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Abstract: In a recent paper a unification of the H 2 (LQG) and H~ control-design problems was obtained in terms of modified 
algebraic Riccati equations. In the present paper these results are extended to guarantee robust H 2 and Hoo performance in the 
presence of structured real-valued parameter variations (AA, AB, AC) in the state space model. For design flexibility the paper 
considers two distinct types of uncertainty bounds for both full- and reduced-order dynamic compensation. An important special 
case of these results generates H2/Hoo controller designs with guaranteed gain margins. 
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1. Introduction 

It has recently been shown that the solution to the optimal H~ disturbance attenuation problem can be 
expressed in terms of a pair of modified Riccati equations [3,4]. Furthermore, it was shown in [3] that 
H2/Hoo design tradeoffs can be achieved by  solving a coupled system consist ing o f  three modified Riccati  
equations. As is well known,  the dis turbance at tenuat ion problem can be  used to guarantee robustness 
with respect to unstructured plant  uncertainties. However,  if p lant  uncer ta in ty  is present in the form of  
structured parametr ic  variations of  the state space model,  then alternative bounding  techniques are 
required. The goal o f  the present paper  is thus to extend the results o f  [3] to include bounds  on the effects 
of  real-valued structured parameter  variations. 

In  the absence of  an H~o design constraint ,  robust  stability and  H E per formance  for dynamic  
compensa tor  design were guaranteed in [1,2] by  incorporat ing quadrat ic  L y a p u n o v  bounds  within L Q G  
design theory. Two distinct bounds  were considered. In  [1] a quadrat ic  b o u n d  was used while in [2] a linear 
bound  was employed. In  each case full- and reduced-order  dynamic  compensa tors  were characterized by 
means of  coupled systems of  modif ied Riccati  and  L y a p u n o v  equations.  

To design Hoo controllers which are robust  with respect to structured real-valued parameter  variations 
we proceed by combining the results of  [3] with those of  [1,2]. That  is, we derive coupled systems of  
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modif ied Riccati  and Lyapunov  equations whose solutions yield controllers  which are guaranteed to satisfy 
a prespecified Ho~ attenuation constraint for all variations (AA, AB, AC), belonging to a given uncertainty 
set. I f  the uncer ta inty is absent  (i.e., AA = 0, etc.), then the results of  [3] are recovered,  while if the H ~  
constraint  is relaxed, then the results of [1,2] are obtained.  Thus  the results of [3] can be viewed as a 
specialization of a b roader  design theory which accounts  for  s t ructured real-valued pa rame te r  uncertainty.  
Finally, we state all results for the case of  a f ixed-order  (i.e., reduced-order)  control ler  for maximal  design 
flexibility. Extensions to even more  general design p rob lems  are ment ioned  in Section 9 but  omi t ted  here 
for lack of space. 

Notation 

Note:  all matr ices have real entries. 
R, R ~×', R', E: real numbers ,  r X s real matrices,  R "×a, expected value. 
I , ,  ( ) r ,  0~×~, Or: r x r identi ty matr ix,  t ranspose,  r x s zero matr ix ,  Or× .. 
$~, I%1 ", P ' :  r x r symmetric,  nonnegative-defini te,  posi t ive-defini te  matrices.  
Z 1 ~ Z2, Z 1 < Z2: Z 2 -  Z 1 E ~ r ,  Z 2 _  Z1 E p r ,  Z1 ' Z2 ~ s r .  
n, m, l, n~: positive integers. 
p,  d, d~ ,  q, q~;  h: posit ive integers; n + nc (n¢ _< n). 
x, u, y, x~, 2: n, m, l, n c, h-dimensional  vectors. 
A, AA; B, AB; C, ,~C: n×n;  n × m ;  l × n  matrices.  
A c, Be, C¢: n c × no, n c × l, m x n c matrices.  

BoC A~ ] a X =  

w(.) :  d-dimensional  s tandard  white noise. 
D a, D2: n X d, l ×  d matrices;  Daft  [ = O. 
5 ,  V2: DlD'~, DzD2r; V2 e pt. 

D =  BcDz ' 0,ox,  BcV2BT c 

E 1, Ez: q × n, q X m matrices; E~E: = O. 
g, &, R2: [E~ E2C¢1, tr:E,, ETE2; R2 e pm 

= %×.  c J & c ¢  = U ~ .  

EI~, Ez~: q~ × n, q~ × m matrices;  E ~ E 2 ~  = O. 

Da~, D2~: n X d~ ,  l x d~  matrices;  Da~D2~ = O. 

fl; ~/, a:  nonnegat ive  constant ;  posit ive constants.  
A. = .4 + ½aI., A¢. =.4¢ + ½aI. . 

