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Abstract: We consider the robust stability of a continuous-time system under computer control. The uncertainty is modeled as 
additive perturbations to the matrices in a continuous-time state space description of the plant. Our methods exploit the resulting 
exponential-like uncertainty structure in the sampled-data control system and we develop sufficient conditions for such a system to 
be robustly stable. 
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1. Introduction 

A sampled-data control system consists of a continuous-time plant under computer control. Generally 
speaking, if the matrices in a state space description of a continuous-time plant are uncertain, then the 
resulting closed-loop, discrete-time system possesses an exponential-like uncertainty structure. This is true 
even if the continuous-time plant has linear uncertainty. Existing methods, such as [5-8], are inadequate in 
analyzing such uncertain discrete-time systems since they do not directly handle these exponential-like 
structures. Notable exceptions include the conic sector approach in [11], and the stochastic parameter 
formulation in [12]. Indeed, the present paper was motivated by the approach of [12] which, as shown in 
[2], can be reinterpreted to yield conditions for deterministic robust stability. Our objective is thus to 
develop a robust stability test which exploits the specific nonlinear uncertainty structures arising in 
sampled-data control systems. 

In the sequel, the following notation will be used. For X ~  R "x", X '  denotes the transpose of X, while 
X > 0 (X >~ 0) means that X is positive definite (positive semi-definite). The spectral radius of X is given 
by p(X). Let ®, • and 'vec' denote the Kronecker product, Kronecker sum and column stacking 
operators respectively; see [4]. In addition we shall use ' vec -a '  to denote the operation of forming a 
(usually square) matrix from a column vector. 

2. Problem formulation 

In this section we state the robust analysis problem for sampled-data control systems using static 
feedback. To begin, consider the n-dimensional continuous-time plant 

Y c ( t ) = ( A + A A ) x ( t ) + ( B + A B ) u ( t ) ,  y ( t ) = C x ( t ) ,  (~.) 

where A ~ R "×", B ~ R "×m and C ~ R qxn denote nominal state space matrices and where AA and AB 

0167-6911/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland) 



218 D.S. Bernstein, C.V. Hollot / Robust stability for sampled-data control 

represent perturbations in A and B respectively• The pair of suitably dimensioned matrices (AA, AB) 
belongs to an uncertainty set U given by 

U =  AA, z~B): AA = ~ oiAi and Z~B= ~ a,B~, ~ oi2~< 1 (2.1) 
i=1  i = l  i=1 

where A~ and B~ reflect the 'structure' of the uncertainty and where oi is an uncertain real parameter. Note 
that an uncertain parameter ai may appear in both Z~A and Z~B, and it's possible to have A~ -- 0 and B~ 4= 0 
or vice-versa. 

Now, consider a sampled-data system with a sampling period of h seconds. We assume perfect 
synchronization between the A / D  (sampler) and the (D/A)  (zero-order hold) and ignore finite word-length 
effects and computational delays. We also assume that a static control law 

u(kh)=Ky(kh) ,  k = 0 , 1 , 2  . . . . .  (2.2) 

is implemented for some given gain K ~  R mxq 
Our purpose is the analyze the robust stability of this closed-loop system, and to this end we consider 

its evolution at the sample instances kh by forming the associated discrete-time system 

x (k  + l )=  [e(A+aA)h + foh e(A+aA)~ d~(B + A B ) K C ] x ( k  ) . ( 2 . 3 )  

In the above x(k) denotes x(kh); we have abused notation for the sake of conciseness. Given arbitrary 
(AA, AB) ~ U, system (2.3) is discrete-time stable if all the eigenvalues of 

e(A+aA)h + eCA+aA),d.r(B+AB)KC 

lie within the open unit disk. Additionally, (2.3) is said to be robustly discrete-time stable if it is 
discrete-time stable for all (AA, z~B) ~ U. 

Main result 

We now develop a sufficient condition for the robust discrete-time stability of (2.3). This condition 
exploits the exponential structure of the uncertainty, i.e., rather than 'overbounding' the uncertainty with 
an additive model of the form 

x(k  + 1) = ( ~  + A~)x(k) ,  

our method treats the exponential structure of the nonlinearity in (2.3) more directly• 
To show robust stability we will construct a parameter-independent (independent of the uncertain 

matrices (ZIA, ZlB)) quadratic Lyapunov function V(x). Thus, let P be some free, positive-definite 
symmetric matrix and consider the quadratic Lyapunov candidate 

V(x )=x 'Px ,  x ~ R " .  

