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D;lcl  = (c;Dll)r (A.19) Robust Strong Stabilization via 
Modified Popov Controller Synthesis 

(A.21) 

These equations lead to (A.15). The state-space computations of WO, 
II’, I,,, lk, l i d .  -111, -112, A\-, and Jf based on three exponentials 
(A.l), (A.2) and (A.3) can be verified by the same technique as in 
[I]. 0 stabilizing Popov dynamic compensators. 

Abstract-In this paper we merge the parameter-dependent Lyapunov 
function framework used to construct robust Popov controllers with 
the a ptiori and a ,,], [81 
for obtaining stable compensators. Specifically, we derive constructive 
sufficient conditions that yield robust Lyapunov and asymptotically stable 

D ; * D 1 1  = ( D ; 1 D 1 2 ) T  

approaches Bven in [41, 

Remark A.2: 
We need three exponentiations of sizes 11 + m2, 2n, and 
2 ( n  + m z ) ,  where n and n12 are the dimensions of the state 
s ( t )  and the control input u ( t ) ,  respectively. 
If we consider a problem J ( I<)  < 7 instead of J( I<)  < 1, 
only C1 and D12 should be replaced by Cl/? and DIZ/?  in 
the above formulas. Hence, recalculation is required only for 
r in the ?-iteration for the optimization, since and P are 
independent of 7 

REFERENCES 

B. Bamieh and J. B. Pearson, “A general framework for linear periodic 
systems with applications to H ,  sampled-data control,” IEEE Trans. 
Automat. Contr., vol. 37, pp. 418435, 1992. 
R. W. Brockett, Finite Dimensional Linear Systems. New York: Wiley, 
1970. 
T. C. Chen and B. A. Francis, “H2-optimal sampled-data control,” ZEEE 
Trans. Automat. Contr., vol. 36, pp. 387-397, 1991. 
T. C. Chen and B. A. Francis, “On the C2-induced norm of a sampled- 
data system,” Syst. Contr. Lett., vol. 15, pp. 211-219, 1990. 
T. C. Chen and B. A. Francis, “Sampled-data optimal design and robust 
stabilization,” in Proc. ACC, 1991, pp. 2704-2709. 
G. Dullerud and K. Glover, “Robust stabilization of sampled-data 
systems to structured LTI perturbations,” IEEE Trans. Auromat. Contr., 
vol. 38, pp. 1497-1508, 1993. 
B. A. Francis, Lectures on H x  Control and Sampled-Data Systems. 
CIME Lecture Notes, 1990. 
S.  Hara and P. T. Kabamba, “Worst case analysis and design of sampled 
data control systems,’’ in Proc. 29th CDC, 1990, pp. 202-203. 
S. Hara, M. Nakajima, and P. T. Kabamba, “Robust stabilization in 
digital control systems,” in Proc. MTNS-91, Kobe, Japan, 1991. 
Y. Hayakawa, S. Amano, and S. Fujii, “On an equivalent discrete-time 
problem for the H ,  problem of sampled-data systems,” in Proc. SZCE 
DST, 1991, pp. 99-104, (in Japanese). 
P. T. Kabamba and S. Hara, “Worst case analysis and design of 
sampled data control systems,” IEEE Trans. Auromat. Contr., vol. 38, 
pp. 1337-1357, 1993. 
J. P. Keller and B. D. 0. Anderson, “A new approach to the dis- 
cretization of continuous-time controllers,” in Proc. ACC, 1990, pp. 
1127-1 132. 
D. G. Luenburger, Optimization by Vector Space Methods. New York: 
Wiley, 1968. 
N. Sivashankar and P. P. Khargonekar, “Characterization of the CZ- 
induced norm for linear systems with jumps with applications to 
sampled-data systems,” Preprint, Dept. Elect. Eng., Univ. Michigan, 
1991. 
-, “Robust stability and performance analysis of sampled-data 
systems,” ZEEE Trans. Automat. Contr., vol. 38, pp. 58-69, 1993. 
W. Sun, K. M. Nagpal and P. P. Khargonekar, “3.1, control and filtering 
for sampled-data systems,” in Proc. ACC, 1991. 
H. T. Toivonen, “Sampled-data control of continuous-time systems with 
an H, optimality criterion,” Auromarica, vol. 28, pp. 45-54, 1992. 
-, “Sampled-data H, optimal control of time-varying systems,” 
Automatica, vol. 28, pp. 823-826, 1992. 

