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A I)- 'C' gives 

CP( - SI - A ')- ' C' + C( S I  - A ) ~ 'PC' + C( SI - A ) ~ 'PC'R - I 

' CP( - SI -  A ') ~ IC' - C(SI  - A ) -  'EQE'( - SI - A ')-IC' = 0 

which yields 

[ C(SI -  A ) -  'PC'R ~ I" + R " * ] [ R -  1'2CP( - S I -  A ')- IC'+ R 

= R + C(SI-  A )- IEQB'( - SI -  A I ) -  'Cr.  (10) 

By virtue of the stabilizability and detectability properties of the system, 
there is a A ( S )  such that 

A(S)A'(  - S ) = R  + C(SI -A) - 'BQE' (  -SI -A ' ) - 'C '  (1 1) 

where A(S) is square invertible matrix whose inverse is analytic in the 
right half of the S plane [ 5 ] .  Therefore, 

A(S)  = C ( S I -  A ) - IPC'R ~ I" + R I" (12) 

let 

then from (7) 

,y = BR - 112. (14) 

A ( S ) = C ( S I - A ) - ~ B +  R ~ / ~  (15) 

Equations (12) and (13) give 

and substituting for K from (14) into (9) gives 

H(S)=(SI-A)~~'BR~''2[I+C(SI-A)~1BR-1'2 I - ]  
= ( S I -  A ) -  ' B [ R  + C ( S I -  A ) - ' B ]  ~ I (16) 

from (1 5) 

H ( S )  = ( S I  - A ) - ' B A  ~ l(S). (17) 

The numerical procedure of the algorithm is then re_duced to solving (1 1) 
to obtain the spectral factor A ( S ) ,  (15) to solve for B ,  and (17) to compute 
the transfer matrix of the minimum variance estimator. 

If R is equal to zero, these equations become 

A(S)A'(  - S )  = C ( S I - A ) - ' E Q E ' (  -SI -A ' ) - 'C ' ,  (18) 

C ( S I -  A ) -  le= A(S)  (19) 

and 

H ( S )  = ( S I -  A ) - ] B A -  ] ( S ) .  (20) 

This shows that the perfect measurement system can be treated as a 
special case of the noisy system. Equations (18) through (20) are exactly 
the same as those derived in [2]. 

CONCLUSIONS 

A unified solution to the transfer function of the minimum variance 
estimator of the state of a linear continuous-time system has been derived. 
It is shown that the perfect measurement system is a special case of the 
generally noise system. The solution in these special cases is identical to 
that obtained in (21. 
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Robust, Reduced-Order, Nonstrictly Proper State 
Estimation Via the Optimal Projection Equations 

with Guaranteed Cost Bounds 

WASSIM M.  HADDAD AND DENNIS S.  BERNSTEIN 

Abstract-A state-estimation design problem involving parametric 
plant uncertainties is considered. An estimation error bound suggested by 
multiplicative white noise modeling is utilized for guaranteeing robust 
estimation over B specified range of parameter uncertainties. Necessary 
conditions which generalize the optimal projection equations for reduced- 
order state estimation are used to characterize the estimator which 
minimizes the error bound. The design equations thus effectively serve as 
sufficient conditions for synthesizing robust estimators. Additional 
features include the presence of a static estimation gain in conjunction 
with the dynamic (Kalman) estimator to obtain a nonstrictly proper 
estimator. 

I. INTRODUCTION 

A s  is well known [1]-[U], the performance of optimal filters based 
upon nominal parameter values may be severely degraded in the presence 
of parameter deviations. Thus, it is desirable to obtain robust state 
estimators which provide acceptable performance over the range of 
parametric uncertainty. The approach of the present paper is related to the 
guaranteed cost approach developed for control in [13], [I41 and applied 
to estimation in [3]. Specifically, the main idea is to bound the effect of 
the uncertain parameters on the estimation error over the uncertainty 
range and then choose estimator gains to minimize the estimation bound. 
Thus, the actual estimation error is guaranteed to lie below the prescribed 
upper bound. 

