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Robust Controller Synthesis via Shifted It can easily be seen that parameter-independent guaranteed cost

Parameter-Dependent Quadratic Cost Bounds bounds provide the means for obtaining solutions to the quadratic
stability linear matrix inequality (LMI)
Vikram Kapila, Wassim M. Haddad, Richard S. Erwin, , T : T
and Dennis S. Bernstein 0> (A4 BoFCo) P+ P(A+ BoFCo) + E° B
for all admissible uncertainty¥’. The solution to this LMI then
) ) ) provides a bound for the worst case ebst. It was shown in [12] that
Abstract—Parameterized Lyapunov bounds and shifted quadratic guar-  the inclusion of the shift terms in both the bounded-real and positive-
anteed cost bounds are merged to develop shifted parameter-dependent | teed t b d d th ti f th
quadratic cost bounds for robust stability and robust performance. rea guarap eed cost bounds can reduce the conservatism 0. ese
Robust fixed-order (i.e., full- and reduced-order) controllers are devel- bounds. Since the Popov guaranteed cost bound [6] also entails less
oped based on new shifted parameter-dependent bounding functions. A conservatism than classical bounded-real and positive-real guaranteed

numerical example is presented to demonstrate the effectiveness of thecost bounds, the objective of this paper is to combine features of both

proposed approach. the Popov bound and shifted quadratic bounds.
Index Terms—Fixed-structure controllers, real parameter uncertainty, The bound we construct in this paper is the most general of
shifted parameter-dependent bounding functions. its kind developed thus far, encompassing the Popov, positive-

real, and shifted positive-real bounds as special cases. The benefits
of this generalization are demonstrated by a numerical example

NOMENCLATURE . - . . .

s o ) ., Involving robust controller synthesis. Specifically, our numerical
]Rz[,]R i R Real numbers; x s real matricesR"" . regyits show that the combination of both the shift terms and
O 07 (), E Transpose, inverse, trace, expectation. the parameter-dependent terms provides reduced conservatism and
L, 0, r X r identity matrix,r x r zero matrix. improved robustness/performance tradeoffs as compared to either
s, N7, I X r symmetric, nonnegative-definite, sne popoy bound [6], [11] or the shifted positive-real bound [12]

positive-definite matrices. separately.
21 S 2oy 1 < 2y Zy - Z{ €N, 2o -2 € P"; Zu, The contents of the paper are as follows. In Section Il, we state
Z; €5 the robust fixed-order dynamic compensation problem. In Section I,
we restate a key theorem from [6] to provide sufficient conditions for
I. INTRODUCTION robust stability and performance. In Section IV, we develop a novel

One of the principal objectives of robust control theory is t§hiftéd parameter-dependent bounding function for robust stability
synthesize feedback controllers withpriori guarantees of robust @1d performance. In Section V, we provide constructive sufficient
stability and performance. In structured singular value synthesis [§pnditions for robust stability and performance via fixed-order (i.e.,
[9] these guarantees are achieved by means of bounds invoIfoB' and _reduced-order) dynamic compensation. Section VI provides
frequency-dependent scales and multipliers which account for fid'umerical example to demonstrate the effectiveness of the newly
structure of the uncertainty as well as its real or complex nature. AMgveloped bounds for robust controller synthesis. Finally, Section VII

alternative robustness approach involves bounding the effect of reafdfes conclusions.
complex uncertain parameters on the performance of the closed- I
loop system [6], [11]. These guaranteed cost bounds take the form i ) .
of modifications to the usual Lyapunov equation to provide bounds!n this section, we introduce the robust stability and performance
for robust stability and performance [1], [4]-[6]. problem. This prot_)Iem involves a st}t Cc R™™™ of f:onstant

