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Fig. 10. Response to step disturbance with KZ (-34.30N). 

The closed-loop system with the p controller h; achieves 
robust performance, while the closed-loop system with the 
H,controller l i l  does not. 

VI. CONCLUSIONS 

In this paper, we experimentally evaluated a controller designed by 
p-synthesis methodology with an electromagnetic suspension system. 
We have obtained a nominal mathematical model as well as a set of 
plant models in which the real system is assumed to reside. With this 
set of the models we designed the control system to achieve robust 
performance objective utilizing p-synthesis method. 

First, four types of different model structures were derived based 
on the several idealizing assumptions for the real system. Second, for 
every model, the nominal value as well as the possible maximum 
and minimum values of each model parameter was determined 
by measurements and/or experiments. Third, a nominal model was 
naturally chosen. This model has the simplest model structure of 
all four models and makes use of nominal parameter values. Then, 
model perturbations were defined to account for additive unstruc- 
tured uncertainties from such as neglected nonlinearities and model 
parameter errors. Fourth, we defined a family of plant models where 
the unstructured additive perturbation was employed. The method to 
model the plant as belonging to a family or set plays a key role for 
systematic robust control design. Fifth, we setup robust performance 
objective as a structured singular value test. Next, for the design, 
the D-I i  iteration approach was employed. Finally, the experimental 
results showed that the closed-loop system with the p-controller 
achieves not only nominal performance and robust stability, but in 
addition robust performance. 
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Parameter-Dependent Lyapunov Functions and the 
Popov Criterion in Robust Analysis and Synthesis 

Wassim M. Haddad and Dennis S .  Bemstein 

Abstruct- Many practical applications of robust feedback control 
involve constant real parameter uncertainty, whereas small gain or 
norm-bounding techniques guarantee robust stability against complex, 
frequency-dependent uncertainty, thus entailing undue conservatism. 
Since conventional Lyapunov bounding techniques guarantee stability 
with respect to time-varying perturbations, they possess a similar 
drawback. In this paper we develop a framework for parameter- 
dependent Lyapunov functions, a less conservative refinement of “fixed” 
Lyapunov functions. An immediate application of this framework is 
a reinterpretation of the classical Popov criterion as a parameter- 
dependent Lyapunov function. This result is then used for robust 
controller synthesis with full-order and reduced-order controllers. 

I. INTRODUCTION 

The analysis and synthesis of robust feedback controllers entails 
a fundamental distinction between parametric and nonparametric 
uncertainty. Parametric uncertainty refers to plant uncertainty that is 
modeled as constant real parameters, whereas nonparametric uncer- 
tainty refers to uncertain transfer function gains modeled as complex 
frequency-dependent quantities. In the time domain, nonparametric 
uncertainty is manifested as time-varying uncertain real parameters. 

The distinction between parametric and nonparametric uncertainty 
is critical to the achievable performance of feedback control sys- 
tems. For example, in the problem of vibration suppression for 
flexible space structures, if stiffness matrix uncertainty is modeled 
as nonparametric uncertainty, then perturbations to the damping 
matrix will inadvertently be allowed. Predictions of stability and 
performance for given feedback gains will consequently be extremely 
conservative, thus limiting achievable performance [ 11. Altematively, 
this problem can be viewed by considering the classical analysis of 
Hill’s equation (e.g., the Mathieu equation) which shows that time- 
varying parameter variations can destabilize a system even when 
the parameter variations are confined to a region in which constant 
variations are nondestabilizing. Consequently, a feedback controller 
designed for time-varying parameter variations will unnecessarily 
sacrifice performance when the uncertain real parameters are actually 
constant. 
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The above distinction can also be illustrated by considering the 
central result of feedback control theory, namely, the small gain 
theorem, which guarantees robust stability by requiring that the 
loop gain (including desired weighting functions for loop shaping) 
be less than unity at all frequencies. The small gain theorem, 
however, does not make use of phase information in guaranteeing 
stability. In fact, the small gain theorem allows the loop transfer 
function to possess arbitrary phase at all frequencies, although in 
many applications at least some knowledge of phase is available 
[2]. Thus, small gain techniques such as H, theory are generally 
conservative when phase information is available. More generally, 
since leJ9( = 1 regardless of the phase angle 4, it can be expected 
that any robustness theory based upon norm bounds will suffer 
from the same shortcoming. Of course, every real parameter can be 
viewed as a complex parameter with phase angle 4 = 0 degrees or 
4 = 180 degrees. 

To some extent, phase information is accounted for by means of 
positivity theory [3]-[15] which is widely used to model passive 
systems such as flexible structures [16], [17]. In this theory, a 
positive real plant and strictly positive real uncertainty are both 
assumed to have phase less than 90 degrees so that the loop transfer 
function has less than 180 degrees of phase shift, hence guaranteeing 
robust stability in spite of gain uncertainty. Both gain and phase 
properties can be simultaneously accounted for by means of the circle 
criterion [15], [18]-[22] which yields the small gain theorem and 
positivity theorem as special cases. It is important to note that since 
positivity theory and the circle criterion can be obtained from small 
gain conditions by means of suitable transformations, they can be 
viewed as equivalent results from a mathematical point of view. The 
engineering ramifications of the ability to include phase information, 
however, can be significant [ l ] .  

