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I. INTRODUCTION

Constraints on implementation complexity often make it desirable in
practice to design estimators of reduced order. Such low-order estimators are
also of interest when estimates of only a few state variables are required. For
example, although a large flexible space structure may involve numerous
flexible modes, only estimates of the rigid body attitude may be desired. The
literature on reduced-order estimator design is vast, and we note a represen-
tative collection of papers [1-11] as an indication of long-standing interest in
this problem.

The starting point for this article is the Riccati equation approach developed
in [1]. There it was shown that optimal reduced-order, steady-state estimators
can be characterized by means of an algebraic system of equations consisting
of one modified Riccati equation and two modified Lyapunov equations
coupled by a projection matrix t. As shown in [1] this projection arises directly
from the fixed-order constraint on the estimator order. We note that the order
projection t derived in [1] is given by

t ~ (21)((21>)#, (1)
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where ( )# denotes group generalized inverse, and Qand Pare rank-deficient
nonnegative-definite matrices analogous to the controllability and observa-
bility Gramians of the estimator. As discussed in [1], the order projection T
arises as a direct consequence of optimality and is not the result of an a priori
assumption on the structure of the reduced-order estimator. Indeed, no
assumption was made in [1J concerning the internal structure of the
estimator.

The solution given in [1], however, was confined to problems in which the
plant is asymptotically stable though in practice it is often necessary to obtain
estimators for plants with unstable modes. Intuitively, it is clear that finite,
steady-state state-estimation error for unstable plants is only achievable when
the estimator retains, or duplicates in some sense, the unstable modes. The
solution given in [1J is inapplicable to the unstable plant problem for the
simple reason that the range of the order projection Tmay not fully encompass
all of the unstable modes. Hence, in this article we derive a new and completely
distinct reduced-ord~r solution in which the observation subspace of the
estimator is constrained a priori to include all of the unstable modes and
selected stable modes. Specifically, for a plant with nu unstable modes, we
characterize the optimal estimator of order nu > nuwhich generates estimates
of all of the nu unstable states and nu - nu prespecified stable states. Hence
this estimator effectivelyserves as an observer for a designated plant subspace.

The subspace observation constraint is embedded within the optimization
process by fixing the internal structure of the reduced-order estimator. This
~tructure gives_ris~ to a projection p defined by

£
[

Inu p~lPus

Jp 0 0'nsXnu ft.
(2)

where Pu E IRnuxnu and PusE IRnuxn. are subblocks of an n x n matrix P
satisfying a modified algebraic Lyapunov equation, nu > nu is the dimension
of the observation subspace of the estimator containing all of the nuunstable
modesand nu- nuselectedstablemodes,and ns 6 n - nu isthedimensionof
the remaining subspace containing only stable modes. It turns out that the
subspace projection p, which is completely distinct from the order projection 1"
appearing in [lJ, plays a crucial role in characterizing the optimal estimator
gains. Furthermore, in contrast to the lone observer Riccati equation of the
standard full-order theory, in the constrained-subspace case the reduced-
order solution consists of one modified Riccati equation and one modified
Lyapunov equation coupled by the subspace projection J1.. .

In addition to the subspace-observation problem just discussed, this article
includes the treatment of a worst-case frequency-domain design criterion for
the state-estimation error. Specifically, we consider the least-squares state-
estimation problem with a constraint on the frequency-domain (i.~., HrxJ

- - -- ------
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estimation error [12J. This generalization provides additional design flexi-
bility by yielding a reduction of the frequency content of the estimation error
in addition to its mean-square magnitude. The principal result in this case is a
sufficient condition that yields subspace-constrained estimators satisfying an
optimized L2 bound as well as a prespecified Hoobound. The sufficient
condition is a direct generalization of the subspace-observation problem
developed previously for the least-squares estimation problem. Once again,
the optimal reduced-order estimator is characterized by an algebraic system
consisting of one modified Riccati equation and one modified Lyapunov
equation coupled by the constrained-subspace projection p. with additional
coupling arising due to the Hooconstraint. This result is analogous to recent
developments in Hoocontrol theory [13-16].