A diverse collection of guaranteed cost bounds have been devdicertain perturbations\A of the nominal system matrixi. The
oped. Bounded-real-type guaranteed cost bounds were developeam‘?d'\.’e of the problem is to determine a fl.x.ed-order strictly proper
[8] and [10], while positive-real-type bounds are discussed in [4fynamic compensatard., B., C.) that stabilizes the plant for all
More recently, parameter-dependent Popov guaranteed cost bodfffitions ini and minimizes the worst case; iperformance of the
[6] have provided links with frequency-dependent scales and m&©sed-loop system. In this and the following section, no explicit
tipliers while providing reliable bounds for the peak real structuregffucture is assumed for the elements 6f In Section IV, the
singular value [6], [11]. Finally, the introduction of shift terms in [12]Structure oft/ will be specified.
has been shown to reduce the conservatism of guaranteed cost bo'ﬂ.‘qﬁobust Dynamic Compensation Problem
for structured real uncertainty without requiring frequency-dependent
scales and multipliers.

. RoBusT FIXED-ORDER DYNAMIC COMPENSATION

Given thenth-order stabilizable and detectable plant
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2) the performance functional and such thaP + ?O(AA) is nonnegative definite for alh A € /.

Then (4 + AA, E) is detectable for allA4 € ¢/ if and only if

J(A., B., C.) £ sup limsup A+ AA is asymptotically stable for alhA € 4. In this case

AAcU t—oo

1 B A//lv ak - 3 2]
?IE/O z' (s)z(s)ds; (5)

R Pyai <P+Po(AA), AdcU (13)
wherez(t) = E x(t) + E>u(t) is minimized. -
Note that for each uncertain variatiahA € ¢/, the closed-loop where P, ; is given by (10). C?nsequently o
system (1)—(4) can be written as J(Ae, B, C.) <trPV + sup tr Po(AA)V. (14)
AAeU
x(t) = (j4 +AA)E() + Dut), t20 ®) If, in addition, there exist®, € $" such that
2(t) = Fz(t) @) ) S
Po(AA) < Po, AAel (15)
where then
s(p) 2 x(t) ia A BC. , .
=1 AT ke A J(Ae, Be, Co) < U[(P + Po)V]. (16)
~ AA 0 ~ D
Ad = { 0 O}’ D= {B [1) } IV. UNCERTAINTY STRUCTURE AND A SHIFTED
o PARAMETER-DEPENDENT BOUNDING FUNCTION
and (5) becomes We now assign explicit structure to the uncertaintyZgeand the
J(A., B., C.) = sup limsup]E[irT(t)Rir(t)] ®) parameter-dependent bounding functiof?®, A A). Specifically, the

AAEU t—oo uncertainty set/ is defined by

where UE{AA ER"™™: AA = ByFCy, F € F} 17)
5 A Rl 0 A T - iofi
R= { 0 OCTRQCF}’ R, = E| E4 where F satisfies .
A N FCFE2(FeS™: M <F <M. 18
Ro2 E'E=0, R 2E'E,>0 = e Mys Fs M) (18)

B, € ™™, Cy € R™*" are fixed matrices denoting the
structure of uncertaintyf” € $™° is an uncertain symmetric matrix,

and M, M, € $™° are symmetric matrices such thaf 2, -

Furthermore, for a given compensatot., B., C.) such thatA +
AA is asymptotically stable for alhA € U/, the performance (5)

is given by M; € P, Note thatMy, M, € F. Furthermore,F may be a
J(Ae, Bo, Co) = sup tr pmiv ) specified proper subset O’F For example,?—" C F may consist

Adeu of block-structured matrice’ = block-diadl;, ® Fi, L, @

where Py, ---, I, ® F.) with possibly repeated blocks so that> 1,
. F; € R™o*™0% and 3°7_, Iymg; = mo and where® denotes

Vv a PW 0 " } v, & D, D} Kronecker product. Furthermore, we assume fiat M, € F. We
0 BV2B. restrict our attention to symmetric uncertainti€sfor convenience

Vi, 2 DDl =0, v, & D.DI >0 only. More general uncertainty sets as in [6] can also be considered.

