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Piecewise Linear Identification for the Rate-Independent
and Rate-Dependent Duhem Hysteresis Models

JinHyoung Oh and Dennis S. Bernstein, Fellow, IEEE

Abstract—We consider the semilinear Duhem model and develop an
identification method for rate-independent and rate-dependent hysteresis.
For rate-independent hysteresis, we reparameterize the system in terms
of the input signal, so that the system has the form of a switching linear
time-invariant system with ramp-plus-step forcing. For rate-dependent
hysteresis, the system can be viewed as a switching linear time-invariant
system for triangle wave inputs. Least-squares-based methods are de-
veloped to identify the rate-independent and rate-dependent semilinear
Duhem models.

Index Terms—Duhem model, hysteresis, rate dependence.

I. INTRODUCTION

Hysteresis is a nonlinear phenomenon that arises in a wide range
of disciplines. Hysteretic systems have the special property that the
input-output closed curve remains nontrivial (possesses interior points)
as the frequency content of the input signal approaches dc. A nonlinear
system is hysteretic if it possesses a nontrivial quasi-dc input–output
closed curve. If the input–output closed curve is independent of the
time-scaling of the input signal, the hysteretic system is rate indepen-
dent. If the input–output closed curve is input frequency dependent, and
thus the hysteretic response near dc is different from the input–output
response at higher frequencies, the system is rate dependent. More de-
tail on these definitions is given in [1].

In this note, we develop identification methods for rate-independent
and rate-dependent hysteresis in the Duhem model [1]–[3]. While the
literature contains a wide variety of hysteresis models (see [4] and the
references therein), the Duhem model is a nonlinear ordinary differen-
tial equation that can model either rate-independent or rate-dependent
hysteresis. The Duhem model is widely used for friction modeling, and
includes the Dahl, LuGre, and Maxwell-slip models as special cases
[5].

To estimate system parameters, we transform the identification
problem into a piecewise-linear estimation problem. For rate-inde-
pendent hysteresis, the system is reparameterized in terms of the
input signal rather than time [1]. With this reparameterization, the
semilinear Duhem model has the form of a switching linear system
with ramp-plus-step forcing. For rate-dependent hysteresis, we use
a special class of input signals, specifically, triangle waves, under
which the system has the form of a switching linear system with ramp
forcing.

After the transformations, the models are identified as piecewise-
affine ARX (PWARX) systems. The PWARX models that we identify
in the present note are based on fixed switching guidelines, and thus
standard least squares techniques can be used. The dynamics of the
rate-dependent semilinear Duhem model are identified in a nonpara-
metric, that is, pointwise, fashion.
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Throughout the note, we use the terms closed curve, limiting periodic
input-output map, hysteresis map, and rate-independence, which are
defined in [1].

II. RATE-INDEPENDENT SEMILINEAR DUHEM MODEL

Consider the single-input–single-output (SISO) rate-independent
semilinear Duhem model

_x(t) = [ _u+(t)In _u�(t)In]

�
A+

A�
x(t) +

B+

B�
u(t) +

E+

E�
(1)

y(t) =Cx(t) +Du(t); x(0) = x0; t � 0 (2)

where x : [0;1) ! n is absolutely continuous, u : [0;1) ! is
continuous and piecewise C1, A+ 2

n�n, A� 2 n�n, B+ 2
n,

B� 2
n, E+ 2

n, E� 2 n, C 2 1�n, D 2 , and _u+(t)
�
=

maxf0; _u(t)g, _u�(t)
�
= minf0; _u(t)g. The value of _x(t) at a point t at

which _u(t) is discontinuous can be assigned arbitrarily. We assume that
the solution to (1) exists and is unique on all finite intervals. Under these
assumptions, x and y are continuous and piecewise C1. The following
result from [1] is needed for further discussion.

