (3 5) follows from (311). O

Remark 3.1. Consider the equalized weight case z, = z_, so that G, = G_.. In this case it follows from (3.9)
and (3 11) that

G2 117 < I(Gy. v). (312)

1.e., the entropy 1s an upper bound for the H, cost (see also [5,6]) If the H, disturbance attenuation
constraint 1s sufficiently relaxed, 1.e., y = oo, then 1t can be shown [5,6] that the entropy functional (2.9)
coincides with the H, cost, 1€,

I(G,, ) = || G, ||I5=tr QR (3.13)

Remark 3.2. The treatment of the entropy functional appears to be difficult when || G, || . = v- This case
was not considered in [6].

Lemma 3.1 shows that the H_ disturbance attenuation constraint is enforced when a nonnegative-defi-
nite solution to (3.1) 1s known to exist and 4 1s Hurwitz. Furthermore, all such solutions provide upper
bounds for the H, performance ||G, |3 Also, if 2 is the minimal solution to (3.1), then the entropy
functional (2.9) is given by (3 11) Then, the combmed H,/H_ /Entropy Control Problem can be recast as
the following Auxihary Optimuzation Problem We shall say K € R™*" 1s adnussible 1f A 1s Hurwitz and
1Goll 2 <

Auxiliary Optimization Problem. For p € [0, 1], determune admissible K € R™*" that munimizes
J(K)=ptr QR+ (1—p) tr 2R, (3.14)
where Q, 2 > 0 satisfy (37) and (3.1)

4. Sufficient conditions for optimality

In this section we state sufficient conditions for characterizing full-state feedback controllers guarantee-
ing closed-loop stability and constrained H, disturbance attenuation. For convenience in stating the main
result we assume

R,=oR,. R, =B8R, (41)

where a, B are real numbers and R € R™*" 1s positive definite The general case in which (4.1) does not
hold 1s discussed later in Remark 4.1. Also define

32 BR;'BT (4.2)
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Theorem 4.1. Suppose there exist n X n nonnegative-definite matrices Q, P, 2, P satisfying

0=(A-3ZM)Q+Q(A-ZM) +V, (4.3)
0=(A—3M)'P+P(A—3M)+pR, +pa’M"IM, (4 4)
0=(A-3M)2+2(A—3M)" +y 22R, 2+ B IM"ZM2+ V, (4.5)

0=(A4-3ZM+y 2[R, +BM'IM]) P+P(A—SM+vy 2R, +BM ZM))

+(1~p)R,, +(1-p)B’M"2M, (4.6)
and
pa’Q+ (1-p)B%2+ vy 242> 0, 4.7
where
M2 (PQ+22)(pa’Q+(1—-p)B%2+v 3?222) ", (4.8)

and let K be given by

K= ~R;'B™. (4.9)
Then (A, D) 1s stabilizable if and only if A 15 Hurwitz In this case,

|G, 117 = tr Q(R, + *MTIM), (4.10)

1Gall e <7 (4.11)
and, if |G|l <Y, then

(G, v)<tr 2(Ry + BPMTEM). (4.12)
If, in addition, A — M + vy 22(R,,, + B*MTZM) is Hurwitz, then

(G, Y)=1tr 2(Ry, + B’ M"ZM). (4.13)
Proof. First we obtain necessary conditions for the Auxiliary Optimization Problem and then show, by

construction, that these conditions serve as sufficient conditions for closed-loop stability and prespecified
disturbance attenuation. Thus, to optimize (3.14) subject to (3.1) and (3.7), form the Lagrangian

2(K,Q, 2, P, #)2 u[A\[pOR + (1 —p) 2R,
+(AQ+ QAT+ V)P +(A2+ 24" +v 2R 2+ V)], (4.14)

where the Lagrange multipliers A >0 and P, £€ R"™" are not all zero. By viewing K, 0O, and 2 as
independent variables, we obtain

0L

_ i - ,
30 =4 P+ PA+ A\uR, (415)
9.7 - 2o AT ~ P =

5§=(A+y 9R,) P+P(A+vy22R,)+A(1-p)R, (4.16)

If both A and 4 + y"zﬂﬁw are Hurwitz, then A =0 implies P =0 and = 0. Hence, it can be assumed
without loss of generality that A = 1. Furthermore, note that P and & are nonnegative-definite. Thus the
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stationary conditions with A = 1 are given by

ai‘p=,4'TP+PA‘+,LLR=0, (417)
30

9.¥ ~ —aam AT . ao = .

(,TQ=(A+Y 2R,) P+P(A+v 2R )+ (1-p)R, =0, (4.18)
(5 -2 T

35 = PR2KQ+ (1 - p) Ry K2+ Y "Ry K292+ BY(PQ +22) =0. (4.19)

Assuming (4.1), (4.19) implies (4.9). Next, with K given by (4.9), (4 3)~(4.6) are equivalent to (3.7), (4.17),
(3.1), and (4.18), respectively It now follows from Lemma 31 that the stabilizability condition 1s
equivalent to the stability of 4 In this case the H_ disturbance attenuation constraint (4 11) holds, the
entropy 1s bounded as in (4 12), and the H, cost is given by (4.10) If, finally, A + vy %2R _ 1s Hurwitz,
then the entropy 1s given by (4.13), which 1s a restatement of (3.11) O

Remark 4.1. Condition (4 1) was assumed for convenience only When (4 1) does not hold, K 1s given by
K= —vec {27 vec[ BT(PQ + 22)]}, (4.20)
where ‘ vec’ denotes the column stacking operator, and £ 1s defined by
Q2uR,®Q0+(1~pn)R, ®2+y 'R, ®IP2, (4.21)

where ® denotes Kronecker product. Since 2 > 0, (4 20) 1s valid 1f £ > 0, which 1s a generalization of
(4 7). When (4 1) does not hold, however, (4 3)-(4 6) cannot be used and must be replaced by (3.7), (4 17),
(3.1) and (4.18), respectively.

