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Il. RoBUST FIXED-ORDER DYNAMIC COMPENSATION and (7) becomes
WITH H..-DISTURBANCE ATTENUATION J(Ae, Bo, Co) = wp lim supE‘[L (t)BL(f)] (10)
In this section, we introduce the robust stability and pler- eu t—
formance problem with an H-disturbance attenuation constraintyypere
Specifically, we consider a fixed-order dynamic output-feedback . R 0 N R
control design problem with constant real parametric uncertainty R = {01 CTR.C }, R 2ETE, R, 2EIE,>0.

and constrained H-disturbance attenuation. This problem involves
a setid C R"*™ of constant uncertain perturbatioh A of the Note that the problem stated above involves distingt &hd H..-
nominal system matrixi. The goal of the problem is to determine adisturbance weights. As in [1}w(t) is interpreted as white noise
fixed-order strictly proper dynamic compensatdr., B., C.) which for the H, design andv..(t) is interpreted as anLsignal, each of

i) stabilizes the plant for all variations it¥, ii) satisfies an H, whose components has norm less than one. In particular, the matrices
constraint on disturbance rejection for all variationsZin and iii)) 1, EN D, DT andV, a D> DI > 0 are the H disturbance and sensor
minimizes the worst case value over the uncertainty/edta steady- noise intensities. For the k-disturbance attenuation constraint, the
state H-performance criterion. dynamic system given by (1) and (2) involves disturbance and sensor

In this and the following section, no explicit structure is assumegeightsy; .. 2 D.,..DY_ andViee 2 Dos DL > 0. Although we
for the elements aff. In Section IV, a specific structure of variationsgo not require that’;.. andVi.. be equal td/; andVs, respectively,

in ¢ will be introduced. we shall require for technical reasons that, = 3>Va, where the
nonnegative scalag is a design variable.
A. H..-Constrained Robust Dynamic Compensation Problem Before continuing it is useful to note that for a given compensator
Given thenth-order stabilizable and detectable plant with constafit!c: Be, Co), if A+ AA is asymptotically stable for alhA € i,
real parametric variations then the performance (7) is given by
i(t) = (A + Ad)a(t) + Bu(t) + Dyw(t) J(A., Be, C.) = sup trP,;V (11)
AAcU
4+ Diwal(t), 30 ) ©
where
y(t) =Ca(t) + Dow(t) + Daocotwoo(t) (2) v 0
) . 7a | 0
determine am.th-order dynamic compensator v {0 B.V, B! }
Ze(t) = Acae(t) + Bey(t) 3)

and P, ; € R"*" is the unique nonnegative definite solution to
0=(A+AD) P s+ Py s(A+AA)+ R (12)

u(t) = Cexc(t) 4)

which satisfies the following design criteria.
i) The closed-loop system (1)—(4) is asymptotically stable for all In the present paper, our approach is to obtain robust stability as
AA € U. a consequence of sufficient conditions for robust performance. Such

i) The ¢ x pw closed-loop transfer function from disturbancesonditions are developed in the following section.
weo () to performance variables(t) = Eyx(t) + Eou(t) given

by IIl.  SUFFICIENT CONDITIONS FOR ROBUST Ho, STABILIZATION
AA( g E[s[;,, _ (A + AA)]”DOC (5) VIA PARAMETER-DEPENDENT BOUNDING FUNCTIONS
where In this section, we determine an upper bound f¢v., B., C.)
given by (11). The key step in obtaining robust stability and per-
Do 2 { Dioo } E2 (B, E,C.] formance is to bound the uncertain terms in the Lyapunov equation
BeD2oo (12), i.e.,,AA" P, ; + P, ;A A, by means of parameter-dependent
ia { A BCU} bounding functionQ(P, AA). As discussed in [9] a key aspect of
’ B.C A, this approach is the fact that it constrains the class of allowable time-
A A4 O varying uncertainties, thus reducing conservatism in the presence of
AA = { 0 0} constant real parameter uncertainty and hence providing shagper H