I. INTRODUCTION 

Many practical applications of robust feedback control involves 
constant real parameter uncertainty, whereas H ,  theory guarantees 
robust stability against arbitrary time-varying uncertainty, thus en- 
tailing undue conservatism. In a recent series of papers [1]-[3] a 
parameter-dependent Lyapunov function framework was developed 
to address the problem of real parameter uncertainty. Since the 
uncertain parameters appear explicitly in the parameter-dependent 
Lyapunov functions, the ability of such a framework to guarantee 
robust stability with respect to arbitrary time-varying parameter 
variations is curtailed, thus reducing conservatism with respect to 
constant real parameter uncertainty. As an immediate application 
of the parameterized Lyapunov function framework, the authors 
in [l], [2] provide a generalization of the classical multivariable 
Popov criterion to the case of fully coupled linear uncertainty. 
These results were then used in conjunction with fixed-order op- 
timization techniques to obtain Riccati characterizations of robust 
controllers. 

In certain applications, the use of robust stable compensators 
greatly simplifies controller testing and implementation. The problem 
of synthesizing stable stabilizing controllers has been of interest for 
many years [lo] and a variety of techniques have been proposed 
based on modification of existing synthesis methods to ensure stable 
compensation [4], [ 5 ] ,  [7]-[9]. In particular, in [4], [5], [7]-[9], 
the authors guarantee suboptimal strong stabilization by modifying 
standard H2 and H z / H ,  theory. Specifically, two approaches are 
proposed that guarantee strong stabilization, an a priori modification 
to H2 theory (that is, prior to optimization) and an a posteriori 
modification to the standard H2 design equations. 

In this paper we merge the parameter-dependent Lyapunov function 
framework for designing robust Popov controllers with both the 
a priori and a posteriori approaches for strong stabilization to 
obtain robust strong stabilizing controllers. The results presented 
herein provide constructive sufficient conditions for robust stable 
compensators with robust H z  performance bounds. 

It is important to note that the conditions given in this paper for 
robust, strong stabilization are constructive and thus are sufficient but 
not necessary. The relative conservatism of the various proposed con- 
structions is therefore problem dependent. Numerical techniques for 
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implementing these conditions can be developed using the techniques 
applied in [4], [5] to the problem of (nominal) strong stabilization. 

11. ROBUST STRONG STABILIZATION 

In this section we introduce the robust strong stabilization dynamic 
output feedback control problem. Specifically, we generalize the 
a posteriori approach for stable compensation [4], [5] to design 
robust stable full- and reduced-order Popov controllers. This problem 
involves a set U C 'R""" of uncertain perturbations 1-4 of the 
nominal system matrix -4. 

Robust Strong Stabilization: Given the 11 th-order stabilizable and 
detectable plant 

i ( t )  = (-4 + A.4)r(t)  + B t / ( t )  + DItp( t ) .  t 2 0. ( 1 )  
(2) 

where i r ( t )  E R""", w ( f )  E 'E!" is standard white noise, and 
y ( t )  E R', determine an u,th-order dynamic compensator 

y ( t )  = C.r(t) + D 2 ~ ( t )  

i < ( t )  = -4J,.(f)  + B,y ( f ) .  ( 3 )  
u ( t )  = C c . r r ( f )  (4) 

that satisfies the following design criteria: 
i) the closed-loop system (1)-(4) is asymptotically stable for all 

1-4 E L4; 
ii) the compensator dynamics matrix .ac is asymptotically stable; 

and 
iii) the performance functional 

.J(.&.. Bc. C,) 

is minimized. 
Next, we assign explicit structure to the set U. Specifically, the 

uncertainty set U is defined by 

U 2 {A-4 E R""": A=1= BoFCo. F E F} (6) 

where F satisfies 

F C - .f 2 { F  E Rn'oXn'O: 0 5 F 5 -If} (7) 

and BO E R"x"'o, CO E R'"ox" are fixed matrices denoting 
the structure of the uncertainty, F E R7"0X'1L0 is an uncertain 
symmetric matrix, and E R"70X"'0 is a given positive definite 
matrix. We restrict our attention to symmetric uncertainties F for 
convenience only. More general uncertainty sets as in [I], [2] can 
also be considered. 

