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Setpoint Tracking 
with Actuator Offset 

and Sensor Bias
PROBING THE LIMITS OF INTEGRAL CONTROL

JAGANATH CHANDRASEKAR and DENNIS S. BERNSTEIN

I
n the classical control of single-input, single-output
(SISO) systems, asymptotic tracking of commanded
setpoints is achieved through integral control, a direct
manifestation of the internal model principle [1]–[4].
In practice, however, the achievement of zero steady-

state error must take into account the presence of constant
signals that enter the loop in various ways. For example,
the actuator input may include an unmodeled offset, while
the sensor measurement may be corrupted by an unmod-
eled bias. These effects may be caused by imperfect cali-
bration, which can be difficult to remove due to drift. We
note that actuator offset can be viewed as a constant
process disturbance, while sensor bias is effectively con-
stant measurement noise.

In this article we consider the following question: Is it
possible to achieve zero steady-state error in the presence
of both unknown actuator offset and unknown sensor bias?
To address this question, we consider a two-degree-of-free-
dom controller architecture that includes both forward- and
backward-path controller transfer functions. As shown
below, a feedforward gain is not helpful for setpoint track-
ing in the presence of actuator offset and sensor bias.

The answer to the question that we pose is summarized
in Table 1. In particular, we show that the rejection of actu-
ator offset requires an internal model controller, that is, an
integral controller, in the loop transfer function, while sen-
sor bias requires a zero at the origin in the backward-path
transfer function. Since these controller properties are
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incompatible, it follows that, for the controller architecture
we consider, zero steady-state error for a setpoint com-
mand is impossible in the presence of both unknown actu-
ator offset and unknown sensor bias.

The development in this article is confined to the case of
linear time-invariant SISO plants. In addition, we use only
frequency-domain methods to make the development
accessible to readers with a classical background. However,
an alternative approach is to formulate the problem in state
space and apply the results of [5] for the case of constant
actuator offset. This approach has the advantage that it
addresses multiple-input, multiple-output (MIMO) plants,
which are difficult to address with frequency-domain
approaches.

PROBLEM FORMULATION
In the subsequent development we do not distinguish
between a time-domain signal and its Laplace transform.
Let G(s) be a SISO plant with input û and output y. Let w
denote the actuator offset acting on G(s) and let v denote
the sensor bias, so that the measurement ŷ is given by

ŷ = y + v = Gû + v = G(ufp + w) + v . (1)

We assume that the actuator offset w and sensor bias v are
constant but unknown. Define the output error e by

e � r − y , (2)

where r is the prescribed constant setpoint. The control
objective is to ensure that limt→∞ e(t) = 0, that is, to make
the plant output y asymptotically reach the specified 
setpoint r.

Since our interest is in asymptotic behavior, we assume
for convenience that all initial conditions are zero. Nonze-
ro initial conditions have no effect on the ability to achieve
asymptotic setpoint tracking. Consider the control archi-
tecture shown in Figure 1, where Cfp is the forward-path
controller and Cbp is the backward-path controller. Define
the forward-path controller input ê by

ê � r − ubp, (3)

where ubp is the backward-path controller output. Hence

ê = r − Cbp ŷ = r − Cbp
(
G(ufp + w) + v

)
. (4)

Since the forward-path controller output ufp is given by

ufp = Cfp ê, (5)

substituting (5) into (4) yields

ê = 1
1 + L

r − GCbp

1 + L
w − Cbp

1 + L
v, (6)

where the loop transfer function L is defined by

L � CfpGCbp. (7)

Substituting (6) into (5), and using y = G(ufp + w) in (2)
yields

e = Gerr + Geww + Gevv, (8)

where

Ger � 1 − CfpG

1 + L
, Gew � G

1 + L
, Gev � L

1 + L
. (9)

To eliminate the possibility of closed-right-half-plane
(CRHP) pole-zero cancellations in the closed-loop system,
we introduce the notion of internal stability.

Definition 1
The closed-loop system in Figure 1 is internally stable if,
for all bounded inputs r, w, and v, the output e, the con-
troller inputs ŷ and ê, and the controller outputs ufp and
ubp are bounded.

It follows from (1), (2), and (3) that

ŷ = r + v − e, (10)

ê = r − ubp, (11)

FIGURE 1  Control architecture for setpoint tracking in the presence
of actuator offset and sensor bias. The objective is to use the for-
ward-path and backward-path controllers C fp and Cbp, respectively,
to ensure that the plant output y tracks the reference setpoint r .
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TABLE 1 Achievable asymptotic setpoint tracking.
Asymptotic setpoint tracking is impossible in the presence
of both unknown actuator offset and unknown sensor bias.