The technique used to determine minimizing estimator gains is a 
generalization of the optimal projection equations for reduced-order state 
estimation (151. Thus, the results of the present paper effectively extend 
the results of [15] to the case of parameter uncertainties. It should be 
noted that the optimal projection equations, which are necessary 
conditions for optimality , now serve as sufficient conditions for robust 
estimation by virtue of the fact that a bound on the estimation error is 
being minimized rather than the estimation error itself. The bound utilized 
in the present paper was originally suggested by multiplicative white noise 
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modeling and was used in [16]-[18] for constructing Lyapunov functions 
for robust fixed-order dynamic compensation. A similar bound was used 
for full-state feedback in [ 191. 

An additional feature of the present paper is the inclusion of a static 
feedback gain in conjunction with the dynamic estimator. Thus, the 
results of the present paper represent a generalization of standard results 
to the case of nonstrictly proper estimation. Similar treatments in the 
context of multiplicative noise models were given in [lo] and [ 111 for 
discrete-time and continuous-time systems, respectively. 

II. NOTATION AND DEFINITIONS 

Note: All matrices have real entries. 

the state-estimation error criterion 

J(A, ,  Be, C,, 0,) e sup 

lim 1-m sup 3 [ L x ( t ) - y , ( t ) l T R [ L x ( f ) - y e ( t ) ]  (3.6) 

For each estimator (Ae, B,, C,, De) and system variation (AA, AC) E 

( A A ,  A C )  E 'U 

is minimized. 

U, the disturbed augmented system (3.1)-(3.5) is given by 

i ! ( t ) = ( A + A A ) f ( t ) + $ ( t ) ,  t E [0, W) (3.7) 

where f ( t )  6 [xr( t ) ,  x,T(t)] and $ ( t )  has intensity P E N 
can be expressed in terms of the second-moment matrix. 

The cost 

A. AA 

I? 

*(.), P 

Real numbers, r x s real matrices, Rrxl. 
r x r identity matrix, transpose, expected value. 
Kronecker sum, Kronecker product [20]. 
r x r symmetric, nonnegative-definite, positive-definite matrices. 
z, - ZI E ", z, - ZI E LPr, z,, z, E sr.  
Positive integers; n + ne. 
n,  I ,  [ q, ne,  A-dimensional vectors. 
n x n matrices; I x n matrices. 
i x n matrix. 
ne x n e ,  ne x I, q x n e ,  q x [matrices. 

[ "  BeC A ,  O ] , [ A "  B,AC O ] .  0 

q x n matrix, estimation-error weighting in Pq. 

L TRL - L TRD,e- cTDTRL + cTDTRDee - L TRCe+ C7D:RC, 

- CTRL + CaRD,e CaRC, 

n ,  I-dimensional white noise. 
Intensity of wl(.), w2(.); VI E Nn, V2 E P'. 
Cross intensity of wl(.), wz(.). 

Positive number. 
Positive number, i = 1, . . . , p.  
Real number, i = 1, . .., p. 
&:/a, i = 1, ' " , p .  
A + ( ( ~ / 2 ) 1 , , ,  A ,  + (a/2)Zne. 

111. ROBUST ESTIMATION PROBLEM 

Let U C RnX"  x R l x n  denote the set of uncertain perturbations (AA,  
AC) of the nominal plant matrices A and C .  

Robust Estimation Problem: For fixed ne 5 n, determine (Ae ,  Be, 
C,, 0,) such that, for the system consisting of the nth-order disturbed 
plant 

x ( t ) = ( A + A A ) x ( t ) + w , ( t ) ,  t E [0 ,  w), (3.1) 

noisy and nonnoisy measurements 

Proposition 3.1: For given (Ae, Be, C,, De) and (AA, AC) E 'U, the 
second-moment matrix 

Q A A ( t )  B S [ a ( r ) n r ( t ) ] ,  t E [O, OD) (3.8) 

satisfies 

Q,A(~)=(A+AA)Q~,A(~)+Q,A(~)(A+AA)~+ P, t E [0, OD). 