System (2.3) is robustly discrete-time stable if 

AV(AA, AB, P) a e(A+aA) h + fohe(A+aA)'d"r(B+AB)KC]P 

• e (A+aA)h + d I - ( B + a B ) K C  - P (3.1) 

is negative definite for all (AA, AB) ~ U. This follows since x'AVx is the Lyapunov difference associated 
with V = x'Px and the adjoint of (2.3); see [1]. Recall that (2.3) has eigenvalues only in the open unit disk 
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if and only if its adjoint system has eigenvalues only in the open unit disk. We use the Lyapunov difference 
for the adjoint system since some robust performance issues are related to such (covariance) equations; 
e.g., see [3] and [15]. 

A critical step in our development is to eliminate the integrals in (3.1) and express the uncertainty in 
terms of a single matrix exponential. Indeed, using the identity (see [13]) 

0 

(3.1) can be rewritten as 

AV(AA, AB, P ) = [ I  0]exp([  (A+BA)0 C'K']  

and 

Lemma 3.1 (see Appendix for proof), l f  P ~ R "x" is positive definite and symmetric and a > O, then 

~ [ I  0] vec-l[e X"h vec(_r/p)] [ /1  - P  (3.6) 

for all (AA, ~B) ~ U. 

Now, using the right-hand side of (3.6), formally set 

[I  0] vec-l[e Z-h vec (Hp) ] [ / ]  - P - -  - I  (3.7) 

which is equivalent to 

(M. - I )  v~:(P) ; - v e c ( I )  (3.8) 

where 

M ~ ( [ 1  0 ] ® [ I  0 ] ) e X a h ( [ / C ] ® [ / C ] ) .  (3.9) 

When does (3.8) have a positive-definite solution? Our next lemma gives a sufficient condition. 

(33, 

Our next result provides a parameter-independent upper bound to AV. To give this bound, let a > 0 be 
given and define 

.,T~-A([ A B] + ½a/) ~ ([A B ] + ½ a / ) + I ~ [ A i  B i ] ® [  Ai Boi ] (3.4) 
i = 1  



220 D.S. Bernstein, C. V. Hollot / Robust stability for sampled-data control 

Lemma 3.2 (see Appendix for proof). I f  there exists an ~ > 0 such that 

p(M~)  < 1, (3.10) 

then (3.8) has a positive-definite solution P. 

Now, assume (3.10) holds for some a > 0. From Lemma 3.2, equation (3.7) has a positive-definite 
solution P; hence, using (3.6) and (3.7) it follows that 

A V ( A A ,  AB, P)  <~ - I  (3.11) 

for all (AA, AB) ~ U. We have thus proven the following main result. 

Theorem 3.1 I f  there exists an a > 0 such that 

o ( M . )  < 1, 

then the sampled-data system (2.3) is robustly discrete-time stable. [] 

It is important to note that the condition of Theorem 3.1, p(M~) < 1, is always satisfied for sufficiently 
small a > 0 if the nominal system is stable and there is no uncertainty; i.e., AA = 0 and AB = 0. Indeed, 
taking a = 0, a straightforward manipulation using (3.2), (3.4), (3.9) and identities (A.1)-(A.4) in the 
Appendix gives 

M ~ = ( e A h +  f o h e A ' d ~ B K C ) ® ( e A h +  f h e A ' d ' r B K C  ). (3.12) 

Since the nominal system is stable, all the eigenvalues of 

eA h + f h  eA r d* BKC 
~o 

lie within the unit disk. This implies, together with (3.12) and the fact that the eigenvalues of a Kronecker 
product of two matrices are the products of the eigenvalues of these two matrices (see [4]), that all the 
eigenvalues of M~ lie within the unit disk. Thus, p(M~) < 1. 

Finally, we remark that a dual result holds when one allows uncertainty in C; i.e., C -o C + AC. 

