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Abstract. The optimal projection equations for quadratically optimal
reduced-order modelling, estimation, and control are generalized to
include the effects of state, control, and measurement dependent noise.
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1. Introduction

As is well known, LQR and LQG controllers lack guaranteed robustness
with respect to arbitrary parameter variations (Refs. 1 and 2). A widely
studied approach to correcting this defect involves introducing noise into
the plant via the imperfectly known parameters (Refs. 3-10). Intuitively
speaking, the quadratically optimal feedback controller designed in the
presence of such disturbances is automatically desensitized to actual para-
meter variations. This was demonstrated in Ref. 11 for the example given
in Ref. 1.

The contribution of the present paper is a generalization of classical
steady-state LQG theory to include the effects of state, control, and measure-
ment dependent noise. In contrast to the classical solution involving a pair
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of separated Riccati equations, the necessary conditions for quadratic opti-
mality in the presence of multiplicative white noise consist of a system of
two modified Riccati equations and two modified Lyapunov equations
coupled by stochastic effects. The coupling serves as a graphic portrayal of
the breakdown of the separation principle in the multiplicative noise case.
When the multiplicative noise terms are set to zero, the modified Lyapunov
equations drop out and the modified Riccati equations immediately reduce
to the standard pair of separated LQG Riccati equations. Related results
were obtained for the discrete-time, finite-interval problem in Ref. 10.

To attain further generality, a constraint is imposed on controller order
as in Ref. 12. Hence, the results of the present paper also constitute a direct
generalization of the coupled system of modified Riccati and Lyapunov
equations which arise in characterizing reduced-order controllers.

For the special case of full-order compensation in the presence of
state-dependent noise only, versions of these equations were discovered
independently by Hyland (Refs. 13 and 14) and Mil'stein (Ref. 15). An
interesting difference between Refs. 13-14 and Ref. 15 is that Mil'stein
interpreted the plant model as an Ito stochastic differential equation,
whereas Hyland utilized the Fisk-Stratonovich definition (Refs. 16-18). In
earlier work on modelling flexible mechanical structures (Refs. 19 and 20),
justification for this interpretation as an appropriate model for parameter
uncertainty was based upon the maximum entropy principle of Jaynes (Ref.
21) and the theory of stochastic approximation (Ref. 22). A summary of
this approach and its relationship to Refs. 23 and 24 can be found in Ref.
25. Rigorous guarantees of robustness over a prescribed range of parameter
variations have been obtained using Lyapunov functions (Refs. 26-29).
Although the present paper utilizes an Ito model for simplicity, results
based on Stratonovich models are readily obtained by means of standard

I transformations.
An immediate practical benefit of the structured form of the necessary

I conditions is the meansfor constructingnumerical algorithms which differ

I

fundamentally from gradient search techniques. One such iterative
algorithm, proposed in Refs. 30-32, exploits the characterization of the
oblique projection as the sum of rank-1 eigenprojections of the product of

\

the rank-deficient pseudogramians satisfying the modified Lyapunov
equations. As discussed in Ref. 32, the necessary conditions fail to specify
which eigenprojections comprise the oblique projection; indeed, each choice
may correspond to a local extremal. In practice, judicious choice of the
eigenprojections can eliminate extremals with high cost and hence efficiently
identify the global minimum. These issues are a result of the reduced-order
constraint only; the stochastic effects alone do not appear to introduce
extremal multiplicity.

The scope of the present paper involves deriving the optimal projection
equations for reduced-order modelling, estimation, and control obtained
in Refs. 32, 33, and 12to include state, control, and measurement dependent
noise. The main results, Theorems 2.1-2.3, present the necessary conditions
for optimality as systems of two, three, and four matrix equations (modified
Riccati and Lyapunov equations), coupled by both the optimal projection
and stochastic effects. The necessary conditions in this generality are pre-
sented here for the first time. The dynamic compensation result supports
the numerical results obtained in Refs. 11 and 34. Appendix D contains
the proof of Theorem 2.3; the proofs of Theorems 2.1 and 2.2 are similar
and hence are omitted. Although the derivations in Refs. 32, 33, and 12
utilizing Lagrange multipliers could have been adapted to the present case,
we have devised a new proof based upon Kronecker products, which is
thought to be more direct.