(3.9) 

Furthermore, 

J ( A , ,  B ~ ,  c,, D,) B ( A A , A C ) E ' U  sup lim 1-m sup tr Q A A ( t ) I ? .  (3.10) 

Iv. SUFFICIENT CONDITIONS FOR ROBUST PERFORMANCE 

The following result is immediate. 
Lemma 4.1: Suppose A + AA is stable for all (AA, AC) E 'U. Then 

J ( A , ,  Be, C,, De)= sup tr QA~Z? (4.1) 
( A A , A C ) E ' U  
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where Q A ~  E RIi is the unique solution to 

O= (A+ A A ) Q ~ ~ +  Qb~(A+ AA) '+ V .  (4.2) 

We seek upper bounds for J(A, ,  Be, C,,- De). 
Theorem 4.1: Let Q : M f i  x W n e x l  --* 8" be such that 

(AA, AC) E 'U, 

AAQ+QAA'sO(Q, Ee),  (Q, E,) E N A X R n e x /  (4.3) 

and, for given (Ae, Be, C,, De), suppose there exists Q E M satisfying 

O=AQ+QA'+O(Q, E, )+  v, (4.4) 

and suppose the pair ( A + A A )  is stabilizable for all (AA, AC) E 
'U. Then A, is asymptotically stable, A + AA is asymptotically stable for 
all (AA, AC) E 'U, 

Q A A ~ Q ,  (AA, AC) E (4.5) 

where Q A A  satisfies (4.2) and 

J(A,, E , ,  C,, D,) i t r  Q.8. (4.6) 

Proof: For all (AA, AC) E 'U, (4.4) is equivalent to 

O=(A+AA)Q+Q(A+AA)'+*(Q, Be,  AA)+ V (4.7) 

where 

*(a, E,, AA) h O(Q, B,)-(AAQ+QAA'). 

Note that by (4.3), *(Q, Be, A A )  2 0 for all (AA, AC) E 'U. Since 
(PI'*, A + A A )  is stabilizable for all (AA, AC) E 'U, it follows from 
[21, Theorem 3.61 that ((P+S(Q, Be, AA))"2, A + A A )  is stabilizable 
for all (AA, AC) E 'U. Hence, [21, Lemma 12.21 implies A + A A  is 
asymptotically stable for all (AA, AC) E 'U. Since A + AA is lower 
block triangular, A, is asymptotically stable and A + AA is asymptoti- 
cally stable for all (AA, AC) E 'U. Next, (4.7) minus (4.2) yields 

0 =(A + AA)(Q- QAA)  + (Q-  QA~)(A + AA) '+ "(Q, E,, AA) 

or, equivalently (since A + A A  is asymptotically stable), 
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which implies (4.5). Finally, (4.5) and (4.1) yield (4.6). 0 

v. UNCERTAINTY STRUCTURE AND GUARANTEED COST BOUND 

The uncertainty set 'U is assumed to be of the form 

P 

'U h ( A A ,  A C )  E W X * X R / X ~  : A A = ~ U ~ A , ,  AC 
i =  I 

P P 

I 
= uicj, u f / a f s  1 

i =  I , = I  

where, for i = 1, * . , p:A, E R n x n  and C, E R I x n  are fixed matrices 
denoting the structure of the parametric uncertainty in the dynamics and 
measurement matrices; a, is a given positive number; and U, is an 
uncertain real parameter. In practice, the form of AA and A C  permits the 
modeling of linear parameter uncertainties of arbitrary structure. Note 
that the uncertain parameters U, are assumed to lie in a specified ellipsoidal 
region in RP. The augmented system thus has structured uncertainty of the 
form 

P 

AA = 
i =  I 

where 

Remark 5.1: Note that (5.1) allows a particular parameter U, to appear 
in both AA and AC. Thus, it is possible to consider the case in which the 
uncertainties AA and A C  are known to be correlated. Of course, for a 
given i ,  A ,  or C, can be set to zero so that the similar form of AA and A C  
represents no restriction. 

