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Abstract: In many applications of feedback control, phase information is available concerning the plant uncertainty. For example, 
lightly damped flexible structures with colocated rate sensors and force actuators give rise to positive real transfer functions. 
Closed-loop stability is thus guaranteed by means of negative feedback with strictly positive real compensators. In this paper, the 
properties of positive real transfer functions are used to guarantee robust stability in the presence of positive real (but otherwise 
unknown) plant uncertainty. These results are then used for controller synthesis to address the problem of robust stabilization in the 
presence of positive real uncertainty. One of the principal motivations for these results is to utilize phase information in guaranteeing 
robust stability. In this sense these results go beyond the usual limitations of the small gain theorem and quadratic Lyapunov 
functions which may be conservative when phase information is available. The results of this paper are based upon a Riccati equation 
formulation of the positive real lemma and thus are in the spirit of recent Riccati-based approaches to bounded real (Hoo) control. 
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1. Introduction 

In  m a n y  app l i ca t ions  of  feedback  control ,  phase  in fo rma t ion  is ava i lab le  conce rn ing  the p l an t  
uncer ta in ty .  F o r  example ,  l ight ly  d a m p e d  flexible s t ructures  wi th  co loca ted  ra te  sensors  and  force 
ac tua to r s  give rise to  posi t ive  real  t ransfer  funct ions.  C losed- loop  s tabi l i ty  is thus  gua ran t eed  b y  means  of  
negat ive  f eedback  with  s t r ic t ly  posi t ive  real  compensa to r s .  This  pr inc ip le  has been  wide ly  used to  des ign 
robus t  contro l lers  for f lexible s t ructures  [8,10,16,25,29,30,31,34,37,38]. 

The  sal ient  fea ture  of  posi t ive  real t ransfer  funct ions  is that  they  are  d iss ipa t ive  and  phase  b o u n d e d  

[1-7,19,20,26,33,39,40,46,47,50,51]. Hence  the feedback  in te rconnec t ion  of  posi t ive  real  t ransfe r  func t ions  
is gua ran teed  to be  s tab le  wi thout  requi r ing  tha t  a smal l  gain  cond i t ion  [53] be  sat isf ied.  Posi t ive real  
des ign  is thus po ten t i a l ly  less conservat ive than  b o u n d e d  real  ( H ~ )  design in  the  presence  o f  phase  
in format ion .  

In  this p a p e r  we uti l ize p roper t ies  of  posi t ive  real  t ransfer  funct ions  to deve lop  new cond i t ions  for  
robus t  s tab i l i ty  and  robus t  s tabi l izabi l i ty .  A l though  re la ted  resul ts  have been  deve loped  prev ious ly  
[9,17,35,44,45], this p a p e r  goes b e y o n d  earl ier  work  b y  explo i t ing  a Ricca t i  equa t ion  fo rmula t ion  in the 
spi r i t  o f  recent  advances  in H ~  synthesis  [14,21,24,32,42,54]. This  is done  in two different ,  bu t  equivalent ,  
ways.  F i r s t  we show that  the Riccat i  equa t ion  used to  enforce an  H ~  cons t ra in t  can  be  t r a n s f o r m e d  to 
yie ld  a d i f ferent  R icca t i  equa t ion  that  enforces  a posi t ive  real  cons t ra in t  (Theorem 3.2). Al te rna t ive ly ,  we 
show that  the  same Ricca t i  equa t ion  can be  ob ta ined  b y  man ipu la t i ng  the cond i t ions  of  the  pos i t ive  real  
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lemma (Proposition 3.3). Many of the techniques and transformations used in these steps are due to [6], 
which contains an extensive treatment of positive real and bounded real transfer functions. 

Once the Riccati equation that enforces positive realness has been derived, robust stability can be 
guaranteed for a class of perturbations involving an arbitrary constant positive real matrix (see the set q/ 
defined by (4.5) and Theorem 4.1). The modeling of matrix uncertainty by means of a "fictitious" 
feedback loop (linear fractional transformation) is directly analogous to the small gain (H~)  parameter 
uncertainty model of [32]. In our case, however, the class of uncertainties includes a phase constraint 
rather than a small gain condition. 

Having enforced robust stability for positive real uncertainty, we then proceed in Section 5 to give 
sufficient conditions for robust stabilizability in terms of a pair of coupled algebraic Riccati equations 
(Theorem 5.1). A robustly stabilizing feedback gain is then given in terms of the solutions to the Riccati 
equations. The stabilizability result is first stated for static output feedback and then specialized to the 
case of full-state feedback. Necessary conditions for robust stabilization with positive real uncertainty will 
be considered in a future paper. 

Finally, we close the paper by discussing connections between the positive real uncertainty modeling 
approach of this paper and the Maximum Entropy approach to robust control design of [11-13,16,18,27,28]. 

Notation 

~, ~rXs 

L, I ; (  )T, ( ) .  
tr, p ( ) ,  Omax( ) 
II H( s ) II 
n, m, too, l 
A , B , C , K  
~0, c0, D0, F 

real numbers, r x s real matrices. 
r X r identity matrix; transpose, complex conjugate transpose, 
trace, spectral radius, largest singular value. 

sup, o ~ nOmax [ H( j to ) ] .  
positive integers. 
n x n ,  n x m ,  l f f n ,  m x l m a t r i c e s .  
n x mo, m o x n, m o x mo, m o x m o matrices. 

2. Preliminaries 

In this section we establish key definitions and notational conventions that simplify the exposition in 
later sections. We begin with the definitions of positive real and bounded real transfer functions [1,6]. 

