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Abstract-discrete-time feedback control-design problem involving 
parametric uncertainty is considered. A quadratic bound suggested by 
recent work on discrete-time state space H, theory is utilized in con- 
junction with the guaranteed cost approach to guarantee robust stability 
with a robust performance bound. The principal result involves suffi- 
cient conditions for characterizing robust full- and reduced-order con- 
trollers with a worst case H2 performance bound. 

I. INTRODUCTION 
One of the fundamental problems in robust control theory 

concerns the stability of the state space system 

where the nominal dynamics matrix A is asymptotically stable 
and A A  is an uncertain perturbation belonging to a specified 
uncertainty set [1]-[8]. Although the literature concerning (1.1) 
is quite extensive, the discrete-time analog of (1.11, namely 

x ( k  + 1) = ( A  + A A ) x ( k )  (1.2) 
has been relatively neglected, notable exceptions being [19]-[21]. 
The goal of the present note is to contribute to the system of 
(1.2) for both robust analysis and controller synthesis by develop 
ing new sufficient conditions for robust stability and perfor- 
mance. The sufficient conditions developed herein are most 
closely related to the approach of [21] which, in turn, is related 
to the discrete-time state space H, theory (see [22] and refer- 
ences listed therein). 

After developing sufficient conditions for robust stability and 
performance, we apply these results to robust controller synthe- 
sis. In particular, we address the problem of full- and reduced- 
order dynamic compensation as well as static output feedback 
controllers. 

i ( t )  = ( A  + A A ) x ( t )  (1.0 

11. NOTATION AND DEFINITIONS 
Note: All matrices have real entries. 

R,  R r x s ,  R', E 

I,, ( I T  
S', N', P' 

n,  m ,  I ,  r ,  t ,  n,; 6 
x, U, y ,  x,, x 
A ,  A A ;  B,  AB; C ,  AC 

real numbers, r X s real matrices, 
RrX ', expected value. 
r X r ,  identity matrix, transpose. 
r x r symmetric, nonnegative-definite, 
positive-definite matrices. 
positive integers; n + n,  
n, m,  I ,  n,, 6-dimensional vectors. 
n x n matrices; n x m matrices; I x n 
matrices. 
n,  x n,; n ,  x I ;  m X n,; m x E matri- 
ces. 
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a, A i  A + BKC, A A + A BKC. 
n x n,  m x m state, control weighting 
matrices; R ,  2 0, R2 > 0. 
n x m cross weighting matrix; R ,  - 
R12R;'RT2 > 0. 
R ,  + R,,KC + CTKTRT2 + 
C 'K TRz KC. 
n ,  1-dimensional white noise. 
covariance of wl(.),w2(*); Vl 2 0, V2 
> 0. 

Rl7 R2 

R12 

li 

w I(.), 4.) 
Vl? v2 

v12 n x 1 cross covariance of w d - l  wA-). 

@(*), f 

R 
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Do, CO, E,  n x r ,  t x n, 1 x r ,  matrices. 

6, E ,[CO o t x n c ] .  

111. ROBUST STABILITY AND ROBUST PERFORMANCE PROBLEMS 

Let 2YC R n x n  X R n X m  X RIxn denote the set of uncertain 
perturbations ( A A ,  AB, AC) of the nominal plant matrices A ,  
B,  and C.  

Robust Stability Problem: For fixed n, I n ,  determine 
( A , ,  B,, C,)  such that the closed-loop system consisting of the 
nth-order controlled plant 

x ( k  + 1) = ( A  + A A ) x ( k )  + ( B  + AB)u(k ) ,  
k = 1,2;.., (3.1) 

(3.2) 
measurements 

y ( k )  = ( C  + AC)x(k )  
and n,th-order dynamic compensator 

is asymptotically stable for all ( A A ,  AB, AC) E Z. 
Robust Performance Problem: For fixed n, I n,  determine 

(A , ,  B,, C,)  such that the closed-loop system consisting of the 
nth-order controlled plant 

x ( k  + 1) = ( A  + A A ) x ( k )  + ( B  + AB)u(k )  + w1(k) ,  

k = 1,2;-*, (3.5) 
noisy measurements 

y ( k )  = (C  + AC)x(k )  + w 2 ( k )  (3.6) 

and n,th-order dynamic compensator (3.3), (3.4), the perfor- 
mance criterion 

J(A , ,  B,,C,) sup lim supE[xT(k)R,x(k) 
( A A , A B , A C ) e Y  k + m  

is minimized. 
Remark 3.1: Note that (3.7) is precisely the discrete-time L.QG 

criterion except for the supremum over Z for worst-case perfor- 
mance. 