4. Example 

In Soroka and Shaked [10], the robustness of a continuous-time system under 'cheap' LQ regulation is 
studied. This uncertain closed-loop system is described by 

z ( t ) = [ - 1  l l x ( t  ), u ( t ) = L ~ x ( t ) ,  

where the 

t r = 

with r > 0 

o a > 0, 

LQ regulator gains are given by 

[ l + q r - - f 5 + 2 q r  2 ~ 5 + 2 q r - - q ~ - - 4  ], q r = ~ ,  

being the control weighting in the quadratic performance index 

z2( t )  + ru2(t)] dt.  

(4.1) 

(4.2) 
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Fig. 1. If o(M~)< 1 for some a > 0, then the sampled-data 
control system (2.3) is robustly discrete-time stable; see Theo- 
rem 3.1. In the above we plot p(Ma) versus a for the system 
matrices in (4.2)-(4.3) with h =0.1,  r =  0.008 and # =  0.5. 
Since p ( M ~ ) <  1 for all a ~ (0.6, 2.8), this system is robustly 
discrete-time stable. 

1.5 . . . . . . . . .  

. . a ~ t u a l  s t a b i l i z y  boundnry 

. . . . . . . .  t tnuou~ t i ~  s t . b t l i t y  b o ~ n a ~ r  

0.5 - - ~ - ~  t 

I 

101 10 2 10 3 10 4 

Fig. 2. The results of Theorem 3.] provide a means for estimat- 
ing stability boundaries. In this figure we consider the closed- 
loop system in (4.3)-(4.4) and plot this estimate against the 
actual stability boundary as determined by (4.5). The agree- 
ment is quite good. The continuous-time stability boundary is 
plotted for completeness. 

Soroka and Shaked show that stability robustness over the range of parameters  o 1 e [0 ~], ~ > 0, 
decreases (~ ~ 0) as the control becomes cheaper ( r  ~ 0). In terms of the system formulation (Z)  we have 

 [10 01 
I -  "1 

o 7 4 1 .  
[ o J  

(4.3) 

Now, suppose this LQ regulator gain is to be implemented in a computer.  What  is the robustness of this 
sampled-data control system? We will use the condition in Theorem 3.1 to answer this question. First, 
however, we must translate the continuous-time LQ gain to one suitable for sampled-data control. Indeed, 
the nominal discrete-time system is unstable if we implement gain K = Lr in the computer. F o l l o ~ n g  
[1, pp. 189-191], we take 

K= -Lr[I+½(A-BLr)h ]. (4.4) 

For a given sampling period h, control weighting r and uncertainty bound 8, we are now in a position to 
determine if p(M~) < 1 for some o > 0. For  example, with h = 0.1, r = 0.008 and 8 = 0.5, p(M~) < 1 for 
all a e (0.6, 2.8); see Figure 1. Hence, the sampled-data system is stable for 8 = 0.5. Also, for h = 0.1 we 
determine, for various r, the largest ~ for which p (Ma)  < 1 for some a > 0. We compare these results to 
the actual discrete-time stability boundary and to  the continuous-time LQ solution in [10]; see Figure 2. 
To compute the actual discrete-time stability boundary,  we assume time-invariant uncertainty o 1 and find 
the largest 8 for which 

P(eAh + foh eA" d¢[1--O1]K ) < (4.5) 

for all 10114 8. Finally, we note that the actual discrete time stability region is larger than its 
continuous-time counterpart.  

Appendix: Proof of Lemmas 3.1 and 3.2 

To prove Lemmas 3.1 and 3.2 we first need some identities and observations; see [4] for details. 
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Identifies. If X E  R r×r and Y~ R x×s, then by definition the Kronecker sum is given by 

X ~  Y = X @ I + I @  Y. 

Next, if the indicated products exist, then 

vec(XYZ) = ( Z ' ®  X) vec(Y), 

( x ®  Y) (Z  ® w )  = ( x z )  ® ( r w ) .  

Finally, if X is square, then 

eX*X = e x ® e x. 