Integral Loop Zero
Control at the Origin

No actuator offset or Possible Possible
sensor bias 

Actuator offset only Possible Never possible
Sensor bias only Never possible Possible
Actuator offset and Never possible Never possible

sensor bias 

62 IEEE CONTROL SYSTEMS MAGAZINE » FEBRUARY 2007



FEBRUARY 2007 « IEEE CONTROL SYSTEMS MAGAZINE 63

while (5), (6), and (8) imply that




e
ufp
ubp


 = G




r
w
v


 , (12)

where G is given by

G �



1 − GCfpS GS T
CfpS −T −CfpCbpS

T GCbpS CbpS


 (13)

and

S � 1
1 + L

, T � L
1 + L

. (14)

Next, we present a result that guarantees the boundedness
of e, ufp, and ubp when r, w, and v are bounded. It follows
from (10) and (11) that, if r, v, e, and ubp are bounded, then
ŷ and ê are also bounded.

Lemma 1
The closed-loop system in Figure 1 is internally stable if
and only if G is asymptotically stable.

Note that G has seven distinct entries. Furthermore, S is
asymptotically stable if and only if T is asymptotically stable.
The following result ensures that G is asymptotically stable.

Lemma 2 
G is asymptotically stable if and only if the following con-
ditions hold:

1) S is asymptotically stable
2) None of the cascades CfpG, CfpCbp, and CbpG have

CRHP pole-zero cancellations.

Feedforward Controller
As a potential extension of the control architecture in Fig-
ure 1, we now include the feedforward controller Cff
shown in Figure 2 with the setpoint r as the controller
input and the controller output injected into the plant G. In
this case, the error dynamics are given by (8), where

Ger = 1 − G(Cfp + Cff)

1 + L
(15)

and Gew and Gev are given by (9). Since the transfer func-
tions Gew and Gev are unchanged by the inclusion of Cff,
the feedforward controller does not help in setpoint track-
ing in the presence of actuator offset or sensor bias. Hence,
we do not consider a feedforward controller in the subse-
quent development.

SETPOINT TRACKING IN THE ABSENCE 
OF ACTUATOR OFFSET AND SENSOR BIAS
To set the stage for later developments, we first consider
the case in which there is no actuator offset or sensor bias,

and determine controllers that achieve asymptotic tracking
of a commanded setpoint. Assume that w = 0 and v = 0,
and let r = r0/s, where r0 ∈ R is a constant. Note that r rep-
resents a step command. Hence

e = Ger
r0

s
. (16)

Lemma 3
Assume that G is asymptotically stable. Then,
limt→∞ e(t) = 0 for all r0 ∈ R if and only if

Ger(0) = 0. (17)

Proof
Since Ger is asymptotically stable, it follows from (16) that

lim
t→∞ e(t) = lim

s→0
sGer(s)

r0

s
= Ger(0)r0 . �

Internal Model Control
We now use an internal model controller to achieve set-
point tracking. This internal model includes an integrator
in the forward-path controller to ensure that Cfp has infinite
dc gain and satisfies (17). To simplify the presentation, we
use the notation in Table 2.

FIGURE 2  Control architecture for setpoint tracking in the pres-
ence of actuator offset and sensor bias with a feedforward con-
troller Cff . Although the feedforward controller can be used to
ensure setpoint tracking in the absence of actuator offset and
sensor bias, the feedforward controller does not help in rejecting
actuator offset or sensor bias.
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TABLE 2 Verbal interpretation of mathematical conditions.
These mathematical conditions are used throughout this
article to streamline the presentation.

Notation Definition

G(0) = 0 G has a zero at the origin
G(0) �= 0 G has no zeros at the origin
|G(0)| = ∞ G has a pole at the origin
|G(0)| < ∞ G has no poles at the origin
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Proposition 1
Assume that G(0) �= 0, |Cfp(0)| = ∞, Cbp(0) = 1, and G is
asymptotically stable. Then, Ger(0) = 0 and hence,
limt→∞ e(t) = 0.

Proof
Note that

GCfp

1 + L
= 1

1
CfpG + Cbp

.

Since |G(0)Cfp(0)| = ∞ and Cbp(0) = 1, (9) implies that

lim
s→0

Ger = 1 − lim
s→0

1
1

CfpG + Cbp
= 1 − 1

Cbp(0)
= 0 .