Proposition 1: Consider the rate-independent semilinear Duhem
model (1), (2). Let x̂ : [umin; umax]!

n and ŷ : [umin; umax]!
satisfy

dx̂(u)

du
=

A+x̂(u)+B+u+E+; when u increases
A�x̂(u)+B�u+E�; when u decreases
0; otherwise

(3)

ŷ(u) =Cx̂(u)+Du (4)

for u 2 [umin; umax] and with initial condition x̂(u0) = x0, where
u0 2 [umin; umax]. Furthermore, let u : [0;1) ! [umin; umax] be
piecewise monotonic, continuous, piecewiseC1, andu(0) = u0. Then,
x(t)

�
= x̂(u(t)) and y(t)

�
= ŷ(u(t)) satisfy (1), (2).

Proposition 1 shows that the rate-independent semilinear Duhem
model (1), (2) can be reparameterized with u as the independent vari-
able instead of t. This reparameterization transforms the time-domain
model (1), (2) into a switching linear time-invariant system with ramp-
plus-step inputsB+u+E� andB�u+E�. Therefore, the input in (3)
can be treated as a ramp-plus-step without consideration of the actual
form of the time-domain input u(t).

Let �(A) denote the spectral radius of A 2 n�n. The following
result given in [1] provides a sufficient condition for the existence of
a limiting periodic input-output map for a rate-independent semilinear
Duhem model.

Theorem 1: Consider the rate-independent semilinear Duhem
model (1), (2), where u : [0;1) ! [umin; umax] is continuous,
piecewise C1, and periodic with period � and has exactly one local
maximum umax in [0; �) and exactly one local minimum umin in
[0; �). Furthermore, define �

�
= umax � umin and assume that

�(e�A e��A ) < 1: (5)

Then, (1) has a unique periodic solution x : [0;1) ! n, and the
limiting periodic input–output map H1(u) exists.

III. IDENTIFICATION OF THE RATE-INDEPENDENT SEMILINEAR DUHEM

MODEL

We now develop an identification method for systems with rate-in-
dependent hysteresis based on the rate-independent semilinear
Duhem model (1), (2). Specifically, let a rate-independent hys-
teretic limiting periodic input–output map H1(u) be given, where

u : [0;1)! [umin; umax] is continuous, piecewise C1, and periodic
with period � and have exactly one local maximum umax in [0; �)
and exactly one local minimum umin in [0; �). Let ŷ+(u) be the
subset of H1(u) for which u is increasing, and let y�(u) be the
subset of H1(u) for which u is decreasing, such that H1(u) =
f(u; ŷ+(u)) : u 2 [umin; umax]g[f(u; ŷ�(u)) : u 2 [umin; umax]g.
Then the rate-independent semilinear Duhem model identification
problem is to find an order n and matrices A+ 2

n�n, A� 2 n�n,
B+ 2

n, B� 2 n, and C 2 1�n such that the limiting periodic
input–output map of (1), (2) coincides with H1(u). Furthermore,
to guarantee convergence to the hysteresis map, we require that the
convergence condition �(e�A e��A ) < 1 in Theorem 1 be satisfied.
For convenience, we set E+ = E� = 0 and D = 0.

Since the system to be identified is rate independent, we can repa-
rameterize the identified semilinear Duhem model in terms of u to ob-
tain

dx̂(u)

du
=

A+x̂(u) +B+u; when u increases
A�x̂(u) +B�u; when u decreases
0; otherwise

(6)

ŷ(u) =Cx̂(u): (7)

Then, the rate-independent semilinear Duhem model identification
problem is equivalent to identifying two linear systems whose positive
ramp response B+u in forward time and negative ramp response B�u
in backward time coincide with ŷ+(u) and ŷ�(u), respectively, under
the convergence condition (5).

Since the independent variable of the linear system (6) is nonmono-
tonic, we introduce the monotonically increasing independent variable
û 2 [umin; 2umax � umin] to avoid backward-in-time identification.
Then, we define a combined ramp input �u in terms of the new indepen-
dent variable û as

�u(û)
�
=

û; umin � û < umax
umax + umin � û; umax � û � 2umax � umin.