2. Problem Statement and Main Results

The following notation and definitions will be used throughout the

paper.
IE=expected value;
IR=real numbers;
lRaXJ3= a x f3 real matrices;
IRa =Rax1;
1a = a x a identity matrix;

Z(i) = ith element of vector Z;
Z(i.j) = (i,j) elementof matrixZ;
Z T =transpose of vector of matrix Z;
Z-T = (ZT)-l or (Z-~) T;
p(Z) =rank of matrix Z;
tr Z =trace of square matrix Z;
I!ZI! =(tr ZZT)1/2, Frobenius norm;
diag(al' ... ,aa)=a Xa diagonalmatrixwithlisteddiagonalelements;
E; =matrix with unity in the (i, i) position and zeros elsewhere;
ll;('If) ='IfE;'I'-';

[

X(l.!) Y . . . X(l.J3)Y

J

.

X@Y=: : ,XERax/3,YEIR'Yx6(Kroneckerprod-
X(a,!) Y . . . X(a.J3) Y

uct, Refs. 35 and 36);
XEt>Y = XEt>113+ 1a@Y, X ElRaxa, YE IRJ3x/3(Kronecker sum);
Z'" = group generalized inverse (Ref. 37);

'j
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R=[R~ R12]2:0;
RI2 R2

L= k X n matrix;
Vtr, . . . , vp" WI""" wq,= standard, independent Wiener processes,

t 2: 0;
W,=(WI""" Wq,)T;
G, GI, O2= m Xq, n Xq, 1Xq matrices, p( G) = m, p( G2)= 1;

VIAG,GT2:0, VI2£GIGJ, V2£G2GJ>0,
VA GGT>O;

6. p
d=AEBA+ L Ai@Ai,

i -= 1

rowi(Z) = ith row of matrix Z;
col;(Z) =

[

it:o~(~~

]

n of matrix Z;

vec(Z)= : elRa{3,ZelRax{3;

col{3(Z)

[

Z(I) . . . Z(a{3_a+l)

]

vec-I (Z ) =: : e lRaX{3Z e lRa{3.(a,{3) . . "
Z(a)'" Z(a{3)

stable matrix = matrix with eigenvalues in open left half plane;
nonnegative-definite matrix =symmetric matrix with nonnegative

eigenvalues, Z 2: 0;
positive-definite matrix =symmetric matrix with positive eigenvalues,

Z>O;
semisimple eigenvalue = eigenvalue with equal algebraic and geometric

multiplicity;
simple eigenvalue =eigenvalue with unity algebraic multiplicity;
group-invertible matrix =matrix Z satisfying p(Z) = p(Z2), Le.,matrix

which is either invertible or whose zero eigenvalue is semisimple (Ref. 37);
semisimple matrix =matrix with semisimple eigenvalues, Le., nondefec-

tive matrix;
real-semisimple matrix = semisimple matrix with real eigenvalues;
nonnegative-semisimple matrix =semisimple matrix with nonnegative

eigenvalues;
positive-semisi,?ple matrix =semisimple matrix with positive eigen-

values;
simple matrix =matrix with distinct (i.e., simple) eigenvalues;
r = generic subscript denoting m, e, or c;
n, m, 1,nm, ne, ne, k, p, q = positive integers, nm:5n, ne:5 n, ne:5 n, 1:5q,

m:5 q;
iir = n + nr;

x, Xm, Xe, Xc= n, nm, ne, ne-dimensional vectors;
U,Y, Ye= m, 1,k-dimensional vectors;
A, AI' . . . , Ap = n Xn matrices;
B, B"" ., Bp= n x m matrices;
C, CI,.. . , Cp= 1x n matrices;
Am' Bm, Cm= nmx nm, nmx m, 1Xnm matrices;
Ae, Be, Ce = neXne, neX1,k X ne matrices;
An Bn Ce = neXne, neX1,m Xne matrices;
R, N, R2 = 1X1,k Xk, m Xm positive-definite matrices;
R, = n Xn nonnegative-definite matrix;
RI2 = n Xm matrix, R, - RI2R21 R;; 2: 0;

OA [~:J,

B £ [
B

]m Bm'- 6.-
Gm = BmG,- 6.- -T
Vr= GrGr,

- 6.
Cm=[C -Cm],

- 6.-T -
Rm=CmRCm,

Am £
[

A 0 ]o Am'

Ami £ [
Ai 0

]o 0'

_ ~ - - T

[
VI V12

]V = GG = T 2: 0;
V 12 V2

_ £
[

In 0 ] -£
[

In 0
]

.
Be 0 B' Be 0 B 'e e
-t>-- -6--Ge= BeG, Ge= BeG;
- 6 - -T - 6 - --T
Vm=BmVBm, Ve=BeVBe,

C £
[

In 0
]

.
e 0 Ce'

- 6 -T--
Re=CeRCe;

- 6.- --T
Ve = BeVBe;

Ce£[L -Ce],

- 6 - T -
Re = Ce NCe,

Xr= [;l
1J,

~].

[
A- 6

Ae = BeC

[
Ai- 6

Aci = BeCi

BCe

]
.