Oimervafion 1. Given arbitrary (AA, AB)~ U, the solution to the matrix differential equation 

I~ ( t )=[ (A+AA)0  (B+AB)o ] Y ( t ) + Y ( t ) [ ( A + A A ) 0  (B+AB)o 1" t>~O, 

is 

([ o ]) ({ ]) r ( t ) = e x p  ( A + A A )  (B AB) t Yoex p ( A + A A )  ( B + A B )  t " 
0 0 0 

This is a well-known result. 

Observation 2. Let a > 0; then the solution of the matrix differential equation 

is 

+ _  i ' Y(t) t>~0, Y(0)=Yo, 
ai= 1 0 0 ]  ' 

(A.a) 

(A.2) 

(A.3) 

(A.4) 

r(o) = to, 

(A.5) 

(A.6) 

(A.7) 

Y( t ) = vec- 1[ eXot vec( Y0 )]. (A.8) 

To show (A.8), apply the '  vec' operation to both sides of (A.7) and use identities (A.1) and (A.2) to get 

vec(~(/,)= {([~ B] q-½oJ) ~) ({ O BOI +½oJ)-k-~i~l([AO i BOOil ® [oi Bi])) vec(Y(/)). 

The solution to the above is vec(Y(t)) = [e ~-*t vet(Y0)], from which (A.8) follows. 

Observation 3. If a > 0 and if Y0 is positive semi-definite, then the solution in (A.8) satisfies 

Y( t )=vec -a [ e  x'' vec(Y0)] >/0, t>_-0. (A.9) 

To prove this observation, let S, N ~ R r×r with N positive semi-definite. From (A.2), 

(S ® S) vec(N) = vec(SNS') 

which implies 

vec- l [ (S  ® S) vec(N)] -- SNS'>~ O. (A.10) 
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Using (A.3), 

(s ® s)'= (s'® s') 

so that 

(A.11) 

>] vec-l[eS®S vec(N)] =vec -1 i!)-l(S ® S)i vec(N 
i 

I ~ ] = v e t - 1  Z ( i ! ) - l (  S i ®  S i )  v e c ( N )  
Li=O 

= Z v e c - l [ ( l ! ) - l ( s i ® S i ) v e ~ ( N ) ]  = Z (i!) -1S'NS''>~O" (A .12)  
i=0 i=0 

Furthermore, from (A.4) and (A.10), 

vec-1 [e s*s vec(N)] = vec-1 [(e S ® e S) vec(N)] =eSN es'>~ O. (A.13) 

Now, using the exponential product formula (see [14, pg. 97]) we write 

_ , .  o~(,o<>,])  (A.> 

where 

~°'--[~ o~] +~°1, ~,'=[~o' ~o'] (~1,) 
Consequently, 

{ (I ] ]; )) = lilTl veC -1  exp ( ~ ( ~ ) ,  f i  exp ( A , ® . 4 , ) t  vec(Yo) . 
j---) o¢ i~1 

(A.16) 

We will now show that the expression in the limit brackets in (A.16) is positive semi-definite for all 
positive integers j. Indeed, this is sufficient to prove that (A.9) holds. For simplicity take j --p = 1 and let 
37 satisfy 

vec(37)=exp[l(Ai®.4i)t] vec(Y0 ) (A.17) 

or equivalently 

Since Yo is assumed positive semi=definite, then, from (A.12), 37 is positive semi-definite. From (A.13), 
(A.17) and this fact, the expression in the limit brackets of (A.16) satisfies 

v~ ,{oxp[(~o • ~o),] ox , [ l (~ , ,  ~,),] ,~(~o))= v~ ,(o,~[(~o • ~°),I vo,(~>) >~0 
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A similar argument, using (A.12) and (A.13) alternately, shows that the expression in the limit brackets of 
(A.16) is positive semi-definite for arbitrary positive integers j and p. This completes the proof of 
Observation 3. 