(8)

Next, we reparameterize ŷ+(u) and ŷ�(u) in terms of û by “flipping
over” ŷ�(u) and concatenating it to ŷ+(u). Specifically, define

�y(û)
�
=

ŷ+(û); umin� û<umax
ŷ�(umax + umin � û); umax� û�2umax � umin.

(9)

Hence, the rate-independent semilinear Duhem model identification
problem is equivalent to identifying a switching linear system with an
input �u(û) and output �y(û) for û 2 [umin; 2umax � umin], where
switching occurs at û = umax and subject to the convergence condi-
tion (5).

Now, let uk and yk , k = 0; . . . ; 2` � 1, be 2` measurements from
�u(û) and �y(û), given by (8) and (9), respectively, with sampling period
� = (umax � umin)=`. Then, we identify system matrices Â+, Â�,
B̂+, B̂�, and Ĉ to approximately satisfy the PWARX system

xk+1 =
Â+xk + B̂+uk; k = 0; . . . ; `� 1

Â�xk + B̂�uk; k = l; . . . ; 2`� 1
(10)

yk = Ĉxk (11)

where xk 2 n, k = 0; . . . ; 2`� 1. For the discrete system (10), (11),
the convergence condition is �(Â`

+Â
`
�) < 1. Since the switching time

of (10), (11) is fixed, we can use constrained least squares techniques
to identify the system matrices. To construct the state vector xk from
uk and yk , k = 0; . . . ; 2` � 1, we use the nonminimal state–space
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(NMSS) representation approach given in [6]. Then, Â+, B̂+, Â� and
B̂� are determined from

min
Â ;Â ;B̂ ;B̂

�2 � [Â+ B̂+]
�1

U1
F

+ �2 � [Â� B̂�]
�1

U1
F

(12)

subject to

� Â
`
+Â

`
� < 1; (13)

where

�1
�
= [xm�1 � � � x`�1]; �2

�
= [xm � � � x`]

�1
�
= [x` � � � x2`�2]; �2

�
= [x`+1 � � � x2`�1]

U1
�
= [um�1 � � � u`�1]; U1

�
= [u` � � � u2`�2]:

Since the convergence condition (13) is not convex, we use the fact
that, if ��(A) < 1 (where �� denotes maximum singular value), then
�(A`) � ��(A`) � ��`(A) < 1. Hence, if

��(Â+) < 1 (14)

and

��(Â�) < 1; (15)

then �(Â`
+Â

`
�) � ��(Â`

+Â
`
�) � ��`(Â+)��

`(Â�) < 1 and, thus,
(13) is satisfied. The conditions (14) and (15) are conservative relative
to (13) but have the advantage of being convex. We thus replace the
original constrained least squares problem (12), (13) by the separate
constrained least squares problems

min
Â ;B̂

�2 � [Â+ B̂+]
�1

U1
F

;

subject to ��(Â+) < 1 (16)

and

min
Â ;B̂

�2 � [Â� B̂�]
�1

U1
F

;

subject to ��(Â�) < 1: (17)

Finally, we convert the identified PWARX models by using the bi-
linear transformation to obtain the continuous-time parameters A+,
A�, B+, B�, and C .

To reduce the conservatism inherent in using (14), (15) in place of
(13), we allow ��(A+) < q and ��(A�) < q, where q � 1. The
condition �(A`

+A
`
�) < 1 is checked a posteriori.

Example 1: Suppose ŷ+(u) and ŷ�(u) are given as in Fig. 1 from
the rate-independent semilinear Duhem model (1), (2) with

A = g+A; A� = g�A; B = g+B; B = g�B

A =
�1 4

�4 �1
; B =

0

1
; C = [0 1];

g+ =1; g� = �1; x0 = [0:15 0:15]T

Fig. 1. Identification of ŷ (u), ŷ (u) of Example 1 with (a) q = 1 and (b)
q = 7.

and u(t) = sin t, t � 0. Identification is performed with m = 2,
and thus the identified system is of order 3. Fig. 1(a) shows the input-
output map of the identified system with q = 1. Although �(Â`

+Â
`
�) =

0:0262 and thus the convergence condition is met, the least squares
cost (12) is 0.0553 and the input–output map poorly fits ŷ+(u) and
ŷ�(u). The upper bound q = 1 is now increased to q = 7, which
yields �(Â`

+Â
`
�) = 0:134. The input–output map of the identified

model provides a better fit of the original hysteresis map as shown in
Fig. 1(b), and the least squares cost is 5:12� 10�9.