For each controller (A, ,  B,, C,) and plant variation ( A A ,  
AB, AC) E Z, the undisturbed closed-loop system (3.1)-(3.4) is 
given by 

P(k + 1) = (A + AA)P(k) ,  k = 1,2;.*, (3.8) 
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while the disturbed closed-loop system (3.3)-(3.6) is 

f ( k  + 1) = (A + A A ) Z ( k )  + + ( k ) ,  k = 1,2;.., (3.9) 
where 

Z(k)  [ x T ( k ) ,  xT(k ) lT  

and iG(.) is discrete-time white noise with covariance c' E N". 

Iv.  SUFFICIENT CONDITIONS FOR ROBUST STABILITY 
AND PERFORMANCE 

In practice, steady-state performance is only of interest when 
the closed-loop system (3.8) is stable over Z. The following 
result expresses the performance in terms of the steady state, 
closed loop, second-moment matrix. 

Lemma 4.1: Suppose (2.8) is stable for all ( A A ,  AB, AC) E 2. 
Then 

J(A , ,  B, ,C,)  = sup tr Q,AR', (4.1) 
( A A ,  A B ,  A C ) E %  

where 

Q A ~  lim E [ f ( k ) Z T ( k ) ]  E N "  
k+ m 

is the unique solution to 

( j A A  = (A + A A ) Q A A ( A  + AA)T + c'. (4.2) 

We now seek upper bounds for J(A,,  B,, C,). For conve- 
nience in stating the main result of this-section we assumed that 
I, - EQET is positive definite for all Q E J Y _ c - ~ ~  A sufficient 
condition for the positive definiteness of It - EQET is given in 
Section IV. Furthermore, for notational convenience define 

Theorem 4.1: Let R : N c  N" X Rncxl X Rmxnc + Si be such 
that 

A A Q A ~  + iQ hAT + A A Q  A A ~  I n<Q, B,, c,), 
( A A ,  AB, AC) E Z, (Q, B,,C,)  E J Y X  RncX1 X RmXnc, 

and, for given ( A , ,  B,, C,), suppose there exists Q ENsatisfying 
(4.3) 

Q = 2QAT + R(Q, B,, C,) + c'. (4.4) 
Then 

(A + AA,V' / ' )  is stabilizable, for all ( A A ,  AB, AC) E Z, 
(4.5) 

if and only if 

A' + AA is asymptotically stable, for all ( A A ,  AB, AC)  E Z. 
(4.6) 

In this case, 

Q,z I Q for all ( A A ,  AB, AC)  E Z, (4.7) 

where Q,A satisfies (4.2), and 

J ( A , ,  B,,c,) I tr QR. (4.8) 
Furthermore, 

JU,, B,, C,) IAQ, A, ,  B,, C,) (4.9) 

where 

AQ, A , ,  B,,c,)  tr OR' + X Q P ( Z ~  - E Q P - ~ E Q X R ] .  
(4.10) 

[ 
Pro05 For all ( A A ,  AB, AC) E 2, (4.4) is equivalent to 

Q = (2 + A A ) Q ( A  + A d T  + F(Q, B,,C, ,  AA) + p, 
(4.11) 

where 

'P(Q, B , , C , , A A )  n(Q, B,,C,) - AAQA7 

- A Q A A ~  - A A Q A A ~ .  
Note that by (4.3), WQ, B,, C,, AA) 2 0 for all ( A A ,  AB, AC) 
E Z. Thus if the stabilizability condition (4.5) holds for-all 
( A A ,  AB, AC) E Z, it follows from [23, theorem 3.61 that ( A  + 
AA, (c' + WQ, B,, C,, A&)'/') is stabilizable- for 311 
( A A ,  AB, AC) E Z. Hence [23, lemma 12.21 implies A + A A  is 
a_sympto_tically stable for all ( A A ,  AB, AC) E Z. Conversely, if 
A + A A  is asymptotically stable for all ( A A ,  AB, AC) E Z, 
then (4.5) is immediate. Next, subtracting (4.2) from (4.11) yields 

Q - QAk = (A + AA)( Q - Q,z)(A + A A ) T  

+ Y ( Q , B C , C C , A A )  

= e (A + A A ) ' ~ ( Q ,  B,, c,, A A ) ( ~  + AA)" 2 0, 

or, equivalently (since 2 + AA is asymptotically stable), 

Q - 
r = O  

which implies (4.7). Next, (4.7) and (4.1) yields (4.8). Finally, (4.9) 
is immediate since the trace of the product of two nonnegative 
definite matrices is _nonnegative. 