The above discussion is further illuminated by means of Lyapunov 
function theory in [ 151. Specifically, as pointed out in [ 151, a serious 
defect of conventional or fixed Lyapunov bounding theory is the 
fact that stability is guaranteed even if the plant uncertainty AA 
is a function of t. This observation follows from the fact that the 
Lyapunov derivative V(x(t)) = V,(x(t))(A + AA(t))x(t) need 
only be negative for each fixed value of t [15], [23]. Although this 
feature is desirable if AA is time varying, as discussed above, it 
leads to conservatism when AA is actually constant. This defect can 
be remedied, however, by utilizing an altemative approach, which 
is consistent with Lyapunov function bounding techniques, based 
upon parameter-dependent Lyapunov functions. The idea behind 
parameter-dependent Lyapunov functions is to allow the Lyapunov 
function to be a function of the uncertainty AA. In the usual case, 
V(x)  = xTPx, P is a single, fixed matrix, whereas the parameter- 
dependent Lyapunov function V , A ( X )  = xTP(AA)x represents a 
family of Lyapunov functions. 

The concept of a parameter-dependent Lyapunov functions is 
not new to this paper. Specifically, a parameter-dependent Lya- 
punov function of the form V(x) = xTP(A1, . . . ,A, )x ,  where 
P ( A 1 , . . .  ,A,) = crxl A , E ,  is considered in [24]. In this case the 
matrices P, correspond to the vertices of a polytope of uncertain 
matrices with vertices A I ,  . . . , A,. More recently, [25] considers a 
Lyapunov function with matrix P(a1,.  . . , a,) = PO + Er='=, u,P,, 
where PO corresponds to the nominal system and the P, are "first- 
order perturbations" of PO. Numerical techniques are used to deter- 
mine P, and the range of robust stability. Both [24] and [25] discuss 
potential advantages of parameter-dependent Lyapunov functions 
over fixed Lyapunov functions. 

The goal of the present paper is to develop robust analysis 
and synthesis techniques that exploit the fact that the classical 
Popov criterion [26] is based upon a parameter-dependent Lyapunov 

function. Indeed, recall that the Popov criterion is based upon the 
Lur'e-Postnikov Lyapunov function 

V+(x) = xTPx + N 1' 4(u)da ( 1.22) 

where y = Cx and 4(.) is a scalar memoryless time-invariant 
nonlinearity in the sector [0, k], that is, 0 5 4(y)y  5 ICY'. 
Specializing to the linear uncertainty case d(y) = F y ,  where 
0 5 F 5 IC, yields 

Fadu = xTPx  + NFC 
2 

=xT[P  + +NFCTC]x = xTP(F)r .  

This form appears in [lo,  pp. 84-89] and was discussed in the context 
of robust analysis in [15]. 

For practical purposes the form of the parameter-dependent Lya- 
punov function VF(X) is useful since the presence of F restricts the 
allowable time-varying uncertain parameters [27]. That is, if F(f) 
were permitted, then terms involving F(  t) would arise and potentially 
subvert the negative definiteness of VF (x). 

This paper has four specific goals: 1 )  to provide a general frame- 
work for parameter-dependent Lyapunov functions; 2) to obtain a 
generalized multivariable version of the Popov criterion for linear 
matrix uncertainty AA (the classical Popov criterion is limited to 
scalar or diagonal nonlinearities) along with Hz robust performance 
bounds; 3) to provide explicit uncertainty bounds for the multivariable 
Popov criterion in terms of a single Riccati equation that can be used 
for robust controller synthesis; and 4) to develop robust controller 
synthesis techniques based upon the multivariable Popov criterion 
with applications to full-order and reduced-order controllers. 

Notation: 
W, R"", R' -real numbers, T x s real matrices, R''' 
C, C"", 63' -complex numbers, T x s complex matrices, C' x 1  

E, tr, O r x s ,  @ -expectation, trace, T x s zero matrix, Kronecker 

IT, OT, ()* --T x T identity, transpose, complex conjugate trans- 

()-T, ()-* -inverse transpose, complex conjugate inverse trans- 

S', N', P' -T x T symmetric, nonnegative-definite, positive- 

product 

pose 

pose 

definite matrices 
21 I 2 2 , Z l  < 2 2  - 2 2 - 2 1  E " , 2 2 - 2 1  E P',Zl,ZZ E §' 

llzll~, llG(~)Ilz -[trZZ*11/2, [ ( 1 / 2 ~ )  .ITm I I G ( ~ ) l l ~ d w l ~ / *  

11. ROBUST STABILITY AND PERFORMANCE PROBLEMS: ANALYSIS 

Let U C R" denote a set of perturbations AA of a given nom- 
inal dynamics matrix A E R" ' n. Within the context of robustness 
analysis, it is assumed that A is asymptotically stable and 0 E U. We 
begin by considering the stability of A + AA for all AA E U. 

Robust Stability Problem: Determine whether the linear system 

k ( t )  = ( A  + AA)x(t), t E [0 ,  CO) (2.1) 

is asymptotically stable for all AA E U. 
To consider the problem of robust performance, we introduce 

an extemal disturbance model involving white noise signals as in 
standard LQG (H2) theory. The robust performance problem concerns 
the worst-case H2 norm, that is, the worst-case over U of the expected 
value of a quadratic form involving outputs z ( f )  = Ex(t ) ,  where 
E E Rqx", when the system is subjected to a standard white noise 
disturbance w ( t )  E Rd with weighting D E R n X d .  

