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function K are given by (1  1) and (19), respectively, the optimal control is 

u= [ 
2b2x:/q2Ix2(x;+2x;)I 1 ’ - 261x1/q l   [x?  + 2x;1 

Proof: Evaluating the mathematical expectation in (8) we find that 

exp [ -F(x,   t ) /2]   =x, / [x:+  2x:]  (21) 

and formula (20) then follows from (IO). 
The termination set D considered in this section depended only on 

xz(T) ,  so that we  had a  one-barrier problem. In the next section we will 
obtain the optimal control in the first quadrant; that is, we will solve a 
two-barrier problem. 

m. OPTIMAL CONTROL IN THE FIRST QUADRANT 

In this section we assume that the process x( t )  starts in the region 

c= { ( x l ( t ) ,   x 2 ( t ) )  : x,(t)>O,  x2(t)>OI  (23) 

and  we  want  to  find the control that will  allow us to leave C at  minimal 
cost. We consider the terminal loss function 

That is, we want the process x( t )  to leave the continuation region C 
through the  origin. 

When the continuation region is the first  quadrant, the  first passage 
from ( (x , ,  xd, t )  to ((yl, yz), T )  for the uncontrolled process 

dx,/dt=c, (i= 1 ,  2)  (25) 

has the probability density 

r 

where s = T - t and 

~ ( x , y ,  z)=exp { - [ ( x - y ) ’ + z 2 ] / 2 s } - e x p  { - [ ( x + ~ ) ~ + z ~ ] / ~ s ) .  

We  may check that 

so that the optimal control can be obtained from (8) and (IO). 

find that 
If the proportionality constant c in formula (7) is equal to 2, we easily 

exp t - F ( x ,  0121 = U ( x l ,   x d +  W X Z ,  X I )  (28) 

where 

U(x,y)=[2x/n(yZ+2x2)”2]  arctan [y / (y2+2x2)’ /2] .  

Proposition 3: When the continuation region C is the first quadrant 
and the terminal loss function is given by (24) then, if c = 2, the optimal 
control is 

r 

where G = exp [ -F(x,  t ) / 2 ]  is given by (28) and 

GXl = 2 ~ ; / n M ~ ’ ~  arctan ( X ~ / M ~ / ~ ) - X ~ X ~ / ? ~ N ~ / ~  arctan ( X ~ / N I / ~ )  

+ ~ x Z ( X I  - x : ) / rNM 

with 

M=x:+2x:  and N=x:+2x:  

(and GX2 is the same as GXI but  with x1 and x2 interchanged). 
Proof: Equation (29) follows from (10) since 

F,= -2G,/G. 
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Optimal  Output  Feedback for Nonzero  Set Point 
Regulation 

DENNIS S. BERNSTEIN AND WASSIM M. HADDAD 

Abstract-Motivated  by  the  results of Artstein  and  Leizarowitz [2] on 
steady-state  periodic  tracking,  a  continuous-time  nonzero  set  point 
regulation  problem is considered  which  involves 1) noisy  and  nonnoisy 
measurements, 2) weighted  and  unweighted  controls, 3) correlated  plant/ 
measurement noise and  cross  weighting, 4) nonzero-mean  disturbances, 
and 5) state-,  control-,  and  measurement-dependent  white  noise. It is 
shown that in tbe  absence of multiplicative  disturbances  the  closed-ioop 
control can be designed  independently of the  open-loop  control.  Unlike 
121, the  results  are  obtained  without  using  the  overtaking  criterion. 

I. INTRODUCTION 

The quadratic performance criterion 

expresses the desire to minimize deviations of the state x ( t )  of the system 

from  the regulation point x = 0. As is  well known [ I ,  pp. 270-2761, the 
nonzero set point criterion 

Manuscript received July 17, 1986; revised March 4, 1987. This work was supported 
in  part  by the A i r  Force Office of Scientific Research  under  Contracts  F49620-86-C-ooO2 
and F49620-86-C-0338. 

D. S. Bemstein is with  the  Government Aerospace Systems Division, Harris 
Corporation, Melbourne, FL 32902. 

W. M. Haddad is with  the Depamnent of Mechanical Engineering, Florida  Institute of 
Technology, Melbourne, FL 32901. 

IEEE Log Number 8714805. 