Remark 4.1: If V is positive definite then the stabilizability 
hypotheses of Theorem 4.1 is automatically satisfied. 

Remark 4.2: Theorem 4.1 can be strengthened by noting that 
the stabilizability assumption is, in a sense, superfluous. To see 
this, first note that robust s!ability concerns only the undis- 
tributed system (3.8) while V involves the disturbance noise. 
Hence, robust stability is guaranteed by the existence of a 
solution Q ~ J s a t i s f y i n g  (4.4) with V replaced by alii for some 
a > 0. For this replacement stabilizability is autom_atic (see 
previous remark). For robust performance, however, Q in (4.7) 
must be obtained from (4.4). 

Remark 4.3: The covariance bound (4.7) can also be used to 
analyze the effect of disturbances on specified state variables. 
For example, if E, E Rqxn, then (4.7) implies 

so that the right-hand side of (4.12) serves as a bound on 
selected state variances. For control-design purposes we effec- 
tively set RI  = ETE,. Similar remarks apply to obtaining bounds 
on the variances of control signals. 

V. UNCERTAINTY STRUCTURE 

To obtain explicit expressions for (A , ,  B,, C,) we require that 
AB = 0, ( A A ,  AB, AC) E Z. Hence for simplicity, we write 
( A A ,  AC) E Z. The dual case AB # 0 and AC = 0 is treated in 
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Section X. Thus, 2L is assumed to be of the form 

2Y = { ( A A ,  AC)  E R"'" X R"": 

Propo_sition %I: If (8, A, ,  B,, C,) satisfies (7.2)-(7.4), then 
+ A A  is asymptotically stable for all ( A A ,  AC) E 2Y and 

A A  = DoFoCo, AC = EoFoCo, FoF: IF] (5.1) 

where D, E Rnxr, co E Rfx", and Eo E Rtxr are fixed matrices 
denoting the structure of the uncertainty; F~ N r  is given 
uncertainty bound; and Fo E R r x t  is an uncertain matrix. The 
closed-loop system thus has structured uncertainty of the form 

J ( A , ,  B,,C,) IAQ, A , ,  B, ,C, ) .  (7.5) 

Proof: With R given by (6.0, the hypotheses of Theorem 
4.1 are satisfied so that robust stability is guaranteed with 
performance bound (4.6). 

VIII. NECESSARY CONDITIONS FOR THE AUXILIARY 
AA = DFoE 

where 

VI. THE QUADRATIC BOUND 

Given %, we now specify the bound R satisfying 
that because of AB = 0, Cl is independent of C,. 

MINIMIZATION PROBLEM 

Rigorous derivation of the necessary conditions for the auxil- 
iary minimization problem requires additional tech3ical assump- 
tions. Specifically, in addition to (7.2), we restrict (Q, A , ,  B,, C,) 
to the open set 

( Q , A , , B , , C , ) :  Q E P ' , ~ + ~ Q I ? ~ ( Z ,  -EQET)-'E 
(4.3). Note 
Hence, we 

is asymptotically stable and ( A , ,  B,, C,) 

write MQ, B,) for R<Q, B,, c,>.- - 
Proposition 6.1: Assume I ,  - EQET is positive definite for all 

R(Q, B,) AAQkT(Zf - EQET)jlEQAT + DFDT (6.1) 

Q EL Then the function 

satisfies (4.3) with 2Y given by (5.1). 
Proof: 

=AQP(Z, - B Q E T ) - ' E Q ~ T  + DF,F:DT - DF,EQAT 

- A-QETFTDT - DF E -ETF$DT o Q  

I i Q E T (  z, - B Q E T )  - ' E Q i T  + DFD7 

- ( A ~ Q A T  + AQAAT + A ~ Q A A T ) .  