IV. RATE-DEPENDENT SEMILINEAR DUHEM MODEL

We now consider the SISO rate-dependent semilinear Duhem model

_x(t) = (Ax(t) +Bu(t))g ( _u(t)) (18)

y(t) =Cx(t); x(0) = x0; t � 0 (19)

where A 2
n�n, B 2

n, and C 2
1�n, and g : ! is

continuous and satisfies g( _u) = 0 if and only if _u = 0.
Consider the rate-dependent semilinear Duhem model (18), (19),

where u(t) is the periodic triangle wave with period T shown as Fig. 2
given by

u(t) =
at� aqT � a

2
Ta; qT � t < qT + Ta

bt� b(q + 1)T + b

2
Tb; qT + Ta � t < (q + 1)T

(20)
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Fig. 2. Triangle wave u(t) defined in (20).

where a > 0, b < 0, Ta > 0, Tb > 0, T = Ta+Tb, and q = 0; 1; . . ..
Then, (18) and (19) become

_x(t) =
g(a)Ax(t)+g(a)Bu(t); qT �t<qT+Ta
g(b)Ax(t)+g(b)Bu(t); qT+Ta�t<(q+1)T

(21)

y(t) =Cx(t); x(0) = x0; q = 0; 1; . . . : (22)

Note that (21), (22) can be viewed as a switching linear time-invariant
system with switching periods Ta and Tb. The following result will be
useful in the next section.

Propsosition 2: Let

_x(t) =Ax(t) +Bu(t); (23)

y(t) =Cx(t); x(0) = x0; t � 0 (24)

where A 2 n�n, B 2 n, C 2 1�n are a state–space realization
of the linear ordinary differential equation

y(n)(t) + �1y
(n�1)(t) + � � �+ �n�1 _y(t) + �ny(t)

= �1u
(n�1)(t) + � � �+ �n�1 _u(t) + �nu(t) (25)

for t � 0, with (y(0); _y(0); . . . ; y(n�1)(0)) = (y0; y1; . . . ; yn�1).
Then, for all � 6= 0

_x�(t) = �Ax�(t) + �Bu(t); (26)

y�(t) =Cx�(t); x�(0) = x� ; t � 0 (27)

is a state–space realization of the linear ordinary differential equation

y(n)� (t) + ��1y
(n�1)
� (t) + � � �+ �n�1�n�1 _y�(t) + �n�ny�(t)

= ��1u
(n�1)(t) + � � �+ �n�1�n�1 _u(t) + �n�nu(t) (28)

for t � 0, with (y�(0); _y�(0); . . . ; y
(n�1)
� (0)) =

(y� ; y� ; . . . ; y� ).
Proof: Without loss of generality, let A, B, and C be in observ-

able canonical form

A =

��1 1 � � � 0
...

...
. . .

...
��n�1 0 � � � 1

��n 0 � � � 0

; B =

�1
...

�n�1
�n

; C =

1

0
...
0

T

:

Next, define T
�
= diag(1; ��1; . . . ; ��n+1) and note that

�T�1AT =

���1 1 � � � 0
...

...
. . .

...
��n�1�n�1 0 � � � 1

��n�n 0 � � � 0

�T�1B =

��1
...

�n�1�n�1
�n�n

CT = [1 0 . . . 0]

which is a realization of (28).