1 - 7  1'1 1- 
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Robust Performance Problem: For the disturbed linear system 

k ( t )  = ( A  + AA).r(t)  + Dw( t ) ,  t E [0, CO), (2.2) 
z ( t )  = E z ( t )  (2.3) 

where w ( . )  is a zero-mean d-dimensional white noise signal with 
intensity I d ,  determine a performance bound B satisfying 

J ( U )  sup limsupE{llz(t)11;) 5 0. (2.4) 
AAEU t-oo 

In Section VI, (2.2) will denote a control system in closed-loop 
configuration subjected to external white noise disturbances and for 
which ~ ( t )  denotes the state and control regulation error. 

Next, we express the H2 performance measure in terms of the 
observability Gramian for the pair (A + AA, E). For convenience 
define the n x n nonnegative-definite matrices R 4 ET E ,  V 4 

Lemma 2.1: Suppose A + AA is asymptotically stable for all 
A A  E U. Then 

D D ~ .  

J(U) = SUP trPAAV = Sup IIGAA(s)ll; (2.5) 
AAEU A A E U  

where PAA E R" " is the unique, nonnegative-definite solution to 

0 = ( A  + A A ) T P ~ ~  + PAA(A + AA) + R (2.6) 

and GAA(S) E [ d -  ( A  + AA)]-'D. 

111. ROBUST STABILITY AND PERFORMANCE VIA 
PARAMETER-DEPENDENT LYAPUNOV FUNCTIONS 

The key step in obtaining robust stability and performance is to 
bound the uncertain terms AATPaa + PAAAA in the Lyapunov 
equation (2.6) by means of a parameter-dependent bounding function 
R( P, AA) which guarantees robust stability by means of a family of 
Lyapunov functions. This procedure corresponds to the construction 
of a parameter-dependent Lyapunov function which constrains the 
class of allowable time-varying uncertainties. The following result 
forms the basis for all later developments. 

Theorem 3.1: Let 520: N" + S" and P0:U + S" be such that 

A A ~ P  + P A A  5 n 0 ( p )  - [ ( A  + A A ) ~ P , ( A A )  
+Po(AA)(A + AA)] ,  AA E U, P E N" (3.1) 

and suppose there exists P E N" satisfying 

o = A ~ P  + P A  + no ( P I  + R (3.2) 

and such that P + Po(AA) is nonnegative definite for all AA E U. 
Then 

( A  + AA, E) is detectable, AA E U (3.3) 

if and only if 

A + AA is asymptotically stable, AA E U. (3.4) 

In this case 

 PA^ 5 P +  Po(AA), AA E U (3.5) 

where PAA is given by (2.6). Therefore 

J ( U )  5 tr P V  + sup tr Po(AA)V. (3.6) 
AAEU 

If, in addition, there exists PO E S" such that 

Po(AA) 5 P o ,  AA E U (3.7) 

(3.8) 

Proof: Note that in (3.1), P denotes an arbitrary element of 
N", whereas in (3.2) P denotes a specific solution of the modified 
Lyapunov equation (3.2). This minor abuse of notation considerably 
simplifies the presentation. Now, note that for all AA E RTLXn,  (3.2) 
is equivalent to 

o = ( A +  A A ) ~ P +  P ( A +  AA) + R ~ ( P )  - ( A A ~ P +  PAA) + R. 
(3.9) 

Adding and subtracting ( A  + AA)T Po(AA) + PO (AA)( A + AA) 
to (3.9) yields 

O = ( A + A A ) T ( P + P o ( A A ) ) +  ( P + P o ( A A ) ) ( A + A A )  
+ Ro(P) - [ ( A  + AAITPo(AA) + Po(AA)(A + AA)]  
- ( A A ~ P  + PAA)  + R. (3.10) 

Hence, by assumption, (3.10) has a solution P E N'z for all 
AA E R" ". If AA is restricted to the set U, then, by (3. l), RO ( P )  - 
[ ( A  + AA)TPo(AA) + Po(AA)(A + AA)]  - ( A A T P  + P A A )  is 
nonnegative definite. Thus if condition (3.3) holds for all AA E U, 
then Theorem 3.6 of [28] implies (A + AA, [ R  + R(P,  AA) - 
(AATP + PAA)] ' /2 )  is detectable for all AA E U, where 

f2( P, AA) no( P )  - [ ( A  + AA)TPo( AA) + PO( AA)( A + A A ) ] .  
(3.1 1) 

It now follows from (3.10) and Lemma 12.2 of [28] that A + AA 
is asymptotically stable for all AA E U. Conversely, if A + AA is 
asymptotically stable for all AA E U, then (3.3) is immediate. Now, 
subtracting (2.6) from (3.10) yields 