For each uncertain variation Az4 E U, the closed-loop system 
(1H4)  can be written as 

i q f )  = (-4 + A.i).iqf) + D u q t ) .  f 2 0 (8) 

where 

and where the closed-loop disturbance DIP( t ) has intensity 
f- 2 DD', where 

and, for convenience, I;, = D I D ;  = 0.  The closed-loop system 
uncertainty A A i  has the form 

AAi  = &FCo (9) 

where 

B 0 - [07zcx,,,o]. Bo 
CO 2 [CO On70xn, l .  

Finally, if .i + AA4 is asymptotically stable for all AA E U for a 
given compensator B c .  C c ) ,  then it follows from Proposition 
2.1 of [2] that the performance measure (5) is given by 

where PA 4 satisfies the f i  x f i  ( 6  2 i i  + t i c )  Lyapunov equation 

0 = ( .I  + A.i)TPA i + FA&i + A 2 )  + R (11) 

where 

and, for convenience, R12 = ETEL = 0. 
Next, define the set of compatible Popov multipliers .I' by 

2 (-1- E R"'O""'o: FA\- = -YTF 2 0. F E F}. 

Now, as shown in [ I ]  and [2], replacing the Lyapunov equation (11) 
with 

0 = . iTP + P-4 + (CO + SC".i + B p ) T [ ( L \ i - l  - SP'oBo) 
+(K1 - AvCOBO)T]-l(c?O + SC0-i + B; P) + R 

J(--L. B ~ .  c ,)  = t r ( F +  P ~ p C o ) P  

(12) 

and minimizing an upper bound for the H i  cost given by 

(13) 

where ! I  satisfies F T  5 ~ r ,  we can obtain sufficient conditions 
that characterize fixed-order dynamic output feedback controllers 
guaranteeing robust stability and performance. For convenience in 
stating this result, define 

X -1 CTT>-'C. RO -1 (-\I-' - SCOBo) + (-\I-' - S C O B O ) ~ ,  
- 

C. 2 co + -\*c0.-l. R~~ -1 R% + B~C;-\-~ R; ' -VC~B,  
P ,  2 B ~ P +  B ~ C ; - \ - ~ R ; ' ( C +  B X P ) .  

.-lp 2 A + B~R; 'C ' .  .4p -1 

.4Q -1 --lP + B ~ R ; ' B , T P  - ( I  + B~R;~-YC,,)BR;,'P,. 

- Q? + B~R;,'B;P. 

Theorem 2.1 [2] :  Let n ,  5 1 1 ,  assume RO > 0 and let N E , Ir .  
Furthermore, suppose there exist tl x n nonnegative-definite matrices 
P. Q. P. cj satisfying 

o = .A;P + p;lP + R~ + c1 R;IC + P B ~ R ; ' B , T P  
- P,' R,' P, + ~f P,' R;: P, T ~ .  

- QFy + T i  Q % ( ) T f .  

(14) 
O =  [ . - lp+BoRt 'B;(P+P)]Q 

+ Q[.-lp + BoR;IB,T(P+ P)]' + 1; 
(15) 

(16) 

(17) 

~ = ~ ~ ~ P + P = ~ , + P B ~ R , ' B , T P + P ~ T R ~ ; ~ ~ P ~  
- T~ T T  P, R;: P, TI. 

o = A ~ Q l j  + 0.4; + QTQ - TICJTQTT:. 
^ ^  

rank() = rankP = rankQP = i i r .  (18) 
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and let 

T 2 GTT. T I  2 I,, - T (20) and P2 = GPG' > 0 161, it follows that 

.4TPz + P2A, = -G[A$P + P;Lp + RI + CTR;'C 

-4, = r(.AG - Q T ) G ~ .  
B, = rQcTi;-'. (22) 

(21) 

c, = -R;,'P,G~. (23) 

Then ( E .  .i + 1-i) is detectable for all AA E 14 if and only if 
-4 + 1-4 is asymptotically stable for all AA E U. In this case the 
performance of the closed-loop system satisfies the bound 

J(&-lC.  B,. C,) 5 t r [ (P  + P)l i  + PQEQ + C,TpCo17i]. (24) 

Next, we use the a posteriorz approach developed in [4] to modify 
the synthesis equations given in Theorem 2.1 to construct stable 
Popov controllers. 