performance bounds. Furthermore, the idisturbance attenuation
N constraint (6) is enforced for alhA € I/ by replacing the modified
lHai()loe <y AA €U (6) algebraic Lyapunov equation (12) by an algebraic Riccati equation
which overbounds the closed-loop Lyapunov equation (12). The
following result is fundamental and forms the basis for all later
g developments. i i i
J(A., B., C.) 2 sup lim sup £ / L(s)z(s)ds  (7) Theorem 3.1:Let 5: N — S” andPo: U/ — S™ be such that

t 0

Sact e AATP + PAL <Qo(P) - [{(A + A4 Po(Ad)

satisfies the constraint

where~ > 0 is a given constant.
iii) The performance functional

is minimized. ALAL AL
Note that for each uncertain variatiahA € ¢/, the closed-loop + 7332 A)(« :'_ N )}/ N
system (1)—(4) can be written as +7 ) {Po(Af{)VooPo(A{l)~
#(t) = (A + AA)#(t) + Dw(t) + Docwse(t), t>0 (8) + PV Pa(A4) + Po(AA) Vo P}
where whereV.. 2 D..D™, and for a given(A., B., C.), suppose there
N existsP € N satisfyin
Bt & {‘L(t)} pa { D1 } » g .
(1) BeD» 0=A"P+PA+~PVP+Q0(P)+ R (14)
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such thatP 4+ Py (A A) is nonnegative definite for alh A € ¢/. Then vyields

(A+ AA, E) is detectable A4 €U (15) Hi () Hy z(w)=U4+U" =420 U =% (27)

if and only if where

A+ AA is asymptotically stable  AA € U. (16) A DZO[P n PO(A&)][JwIﬁ A+ AA)]A Do
In this case S2 DLl—pwls — (A+ A4

NH i(s)le <. AA€U (17) QP AA)pwli — (A + AA4)] ' Da
and . . or, equivalently, multiplying (27) by-1, adding~~*I,_ to both
Pyi <P+Po(A4), AAelU (18)  sides of (27), and noting that > 0 sinceQ(P, AA) > 0, yields

where P, ; is given by (12). Consequently VI — H ;w)H 5 (w)

J(Ae, Be, C.) <PV + N trPo(AA)V. (19) =L —U-U"4+~7U'U+3%
If, in addition, there exist®, € S™ such that : E;/Ipw -7 IU)*(ﬂ =7 D+

Po(AA) <Py, AA€U (20)
which implies Y ; (jw)H 5 5(jw) < 4*I,.. This proves (17). O
Note that withQ2(P, AA) defined by (23) condition (13) can be
J(Ac, B, Co) Str[(P+ Po)V]. (21) written as

then

Proof: The proof of (15), (16), (18)—(21) is similar to the proof AATP +PAA < Q(P, AA), AdelU, PeN"
of [11, Th. 3.1]. To prove (17), note that fah A € U, (14) is (28)
equivalent to
i T A d For convenience we shall say that-, -) is a parameter-dependent
0=(A+A4) [P+ Po(Ad)] bounding function.

+ [P+ Po(AA)](A+ AA) Note that the preceding framework establishing robust stability
+ 7_2[’7? + /PO(AAAI)]I7ZX3[P + /PO(AA)] is equivalent to the existence of a parameter:dependent Lyapunov
L Q(P, A+ R (22 function of the form V(&) = Z7[P + Po(AA)]#, which also
’ establishes robust stability [9]-[11].
where
Q(P. AA) 2 (P) = {(A+ AL Py (AA) IV. UNCERTAINTY STRUCTURE AND A
+7>0(A:71)(.4+ A/i)} - PARAMETER-DEPENDENT-BOUNDll-\lG FUNCTION
=2 0D (AA) Vo Po(AA Having established the theoretical basis for our approach, we now
7 N/,IT)O( ;) Pol . )~7 ) assign explicit structure to the uncertainty &etind the parameter-
+ PVc Po(AA) + Po(AA) Vi P (23) dependent bounding functidl(-, -). Specifically, the uncertainty set
Next, replacei’.. by Do.D. and &z by E* E so that (22) becomes ¢ 1S defined by
0=(A+ A4 TP+ Po(AA)] U2 {AAeR"™" AA= ByFCy, F € F} (29)