Hence, it follows from Lemma 3 that limt→∞ e(t) = 0. �
The following result shows that when G(0) = 0 and a

forward-path integral controller is not used, then asymp-
totic tracking of a setpoint command is not possible.

Proposition 2
Assume that G(0) = 0, |Cfp(0)| < ∞, and G is asymptotical-
ly stable. Then, Ger(0) = 1 and hence, limt→∞ e(t) = r0.

Proof
Since G(0) = 0 and G is asymptotically stable, it follows
from Lemma 2 that |Cbp(0)| < ∞. Hence, L(0) = 0 and

lim
s→0

Ger = 1 − Cfp(0)G(0)

1 + L(0)
= 1 .

Since Ger(0) = 1, using the final value theorem in (16)
implies that limt→∞ e(t) = r0. �

Note that Proposition 2 does not imply that an internal
model controller can achieve asymptotic tracking of a set-
point command when G(0) = 0. In fact, if G(0) = 0 and
|Cfp(0)| = ∞, then it follows from Lemma 2 that, due to
CRHP pole-zero cancellation between Cfp and G at the ori-
gin, G is not asymptotically stable.

Loop Zero at the Origin
We now show that an internal model controller is not nec-
essary to achieve asymptotic setpoint tracking. In particu-
lar, setpoint tracking can be achieved by including a zero
at the origin in the backward-path controller, thus satisfy-
ing (17). Unlike the internal model controller, which does
not require specific information about the plant G, this
controller requires knowledge of G(0).

Proposition 3
Assume that |G(0)| < ∞, Cbp(0) = 0, and G is asymptoti-
cally stable. Then, Ger(0) = 1 − Cfp(0)G(0) and hence,

lim
t→∞ e(t) = (1 − Cfp(0)G(0))r0 . (18)

Therefore, if Cfp(0)G(0) = 1, then limt→∞ e(t) = 0.

Proof
Since Cbp(0) = 0, it follows from Lemma 2 that
|Cfp(0)| < ∞. Furthermore, (7) implies that

GCfp

1 + L
= 1

1
CfpG + Cbp

.

Since Ger is asymptotically stable,

lim
s→0

Ger = 1 − lim
s→0

1
1

CfpG + Cbp
= 1 − C(0)G(0). (19)

Hence, using the final value theorem in (16) yields (18).
Substituting Cfp(0)G(0) = 1 into (19) yields Ger(0) = 0 and
Lemma 3 implies that limt→∞ e(t) = 0. �

Alternative Methods
There exist controllers that do not fall into either of the
above categories and still achieve asymptotic setpoint
tracking. For example, let

G(s) = 1
s + 2

, Cfp(s) = 4
4s + 1

, Cbp(s) = 1
2

.

Then

Ger(s) = s(4s + 5)

4s2 + 5s + 4
,

which implies that Ger is asymptotically stable. Since
Ger(0) = 0 and there are no CRHP pole-zero cancellations
between Cfp, G, and Cbp, it follows from Lemma 3 that
limt→∞ e(t) = 0.

As noted in Table 1, asymptotic tracking of a setpoint
command can thus be achieved in the absence of actuator
offset and sensor bias by using either the integral control
approach or the loop-zero-at-the-origin approach.

SETPOINT TRACKING WITH ACTUATOR 
OFFSET ONLY
We now consider setpoint tracking in the presence of actu-
ator offset. In particular, we present conditions that the
forward- and backward-path controllers must satisfy to
achieve tracking of a commanded setpoint in the presence
of actuator offset. Assume that there is no sensor bias, that
is, v = 0. Let r = r0/s and w = w0/s, where r0, w0 ∈ R are
constants and w0 �= 0. Note that r represents a step com-
mand and w represents a constant actuator offset. In this
case, (8) implies that

e = Ger
r0

s
+ Gew

w0

s
. (20)

Lemma 4
Assume that G is asymptotically stable. Then,
limt→∞ e(t) = 0 for all r0, w0 ∈ R if and only if
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Ger(0) = 0 (21)

and

Gew(0) = 0. (22)

Proof
Since Ger and Gew are asymptotically stable, we have

lim
t→∞ e(t) = lim

s→0
sGer(s)

r0

s
+ lim

s→0
sGew(s)

w0

s
= Ger(0)r0 + Gew(0)w0 . �

Again the internal model controller satisfies Lemma 4
and thus ensures setpoint tracking in the presence of actu-
ator offset. Specifically, we have the following result.