AA ABC~] 

B~aC % ]" 

= DD ~ 
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2. Robust stability and H 2 performance with a robust H~ constraint 

In this section we state the robust stability and H 2 performance problem with an H~ disturbance 
attenuation constraint. Specifically, we consider a fixed-order dynamic output-feedback control-design 
problem with structured real-valued plant parameter uncertainties and constrained H~ disturbance 
attenuation. This problem involves a set U c R "×" × R "×" × R t×" of uncertain perturbations 
(AA,  AB, AC) of the nominal system matrices (A, B, C). The goal of the problem is to determine a 
fixed-order, strictly proper dynamic compensator (A¢, B~, C¢) which (i) stabilizes the plant for all 
variations in U, (ii) satisfies an Ho¢ constraint on disturbance rejection for all variations in U, and (iii) 
minimizes the worst-case value over the uncertainty set U of a steady-state H 2 performance criterion. In 
this and the following section no explicit structure is assumed for the elements of U. In Sections 4 and 7, 
two specific structures of variations in U will be introduced. 

H~-eonstrained robust dynamic compensation problem. Given the n-th-order stabilizable and detectable 
plant with structured real-valued plant parameter variations 

2( t )  = (A + A A ) x ( t )  + (B  + A B ) u ( t )  + DlW(t) ,  (2.1) 

y ( t )  = (C + A C ) x ( t )  + D2w(t ) ,  (2.2) 

determine an n¢-th-order dynamic compensator 

2¢(t)  = A~x~(t) + B¢y( t ) ,  (2.3) 

u( t )  = C~xc(t), (2.4) 

which satisfies the following design criteria: 
(i) the closed-loop system (2.1)-(2.4) is asymptotically stable for all (AA, AB, AC) ~ U, i.e., A + A~ 

is asymptotically stable for all (z~A, AB, AC) ~ U; 
(ii) the qo¢ x d closed-loop transfer function 

H,~d(s ) & ff~ [si n - (.,~ + A~)]-1/3 (2.5) 

from w( t ) to El~x (  t ) + E2~u( t ), satisfies the constraint 

II Had(s)  II ~ < V, ( / tA ,  AB,  aC)  c U, (2.6) 

where y > 0 is a given constant; and 
(iii) the performance functional 

J(Ac, B¢, Q) sup lira supe[xT(t)R1x(t) + dr(t)R u(t)] (2.7) 
(AA,AB,AC)~U t'-*~ 

is minimized. 

Note that for each uncertain variation (AA, AB, AC) ~ U, the closed-loop system can be written as 

t [0, 
and that (2.7) becomes 

J(Ac ,  B c, Co)= sup tim sup$:[f fT(t ) /~( t ) ] .  
(AA,AB,AC)~U t--.*o¢ 

Furthermore, by defining the transfer function 

(2.8) 

(2.9) 
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it can be shown that when (i) is satisfied, (2.7) is given by 

J(Ao, Be, Cc) = sup II'q  (s)ll  
( A A ,Z lB ,AC)~U 

Note that the problem statement involves both H 2 and H~ performance weights. In particular, the 
matrices R a and R 2 are the H 2 weights for the state and control variables. By introducing the variables 

z ( t )  = e a x ( t ) ,  v ( t )  = E2u( t ) ,  

the cost (2.7) can be written as 

J(Ac, B c, Co) = sup lim supE[zT( t )z ( t )  + vT(t)o(t)].  
( A A , A B , A C ) ~ U  t-~.o¢ 

For convenience we thus define R 1 & ETEi and R 2 & ETE2 which appear in subsequent expressions. 
Although an H 2 cross-weighting term of the form 2xT(t)Ra2u(t) can also be included, we shall not do so 
here to facilitate the presentation. 

For the H a performance constraint, the transfer function (2.5) involves weighting matrices E la  and 
Eza for the state and control variables. The matrices R la  & E~Elo  o and R2~ ~x ET2aE2a are thus the H a 
counterparts of the H 2 weights R~ and R 2. Although we do not require that RI~ and R2a be equal to R a 
and R 2, we shall require for technical reasons that R2a = f12R2,  where the nonnegative scalar/3 is a 
design variable. We further note that the assumption E ~ E 2 a  --- 0 precludes an H~ cross-weighting term 
which again facilitates the presentation. Finally, similar remarks apply to the disturbance and sensor noise 
intensities Va a= DaDV, V2 ~ D2D[ ' 111 a a= DlaDVa~ and V2~ ~ D2aD[a for the H 2 and Ha  designs 
respectively. As in [3], w(t) is interpreted as white noise for the H 2 design and as an L 2 signal for the Ha  
design aspect. 

Before continuing it is useful to note that if A + A.~ is asymptotically stable for all (AA, AB, AC) ~ U 
for a given compensator (A¢, Be, C¢), then the performance (2.7) is given by 

J(Ac, B c, C~)= sup tr Qa,iR, (2.10) 
( A A , A B , A C ) ~ U  

where the steady-state closed-loop state covariance defined by 

0a,[~ lira F[97(t)~T(t)] (2.11) 

satisfies the ~ x ~ algebraic Lyapunov equation 

0 = (A + A.,I) Qa~ i + Qa.i(.4 + AA) T + 12. (2.12) 