With the uncertainty set/ given by (17) the closed-loop system

and P, ; € R"*" is the unique nonnegative-definite solution to  (6) has structured uncertainty of the fornd = B, FC, where

i 0T p P i i 2 ~ .
0=(A+AD)TP ;+ P s(A+Ad) + R (10) B, A ﬁ)o } Co 21y 0]
lll. SUFFICIENT CONDITIONS FOR ROBUST STABILITY AND Next, define the sets of compatible scaling matrigeand. " by
PERFORMANCE VIA PARAMETER-DEPENDENT BOUNDING FUNCTIONS H A (HelP™: FH = HF, F¢€F) (19)
In this section, we restate a theorem from [6] to determine an upper VAN eRr™ ™. PN = NTF Fer 20
bound for J(A., B.. C.) given by (9). The key step in obtaining N={Nel PEN = ’ €7} (20)

robust stability and performance is to bound the uncertain terrp%a”yl define the notation:t 2 4 BoM,Co. The following result

AT p P _AA i i i . .
AAT Py + Py;A4 in the Lyapunov equation (10) by means ofyqyides a parameter-dependent bounding fundtién -) satisfying
a parameter-dependerttounding function. As discussed in [6], ag11y.

key aspect of this approach is the fact that it constrains the class Off’roposition 41 Let X € R™°*™0 andY € IN" be such that
allowable time-varying uncertainties, thus reducing conservatism in, T I g e -
the presence of constant real parameter uncertainty, hence provididty X~ (£ — M1)Co + Co (F — M1)X B, <Y,
sharper H performance bounds. The following fundamental result\y |et 77 € H and N € N be such that
provides the basis for all later developments.

Theorem 3.1 [6]: Let (4., B., C.) be given, letg: N" — &%

FeF (21)

Ro 2 [HM ™' = NCoBo]+ [HM™' = NCoBo]" >0. (22

and Po: 4 — S$™ be such that
AAYP + PAA < Q(P, AA)
2 0(P) = [(A+ AL TP (AL) + Po(AA)A + AA)],

AA€U, PeN" (11)
and suppose there exisi € IN" satisfying
0=A"P+PA+Q(P)+R (12)

Furthermore, let/ be given by (17) and defir@,(7?) andPy (F') by
Qu(P) 2 (HCy, + NCoA+ BIP — XBI)" Ry
(HCo+ NCoA + BYP - XBY)
+PBoMCo + Co MiB§ P+Y
Po(F) 2 CL(F — My)NCo.

(23)
(24)

Then (11) is satisfied.
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Proof: Recall thatd, < F < M, for all F € F if and only Then (A4 + AA, E) is detectable for alA4 € ¢/ if and only if

if [7] A+ AA is asymptotically stable for alhA € {. In this case
(F— M)~ (F-M)M “(F-M)>0, FeF. (25) J(A., B., C.) < tr{(P + Cq nCo)V]. (28)
Next, sinceH € H, F € F, and M,, M, € F, it follows that Proof: The result is a direct specialization of Theorem 3.1

(F—M)H = H(F — M) and M~'"H = HM~'. Now noting using Proposition 4.1. We only note tH& (A A) now has the form
that H commutes with the left-hand side of (25), it follows thatP,(F) = C7(F — M;)NCs. Since by assumptiodv € Ay, it
H[(F — My) — (F — My)M "(F — My)] > 0 for all F € F. follows that? + P, (F) is nonnegative definite for alF € F as
Hence, it follows that, for allF’ € F required by Theorem 3.1. |

. N - T Remark 4.2: An equivalent form of (27) is
0<[HCo+ NCoA+ ByP —XBy — Ro(F — M;)Ch)

Ry \[HCo+ NCoA+ BTP — XBT 0=AlP+PA + (HCo+ NCoA - XB{)' R,*
— Ro(F — My)Co] 4 2C{ H (HCo+ NCoA — XB() +PBoRg 'BeP+Y + R (29)
[(F = My) = (F = My)M ™ (F = M))]Co where A. 2 A + BoRy'(HCy + NCoA — XBT) is a shifted
:(Héo—i—NéoA—i—BgP—XBOT)TRJ1 dynamlcs_m_atnx. Now, setting\ = 0 and (_:hoosmg}f = 0
~ e . (29) specializes to the Popov Riccati equation considered in [6].
(HCo+ NCoA+ By P —XBy) Alternatively, settingH = I and N = 0 (29) specializes to the

positive-real-type shifted quadratic bound given in [12] with= I.
~ Finally, if X =0,Y =0, N =0, andH = I, then (29) reduces to
— CY(F = M\)(HCo+ NCoA + BLP — XBL) the positive-real circle Riccati equation [5]
+ CI(F = M)[{HM ™ = NCoBo}