Ae '

BiCe

]
.

o '

[

A- 6

Ae = BeC

[
Ai- 6

Aei = BeCi

- - - p - -
dr=ArEBAr+ L Ari@A,j.

;=1

For the following definitions, let Q, P, Q, Pe IRnxn:

.. 6 P T "
R2=R2+ L Bj (P+P)Bj,;=1

"6. P "T
V2= V2+ L Cj(Q+Q)Ci,

i-=t

6. T P "T
f!l=QC +V'2+L Ai(Q+Q)Cj,;=t

~£BTp+RT2+ f BT<P+P)Ai,
i=1
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.A. A-I d A_I
AQ-A-2lV2 C, Ap=A-BR2~.

Using the above notation, we can state the reduced-order modelling, estima-
tion, and control problems.

where t E[0, 00), design an neth-order dynamic compensator

dxe, = Aexe,dt + Bedy"

Reduced-Order Modelling Problem. Given the nth-order model
p

dx,=Ax,dt+ L Ajx,dvj,+Oldw" (1)1-\

u,= Cexe"

(13)

(14)

which minimizes the dynamic compensation criterion

Je(Ae, Be, Ce) £ Jim sup lE[x;R\x, + 2x; Rl2u, + u; R2u,]. (15)
,_c:c

y, = Cx"

where t E[0,00), determine an nmth-order model

dXmt= Amxm,dt + BmO dw"

Ym' = CmXm"

which minimizes the model-reduction criterion

Jm(Am, Bm' Cm) £ Jim sup 1E[(y,- Ym,) TR(y, - Ym,)].,-co

(2)
Clearly, J"" J.. and Je are nonnegative, extended, real-valued func-

tionals defined on appropriate Euclidean spaces. Explicit expressions for
these functionals are now given. Henceforth, we assume that IEIIx,oll 2 < 00

and that x,o and VI"'" , vp" w, are uncorrelated, t ~ O.
(3)

(4) Proposition 2.1. The nonnegative-definite covariance

Q,(t) £ IE[x,,x;,] , t~O,

is given by

.&. ." ... .. -T P -T'"
Q,(t) = A,Q,(t) + Q,(t)A, + L A,jQ,(t)A'1 + V"

1-\
t~O, (16)

(5)

Reduced-Order State Estimation Problem. Given the nth-order
observed system

p

dx, = Ax, dt + L Ajx, dVI' + BO dw"1-\ (6)

or explicitlyby

Q,(t) = vec(,;~,;,)(exp(d,t)vec Q,(O) + L exp(d,O") dO"vec V,). .

(17)
p

dy, = Cx, dt + L Cjx, dVI' + O2 dw"I-I

where t E[0,00), design an neth-order state estimator

dXe,.= AeXe,dt + Be dy"

Ye,= CeXe"

which minimizes the state estimation criterion

je(A" Be, Ce) £ Jim sup 1E[(Lx,- Ye,) TN(Lx, - Ye,)]',-co

(7)

(8)

(9)

The cost criteria Jm, J.. Je are given by

J,(A" B" C,) = lim sup tr Q,(t)R" (18)
,-co

(10)

or equivalently by

J,(A" B" C,) = lim sup(vec R,) T (eXP(d,t) vec Q,(O)
,-co

+ L exp(d,O") dO"vec V,). (19)Reduced-Order Dynamic Compensation Problem. Given the nth-order
observed and controlled system

p p

dx, = Ax, dt + L Ajx, dVI, + Bu, dt + L Bju, dVII + 01 dw"I-I I_I (11)

For the proof, see Appendix A.
The finiteness and smoothness of Jm, Je, and Je clearly depend upon

the interrelationships among Q,(O), it" R" and V,. To avoid a detailed
analysis and to guarantee that Jm, Je, and Je are finite and independent of
initial data, we restrict our consideration to second-moment stable or second-
moment stabilizing design triples. Furthermore, to avoid degeneracy in later

p

dy, = Cx, dt + L C,x, dVII + O2 dw"I-I (12)
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developments (and without loss of generality), only minimal (i.e., control-
lable and observable realizations are admitted. Hence, for the modelling,
estimation, and control problems, define the open sets

[I, = {(A" B" C,); it, is stable and (A" B" C,) is minimal}.

In the following result, we abuse notation slightly and let

Q, = lim Q,(t).I__a:>

Proposition 2.2. Suppose that 9', is nonempty. If(A" B" C,) e 9'" then
Q, A lim Q,U)I--a:>

exists and is given by.the unique, nonnegative-definite solution to

- - - -T P - - -T -
0= A,Q, + Q,A, + L A,;Q,A,; + V"I-I (20)

or explicitly by
- -I --I -

Q, =vecCti"ti,)(-d, vec V,). (21)
Hence,

J,(A" B" e,) = tr Q,R" (22)
or equivalently

T .-1 ...
J,(A" B" e,) = -(vec R,) d, vec V,.