The key step in guaranteeing robust stability and performance is to replace the uncertain terms in the 
covariance Lyapunov equation (2.12) by a bounding function ~2. Note that since ZiX is independent of Ao, 
the bounding function ~2 need only depend on B~ and C~. Furthermore, the Ha  disturbance attenuation 
constraint (2.6) is enforced for all (ZlA, AB, AC)~  U by replacing the modified algebraic Lyapunov 
equation (2.12) by an algebraic Riccati equation which overbounds the closed-loop steady-state covariance. 
Justification for this technique is provided by the following result. 

l_~mma 2.1. Let 12 : R "°×l >( R "×"c × Ihl s ~ S ~ be such that 

A.4Q+QAA"r<~2(Bc,  Cc, Q) , (AA, AB, A C ) ~ U ,  (Bc, Cc, Q ) ~ R n c x z x a " x n c x N  s, (2.13) 

and, for a given (Ac, B¢, C¢), suppose there exists Q ~ N ~ satisfying 

0 = A Q  + QA "r + " r -2QkaQ + ~2(B c, Cc, Q) + l?. (2.14) 
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Then 

( ~ + A . ~ ,  [))isstabilizable, (AA, AB, A C ) ~ U ,  (2.15) 

if and only if 

.~ + A.~ is asymptotically stable, (AA, AB, AC) ~ U. (2.16) 

In this case, 

II Ha2(s) II ~ < "/, (AA, AB, AC) ~ U, (2.17) 

and 

O.a,~ < Q, (AA,  AB, AC) ~ U, (2.18) 

where Oa,i is given by (2.12). Consequently, 

J(Ac, Bc, Co) <_ J(Ac, B~, C c, Q), (2.19) 

where 

J(A~, B~, C~, Q) ~ tr Q/?. (2.20) 

Proof. First note for clarity that in (2.13) Q denotes an arbitrary element of N ~ since (2.13) holds for all 
Q ~ N n, while in (2.14) Q denotes a specific solution to (2.14). Now for (AA, zaB, AC)~ U, (2.14) is 
equivalent to 

O = ( . 4 + A . 4 ) Q + Q ( A + A . 4 ) T + y - 2 Q R ~ Q + I 2 ( B ~ , C ¢ , Q ) - ( A A Q + Q A A - r ) + I 7  ". (2.21) 

Hence, by assumption, (2.21) has a solution Q ~ N  n for all (AA, AB, A C ) ~ U  and, by (2.13), 
~2(B¢, C~, Q) - (A.~Q + QAA "r) is nonnegative definite. Now it follows from Theorem 3.6 of [7] and 
(2.15) that ( .4+  AA, [I?+ ~,-2Qh~Q + ~2(B~, C,, Q) - (A.4Q + QAA"r)I 1/2) is stabilizable for an 
(AA, AB, AC)~ U. Thus it follows from (2.21) and Lemma 12.2 of [7] that .A + A.i, is asymptotically 
stable for all (,~A, ZlB, zlC) ~ U. Conversely, if A + A.4 is asymptotically stable for all (AA, ZlB, AC) ~ U, 
then (2.16) holds. The proof of (2.17) follows from a standard manipulation of (2.14). Next, subtracting 
(2.12) from (2.20) yields 

+ + ( Q -  + 

+ T - 2 Q J ~ Q  + I2(B¢, C:, Q) - (A~Q + QAA"r), 

or, equivalently, since A +  AA is asymptotically stable for all (AA, AB, AC) ~ I2, 

Q -  Qa,~ = f0°Ce(2+A4)t['y-2QR~Q q - ~(Bc, Cc, Q) - (A.~Q + QAA"r)] e (2+a2,~t dt_>0 

which implies (2.18). The performance bound (2.19) is now an immediate consequence of (2.18). [] 

Remark 2.1. Note that (2.15) is actually a closed-loop 'disturbability' condition which is not concerned 
with control as such. This condition guarantees that the closed-loop system does not possess unstable 
undisturbed modes. 

3. The auxiliary minimization problem 

As shown in the previous section, the replacement of (2.12) by (2.14) enforces the H~ disturbance 
attenuation constraint and yields an upper bound for the worst case H 2 performance criterion. That is, 
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given a compensator (A c, B~, C¢) for which there exists a nonnegative-definite solution to (2.14), the 
actual worst case H 2 performance J(A¢, B~, C~) of the compensator is guaranteed to be no worse than the 
bound given by J(A c, B~, C~, Q). Hence, J(Ac, Be, C c, Q) can be interpreted as an auxiliary cost which 
leads to the following optimization problem. 

Auxiliary Minimization Problem. Determine (Ac, B~, C c, Q) which minimizes J(A~, B~, Cc, Q) subject to 
(2.14) with Q ~ N n. 

It follows from Lemma 2.1 that the satisfaction of (2.14) for Q ~ N ~ along with the generic condition 
(2.15) leads to (i) closed-loop stability for all (AA, AB, zaC)~ U; (ii) prespecified H~ performance 
attenuation for all (AA, AB, A C ) ~  U; and (iii) an upper bound for the worst case H 2 performance 
criterion. Hence, it remains to determine (A¢, Be, Cc) which minimizes J(A c, Be, C¢, Q) and thus provides 
an optimized bound for the actual worst case H 2 performance J(A¢, Bc, C~) over all (AA, AB, AC) ~ U. 