O = ( A + A A ) T ( P + P ~ ( A A ) - P ~ ~ ) +  ( P + P o ( A A ) - P A 4 )  

x ( A  + AA) + R ~ ( P )  - [ ( A  + A A ) ~ P , ( A A )  + P ~ ( A A )  
x ( A  + AA)] - ( A A T P  + P A A ) ,  AA E U 

(3.12) 
or, equivalently, since A + AA is asymptotically stable for all 
AA E U 

[R(P,  A A )  Im e(A+AA'Tt 
P + Po(AA) - PAA = 

- ( A A T P +  P A A ) ] e ( A f A A ) t d t  
2 0 , A A E U  (3.13) 

which implies (3.5). The performance bounds (3.6) and (3.8) are now 
0 

Note that with f2( P, AA) defined by (3.1 1) condition (3.1) can 
an immediate consequence of (2.5), (3.5), and (3.7). 

be written as 

A A ~ P  + P A A  5 R(P,  AA), AA E U, P E N" (3.i)/ 

where R( P, AA)  is a function of the uncertainty AA. For con- 
venience we shall say that U(. , . )  is a parameter-dependent R- 
bound, which is consistent with [29]. One can recover the standard 
guaranteed cost bound or parameter-independent R-bound by setting 
PO (AA) z 0 so that f2( P, AA) 00 (P) and therefore AAT P + 
P A A  5 00 (P) for all AA E U. Finally, since we do not assume that 
Po(0) = 0, it follows that R o ( P )  need not be nonnegative definite. 
If, however, Po(0) = 0, then it follows from (3.1) with AA = 0 
that RO ( P )  2 0 for all nonnegative-definite P .  To apply Theorem 
3.1, we first specify functions RO (.) and PO (.) and an uncertainty set 
U such that (3.1)' holds. If the existence of a nonnegative-definite 
solution P to (3.2) can be determined analytically or numerically 
and the detectability condition (3.3) is satisfied, then robust stability 
is guaranteed and the performance bound (3.8) can be computed. 

Finally, we show that a parameter-dependent R-bound establishing 
robust stability is equivalent to the existence of a parameter-dependent 
Lyapunov function which also establishes robust stability. To show 
this, assume there exists a positive-definite solution to (3.2), let 



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 40, NO. 3, MARCH 1995 539 

PO: U + N" , and define the parameter-dependent Lyapunov function 
VAA(Z) 2 x ~ ( P + P o ( A A ) ) z .  Note that since P is positive definite 
and PO ( A A )  is nonnegative definite, VAA(X)  is positive definite. The 
corresponding Lyapunov derivative is given by 

V A A ( 2 )  = - z ~ [ L ? ~ ( P )  - { A A ~ P  + PAA + ( A  + A A ) ~  
x & ( A A )  + Po(AA)(A + A A ) }  + R]z.  (3.14) 

Thus, using (3.1) it follows that VAA(X)  5 0 so that A + A A  is 
stable in the sense of Lyapunov. Asymptotic stability follows from 
the invariant set theorem. 

Iv. CONSTRUCTION OF 
PARAMETER-DEPENDENT LYAPUNOV FUNCTIONS 

We now assign explicit structure to the uncertainty set U and the 
parameter-dependent bounding function Q( .. -). Specifically, let 

U 4 {AA E RnXn : A A  = BoFCo, F E .F} (4.1) 

where 3 satisfies 

.F C i 4 { F  E Rmo X m o  : 0 5 F 5 M }  (4.2) 

and where BO E RnXmo, CO E W O x n  are fixed matrices denoting 
the structure of the uncertainty, F E Rmoxmo is an uncertain 
symmetric matrix, and M E R m o x m o  is a given positive-definite 
matrix. Note that 3 may be equal to y, $though, for generality, 
.F may be a specified proper subset of 3. For example, 3 may 
consist of block-structured matrices F = block-diag(It, C3 FI , It, 0 
F ~ ; . . , I P ,  6 Fr). Note that if F =block-diag(FI,Fz,...,F,,) 
and M = block-diag(Ml,... , Mmo) ,  then 0 5 F, 5 Mt, i = 
1,. . . , mo. Finally, we assume that 0 E 3 and M E F. 

Next, we provide an equivalent characterization of the set i. 
Lemma 4.1: Let F E Sm0 and M E Pmo. Then F M - I F  5 F 

if and only if 0 5 F 5 M.  
For U given by (4. I ) ,  the parameter-dependent bound O( ., .) 

satisfying (3.12) can now be given a concrete form. Since the 
elements A A  in U are parameterized by the elements F in 3, we 
shall write Po(F)  in place of Po(AA). Finally, we define the sets 
& and Nnd such that the product of the transpose of every matrix 
in ,bL (resp., h ; d )  and every matrix in 3 is symmetric (respectively, 
nonnegative definite) by 

A' 5 -  { N  E F N  = N ~ F ,  F E i) 
and 

J& 4 { N  E &: F N  2 0,  F E Y}. 

Finally, Lemma 4.1 of [30] implies that there exists p E Nmo such 
that FN 5 11 for all F E 3. 

Proposition 4.1: Let N E N', and 

(A-' - NCoBo) + ( A K 1  - N C O B O ) ~  > 0. (4.3) 

Furthermore, let U be defined by (4.1) and define RO (.)and PO ( .) 
by 

Ro(P) =(CO + 2VCoA + BTP)T[(M- '  - NCoBo) 
+ (A-' - N C O D O ) ~ ] - ' ( C O  + NCoA+ B?P) (4.4) 

and 

Po(F) = C,TFNCo. (4.5) 

Then (3.1) is satisfied. 