Theorem 2.2: Let n ,  5 n ,  assume RO > 0 and let -1- E .\'. Let 
Q(P.  P )  L o satisfy 

-4;P+ p . 4 ~  + [ ( I+BoR~' - \ -Co)BR;~P~] 'P  
+ P ( I  + B~R,-'-~-C~)BR;:P, + C ~ P .  P )  2 o (25) 

for all nonnegative-definite P. P .  Furthermore, suppose there exist 
n x n nonnegative-definite matrices P. Q. P .  Q satisfying 

0 = .4$P + P-4p + RI  + R ( P .  P) + CTR,'C 
+ P B ~  R;' ~ , 7  P - P,' R;: P, 
+ TIP,' R;: P, T ~ .  (26) 

0 = [.4p + DoR,'Bi ( P +  P ) ] Q  
+ Q [ ~ 4 ~ + B o R ~ ' B ~ ( P + P ) ] ' + T ;  -QEQ 

+ TI QTQ T I .  (27) 
O =  -4$P+P.-l ,+PBoR,'B,TP 

+ P,'R;: Pa - ~f P,'R,-d P, T ~ .  (28) 

(30) 
Q P  = G'-iIr. rG' = I,+. si E n n c X n c .  (31) 

o = . A ~ Q  + 0-4; + QTQ - T I ~ E ~ T : .  

T 2 G'T. T- 2 I,, - T (32) 

(29) 
^ ^  

rank0 = rankP = rankQP = n,. 

and let 

A, = r(.iQ - Q S ) G ~ .  
B,  = TQCTI,'. (34) 
c, = - R , - ~ P , G ~ .  (35) 

(33) 

Then the following results hold. 
i) (I?. .-i + 1-j) is detectable for all 1-4 E U if and only if 

ii) is Lyapunov stable. 
iii) If R I  > 0, then -Ac is asymptotically stable. 
iv) The performance of the closed-loop system satisfies the bound 

-4 + 1--i is asymptotically stable for all 1 A  E U. 

~(-4, .  B,. c,) 5 t r [ ( P +  + PQEQ + c ~ ~ c ~ I ; ] .  

+ P B ~ R ; ~ B : P +  PB~R; 'B;P 
+ [ ( I  + D O R ~ ' ~ Y C O ) L ~ R ~ ~ P , ] ~ P  
+ P ( I  + BoR;'SCo)BR~:P,  
+ 12( P. P)]GT 5 0. 

Thus, A, is Lyapunov stable. If RI  > 0, then ATP2 + PzA, < 0 
U 

Note that by letting R( P. P )  = 0, we recover the standard Popov 
controller where A, is not necessarily stable. Since the ordering 
induced by the cone of nonnegative-definite matrices is only a partial 
ordering, there does not exist a unique function a(., .) satisfying (25). 
The next result gives four such functions. For convenience in stating 
this result let @ 2 ( I  + BoR;'SCo)BR,-bP,. 

Proposition 2.1: Given a. j > 0, the following nonnegative 
definite functions n(P,  P )  satisfy (25). 

i) ~ I ( P .  P )  = o-'.4gL4p + a ' ~ '  + j-'+'@ + J'P'. 
ii) CI(P.  P) = ~ A T ~ P A ~  + n- 'P + !j-'+'+ + ?P*. 
iii) Q(P.  P )  = o-2~4FL4p + a 2 p 2  + 3aTP+ + ,3-'?. 
iv) I ~ ( P .  P )  = a A 4 g ~ ~ 4 p  + a - ' ~  + 3aTP+ + T ' P .  

which implies that A, is asymptotically stable. 

Proofi The proof follows from straightforward algebraic 

Finally, note that in the full-order case n ,  = n, it follows that 
T = G = r = I ,  and T I  = 0. Thus the last term in each of 
(26)-(29) can be deleted, and (33)-(35) become 

(37) 

manipulations. 0 

- 
-4, = A, - QT. 

Remark 2.1: Note that by letting 12( P. i)) = 0 in the above 
formulation, we recover the Popov controller synthesis equations 
obtained in [ l ]  and [2] for full-order dynamic compensation. It is 
interesting to note that in contrast to the full-order case given in [ l ]  
and 121, which involves three matrix equations for constructing Popov 
controllers, the full-order design equations for characterizing stable 
Popov controllers involve four matrix equations. 

Remark 2.2: To consider uncertainties with upper and lower 
bounds of the form MI 5 F 5 AI2, where F. 5 1 1 ,  MZ E Rmoxmo 
are symmetric matrices we use the shifting technique discussed in 
121. In this case, Theorem 2.2 holds with F ,  -4, and M replaced by 
F - -111. -4 + BO 3f1 CO, and Mz - .!Il, respectively. For further 
details, see 121. 