Remark 6.1: A sufficient condition for the positive definite- 
ness con_dit!on-in Proposition 6.1 is assured by assuming that the 
triple ( A ,  D ,  E )  is strictly discrete bounded real. See [24, lemma 
3.21 for further details. 

VII. THE AUXILIARY MINIMIZATION PROBLEM 

In the spirit of [17], to optimize robust performance while 
guaranteeing robust stability, we consider an auxiliary minimiza- 
tion problem. 

Auxiliary Minimization Problem: Determine (6, A, ,  B,, C,) 
which minimizes 

subject to 

Q €4 (7.2) 

Q =AQP + iQET(Z, - EQE')j1SQZ + D F D T  + ri, (7.3) 

(2 + A A ,  fl/') is stabilizable ( A A ,  AC)  E 2L. (7.4) 

is controllable and observable . I 
Furthermore, the constraint (7.4) will not be accounted for 
explicitly since it can be shown that the compactness of 2Y 
implies that the set of ( A , ,  B,, Cc>_ satisfying (7.4) is open. 

Remark 8.1: The constraint (Q, A, ,  B,, C,) €9 is not re- 
quired for either robust stability or robust performance since 
Proposition 7.1 shows that only (7.2H7.4) are needed. Rather, 
the set Y constitutes sufficient conditions under which the 
Lagrange multiplier technique is applicable to - the auxiliary 
minimization problem. Specifically, the condition -Q 2-O-r_eplaces 
(J.2) by an open set constraint, the stability of A + AQET(l,  - 
EQET)-'k serves as a normality condition, and ( A , ,  B,,C,) 
minimal is a nondegeneracy condition. See [17], [19] for further 
details. 

For arbitrary Q, Q, P E RnX" define the following notation: 

N Cf(Z, - Co(Q + Q>C,'>-'C,, S a ( Z n  + QN1-I 

iQ 4 S ~ N =  N S ,  cp z,, + NQ + NQ, 

Pa" BTPAmT + RT,, R,,  4 R ,  + BTPB, 

Q, A [  Q + Q + (Q + Q ) N ( Q  + Q) - SQST - SQNQST] 

V,, 4 V, + C [ Q  + Q + ( Q  + QMQ + Q) 

. CT + DoFE; + J712. 

-SQST - SQNQST] CT + E,FE;. 

The following factorization lemma is need. For details, see 
D71. 

Lemma 8.1: Let Q, P  ̂ E N" and suppose rank Qp = n,. Then 
there exist n,  X n G ,  r and n,  X n,  invertible M, unique except 
for a change of basis in R"., such that 

QP  ̂ = G T M r ,  

TGT =I, , , .  

Furthermore, the n X n matrices 

r 4 GTT,  
r 1  4 I,, - 7. 

are idempotent and have rank n,  and n - n,, respectively. 

(8.3) 

(8.4) 
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Theorem 8.1: If (Q, A, ,  B,, C,) €9' solves the auxiliary mini- 
mization *problem with %! given by (5.1) then there exist 
Q, P,  Q, P E N" such that 

(8.5) 

A ,  = T(A@* - BR;;P, - Q,V;,'@')SGT, (8.6) 

B, = rQaK;, (8.7) 

C = - R -  2;PaSGT, (8.8) 

and such that Q, P ,  Q, P  ̂ satisfy 

Q = A Q A ~  + AQ&QA' + V, + D,FD; - Q,v;;Q~ 

+ T 1  [ Q,v;;Q: + (AV - BR;;P,) 

.sQs~( AQT - BR;;P,)' 

+ ( AmT - BR;,'Pa)SQNQST(A@T - BR;bP,)'] T', , 
(8.9) 

P = @A'PAQT - PzRT;P, + Rl + T', S T  

.[ PZR;,'P, + @ ( A  - Q,V;,'C)TP^(A - Q,V;:C)@']ST, , 

(8.10) 

Q = T [ ( ~ @ ~  - BR;;P,)SQST(A@T - BR;;P,)' + Q,v;;Q: 

+(A@' - BR;;Pa)SQNQST(AQT - BR;bPa)T] T ~ ,  (8.11) 

B = T * ~ * [  @ ( A  - Q , V ; ; C ~ B ( A  - Q,V;;C)V 

+P:R;bP,] S T ,  (8.12) 

(8.13) 
, .A 

rank Q = rank P = rank QP = n, .  