0018-9286/87/0700-061$01.00 0 1987 IEEE 



642 EEE TRANSACTIONS ON AUTOMATIC  CONTROL, VOL. AC-32, NO. 7, JULY 1987 

presents  no  additional  difficulty as long as x( t )  and u( t )  are replaced by 
x(t) - R and u( t )  - 0, where a satisfies 

O=AX+BP. (1.4) 

Closer inspection,  however,  reveals  that this approach is suboptimal. 
Specifically, the offset 0 in the control  may  correspond to an unacceptably 
high  level  of  control  effort  when uTRa is large. Hence,  this  approach 
overlooks  design  tradeoffs  concerning the control  effort  required for 
maintaining the nonzero  regulation  point 3. Moreover, such an approach 
is  impossible  when 0 satisfying (1.4) does not exist. 

A significant  advance  in  extending the LQR formulation to steady-state 
tracking  problems (and, hence, to nonzero set point  regulation)  was  given 
by Artstein  and  Leizarowitz  in  [2].  They  consider the performance 
criterion 

J ,  P jm [ x ( t ) - r ( t ) ~ ~ ~ [ x ( t ) - r ( r ) l + u ~ ( t ) ~ U ( r )  dt (1.5) 

where r( .) is periodic  on [0, a) and  the  minimization  of J ,  is  performed 
in  the  sense of the overtaking criterion. For the nonzero  set  point  problem 
( r ( t )  = X) with  full-state  feedback plus constant  offset  control  law 

u ( t ) = K x ( t ) + o r  (1.6) 

it  follows  from  [2, Theorem 21 that K and CY are given by 

K =  -R- 'BTP,  (1.7) 

(Y= -R-'BT(A-CP)-'QX (1.8) 

where P satisfies the Riccati equation 

O=ATP+PA+Q-PCP (1.9) 

with B BR-'BT.  
Two features of the control  law  (1 5)-(1.8) are noteworthy. First, (1.6) 

consists  of  both  a  closed-loop  feedback  component Kx(t )  and an open- 
loop  component a depending  upon the regulation  point  (Fig.  1).  Second 
(and more important), is the observation  that the closed-loop  control 
component is independent  of the open-loop  component. From a  practical 
point  of  view this feature is quite  useful since it  implies  that  the  feedback 
gain K can be determined  without regard to the set  point.  Hence,  a  change 
in the desired set point R during  on-line  operation does not  necessitate 
resolving the Riccati  equation in real  time;  only CY requires  updating. For a 
new  value  of R, CY can  readily be recomputed  on-line  via the matrix 
multiplication  operation (1.8). 

The contribution  of the present  note  is an extension  of the result of [2] 
as applied to the nonzero set point  regulation  problem  without  using  the 
overtaking criterion. We extend this result  in  the  following  different 
ways. 

1) Output Feedback  with Noisy  and Nonnoisy  Measurements: To 
obtain  a  more  realistic  problem setting, we consider the case in which  the 
full state  is  not  available,  but rather only  measured  linear  combinations  of 
states. Moreover, we consider the possibility  that some of the measure- 
ments are corrupted by  white  noise  while others are noise free. Note  that 
the noise-free case was considered  in [3] while the fully  noisy case is  the 
standard  assumption  in LQG theory. As in [4]-[6]  we  express the solution 
in terms of  a  projection  corresponding to the  noise-free  measurements. 

2) SinguIar Control  Weighting: As noted  in [6],  [7] static  continu- 
ous-time  feedback  of  noise-corrupted  measurements  results  in  unbounded 
cost unless the corresponding controls are unweighted. Hence, we  allow 
for both  weighted and unweighted  controls to which the noise-free  and 
noisy  measurements are fed, respectively. This setting  leads to an 
additional  projection  dual to the projection  arising  from the noise-free 
measurements [6]. 

3) Correlated  Plant and Measurement  Noise  and Cross Weight- 
ing: To allow greater design  flexibility we allow the possibility  that the 
plant and measurement  noise are correlated. In addition, we consider the 
dual  design feature, namely, cross weighting  in  the performance criterion. 

7 CONTROL u 4 PLANT I STATE= , 
Fig. 1. 

mean  white  plant  disturbances we allow for the possibility  of  a  nonzero 
constant  disturbance  offset. In contrast to [ l ,  pp. 277-2811, our result 
shows  that  the  presence of a  constant  disturbance  offset  leads to an 
additional  offset  in  the  open-loop  component  of the control. 