V. IDENTIFICATION OF THE RATE-DEPENDENT SEMILINEAR DUHEM

MODEL

Consider the rate-dependent semilinear Duhem model (18), (19),
where u(t), t � 0, is the periodic triangle wave with period T given
by (20). Suppose that there exists a periodic solution x(t) of (18), and
let y(t), t � 0, be given by (19). Then, it follows from (21) and (22)
that (18) and (19) can be written as

_x(t) = g(a)Ax(t) + g(a)Bu(t); y(t) = Cx(t) (29)

for 0 � t < Ta, and

_x(t) = g(b)Ax(t) + g(b)Bu(t); y(t) = Cx(t) (30)

for Ta � t < T . Since (29), (30) is a switching linear time-invariant
system, we can identify g(a)A, g(a)B on [0; Ta), and g(b)A, g(b)B
on [Ta; T ) using the standard least squares identification method,
where u(t) is monotonically increasing and monotonically decreasing,
respectively. Let uk and yk , k = 0; 1; . . . ; ` � 1, be measurements
of u(t) and y(t), respectively, where t 2 [0; T ), with a sampling
period � = T=`. Let `+ > 0, `� > 0, and ` = `+ + `�, where uk is
monotonically increasing for k = 0; . . . ; `+ � 1 and monotonically
decreasing for k = `+; . . . ` � 1.

Next, suppose that uk and yk satisfy the n-dimensional DARMA
model

yk+1 = ��̂+1 yk�� � ���̂+n yk�n+1+�̂+1 uk+� � �+ �̂+n uk�n+1 (31)

for k = 0; 1; . . . ; `+ � 1, and

yk+1 = ��̂�1 yk�� � ���̂�n yk�n+1+�̂�1 uk+� � �+�̂�n uk�n+1 (32)

for k = `+; `+ + 1; . . . ; `� 1, where the model order n � (`� 2)=2
is selected empirically, and �̂+j , �̂�j , �̂+j , and �̂�j , j = 1; . . . ; n, are
system parameters. Now, by defining

Y+
�
= yn � � � y` �1

T
; Y�

�
= y` +n � � � y`�1

T

�+
�
=

�yn�1 � � � �y0 un�1 � � � u0
...

. . .
...

...
. . .

...
�y` �2 � � � �y` �n�1 u` �2 � � � u` �n�1

��
�
=

�y` +n�1 � � � �y` u` +n�1 � � � u`
...

. . .
...

...
. . .

...
�y`�2 � � � �y`�n�1 u`�2 � � � u`�n�1
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(31) and (32) can be rewritten as

Y+ = �+�̂+; Y� = ���̂� (33)

where �̂+
�
= [�̂+1 � � � �̂

+
n �̂

+
1 � � � �̂

+
n ]

T
, �̂�

�
= [�̂�1 � � � �̂

�
n �̂�1 � � � �̂

�
n ]

T
,

and least-squares estimates of the system parameters are given by

�̂+ = �y+Y+; �̂� = �y�Y� (34)

where ()y denotes the Moore–Penrose generalized inverse.
Next, to obtain coefficients for the continuous-time system, we con-

vert the DARMA models (31) and (32) using the bilinear transforma-
tion into the continuous-time linear ordinary differential equations

y(n)(t) + �+1 y
(n�1)(t) + � � �+ �+n�1 _y(t) + �+n y(t)

= �+1 u
(n�1)(t) + � � �+ �+n�1 _u(t) + �+n u(t) (35)

for 0 � t < Ta, and

y(n)(t) + ��1 y
(n�1)(t) + � � �+ ��n�1 _y(t) + ��n y(t)

= ��1 u
(n�1)(t) + � � �+ ��n�1 _u(t) + ��n u(t) (36)

for Ta � t < T , respectively, where �+j , ��j , �+j , and ��j , j =
1; . . . ; n, are system parameters. Now, consider

_x(t) =Ax(t) +Bu(t); (37)

y(t) =Cx(t); x(0) = x0; t � 0 (38)

and let (37), (38) be a state–space realization of the linear ordinary
differential equation

y(n)(t) + �1y
(n�1)(t) + � � �+ �n�1 _y(t) + �ny(t)