Pro08 Since by (4.3) (M-' - NCoBo)+ ( M - '  - N C O B O ) ~  
is positive definite and by Lemma 4.1 F - FM-'F is nonnegative 
definite, it follows that 

0 <[(CO + NCoA + BTP)  - [(M-' - NCoBo) 

+ (M-I  - N C O B ~ ) ~ ] F C ~ ] ~ [ ( M - '  - NCoBo) 

+ (M-' - NCOBO)~] - ' [ (CO + NCoA + BTP)  

- [(M-' - NCoBo) + (M-' - N C O B O ) ~ ] F C O ]  

+ 2CT[F - FM-'F]Co 

=Qo(P) - C,TF(Co + NCoA + BTP)  
- (C,' + ATC,TNT + PBo)FCo + C,TF[(M-' - NCoBo) 

+ (M-' - N C O B O ) ~ ] F C O  + 2C,T[F - FM-'F]Co 

=Oo(P) - C,TFB,TP - PBoFCo 
- C , T F N C ~ A  - A ~ C ~ T N ~ F C ~  
- C : F N C ~ B ~ F C ~  - C T F B T C ~ T N ~ F C ~  

=Oo(P) - [ ( A  + A A ) T P ~ ( F )  + Po(F)(A + Ail)]  

- [ A A T P  + PAA] 

which proves (3.1) with U given by (4.1). 0 
Next, using Theorem 3.1 and Proposition 4.1 we have the following 

immediate result. 
Theorem 4.1: Let N E N n d  and assume (4.3) is satisfied. Further- 

more, suppose there exists a nonnegative-definite matrix P satisfying 

0 = A T P  + P A  + (CO + NCoA + BTP)T[(hl- '  - NCoBo) 
+ (M-' - N C O B O ) ~ ] - ' ( C O  + NCoA + B;P) + R. (4.6) 

Then 

( A  + A A ,  E )  is detectable, AA E U (4.7) 

if and only if 

A + A A  is asymptotically stable, A A  E U. (4.8) 

In this case, if p E Nmo satisfies FN 5 LL for all F E 3, then 

J ( U )  5 t r [ (P + C T P C O ) V I .  (4.9) 

Proof: The result is a direct specialization of Theorem 3.1 using 
Proposition 4.1 with Po(AA)  = CFFNCo. Since, by assumption, 
FN 2 0 for all F E .F, it follows that P + PO( F )  is nonnegative 

U 
Note that asymptotic stability in Theorem 4.1 is guaranteed by 

the parameter-dependent Lyapunov function c%(z) = zT(p  + 
Remark 4.1: The condition FN = NTF,  F E 3 is analogous to 

the commuting assumption between the D-scales and A blocks in p- 
analysis which accounts for structure in the uncertainty F. Note that 
there always exists such a matrix N even if F E .F is not diagonal. 
For example, if F = FIImo, where FI is a scalar uncertainty, 
then N can be an arbitrary symmetric matrix. Altematively, if F is 
nondiagonal, then one can choose N = L V ~ I m o ,  where NO is a scaiar. 
Finally, F and N may be block diagonal with commuting blocks 
situated on the diagonal. Characterization of the optimal multiplier 
N for robust controller analysis and synthesis is given in Section VI. 

Remark 4.2 Standard loop-shifting techniques [31] can be used to 
consider uncertainties with upper and lower bounds of the form hfi 5 
F 5 M2, where F E 3 and M I .  M2 E §"O. In this case, Proposition 
4.1 holds with F, A,  and M replaced by F - A l l ,  A + BohfiCo, 
and M .  - M I ,  respectively. Similar modifications can be made to 
Theorem 4.1. 

definite for all F E .F as required by Theorem 3.1. 

c,' F N C ~  )x.  
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Next, we use results from positivity theory to guarantee the exis- 
tence of a positive-definite solution to (4.6). Let G( s )  - 
denote a state space realization of a transfer function G(s , t at is, 
G ( s )  = C ( s I - A ) - ' B + D .  The notation "*" denotes aminimal 
realization. 

[$I 
Lemma 4.2. (Positive Real Lemma 141, [9]): 

G ( s )  ",%' [t-] 
is positive real if and only if there exist matrices P, L,  and W with 
P positive definite such that 

O = A ~ P + P A + L ~ L ,  (4.10) 
o = PB - cT + L ~ W ,  (4.1 1) 
o = D + D~ - W ~ W .  (4.12) 

Next, we show that if D + DT > 0 then (4.10)-(4.12) yield a single 
Riccati equation characterizing positive realness. For the statement 
of this result recall that a square transfer function G(s) is strongly 
positive real if it is strictly positive real 15 and D + DT > 0. 

Lemma 4.3 ~ 1 4 1 :  Let ~ ( s )  'En [h]. Then G ( s )  is 

strongly positive real if and only if D + DT > 0 and there exist 
positive-definite matrices P and R such that 

o = P + P A + ( c - B ~ P ) ~  ( D + D ~ ) - ~  ( c -B~P)+R.  (4.13) 

We now use Lemma 4.3 to obtain a sufficient condition for the 

Theorem 4.2: Let 
existence of a solution to (4.6). 