5 )  Multiplicative  White  Noise: In  addition to the above generaliza- 
tions  we  allow  for  the  presence of multiplicative  disturbances  in the plant. 
The control  law  thus  generalizes  previous  results  involving  state-,  control- 
and  measurement-dependent  noise [8]-[ll]. As shown  in  [12]-[14], the 
multiplicative  white  noise  model  can be used to guarantee  robustness  with 
respect to deterministic  plant parameter variations. 

n. NOTATION AND DEFINITIONS 

real  numbers, r x s real  matrices, RrX1 
expectation 
r X r identity,  transpose 
Kronecker sum, Kronecker  product 
matrix  with  eigenvalues in open  left- 
half plane 
positive  integers 
n, ml ,  m2, 11, &dimensional  vectors 
n X n matrices; n X ml matrices; ZI X 
n matrices, i = 1, * * . , p  
n x m2, I, x n ,  m, X 12, m2 x 11, r x 
n matrices 
m l ,  m2, n, r-dimensional  vectors 
unit  variance  white  noise, i = 1, . . . , p 
n-dimensional, I,-dimensional  white 
noise 
intensities of wo, w l ;  Vo 2 0 ,  VI > 0 
n X lI cross intensity of wo, w, 
r X r and ml x ml state and control 
weightings; Ro 2 0, RI  > 0 
r X m, cross weighting; 
Ro - RoIR;'R& 2 0 

A + BlKlC2 + B ~ K ~ C I ,  A,  + BliKlC2 
+ BZK2Clir i = 1, " . , p  
B l a l  + B2a2 + 7, Bliml, i = 1, " * , p  
wo(t) + B2K2WlO) 
Vo + VolKlBT + B2K2 V& + 
B2K2V,K:B: 
L T R d  + L'RolKICz + 
C l K  :R L + C l K  rR 1 Kl C2 

For arbitrary n X n Q, P such  that  the  indicated  inverses  exist,  define: 

71 QCF(CzQC:)-lC2, 72 P B2(B:PBz)-IB:P, 

711 I , -  71, 721 P I.- 7 2 .  

P 
6, P B ; P + R , : L + ~  BLPA,, 

4) Nonzero-Mean  Disturbances: In  addition to the presence of zero- , = I  



Ill. NONZERO SET POINT REGULATION 

Nonzero Set Point Problem: Given the controlled system 

To analyze (3.7) define the second-moment and covariance matrices 

& ( t )  E [ x ( t ) x T ( t ) ] ,   Q ( t )  P e ( t ) - m ( t ) m r ( t )  

where m(t) Z[x ( t ) ] .  It follows from [15, p. 1421, that Q(t), Q(t) ,  and 
m(t) satisfy 

Q ( t ) = ~ & ( t ) + Q ( t ) ~ r +  ~ + ~ r n ~ ( t ) + m ( t ) ~ 7  

P +x [ A i & ( t ) A f + ~ i m ( t ) B ' + B i m T ( t ) A ~ + B i B ~ ] ,  (3.8) 
i= I 

To consider the steady state, we restrict our consideration to the set of 
second-moment stabilizing gains 

P 

S, b { (K,  , Kz): A 8 X+ Ai '8 Ai is asymptotically  stable}. 
i =  I 

It follows from fundamental properties of Lyapunov equations that if (Kl, 
K2) E S,, then A is also asymptotically stable. Hence,  for ( K l ,  K2) E S,, 
Q 6 lim,+m &t), Q P limz+m Q(t) and m P 1 i n 1 , - ~  m(t) exist and 
satisfy 

P 

O=AQ+QA+ P+c [AiQAT+AimmrAT 
i =  I 

+AimB,?+BimrAf+~;~,?] ,  (3.12) 

O=Am+B. (3.13) 

Now J(KI ,   K2,  a], a2) is given by 

J W I ,  K2, C Y I ,  u ~ ) = t r  [(Q+mmr)l?]-2mTLrR08 

+ S T R o 6 + 2 m r L r R O I ~ I  

-26rRolKIC2m-2SrRol~l  

+ 2 m r C ~ K ~ R I ~ l + ~ ~ R l ~ l .  (3.14) 

Associated  with Q is its dual P 2 0 which  is the unique solution of 

P 

O=ATP+PA+l?+C  ATPA,. (3.15) 
i =  I 

To obtain closed-form expressions for the feedback gains we further 
restrict consideration to the set 

S; P { ( K l ,  K2)  E S,: C2QC:, B:PB2, 

and O ~ s * s - l Q l s + ~ s  are invertible}, 

and assume 

[Bl;#O * Cl;=O], i =  1, I P. (3.16) 

Optimizing (3.14) subject to (3.12) and (3.13) yields the following result 
illustrated in Fig. 2. 