4. Uncertainty structure: Linear bound 

Having established the theoretical basis for our approach, we now assign explicit structure to the set of 
U and bounding function ~2. Specifically, the uncertainty set U is assumed to be of the form 

u = aA,  aB,  aC): aA = E o,A,, aB = E o,B,, a C =  E o,c , E <- 1 , 
i=1 i=1  i = 1  i=1  

(4.1) 

where, for i = 1 . . . . .  p, A~ ~ R "xn, B~ ~ H nxm, and C~ ~ R tx" are fixed matrices denoting the structure of 
the parametric uncertainty; a i is a given positive number; and o~ is an uncertain real parameter. Note that 
the uncertain parameters o~ are assumed to lie in a specified ellipsoidal region in R P. The closed-loop 
system (2.8) thus has structured uncertainty of the form 

P [ A i  BiCc] 
A ~ =  ~'oi.4i, where Ai ~ (4.2) ,=1 BcC i 0.¢ J' i = 1  . . . . .  p. 

Note that the symmetry of the uncertainty set entails no loss of generality by requiring only a redefinition 
of the nominal plant matrices. 

In order to obtain explicit gain expressions for (A c, Be, C~) in Sections 5 and 6, we shall require that at 
most one of the perturbations AB and AC is nonzero. We thus consider the cases (AA, A C ) ~  U or 
(AA, AB) ~ U. If this assumption is not imposed, then optimality conditions can still be derived, but at 
the expense of closed-form gain expressions. In this section and Section 5 we will assume that A B = 0 (i.e., 
B i = 0, i = 1 , . . . ,  p )  so that ~2(B~, C~, Q) becomes I2(B~, Q). The dual case AB ~ 0, AC = 0 (i.e., Ci = 0, i 
= 1 . . . . .  p )  will be considered in Section 6. 

For the structure of U specified by (4.1), the bound I2 satisfying (2.13) can now be given a concrete 
form. 

Proposition 4.1. Let a be an arbitrary positive scalar. Then the function 

p 

~2(B¢, Q) ~ aQ + 0t - 1  E °t2"~iQa~i (4.3) 
i = l  

satisfies (2.13) with U given by (4.1). 

Proof. See [2]. [] 
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Remark 4.1. Note that the bound ~2 given by (4.3) consists of two distinct terms. The first term aQ can be 
thought of as arising from an exponential time weighting of the cost, or, equivalently, from a uniform right 

- 1  p 2 ~ shift of the open-loop dynamics. The second term a E~=la/A,QAg arises naturally from a multiplicative 
white noise model. Such interpretations have no bearing on the results obtained here since only the bound 
12 defined by (4.3) is required. We call (4.3) the linear bound since it is linear in Q. For a more detailed 
discussion on (4.3) see [2]. 

With I2 defined by (4.3), the modified Riccati equation (2.14) becomes 

P 

0 = A Q  + QA -r + 7 - 2 Q h ~ Q  + aQ + a - I  ~ azi.~iQA7 + 
i ~ l  

or, equivalently, 

(4.4) 

P 

0 =A~Q + QA~ + . , / -2Qj~Q + E 8,AiQA~i + 1"~, (4.5) 
i = 1  

where 8 i a__ a2i / a  and 

5. Sufficient conditions for robust stability and performance with robust H~  disturbance attenuation: Linear 
bound 

In this section we state sufficient conditions for characterizing fixed-order (i.e., full- and reduced-order) 
controllers guaranteeing closed-loop stability for all (AA, AC) ~ U, constrained Hoo disturbance attenua- 
tion for all (AA, AC) ~ U, and an optimized worst case H 2 performance bound. In order to state the main 
results we require some additional notation and a factorization lemma. 

I~mma 5.1. Let (), P ~ N n and suppose rank O.P = n~. Then there exist n c × n G, F and n~ × n~ invertible 
M, unique except for a change of basis in R n~, such that 

Q_P = GTMF, FG T = Ino. (5.1), (5.2) 

Furthermore, the n × n matrices 

c T r ,  In - • (5.3), (5.4) 

are idempotent and have rank n c and n - nc, respectively. Finally, if  P ~ ~n and fl >_ 0 then the inverse 

(,'n 0 ) - '  S & + f123t-2 P (5.5) 

exists. 