Then G ( s )  is strongly positive real if and only if there exist positive 
definite matrices P and R satisfying (4.6). 

Finally, we specialize Proposition 4.1 and Theorem 4.1 to the case 
in which N = 0 and M = DC', where DO + 0,' > 0. In this case 
we have the following result. 

Proposition 4.2: Let DO E RmoXmo be such that DO + DOT > 0. 
Furthermore, let U be defined by (4.1) with M = DO', let Po(F) = 
0, and define n o ( . )  by 

fi0(p) = (c0 + B ; P ) ~ ( D ~  + D O T ) - ~ ( C ~  + BOTP). (4.14) 

Then (3.1) is satisfied. 
Since Po(F) = 0, the case N = 0 corresponds to a parameter- 

independent 0-bound. Hence, it follows from Theorem 3.1 that if 
there exists a nonnegative-definite matrix P satisfying 

o = A ~ P  + PA + (co + B , T P ) ~ ( D ~  + D:)-~(C~ + BTP) + R 
(4.15) 

then ( A  + AA, E) is detectable for all A 4  E U if and only if 
A + AA is asymptotically stable for all AA E U. Furthermore, 
it follows from Lemma 4.3 that the existence of a positive-definite 
matrix P satisfying (4.15) implies that 

- [HI 
is strongly positive real. Hence the parameter-independent 0-bound 
(4.14) guarantees robust stability in the presence of positive real (but 
otherwise unknown) plant uncertainty. The situation is analogous 
to H, bounded real theory, which also depends upon a parameter 
independent 0-bound. 

v. CONNECTIONS TO THE POPOV CRITERION 
In this section we demonstrate connections between the parameter- 

dependent Lyapunov function obtained in Section 4 and the classical 
multivariable Popov criterion. Traditionally, the Popov criterion is 
stated for component-decoupled time-invariant sector-bounded non- 
linearities d(y). We state the Popov criterion for this case and then 
specialize to the case of linear uncertainty. Hence let M E Rmo 
be a given positive-definite matrix and define 

@j fi {q : RmO + R"0 : f$T(y)[M-%J(y) - y] 5 0, y E Rgn"0, 

and 4 ( y )  = [ 4 1 ( ~ 1 ) ~  f $ 2 ( ~ 2 ) , .  . . 4mo(ymo ) I T > .  
(5.1) 

If M = diag(M1,. . . , M,,,) is diagonal, then the sector condition 
characterizing @ is implied by the scalar sector conditions 0 5 
qz(yZ)yz 5 MZyP,yz E R , i  = 1,...,m. 

Theorem 5.1. (The Popov Criterion) [ I s ] :  Suppose there exists a 
nonnegative-definite matrix N = diag( N I ,  . . . , N,, ) such that 
M-' + (I + Ns)G(s)  is strongly positive real, where G ( s )  %" [HI. Then, for all d(.)  E @j, the negative feedback inter- 
connection of G( s) and 4( .) is asymptotically stable with Lyapunov 
function 

Next, we specialize Theorem 5.1 to the case of constant linear 
parameter uncertainty. Specifically, consider the system i( t) = 
( A  + AA)z(t), where AA E U and U is defined by 

U g { A A : d A =  - B F C ,  F=diag(FL,Fz, . . . ,F , , ) ,  

0 IFt 5 A I t ,  i = l; . . ,mo}. 

By setting 4( y )  = F y  = FC.r Theorem 5.1 guarantees that A + AA 
is asymptotically stable for all AA E U. 

It has thus been shown that in the special case that F and 
Nare diagonal nonnegative-definite matrices, Theorem 4.1 (with BO 
replaced by -Bo) specializes to the Popov criterion when applied 
to linear parameter uncertainty. This is not surprising since the 
Lyapunov function (5.2) that establishes robust stability has the form 

WL 0 

I>(x) = x T P x  + 2 1'' F,uN,du,  yt = (COX),  (5.3) 
*=1 0 

or, equivalently 

T / F ( x )  = s T P x  + i T C : F N C ~ x  = x T P s  + 
mo 

F,N,sTC:Co.r 

(5.4) 
which is a specialization of the parameter-dependent Lyapunov 
function considered in Section IV to the case of diagonal uncertainty 
F. The results of Section IV, however, allowed nondiagonal uncertain 
matrices F, which cannot be addressed by means of the nonlinear 
theory. Finally, note that the uncertain parameters F are not allowed 
to be arbitrarily time-varying, which is consistent with the fact that 
the Popov criterion is restricted to time-invariant nonlinearities. 