We now specify the bounding function Q satisfying (4.3). 
Proposition 5.1: Let a be an arbitrary positive scalar. Then the 

function 

satisfies (4.3) with 'U given by (5.1). 
Proof: Note that 

which, since 8:=, .:/a; 5 1 ,  implies (4.3). U 
Remark 5.2: Note that with (5.3), the modified Lyapunov equation 

(4.4) becomes 

P 

(5.4) O=A,Q+ Q A ~ +  ~ , A , Q A T +  V.  
, = I  

VI. THE AUXILIARY MINIMIZATION PROBLEM 

Our goal is to minimize the error bound (4.6). 
Auxiliary Minimization Problem: Determine (Q, A,, Be, C,, De) 

with Q E RIfi which minimizes 

d(Q.  A,, 4 ,  C,, De) tr QR (6.1) 

subject to (5.4) and 

( V1", A + A A )  is stabilizable, (AA, AC) E 'U. (6.2) 

Proposition 6.1: If (Q, A,, Be, C,, De) satisfies (5.4) and (6.2) with Q 
2 0, then A + A A  is asymptotically stable for all (AA, AC) E 'U and 

J(Ae-9 Be, Ce, Dc)S$(Q, A, ,&- ,  Ce, De). (6.3) 

Proof: With Q given by (5.3), Proposition 5.1 implies that (4.3) is 
satisfied. Hence, with (6.2), the hypotheses of Theorem 4.1 are satisfied 
so that the system (3.7) is stable over 'U with estimation bound (4.6). Note 

U 
Remark 6. I :  The conservatism of the bound (6.3) is difficult to predict 

for two reasons. First, the overbounding (4.3) holds with respect to the 
partial ordering of the nonnegative-definite matrices for which no scalar 
measure of conservatism is available. And second, the bound (4.3) is 
required to hold for all nonnegative-definite matrices Q and estimator 
gains Be. The conservatism will thus depend upon the actual values of Q 
and Be determined by solving (5.4). 

that (6.3) is merely a restatement of (4.6). 

VII. NECESSARY CONDITIONS FOR THE AUXILIARY MINIMIZATION 
PROBLEM 

Rigorous application of the Lagrange multiplier technique requires 
additional technical assumptions. Specifically, we further restrict (Q, A,, 
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Be, C,, 0,) to the open set 

S e {tQ, A,, Be, C,, 0,) : Q E PE, 

& is asymptotically stable, 

(Ae,  Be, C,) is controllable and observable, and 

C(Q, - Q ~ ~ Q ; ~ Q : ) C ~ > O )  

where 

P 
d 4 A, @ A m + Z  YiAi c3 A, 

, = I  

and Q is partitioned as 

QI Q12 

[ Q L  Q z ]  

where Q1, QI2, and Q2 are n X n, n x ne, and ne x ne, respectively. As 
shown in [ll], Qz is invertible since (A,, Be) is controllable. The 
definiteness condition holds when e has full row rank and Q is positive 
definite. As shown in [ll], this condition implies the existence of the 
projection .i defined below. 

Remark 7.1: Proposition 6.1 shows that the constraint (Q, A,, Be, C,, 
0,) E S i s  not required for robust estimation. As can be seen from the 
proof given in [I 11, the set S constitutes sufficient conditions under which 
the Lagrange multiplier technique is applicable to the auxiliary minimiza- 
tion problem. Specifically, Q E C8 re laces Q E RIE by an open set 

which further implies that the dual 6 of Q is nonnegative definite. Thus, it 
is not necessary for guaranteed robust estimation that an admissible 
quadruple obtained by solving the necessary conditions actually be shown 
to be an element of S. 

The following factorization lemma is needed for the statement of the 
main result. For details, see [15]. 