An additional feature of this article is the inclusion of a static estimator gain
in conjunction with the dynamic estimator. Thus, our results also represent a
generalization of the standard steady-state Kalman filter result to the case of
nonstrictly proper estimation. Specifically, noise-free measurements

y = Cx(t) (3)

multiplied by a static estimator gain lead to the static-gain projection

v ~ QCT(CQCT)-lC, (4)

where Q is the steady-state estimation-error covariance. This projection has
been discussed earlier, for example [17-19]. In the Hoo.constrained case, the
static-gain projection v becomes

Voo ~ (flCT + y-2fl&>flCT)(CflCT+ y-2Cfl&>flCT)-lt, (5)

where fl is a bound on the steady-state estimation-error covariance, &>satisfies
a modified Lyapunov equation, and y is the prespecified frequency-domain
error bound. If this bound is sufficiently relaxed (i.e.,y --. (0), then v00 --. v and
the "pure" least-squares nonstrictly proper estimator is recovered. Of course,
if nonnoisy measurements of the form (3) are not available for a particular
application, then this design aspect can be ignored in both the least-squares
and frequency-domain problems. Such specializations are pointed out in later
sections.

It should be stressed that all three projections 't, p.' and v are completely
distinct and arise from different design objectives. Specifically,as discussed in
[1,2J, the order projection 't arises due to a constraint on the order of the
estimator, the subspace projection p.arises from a constraint on the structure
of the estimator, and the static-gain projection v arises due to the presence
of noise-free measurements. Designing a nonstrictly proper reduced-order
estimator that includes all of the unstable modes and an optimal choice of
some of the stable modes would involve all three projections and four matrix
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equations. This unified solution is considerably more complex and thus is
deferred to a future paper.

After presenting notation in Section II, we give in Section III the statement
of the optimal reduced-order subspace-observer problem. Theorem 1 shows
that the reduced-order subspace-constrained estimator is characterized by one
modified Riccati equation and one modified Lyapunov equation. The Hoo-
constrained reduced-order subspace-observer problem is considered in
Section IV. The principal result of this section (Lemma 1) shows that if the
algebraic Lyapunov equation for the error covariance is replaced by a.
modified Riccati equation possessing a nonnegative-definite solution, then the
Hooestimation constraint is satisfied, and the least-squares state-estimation
error criterion is bounded above by an auxiliary cost function. The problem of
determining reduced-order estimators that minimize this upper bound subject
to the Riccati equation constraint is considered as the auxiliary minimization
problem. Necessary conditions for the auxiliary minimization problem
(Theorem 2) are again given in the form of a coupled system of algebraic
Riccati and Lyapunov equations. To develop connections with the standard
Kalman filter theory, the results of Theorem 2 are specialized to the full-order
case (see Remark 11).In Section V the necessary conditions of Theorem 2 are
combined with Lemma 1 to yield sufficient conditions for stability of the
estimation-error dynamics, constrained Hooestimation error, and bounded
least-squares state-estimation error.

II. NOTATION AND DEFINITIONS

tr

O"max(Z)

IIH(s) II00

%(Z), 8l(Z)
§r, Nr, IfDr

ZI =:;Z2, ZI < Z2
n, 1,1,ne, nu, ns, q, p
x, y, y, Xe, xu, Xs, Ye

A,C,C
Au, Aus, As

Cu, Cs, Cu, Cs

Real numbers, r x s real matrices, IWXI,expected
value

r x r identity matrix, transpose, r x s zero matrix,
Orxr

Trace

Largest singular value of matrix Z
sup O"max[H(jw}]
weIR
Null space, range of matrix Z
r x r symmetric, nonnegative-definite, positive-

definite matrices

Z2 - ZI E Nr, Z2 - ZI E IfDr,Z2, ZI E §r
Positive integers
n, I, 1,ne, nu, n~,q-dimensional vectors
n x n, I x n, f x n matrices
nu x n~, 1iux ns, ns'x nsmatrices
I x nu, I x ns, f x nu, f x nsmatrices
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D1, Dz, E, L
DIu' DIs, Lu, Ls

R

Ae, Be, Ce,De
W(.)