= �1u
(n�1)(t) + � � �+ �n�1 _u(t) + �nu(t) (39)

for t � 0, with (y(0); _y(0); . . . ; y(n�1)(0)) = (y0; y1; . . . ; yn�1).
Then, Proposition 2 implies that (35) and (36) are equivalent, respec-
tively, to (28) with � = g(a) and (28) with � = g(b). Comparing the
coefficients of (35) with those of (28) with � = g(a) yields

�+1 = g(a)�1; �
+
2 = g2(a)�2; . . . ; �

+
n = gn(a)�n (40)

�+1 = g(a)�1; �
+
2 = g2(a)�2; . . . ; �

+
n = gn(a)�n (41)

while comparing the coefficients of (36) with those of (28) with � =
g(b) yields

��1 = g(b)�1; �
�
2 = g2(b)�2; . . . ; �

�
n = gn(b)�n (42)

��1 = g(b)�1; �
�
2 = g2(b)�2; . . . ; �

�
n = gn(b)�n: (43)

Hence, g(a) and g(b) are given by

g(a) =
�+1
�1

=
�+1
�1

; g(b) =
��1
�1

=
��1
�1

: (44)

However, (44) provides only an approximation of g(a) and g(b) due
to the bilinear transformation and the presence of noise. Thus, we use
estimates ĝ(a) of g(a) and ĝ(b) of g(b) given by the mean values

ĝ(a) =
�+1 �1 + �1�

+
1

2�1�1
; ĝ(b) =

��1 �1 + �1�
�
1

2�1�1
: (45)

The estimates Â, B̂, and Ĉ of the system matrices can be determined
from the coefficients �+j and �+j , j = 1; . . . ; n, of (35). Specifically,
letting g(a) = 1, it follows from (40), (41) that

�j = �+j �j = �+j (46)

for j = 1; . . . ; n, and Â, B̂, and Ĉ are given by the observable canon-
ical form. Note that, without loss of generality, we can set g(a) = 1
since (29), (30) can be written as

_x(t) =
~Ax(t) + ~Bu(t); 0 � t < Ta
g(b)
g(a)

~Ax(t) + g(b)
g(a)

~Bu(t); Ta � t < T
(47)

y(t) =Cx(t); (48)

where ~A
�
= (1=g(a))A and ~B

�
= (1=g(a))A and where, by assump-

tion, g( _u) = 0 if and only if _u = 0. Then, ĝ(b) is determined by (45).
Once Â, B̂, Ĉ , and ĝ(b) are determined, we identify g( _u) pointwise

using (45) by applying the identification procedure with triangle waves
having different slopes. Specifically, let p � 2 be an integer and, for
i = 1; . . . ; p, let ui(t), t � 0, be a triangle wave input as defined in
(20) with switching periods Ta and Tb , where Ta < Ta < � � � <
Ta and Tb < Tb < � � � < Tb , and slopes ai > 0 and bi <
0. Let yi(t), t � 0, be the corresponding steady-state output of the
rate-dependent semilinear Duhem model (18), (19), which is periodic
with period Ti = Ta + Tb so that the input-output map of ui(t) and
yi(t) forms a closed curve. Now, for i = 1; . . . ; p, identification of
the rate-dependent semilinear Duhem model consists of the following
steps.

1) Using `i measurements of ui(t) and yi(t) with fixed sampling
time � = T=`, determine the coefficients �̂+i;j , �̂+i;j , �̂+i;j , and �̂+i;j ,
j = 1; . . . ; n, of the DARMA models (31), (32) with �̂+j = �̂+i;j ,
�̂+j = �̂+i;j , �̂�j = �̂�i;j and �̂�j = �̂�i;j , j = 1; . . . ; n.

2) Determine the coefficients �+i;j , �+i;j , �+i;j and �+i;j , j = 1; . . . ; n,
of the linear ordinary differential equations (35), (36) with �+j =

�+i;j , �+j = �+i;j , ��j = ��i;j , and ��j = ��i;j , j = 1; . . . ; n, by
converting the DARMA models from Step 1) to the linear differ-
ential equations through the bilinear transformation.