+ [P+ Po(AD)](A + AA)
+ 7 [P 4+ Po(AA) Do DL[P 4 Po(AA)] N
+OP, Ad)+ BTE (24) FCFE{FeS™:0<F< M} (30)

where F satisfies

where((P, A4) 2 Q(P, Ad)—(AA"P+PAA) > 0. Next,add andBo € R™™™0, Cp € R™0** are fixed matrices denoting the

and SUbtraCjw[P-’-Po(Afi)] to and from (24) so that (24) becomesStructure of uncertaintyf” € S™? is an uncertain symmetric matrix,
and M € P™° is a symmetric positive definite matrix. We restrict

0=(wls + A+ AA) [P+ Po(AA)] our attention to symmetric uncertainties for convenience only. More
+ [P+ pO(AA)](_w[ﬁ + A+ AA) general uncertainty sets as in [9] can also be considered.
P PU(AA)]DOQDEQ[P + Po(AA)] for':;:]e closed-loop system (8) thus has structured uncertainty of the
+Q(P, AA)+ ETE (25) o
. AA = BoFCy
or, equivalently
BYE =[—jwli — (A4 AD] [P + Po(AA)] where
+ [P+ Po(AAD)]wls — (A 4+ AA)] B, 2 |:B;)0:|7 Co 20 0]
=[P + Po(AA))]

- Do DLIP + Py(AA)] = QP, AA). (26) Next, define the set of compatible scaling matriéésand .4 by

A

Now, forming N, 2 [NeR™*™0. FN=N"F, F € F} (31)

& N eRmxm PN = NTF >0, Fe F). (32)

DL [—jwli — (A4 A" (26)[jwls — (A+ AA)] ™' Dy Nad
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Before specifying the parameter-dependent bounding functiamatrix 7 satisfying
Q(-, -) satisfying (13), we need to define the following additionaé —ATP 4 PA+ A HPVLP + BoM2 BT + PCTCoP + Ro)

notation:

T A7l N

B, 2 [OCU N } Co2 [CoVie Ougn, ]
N XMmg

oA ‘Afloo ()nxnC

RO - |:0nc><n OnCXnC:|

where Viee € R™%". A
Proposition 4.1: Let N € A, let Vi € N be such that
CIFNCo V1o CTFNCy < Vi for all F € F, and assume

Ro 2 [M™' = NCoBo| + [M~' = NCoBo]" > 0. (33)

Furthermore, let/ be defined by (29) and defiriéy (7P) and Py (F')
by
Q(P) 2 (Co+ NCoA+ BEP) Ry
(Co+ NCod + BIP)
+ 77 (BoM*B] +PCJ CoP + Ro)
Po(F) & CIFNC.

(34)
(35)
Then (13) is satisfied. ,

Proof: Note that since by assumpti@i, FF NCo Vi Cy FN
Co < Viw for all F € F, it follows that Po(F)VeePa(F) < Ro

for all F € F. Next, note that0 < F < M if and only if
0 < (F—FM 'F) [9]. Hence, it follows that

0 <[(Co+ NCyA+ B{P)— RyFCo]" Ry

[(Co + NCyA 4 B{ P) — RoFCy]
+2CL(F—FM ™ *F)Cy
+ 473 (BoF — PCy )(BoF = PCy )"
+ 7_2[1}{0 - /PO(F)“';,OOPO(F)]

<(Co4+ NCoA+ By P) 'Ry (Co + NCoA + BJ P)
+Cq FRyFCy — Cq F(Cy + NCoA + BJ P)
—(Co+ NCoA+ B P)' FCy
+2CH(F—FM ™ *F)Cy
+ ’r_Z[BOIWZB({ + Pég’éop
—PCEFBY - BoFCyP
+ Ro = Po(F)Vae Po(F)]