V1,Vz

A

n X p, 1 X p, r X q, q X n matrices
nu X p, ns X p, q X nu, q x nsmatrices
ETE, estimation-error weighting in I?q
ne x ne, ne x 1,q x ne, q x fmatrices
p-dimensional standard white noise process
Intensityof D1w(.),DzW(.);VI= DIDI E Nn,

Vz = DzD1 E I?'
Cross intensity of D1w(.),Dzw(.); V12=D1D1E ~nx,

A -
[0 Inu ]BeC, nu < n;A - Be C, nu= n

nsx "u

DI -
[OInu ]

BeDz' nu < n; DI - BeDz, nu = n
ns x nu

E(L-DeC)

ETE = (L -DeC)TR(L - DeC)--TDD

D

E
R
V

III. THE OPTIMAL REDUCED-ORDER
SUBSPACE-OBSERVER PROBLEM

The problem is addressed as follows: Given the nth-order system

x(t) = Ax(t) + DI w(t), t E [0,(0), (6)

with noisy and nonnoisy measurements

and with the partitioning

y(t) = Cx(t) + Dzw(t),

y(t) = Cx(t),

(7)

(8)

[
~u(t)

]
=

[
Au Aus

] [
Xu(t)

]
+

[
D1U

]
W(t), (9)

xs(t) On.X"u As xs(t) DIs

[
Xu (t)

]y(t) = [Cu Cs] xs(t) + Dzw(t), (10)

y(t) = [Cu Cs][::g~J (11)

designan nuth-order nonstrictlyproper state estimator

Xe(t) = Aexe(t) + Bey(t),

Ye(t) = Cexe(t) + Dey(t),

(12)

(13)
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such that the state-estimation error criterion

J(Ae, Be, Ce,De)~ lim IE[Lx(t) - Ye(t)]TR[Lx(t) - Ye(t)] (14)
,-co

is minimized and

(15)

for all x(O)and xe(O)when Dl = 0 and D2 = O.

Remark 1. Note that (13) allows the additional feature of a static feedth-
rough gain Dewhen nonnoisy measurements (8) are available. This corre-
sponds to a static least-squares estimator in conjunction with the dynamic
(Wiener-Kalman) estimator. For the special case in which only noisy
measurements are available, one needs only to set De= 0, which leads to a
strictly proper state estimator.

Remark 2. Note that (14) is the usual least-squares state-estimation error
criterion whereas (15) implies that perfect observation is achieved at steady
state for the plant and observer dynamics under zero external disturbances
and arbitrary initial conditions.

In this formulation the plant state x(t) is partitioned into subsystems for
xu(t) and xs(t) of dimension nu and ns, respectively. Furthermore, we assume
that if A.is an eigenvalue of A such that Re(A.)~ 0, then A.is also an eigenvalue
of Auwith the same multiplicity. That is, the nu-dimensional subspace for xit)
contains all the unstable modes of the system (if there are any) and possibly
selected stable modes. Thus, if the unstable subspace of A has dimension nu,
thenwe have nu > nu, and the ns-dimensional subspace for xs(t) contains the
remaining stable modes. Furthermore, the matrix L, which is partitioned as

(16)

where Lu and Ls are q x nuand q x nsmatrices, identifies the states or linear
combinations of states whose estimates are desired. The order ne of the
estimator state Xeis fixed to be equal to the order of the nu-dimensional
subspace for xu(t). Thus, the goal of the optimal reduced-order subspace-
observer problem is to design an estimator of order nu which yields
quadratically optimal linear least-squares estimates of specified linear com-
binations of the states of the system. To satisfy the observation constraint (15),
define the error state z(t) ~ xu(t) - xe(t) satisfying

i(t) = xu(t) - xe(t)

= (Au - BeCu)xu(t)- Aexe(t) + (Aus- BeCs)xs(t)+ DluW(t)- BeD2w(t).