\ i = l  / i=  I Theorem 3.1: Suppose K,,   K2,  a,, a2 solve  the nonzero set point 



644 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. AC-32,  NO. 7, JULY 1987 

DISTURBANCE 
CONSTANT 

Y 

N. SPECIALIZATIONS OF THEOREM 3.1 

To draw connections with the previous literature,  a  series of specializa- 
tions of Theorem 3.1 is now given. We  begin by deleting all multiplicative 
white  noise terms, i.e., 

In this case the stabilizing set S, can  be characterized by 

S = { ( K ,  , Kz): A is asymptotically  stable}, 

and,  furthermore, S:becomes 

Fig. 2. S' 6 { (K l ,  Kz) E S: CzQC:, BTPBz, 

problem  with (K,, K2) E S: Then there exist n X n Q, P 2 0 such that 
@and O:@-IQI+G are invertible). 

CoroNary 4.1: Assume (4.1) is satisfied and suppose K,, K2, aI, a2 
K1= - R  ,'S5QC:(C2&C:)-', (3.17) solve the nonzero set point problem with ( K l ,  K2)  E S + . Then there exist 

n x n Q, P 2 0 such that 

and such that Q and P satisfy and  such that Q and P satisfy 

O = ( A - B I R ; 1 6 ~ 1 ) Q + Q ( A - B I R ; 1 6 ~ 1 ) r +  Vo 

- Q V ; l Q T +  T~~ Q V ; l Q r ~ : l  , (4.6) 

O = ( A - T ~ Q ~ V ~ ~ C ~ ) ~ P + P ( A - ~ ~ Q ~ V ~ ~ C I ) + R O  
Bz=O, CI = O .  (4.8) 

This corresponds to the setting considered in [3]. It follows from the  proof 
of Theorem 3.1 that the assumption B2 = 0 leads to T~ = 0, and Cl = 0 
corresponds to deleting (3.5). Hence S and S + are now given by +A 

,=I 

- 6 : ~ ; ' 6 , + 7 : ~ 6 ~ ~ 1 2 ' ~ , 7 , ~ .  (3 .Z) 

OutIine of Proof: As in [16] the result is obtained by forming the 
Lagrangian while accounting for (3.12) and (3.13). Define 

~ ( K I ,  K2. a 1 3  a 2 9  Q, m)=u [ b J ( K , ,  Kz, (YI ,  ( ~ 2 )  

+P[RHS of (3.12)]+Xr(Am+8)] 

where Ac, 2 0 and X E 2". Setting aS/aQ = 0 and using the second- 
moment stability assumption it follows that X, = 1 without loss of 
generality. The derivation now follows by setting the partial derivatives of 
d: with respect to K l ,  K2, ai, a*, and m to  zero and solving for the gains. 
To assist the reader in carrying  out the details we  note that h is given by 

X =  - z A - ~ [ - P B - ~  A T P B , + L T R , ~  
i = l  

-L'Ro~LY~+C:KIR~:~-C:K:RI(YI]. 0 

SO A { K I :  A + B1 K ,  C2 is asymptotically  stable}, 

S; A { K ,  E So: CzQC: and a0 are invertible}. 

Corollary 4.2: Assume (4.1) and (4.8) are satisfied and suppose K, 
and a, solve the nonzero set point problem with KI E S 0'. Then there exist 
n x n Q, P 2 0 such that 

and such that Q and P satisfy 

O = ( A - B , R ; 1 Q ~ , ) Q + Q ( A - B , R ; 1 6 ~ , ) r +  Vo, (4.11) 

O=ATP+PA+Ro-6TR;16+~~-6TR;16~11. (4.12) 

We  now specialize further to the full-state feedback case,  i.e., 

cz = I., (4.13) 

Remurk3.1: Because of the presence of 6 in (3.21) via a, and a2 in  and hence = 1, and , = 0 ,  N~~ so and s; become 
(see the definition of &) and a, in &, the closed-loop component of the 
control law (3.17)-(3.20) cannot be designed independently of the open- 
loop component. As now shown, independence is recovered when the 
multiplicative noise terms are absent. S: P { K ,  E SI: Q is  invertible}. 