Proposition 4
Assume that G(0) �= 0, |Cfp(0)| = ∞, Cbp(0) = 1, and G is
asymptotically stable. Then, Ger(0) = 0 and Gew(0) = 0 and
hence, limt→∞ e(t) = 0.

Proof
It follows from Proposition 1 that Ger(0) = 0.  Note that

G
1 + L

= 1
1
G + CfpCbp

.

Since G(0) �= 0 and Cbp(0) = 1, we have

lim
s→0

Gew = lim
s→0

G
1 + L

= lim
s→0

1
1
G + CfpCbp

= 0 .

Hence, it follows from Lemma 4 that limt→∞ e(t) = 0. �
The following result shows that, if w �= 0, then setpoint

tracking can be achieved only with an internal model
controller.

Proposition 5
Assume that |Cfp(0)| < ∞ and G is asymptotically stable.
Then Ger(0) and Gew(0) are not both zero. Hence,
limt→∞ e(t) is not zero for almost all values of r0, w0 ∈ R.

Proof
It follows from (9) that

Ger = 1 − CfpGew .

Since G is asymptotically stable, lims→0 Ger and lims→0 Gew

exist. Furthermore, |Cfp(0)| < ∞ implies that

Ger(0) = 1 − Cfp(0)Gew(0). (23)

Therefore, Ger(0) and Gew(0) are not both zero and using
the final value theorem in (20) implies that limt→∞ e(t) �= 0
for almost all r0, w0 ∈ R. �

Note that asymptotic tracking of a setpoint command in
the presence of actuator offset cannot be achieved by any
forward path controller Cfp other than the integral con-
troller with |Cfp(0)| = ∞. However, if |Cfp(0)| = ∞, then a
backward path controller with Cbp(0) = 0 cannot be used
because of the CRHP pole-zero cancellation at the origin,
which renders G unstable. Hence, as shown in Table 1,
asymptotic tracking of a setpoint command cannot be
achieved by the loop-zero-at-the-origin approach.

SETPOINT TRACKING WITH SENSOR BIAS ONLY
We now provide conditions under which setpoint tracking
can be achieved in the presence of sensor bias v �= 0 and
with no actuator offset, that is, w = 0. Let r = r0/s and
v = v0/s, where r0, v0 ∈ R are constants and v0 �= 0, so that

e = Ger
r0

s
+ Gev

v0

s
. (24)

Note that r represents a step command and v represents a
constant sensor bias.

Lemma 5
Assume that G is asymptotically stable. Then,
limt→∞ e(t) = 0 for all r0, v0 ∈ R if and only if

Ger(0) = 0 (25)

and

Gev(0) = 0. (26)

Proof
Since Ger and Gew are asymptotically stable, we have

lim
t→∞ e(t) = lim

s→0
sGer(s)

r0

s
+ lim

s→0
sGev(s)

v0

s
= Ger(0)r0 + Gev(0)v0 . �

Next, we use the backward-path controller introduced
in Proposition 3, with a zero at the origin, to achieve set-
point tracking in the presence of a sensor bias.

Proposition 6
Assume that |G(0)| < ∞, Cbp(0) = 0, and G is asymptoti-
cally stable. Then, Ger(0) = 1 − Cfp(0)G(0) and Gev(0) = 0
so that

lim
t→∞ e(t) = (1 − Cfp(0)G(0))r0. (27)

Therefore, if Cfp(0)G(0) = 1, then limt→∞ e(t) = 0.

Proof
It follows from Proposition 3 that Ger(0) = 1 − Cfp(0)G(0).
Furthermore, it follows from Lemma 2 that Cbp(0) = 0
implies |Cfp(0)| < ∞. Therefore, L(0) = 0, and it follows
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from (9) that Gev(0) = 0. Applying the final value theorem
to (24) yields (27). Substituting Cfp(0)G(0) = 1 into (27)
yields limt→∞ e(t) = 0. �

It follows from Lemma 3 that if (25) is not satisfied then
setpoint tracking in the presence of sensor bias is impossi-
ble. Consequently, a zero at the origin in the backward-
path controller is necessary to achieve setpoint tracking in
the presence of sensor bias.

Proposition 7
Assume that Cbp(0) �= 0 and G is asymptotically stable.
Then Ger(0) and Ger(0) are not both zero. Hence,
limt→∞ e(t) is not zero for almost all values of r0, v0 ∈ R.