(17)

Note that the explicit dependence of the error states z(t) on the states xu(t)can
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be eliminated by constraining

(18)

Thus, (17) becomes

i(t) = Aez(t) + (Aus- BeCs)xs(t)+ Dtuw(t) - BeD2w(t). (19)

Furthermore, the explicit dependence of the estimation error (14) on the xu(t)
subsystem can be eliminated by constraining

(20)

Henceforth, we assume that Ae and Ceare given by (18) and (20).Now, from
(9)-( 13)it follows that

~(t) = Ax(t) + Dw(t), (21)

where

x(t) ~
[

Z(t)

]xs(t) ,

To guarantee that J is finite, consider the set of asymptotically stable reduced-
order estimators,

f/ ~ {(Ae,Be,Ce,De):Ae = Au - BeCu is asymptotically stable},

which is nonempty if (Au, Cu) is detectable.
Beforecontinuing, we note that if Aeis asymptotically stable, then since As is

asymptotically stable, A is also asymptotically stable. Hence the least-squares
state-estimation error criterion (14) is given by

J(Ae, Be, Ce,De)= tr QR,

where the n x n steady-state error covariance,

(22)

Q ~ lim lE[x(t)xT(t)]~ 0, (23)

exists and satisfies the algebraic Lyapunov equation

o = AQ + QAT + V. (24)

Furthermore, for nondegeneracy we restrict our attention to the set of
admissible estimators,

+ ~ .. ~ ~T

f/ - {(Ae,Be,Ce,De)E f/. (Ae,Ce) ISobservable and CQC > OJ.

The definiteness condition CQCT > 0 holds if C has full row rank and Q is
positive definite. Conversely, if CQCT > 0, then C must have full row rank but
Q need not necessarily be positive definite. As shown in the appendix, this
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condition implies the existence of the static-gain projection v, which is defined
in (35).

The following result gives necessary conditions that characterize solutions
to the optimal reduced-order subspace-observer problem. For convenience in
stating this result, define

Qa l:>QCT + V12'

Theorem 1. If (Ae, Be,Ce,De)e 9'+ solves the optimal reduced-order
subspace-observer problem with constraints (18)and (19) and Q given by (24),
then there exists PeN" such that

Ae = <P(A - Qa V2"IC)FT,

Be = <PQaV2"I,

Ce= LvJ.FT,

De= LQCT(CQCT)-l,

and such that Q and P satisfy

0= AQ + QAT + VI - QaV2"IQ~+ JlJ.QaV2"IQ~JlI. (29)

0= (A - JlQaV2"IC)Tp+ P(A - JlQaV2"IC)+ vILTRLvJ., (30)

(25)

(26)

(27)

(28)

where

[
Pu

P = P~s
(31)

(32)

(33)

(34)

(35)

Furthermore, the minimal cost is given by

J(Ae,Be,Ce,De) = trQvILTRLvJ.' (36)

Conversely, if there exist Q,PeN" satisfying (29) and (30), and such that
CQCT > 0, then Q satisfies (24) with (Ae,Be,Ce,De) given by (25)-(28).
Furthermore, (.4,D) is stabilizable if and only if Aeis asymptotically stable. In
this case (Ae, Ce)is observable.

Proof. The result follows as a special case of Theorem 2. See Remark 9 for
details. 0
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Remark 3. Equations (29) and (30) involve two distinct projections,
namely,vand Jl.Note that vand Jlare idempotent sincev2= v and Jl2 = Jl.As
discussed earlier, the presence of noise-free measurements y(t) = Cx(t) gives
rise to the static-gain projection v whereas the observation constraint (15)
gives rise to the subspace projection Jl. It is easy to see that rank Jl = nu; and
with Sylvester'sinequality, it followsthat rank v = 1. Finally, it should be
stressed that the subspace projection Jl is completely distinct from the order
projection 't appearing in [1].

Remark 4. Note that with Beand Degiven by (26) and (28), the expressions
(25) and (27) for Ae and Ceare equivalent to the constraints (28) and (29).

Remark 5. As a first step in analyzing these equations, consider the extreme
casef= nand C= In so that perfect measurements of the entire state are
available. It then follows from Theorem 1 with Q positive definite that v = In'
V.L = 0, Ce= 0 (i.e.,the dynamicfilteris disabled),De= L, and by (36),J = O.
More generally, suppose that Pl(L) c Pl(C), which implies that perfect
measurements of Lx are available. In this case,

rank [~J = rank C,

and thus L = Lt for some LE IRqxi without loss of generality. Thus, it follows
from Theorem 1 that Ce = 0, De= L, and J = 0 since L T RL = cTL TRL C and
CV.L= O.These are, of course, expected results because perfect estimation is
achievable in both cases.