111. AN ALTERNATIVE APPROACH TO ROBUST STRONG 
STABILIZATION BASED UPON H Z  COST MODIFICATION 

In t h s  section we present an alternative approach for designing 
stable Popov controllers. This approach involves an a priori modifi- 
cation to the Popov controller synthesis framework presented in [ 11 
and [2] (that is, prior to optimization) in the vein of [4], [5], [7], and 

(36) 181. This approach addresses the minimization problem 

Proo$ Note that the H2 performance bound and the closed-loop 

0 = - 4 ~ P + P . 4 p + ~ B o R o ' ~ , T P + t - 4 ~ P + P . 4 P + R 1  +f2(P. P )  

~ ( ~ 4 ~ .  D ~ .  c,) = t r ( P  + C:pLco)lr 

0 = ,iTP + P,i + (CO + sC,;3 + B:P)T[(A- '  - X C O B O )  

(40) 
robust stability of A + 3.4 are direct consequences of theorem 8.1 
of 121. To prove ii), we note that adding (26) to (28) yields 

to 

+ (r' - SCOBo)T]- '  

' (CO + S C 0 , i  + i g P )  + R + IqP) (41) 
+C'R;'C+ P B ~ R ; ' D ~ P .  

Using the fact that where Q(.) is a matrix function that satisfies Q ( P )  2 0 for all 
P 2 0. As shown in [ l ]  and [2], minimizing (40) subject to (41) with 

- 
-4p =.4Q-&~+(I+BoR,'.\-Co)BR~:P, 
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( I ( ? )  = 0 guarantees robust stability and robust H2 performance. 
This result follows from the fact that (40) is a bound for (5), that is, 
J ( & .  Bc. C,) 5 J(-4,-. B,. C r ) .  To also guarantee stability of the 
compensator dynamics &A,-, we set Q ( P )  to 

where P = [$; Now using the fixed-structure optimization 

approach out ined in [ l ]  and [2] to minimize (40) subject to (41) with 
O ( P )  given by (42) yields the following theorem. 

Theorem 3.1: Let n ,  = 1 1 ,  assume Ro > 0, and let -1- E .\-. 
Suppose there exists n x 11 positive definite matrix P and 17 x 11 

nonnegative-definite matrices P, Q ,  and (2 satisfying 

o =  - ~ $ P + P A ~ + R ,  - C ? ~ R ; ~ C ? - P B ~ R ; ~ B ~ P  
+ PBR,’ B 7 P .  (43) 

. ( P + i . 1 1 ~  + I-, - y ~ y  
+ BR; , ‘B~PQ + Q P B R T ~ B I ’ .  (44) 

O =  [ . 4 ~  +BnR,’B;(p+P)]y+Q[.-lp +BoR;’BgT 

0 = .4$P+ P. iP  + PBoR,‘B:P- P B R , ’ B 7 P .  (45) 
0 = + Q S ) ~  + Q ( A 4 p  + QF)’ 

+ y’y - BR,’ B’PQ - QPBR;”‘ B~ (46) 

(47) 

and let 
- 

= A~ - QY - BR;; B’.P - r - l  PO’ R;,‘ P, 

and B,. C, be given by (38) and (39). Then the following results 
hold. 

i) (E .  ai + Li) is detectable for all 1-4 E 14 if and only if 

ii) .4,- is Lyapunov stable. 
iii) The performance of the closed-loop system satisfies the mod- 

ified cost (40). 
Proofi Since Q(P) 2 0, it is shown in [ l]  and [2] that if there 

exist P and P satisfying (43) and (45), or, equivalently, (41) with 
PI = P+P, PI? = -P, and P2 = P,  then -<+AA$ is asymptotically 
stable for all 1-4 E U .  Now applying the Lagrange multiplier method 
to minimize (40) subject to (41) yields 

.4TP+PAc = -[(B’p- P n ) ’ - R T : ( B r P - P O )  

-4 + A-4 is asymptotically stable for all 1-4 E U. 

