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Abstract: An estimator design problem is considered which 
involves both L 2 (least squares) and H ~  (worst-case 
frequency-domain) aspects. Specifically, the goal of the prob- 
lem is to minimize an L 2 state-estimation error criterion 
subject to a prespecified H a constraint on the state-estimation 
error. The H ~  estimation-error constraint is embedded within 
the optimization process by replacing the covariance Lyapunov 
equation by a Riccati equation whose solution leads to an 
upper bound on the L 2 state-estimation error. The principal 
result is a sufficient condition for characterizing fixed-order 
(i.e., full- and reduced-order) estimators with bounded L 2 and 
H a estimation error. The sufficient condition involves a system 
of modified Riccati equations coupled by an oblique projec- 
tion, i.e., idempotent matrix. When the H~  constraint is ab- 
sent, the sufficient condition specializes to the L 2 state-estima- 
tion result given in [2]. 

Keywords: Kalman filter; H~  norm; reduced-order state 
estimation; optimal projection equations; Hankel norm. 

1. Introduction 

One of the fundamental problems in dynamic 
systems theory is the observation of state varia- 
bles. Although an extensive theoretical foundation 
has been developed for the quadratic (least 
squares) error criterion, state estimation with a 
worst-case frequency-domain design objective has 
apparently not been considered. In the present 
paper we thus extend the least squares formula- 

* Supported in part by the Air Force Office of Scientific 
Research under contract F49620-86-C-0002. 

tion to include a frequency-domain bound on the 
state-estimation error. The underlying idea in- 
volves the application of state-space techniques 
which have recently been developed for H~ con- 
trol design in [1,4-6]. The results of the present 
paper are thus complementary to the results ob- 
tained in [1]. 

The principal result of the present paper is a 
sufficient condition which yields full- and re- 
duced-order estimators satisfying an optimized L 2 
error bound as well as a prespecified H~ error 
bound. In the full-order case, the H~-constrained 
estimator involves a modified Riccati equation 
which specializes to the standard steady-state Kal- 
man filter when the H~ constraint is absent. In 
the reduced-order case the H~-constrained result 
leads to a direct generalization of the optimal 
projection approach developed in [2] for the un- 
constrained L 2 state-estimation problem. While 
the Le-optimal reduced-order state estimator was 
characterized in [2] by means of a coupled system 
of one modified Riccati equation and two mod- 
ified Lyapunov equations, the H~-constrained 
solution involves a coupled system consisting of 
three modified Riccati equations and one mod- 
ified Lyapunov equation. As in [2], the coupling is 
due to the presence of an oblique projection 
(idempotent matrix) with additional coupling now 
arising from the H~ constraint. When the H~ 
constraint is sufficiently relaxed, these conditions 
again specialize directly to those given in [2]. 

We note that the development in the present 
paper is limited to the case in which the plant is 
asymptotically stable. These results can also be 
extended to the unstable plant case, although with 
additional complexity. This case will thus be 
treated in a future paper. 

The contents of the paper are as follows. After 
collecting notation in Section 2, the statement of 
the H~-Constrained State-Estimation Problem is 
given in Section 3. The principal result of this 
section (Lemma 3.1) shows that if the algebraic 

0167-6911/89/$3.50 © 1989, Elsevier Science Publishers B.V. (North-Holland) 



10 D.S. Bernstein, W.M. Haddad / SteaaS'-state Kalman.fihering 

Lyapunov equation for the covariance is replaced 
by a modified Riccati equation possessing a non- 
nega t ive -de f in i t e  solut ion,  then the H ~  
estimation-error constraint is enforced and the L 2 
state-estimation error criterion is bounded above 
by an auxiliary cost function. The problem of 
determining a reduced-order estimator which 
minimizes this upper bound subject to the Riccati 
equation constraint is considered in Section 4 as 
the Auxiliary Minimization Problem. Necessary 
conditions for the Auxiliary Minimization Prob- 
lem (Theorem 4.1) are given in the form of a 
coupled system of modified algebraic Riccati 
equations. To develop connections with standard 
Kalman filter theory the full-order estimator result 
is also given. In Section 5 the necessary conditions 
of Theorem 4.1 are combined with Lemma 3.1 to 
yield sufficient conditions for bounded H a and 
L 2 estimation error. Although our resUlt gives 
sufficient conditions for H~ estimation error, we 
also state hypotheses under which these conditions 
are also necessary (Proposition 5.1). 

L: q × n matrix. 
A,,, B,, Q.: n . × n ,, n , × l, q x n , matrices. 

B,,C A,, " 

O&[ D1 ]B,,D2 ' f f ~ & [ E L - E C , , ] .  