Furthermore, the auxiliary cost is given by 

AQ, A , ,  B,,C,) = tr [QR1 + Q(Rl  - 2R12R;;PaS 

+P,'R;,'R2 R;;P,S)]. (8.14) 

Conversely, if there exist Q, P,  Q, B E N" satisfying (8.9)-(8.13), 
then (Q, A, ,  B,, C,)  given by (8348.8)  satisfy (7.2) and (7.3) 
with cost (8.14). 

Proof The proof follows as in the proof of the discrete-time 
reduced-order dynamic compensation problem with multiplica- 
tive white noise given in [25]. A similar proof can also be found 
in [19] with the additional terms arising due to the parametric 
uncertainty. 

Remark 8.2: Theorem 8.1 presents necessary conditions for 
the auxiliary minimization problem which explicitly characterize 
extrema1 quadruples (Q, A, ,  B,, C,). These necessary conditions 
consist of a system of two modified Riccati equations and two 
modified Lyapunov equations coupled by both the optimal pro- 
jection T and uncertainty terms. Several special cases can imme- 
diately be discerned. For example, in the full-order case n, = n, 
set T = I,, so that T~ = 0. Now the last term in each of 
(8.9H8.10) can be deleted and G and in (8.W8.8) can be 
taken to be the identity. Furthermore, P plays no role so that 
(8.12) is superfluous. Note that in this case, (8.9) is independent 
of P.  Setting further Do, E,, and CO to zero, it can be seen that 
(8.11) and (8.12) drop out, while (8.9) and (8.10) reduce to the 
standard separated Riccati equations of discrete-time LQG the- 

ory. If, alternatively, the reduced-order constraint is retained, 
but the uncertainty terms are deleted, then the results of [26] are 
recovered. 

Remark 8.3: When solving (8.9)-(8.12) numerically, the uncer- 
tainty terms can be adjusted to examine tradeoffs between 
performance and robustness. Specifically, the bounds F and 
structure matrices Do, E,, and CO appearing in Q,, and V2,. can 
be varied systematically to determine the region of solvability of 

Remark 8.4: Although (8.9)-(8.12) appear formidable, they 
are, in fact, quite numerically tractable. For related problems 
involving coupled Riccati equations, homotopic continuation 
methods have been shown to be effective [271, [281. Similar 
algorithms for solving (8.9)-(8.12) have been developed in 

(8.9)-(8.12). 

[291-[311. 

IX. SUFFICIENT CONDITIONS FOR ROBUST STA~ILITY 
AND PERFORMANCE 

Theorem 9.1: Suppose there _exist Q, 9, Q, P E N" satisfying 
(8.9)-(8.13), and assume that ( A  + AA,  V 1 / * )  is stabilizable for 
all ( A A ,  AC) E %! with A,, B,, C, given by (8.6H8.8) and %! 
given by (5.1). Then A + A A  is asymptotically stable for all 
( A A ,  AC) E %! and the closed-loop performance is bounded by 
(8.14). 

Proof Theorem 8.1 implies that Q given by (8.5) satisfies 
(7.2) and (7.3). With the stabilizability assumption, the result 
follows from Proposition 7.1. 

X. THE DUAL CASE 

In place of (SA), assume now that AC = 0, ( A A ,  AB, A ( - )  E 
%!, and define 
%! = { ( A A ,  A B )  E R"'" X R n X m :  

A A  = D,F,C,, AB = DOFOG,, F,FT 5 F }  (20.1) 
where, Do ER"", CO E R f X " ,  and Go E R I X m  are k e d  matri- 
ces denoting the structure yf the uncertainty F and Fo are as 
before. For arbitrary Q, P ,  P E R"'" define the following nota- 
tion: 

N~ D,( I~ - D;(P  + B ) D , ) - ~ D ; ,  .. - 1  sp p ( I ~  + N,P) , ip SFN, = N ~ s ~ ,  

q2, V2 + CQCT, 

p, B T [  P + P  ̂ + ( P  + P*)Np(P + B )  - S,'@Sp - SFpNPkSp] 

@p I,, + NpP + NpB, Qa @pAQCT + VI27 

* A  + GFFC, + RT2, 

k,, R ,  + B T [  P + + ( P  + &Np(P + B )  
- S,'BSp - SFpNpk%p] B + GFPG,. 