Lemma 7.1: If &, p E M" and rank @ = ne, then there exist ne x 
nG, r, and ne x ne invertible M such that 

constraint, while asymptotic stability of 8 serves as a normality condition 

C, = L ?, G ', 

D, = LQC T( CQC - I ,  

and such that Q, Q, and P satisfy 

o = (A, - Q~ v2;I C )  TP + &A, - Q~ v C )  

+ iTL 'RL?, - T T ~ T L  'RL?, r l ,  (7.11) 

rank Q = rank P = rank QP = ne (7.12) 

where 

? P Q C ~ ( C Q C T ) - I C ,  .i, 2 I"-?. (7.13) 

Furthermore, the auxiliary cost is given by 

g(Q,A,,B,,  C,,D,)=trQ?:L'RL?,. (7.14) 

Conversely, if there exist Q, Q, p E M" satisfying (7.9)-(7.12), then (Q, 
A,, Be, C,, De) given by (7.4)-(7.8) satisfy (5.4) with Q E M e  and with 
3 (Q, A,, Be, Ce, 0,) given by (7.14). 

Proof: The derivation requires only a minor modification of the 
derivation given in [ll]. The only change involves treatment of A, in 

Remark 7. I :  The necessary conditions given in Theorem 7.1 directly 
generalize the result given in [ 151. To recover the result of [15], set A, = 
0, C, = 0, i = 1, . . . , p (to delete the plant uncertainties), and set = 0 
(to eliminate the static estimation term De). It follows from the proof 

place of A. 0 

given in [ll] that e = 0 yields 7̂  = 0, and thus = I,,. 
(7.1) Remark 7.2: Note that Q given by (7.4) is nonnegative definite. 

Recall from [15] that 

is an oblique projection. Define the complementary projection r L  2 Z, - 
rand  call (G, M, r) satisfying (7.1), (7.2) aprojectivefactorization of 
@. Furthermore, for arbitrary Q, Q E Kin'", define the notation 

P 

Qs QC'+ v12+C r,A,(Q+Q)C:. 
I =  I 

Theorem 7.1: If (Q, A,, Be, C,, 0,) E S solves the auxiliary 
minimization prob!em with U given by (5.1) and Q given by (5.3), then 
there exist Q, 0, P E M" such that, for some projective factorization (G, 
M ,  r) of @, (Q, A,, Be, C,, 0,) are given by 

(7.4) 

A, = r ( A  - Qs V,' C )  G ', (7.5) 

~111. SUFFICIENT CONDITIONS FOR ROBUST, REDUCED-ORDER 
ESTIMATION 

The main result guaranteeing robust estimation can now be stated. 
Theorem 8.1: Suppose there exist Q, Q, P E RI" satisfying (7.9)- 

(7.12), le_tA,, Be, C,, 0, be given by (7.5)-(7.8), and suppose that ( 
A + AA) is stabilizable for all (AA, AC) E U with U given by (5.1). 
Then A, is asymptotically stable, A + AA is asymptotically stable for all 
(AA, AC) E U, and the estimation error satisfies the performance bound 

(8.1) 

Proof: Theorem 7.1 and Remark 7.2 imply that Q given by (7.4) is 
nonnegative definite and satisfies (5.4). With the stabilizability assumption, 

0 
= Z, (so that perfect measurements of 

the entire state are available), and Q satisfying (7.9) is positive definite. 
Then it follows from Theorem 7.1 that .i = I,, ?, = 0, C, = 0 (i.e., the 
dynamic filter is disabled), 0, = L ,  and by (8.1), J = 0. This is, of 
course, the expected result since perfect estimation is achievable in this 
case. 

REFERENCES 

J ( A , ,  Be, C,, D,)str  QP:L'RL?,. 

the result follows from Proposition 6.1. 
Remark 8.1: Suppose = n, 

[I]  J .  A. D'Appolito and C. E. Hutchinson, "Low sensitivity filters for state 
estimation in the presence of large parameter uncertainties, " IEEE Trans. 
Aufomat. Contr., vol. AC-14, pp. 310-312, 1969. 