For the proof, see Appendix A.

As a side note, we examine the evolution of the mean value of X,.

(23)

Proposition 2.3. The mean

rii (t) A lEX", t ;::0, (24)
satisfies

... - .

m (t) = A,rii( t), t ;::O. (25)
Furthermore, if (A" B" C,) e 9'" then A, is stable and thus

lim rii(1)=O.
I __a:> (26)

For the proof, see Appendix A.

Of course, it is useful to know when the sets [1m, 9'e, and [Ie are
nonempty. A]though for the closed-loop control problem the question is
complex because of stabilizability concerns, the modelling and estimation
problems permit considerable simplification.
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Proposition 2.4. [1m (alternatively, 9'e) is nonempty if and only if d
is stable. ]n this case, 9'm and 9'e are given by

9'm = {(Am, Bm' em): Am is stable and (Am, Bm, em) is minimal},

9'e = {(Ae, Be, Ce): Ae is stable and (Ae, Be>Ce) is minimal}.

For the proof, see Appendix B.
The following observation concerns the smoothness of the cost func-

tionals.

Proposition 2.5. The functionals J, are infinitely Frechet differentiable
on 9',.

Proof. From Lemma 3.7.2, p. 203 of ref. 38, it follows that the map
W ~ W-I defined on the set of invertible matrices is Ca:>.The result follows
from the chain rule and (23). 0

It is now possible to proceed with the principal aim of the paper, which
is to characterize solutions of the reduced-order modelling, estimation, and
control problems by means of a first-order variational analysis. To this end,
one additional assumption is required. In order to obtain closed-form
expressions for extremal values of the closed-loop control gains, the dynamic
compensation pioblem requires the technical assumption

[Bi~O~ei=O], i=l,...,p, (27)

or equivalently,

[e;~O~Bi=O], i=l,...,p, (28)

i.e., for each i e {I,..., p}, B; and e; are not both nonzero. Essentially, (27)
expresses the condition that the control dependent and measurement depen-
dent noises are independent. There are no constraints, however, on correla-
tions with the state dependent noise. ,

In order to state the main results, we require some additional notation
and a lemma concerning a pair of nonnegative-definite matrices. For a real,
semisimple matrix X e IRnxn,define the set of diagonalizing matrices

£ij)(X)A {'l'e IRnxn:'l'-IX'l' is diagonal},

and, for a pair of nonnegative-definite matrices X, Ye IRnxn,define the set
of contragradiently diagonalizing matrices

~(X, Y) A {'l' e IRnxn:'l'-I X'l'-T and 'l'Ty'l' are diagonal}

and the subset of balancing transformations

~(X, y)A{'l'e ~(X, Y): 'l'-IX'l'-T ='l'Ty'l'}.
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The foIlowing result unifies and extends similar results found in Refs. 32,
33, and 12.

Lemma 2.1. Suppose that Q, PE IR"X" are nonnegative definite and
p( QP) = n,. Then, the following statements hold:

(i) 0;e ~(Q, P) c ~(QP);
(ij) QP is nonnegative semisimple;
(iii) the n x n matrix

r ~ QP( QP)''' (29)

is idempotent, i.e., r is an obli9ue projection;
(iv) there exists 'I' E ~(Q, P), with ('1'-1QP'I') (1.1);e 0, i = 1, .. . , n"

such that T is given by

",
r = L l1i('I'); (30)I-I

(v) if p( Q) = p(P) = n" then @( Q, P);e 0;

(vi) if p(Q)=p(P)=n" then there exists 'l'E@(Q,P), with
('1'-1QP'I')(I,I);e2,i = 1,~ ' . , n" such that r is given by (30);

(vii) if p( Q) =p(P) = n" then
A A AT AT

Q =rQ = Qr =rQr , (31)
A r"" A r'"

P=r P=Pr=r Pr; (32)

(viii) there exist a, r E1R",xnand positive-semisimple ME IRn,xn,such
that

QP= aTMr,

raT =1 .n"

(ix) if G,f EIRn,xnand ME IRn,xn,satisfy
"" A -T --QP=a Mr,

(33)

(34)

(35)

(36)
- -T
fa =1n"

then there exists invertible S EIRn,xn,such that

G=s-Ta, f=sr, M=SMS-1;

(x) if a, r EIR"'X",and ME IRn,xn,satisfy (33) and (34), then M is
invertible, (QP)'''= aTM-lr, and

T = aTr. (37)

For the proof, see Appendix C.
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For convenience, we shall call a, r EIRn,xn,and ME 1R",xn,satisfying

(33) and (34) a projective factorization of QP. Furthermore, define the
complementary oblique projection

rJ,~1n-r, (38)

and let J~(A" B" C,) denote the Frechet derivative of J, evaluated at
(A" B" C,).