In this paper a real-rational matrix function is a matrix whose elements are rational functions with real 
coefficients. Furthermore, a transfer function is a real-rational matrix function each of whose elements is 
proper, i.e., finite at s = 0o. Finally, a stable transfer function is a transfer function each of whose poles is 
in the open left half plane. The space of stable transfer functions is denoted in [22] by RH~,  i.e., the 
real-rational subset of H~.  

A square transfer function G(s) is called positive real [6, p. 216] if (1) all elements of G(s) are analytic 
for Re[s] > 0 and (2) G(s) + G*(s) is nonnegative-definite for Re[s] > 0. A square transfer function G(s) 
is called strictly positive real [10,36,48] if (1) all elements of G(s) are analytic for Re[s] > 0 and (2) 
G(jto) + G*(ito) is positive definite for all real to. Finally, a square transfer function G(s) is strongly 
positive real if it is strictly positive real and D + D r > 0, where D .'= G(oo). Note that strongly positive real 
implies strictly positive real, which further implies positive real. Furthermore, we note that if a transfer 
function is strictly positive real, then the system is stable and dissipative. 

Next, we give the definition of bounded real. A transfer function H(s) is bounded real [6] if and only if 
(1) all elements of H(s) are analytic for Re[s] >__ 0 and (2) I -  H(j to)H*(j to)  is nonnegative definite for all 
real to. Equivalently, (2) can be replaced by [6, p. 307] (2 ')  I - H ( s ) H * ( s )  is nonnegative definite for 
Re[s] > 0. Alternatively, a transfer function H(s) is bounded real if and only if H(s) is stable and satisfies 

II H(s)II ~ -< 1. 
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Next we establish some notation involving state space realizations of transfer functions. Let [22] 

denote a state space realization of G(s), that is, 
det D ~ O, then 

G - 1 ( s ) - [ A - B D - 1 C  I D _ I C  BD-1].D -1 J 

Finally, if Gl(s ) = C l ( s I -  A1)-1B1 + D a and G2(s ) = C2(sI-  Az)-IB2 + D 2, then 

A 0 B 2 

G I ( S ) G 2 ( s ) - B l C 1  A1 BID2 

DICE C1 DaD2 
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(2.1) 

G ( s ) = C ( s I - A ) - I B + D .  If G(s) is square and 

(2.2) 

(2.3) 

3. Riccati equation characterizations of positive real and bounded real transfer functions 

In this section we provide explicit connections between positive real and bounded real transfer 
functions and their associated state-space realizations. Furthermore, we give Riccati equation characteriza- 
tions of their resulting state-space realizations. Finally, we draw connections with the well-known positive 
real lemma [1,6,20]. 

We begin with a result [6] that relates bounded real transfer functions to positive real transfer functions 
via the Cayley (bilinear) transform. Throughout the paper y denotes a positive number. 

Lemma 3.1. I f  y-1H(s) is an m × m bounded real transfer function with det[I  m - ]c-I l l (s ) ]  q: 0 for 
Re[s] > 0, then 

G(s )  := [ I . , -3 , -1n(s )] - l [ I . ,  + 3 , - In (s ) ]  (3.1) 

is positive real. Conversely, if G(s) is an m × m positive real transfer function such that G(s) is analytic for 
Re[s] >_ 0, then 

y -1n(s )  :-- [ G ( s )  - Ira] [ G ( s )  + Ira] -1 (3.2) 

is bounded real. 

Proof. Suppose y -1H(s )  is bounded real. Since det[Im - "/- all(s)] 4:0 for Re[s] > 0, it follows that G(s) is 
analytic for Re[s] > 0. Then with G(s) defined by (3.1) it follows that ,/-1H(s) satisfies (3.2). Thus, we 
obtain for Re[s] > 0, 

y -ZH(s )H*(s )  = [G(s )  - Im][G(s )  + I , . ] - I [ G *  (s )  + I , , ] - I [ G * ( s )  - I , , ]  <Ira, (3.3) 

which implies 

[ G ( s )  + 1 . 1 - a [ G *  ( s )  + I . ] - 1  _< [ G ( s )  - I . ] - a [ G *  (s )  - Ira]-a (3.4) 

or, equivalently, 

[ G * ( s )  +I,.][G(s) +I , . ]  >_ [ G * ( s )  - Im][G(s )  --Ira] (3.5) 
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which further implies that G(s) + G*(s) >_ 0 is Re[s] > 0. Conversely, suppose G(s) is positive real. Then, 
since G(s) is assumed to be analytic for Re[s] _> 0, it is easy to show that det[G(s) + I" ]  ~ 0 for Re[s] > 0. 
Therefore, y - i l l ( s )  defined by (3.2) is analytic for Re[s] > 0. Then with 7 -1H(s )  defined by (3.2) it 
follows that G(s) satisfies (3.1). Next, for Re[s] > 0 we obtain 

G(s) + G * ( s ) =  [ I = - T - I H ( s ) ] - I [ I  m + " / - IH(s ) ]  + [ I  m + " [ - ' H * ( s ) ] [ I " -  y-al l* (s)]  - '  

> 0. (3.6) 

Forming [ I,, - ~,- 1H(s)](3.6)[ 1,. - ~,- an * (s)] yields 

[ I  n + y - I H ( s ) ] [ x m -  T - I n * ( s ) ]  + [I  m -  T - I H ( s ) ] [ x m  + ~ ' - I n * ( s ) ]  ~ 0 ,  

which implies I,. - y -2H(s)H*(s)  > 0 for Re[s] > 0. [] 

Next, we use the results of Lemrna 3.1 to establish connections between the state space realizations of 
positive real and bounded real transfer functions. First, however, we give a key lemma concerning positive 
real and strictly positive real matrices. 