For arbitrary Q, Q ~ R ~xn and a > 0 define the following notation: 

P P 

V2s&V2+ ~_,SiCi(Q+O.)Ci T, Q ~ & Q C T +  ~_,SiAi(Q+O.)Ci  T, Y~&BR~IB T. 
i = l  i ~ l  



400 

Theorem 

0--  

O= 

O= 

O= 

rank 0 = rank/3  = rank 0/3 = n~, 

and let ( A¢, B~, Cc, Q) be given by 

A~ = F(A - ZPS - Q~V~xC + r-2QRloo)G T, 

B~ = FQyL  1, 

= -R  aT 'SG T, 

cO_ rot  
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5.1. Suppose there exists Q, P, 0 , / 3  ~ N n satisfying 

P 

A,~Q + QA~ + T-2QRx~Q + V 1 + ~'~ 6,Ai(Q + O)A~ --1 T - 1  T T - QsV2s Qs + ,r~_ QsV2s Qs,r±, (5.6) 
i ~ l  

( A , +  T-2[Q+ Q]R,oo)TP+ P ( A  a + y - 2 [ Q +  0 ] R x ~ ) +  R1 

P 
1 T ^  + E S , [ A ~ P A i + ( A i - Q s V ; C , )  P(Ae-QsV2-~ 'Ci)]-STP~,PS+,~sTpy,  PS~-±, (5.7) 

i = 1  

(Aa - ZPS + ~- 2QR1~)0 + O(A~ - ,~PS + y -  2QRlo~)T 

- 1  T - 1  T T +y-20(Rl~ + f12sTp72,PS )O + Q~V2~ Q~ - ,r. QY2s Q~'r ± , (5.8) 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

(5.a3) 

(5.14) 

T h e n  

(AA, 
constraint 

II Had(s) II ~ -< T, (AA, Z~C) ~ U, 

and the worst-case H 2 performance criterion (2.10) satisfies the bound 

J( A c, Bc, C~) < t r [ ( a  + Q)R1 + OsTpN, PS]. 

( ,t + A ~, i) ) is stabilizable for all ( A A, AC) ~ U if and only if A +  A A is asymptotically stable for all 
AC) ~ U. In this case, the closed-loop transfer function Had(s ) satisfies the Hoo disturbance attenuation 

(5.15) 

(5.16) 

Proof. The proof follows from Lemma 2.1 by combining the proofs of Theorem 6.1 of [3] and Theorem 6.1 
of [2]. [] 

Remark 5.1. Theorem 5.1 presents sufficient conditions for designing controllers yielding robust stability 
and performance with a constraint on the H~ norm of the closed-loop transfer function for a state-space 
system with structured real-valued plant parameter variations. These sufficient conditions comprise a 
system of three modified Riccati equations and one modified Lyapunov equation coupled by the optimal 
projection "r, the linear uncertainty bound, and the Hoo constraint. If the uncertainty bound is deleted, then 
the results of [3] are recovered. If, alternatively, the uncertainty terms are retained but  the Hoo constraint is 
sufficiently relaxed, i.e., , / ~  oo, then the results of [2] are recovered for the case B~ = 0, i = 1 . . . . .  p. 

Remark 5.2. To specialize Theorem 5.1 to the full-order case n c --- n, it is only necessary to set G T = F -~ so 
that G = F = • = I n and r± = 0 without loss of generality. Now the last term in each of (5.6)-(5.9) can be 
deleted and G and F in (5.11)-(5.14) can be taken to be the identity. It is interesting to note that in the 
full-order case the H~ design problem with structured parameter variations is comprised of four coupled 
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Riccati/Lyapunov equations. This coupling illustrates the breakdown of regulator/estimator separation 
and shows that the certainty equivalence principle is no longer valid. This is not surprising since separation 
also breaks down for the full-order H 2 result with parameter uncertainties [2]. 

Remark 5.3. When solving (5.6)-(5.10) numerically, the uncertainty terms and the H~ constraint can be 
adjusted to examine tradeoffs among performance, robustness, and disturbance rejection. Specifically, the 
uncertainty range a~ and the structure matrices Ai, C~ appearing in Q~ and V2~ along with y can be varied 
systematically to determine the region of solvability of the design equations (5.6)-(5.9). 

Remark 5.4. We point out that if fl = 0 or, equivalently, E2o o - 0, which corresponds to the 'cheap' H~ 
control case (i.e., Hoo attenuation between disturbances and controls is not constrained), it is possible to 
obtain closed-form gains (A c, Be, C¢) given by a modified set of design equations when all three of AA, 
A B, and AC are nonzero. Because of space limitations this result will be given in a future paper. 

Remark 5.5. An important special case of the results of Section 5 is obtained by setting AA -- 0, AB = 0, 
AC = olC 1, and C 1 = C. The resulting H 2 / H  ~ design is guaranteed to possess a gain margin of ± 100a 1 
percent at the sensor output. 

6. The dual case: Linear bound 

Unlike the standard LQG result involving a pair of uncoupled Riccati equations, the new result 
guaranteeing robust stability, robust performance, and Hoo disturbance rejection involves a coupled system 
of four modified Riccati/Lyapunov equations. The asymmetry of these equations suggests the possibility 
of a dual result in which the modifications to the standard Riccati equations are reversed. One motivation 
for developing such dual results is that for certain problems the dual bounds may be sharper than the 
primal bound introduced in Section 4. Furthermore, the dual theory permits distinct H~ disturbance 
weights (Vx~ and V2~ ), although we now require Rxo o = R 1. Finally, the dual theory allows for uncertainty 
in the control matrix B (i.e., zaB ~: 0), although we now require zaC = 0, (i.e., C~ = 0, i = 1 . . . . .  p)  to obtain 
closed-form gain expressions for (A~, B~, Co). We begin with the following lemma. 