+{HM™' = NCoBo}"|(F = M,)C,
+2CTH[(F — My) — (F — My)M ™ (F — My)]Cy

. H Y A -1 , i
<Qo(P)— ATCTNT(F = MCo — CT(F = M If, in addition, M> = —M, = 7" I, where~y > 0, then (30) yields
< $h(P) ¢ ( M1)Co o R the bounded-real Riccati equation

— (HCo+ NCoA+ BIP — XBI)"(F — M)Co

- . 1T - -
0= [A + 10w+ Mz)co] P+P [A + 10w+ zMg)Co]
+ L3 MCo + EPBMB P + R. (30)

“NCoA - CTFBICENT(F — My)Cy — CF

_ 77” ”,"' A—2/_ >, ~T’ ”T"' 'N’~_
(F— M)NCoBoFCo — PBoFCo— CLFBIP 0=A"P+PA+~2PBBIP+CTCo+~R.  (31)

=Qo(P) — [AATP 4+ PAA+ (A+ AL Py(F) Remark 4.3: Consider a_skew-symmetric structured uncertainty
) _ . set, that is,Bo F'Co + CT FBT = 0 for all F € F, with uncertainty
+ Po(F)(A+ A4)] boundsM; = —M-. Furthermore, letX = al,,, wherea € IR,
which proves (11) with{ given by (17). O so thatBoX'(F — Mi)Co + C (F — M)X B = 0 and hence

Remark 4.1: To constructX and Y satisfying (21), note that Y satisfying (21) can be chosen &s= 0. Finally, let # = I and
[BoXT(F — M\)'/? — CT(F = M\)'/?|[BoXT(F — M)'/? — N = 0. Then (29) can be written as
TR — M)Y/21T i i . N o . N <
Cy(F = M)'?)" > 0 implies 0=(A—aBoMxB)' P+ P(A - aBoM>B})
BoX" (F = M1)Co + Co (F = Mi)X By +PBoMuBLP + CEMuCo+ a®BoMuBo+ R (32)
< BoXT(F = My)XBE + CI(F = My)Cy
< BoX" (M, — M\)XB{ + C§ (My — M,)Co
which shows that V. RoOBUST CONTROLLER SYNTHESIS VIA SHIFTED
PARAMETER-DEPENDENT BOUNDING FUNCTIONS

which involves the shifted dynamics matrik — a By M, BY .

B YT vRT L AT e
Y = BoX MXB, +Cy MCy (26) In this section, we state constructive sufficient conditions for char-

satisfies (21) for allX € IR™°*™ andF € F. For the special case acterizing fixed-order (i.e., full- and reduced-order) robust controllers.
of diagonal uncertainty” it can be shown that’ = By X' XB{ + Asin [6], these results are obtained by minimizing the worst case H
CDTM2CU also satisfies (21). cost bound (28). In order to state the main result of this section we

Note that with NV € A/, it follows from (18) that there exists require some additional notation and a lemma concerning a pair of
u € N™° such that(F — M,)N < p for all F € F. Next, using Nnonnegative-definite matrices.

Theorem 3.1 and Proposition 4.1 and defining the notation Lemma 5.1 [1]: LetQ, P ben x n nonnegative-definite matrices
N - and suppose that raf@ P = n.. Then there exist. x n matrices
Ny 2 (NeR™*™: (F-M)N=N"(F-M)>0 G, T and am.. x n.. invertible matrix3Z, unique except for a change
FeF} of basis inIR"¢, such that
3 F Ty T _
we have the following result. Qp=g"Mr, TG"=1I,.. (33)

Theorem 4.1:Let H € H and N € N be such that?, > 0,
and letX € R™°*™ andY € IN" be such that (21) is satisfied.
Furthermore, suppose there exists a nonnegative-definite nfatrix
satisfying

Furthermore, the: x n matricest = G'T andr. 2 I, — = are
idempotent and have rank. andn — n., respectively.