Lemma 3.2. Let M, N ~ C ~xn be such that M + M* > 0 and N + N* > O. Then det(al~ + MN) =~ 0 for all 
a > 0 .  

Proof. First we show that N is invertible. Let x ~ C", x @ 0, and ~ ~ C be such that Nx = hx and hence 
x ' N *  = ~ x * .  Then x * ( N  + N * ) x  > 0 implies that Re ~ > 0. Hence det N @ 0. Now let a > 0 and define 
S : = a N - l + M .  Now, since N - I + N - * = N - I ( N + N * ) N - * > O ,  it follows that S + S * > 0 .  Thus 
det S @ 0. Consequently, 

de t ( a I .  + MN)  = det NS = (det N ) ( d e t  S )  =~ 0. [] 

Pro0osition 3.1. I f  G( s) is a positive real transfer function with minimal realization 

then the bounded real transfer function y - i l l ( s )  defined by (3.2) has a minimal realization 

where 

A,=A d-B(tm + D)- ' ,  (3.9), (3.10) 

d,=~(I,.+D)-ac, b , =  ( D - I , , , ) ( D + I , , , ) - ' .  (3.11), (3.12) 

Conversely, if T-1H(s) is an m × m bounded real transfer function such that d e t [ I m -  T-al l (s) ]  4= 0 for 
Re[s] > 0 and with minimal realization 

then the positive real transfer function G(s) defined by (3.1) has a minimal realization 
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where 

A : = A  + B ( I , . - D ) - I C ,  

C : = f 2 ( I , . - D ) - ' C ,  

B:=v~B(I,,,- D) -~, 
,-- (I~ - D)-I( I , , ,  + D) .  

(3.14), (3.15) 

(3.16), (3.17) 

, f - i l l ( s )  - 

1 m + D is invertible. Next, using (2.2) we have 

+ I r a ] - ' -  [ A - B ( I , , + D ) - I c  [G(s) 
[ ( I , , + D ) - ' C  

B(I,,,+D)-']. 
( D + I ~ ) - '  

Using (2.3), it now follows that y-1H(s)  = [G(s) - lm][G(s ) + Ira] -1  has a nonminimal realization 

A - B ( I ~ + D ) - ' C  0 

- B ( I ~ + D ) - ' C  A 

( I , , , - D ) ( I , , , + D ) - ' C  C 

B ( I ~ + D ) - '  

B ( I , , , + D ) - '  

( D - I , , , ) ( D + I , , , ) - '  

Next it follows from state-space manipulations that -t-IH(s) has a minimal state-space realization given 
by 

A - s ( I . ,  + o ) - l c  

• - ' " ( s ) -  L c 

¢~S(/.. + D)-' ]. 
] ( D - Z . ) ( D + I , . )  -~ 

Furthermore, Lemma 3.1 implies that y-1H(s) is bounded real. Finally, the converse is shown in a similar 
fashion. [] 

Having established connections between state-space realizations of positive real and bounded real 
transfer functions we proceed in the spirit of recent Hoo results [14,21,24,32,42,54] to establish Riccati 
equation characterizations of positive real systems. 

Theorem 3.1. Let 

A B 

I f  there exists an n × n nonnegative-definite matrix Q satisfying 

0 = AQ + QA v + 7 -2(BD T + QcT)( Im - y -2DDT)- I (BDT + QcT)  v + BB T, (3.18) 

then ( A, B) is stabilizable if and only if 

A is asymptotically stable. (3.19) 

Furthermore, in this case, 

II H(s) II oo -< v. (3.20) 

Proof. Given (3.7) it follows that the realizations of G(s) - I m and G(s)  + 1,, are given by 

B 
, o . ,  o:i.] 

Now, since G(s) is positive real, it follows that D + DT> 0 which further implies by Lemma 3.2 that 
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Conversely, if  A is asymptotically stable and II H( s ) II oo < Y, then there exists a unique nonnegative-definite 
matrix Q satisfying (3.18) and such that the eigenvalues of 

A + " / -2BDT(I , , - "~-2DDT)- Ic  Jr- ~-2QcT(I,.--"y-2DDT)-Ic 
lie in the open left half plane. Furthermore, Q is the minimal solution to (3.18). 

Proof. The asymptotic stability of A follows directly from Lyapunov theory while (3.20) follows from 
algebraic manipulation of (3.18); for details see [24]. The converse follows from the bounded real lemma 
[6, p. 3081 or from spectral factor theory [49]. Finally, the proof of minimality is given in [52]. [] 

Next, we utilize a transformation that converts a nonstrictly proper transfer function into a strictly 
proper transfer function both of which satisfy the same H~o bound. For convenience in stating this result 
define the notation 

M .'= 1,, - y - 2DD "r, N .'= I,,, - y - 2DTD. 

Note that M is positive definite if and only if N is positive definite. 