Lemma 6.1. 
(Ac, Bc, Co). Then 

J (Ac ,  B~, C~)= sup tr/5,aft.7, 
(AA,AB,AC)~U 

where Pz2 ~ IM~ is the unique solution to 

0 = (,4 + a A ) T P ~  + P ~ ( A  + Z ~ )  + R. 

Suppose the system (2.8) is asymptotically stable for all (AA ,  AB, A C ) ~  U for a given 

(6.1) 

(6.2) 

Proof. See [11. [] 

Utilizing (6.1) in place of (2.10), the Hoo disturbance attenuation constraint from plant and sensor 
disturbances to the state and control variables given by 

L = + oo_< ~ (6.3) 

can now be enforced by replacing (2.14) by the modified Riccati equation 

0 -- A-rV + PA + y-2PlYooP +/2(Cc, P) + R, (6.4) 
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where 

AA-rp+PAA_<,O(C~,P), (AA, AB) e U .  (6.5) 

Note that (6.4) is merely the dual of (2.14). We also require the condition dual to (2.15) given by 

(/~, / [ +  A~) is detectable for all (AA, AB) ~ U .  (6.6) 

For the structure of U as specified by (4.1) with AC = 0, the bound ~ satisfying (6.5) can now be given a 
concrete form. 

Proposition 6.1. Let a be an arbitrary positive scalar. Then the function 

P 

~(C c, P) ~ a a  + a -1 ~ azA~PA, (6.7) 
i=1 

satisfies (6.5) with U given by (4.1) and AC = O. With ~ defined by (6.7), the modified dual Riccati equation 
(6.4) becomes 

P 
0 = A~P + PA~ + 7 - 2 p I ~ P  + E 8i~iPAi  + R. (6.8) 

i=1 

We can now state 
disturbance attenuation for the dual problem. For arbitrary, Q, P, P ~ R " × "  and a > 0 
following notation: 

P P 
R2s & R2 + Z 3iBT( P +/3)B/ ,  Ps & BTP + Y'~ 8iBTi( P + P ) A , ,  

i=l  i= l  

~& ( i ,  + y-zf120/3)-',  ~__cTv2-1C.  

Theorem 6.1. Suppose there exist P, Q, P, Q ~ •" satisfying (5.10) and 

P 

0 = ASP + PA,~ + y - 2 p v l ~ P  + R 1 + E 8iATi( P + p ) A i  - PfR2slPs + "rfPfR~P~'c±, (6.9) 
i=1 

0 = ( A ,  + y - Z v l ~ [ P  + / 3 ] ) 0  + Q ( A ,  + ' / - 2 V I ~ [ P  +/3]) T + V, 

P 

+ E 8 , [ A , Q A f + ( A , - B ,  R 2 : P ~ ) O ( A , - B i R # P ~ )  T] _ ~ Q ~ Q ~ T  +,r±~Q~Q~T.r~, (6.10) 
i=1 

0 = (A a - S Q 2  +" / -2VI~p)T/3  + / ~ ( A  a -- s o  2 + T - 2 V l m P  ) + "y- 2P (Vl~ + B2gQ2QgT)P 
+ PTR~?P~- 'r v PJR22P~'r±, (6.11) 

0 = (A  a - B R ~ P  s + y-2Vlo~P)0 + O_(A a - BR2slps + "y-2VlocP) T + ~ Q ~ Q ~ T  _ T±~Q~Q~TrT,  

(6.12) 

and let ( Ac, B¢, C~, P) be given by 

A¢ = F(A - S Q Z  - BR~]P s + 7-  ZVx~P )G T, (6.13) 

B~ = YSQCTV~ 1, (6.14) 

C~ = - Rz~aPs aT,  (6.15) 

P =  [P  + ~ --/3GT] (6.16) 

sufficient conditions for robust stability, robust H 2 performance, and robust 
define the 
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Then ( ff~, .4 + A .~) is detectable for all ( A A, A B) ~ U if and only if  -~ + A.4 is asymptotically stable for all 
( A A, A B ) ~ U. In this case, the closed-loop transfer function t t ~ (  s ) satisfies the Ho~ disturbance attenuation 
cons t ra in t  

II& (s)ll. (aA, aB) U, (6.17) 

and the worst-case H e performance criterion (2.7) satisfies the bound 

J(A~, B c, C~) <_ t r [ ( P  + P ) V  1 + :,gQ~,Qgr].  (6.18) 

Remark 6.1. The dual case of Remark 5.5 is obtained by setting AA = 0, AB = O l B 1 ,  A C  = 0 ,  and B 1 = B. 
The resulting H2/Hoo design is guaranteed to possess a guaranteed gain margin of ± 100a 1 percent at the 
input. 