3) If i = 1, estimate the system matrices Â, B̂, and Ĉ by

Â =

�+1;1 1 � � � 0

...
...

. . .
...

��+n;1 0 � � � 1

; B̂ =

�+1;1
...

�+n;1

;

Ĉ = [1 0 � � � 0]: (49)

Then, set ĝ(a1) = 1, and determine ĝ(b1) from (45) with �1 =
�+1;1, �1 = �+1;1, ��1 = ��1;1, and ��1 = ��1;1.

4) If i > 1, determine ĝ(ai) and ĝ(bi) by

ĝ(ai) =
�+i;1�

+
1 + �+1 �

+
i;1

2�+1 �
+
1

ĝ(bi) =
��i;1�

+
1 + �+1 �

�
i;1

2�+1 �
+
1

: (50)
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Fig. 3. (a) Original and (b) scaled g given by (52) (dashed) and the pointwise
identification ĝ (circles) of Example 2.

Example 2: Consider the rate-dependent semilinear Duhem model
(18), (19) with

A = �1; B = 1; C = 1; (51)

and g given by

g(v) =
jvj; jvj � 1

1; jvj > 1.
(52)

Note that g is not positively homogeneous. The identification method
developed in Section VI is used with 12 triangle waves, where ai =
0:25; 0:5; 0:75; 1; 1:25; 1:5; 1:75; 2; 2:25; 2:5; 2:75; 3, bi = �ai , and
Ta = Tb = 4=ai, i = 1; . . . ; 12. For i = 1; . . . ; 12, the input ui and
the output yi are sampled with � = 0:13. We corrupt the output with
uniformly distributed measurement noise whose peak-to-peak ampli-
tude is 0.1. The system parameters are identified as

Â = �0:2501; B̂ = 0:25; Ĉ = 1; (53)

and g( _u) is identified in pointwise fashion as shown in Fig. 3(a). Note
that the system parameters (53) and the identified ĝ are scaled by 0.25
and 4, respectively, since g(a1) = g(0:25) = 0:25. Fig. 3(b) shows
the scaled graph, which shows that the identified ĝ( _u) closely fits

Fig. 4. Input–output maps of original (dashed) and identified (solid) rate-de-
pendent semilinear Duhem model of Example 2 under u(t) = sin!t.

Fig. 5. (a) Original and (b) scaled g given by (55) (dashed) and the pointwise-
identified ĝ (circles) of Example 3.

the actual g. Fig. 4 shows the input-output maps of the actual and iden-
tified rate-dependent semilinear Duhem model with the identified ĝ
under sinusoidal inputs.
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Fig. 6. Input–output maps of actual (dashed) and identified rate-dependent
semilinear Duhem model of Example 3 under u(t) = sin!t without measure-
ment noise.

Example 3: Consider the rate-dependent semilinear Duhem model
(18), (19) with

A =
0 1

�3 �1
; B =

1

0
; C = [1 1]; (54)

and g given by

g(v) =
v

3
� 1

3

+ 1; v � 0

1� ev ; v < 0.
(55)

For identification, 14 triangle waves are used with
ai = 0:25; 0:5; 0:75; 1; 1:5; 2; 2:5; 3; 3:5; 4; 4:5; 5; 5:5; 6,
bi = �ai , and Ta = Tb = 4=ai, i = 1; . . . ; 14. Fig. 6 shows
the input–output maps of the actual and identified rate-dependent
semilinear Duhem model with the identified ĝ under sinusoid
inputs without measurement noise. The sensitivity of the identified
parameters can be estimated by standard least squares techniques.

VI. CONCLUSION

In this note, we developed identification methods for rate-indepen-
dent and rate-dependent semilinear Duhem models. For the rate-inde-
pendent model, the nonlinear identification was facilitated by reparam-
eterization in terms of the input, resulting in a linear switching system.
The rate-dependent model was analyzed as a linear switching system
under triangle wave inputs. Least squares methods were developed to
identify the system parameters, and the scalar function of the input
derivative for the rate-dependent semilinear Duhem model was iden-
tified in pointwise fashion.
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