Proposition 3.2. Let 

Then A is asymptotically stable, M > O, and 

II n ( s )  II ~ < ~' 

if and only if A'  is asymptotically stable and 

IIn'(s)ll~<~', w h e r e H ' ( s ) -  t c ' l  0 I 

with 

(3.21) 

(3.22) 

A' := A + y-2BDTM-aC,  B" := BN  -1/2, C'  : =  M-1/2C.  (3.23)-(3.25) 

Furthermore, (3.18) is equioalent to 

0 = A'Q + QA "T + y - 2 a c ' T c ' o  + B 'B  'T. (3.26) 

Proof. Note that II n(s)I loo < "t implies that M >  0. The results now follow from Theorem 3.1 and 
algebraic manipulation. For details see [24]. [] 

Next, using Theorem 3.1 we give a Riccati equation characterization of positive real transfer functions. 
To do this we use (3.18) to imply that the transfer function corresponding to (,4, "tJ~, C, "t/)) has Hoo norm 
less than y. By Lemma 3.1 and Proposition 3.1 the resulting Riceati equation, i.e., (3.18) with (A, B, C, D) 
replaced by (2 ,  ,/B, C, y/)), implies that 

is positive real. To utilize Theorem 3.1 we require that o , ~ ( y / ) )  < ~, or, equivalently, 

I,,, - D b  T > 0. (3.27) 
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Now, using (3.12), condition (3.27) is equivalent to 

I m -- ( O  -- Im) (O + I m ) - l ( o  + I m ) - T ( o  -- I,.)T > 0. (3.28) 

Since D + I,. and D - I,, commute, (3.28) implies 

( In  - D)(I, , ,  - D T) < ( In  + D ) ( I  + DT), (3.29) 

which imphes that 

D + D T > 0. (3.30) 

Thus, we restrict our attention to strongly positive real systems. 

Theorem 3.2. Let 

define .4, B, C, 1) by (3.9)-(3.12), and assume %~x(1)) < 1. I f  there exists an n x n nonnegative-definite 
matrix .~ satisfying 

o = ,i.~ + ~ A  "T + ( h b  T + .~dT)(Im -- b D  T) - 1( h b  T +.~dT)T + ~#T, (3.31) 

^ ^ 

( A,  B)  is stabilizable, and 

det[ I m - C(s I .  - .4) -1 ~ _ /~ ]  • 0 for Rets  ] > 0, (3.32) 

then 

G (s)  is positive real. (3.33) 

Conversely, 
nonnegative-definite matrix .~ satisfying (3.31). 

Proof. The result is a direct consequence of Theorem 3.1, Proposition 3.1 and Lemma 3.1. [] 

Remark 3.1. Using Proposition 3.2 we can represent (3.31) in the equivalent form 

0 = 2'~. + . . ~ , T  + ~ , T ~ , ~  + ~,~,T,  (3.34) 

where 

A '  := h - n (  I m -~- o ) - l  c - ~ - , ~ n (  ] m + o ) - l  b T (  ] m -- b b  T) -1( I m + o ) - '  c ,  (3.35) 

-1 (3.36) ~ t  := ~ ] r ~ e ( i  m -Jr- D )  ( I  m - bTb)-l/2, 
~ '  ,= ¢~ ( Im -- b b  T) -1/2( I~ + D )-1C. (3.37) 

Remark 3.2. An interesting special case of Theorem 3.2 is the case D = I m .  Since / )  = 0 (see (3.12)), (3.31) 
or, equivalently, (3.34) becomes 

0 = ( A - ½BC) ..~ + .~ (A  - ½Bc)T + ½.~cTc.~ + ½BBT" (3.39) 

Finally, we draw connections between Theorem 3.2 and the well-known positive real lemma used to 
characterize positive realness in the state-space setting [6]. 

if  A is asymptotically stable and G(s)  is strongly positive real, then there exists a unique 
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Lemma 3.3. Let 

A B 

be an m X m transfer function with minimal realization ( A,  B, C, D ). Then G( s ) is positive real if  and only if 
there exist matrices Q ~ R nxn, L ~ R nxp, and W ~ R mxp with Q positive-definite and such that 

0 = A Q  + O AT + LL  T, (3.40) 

0 = QC T - B + L W  T, (3.41) 

0 = D + D T - W W  T. (3.42) 

This form of the positive real lemma is the dual of that given in [1,20], and the derivation is similarly 
dual. See [2] for further details on the dual positive real lemma. 

The key question of interest here is the relationship between Q satisfying (3.40)-(3.42) and .~ given by 
(3.31). To answer this question, we invoke the assumption that D + DT> 0 which, as noted earlier, is 
needed for the existence of ,q. Thus, once again, we restrict our attention to strongly positive real transfer 
functions. In this case, it follows from (3.42) that 

W W  ¢ = D + D x. (3.43) 

Now, since D + D T > 0, W is nonsingular and thus (3.41) implies (for square W) 

L = ( B -  Q C T ) W  -T. (3.44) 

Using (3.44) it follows from (3.40) that 

0 = A Q  + QAT+ ( B -  QcT)w-Tw-I(B T- CQ) (3.45) 

or, since ( w w T )  -1 = w - T w  -1, 

0 = A Q +  QAT+ ( B -  Q c T ) ( D  + D T ) - 1 ( B -  QcT)  T. (3.46) 

Thus, we have shown that under the assumption that D + D T > 0, conditions (3.40)-(3.42) are equivalent 
to one Rieeati equation given by (3.46). A similar result for the dual case appears in [6]. 

The next result connects the two Riccati equations (3.31) and (3.46). 

Proposition 3.3. Assume D + DT> 0. Then the Riccati equation (3.46) is identical to the Riccati equation 
(3.31), or, equivalently, (3.34). 