To apply Theorem 4.1 to fixed-order dynamic compensation, let
Y have the form

0=ATP + PA+ (HCy + NCoA+ BIP — XBI)TR, ! ) {y 0}

N . = < < ~ - Y = (34)
(HCo+ NCoA+ BYP - XBL) 4V + I 27)

0 0



1006 IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 43, NO. 7, JULY 1998

5 T T T T T T T T . .

: |

i - !

45} | LQG i |
| {— Popov :
o ' |-- x<05 i |
2 b= X=10 i
3 | !
Q 35} : ! —
T | |
e ! |
i ; { 4
N | |
T ! ;

, N
§2.5— | i |
<) : ]
=z | !

2t | ! -

: !

| _'

1.5} | ‘ |

] ;

I .................. -

1" ——‘-‘1 1 L . . 1

0.1 0.2 0.3 0.4 0.5 0.6 0.7
Stiffness Uncertainty

Fig. 1. Performance versus robustness tradeoffs for LQG and Theorem 5.1 controllers: Example 6.1.

whereY € IN" satisfies and letA., B., and C. be given by
BoX"(F —M)Co+Cq (F~M)XB; <Y, FeF. (35 Ao =T[4, - QSIG" (41)
With ¥ given by (34), it follows that (21) implies (35). Hence, it B.=TQC"'V; " (42)
follows that (see Remark 4.1) one choice Yofsatisfying (35) for C.= - R;'P.G". (43)
all X € Rmo*™o and F € F is given byY = Bo X" MXB{ + N o
CTMC,. Then (4 + AA, F) is detectable for alAA € U/ if and only if
For convenience, define the notation A+ AA is asymptotically stable for alhA € 4. In this case, the

worst case K performance criterion (9) satisfies the bound

iA VL S 2 Ty o . L .
A R At Boillfo’ ; _IC V> C J(A., B., C.) <tr[(P+ P)Vi + PQTQ + Cy uCoVi].  (44)
Rza = B2+ B Co N' By NGB Proof: The proof is analogous to the proof of Theorem 6.1 given
P.2 B"P+B"C{N"R;' in [6]. ) o - 0
NN T T Remark 5.1: In the full-order case, set. = n so thatG =T =
(HCo+ NCoAd+ By P - XBo ) 7 =1I, andr. = 0. In this case, the last term in each of (36)—(39)
Ap 2 A+ BoRy'(HCo + NCoA — XBY) is zero and (39) is superfluous.
A - 17 Remark 5.2:
Ap = Ap — QX+ BoRy Bo P When solving (36)—(39) numerically, the matricés,, M., H,
Ag 2 4p+ BoRy'Bi (P + P) N, and X and the structure matriceB, and C, appearing in the
A T . . design equations can be adjusted to examine the tradeoffs between
Ag = Ap+DBoRy By P — (I+ BoRy NCo)BR;, Fa H: performance and robustness. As discussed in [6], to further reduce

. . e conservatism, one can view the matricBs N, and X as free
for arbitrary P, Q, P € R"*". o A
parameters and optimize the, berformance bound7 = tr[(P +

Theorem 5.1:Letn. < n, let H € H and N € N be such that - P | - . |
Ro > 0 and letX e Bm0%m0 and Y c N" be chh that (35) is CTuCo)V] with respect toH, N, and X. In particular,8.7/0H,

satisfied. Furthermore, assume there exigtn nonnegative-definite 9J/0N, and9.7/0X are given by

matricesP, @, P, and () satisfying gg —Ry'[HCo + NCoA + BoP — XBI]Q
T - AT R AR . N ox .