It is now possible to state the main results, which provide a parametriz-
ation of triples (A" B" C,) E[I, for which the first Frechet derivative of J,
vanishes.

Theorem 2.1. Assume that stI.is stable. Then, for (An.. Bm' Cm)E [In..

J:"(Am, Bm' Cn) = 0 (39)

if and only if there exist n x n nonnegative-definite matrices Qand Psuch
that, for some projective factorization a, M, r of QP, Am' Bm' and Cm are
~"n~ .

Am = r AaT, (40)

Bm= rB, (41)

Cm= caT, (42)

and are such that, with

r~QP(QP)'''=aTr and rJ.~1n-r,

the following conditions are satisfied:

O=AQ+QAT +BVBT -rJ,BVBTrI, (43)

O=ATp+PA+CTRC-rICTRCrJ" (44)

p( Q) =p(P) =p( QI:) = nm. (45)

Furthermore, if (Am, Bm' Cm) E[1msatisfies (39), then the extremal cost is
given by

Jm(Am, Bm' Cm) = tr[( We- Q)CTRC] =tr[( Wo- P)BVBT]
p

=2tr[(QP-WeWo)A]-2 L trWeATwoA;, (46)
i-I

where Wet WoE IR"X"are the unique, nonnegative-definite solutions to

p

O=AWe+ WeAT + L AiWeAT + BVBT,
I-I

(47)

O=ATWO+ WoA+ f ATwoAi+CTRC.
lal

(48)
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Theorem 2.2. Assume that s4 is stable. Then, for (A" B" Ce) EY"

J~(A" B" Ce) = 0 (49)

if and only if there exist n x n nonnegative-definite matrices Q, Q, and P
such that, for some projective factorization G, M, f of QP, A" B" and Ce
are given by

Ae =f(A-2lV2'IC)GT, (50)
A_I

Be=f2lV2, (51)

Ce = LGT, (52)

and are such that, with

T~ QP(QP)'I' = GTf and TJ.~ In -T,

the following conditions are satisfied:
P A

0= AQ+QAT + VI+ L Ai(Q+Q)AT
1=1

+ 2l V2'I2l T + TJ.2l V2'I2l TTr,
O=AQ+QAT +2lV2'I2lT -TJ.2lV2'I2lTTr,

0= A~P+PAQ+LTNL-TrLTNLTJ.'

p( Q) = pep) = p( QP) = ne.

(53)

(54)

(55)

(56)

Furthermore, if (A" B" Ce) E Ye satisfies (49), then the extremal cost is
given by

Je(A" B" Ce)=tr QLTNL. _ (57)

Theorem 2.3. Assume that (27) holds and [Ie is non empty. Then, for
(Ae, Be, Ce) E [Ie,

J~(Ae, Be, C.) = 0 (58)

if and only if there exist n x n nonnegative-definite matrices Q, P, Q, and
Psuch that, for some projective factorization G, M, f of QP, AcoBe, and
Ce are given by

Ae =f(A-BR2'I~-2lV2'IC)GT, (59)
A_I

Be = f2l V2 , (60)

Ce = -R2'I~GT, (61)

and are such that, with

T~QP(QP)JI'=GTf and TJ.~In-T,
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the following conditions are satisfied:

O=AQ+QAT + VI

P T A-I A A_I T
+ L [AIQAi + (Ai - BIR2 ~)Q(AI- BiR2 ~) ]

1=1

- 2l V2'I2l T + TJ.2l V2'I2l TTr, .

O=ATp+PA+RI

(62)

P T A I TA A I
+ L [AI PAI+(Ai-2lV2' Ci) P(AI-2lV2' C/)]i-I

- ~TR2'I~+ Tr~TR2'I~TJ.'
A A T A _I T A -I T T

0=ApQ+QAp+2lV22l -TJ.2lV22l TJ.,
TA A TA_I T TA_I

O=AQP+PAQ+~ R2 ~-TJ.~ R2 ~TJ.'

p( Q) = pCP) = p( QP) = ne'

(63)

(64)

(65)

(66)

Furthermore, if (Ae, Be, C.) E[Iesatisfies (58), then the extremal cost is given
by .