Proof. Using (3.46) it follows that 

o= - + Q + - + 

+ Q C T ( D  + D T ) - ' C Q  + B ( D  + D T ) - ' B  v. (3.47) 

The result now follows from algebraic manipulation by noting that 

( D + D T ) - 1 = 2 ( I , , , + D ) - T [ I , , - - ( D - - I , , , ) ( D + I , . ) - I ( D + I m ) - T ( D - - I ~ ) T ] - I ( I m + D ) - I .  [] 

Remark 3.3. Note that in the case D = I,,, Proposition 3.3 can readily be seen by comparing (3.39) and 
(3.46). 



4. Robust 

In this 
uncertain system 

~ ( t )  = [A - B o F ( t ) ( l  m + D o F ( t ) ) - l C o ] x ( t )  

where the uncertainty F(-) is characterized as 
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stability problem with positive real uncertainty 

section we state the robust stability problem with positive real uncertainty. Consider the 

(z) 

Fig. 1. 

F ( ' )  G ~-.'= {F( . ) :  F( t )  + FT(t)  > 0 and the elements of F(.  ) are 

Lebesgue measurable on [0, oo)}, 

when the inverse of I,, + DoF(t) exists. For convenience we shall say that the matrix function .~(-) is 
asymptotically stable if the zero solution to the system ~( t )  = ,4 ( t )x ( t )  is asymptotically stable. It is useful 
to note that (Z) can be viewed as a strongly positive real system (A, B0, Co, Do) in a negative feedback 
configuration with the time-varying gain F(t )  (see Figure 1). That is, 

2 ( t )  = A x ( t )  + Bou(t) ,  (4.1) 

y ( t )  = Cox(t ) + Dou(t) ,  (4.2) 

with negative feedback 

u( t )  = - F ( t ) y ( t ) ,  (4.3) 

where 

F(" ) G ~-. (4.4) 

Note that it follows from Lemma 3.2 that (I,,  + DoF(t)) -a exists when the system (A, B0, Co, Do) is 
strongly positive real. Thus, the question of interest is the stability of the uncertain system (Z) with 
positive real uncertainty (4.4). 

Next, we present the main result of this section which shows that the uncertain system (Z) is robustly 
stable for all positive real uncertainty of the form (4.4). For the statement of the next result define the 
uncertainty set 

q/.'= {AA(.) :  a A ( t ) =  - B o V ( t ) ( I m + D o V ( t ) ) - l C o ,  V(.) G.~- }, (4.5) 

where BoG R nxm°, CoG R m°xn, and DoG R m°xm° are fixed matrices denoting the structure of the 
uncertainty and F(t )  G R "oxmo is an uncertain matrix (see Figure 2). 

In order to state the main result of this section we need the following lemma. 

Lemma 4.1. Let 

A B 

Then the following statements are equivalent: 
(i) A, A - B( I + D ) - I C  are asymptotically stable and G(s) is strongly positive real; 

(ii) D + D v > 0 and there exists a positive definite matrix P such that 

0 > ATp + PA + (C - BTp)T(D + D T) -1(C - BTp).  (4.6) 
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I 

Fig. 2. 

Proof. (i)=* (ii): Using the dual forms of Theorems 3.1 and 3.2 and Propositions 3.2 and 3.3, (i) is 
equivalent to 

1,, - B 'T ( - - s ln  - . 4 ' ) - T C ' T C ' ( s l n  - -4 ' ) -~J~ '  > 0 for all s =joJ. (4.7) 

Next, let e > 0 be such that 

I m - - B ' T ( - - s I . - - . 4 ' ) - T ( c ' T c  ' + e I ~ ) ( s I ~ - . , 4 ' ) - ' B '  > 0 ,  for all s= jo : .  (4.8) 

Now, note that (.4', ~ ,T~,  + eI.) is observable and, since .~ - ½B'(I  - DTb)-  1/2/)Tc = A - B ( I  + D ) - I C  
and A - B ( I  + D ) - I C  is asymptotically stable, (.,t', /~') is stabilizable. Hence, it follows from Lemma 5 
of [49] that there exists a real symmetric P such that 

0 = A"rP + P.4' + p ~ , ~ , T p  + ~ , r ~ ,  + el,,, (4.9) 

or, equivalently, using the dual of Proposition 3.3, 

O = A T p  + p A  + ( C - -  BTp)T  ( D + D T ) - I ( c - -  B T p )  + eI  n. (4.10) 

Now, since A is assumed to be asymptotically stable and (C  - B T p ) T ( D  + DT)-I (C -- B T p )  + el,  > 0, it 
follows from Lyapunov theory that P > 0 so that existence of a positive definite P satisfying (4.6) is 
established. 

(ii) ~ (i): Suppose (ii) holds. Now note that 

G ( s )  + G * ( s )  = 0 A B . (4.11) 

B x C D + D x 

Next, if follows from (4.6) that there exists a positive definite H such that 

- H = ATp + PA + ( C - BTp ) T ( o + DT)-I(c- BTp ). (4.12) 

Applying the similarity transformation given by 

P ,413) 

to (4.11) we obtain 

- -A T ATp + PA 

G ( s ) + G * ( s ) -  0 A 

B T - BTp + C 

 B;CT] 
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or equivalently, using (4.12), 

_ A  T 

~(s)  + C * ( s ) -  0 
B T 

where 

and 

- (C - BTp)T(D + D T ) - a ( C  - BTp) -- H 

A 

- BTp + C 

= N * ( s ) N ( s )  + D + D ~ - ( C  - B T P ) E - 2 ( C  - B ~ e )  ~, 

~¥D-~ j 

(4.14) 

e =  [ ( c -  8Te) ¢(D + D~) '(c - Bee)+ H]'J2 > 0 

B 

Noting that D + D T - -  ( C  - B T p ) E - z ( C  - BTp) T > 0 it follows from (4.14) that G(jco) + G*(jco) > 0, for 
all co ~ R. Next, note that since P >  0 and ( c - - B T p ) T ( D  + D T ) - I ( C - B T p ) +  H >  0 it follows from 
(4.12) that A and A - B ( I +  D) - IC  are asymptotically stable. [] 

Theorem 4.1. Let 

[ _1_51 
G(s)-[Co IDol' 

where A ~ R "×" is asymptotically stable. I f  G(s ) is strongly positive real, then A + A A( . )  is asymptotically 
stable for all A A (.) ~ all. 