Remark 6. Note that for Ae, Be, Ce, Degiven by (25)-(28), the estimator
assumes the innovations form

(37)

By introducing the quasi full-state estimate x(t) A FT Xe(t) E IRn, so that
Jlx(t) = x(t) and xe(t) = 4>x(t)E IRnu,we can write (37) as

(38)

Note that although the implemented estimator (37) has the state .~e{t)E IRnu
(38)can be viewed as a quasi full-order estimator whose geometric structure is
entirely dictated by the projection Jl. Specifically, error inputs Qa V21(y(t) -
Cx(t)) are annihilated unless they are contained in [.;V(Jl)].L= Pl(JlT).Hence
the observation subspace of the estimator is precisely Pl(JlT).

Remark 7. In the full-order case nu = n, Theorem 1 yieldsa steady-state
nonstrictly proper Kalman filter. To see this, formally set 4>= F = Jl= Inand
Jl.L= 0 so that (22) is superfluous and (21)becomes

(39)
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with gains

Ae = A - QaViIC,

Be= QaViI,

Ce = Lv 1.,

De= LQCT(CQCT)-l.

(40)

(41)

(42)

(43)

Finally, to recover the standard steady-state Kalman filter, which involves
only noisy measurements, set C = 0, delete(43),and definev = 0 and v1. = In.

IV. THE OPTIMAL REDUCED-ORDER
SUBSPACE-OBSERVER PROBLEM
WITH AN HooERROR CONSTRAINT

We now introduce the reduced-order subs pace-observer problem with an
Hooconstraint on the Roo-normof the state-estimation error. Specifically, we
constrain the transfer function between disturbances and error states to have

Hoo norm less than y. Given the nth-order observed system (6)-(11), determine
an nuth-order subspace observer, (12) and (13), that satisfies the following
design criteria:

1. Ae = Au - BeCuis asymptotically stable.
2. The r x p transfer function

H(s) ~ E(sIjj- A)-Ii) (44)

from disturbances w(t) to error states E[Lx(t) - Ye(t)] satisfies the
constraint

IIH(s)lIoo~ y, (45)

where y > 0 is a given constant.
3. The least-squares state-estimation error criterion (14) is minimized,

and the observation constraint (15) holds.

The key step in enforcing (45)is to replace the algebraic Lyapunov equation
(24) by an algebraic Riccati equation. Justification for this technique is
provided by the following result.

Lemma 1. Let (Ae, Be,Ce,De) be given and assume there exists an n x n
matrix f2satisfying

(46)

and

(47)

- - - ---
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Then,

(.4,15)is stabilizable (48)

if and only if

Ae is asymptotically stable.

Furthermore, in this case,

(49)

IIH(s) IIex)< y,

Q =5;fl,

(50)

(51)

and

(52)

where

(53)

Proof. See [16]. 0
Lemma 1 shows that the Hex)constraint is automatically enforced when a

nonnegative-definite solution to (47) is known to exist. Furthermore, the
solution fl provides an upper bound for the actual closed-loop state
covariance Q,which in turn yields an upper bound for the least-squares state-
estimation error criterion. That is, given a fixed-order estimator (Ae, Be,Ce,De)
satisfying the Hex)estimation constraint, the actual least-squares state-
estimation error is guaranteed to be no worse than the bound given by
.,f(Ae, Be,Ce,De,fl) if (47) is solvable. Hence .,f(Ae, Be,Ce,De,fl) can be
interpreted as an auxiliary cost, which leads to the following optimization
problem.

To solve the auxiliary minimization problem, determine the (Ae, Be,Ce,
De,fl) that minimizes .,f(Ae, Be,Ce,De,fl) subject to (46) and (47).

Rigorous derivation of the necessary conditions for the auxiliary mini-
mization problem requires additional technical assumptions. Specifically, we
restrict (Ae, Be,Ce,De,fl) to the open set

~ ~ {(Ae,Be,Ce,De,fl): .4 + l'- 2flR is asymptotically stable,

(Ae, Be,Ce)is minimal, and CflCT + y-2Cflf!JflCT > OJ, (54)

where f!JE Nn satisfies

0= (.4 + y-2flR)Tf!J + f!J(.4+ y-2flR) + R.