=Qo(P) = [C4 FB3 P+ PBoFC,
+Cy FBy Cy N'FCo + Cy FNCoBoFCh
+ " H{PCIFB; + BoFCoP
+ Po(F) Voo Po(F)}]

=Qo(P) — [AA" P+ PAA4 (A+ AA) Py(F)
+ Po(F)(A4 AA) + v { PV Po(F)
+ Po(F)Vae P + Po(F)Vo Po(F)}]

which proves (13) witll/ given by (29). (I

Note that with N € A, it follows from (30) that there exists a

matrix g € A0 such thatF’N < p for all F € F. Next, using

Theorem 3.1 and Proposition 4.1 we have the following immediate

result. R
Theorem 4.1:Let N € A4, let Vie € AN be such that

4+ (Co+ NCoA+ BiP)" - Ry *(Co + NCoA+ BLP) + R.

(36)
Then
(A4 AA, E)is detectable  AA €U (37)
if and only if
A+ AA is asymptotically stable  AA € U. (38)
In this case
NHpi(s)lle < 7. AA€U (39)
and
J(Ac, Be, C.) < J(P, Ae, B, C.)
2 tr[(P + CL uCo)V]. (40)

Proof: The result is a direct specialization of Theorem 3.1
using Proposition 4.1. We only note thﬁs(mi) now has the form
Po(F) = CYFNCy. Since by assumptio € N4 for all F € F,
it follows that P + P, (F') is nonnegative definite for alF' € F as
required by Theorem 3.1. O

Remark 4.1: The condition that" N = NTF, F € F, represents
an intimate relationship between the matiNxand the structure of .
As noted in [9], this condition allows for a generalization of mixed-
analysis to address nondiagonal real uncertain matrix blocks.
Remark 4.2: Standard loop-shifting techniques [9], [11], and [12]
can be used to consider uncertainties with upper and lower bounds of
the formAfy, < F < M,, whereF € F andMy, M, € 8™°. In this
case, Proposition 4.1 holds wiffi A, and M replaced byF — M,
A + BoM;Co, and M, — M, respectively. Similar modifications
can be made to Theorem 4.1.

V. THE AUXILIARY MINIMIZATION PROBLEM

As shown in the previous section, the replacement of (12) by (36)
enforces the H -disturbance attenuation constraint and yields an up-
per bound for the worst case; Hberformance criterion. That is, given
a compensatofA., B., C.) for which there exists a nonnegative-
definite solution to (36), the actual worst case Herformance
J(A., Be, C.) of the compensator is guaranteed to be no worse than
the bound given by7(P, A., B., C.). Hence7(P, A., B., C.)
can be interpreted as an auxiliary cost which leads to the following
minimization problem.

Auxiliary Minimization Problem: Determine (P, A., B., C.)
with 2 € A, which minimizes7 (P, A., B., C.) subject to (36).

It follows from Theorem 4.1 that the satisfaction of (36) for
P € N'™ along with the generic condition (37) leads to i) closed-loop
stability for all AA € U4, ii) prespecified H.-disturbance attenuation
for all AA € U/, and iii) an upper bound for the worst case-H
performance criterion. Hence, it remains to determiide, B., C.)
which minimizes 7 (P, A., B., C.) and thus provides an upper
bound for the actual worst case lderformance/( A., B., C.) over
all AA € U. This framework is similar in spirit to the mixed-norm
H./H.. control problem considered in [1], where the performance
bound was shown to correspond to an entropy functional [14].