Proof. It follows from Lemma 4.1 that if G(s) is strongly positive real then there exist positive-definite P 
and R such that 

O = A T p + p A + ( C o  T T T - 1  - -BdP)  ( D o + D ~ )  ( C o - B T p ) +  R, (4.15) 

or, equivalently, 

1 r [ A _ B o F ( t ) ( I + D o F ( t ) ) _ , C o ]  O= [A - B o r ( t ) ( I  + DoF( t ) ) -  Co] P + P 

+ P B o F ( t ) ( I  + DoF(t))- ICo + C ~ ( I  + D o F ( t ) ) - T F T ( t ) B ~ P  

B~P) ( Do + D T ) - I ( C o -  BTp) + R. (4.16) +(Co-  T 

We now show that system (Z)  with F ( - ) ~ -  is asymptotically stable with the Lyapunov function 
V(x)  := xTpx. Indeed, the corresponding Lyapunov derivative is given by 

1 2 ( x ) : x r ( [ A - B o F ( t ) ( I + D o F ( t ) )  - c0l P +  - B o F ( t ) ( I +  D o F ( t ) ) - l C o l ) x  (4.17) 

or, equivalently, it follows from (4.16) that 

l ) (x)  = --xTI2x (4.18) 
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where 

12 := PBoF(t)( I + DoF(t))- 'C O + coT( I + OoF(t))-TFT(t)B~P 

+ ( C o -  BoTe)T (Z~0 + D J ) - I ( c 0  - 80Te) + R. 

Next, add and subtract 

c T ( I  + DoF(t))-TFT(t)(  Do + D T) -1F( t ) ( I  + OoF(t))-lCo 

to and from 12 so that 

82 = eSoF( t ) ( I  + DoF(t))-1C 0 + CoT(I + DoF(t))-TFT(t)B~P 

+ ( C o -  ~;~)T ( Z~o + Dff)-~(Co - Bg~) + R 

+ cT(1 + DoF(t))-TFT(t)(Do + D~)-1F( t ) ( I  + DoF(t))-aC o 

- Co(I + DoF(t))-TFT(t)(Do + D T) -1F( t ) ( I  + DoF(t))-ICo . 

Now, note that the last term in (4.21) can be rewritten (using some algebraic manipulations) as 

CoT( I + DoF(t))-TF(t)[(  I + OoF(t))- '  - I]C o 

+ COT[( I--  DoF(t)) - T -  I ] F ( t ) ( I  + DoF(t))-lCo 

so that (4.21) becomes 

~ = ( C o - B g e ) ( Z ~ o  + Z)o~)-l(Co - BoTe)+ R 

+ PBor( t ) ( l  + DoF(t))-1C + CoT(I + DoV(t))-TFT(t)Bge 
+ CoV(I + Dor(t))-TFT(t)(Do + D~)F( t ) ( I  + DoF(t))-1C o 

+ CoV(I + DoF(t) ) -1FT(t) ( I  + DoF(t))-1C o 

+ CoT(I + DoV(t))-1C o _ CoT(I + OoF(t))-TFT(t))Co. 

Next, grouping the appropriate terms in (4.23) yields 

12 = CoT( I + DoF(t))-X ( F( t) + rT(  t))( I + DoF( t ))-lCo 

+ C~(I + DoF(t))-TFT(t)(Do + D~)F( t ) ( I  + DoF(t))-aC o + R 

+(Co- 8~e)(Do + D~)-~(Co - B;~P) 

- ( C ~  - P B o ) F ( t ) ( I  + DoF(t))-aCo - cT( I + DoF(t))-TF(t)(Co - B~P) 

or, equivalently, 

12 = R + C~(1 + DoF(t))-T ( F(t) + FT(t))(  I + DoF(t))-lCo 

+ [( D O + DOT)-1/2(C O - B ~ P ) -  (D O + DT)I/ZF( t)( I + DoF(t))-lCo] T 

• [ (D o + DTo)-I /Z(Co-B~P)-(Do + D~)a/ZF(t)(I + DoF(t))-lCo]. 

Thus it follows from (4.18) and (4.25) that I,; '(x)=--xTI2x < 0  for all 
A + AA(.) is asymptotically stable for all AA(.) ~ q/. [3 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.25) 

F(-) ~ 5 ,  which shows that 
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The key feature of the uncertainty set #/ is that the uncertain perturbation AA(.)  involves a phase 
constraint. To see this note that if D O + DOT > 0 and F( . )  ~ ~-, then 

F ( t ) ( I  m + DoF(t)) -1 + [F(t)(Im + DoF(t))-I] T 

= ( I  + DoF( t ) ) -T[F( t )  + F ( t )  T + F(t)T(  Do + DT)F( t ) ] ( I  + DoF( t ) ) - '>O.  