[2] P. J .  McLane, "Optimal linear filtering for linear systems with state-dependent 
noise," Int. J. Contr., vol. 10, pp. 41-51, 1969. 

[3] B. N. Jain, "Guaranteed error estimation in uncertain systems," IEEE Truns. 
Automat. Contr., vol. AC-20, pp. 230-232, 1975. 



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. 33, NO. 6, JUNE 1988 595 

R. C. Chung and P. R. Belanger, “Minimum-sensitivity filter for linear time- 
invariant stochastic systems with uncertain parameters,” IEEE Trans. Automat. 
Confr., vol. AC-21, pp. 98-100, 1976. 
K. Furuta, S. Hara, and S. Mori, “A class of systems with the same observer,” 
IEEE Trans. Automat. Confr., vol. AC-21, pp. 572-516, 1976. 
S. P. Bhattacharyya, “The structure of robust observers,” IEEE Trans. 
Automat. Contr., vol. AC-21, pp. 581-588, 1976. 
M. Toda and R. V. Patel, “Bounds on estimation errors of discrete-time fdters 
under modeling uncertainty,” IEEE Trans. Automat. Contr., vol. AC-25, pp. 
1115-1121, 1980. 
R. T. Stefani, “Reducing the sensitivity to parameter variations of a minimum- 
order reduced-order observer,’’ Int. J. Contr., vol. 35, pp. 983-995, 1982. 
T. E. Djaferis, “Robust observers for systems with parameters,” Sysf. Contr. 
Lett., vol. 7, pp. 385-394, 1986. 
W. M. Haddad and D. S. Bernstein, “The optimal projection equations for 
discrete-time reduced-order state estimation for linear systems with multiplicative 
white noise,” Syst. Contr. Lett., vol. 8, pp. 381-388, 1987. 
-, “The optimal projection equations for reduced-order state estimation: The 
singular measurement noise case,” IEEE Trans. Automat. Contr., vol. AC-32, 
pp. 1135-1139, 1987. 
D. S. Bernstein and D. C. Hyland, “The optimal projection equations for reduced- 
order modelling, estimation and control of linear systems with multiplicative white 
noise,” J.  Optimiz. Theory Appl.,  to be published. 
S. S. L. Chang and T. K. C. Peng, “Adaptive guaranteed cost control of systems 
with uncertain parameters,” IEEE Trans. Automat. Confr., vol. AC-17, pp. 
474483, 1972. 
A. Vinkler and L. J. Wood, “Multistep guaranteed cost control of linear systems 
with uncertain parameters,” J. Guidance Contr., vol. 2, pp. 449456, 1979. 
D. S. Bernstein and D. C. Hyland, “The optimal projection equations for reduced- 
order state estimation,” IEEE Trans. Automat. Contr., vol. AC-30, pp. 583- 
585, 1985. 
D. S. Bernstein and S. W. Greeley, “Robust output-feedback stabilization: 
Deterministic and stochastic perspectives,” in Roc.  Amer. Contr. Conf., 
Seattle, WA, June 1986, pp. 1818-1826. 
W. M. Haddad, “Robust optimal projection control-system synthesis,” Ph.D. 
dissertation, Dept. Mech. Eng., Florida Inst. Technol., Melbourne, Mar. 1987. 
D. S. Bernstein, “Robust static and dynamic output-feedback stabilization: 
Deterministic and stochastic perspectives,” IEEE Trans. Automat. Contr., vol. 

0. I. Kosmidou and P. Bertrand, “Robust-controller design for systems with large 
parameter variations,” Int. J. Contr., vol. 45, pp. 927-938, 1981. 
J .  W. Brewer. “Kronecker products and matrix calculus in system theory,” IEEE 
Trans. Circuifs Syst., vol. CAS-25, pp. 772-781, 1978. 
W. M. Wonham, Linear Multivariable Control: A Geometric Approach. 
New York Springer-Verlag, 1979. 