VI. RoOBUST Ho, CONTROLLER SYNTHESIS VIA
PARAMETER-DEPENDENT BOUNDING FUNCTIONS

In this section, we state constructive sufficient conditions for

CTFNCoVieoCd FNCy < Via, for all F € F, and suppose (33) characterizing fixed-order (full- and reduced-order) robust bn-
is satisfied. Furthermore, suppose there exists a nonnegative-defimmters. To state the main result of this section we require some
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additional notation and a lemma concerning pairs of nonnegatii.-disturbance attenuation constraint (39), and the worst case H

definite matrices. o performance criterion (11) satisfies the bound
Lemma 6.1 [2]: Let @, P be n x n nonnegative-definite ma-
trices, and suppose that radkP = n.. Then there exist. x n J(P. A, B., C.) =tr[(P + P)Vi + PSQTQS"
matricesG, T' and ann. x n. invertible matrix M, unique except T WCoV, 51
for a change of basis ifR"< such that + Co nCovi 1)
QP=G"mMT, TG =1,.. (41) Proof: The proof is constructive in nature. Specifically, first we

obtain necessary conditions for the auxiliary minimization problem

Furthermore, the: x » malrices and show by construction that these conditions serve as sufficient

ra G'T, =, 271, -7 (42) conditions for closed-loop stability and prespecified disturbance at-
tenuation and provide a worst casg-plerformance bound. For details
are idempotent and have rank andn — n., respectively. of a similar proof see [1]. O
For convenience in stating the main result of this section defineremark 6.1: In the full-order case, set. = n so thatG = I’ =
the notationS 2 (I + 32+ 2QP)!, for arbitraryQ, P € N, and r = I,, andr, = 0. In this case the last term in each of (43)—(46)
— A e is zero and (46) is superfluous. If, alternatively, the reduced-order
T2 c'vile S . o -
= 2 constraint is retained but the H constraint is sufficiently relaxed,
e 2 Vi CT CoViee i.e.,v — oo, then the results of [9] are recovered.
A, ) Remark 6.2: When solving (43)—(46) numerically, the matrices
C=Co+ NCoA M and N, the structure matrice$3; and Cy, and the scalary
Rsw 2 Ry 4+ B"CINTR;'NCy By appearing in the design equations can be adjusted to examine the
A o1 - tradeoffs between Hperformance, H, performance, and robustness.
P, =B P+ B CyN R, (C+ByP) As discussed in [11], to further reduce conservatism, one can view
Ap 2 A+ BoRy'C the scaling matrixV.as a free paramet?r and optimize thg-H
A . - - . performance bound7(-) with respect toN. In particular, setting
Ap = Ap = SQY 4 [BoRy By +v " (Viee + Vo) P AJ/ON = 0 yields
Ag 2 Ap +[BoRy "By + 7 *(Vieo + Vao)| (P + P) Lo
1 pT —2,1r N 0==-—
Ap 2 Ap +[BoRy "By + 77 (Viso + Ve )|P 2 ON

— (I+ BoRy'NCo)BR; P, =L MCoVCy + Ry ' (Co + NCoA + BoP)Q

R . [A4 BoRy"(Co+ NCoA + BoP)]" Cy 52
for arbitrary P, @, > € R"*". Note that since), I’ € N'", and the | oflo {Ca ’ 0PI Co 2)
eigenvalues of) P coincide with the eigenvalues of the nonnegative\;vhere O satisfies
definite matrix Q'/*PQ'/?, it follows that QP has nonnegative

eigenvalues. Thus, the eigenvaluesiof 3%y 2QP are all greater

i B =~ nA F oy AT
than one so thab exists. 0=[4+ BoRy (Co+ NCoA + By P)

Theorem 6.1:Let n. < n, assumeRo > 0, and N € Nyq, and + 77 (Veo + Co Co)PIQ

Ie”t ;’m ; é r?e such that’y mr*]coxgoocg{ FNCo < Vi for + QA+ BoRy (Co + NCo A + By P)

all F € F. Furthermore, assume that there exist n nonnegative- 27 AT A 1L

definite matricesP, @, P, and @ satisfying +7 (Voo + Co COP] 4V, (53)

0=ApP+ PAp+ R+ CR;'C By using (52) within a numerical search algorithm, the optimal robust
+ HCE N MPNCo + Vi) reduced-order controller and the scaling maf¥ixcan be determined
+ P[BoRy'BY 472 (Viee + V)| P simultaneously, thus avoiding the need to iterate between robust
0 0 / YV loo S}

S o reduced-order controller design and optiméaiscale evaluation.