The main result guaranteeing robust stability and perfor- 

Theorem 10.1: Suppose there exist P,  Q, P ,  Q E N" satisfying 
mance for the dual problem can now be staLed; 

(8.12) and 

P = ATPA + A~PS,PA + R ,  + cTFco - P:&;Pa 
+ T: [ pTfiT:Pu + ( @ P A  - Q,f;;c)' 

*SFBSp( @.,A - QafT:C) 

+ (@PA - Q , ~ ~ ; , ' c ) T s F ? N p ~ S p (  @PA - QafF:c)] T 1 ,  

(10.2) 
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+f$;:ga + ( Q P A  - Qaf;:C)T 

.sFg&gsp( @pA - QafF:c) ]  T ,  (10.4) 

Q = T S ~ [ @ , ( A  - B ~ ; ; F ~ ) Q ( A  - BR;,'P,)~@,T 

+QafF:Qf] S F T ~ ,  (10.5) 

and let A , ,  B,, C ,  be given by 

A ,  = TS,(@,A - @pBl?;:@a - QafF:C)GT, (10.6) 

B, = rspQaf;, (10.7) 

C = -fi-Ig 2a a GT. (10.8) 

Then, (1 + A&, I?'/:) is detectable for all ( A A ,  AB)  E V if 
and only if A + A A  is asymptotically stable for all for all 
( A  A ,  AB)  E %. In this case, the performance of the closed-loop 
system satisfies 

J ( A , ,  B,,c,) I tr PV, + P vl - 2v12f;:Q,'s,' I Y 
+Qaf2:V2fi:QfS')]. (10.9) 

Remark 10.1: Even in the case AB = 0, AC = 0, the perfor- 
mance bounds (8.14) and (10.9) are generally different. See [18] 
for further details. 

XI. ROBUST STABILITY AND PERFORMANCE VIA STATIC 
OUTPUT FEEDBACK CONTROLLERS 

In this section we consider the robust stability and perfor- 
mance of Section I11 for static output feedback controllers. 
Specifically, we seek static output feedback controllers 

u ( k )  = Ky(k)  (11.1) 
where 

(11.2) 
such that the closed-loop system (3.1), (11.1) is asymptotically 
stable for all ( A A ,  AB, AC) E % where V is given by (10.1). 
Similarly, the robust performance problem involves the determi- 
nation of the output feedback gain K E Rmx' such that the 
closed-loop system (3.9, (11.1) minimizes (3.7) with J(A,,  B,, C,)  
replaced by J(K) .  As in the dynamic output feedback problem, 
in order to obtain an explicit expression for the static output 
feedback gain K we require that AB = 0 or AC = 0, for all 
( A A ,  AB, AC) E '2Y. In this section we present the case for 
which AC = 0. For conciseness we omit the dual case. Next, we 
present sufficient conditions for robust stability and perfor- 
mance via static output feedback controllers. For convenience in 
stating this result define the notation 

y ( k )  = ( C  + AC)x(k )  

Pa 

R,, 

BTP[  A + Do(Zr - DcPDo)- lDiPA]  + GiFC, + RF2, 

R2 + B T [  P + PD,(Zr - DiPD,)-'D;P] B + GiFG, ,  

QCT(CQCT)- 'C,  I,, - v ,  

for arbitrary P,  Q E R E X " .  

Theorem 11.1: Suppose there exist P ,  Q, E N" satisfying 
CQCT > 0 and 

P = ATPA + ATPD,(Z, - D;PD,)-'D,TPA + CTFC~ 

+ RI  - P:R;,'Pa -k v', P,TR;:Pav, 

Q = [ I ,  + Do(Zr - DiPD, ) - 'D:P] (A  - BR;:Pav) 

. Q ( A  - BR;:Pa~)T[  I,, + Do(Zr - D ~ P D o ) - l D ~ P ] T  + 

and let K be given by 

K = -R;;P,QCT(CQCT)-' 

(1 1.3) 

v, 
(11.4) 

(11.5) 

Then, (2 + p i ,  is detectable for all (AA7  AB)  E Y if 
and only if A + A A is asymptotically stable for all ( A A ,  AB)  E 
'2Y. In this case, the performance of the closed-loop system 
satisfies 

J ( K )  I trPV. (11.6) 
Remark 11.1: Several special cases can be recovered from 

Theorem 11.1. For example, when the full state is available, that 
is, C = I,, the projection v = I,, so that v l  = 0. In this case 
(1 1.5) becomes 

K =  -R-'P 2a a (11.7) 

and (11.3) and (11.4) specialize to 

P = ATPA + ATPD,(Z, - D;PD,)-'D,TPA 

+ CTFCO + Rl  - P:R;,'Pa, (11.8) 
with performance 

J ( K )  I trPV. (1 1.9) 
This corresponds to results obtained in [21] without the perfor- 
mance bound (1 1.9). Finally, to recover the standard LQR result 
let Do, E,, Go = 0 so that (11.8) corresponds to the standard 
discrete regulator Riccati equation. 