However, the term F(t)(1 m + DoE(t)) -1 is bounded in magnitude even though F(t) is not. For example, if 
F(t) is a scalar, then IF(t)(1 +DoF(t))- l l  < 1/D o. Thus the uncertainty set q/ incorporates both 
magnitude and phase constraints. 

Next, we provide an alternative characterization of the uncertainty set qg. For this result, we assume for 
convenience that the uncertainty F(-) ~ ~" is time-invariant. In order to state this result we require some 
additional notation. Let 

,~:= { F ~  R"oX"o: F + F T > 0 ) ,  (4.26) 

and 

: : - -  { : :  f f = F ( I +  DoF)- ' ,  F ~ } ,  

where D o + Do T > 0 and by Lemma 3.2, det(I  + DoF ) 4: O. Note that ~ c ~ .  

(4.27) 

Proposition 4.1. Let D O ~ R moxmo and assume D o + DOT is positive definite. Then 

~__. { /~E RmoXmo: det( i _ ffDo ) 4: 0 and ff( D ° + DT ) ffT < ~ + /~T}. (4.28) 

Proof. ' c '  Suppose P ~ .  Then there exists F ~ . ~  such that F =  F ( I +  Do F) -1. Hence FD 0 = 
F(I + DoF)-aDo so that 

spec(FD0) = spec[ F( I + DoF)-IDo] 

where 'spec' denotes spectrum. Hence, 1 ~ spec(ffD0) so that d e t ( I - f f D o ) # .  0. Next note that F =  
( I -  ffDo)-lff. Hence it follows that 

p +  p T  _ P(  Do + DOT ) P v = P +  p T  _ PDoPr  _ pDOTpT 

-- e ( , -  ( , -  e 0)r 

= ( I -  f fDo)[ ( I -  f fDo)-ae+ F T ( I - -  ffDo)-T] ( I  - ffDo) T 

= ( I -  e o)( r + I -  eDo) 

This proves ' c '. 

> 0 .  
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' D '  Let if be such that det(I  - FD0) 4, 0 and i f (D o + Dff)ff  T < i f+  fiT. Since det(I  - ifDo) ~ O, define 
F := ( I  - ifD0)- aif. Then it follows that 

F + F  T ( I - i f D o ) - l i f  -- = + i fT ( i  ffOo) -T 

= ( I - -  i f D o l - l [ i f ( I  - ifOo)T'+ ( I - -  i f D 0 ) i f T ] ( I  - FDo)  T 

= ( i _ i f D o ) - ' [ i f  + pT  ~(Do "4- DTo l f f T l ( l - - i f D o )  -T 

>_0. 

Hence F ~ o ~ .  Furthermore since F =  ( I -  FDo)-l i f  is equivalent to i f =  F( I  + DoF) -1, i f ~ .  [] 

Remark 4.1. It is shown in Section 5 that a natural characterization of uncertainty that can be captured by 
(4.5) arises in lightly damped structures with uncertain modal data. An uncertainty structure similar to 
(4.28) was considered in [41] for modeling uncertainties as sector-bounded nonlinearities. However, no 
positive real uncertainty interpretation was provided in [41]. 

5. Sufficient conditions for robust controller synthesis with positive real uncertainty 

In this section we state the Robust Stabilizability Problem With Positive Real Uncertainty. The problem 
involves the set °d given by (4.5) of uncertain perturbations AA(.) of the nominal (A, B, C) system. The 
goal of the robust stability problem is to determine a static output feedback controller that stabilizes the 
plant for all variations in ql. See Figure 3. 

Robust Stabilizability Problem With Positive Real Uncertainty. Determine K ~ R "xt 
closed-loop system consisting of the n th-order controlled plant 

Y c ( t ) = ( A + A A ( t ) ) x ( t ) + B u ( t ) ,  t ~ [ 0 , ~ ) ,  

measurements 

y ( t ) = C x ( t ) ,  

and output feedback controller 

u( t )  = r y ( t ) ,  

is asymptotically stable for all AA(-) E ~ .  
For each uncertain variation AA(.) ~ q/, the closed-loop system can be written as 

~ ( t ) = ( A + B K C + A A ( t ) ) x ( t ) ,  t~[O,  ~ ) .  

such that the 

(5.1) 

(5.2) 

(5.3) 

(5.4) 

I A  so s l  

,-,:1 co o°o I C 0 0 

Fig. 3. 
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The following result gives sufficient conditions for constructing a feedback gain K that solves the Robust 
Stabilizability Problem With Positive Real Uncertainty. For the statement of this result define 

1, := Q c T ( C Q C  T) - ' C ,  ~± := 1, - 1,, R 0 := (D  O + DoT) - ' ,  

for arbitrary Q ~ R "×" such that det CQC T ~ 0, and let R, R a and R 2 be arbitrary real n x n and m × m 
positive-definite matrices. 

Theorem 5.1. Suppose there exist n × n nonnegatioe-definite matrices Q, P satisfying 

0 = ( A  - BR21BTp~ - BoRoCo)a + Q ( A  - BR2aBTpp - BoRoCo) T 

+ OCoVRoCoa + BoRoB~ + R ,  (5.5) 

0 = ( a  - BoRoC o + QCoTRoCo)Tp + P ( A  - BoRoC o + QCoTRoCo) 

+ R l - PBR21BTp + rTxPBR2aBTp~,±, (5.6) 

and let K be given by 

K = - R 2 aBTpQcT(CQCT)  -1 (5.7) 

Then A + B K C  + A A( .  ) is asymptotically stable for all A A( .  ) ~ ql. 