— Pa Rayq Pa+ 71 Py Ryq Pty (43) Although (43)—(46) appear formidable, they are, in fact, numeri-
0=AqQ + QAg + Vi — SQEQST + uSQfQST{ (44) cally tractable. In particular, for related problems involving coupled
0=ALP+ PAs+ P|BoR;'By Riccati equations, a new class of numerical algorithms has been

o, - % L A developed, based on homotopic continuation methods [3] and [4].

T y (Vieo +‘/°°,,) "Hj 5QzQs°|P These methods operate by first replacing the original problem by

+ Py Ry, Pa — 7{ P! Ry, Pary (45) a simpler problem with a known solution. The desired solution is
0= AQQ + QA% +5QT0ST —r.50T0SsT (46) then reached by integrating along a path which connects the starting
problem to the original problem. Alternatively, the reduced-order
robust H. problem (without the H-performance bound) can be
approached by solving bilinear-matrix-inequalities (BMI's) [5], [6],
and letA., B., andC. be given by [15]. However, since BMI's are not convex and as shown in [16] are
NP-hard, it is difficult to develop computationally feasible algorithms

rank() = rankP = rankQP = n. (47)

, S SiTald
A =TAq - SQXIG (48)  that guarantee convergence. Finally, it has also been shown that the
B.=rsQc’v, ! (49) reduced-order K problem without parametric uncertainty can be
C.= - R;'P.G". (50) addressed using alternating projection methods [7] and [8]. This class

of algorithms is developed by posing the design problem in terms of
Then (A + AA, E) is detectable for alAA € ¢/ if and only if linear-matrix-inequalities (LMI's) with an associated rank condition.
A 4+ AA is asymptotically stable for allhA € /. In this case, This rank condition makes the problem nonconvex, and once again
the closed-loop transfer functioENIA;l(s) given by (5) satisfies the guaranteed convergence is not assured.
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VII. CONCLUSION Robust, Reduced-Order Modeling for State-Space Systems

The parameter-dependent Lyapunov function approach of [9]-[11] ~ Via Parameter-Dependent Bounding Functions
for robust controller synthesis with constant real parameter un-
certainty was extended to account forHlisturbance rejection.
Specifically, by merging the results of [1] and [9]-[11], controller
synthesis design equations are presented that guarantee robust stal;ib—stract_One of the most important problems in dynamic systems

ity and robust mixed HH.. performance over a specified range ofheory is to approximate a higher-order system model with a low-order,
constant real parameter uncertainty. relatively simpler model. However, the nominal high-order model is never
an exact representation of the true physical system. In this paper the prob-
lem of approximating an uncertain high-order system with constant real
parameter uncertainty by a robust reduced-order model is considered.
A parameter-dependerguadratic bounding function is developed that
bounds the effect of uncertain real parameters on the model-reduction
formance bound: A Riccati equation approactEEE Trans. Automat. €O An auxiliary minimization proble_m is formulated Fha't minimizes_
Contr., vol. 34, pp. 293-305, 1989. an upper bound fo_r_ the model—‘reductlon error. Thg ‘prllncu_)al result is
[2] —, “Robust stability and performance via fixed-order dynamic conf hecessary condition for solving the auxiliary minimization problem

pensation with guaranteed cost bounddgth. Contr. Sig. Systyol. 3 which effectively provides sulfficient conditions for characterizing robust
pp. 139-163, 1990. " reduced-order models.

[3] E. G. Collins, Jr., W. M. Haddad, and L. T. Watson, “Probability-one | qey Terms—Real parameter uncertainty, reduced-order modeling,
homotopy algorithms for robust controller analysis and synthesis with,certain systems.

fixed-structure multipliers,Int. J. Robust Nonlinear Conttp appear.

[4] E. G. Collins, Jr., W. M. Haddad, and S. Ying, “Reduced-order dy-
namic compensation using the Hyland—Bernstein optimal projection
equations,” inProc. Amer. Contr. ConfSeattle, WA, 1995, pp. 539-543,;
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