Remark 8. The set ~ constitutes sufficient conditions under which the
Lagrange multiplier technique is applicable to the auxiliary minimization
problem. Specifically, the requirement that fl be positive definite replaces (46)
by an open-set constraint, the stability of .4 + 1'-2flR serves as a normality
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condition, (Ae,Be,Ce)minimal is a nondegeneracy condition, and the definite-
ness condition implies the existence of the static-gain projection v 00' defined in
(62)for the Roo.constrained problem. Finally, for arbitrary !l E IRnxn,define the
notation

(55)

Theorem 2. If (Ae,Be,CeoDe,!l) E 9'00 solves the auxiliary minimization
problem with constraints (18) and (20) and !l given by (47), then there exists
f!JJE !\Insuch that

Ae = 4>(A - !laVi IC)FT, (56)

Be= 4>!laViI, (57)

Ce = LVooJ.FT, (58)

De= L(!lCT + y-2!lf!JJ!lCT)(C!lCT+ y-2C!lf!JJ!lCT)-1, (59)

and such that !l and f!JJsatisfy

0= A!l + !lAT + VI + y-2 !lv~J.LTRLvooJ.!l - !laViI!l~

(60)

0= (A - Jl!laViIC + y-2!lv~J.LTRLvooJ.)Tf!JJ+ f!JJ(A - ll!laViIC

+ y-2!lv~J.LTRLvooJ.) + V~J.LTRLvooJ.' (61)

where F, 4>,p, and Ill. are defined by (33) and (34), f!JJis partitioned" as in (31),
a~d Vooand Vool.are defined by

Voo A (!lCT + y-2 !If!JJf2CT)(C!lCT+ y-2C!lf!JJ!lCT)-IC,

(62)

Furthermore, the auxiliary cost (53)is given by

.f(Ae, Be,Ce,De,f2) = tr!lv ~J.LTRLvool.. (63)

Conversely,if there exist f2, f!JJE Nn satisfying(60) and (61),and such that
Cf2CT+ y-2Cf2f!JJ!lCT > 0, then (Ae,Be,Ce,De,f2) given by (56)-(60) satisfy
(46) and (47) with the auxiliary cost (53)given by (63).

Proof. See Appendix. 0
Remark 9. Theorem 2 presents necessary conditions for the auxiliary

minimization problem that explicitly synthesize full- and reduced-order
estimators (Ae,Be,Ce,De). If the Roo estimation constraint is sufficiently
relaxed (Le.,y - (0), then Vco= v and (60) and (61) reduce to (29) and (30), thus
recovering the result of Theorem 1.

Remark 10. Since C!l~T ~ Cf2CT+ y-2C!lf!JJ!lCT,it fol~owsthat if Cf2CT
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is positive definite, then so is CflCT + y- 2Cfl9 flCT. Also, note that since
Q ::::; fl, it followsthat if CQCTispositivedefinite,then so is CflCT.Hence, if v
exists for an unconstrained problem, it follows that voowill not fail to exist due
to the singularity of CflCT + y-2Cfl9flCT for the Roo-constrained problem.

As discussed in Remark 7, in the full-order (Kalman-filter) case, set nu = n,
F = f/) =:=J-l= In' and J-lJ.= O. To develop further connections with standard
steady-state Kalman filter theory assume that

Y12 = O. (64)

In this case, the gain expressions (56)-(59) become

Ae = A - flCTYiIC, (65)

Be = flCTy21, (66)

Ce= LvooJ., (67)

De= L(flCT + y-2f29flCT)(CflCT + y-2Cfl9flCT)-I, (68)

whereas (60) and (61) specialize to

o -:-Afl + flAT + Y1+ y-2flv~J.LTRLvooJ.fl - flCTYiICfl, (69a)

01=(A - flCTy2lC + y-2flv~J.LTRLvooJ.)T9

+ 9(A - flCTYilC + y-2flv~J.LTRLvoo.L)+ V~J.LTRLvooJ." (69b)

Remark 11. Note that the necessary conditions for the full-order non-
strictly proper filter problem consist of one modified Riccati equation and
one modified Lyapunov equation. To recover the case involving only noisy
measurements, set E = 0, delete (68), and define voo= O. In this case, (69)
becomes

0= Afl + flAT + VI+ y-2flLTRLfl - flCTYiICfl. (70)

Finally,by relaxingtheRoo-constraint(i.e.,y -+ (0), (70)reduces to the standard
observer Riccati equation.