Je(Ae, Be, C.)
A ""-1 A r t ""_1 A

=tr[(Q+Q)RI-2RI2R2 ~Q+~ R2 R2R2 ~Q]. (67)

3. Appendix A: Proof of Propositions 2.1, 2.2, and 2.3

To prove Proposition 2.1, note that (1)-(4), (6)-(9), and (11)-(14) can
be written as

- P - -
dx" = A,x" dt+ L A,.;X" dVit + G,dw,.

I-I
(68)

,

. From Theorem 8.5.5, p. 142 of Ref. 17 (or from the Ito differential rule),
it follows that the nonnegative-definite covariance Q,(t) is given by (16).
Furthermore, (5), (10), and (15) are equivalent to (18). Rewriting Q,(t) in
the form (see Refs. 35 and 36)

.&. ."... ""
vecQ,(t)=s4,vecQ,(t)+vec V, (69)

leads to (19). 0

To prove Proposition 2.2, note that the stability of d, implies,by (69),
that .

Q,~lim Q,(t),_00



400 JOTA: VOL. 58, NO.3, SEPTEMBER 1988 JOTA: VOL. 58, NO.3, SEPTEMBER 1988
401

exists and is given by (21), which satisfies (20). Clearly, Qr~ 0, since
Qr(t)~O, t~O. Now, (22) and (23) follow from (18) and (19). 0

To prove Proposition 2.3, note that the differential equation for m(t)
is an immediate consequence of (68). To show that k is stable, we proceed
as in Lemma 2.2 of Ref. 4. Repeating the steps leading to (22), with Vr
replaced by Iii" it follows (see Ref. 4) that (k, In) is stabilizable. Hence,

L exp(Arcr) exp(A~ cr) dcr

is bounded as I~ 00, which implies that k is stable. 0

If (Am, Bm, Cm) is such that dm is stable, then clearly .stlis also stable and,
by the elementary properties of the Kronecker sum, Am is stable. Conversely,
if .stland Am are stable, then dm is stable. The result for de is obtained
analogously noting only that de is lower block triangular. 0

s. Appendix C: Proof of Lemma 2.1

(i) From Theorem 6.2.5, p. 123 of Ref. 39, it follows that there exists
an n x n invertible matrix 'I' such that the nonnegative-definite matrices

4. Appendix B: Proof of Proposition 2.4 DQ£'¥-'Q,¥-T and Dp£,¥Tp,¥

I. 12

X = s.
[

X, X'2
]S2 X2, X2'

it follows that

X@y=
[

X,@YXI2@Y
]X21@Y X2@Y

[
Us,xp 0

] [
Y@XI

o Us:xp Y@X2,

=
[

Us,xp 0

]o US2XP

[

YI@XI Y'2@X,

Y21@X, Y2@X,

x Y,@X2, Y'2@X2,

Y2,@X2, Y2@X21

X
[

UqXI' 0

]
,

o Uqxl2

where U;Xjis the permutation matrix defined in Refs. 35 and 36. Since
U;Xj = U~;j (i.e., U;Xj is involutory), the stability of (square) X@ Y is
equivalent to the stability of the above block 4 x 4 matrix. Hence, note that

dm =block-diagonal(.stl, AEBAm, AmEBA, AmEBAm).

q,

Y=PI [
Y,

P2 Y21

q2

Y12

]Y2 '

are both diagonal. Hence, 'tb'(Q, P) ¥-0. Since DQDp = '1'-' QP,¥ is also
diagonal, <6?(Q, P) C ~(QP).

(ii) Since QP = 'I'A'I'-', where A £ DQDp is nonnegative diagonal,
QPis nonnegative semisimple.

(iii) Since QP is semisimple, it is group invertible. By properties of
the group inverse (Ref. 37, p. 124), 7'2= 7'.

(iv) Note that, by means of a basis rearrangement, it can be assumed
that 'I' in (i) is such that

We require some elementary properties of the Kronecker product (Refs.
35 and 36) applied to partitioned matrices. For X E IRsx1 and Y E IRpxq

partitioned by

A = diag(AI"'" An"0,...,0),

Y@XI2

] [
Uqxl, 0

]Y@X2 0 UqxI2

where

Ai £ (DQDp)(i,;) ¥- 0, i = 1, . . . , nr.

Hence, since

Y,@XI2 .

Y21@X12

Y1@X2

Y21@X2

YI2@X'2

]

Y2@X12

Y12@X2

Y2@X2

A # = diag(A ~I, . , . , A~.', 0, . . . ,0),

we have

n

7'=QP(QP)# = '¥AA#'¥-' = t 'I' E;'¥-'.;=,

(v) Since

p( Q) =p(P) =p( QP),

it follows that
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(DQ)(i.i);60, (Dp)(I,i);60, i = 1, . . . , n,.