Proof
It follows from (9) that

Cbp(1 − Ger) = Gev .

Since all the transfer functions in G are asymptotically sta-
ble, lims→0 Ger and lims→0 Ger exist. Hence

Cbp(0)(1 − Ger(0)) = Gev(0) .

Since Cbp(0) �= 0, it follows that Ger(0) and Gev(0) are not
both zero. Hence, using the final value theorem in (24)
implies that limt→∞ e(t) �= 0 for almost all values of
r0, v0 ∈ R. �

Since a backward-path controller with Cbp(0) = 0 is
necessary for asymptotic tracking of a setpoint com-
mand in the presence of sensor bias, a forward path
integral controller with |Cfp(0)| = ∞ cannot be used due
to the CRHP pole-zero cancellation between Cfp and Cbp
at the origin. Hence, as shown in Table 1, only the loop-
zero-at-the-origin approach can be used to achieve
asymptotic tracking of a setpoint command in the pres-
ence of sensor bias.

SETPOINT TRACKING WITH
ACTUATOR OFFSET AND SENSOR BIAS
Finally, we consider setpoint tracking in the presence of
both actuator offset and sensor bias. In particular, we pre-
sent a negative result that shows that setpoint tracking is
impossible in the presence of both actuator offset and sen-
sor bias for the control architecture in Figure 1. Let
r = r0/s, w = w0/s, and v = v0/s, where r0, w0, v0 are con-
stants and w0, v0 �= 0. Note that r represents a step com-
mand, w represents a constant actuator offset, and v
represents a constant sensor bias. Then

e = Ger
r0

s
+ Gew

w0

s
+ Gev

v0

s
. (28)

Proposition 8
Assume that G is asymptotically stable. Then Ger(0) ,
Gew(0), and Gev(0) are not all zero. Hence, limt→∞ e(t) is
not zero for almost all values of r0, w0, v0 ∈ R.

Proof
Since G is asymptotically stable, lims→0 Ger, lims→0 Gew, and
lims→0 Gev exist. Next, we consider two cases, namely,
|Cfp(0)| < ∞ and |Cfp(0)| = ∞. If |Cfp(0)| < ∞, it follows
from Proposition 5 that Ger(0) and Gew(0) are not both zero.

Now suppose |Cfp(0)| = ∞. Since G is asymptotically
stable, Lemma 2 implies that Cbp(0) �= 0. Hence, it follows
from Proposition 7 that Ger(0) and Gev(0) are not both zero.
Consequently, Ger(0), Gew(0), and Gev(0) are not all zero.
Using the final value theorem in (28) yields

lim
t→∞ e(t) = Ger(0)r0 + Gew(0)w0 + Gev(0)v0 .

Therefore, limt→∞ e(t) �= 0 for almost all values of
r0, w0, v0 ∈ R. �

EXAMPLE: TWO-MASS SYSTEM
Consider the two-mass system shown in Figure 3 with
force input u and actuator offset w. The equations of
motion are

m1ẍ1 + (c1 + c2)ẋ1 + (k1 + k2)x1 − c2ẋ2 − k2x2 = 0, (29)

m2ẍ2 + c2ẋ2 + k2x2 − c2ẋ1 − k2x1 = ufp + w. (30)

A state-space representation of (29) and (30) is

ẋ = Ax + B(ufp + w), (31)

where x ∈ R4 is defined by

x � [ x1 x2 ẋ1 ẋ2 ]T (32)

and A ∈ R4×4 and B ∈ R4×1 are given by

FIGURE 3  Two-mass system. The positions of the masses m1 and
m2 are denoted by x1 and x2, respectively. The stiffnesses of the
springs are denoted by k1 and k2, while the damping coefficients of
the dampers are denoted by c1 and c2. A force actuator on m2

delivers the control input u. Unknown sensor bias v and actuator off-
set w are included to illustrate the effects of these disturbances.

k1

c1 c2

k2

m2m1

u + w
x1 + v x2
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A ,




0 0 1 0
0 0 0 1

− k1+k2
m1

k2
m1

− c1+c2
m1

c2
m1

k2
m2

− k2
m2

c2
m2

− c2
m2


 , B ,




0
0
0
1

m2


 .

(33)

Let the position measurement ŷ of x1 be given by

ŷ = Cx + v, (34)

where

C � [ 1 0 0 0 ] (35)

and v ∈ R is the unknown sensor bias. The SISO transfer
function from u to x1 is given by

G(s) = C(sI4 − A)−1B. (36)

Hence, it follows from (33) and (35) that we have (37).
found at the bottom of the page.