V. SUFFICIENT CONDITIONS FOR
COMBINED LEAST-SQUARES AND
FREQUENCY-DOMAIN ERROR
ESTIMA TION

In this section we combine Lemma 1 with the converse of Theorem 2 to

obtain our main result, guaranteeing Roo-constrained estimation with an
optimized least-squares bound on the state-estimation error criterion.
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Theorem 3. Suppose there exist fl, 9 E Nn satisfying (60) and (61), and let
(Ae,Be,Ce,De)be given by (56)-(59). Then (48) is satisfied if and only if Ae is
asymptotically stable. In this case, the transfer function (44) satisfies the Hoo
estimation-error constraint

IIH(s) II00 < y, (71)

and the least-squares state-estimation error criterion (14) satisfies the bound

(72)

Proof. The converse portion of Theorem 2 implies that fl given by (60)
satisfies (46) and (47). It now follows from Lemma 1 that the stabilizabil-
ity condition (48) is equivalent to the asymptotic stability of Ae, the Hoo
estimation-error constraint (50) holds, and the least-squares state-estimation
error criterion satisfies the bound (53) which is equivalent to (72). 0

APPENDIX. PROOF OF THEOREM 2

To optimize (53) over the open set sPoosubject to the constraint (47), form
the Lagrangian

2(Be,De,fl,.q;,A.) ~ tr{A.flR+ [Afl + flAT + y-lflRfl + V]9}, (73)

where the Lagrange multipliers A.~ 0 and 9 E IRnxn are not both zero. We
thus obtain

~~ = (A + y-l flR)T9 + 9(.4 + y-l flR) + A.R. (74)

Settinga2/ aQ = 0 yields

0= (A + y-lflR)T9 + 9(A + y-lflR) + A.R. (75)

SinceA + y- 1flR isassumedto be stable,A.= 0 implies9 = O.Henceit can be
assumed without loss of generality that A.= 1.Furthermore,9 isnonnegative
definite.

Now partition .nx nfl, 9 into nu x nu,nu x ns, and ns x nssubblocksas

Pus

]
.

Ps

Thus, the stationarity conditions are given by

a2 T_
a = PuBeVl - [Pu Pus](flC + V12) = 0,
Be

(76)

~: = De[CflCT + y-lCfl9flCT] - L[flCT + y-lf2f1/JflCT]= O. (77)e
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Expanding the nu x nusubblock of (75) yields

0= (Ae+ y-2QuC;RCe)Tpu + Pu(Ae+ y-2QuC;RCe)

+ y-2QusP~sC;RCePusQ~s+ C;RCe. (78)

Since (Ae, Be, Ce,De)E~, it follows from [20, Lemmas 2.1 and 12.2] that Pu is
positive definite. Since Pu is thus invertible, define the nu x n matrices

F ~ [Inu OnuxnJ, if>A [Inu P~lpus], (79)

and the n x n matrix J1~ FTif>.Note that since if>FT= In' J1 is idempotent,
that is, J12= J1..

Next note that (76),(77),and (79)imply (57) and (59).Similarly, (56) and (58)
are equivalent to (18) and (20) with Be and De given by (57) and (59),
respectively. Now, using the expression for Be,A and Vbecome

A = A - J1QaV2"IC, (80)

V = VI- V12V2"IQ~J1T- J1QaV2IVI2+ J1QaV2"IQ~J1T. (81)

Now (60) and (61) follow from (47) and (75) by using (80) and (81).
Finally, to prove the converse, we use (56)-(61) to obtain (47) and (75)-(77).

Let Ae, Be, Ce, De, F, if>,J1,{!J>be as in the statement of Theorem 2. With
if>FT= In' it is easy to verify(76)and (77).Finally, substitute the definitions
of F, if>,and J1into (60) and (61),along with if>FT= In' (33),and (34), to obtain
(47) and (75). 0
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