Hence, let AQand Ap denote the upper left positive-diagonalblocks of DQ
and Dp, respectively,and define

~A'l'
[

(AQApl)I/4 0
]
.

o In-n,
It now follows that

~_IQ~_T=~Tp~_I=[(AQ~p)I/2 ~]. (70)
as desired.

(vi) This is an immediate consequence of (70).
(vii) This is an immediate consequence of (70) and (30).
(viii) With 'l' as in (iv) and

Ao ~ diag( 'TI, . . . , 'Tn),

it follows that, for arbitrary invertible S ERnxn,

QP='l' [~}S-IAoS)[S-1 O]'V-I;
thus, (33) and (34) hold with

0= [ST 0], M = S-IAoS, r = [S-I O]'l'-I.
(ix) The resultfollowsfrom

S= M-If'aTM-1, withS-I = Mf'tYM-I.

(x) The resultis a consequenceof (viii)and (ix). 0

where, for notational convenience, we suppress the subscript r. Also, define
the notation

--_
[

Zl Z12

]PQ- Z Z
'

21 2

where

ZI & PI QI + PI2QT2,

Z21 & P"{;QI + P2Q"{;,

ZI2 & PI QI2 + PI2Q20

Z2& P"{;QI2+ P2Q20

and let

n n,

Q,= n
[
Q~ Q12

]
,

n, QI2 Q2

n

fi,= n
[

PI
n, P"{;

n,

P12

]
,

P2

(l3 l3 l3 ) E Rn,xn, x Rn,xl x Rmxn,.
Ac' 8('t c('

We now specialize to the control problem.

Lemma 6.1. Under the assumptions of Theorem 2.3,

J~(Ac, Be, Ce)(l3A"l38"l3c)

= 2 tr[ZJ l3A,J

+2 t{ (V2B~P2+ CZ~ +[ V"{;+ It C,Q.AT] P12) 58,]

+2 t{ ( Q2C~R2+Z"{;B+ Q"{;[RI2+ I~I ATPIB,]) 5c, J. (73)

Proof. From Lemma 3.7.2, p. 203 of Ref. 38, it follows that the Frechet
derivative of the map W -+ W-I is given by

l3w-+- W-15wW-I.

Also, recall from Refs. 35 and 36 the identities

(vec X) T vecY =tr XTY,
(X <29Y) vec Z = vec YZXT.

Hence, using (23) and noting that Ve and k are independent of Ae, we
compute

[aJe(Ae, Be, Ce)/aAe]5A,

- T- -I
((

a.ite

) ) - -I -
=(vec Re) de aAe 5A, de vec Ve

= (.it;T veclt) T([~ 5:J (f)[~ 5:,]) (.it;1 vec Ve)

= (vec PJ T([~ 5:J <29 In,+ In,<29[~ 5:,]) vec Qe
- -

[
0 0

]=2 tr QePe 0 5A,

= 2 tr ZJ5A .,

6. Appendix D: Proof of Theorem 2.3

First note that, by arguments similar to those used in Appendix A, the
dual of (22). given by

-r'" ...". P -T ...
o= A, P,+P,A,+ L A" P,A,j+ R" (71)

1=1 .

has a unique, nonnegative-definite solution given explicitly by
... -1 --T ....

P,=vec(n"n,)(-d, vecR,). (72)

Define the partitionings
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[aJe(Ae, Be, CJ/aBe]88,

= (vec Pc)T(e::)88,) vec Qe

- T

((
a(Be<8>Be)

) )
-

- (vec PJ aBe 88,. vec V

=(VeCPe)T([88~C ~]~[88~C ~]
P -

[
0 0

] [
0 0

]
_

)
-

+ ~Ad<8> 8 C 0 + 8 C. 0 <8>Ad vec QeI I 8, I 8, .

- T (
- .

[
0 0

] [
0 0

]
-
)

-
-(vec Pc) Be <8>0 88, + 0 88, @Be ~ec ~

- -

[
0 0

]
P - -T -

[

0 0

]=2trQePe 8 C 0 +2tr ~ QcAdPe 8 C. 08.. I I 8, I

- -T -
[
0 0

]. + 2 tr VBe Pc 0 88,

Expanding the 11x 11,11X lie, and lie X lie blocks of (20) and (71) yields

O=AQI+Q,AT + V.+BceQT;+QI2(BCe)T

+ f [A;Q1AT+B;ceQT;AT +A;Q'2(BjCe)T + BjCeQ2(BjCe)T],
i-I

(77)