+ Pd RTa’ R? RT“‘ Po 
+ ( B : P -  - ~ - C O B R ~ ~ P , ) ~ R , ’  
. ( B ; P - S C o B R , ’ P f l ) ]  < 0  

which implies that is stable in the sense of Lyapunov. Equations 
0 

Remark 3.1: Note that if the uncertainty in the plant dynamics is 
deleted, that is, BO = 0 and CO = 0, then Theorem 3.1 specializes 
to Theorem 3.2 of [5] in which n( .  = 1 1  and 7 -+ x. 

(43)-(46) follow from algebraic manipulations. 

IV. CONCLUSION 
In this paper we extended the Popov controller synthesis tech- 

nique proposed in [l], [2] to obtain Hn-suboptimal robust stable 
compensators. Two approaches were developed for obtaining robust 
strong compensators. The first approach involves modifying the 
Popov design equations given in [ 11, [2] to guarantee stability of the 
compensator, while the second approach is based upon the addition 
of a new term in the Popov Riccati equation given by (12). 

REFERENCES 

W. M. Haddad and D. S. Bemstein, “Parameter-dependent Lyapunov 
functions, constant real parameter uncertainty, and the Popov criterion 
in robust analysis and synthesis Part I ,  Part 2,” in Proc. IEEE Con$ 
Dec. Conrr., Brighton, U.K., Dec. 1991, pp. 227&2279, 2632-2633. 
- , “Parameter-dependent Lyapunov functions and the Popov crite- 
non in robust analysis and synthesis,” IEEE Trans. Automat. Contr., to 
appear. 
W. M. Haddad, J. P. How, S. R. Hall, and D. S. Bemstein, “Extensions of 
mixed-Lr bounds to monotonic and odd monotonic nonlinearities using 
absolute stability theory,” in Proc. IEEE Con$ Dec. Conir., Tucson, 
AZ, Dec. 1992, pp. 2813-2832. 
Y. W. Wang and D. S.  Bemstein, “H2-suboptimal stable stahiliza- 
tion,” in Proc. lEEE Con$ Dec. Conir., San Antonio, TX, 1993, pp. 
1828-1829. 
Y. W. Wang, W. M. Haddad, and D. S. Bemstein, “Stable stabilization 
with H2 and H, performance constraints,” J .  Math. Sysr. Estimation, 
Conrr., to appear. 
D. C. Hyland and D. S. Bernstein, “The optimal projection equations 
for fixed-order dynamic compensation,” IEEE Trans. Automat. Contr., 
pp. 1034-1037, 1984. 
M. J. Jacobus, “Stable, fixed-order dynamic compensation with appli- 
cations to positive real and H x  -constrained control design,” Ph.D. 
dissertation, Univ. New Mexico, Albuquerque, 1990. 
M. J. Jacobus, M. Jamshidi, C. Abdallah, P. Dorato, and D. S. Bemstein, 
“Suboptimal strong stabilization using fixed-order dynamic compensa- 
tion,” in Proc. Amer. Conrr. Con$, San Diego, CA, 1990, pp. 2659. 
Y. Halevi, D. S. Bemstein, and W. M. Haddad, “On stable full-order 
and reduced-order LQG controllers,” Opt. Contr. Appl. Meth., vol. 12, 
pp. 163, 1991. 
D. C. Youla, J. J. Bongiomo, Jr. ,  and C. N. Lu, “Single-loop feedback- 
stabilization of linear multivariable dynamical plants,” Automatica, vol. 
IO,  pp. 159, 1974. 

Preconditioning of Transfer Matrices: Bounding the 
Frequency Dependent Structured Singular Value 

Hector Rotstein 

Abstract-The precondition of matrices by diagonal scaling is a useful 
tool for bounding the structured singular value. Although the constant 
matrix case has been well studied, comparatively little is known about 
the behavior of the scaling matrices as a function of frequency. In this 
paper this problem is addressed by considering the optimal Frobenius- 
norm scaling. It is shown that, under mild assumptions, there exist 
stable and minimum-phase diagonal transfer matrices which minimize 
the Frobenius-norm of a scaled transfer matrix. 

I. INTRODUCTION 

During the past decade, ‘7-L has emerged as a powerful synthesis 
method for linear time-invariant systems. It is not hard to see, though, 
that capturing all desirable specifications into a single norm objective 
is not possible in all but a small number of problems, without 
introducing potentially large degrees of conservatism. Consider, for 
instance, the problem illustrated in Fig. I ,  where P is a generalized 
real rational plant, I< is a controller, and 1 is an uncertainty transfer 
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