2 = 1  

VI. ROBUST CONTROLLER SYNTHESIS VIA PARAMETER-DEPENDENT 
LYAPUNOV FUNCTIONS: FIXED-ORDER DYNAMIC COMPENSATION 
In this section we consider robust stability and performance with 

dynamic output-feedback controllers. For generality, the compensator 
dimension n may be less than the plant order n . Define f i  fi n + n c, 
where n, 5 n. 
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Dynamic Robust Stability and Performance Problem: Given the 
nth-order stabilizable and detectable plant with constant structured 
real-valued plant parameter variations 

Dynamic Auxiliary Minimization Problem: Determine hi E N n d  

and controllable and observable (A,, B,, C,) that minimize 

J - ( A ~ ,  B,, c,, N )  b t r (P  + CzpCo)V (6.9) 
? ( t )  = ( A  + A A ) z ( t )  + B t ~ ( t )  + Diw( t ) , t  2 0, (6.1) 
y ( t )  = C;c(t) + D z ~ ( t )  (6.2) where P E Nfi satisfies 

where u( t )  E Rm,w( t )  E Wd, and y ( t )  E Re, determine an n,th- 
order dynamic compensator 

& ( t )  = Aczc ( t )  + Bcy(t) ,  (6.3) 
.(t) = Ccz,(t) (6.4) 

that satisfies the following design criteria: 
i) The closed-loop system (6.1)-(6.4) is asymptotically stable for 

ii) The performance functional 
all AA E U and 

0 =ATP + P A  + (60 + NCOA + B,TP)T[(M-' - NCoho)  

+ (M-1 - NC0ho)T]-'(Co + NCOA + BFP) + R.  
(6.10) 

Necessary conditions for the dynamic auxiliary minimization prob- 
lem will provide fixed-order dynamic output feedback controllers with 
guaranteed robust stability and performance. The following result is 
required for the statement of the main theorem. 

Lemma 6.1 1321: Let Q, P be n x n nonnegative-definite matrices 
and suppose that rank QP = n,. Then there exist nc x n matrices 
G ,  r and an nc x nc invertible matrix M, unique except for a change 
of basis in R n c ,  such that 

[zT(s)R1z(s)  + uT(s )R~u(s ) ]ds )  (6.5) Q P  = GTMI?,  I?GT 1 Inc. (6.11) 

is minimized. Furthermore, the n x n matrices T e G T r  and T_L 

idempotent and have rank nc and 

the notation 

I, - T are 

and define For each uncertain variation AA E U, the closed-loop system - nc* 
To state the main result of this section let P, Q E R" (6.1)-(6.4) can be written as 

E &cTv;'c, A~ A - &E + B~R;'B:P, 
and where the closed-loop disturbance f i w  (t) has intensity 

A$ e~~ + B ~ R ; ' B , T P  - (I + B~R;'NC~)BR;,P, .  
= D D T ,  where D g [l).],' ' [: B,$BF]>V1 = 

DID:, VIZ = DID: = 0,  Vz = DzD?. The c!osed-loop Theorem 6.1: Let n, 5 n, assume RO > 0, and assume N E N n d .  
system uncertaint AA has the form AA = BoFCo, where FurtheFcre, suppose there exist n x n nonnegative-definite matrices 
B o  A [ Bo 1, 60 g [CO O m o x , , ] .  Finally, if A + AA is P, Q ,  P, Q satisfying 

( A c ,  B,, Cc) ,  then it follows from Lemma 2.1 that the performance 
functional (6.5) is given by 

O n , x m ,  
asymptotically sta le for all AA E U for a given compensator o =A;P +  PA^ + R' + CT~; 'C  + PB~&-'B,TP 

(6.12) - P,'R,-,~P, + T:P:R;:P~T~, 

+ Q ( A ~  + B ~ R ; ' B : [ P  +  PI)^ 
0 = ( A p  + BoR;,'B:[P+ P ] ) Q  

+ vl - QCQ + T ~ Q E Q T I T ,  
J ( A , ,  B,, Cc)  = sup trPAAV 

where P,A satisfies the ii x ii Lyapunov equation 

(6.7) 
AAEU 

(6.13) 

o =A:P +  PA^ + PB~R;'B,TP 
+ P,' R;~' P, - TI' P,' R;L' pa T I ,  

o = A ~ Q  + Q A ~  + QEQ - T~QCQTT, 
(6.14) 

(6.15) 

where rank Q =rank P = rank QP = n, (6.16) 

E = [E1 EzC,] ,  R = ETE = 1: C?!,c..l 
and let A,, B,,C, be given by 

L c - -~ 
A,  = r [ A  ~ - Q C ] G T ,  B, = rQCT1;- ' ,  C, = -RF:PaGT. 

(6.17) 
Then (A + AA,&)  is detectable for all A A  E U if and only if 
A + AA is asymptotically stable for all AA E U. In this case the 
performance of the closed-loop system (6.7) satisfies the bound 

J ( A , ,  B,,C,) 5 t r [ (P + P)VI + P Q c Q  + CFpCoVi]. 

Q 
Next, we apply Theorem 4.1 to controller synthesis. Specifically, 

we replace the Lyapunov equation (6.8) for the dynamic problem 
with a Riccati equation that guarantees that the closed-loop system 
is robustly stable. Thus, for the dynamic output feedback problem, 
Theorem 4.1 holds with A, R, V replaced by A, R ,  V. This leads to 
the following problem. (6.18) 
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A =  

Proof: The proof is constructive in nature and is similar to the 
proofs given in [14] and [33]. Specifically, first we obtain necessary 
conditions for the Dynamic Auxiliary Minimization Problem and 
then show by construction that these conditions serve as sufficient 
conditions for robust stabilization and provide a worst-case HZ 