7. Uncertainty structure and sufficient conditions for robust stability and performance with Hoo disturbance 
attenuation: Quadratic bound 

We now assign a different structure to the uncertainty set U and the bounding function ~2. Specifically, 
the uncertainty set U is assumed to be of the form 

p P 

u = ( a a ,  a s ,  a c ) :  aA = E <M,N,G,, a S  = Z EM, H,, 
i = 1  i = 1  

' } 
AC = y~. K,M,N, Gi, M, Mi T < Mi, NJN~ < Ni, i = 1 , . . . ,  p , 

i = 1  

(7.1) 

where, for i = 1 . . . . .  p, ~ ~ R "xr', G i ~ R t'x", H i ~ ff~ ti×rn, and K~ ~ R t×~' are fixed matrices denoting the 
structure of the uncertainty; M i ~ IM r' and N~ ~ N t' are given uncertainty bounds; and 3'/,. ~ R r'×s' and 
Ni ~ ~ s, × t, are uncertain matrices. 

In order to obtain explicit gain expressions for (Ac, Be, Cc) we again consider two cases: (1) 
(AA, A C ) ~  U with AB = 0, and (2) (AA, A B ) ~  U with AC = 0. When AB = 0 the closed-loop system 
has structured uncertainty of the form 

p 

A ~  = y~, ff~M~N~6~,, (7.2) 
i = 1  

where 

In this case the quadratic bound I2 satisfying (2.13) can now be given a concrete form. 

Proposition 7.1. The function 

P 

i = 1  

(7.3) 

satisfies (2.13) with U given by (7.1) and AB = O. 
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Proof.  See [1]. [] 

Thus,  with fl defined by (7.3), the modified Riccati equation (2.14) becomes 

P 
0 = ~ Q + Q A - r + y - Z Q / ~ Q +  ]~ [ff/~iff/T + Q(~/T~/(~iQ] + 1,7. 

i=1 

For arbitrary Q ~ R "×" define: 

P P 
a .  a= QC T + E F,~K,, D A E FiMiFi  T, 

i=1 i=1 
p p 

V2~ ~= V2 + E K,~K7, E~= E GJK~G,. 
i=1 i=1 

(7.4) 

T h o o r e l l l  

0 =  

0 =  

= 

= 

7.1. Suppose these exist Q, P, 0., fi ~ N n satisfying (5.10) and 

A Q + Q A T + y - 2 Q R x ~ Q + V I + Q E Q + D  -1 T -1  T T  
- -  QaV2a Q~ + (7.5) "r ± OaV2a Oa,r ± , 

(A + [O+ 0] [-t-2Rx~ + E])TP + P(A + [O+ 0] ['~-2Rloo "1- El) 
+ R~ - S T p z P S  + r~sTpzPS¢±,  (7.6) 

(A - Z e s  + + e ] ) 0 +  0 ( a -  z e s  + + e ] )  T 

+ (~(~,-2[R1~ + f l2sTpzPS] + E)O.+ QaV~lQ[-r~  QaV~aQXar~, (7.7) 

( . 4 -  Q,VZa~C + Q [ r - 2 R ~  + El)T/~ + f'(  .4 - QW£a~C + Q[r-2Raoo + E ] ) +  STPZPS 

-~ I s~ezps~ ,  (7.8) 

and let Q be given by (5.14) and (A¢, B~, C~) by 

A c =  F ( A  - ~ e s - Q a V 2 - a l C  + Q [ ' y - 2 R I ~  + e ] ) a  T, 

B~ = rQ~VL', 

C¢ = - R ~ IBTpSG T. 

(7.9) 

(7.10) 

(7.11) 

Then ( A + A.4, I) ) is stabilizable for all ( A A, AC) ~ U if and only if,4 + A,~ is asymptotically stable for all 
( za A, AC) ~ U. In this case, the closed-loop transfer function Haj( s ) satisfies the Hot disturbance attenuation 
constraint 

II Ham(s) II ~ - ~', (AA, AC) ~ U, (7.12) 

and the worst-case H 2 performance criterion (2.10) satisfies the bound 

J( Ac, B~, C¢) < tr[(Q + Q )R1 + O.SVPZPS] . (7.13) 

Proof. The proof follows by combining the proofs of Theorems 6.1 of [3] and Theorem 8.1 of [1]. [] 

Remark 7.1. It is interesting to note  that in the full-order case  n c = n with  G = F = • = I ,  and ~-± = 0 (see 
Remark  5.1), /3 plays n o  role so  that (7.8) is superfluous.  Thus,  unl ike  the full-order result for the linear 
b o u n d  involving four equations,  the full-order quadratic  b o u n d  involves  three modif ied  Riccati  equat ions  
coupled  by the quadratic bound  and the H ~  constraint.  If, alternatively,  the reduced-order constraint  is 
retained, but  the uncertainty terms are deleted, then the results o f  [3] are recovered. If, furthermore,  the 
uncertainty terms are retained, but  the Ho~ constraint  is suff iciently relaxed, i.e., ~t --) ~ ,  then the results o f  
[1] are recovered. 
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8. The dual case: Quadratic bound 

For the structure of U as specified by (7.1) with AC = O, the 
uncertainty of the form 

P 

i=l 

where 

On¢×,,, CJi ~ [6i nice].  