XII. ATERNATWE iI-BOUNDS: THE LINEAR BOUND 

Since the ordering induced by the cone of nonnegative-defi- 
nite matrices is only a partial ordering, it should not be expected 
that there exists an operator C l ( . )  satisfying (4.31, which is a least 
upper bound. Indeed, there are alternative definitions for the 
bound a(-). In this section, we present a linear bound which 
corresponds to the discrete analog of the continuous linear 
bound of [18]. This bound was first reported in [19]. Specifically, 
the uncertainty set '22 is now assumed to be of the form 

P P 
'2Y= ( A A , A B , A C ) :  A A  = uiAi ,  AB = uiBi, 

i =  1  i =  1 

P P i AC = uiCi, ui2/af I 1,  1~~5.l I aiaj , (12.1) 

where for i = l;-.,p: A i  E R"'", Bi E RnXm,  and Ci E RIxn 
are fixed matrices denoting the structure of the parametric 
uncertainty; ai is a given positive number; and U, is an uncer- 
tain real parameter. Note that the uncertain parameters ui are 
assumed to lie in a specified ellipsoidal region in RP. The 
closed-loop system (3.8) thus has structured uncertainty of the 
form 

i 
i =  1  i =  1 

p -  
A i =  C u i A i  (12.2) 

i =  1 



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 38, NO. 5, MAY 1993 781 

where 

For the structure of Z! as specified by (12.0, the bound fl 

Proposition 22.2: Let a and aij be arbitrary positive scalars. 
satisfymg (4.3) can now be given a concrete form. 

Then the function 
P 

fl(Q, BC,CC) 4 aA&P + (1 + f f - ’1  a,zA;.QAi 
i =  1 

aijAi&-T - .;‘A,@;) (12.3) 
isj 

satisfies (4.3) with Z! given by (12.1). 
Proofi Note that 

(12.4) 
Next, the first and second terms in the_ f.ight-hand sideJRHS) of 
(12.4) are automatically bounded by A m T  + Cf’ a?AiQAT. To 
bound the third term in the RHS of (12.4) note that 

0 I ; [ ( (Y1/2 ‘)A ff. - (>)Ai] 

. Q[ ( f f1/2 ‘)A f f .  - ( -)A.]T cy 1/2 

i =  1 

i =  1 

which, since Zf= u12/af 5 1, implies 
P P 

i =  1 i =  1 

Finally, to bound the fourth term in the RHS of (12.4) note that 

0 I 1 ( ffi/2Ai - (Y:’/~A. Q a1/*ji - 
11 1 ) - ( t 1  

isj 

= [ cYijAiQA; + a; ‘AiQA? - ( Ai@? + A j Q 4 ]  
isj 

which, since laia;.l I aiolj, implies 

- < f f . a .  1 I (  ffijAiQAT + ff;i4jQA;). . .  
1 sj 

Combining the above bounds, shows that (12.3) satisfies (4.3) 
with ‘Z given by (12.1). 

Next one can proceed as in the previous sections to derive 
sufficient conditions for robust stability and performance using 
the linear bound. For details see [19]. 
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Computations of Limit Cycles Via Higher Order 
Harmonic Balance Approximation 

Jorge Moiola and Guanrong Chen 

Abstract-We investigate the detection of limit cycles arising from 
Hopf bifurcation phenomena by applying the harmonic balance method 
with different higher order approximations. We present the results via 
an enlightening graphical procedure which indicates clearly how the 
predictions of amplitude and frequency of a periodic solution can be 
improved by using higher and higher order approximations. Moreover, 
we provide complete and explicit formulas for the eighth-order harmonic 
balance approximation. 