Furthermore, noting that

vec Ve= vec BeVB~ = (Be <8> Be) vec V,

we obtain

0= AQ\2+ QI2A~ + BCeQ2+ QI(BeC) T
P

+ ~ A;Q,(BeCj) T+ VI2B~, (78)
i-I

0=AcQ2+Q2A~ +BecQ\2+QT;(BeC)T +BeV2B~, (79)

0= A Tp, + P,A+ R, + (BeC)Tp;2+ PI2BeC

+ f [ATp,AI+(BeC,)TpT;A;+ATP'2BeC;+(BeC,)Tp2BeC" (80);-,

0= A Tp'2+ PI2Ae + (BeC) Tp2+ P,BCe

P T
+ ~ Ai P,BiCe+RI2Ce,i-'

(81)

0=Z2' (74)

o = A~P2+P2Ae+ (BCe)TpI2+PT;BCe+ C~R2Ce. (82)

Obviously, V2>0 and R2>0 imply V2>0 and R2>0. Next, note that,
since (Ae, BJ is controllable and V2>0, it follows that (Ae+
BeCQ'2Q~, BeV~/2)is controllable. Using Q'2 =Q'2Q~ Q2(Refs. 39 and 40),
(79) can be rewritten as

0= (Ae+BeCQ'2QnQ2+ QiAe+BeCQI2QnT +BeV2B~. (83)

Now, using Lemma 12.2 of Ref. 41, it follows from (83) that Q2 is positive
definite. Similarly, P2 is positive definite.

Since Rh V2, Q2' and P2 are invertible, (74)-(76) can be written as

-P2' PT;Q'2Q2'= In" (84)

Be = -P2' [Z2ICT+ pT;( V'2+t AIQ,CT)] V21, (85)

Ce= -R21[BTZI2+(RT;+J, BTP,Ai) Q\2]Q21. (86)

Now, define new variables

Q B,QI - QI2Q21 QT;, p:! PI - P12P2'pT;, (87)
A 6 _I T A 6 -, T

Q = Q'2Q2 Q12' P = PI2P2 P 12, (88)

which are 11x 11nonnegative-definite matrices. Note that, because of (84),

P

=2 tr CZ~88,.+2 tr ~ (CiQIATpI2+C,Q,ci)i='

+2 tr(VT;P\2+ V2B~P2)88,.

= 2 tr( V2B~P2CZ~ + [ vT;+ JI C;Q,AT] P12)88,.

A similar computation for (aJe(Ae, Be, Ce)/aCe)8c, yields (73). 0

We can now proceed with the proof of Theorem 2.3. Obviously, (58)
is equivalent to

A T T ( P T)0= P2BeV2+Z2IC +P12 V'2+ ~ AiQ,Ci ,
I-I

T ( T P T )0= R2CeQ2+B Z'2+ RI2+.~ Bj PIA, Q12'.-,

(75)

(76)
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(33) and (34) hold with

G£Q;IQ"[;, M£Q2P2,

where M is positive semisimple, since

Q2P2=QY2( QY2 P2QY2)Q;I/2.

It is helpful to note the identities
A T T T

Q=Q12G=G QI2=G Q2G,
A T T T
P=-PI2f=-f P12=f P2f,

TGT = GT, fT= T,

Q=TQ, P=PT,
A AT.

QP =-QI2PI2'

Using (34) and Sylvester's inequality, it follows that

p( G) = p(f) = p( Q12)= P(PI2) = ne,

which in turn imply (66).
The components of Qe and Pc can be written in terms of Q, P, Q, P,

G, and f as

QI=Q+Q, PI=P+P, (94)
A TAT

Q12= Qf , PI2= -PG , (95)
A TAT

Q2=fQf, P2= GPG . (96)

The gain expressions (60) and (61) can now be seen to be equivalent to
(85) and (86). Substituting (94)-(96) into (77)-(82) yields

f£-p;lp"[;, (89)

The remaining calculations proceed as follows. Computing either (99)-
r(98) or (102)-G(101) yields (59). Inserting this expression for Ae into
(98), (99), (101), and (102) and computing the equivalent equations
GT(98)T, GT(99)G, (101)f, and fT(102)f, it follows that GT(99)G=
GT(98)T T and fT(102)f = T(101)f. Hence, (99) and (102) are superfluous.
Furthermore, GT (98)T and (101)f are equivalent respectively to

A A T "'_1 T
0=T[ApQ+QAp+21V221 ],

r'" A r"'-t

0= [AQP + PAQ+!'J R2 !'J]T.

Finally, to obtain (62)-(65) note that

(64) = (103)+ (103)T -(103)TT,

(62) = (97) - (64),

(65) = (104) + (104)T - TT (104),

(63) = (100) - (65).

(103)

(104)
(90)

(91)

(92)

(93)

o
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