SI { K I :  A + BI Kl is asymptotically stable), 
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CoroI/ary 4.3: Assume (4.1), (4.8), and (4.13) are satisfied and 
suppose Kl and CY, solve the nonzero set point problem with Kl E S ;. 
Then there exist n X n Q, P 2 0 such that 

K , =  -RF16,  (4.14) 

cul=R;’Bfa;rPy-R;’[Bfa;7(L7Ro-6TR;1RO:)-RO:]6 

(4.15) 

and  such that Q and P satisfy 

O=(A-B1R;’@ 

O = A T P  

Finally, setting 

y=O, 

we obtain the result of r21. 

+ P A + R o - 6 r R , 6 .  (4.17) 

Coro1Iut-y 4.4: Assume (4.1),  (4.8),  (4.13), and (4.18) are satisfied 
and suppose Kl and a, solve the nonzero set point problem with Kl E S 
Then there exists n x n P 2 0 such that 

K , =  -R;lB:P, (4.19) 

(YI= -R;’B;A,‘Ro6  (4.20) 

and  such that P satisfies 

O=ATP+PA+Rn-PCP. (4.21) 
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Analysis of Time-Varying Scaled Systems  Via  General 
Orthogonal Polynomials 

TSU TIAN LEE AND YIH FONG  CHANG 

Abstruct-General  orthogonal polynomials are introduced to analyze 
and  approximate the solution of a  class of scaled  systems. Using the 
operational  matrix of integration,  together  with  the Operational  matrix of 
linear  transformation,  the  dynamical equation of a  scaled  system is 
reduced to a set of simultaneous  linear  algebraic equations.  The 
coefficient vectors of the  general orthogonal  polynomials can  be  deter- 
mined  recursively  by  the  derived algorithm. An illustrative  example is 
given to demonstrate the validity  and  applicability of the orthogonal 
polynomial  approximations. 

I. INTRODUCTION 

An investigation of the dynamics of an overhead current collection 
mechanism for  an  electric locomotive by Ockendon and Taylor [I21 
revealed that under certain conditions, the dynamics of the systems is 
characterized by a differential equation containing terms with a scaled 
argument of the form 

d ( t ) = A X ( A t ) + B X ( t )  

X ( 0 )  =xo 
where X(Xt)  and X ( t )  are n-vectors and A and B are n X n matrices and 
the constant 0 < X < 1. This type of differential equation also plays an 
important role in several chemical processes [3],  [13]. This equation was 
first studied by Fox et al. [ 1 11 with the intmduction of a finite  difference 
method for 0 < h < 1. Recently, the solution of such a scaled system has 
been obtained by several different orthogonal functions, such as block- 
pulse functions [14], [2], [3], Walsh functions [l], delayed unit step 
functions [4], Laguerre polynomials [5], Chebyshev polynomials [6], [7], 
and Legender polynomials [ 151. The common approach of these methods 
is the use  of the operational matrix of integration together with the 
operational matrix of scaling to reduce the differential equation to a set of 
linear algebraic equations, which is  more suitable for computer program- 
ming. 

In this note we will employ the operational matrix of integration and 
product operational matrix of the general orthogonal polynomials, 
together with the operational matrix of linear  transformation, which will 
be derived later, to obtain the solution of the scaled system. The 
operational matrix of linear transformation is derived based on the 
following properties, namely, the  pure  recurrence relation 

~l+~(~)=(Uiz+bi)~i(z)-~;~,-~(~) (1) 

with 

&i(z)=1; ~ 1 ( z ) = w + b o  

and the differential recurrence relation 

~ i ( z ) = A ; i ; , , ( z ) + B , ~ ; ( Z ) + C ; ~ ; - I ( Z )  (2) 

where recurrence coefficients a,, bi, ci and differential recurrence 
coefficients A;, Bi, and Ci, are specified by the particular orthogonal 
polynomials under consideration and some are listed in  [9]. The aim of 
this paper is twofold: 1)  to derive an operational matrix of linear 
transformation for  general orthogonal polynomials so that the scaled 
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