Proof of Lemma 3.1. Assume P positive definite and a > 0. Furthermore, consider the matrix differential 
equations in (A.5) and (A.7) with 

Yo = Yo = / /~  (A.19) 

where/-/~, is given in (3.5). Subtracting (A.5) and (A.7) gives 

~ ( t ) _ l ? ( t )  = [(A +AA)o (B+AB)o ](Y(t)-Y(t))  

+ - r ( t ) ) [  (A + AA) 
[ 0 

t 

(B+AB) +'~(t), t>~O, Y ( 0 ) - Y ( 0 ) = 0 ,  

(A.20) 

where 

P 

~I'~(t) a .4~Y(t) + Y(t)A, + 1 
Ot i ~ l  

_ ( [ ( A  oAA)  (B o A B ) ] ~ ( / ) +  ~ ( / ) [ (A  oAA)  (B+AB)]' 
0 ) (A.21) 

(A.22) 

and where .4~ and Ai are defined in (A.15). 
Claim 1: xl, (t) is positive semi-definite for all t >_- 0. 
Proof of Claim 1: From (A.15) and (A.21), 

~(t) = ([ A O] + ½a/)Y(t)([ A BI' + ½or/) 

+ Y(t aB + _1 E 
0 a i=  1 

P P P 

>~a g °',2~Y(t) - g °i('4iY(t) + Y(t).4:) + -- ~=, AiY(t)A i 
i = 1  i ~ l  Ot i 

P 1 ~ ' 
=i~=l[Vl~°iI--~Ai]Y(t)[vr-d°iZ---~a Ai] • 

,]) (B +oAB + 1 ~. - - -, -- AiY(t)A i 
Ot i = 1  

(A.23) 

Y(t)-  Y(t)= foteXp[[ (A + 

• exp[[ (A oAA)  

( B + AB) ]( t -  s)] 

(B + AB) ] ds. 

From Observation 3, Y(t) is positive semi-definite for all t >_- 0. It thus follows from (A.22) that ~/'~(t) is 
likewise positive semi-definite for all t >~ 0. This proves the claim. 

Now, since Y(0) - Y(0) = 0, the solution to (A.20) is 
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From (A.23) and Claim 1 it follows that 

Y(t ) -Y( t )>IO,  t>tO. 

Combining (A.6) and (A.8) with (A.24) gives 

0 <~ Y(h)- Y(h) 
( [ (A +AA) (B+AB)]h)Hp 

= vec-l[e x'h vec(He)] - e x p  0 0 

"exp([ (A+AA)0 (B+AB)] 

which implies that 

225 

(A.24) 

r = vec -1 M E vec(/ = • vec -1 vec(I . (A.25) 
i=0 

Claim 2: If i is a positive integer, then 

vec-  1[ U~ vec( 1)] ~ 0. (A.26) 

(A.2), we have for i -- 1, 

vec-a [ M,~ vec(I)] = vec-I([ I 

---- v e c - l ( [  I 

Proof of Claim 2: The proof proceeds by induction. From the definition of M~ in (3.9) and identity 

O]eAah([Ic]®[Ic])Vec(I) } 

0] e a-°h v e c ( [ / C ] [ I  C 'K ' ] ) )  

= [ I  0] vec-m(e X~h v e c ( [ / C ] [ I  C'K'])}[I]. (A.27) 

It follows from (A.9), (A.27) and Observation 3 with 

[ I ] [ i  C'K'] t=h, 
Y(0)  = r c  

that vec-l[M, vec(I)] >t 0. Now, for the induction step, assume vec-l[M~ ' vec(I)] >1 0. Then 

vec-1 [ ma  t+l vec ( I ) ]  -- vec- ' [  M,M'~ vec(i)] 

= vec-l(  M~ vec[vec-l(M~' vec(I))] }. (A.28) 

that ( I  - M ~ )  - 1  ~o i 0 & I .  = 52i=oM~, where M~' Consequently, 

,i 01exp([( o A, (Bo  ']h)I01 

which is the desired result. The proof of Lemma 3.1 is complete. [] 

Proof of I_emma 3.2. Assume a > 0 such that (3.10) holds. We must show that (3.8) has a positive-definite 
solution P. Indeed, since p ( M ~ )  < 1, it follows that M .  - I is invertible and (3.8) has a unique solution 
vec(P) = ( I - M ~ )  -1 vec(I) or P = v e c - l [ ( I  - M~) -1 vec(I)].Now, it follows from [9, Theorem 6.7.1] 
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From (A.28) and Observation 3 with 

Y(0)=vec- l [M~ ' vec( l ) ] ,  t=h,  

it follows that vec-l[M~ '÷1 vec(I)] >/0. This proves the lemma. [] 
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