Proof. With K given by (5.7), it follows that (5.5) is equivalent to 

0 = (A  + BKC - BoRoCo) Q + Q ( A  + B K C  - BoRoCo) T 

+ QCoVRoCoQ + , o R o B ~  + R,  (5.8) 

which further implies 

0 = (A  + B K C ) Q  + Q ( A  + B K C )  T 

+ (B0 - Qc0T)(z 0 + DoT)-'(Bo-- Qc : )T  + R. (5.9) 

Furthermore, (5.6) is equivalent to 

0 = ( A  + B K C  - BoRoC o + QCgRoCo)Tp 

+ P ( A  + BKC - BoRoC o + QCTRoCo) + R,  + KTR2K.  (5.10) 

Note that (5.10) is an auxiliary equation and is only needed for computing the gain K. Furthermore, note 
that (5.9) is equivalent to (3.46), or, equivalently (3.31). It now follows from Lemma 4.1 that (A + 
BKC, B o, C o, Do) is strongly positive real which, by Theorem 4.1, implies that A + B K C + A A ( . )  is 
asymptotically stable for all AA(.)  ~ q/. [] 

Remark 5.1. Theorem 5.1 presents sufficient conditions for designing robust controllers for a time-varying 
positive real uncertainty structure. These conditions are derived by first obtaining necessary conditions for 
an auxiliary optimization problem in the spirit of [14,23] and then showing by construction that these 
conditions serve as sufficient conditions for robust stabilization with positive real uncertainty. Specifically, 
we minimize J ( K )  := tr Q ( R  1 + CTKTR2KC)  subject to Q satisfying (5.9). It can be shown that J ( K )  is 
an upper bound to an H 2 cost functional thus providing a worst-case performance bound. 

Next, we specialize Theorem 5.1 to the full-state feedback case. When the full state is available, i.e., 
C = I , ,  the projection v = 1. so that i,. = 0. In this case (5.7) becomes 

K =  - R 2 1 B T p  (5.12) 



2 0 6  W.M. Haddad, D.S. Bernstein / Positive real uncertainty 

and (5.5), (5.6) specialize to 

0 = ( h  -- B R 2 1 B T p  - BoRoCo) Q 

+ Q ( A  - BR21BTp - BoRoCo) T + QCoTRoCoQ + BoRoB ~ + R,  (5.13) 

0 = (A  - BoRoCo + QCJRoCo)Tp 

+ P ( A  - BoRoC o + QC~RoCo) + R 1 - PBR~1BTp. (5.14) 

Note that even in the full-state feedback case the result involves two coupled Riccati equations. This 
should not be surprising since as pointed out in Remark  5.1 the results were obtained via an auxiliary 
optimization problem. Similarly, the H 2 / H  ~ full-state feedback problem considered in [23] also involved 
two coupled equations. 

A salient feature of (3.39) is the fact that the shift - {BC to the matrix A can be nonpositive. That  is, 
- {BC can represent a left shift in contrast to the usual a-shift, which is a uniform open-loop right shift 
used to place the closed-loop poles to the left of - a ,  where a > 0 [7]. The use of a left shift to the plant 
dynamics matrix has been used to model frequency uncertainty in lightly damped flexible structures 
[11-13,27,28]. Specifically, consider modal dynamics of the form 

A = block-diag - ~ol - 71 . . . . . .  ~0r - ~r ' 

where ~i > 0 denotes the decay rate and ~0 i denotes modal frequency. Also consider uncertainty of the 
form 

r 

AA = E o,A,, (5.16) 
i=l 

whcre o i e [-3i, 3,], i = 1 ..... r, are real, uncertain parameters with given bounds 3~, and the matrices A~ 
are defined by 

Ai= block-diag(0 .....  0 , [_  1 . 

where the matrix [ 0  I] corresponds to the i-th diagonal block of A. The skew symmetric structure of A, 
accounts for uncertainty in the i-th modal frequency ~0~. In [11-13,16,18,27,28] the Maximum Entropy 
design approach is predicated upon a modified covariance (Lyapunov) equation of the form 

r 

0 = (A  + S ) Q  + Q ( A  + S)  T + ~ 3~AiQA~+ V, (5.18) 
i = l  

where the shift S is defined by S := l r r  ~2a2 7,_,~=wi,.~. Note  that S has the form 

S = block-diag( _1~8211 2 ,  " " ' ,  - -  { 8 ) 1 2  ) 

so that S effectively shifts each mode to the left by introducing a (fictitious) augmentation to the 
open-loop damping. To relate (5.18) to (3.39), consider the case of a single uncertain modal frequency by 
setting r = 1. Furthermore, let 

[0 11 B ° = C o = 3 1 1 2 '  A I =  - 1  ' 

so that (with B, C replaced by B 0, C o in (3.39)) - {BoC o 1 2 = _ 73112 = 1~2A2 ~ o ~  1 = S. The remaining terms 
32AxQA~ + V in (5.18) can be shown to play a role similar to the terms {.~cTc,~ + {BB T in (3.39). See [15] 
for further details. Finally, the uncertain perturbations AA given by (4.5) (for constant F )  have the form 

aA  = -37F( I 2 + DoF )-I (5.19) 
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In the limiting case D O ~ 0, setting F =  - ( o l / 8 2 ) A 1  (so that F +  F v > 0), (5.19) becomes 

A A  = oaA 1. 

Hence ¢/given by (4.5) (for constant F )  can be used to capture frequency uncertainty of the form (5.16). 
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