Theorem 6.1 provides constructive sufficient conditions that yield 
dynamic feedback gains A,, B,, C, for robust stability and perfor- 
mance. When solving (6.12)-(6.15) numerically, the matrices M and 
N and the structure matrices BO and CO appearing in the design 
equations can be adjusted to examine tradeoffs between performance 
and robustness. Finally, to further reduce conservatism, one can view 
the multiplier matrix N as a free parameter and optimize the worst- 
case Hz performance bound ,7 with respect to N .  In particular, setting 
a J / a N  = 0 yields 

performance bound. 0 

- 0  
0 
0 

-k1 

* 
x ( C O  + NCoA + B:f')QATC: + [ (M-'  - N c o 8 0 )  
+ (M-' - NCoBo)T]-l(CO + NCoA + B:P)Q(Co 
+ NCoA + @P)T[(LW-l - NCoko) 
+ (M-1 - NCOBO)T]-lB:c: (6.19) 

~ 

where Q satisfies 

o =(A + B , R ; ~ N C ~ A  + B o ~ ; l C 0  + B,R;'B,TP)Q 
+ Qpi + B o ~ ; l ~ C o A  + B o ~ ; ' C 0  + B o ~ c l B , T P ) *  + v .  

(6.20) 

It1 0 0 0 0 '  
.(IF1 + b n o m )  k ~ n o m  0 0 0 

h n o m  -kznom 0 0 0 

By using (6.19) within a numerical search algorithm, the optimal 
compensator and multiplier N can be determined simultaneously, 
thus avoiding the need to iterate between controller design and 
optimal multiplier evaluation. 

Remark 6.1: Several special cases can immediately be discemed 
from Theorem 6.1. For example, in the full-order case, set n, = n 
so that T = G = r = I ,  and TL = 0. In this case the last term in 
each of (6.12)-(6.15) is zero and (6.15) is superfluous. Alternatively, 
letting BO = 0,Co = 0 and retaining the reduced-order constraint 
n, 5 n yields the result of [32]. 

-0 0-  
0 0  
0 0  

0 0  
-0 0-  

c = [110000], D1 = 1 0  

VII. NUMERICAL ALGORITHM AND ILLUSTRATIVE RESULTS 

In this section we describe a numerical algorithm for solving 
the Riccati equation (6.10) along with the expression (6.19) for the 
optimal multiplier N .  We also present numerical results for controller 
synthesis via an illustrative example. 

To synthesize dynamic compensators, we let p = ( MZ - M I )  N in 
(6.9) and determine ( A c ,  B,, C,, N) to minimize J ( A C ,  B,, C,, N )  
subject to (6.10) with P E N". To do this we form the Lagrangian 

L ( A , - , B ~ , C ~ , X , P , ~ ~ )  =tr[(P+C:(Mz - ~ 1 ) ~ e o ) V  

+{(A + Bohf1C0)TP 
+ P ( A  + BOMlCO) 
+ [ C O  + NCo(A  + BOMlCO) + B,TPlT 
. l y [ C ? o  + N C o ( A  + BOMICO) 

+ B,TP] + R}Q] (7.1) 

where 

fio [ ( M 2  - MI )-I - NCO Bo] + [ ( M z  - Mi ) - I  - NCO (7.2) 

and Q E R" " is a Lagrange multiplier. The partial derivatives of L 
are then used in the search procedure. Note that the shifted version of 
(6.10) discussed in Remark 4.2 is used in (7.1) to address uncertainties 
with upper and lower bounds of the form M I  5 F 5 M2. 

Fig. 1 .  Three-mass system. 

O S t  

00.3 q -0.2 4. I 0.1 0.2 

StitIocuUllCcminty 

00.3 -0.2 4. I 0.1 0.2 

StitIocuUllCcminty 

Fig. 2. Performance vs. robustness trade-off for LQG and Popov controllers. 

A quasi-Newton search algorithm was initialized with N = 0 
and the LQG gains. For given values of the robustness bounds Al l  
and M z ,  the search algorithm was used to find A,, B,, C, and N 
satisfying the necessary conditions. After each iteration, M I  and l% 
were increased and the current design was used as the initial step for 
the next iteration. Since the optimal compensator and multiplier are 
found simultaneously, there is no need to iterate between controller 
design and optimal multiplier evaluation. 

Consider the three-mass, two-spring system shown in Fig. 1 with 
ml = m2 = m3 = 1 and an uncertain spring stiffness k z .  A control 
force acts on mass 3 while the position of mass 1 is measured resulting 
in a noncolocated control problem. The nominal dynamics, with state 
variables defined in Fig. 1, are given by 

D2 = [0 11,andkl = kznom = 1. The actual spring stiffness of 
the second spring can be written as k~ = + Ak so that 
the actual dynamics are given by A ( A k )  = A + BoAkCo, where 
BO = [OOOO-l l lT  and CO = [Ol-lOOO]. Furthermore, let 

1 1 0 0 0 0  
E1=[0 0 0 0 0 013 
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10-1 10’ 

FnsueDcY ( d W  

Fig. 3. Popov (dashed) and LQG (solid) controllers 

Two full-order (n ,  = n) Popov compensators were designed. Fig. 2 
compares performance versus robustness trade-offs of the Popov 
compensators (dashed) with the normalized LQG design (solid). 
Fig. 3 shows the magnitude and phase of both a Popov design and 
the LQG design. Note that the Popov design robustified the LQG 
controller notch by increasing both the width and the depth of the 
notch. 
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