The objective is to make m1 track a constant position
command r = 0.1, that is, to ensure that x1(t) → 0.1 as
t → ∞. We choose controllers to achieve asymptotic set-
point tracking of x1 under the presence of actuator offset
or sensor bias. The values of the masses m1 and m2, damp-
ing coefficients c1 and c2, and spring constants k1 and k2
are m1 = 1 kg, m2 = 2 kg, c1 = 1.5 kg/s, c2 = 0.5 kg/s,
k1 = 0.5 kg/s2, and k2 = 0.5 kg/s2. The initial conditions
in all of the simulations are assumed to be

x1(0) = −0.1, x2(0) = 0.0,

ẋ1(0) = −0.1, ẋ2(0) = 0.1. (38)

First, we let w(t) = 0.1 and v(t) = 0 for all t � 0, which
corresponds to a constant actuator offset and no sensor
bias. We choose

Cfp(s) = 1
10s(s + 5)

, Cbp(s) = 1, (39)

which ensures that G is asymptotically stable. The position
of m1 when the controller in (39) is used is shown in Figure 4.
In accordance with Proposition 4, the position of m1
asymptotically reaches the setpoint r = 0.1 in the presence
of a constant actuator offset. Next, we let w(t) = 0.1 and

v(t) = 0.1 for all t � 0 so that we have both actuator offset
and sensor bias. The position x1 of mass m1 when the con-
troller in (39) is used is shown in Figure 5. In accordance
with Proposition 8, the position x1 does not converge to
the setpoint r = 0.1 when a sensor bias is present.

Next, we let w(t) = 0 and v(t) = 0.1 for all t � 0, which
corresponds to no actuator offset and a constant sensor
bias. We choose 

G(s) =
s c2

m1m2
+ k2

m1m2

s4 + s3
(

c2
m2

+ 1
m1

(c1 + c2)
)

+ s2
(

k2
m2

+ 1
m1

(k1 + k2) + c1c2
m1m2

)
+ s

(
c1k2+c2k1

m1m2

)
+ k1k2

m1m2

. (37)

FIGURE 4 Position x1 of mass m1 when w(t) = 0.1 and v(t) = 0
with the controller (39). Integral control achieves setpoint tracking
in the presence of actuator offset.
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FIGURE 5  Position x1 of mass m1 when w(t) = 0.1 and v(t) = 0.1
with the controller (39). Integral control cannot reject sensor bias
and hence, in accordance with Proposition 8, setpoint tracking is
not achieved.
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Cfp(s) = 1
G(0)

= k1 = 0.5, (40)

Cbp(s) = s
s + 5

, (41)

which ensures that the assumptions of Proposition 6 are
satisfied. The position x1 when the controller in (40) is used
is shown in Figure 6. In accordance with Proposition 6,
x1(t) − r(t) → 0 as t → ∞ . However, when we let
w(t) = 0.1 and use the same controller in (40), (41), the
position x1 does not reach the setpoint as shown in Figure
7 and in accordance with Proposition 8.

CONCLUSIONS
In SISO systems, a servo-loop architecture with a forward-
and backward-path controller cannot be used to achieve
asymptotic setpoint tracking when both an actuator offset
and sensor bias are present. We provide results for SISO
systems that illustrate the limits of integral control in
achieving setpoint tracking.

Although the results in this article are confined to the
case of SISO transfer functions, extensions to the MIMO
case based on state-space models are of interest. In particu-
lar, a MIMO treatment of the problem of command follow-
ing in the presence of actuator offset is given in [5]. For the
case of actuator and sensor disturbances that are both mea-
sured, setpoint tracking using feedforward control is con-
sidered in [6]. Consequently, our results on actuator offset
are a special case of [5], whereas our results on sensor bias
are not addressed by [6] due to the additional assumption
in [6] of measured offsets.
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FIGURE 7  Position x1 of mass m1 when w(t) = 0.1 and v(t) = 0.1
with the controller (40), (41). Due to the presence of an actuator
offset, asymptotic setpoint tracking is not achieved by the con-
troller (40), (41) in accordance with Proposition 8.
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FIGURE 6  Position x1 of mass m1 when w(t) = 0.1 and v(t) = 0.1
with the controller (40). Since the backward-path controller Cbp has
a zero at the origin and Cfp(0)G(0) = 1, setpoint tracking is achieved
in the presence of sensor bias.
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