AC-32, pp. 1076-1084, 1987. 

Approximate and Limit Results for Nonlinear Filters 
with Small Observation Noise: The Linear Sensor 

and Constant Diffusion Coefficient Case 

OFER ZEITOUNI 

Abstract-Recursive approximations for a class of filtering problems 
are presented. This class is characterized by linear observation sensor, 
constant diffusion terms, and for the multidimensional problem, poten- 
tial-like conditions on the drift. For the case of small observation noise, 
these approximations are used to demonstrate the Gaussian limiting 
structure of the optimal nonlinear filter. 
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where w,, 13, are independent Brownian motions and the filtering problem 
consists of computing statistics of x, when the observation U algebra yk e 
{ys, 0 Q s Q 1 )  is given. By now, it is clear that for all but a few 
problems, an explicit final dimensional solution does not exist [4]. 
Therefore, one is led to consider approximations and to consider 
simplified limiting cases. Especially, the low observation noise case (No 
+ 0) has been considered in the literature [3], [6], [ 1 1 J .  

In this paper, we restrict out attention to the special case of linear 
observations and constant diffusion coefficients, i.e., 

dXr=f(Xr)dt+odw,, X,  E Wn, P ( x ~ ) = P ~ ( x ~ )  (1.1’) 

dyf=gX,dt+NA’2dOr, y ,  E R”, yo=O (1.2’) 

where U,  g are matrices of appropriate dimensions. In the multidimen- 
sional case, we impose some additional potential-like structural conditions 
onfi.) .  For this restricted class of filtering problems, we derive recursive 
approximations to the conditional density p,,(zly$ and to its unnormalized 
version p,,(zly$. For the limiting case No + 0, those approximations are 
used to show that the conditional density, rescaled in a suitable manner, 
converges to a Gaussian density, with tight estimates on the “tails” of the 
density. This fact demonstrates the usefulness of Gaussian-based approxi- 
mations (like the extended Kalman filter or the second-order Gaussian 
filter). 

Related results were obtained by Mayer-Wolf [9] in his dissertation. 
There, bounds on the filtering error and the Cramer-Rao inequality are 
used to prove a basic Gaussian limit result, although under different 
assumptions. 

The paper is organized as follows. The one-dimensional problem (n = 
rn = 1) is treated in Sections 11 and III. In Section 11, we present our basic 
approximation theorem, which holds whether No is small or not. We 
further demonstrate that, if No + 0 the approximations exhibit certain 
nice limiting behavior, then the rescaled conditional density converges 
(weakly and pointwise) to a Gaussian density. In Section 111, we check out 
explicitly the limiting behavior of the approximations and derive explicit 
conditions onA.) under which the density indeed converges to a Gaussian 
one. Finally, in Section IV, we extend our results to a class of 
multidimensional problems. 

We make throughout, the following assumption. 
(Al) A- )  is continuously differentiable with bounded first partial 

derivatives. 

II. AN APPROXIMATION THEOREM-THE ONE-DIMENSIONAL CASE 

In this section, an approximation theorem for the unnormalized 
conditional density p(zly9 is presented. Throughout, the one-dimensional 
case is treated. Multidimensional extensions are postponed to Section IV. 

Without loss of generality, we assume U = 1 in (1.1’). Recall that 
under (A-1), a solution to (1.1’) exists and is unique. Moreover, the 
measure PI defined by the pair (1.1 ’), (I  .2 ’) is absolutely continuous 
w.r.t. the reference measure Po defined by 

dr,= + dwt, P ( X O )  =PO(XO) (2.1) 

dy, = NydO,, yo = 0 (2.2) 

where (Y is some constant to be defined. The Radon-Nikcdym derivative 
dPl/dPo is [8]. 

As is well known [2], [12], [13], the unnormalized conditional density 
p(zly$ satisfies 

(2.4) 
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