Proposition 8.1. The function 

P 
fi(co, p) "-- E dTNdi + P ~ i ~ T P  

i=l 

satisfies (6.5) with U given by (7.1) and Z~C = O. 

With ~ defined by (8.2), the modified dual equation (6.4) becomes 
P 

O=A-rp+PA+Y-ZP#ooP+ E [G~N/gi+ P~-~/~ TP] +/~" 
i=l 

For arbitrary P ~ R "x" define: 
P 

ea ~x BTP'~ E ttiTNiai, 
i~l 

closed-loop system has structured 

(8.1) 

(8.2) 

(8.3) 

P 
&.  ~ & + E M ~ I i .  

i=l 

Theorem 8.1. Suppose there exist P, Q, P, Q. ~ N" satisfying (5.10) and 

O = A T p  + PA + y - 2 p v I ~ P  + Ra + E + PDP P ~ R ~ P ,  T T - 1  - + $±PaR2aP, r i ,  (8.4) 

0 = (A + []¢-2V1~ -¥ D][P  +/~])Q-1- Q(A + [~-2Vl~ + D] [P  + JDI)T+ Vl_ ~ Q ~ Q ~ T  

+ , .  ~ Q ~ Q g T ~ ,  (8.5) 

0=(A - + + o] + : ( A -  + [ < v , .  + v i e )  
+/;(y-2 [V~ + f l2~Q~Q~T] + D ) fi + P~XR~)P~- rXx P J R [ I p : x  , (8.6) 

O - ~ ( A - B R 2 2 P .  + [,-2Vlo o + P]e)~_--} -Q_. (A-BR22P a + ['~-2Vlo o + O] P)T + g e ~ e  gT 

- ~ g Q ~ Q g % I ,  (8.7) 

and let P be given by (6.16) and (Ac, Bc, Ce) by 

Ac = r ( A -  gO2-,R~2e, + [v-~V,, + D] e )G ~, (8.8) 
Bc = r g Q C T V :  ' , (8.9) 
Ce = - R~a'e~C ~. (8.10) 

Then ( ff~, A + Z~ A)  is detectable for all ( Z~ A, ~ B ) ~ U if and only if A + Z~ A is asymptotically stable for all 
( A A, A B ) ~ U. In this case, the closed-loop transfer function/-Ia2(s) satisfies the H~ disturbance attenuation 
constraint 

II,o~(s)ll _<~, (a~ ,  a B ) ~ u ,  (8.11) 
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and the worst case L 2 performance criterion (2.7) satisfies the bound 

J( Ac, B c, C¢) _< t r[(P + P ) V  1 + ~,~Q~Q~T]. (8.12) 

9. Numerical solution of the design equation 

One of the principal motivations for the Riccati equation approach is the opportunity it provides for 
developing efficient computational algorithms for control design. In particular, the goal is to develop 
numerical methods which exploit the structure of the Riccati equations. It turns out however, that methods 
for solving standard Riccati equations cannot account for the additional terms which appear in the 
modified equations such as (5.6)-(5.9). Therefore, a new class of numerical algorithms has been developed 
based upon homotopic continuation methods. These methods operate by first replacing the original 
problem by a simpler problem with a known solution. The desired solution is then reached by integrating 
along a path which connects the starting problem to the original problem. These ideas have been 
illustrated for the reduced order problem in [5] and the Hoo constrained problem in [3] where the coupling 
terms preclude standard Riccati techniques. A complete description of the homotopy algorithm will appear 
in [6]. 

10. Further extensions 

The results of this paper can readily be extended in several directions: 
(1) Mixed bounds, i.e., letting AA = AA 1 + AA 2 and bounding AA 1 with the linear bound and AA 2 

with the quadratic bound (this would unify the linear and quadratic bound results). 
(2) H E and Ho~ cross weighting terms (e.g., xTRa2 u) as well as correlated plant disturbance and sensor 

noise. 
(3) Nonstrictly proper plant model, i.e., (2.2) replaced by 

y ( t )  = (C + AC)x ( t )  + (D + AD )u ( t )  + D2w(t ). (10.1) 

(4) Nonstrictly proper controller, i.e., (2.4) replaced by 

u( t )=Ccxc( t )  + Dcy(t) (10.2) 

and the related problems of singular control weighting (R 2 ~-- 0) and singular measurement noise (V 2 >_ 0). 
(5) Discrete-time and sampled-data design. 

11. Conclusions 

The Riccati equation approach to fixed-order Ho~ constrained LQG design has been extended to 
account for the presence of parameter uncertainties in the state space plant model. Specifically, by 
embedding quadratic Lyapunov bounds within the design equations, the resulting controllers are guaran- 
teed to provide robust stability and robust H2/Ho~ performance over a specified range of parameter 
uncertainty. Two distinct bounds were considered, namely, a linear bound and a quadratic bound. Among 
the open problems which remain to be examined are the necessity of the design equations, the conserva- 
tism of the bounds, and the existence of solutions. 
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