I. INTRODUCTION 
Hopf bifurcation theory studies periodic solutions emerging 

from equilibrium or steady state solution when one real parame- 
ter p of the model is varied such that a single pair of complex 
eigenvalues of the associated Jacobian matrix crosses the imagi- 
nary axis. Assuming that the vectorfield is smooth up to C4 in its 
state variables, Hopf showed in [l] the existence of a branch of 
periodic solutions for p < po (subcritical bifurcation) or for 
p > po (supercritical bifurcation). 

Since the appearance of this significant result, other re- 
searchers have given similar proofs using different mathematical 
methods ([2]-[5]). In this note, we pursue the investigations 
along the lines proposed originally in [4] (and later extended in 
[6]-[8]) to calculate the amplitudes and frequencies of limit 
cycles using some theory and techniques of nonlinear feedback 
systems. This approach has recently gained much more attention 
in the study of oscillations arising from the classical Hopf 
theorem (see, for example, [9] and [lo]) as well as from some 
degenerate Hopf bifurcations ([ll] and [12]). However, a weak 
point of the theory is that the results of the approximations are 
strictly local. To gain a better understanding of the periodic 
dynamic phenomena arising from Hopf bifurcation “far away” 
from criticality, we need to compute some additional complex 
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vectors, which are obtained by applying higher order harmonic 
balance approximations in the feedback system configuration. 

This work is an extension of the recent achievement reported 
in [12], to which the reader is referred for definitions of notation. 
The purpose of this note is twofold: i) To show the improvement 
in the predictions of amplitudes and frequencies of the periodic 
solutions when higher order harmonic balance approximations 
are applied, and ii) to present the final vectors after realizing an 
eighth-order harmonic balance between the linear plant and the 
memoryless nonlinear part in the feedback path. In Section 11, 
we first outline the derivations for obtaining the explicit formu- 
lation of the vectors involved in the eighth-order harmonic 
balance approximation. Then, in Section 111, we show an applica- 
tion of the new formulas and a comparison among different level 
higher order approximations, where the improvement of the 
predictions of amplitude and frequency for a periodic solution 
will be demonstrated by using higher and higher order harmonic 
balance approximations. 

11. MAlN RESULTS 

Consider a general multivariable autonomous system de- 
scribed by an ordinary differential equation of the form 

1 = A (  p)x + B( p)g(C( p ) x ;  p )  (1) 
which depends on a real parameter p, together with a so-called 
output equation 

where A( p), B( p), and C( p)  are n X n, n x I, and m X n 
matrices, respectively, g: Rm 4 R‘ is a nonlinear vector-valued 
function. By taking Laplace transforms on both sides of (1) we 
can separate this general nonlinear system into a dynamic linear 
part with a proper rational transfer function G(s;  p )  and a 
memoryless nonlinear part f ,  in a way similar to the classical 
describing function method, and write the linear part as 

(3) 
Let U = f(e, p) = g ( y ,  p )  and assume that f: R” 4 R‘ is C24+’  
( q  2 2) in its variable e. The overall feedback configuration for 
this setting in the frequency domain is shown in Fig. l(a) and its 
justification can be found in [6]. 

The equilibrium solutions of (1) are defined as the values .? 
satisfying i = 0. In [6] it was shown that the computation of 2 in 
the time domain is equivalent to the computation of 

y = C ( p ) x  (2) 

G ( s ;  p )  = C( p)(sZ - A (  p) ) - ’B (  p ) .  

G(0, p)f(P, p )  = -2  (4) 
in the frequency domain. By linearizing the feedback path in 
Fig. l(a) about the equilibrium point e (̂ p), we obtain the system 
shown in Fig. l(b), where J = ( a f / d e ) l e  is called the Jacobian 
matrix. We can apply the generalized Nyquist stability criterion 
to study the stability of the steady state solutions of this linear 
feedback system. Moreover, by considering the graphical Hopf 
theorem stated in [6] and [8], we can determine the location and 
stability of emerging periodic solutions, that is, we can analyze 
for what values of p there are limit cycles. 

Consider the characteristic polynomial of the m X m open- 
loop transfer matrix GJ defined by 

det IAZ - G ( s ;  p ) J (  p)l 
= h(A, S; p )  

= A‘ + u, - , (s ;  p)Af-’ + 
= 0; t = min (I, m) (5) 

+u, (s ;  p)A + u, (s;  p )  
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