0=ALP+PAp+ R+ Y + (ZCO + NCoA —;YBO ) [C5 = {HCo+ NCoA+ BoP — XBg } Ry "M '] (45)
“Ry'(HCo+ NCoA — XBY) + PBoRy ' Bl P 0T _ e et o pHCn 4 NGt B
—PTR;'P,+7 PRy Pry @36) on _rCorCotio (HCo + NCod + Bo

0=A40Q+ QAL +Vi — QSQ 4+ 7.QSQr] (37) — XB{)Q[A+ BoRy '(HCy + NCyA

0=ALP+ PA, + PByR;'BI P+ PI Ry P, + BeP — XBI)TCE (46)
R (38) gi = Ry [HCo + NCoA + BoP — XBI10B,

0=A45Q+ QAL +Q3Q — 1. QTQr] (39) )

7] S
. . o — 9Je
rank @ = rank P = rank QP = n. (40) + 0X tr¥(x)e @7
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stability and performance via fixed-order dynamic compensation. A
quasi-Newton optimization algorithm was used to obtain numerical
solutions for an illustrative numerical example. The design example
considered demonstrated the effectiveness of the newly developed

where Q satisfies
0 =[A+BoRy ' (HCo+NCoA+Bj P — XB})|Q
+ QIA+ByRy (HCo+NCoA+B{P -~ XBJ)]"+V (48)

and Y (X) satisfies (21). By using (45)—(47) within a numericaPounds.

optimization algorithm, the optimal robust reduced-order controller
and matrices?, N, and X can be determined simultaneously.

VI. (1]

In this section, we provide a numerical example to demonstrate
Theorem 5.1. For simplicity, we consider the design of full-order[2]
dynamic output feedback controllers. In this paper, we employed
a quasi-Newton optimization algorithm initialized with linear- 3]
guadratic-Gaussian (LQG) gains. The matricHs and N were
initialized by solving an LMI feasibility problem. For given values
of robustness bounda/; and M;, the quasi-Newton optimization
algorithm was used to findi., B., C., H., and N satisfying
the necessary conditions. After each iteratidd; and M, were
increased and the current values(df., B., C.) were used to find
feasible H and N matrices which were then used as the starting
point for the next iteration; for details of a similar algorithm, see [2].

Example 6.1: Consider the three-mass, two-spring system giver{6]
in [6]. The nominal system dynamics and performance weighting
matrices are 7]

| LLUSTRATIVE NUMERICAL EXAMPLE

(4]

(5]

r0 0 0 1 0 0 0
0 0 0 0 1 0 0 -
4|0 0 0 0 0o 1 B |0
-1 1 0 o 0o o ~ o
1 -2 1 0 0 0 0 [9]
Lo 1 -1 0 0 o0 1 0]
00
00
00 [11]
Di=1|] C=[1 100 0 0]
00
12
0 0 [
110000 0
Dy=[0 1l Ei=1|5 5 0 0 o 0}, EQ_H.

The uncertainty in the dynamics matrix corresponds to stiffness
uncertainty in the second spring and is characterizedAby =
BoFCy, whereF € F £ {F: -6 < F < 6§}, and B, and Co
are given by

Bo=[0 000 -1 1", Cy=[01 -1 0 0 0].

Using Theorem 5.1 and design parameters= 6, 6 = 0.053,
andY = X2ByBI + 46*C¥ Cy (see Remark 4.1) several dynamic
compensators were obtained for different valueXofig. 1 provides
a comparison of robust stability and performance obtained from LQG
theory and Theorem 5.1. Fig. 1 also shows the tradeoffs between
robust performance and robust stability obtained from increasing
Note that the tradeoff curve faKk = 0 (with Y = 0) corresponds
to the Popov-type controllers obtained in [6]. It can be seen that the
controller obtained using nonzero value &f gives a significantly
wider stability region than the LQG and Popov-type controllers with
only slight degradation in cost.

VII.

This paper combined the parameterized Lyapunov bounds and
shifted quadratic guaranteed cost bounds to obtain a shifted
parameter-dependent bound. The proposed shifted parameter-
dependent bound was used to address the problem of robust

CONCLUSION
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