5. Specializations of Theorem 4.1

To draw connections with the exasting literature, a senes of specializations of Theorem 4.1 1s now given
We begin by considening the case of an entropy functional only, 1e., p=0 In this case, set R, =0, a=0
(ie., R, =0) so that (4.3) 1s superfluous and (4.4) implies P = 0. Furthermore, (4.9) becomes

K= —R;)B'2S (51)
and 2, # satsfy

0=(A-3 _PS)2+2(A -3 PS) +vy 2R, 2+ B2S"PS PS2+ V. (5.2)

0=(A+y 22R,.) P+P(A+vy 2R) + R\, — S"PZ_ 5, (5 3)
where

S2 (1, 4y 22) (5.4

S _2BR,!B". (5.5)

Next, by introducing the transformation Z =28 = (2" '+ vy 28°2)"! and forming Z[# '(53)# ' +
Bry~2(4.2)]Z, (5.1)-(5 3) collapse to

K=—-R,.B"Z, (56)
0=A"Z+ZA+ R, +vy *ZVZ-23_Z, (5.7)
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which 1s the result given 1n [9]. Furthermore, 1t can be shown that
16, 17 < I(Gy, v) = tr ZV. (5.8)

Next, to recover the standard LQR result from Theorem 4.1, set R, =0, 8=0 (ie, R, =0) and
p=1 or, effectively (see Remark 2.1), y = oc In this case (4.3) and (4.5) are superfluous while (4.6)
implies # = 0. Furthermore, (4.9) becomes

K= —-R;'B'P, (5.9)

where P satisfies the standard regulator Riccati equation

0=A"P+PA+R,—PZ,P, (5.10)
where

3,2 BR;'B. (5.11)
Furthermore,

G2 117 =1(G, 00) =1tr PV. (5.12)

Note that in this case the H_ performance bound (2.6) 1s not enforced since the entropy functional 1s
excluded from the optimality criterion.

Finally, it 1s important to point out a generalization of (5.1)—(5.3) Specifically, suppose as in [1] we seek
to munimize an overbound on the H, cost while enforcing the disturbance attenuation constraint with
performance vanables z, # z_, 1.e., (3.14) replaced by tr 2R and p =0 so that the actual H, cost is not
considered Note that 1n this case tr 2R is not generally equal to I (G, v) and the entropy interpretation
of the performance 1s no longer valid. In this case, (4.3)-(4.6) and (4.8) become

K= —R;'B"2S, (5.13)

where 2, 2 satisfy

0=(A-32PS)2+2(A-32S) +y %2R, 2+v BUSTPSPS2+ V, (5.14)

0=(4+v %2R, ) P+P(4+y %2R, )+R, - STP3PS, (5.15)
and

S2(a’l,+y B22) . (5.16)
Furthermore,

|G, 117 < tr 2(R, + STPZPS). (5.17)

It 15 interesting to note that the full state feedback overbound H,/H_ unequalized weights case involves
two coupled equations, one modified Riccati equation, and one modified Lyapunov equation, unhke the
entropy/H_ (equalized weights) case, which involves one modified Riccati equation given by (5 7)

References

[1] D S. Bernstein and W.M Haddad, LQG control with an H_, performance bound A Ruccati equation approach, IEEE Trans
Automat Control 30 (1989) 293-305

[2] K. Glover, Mimmum entropy and nsk-sensitive control The continuous tume case, Proc IEEE Conf Decision and Control,
Tampa, FL (Dec 1989) 388-391



120 W M Haddad, DS Bernstein / H, /H_ gap in H_ control

[3] I Gohberg, P Lancaster and L Rodman, On Hermuitian solutions of the symmetric algebraic Riccati equation, SIAM J Control
Opnim 5 (1986) 132-1334

[4] P.P. Khargonekar and M.A Rotea, Optimal control with multiple objectives The H, case, Proc Amer Control Conf, Pittsburgh,
PA (1989) 171-176

[5] D Mustafa, Relations between maximum entropy,/H,, control and combined H_, /LQG control, Systems Control Lett 12 (1989)
193-203

[6] D. Mustafa, Mimmmum Entropy H_, Control, Ph D Dussertation, Dept of Eng., University of Cambndge, Cambndge (1989)

[7] HK Wimmer, Monotonicity of maximal solutions of algebraic Riccati equations, Systems Control Lett 5 (1985) 317-319

[8] P Whattle, Risk-sensitive hinear /quadratic /Gaussian control, Adv m Appl Probab 13 (1981) 764-777

[9] K Zhou and P.P Khargonekar, An algebraic Riccati equation approach to H® optimization, Systems Control Lett 11 (1988)
85-91.