R: E T E ,  estimation error weighting in Pq. 
w(.): p-dimensional standard white noise pro- 

cess. 
V i, V2: intensity of DW(-  ), D2w('); VI~ 

D1D~ ~ ~, , ,  V2 £ D 2 D f  ~ pl .  
Vi2: cross intensity of D~w( . ) ,  D2w(-); V~2& 

D1D f ~ R "×1 

L~I R L  

- C f R L  

vl 
gevl  T 

- L [ R Q ,  ] 

qYRC,, ]" 

8 " 

~,: positive constant. 

2. Notation and definitions 

R, R r×~, N ~, ~:: real numbers, r × s  real 
matrices, N r× 1, expected value. 

lr ' ()V, 0r×, ' 0,: r × r identity matrix, trans- 
pose, r × s zero matrix, O r × r- 

tr: trace. 
o .... (Z) :  largest singular value of matrix Z. 
X ..... (Z) :  largest eigenvalue of matrix Z with a 

real spectrum. 
II Z 11 F: [tr z z T ]  1/2 (Frobenius matrix norm). 

[I g(s)11 ~: sup,~a°ma×[g(J~°)]" 
5 r  iNr, Dr: r × r symmetric, nonnegative-defi- 

nite, positive-definite matrices. 
Z1 ~ Z2  ' Z1 < Z2 :  Z 2 _  Z1 ~ [ ~ r  Z 2 -- Z 1 E 

P r, Z~, Z 2 ~ $  r. 

n, l, n , ,  p,  q, r; h positive integers; n + n,,; 
I I  e ~ t l .  

x, y,  Ye, x , ,  £: n, l, q, n~, h-dimensional 
vectors. 

X e " 

A, C: n × n ,  l × n  matrices. 
D 1, D:, E: n × p ,  l × p ,  r × q  matrices. 

3. Statement of the problem 

In this section we introduce the reduced-order 
state-estimation problem with a constraint on the 
H~ norm of the state-estimation error. Specifi- 
cally, the transfer function between disturbances 
and error states is constrained to have H~ norm 
less than y. In this paper it is assumed that the 
plant is asymptotically stable, i.e., the eigenvalues 
of A are in the open left half plane. 

H~-Constrained State-Estimation Problem. Given 
the n-th-order observed system 

X'(t) = A x ( t )  + D l w ( t  ), (3.1) 

y ( t )  = C x ( t )  + D 2 w ( t  ), (3.2) 

where t ~  [0, re), determine an ne-th-order state 
estimator 

2, ,( t)  = A e x e ( t  ) + B , , y ( t ) ,  (3.3) 

y o ( t )  = Q , x , , ( t ) ,  (3.4) 

where n¢, < n, which satisfies the following design 
criteria: 
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(i) A e is asymptotically stable; 
(ii) the r × p transfer function 

H ( s )  & ff~(sI~ - A ) - ' D  (3.5) 

from disturbances w(t)  to error states E[Lx( t )  - 
ye(t)] =/~Y(t) satisfies the constraint 

II n(s ) I I  ~ -< "/, (3.6) 

where ~, > 0 is a given constant; and 
(iii) the L 2 state-estimation error criterion 

J(Ae ,  Be, Ce) 

& l i m F _ ( [ L x ( t ) - y e ( t ) l T R [ L x ( t ) - y e ( t ) ] }  
t - -~ ~ 

(3.7) 

is minimized. 

It is useful to note that the augmented system 
(3.1)-(3.4) can be written as 

x ( t ) = . , { Y ( t ) + D w ( t ) ,  t ~ [ 0 ,  oc), (3.8) 

and that (3.7) is equivalent to 

J(Ae ,  Be, Ce)= lim ~:{[/~)~(t)]T[/~)~(t)] } 
t---~ O:2 

= lira F[yT( t ) /} f f ( t ) ] .  (3.9) 

Furthermore, if A e is asymptotically stable for a 
given estimator (Ae, Be, Ce) then the L 2 state- 
estimation error criterion is given by 

J(~Z~e, Be, C_e) = tr (~R, (3.10) 

where the steady-state covariance defined by 

(~ & lim 0:[ff( t)yT(t)]  (3.11) 

satisfies the fi × ~ Lyapunov equation 

0 = AQ + O Ar + I~. (3.12) 

Using (3.10) and (3.12) we now show that the 
criterion (3.7) is an error measure involving the 
impulse response of (3.8) with respect to an L z 
norm. 

Proposition 3.1. I f  A~ is asymptotically stable then 
the L 2 state-estimation criterion (3.7) can be written 
as  

J ( a e ,  B e, Ce) = f~ l l /~e~7511F 2 d t .  (3.13) 
a0 

Proof. It need only be noted that (3.10) is equiv- 
alent to 

t r f0~ed@ e A'vt dtR 

= trf0~(/~ ed 'b ) ( /~  eA'b) T dt,  

which is equivalent to (3.13). [] 

The key step in enforcing (3.6) is to replace the 
algebraic Lyapunov equation (3.12) by an alge- 
braic Riccati equation. Justification for this tech- 
nique is provided by the following result. 

Lemma 3.1. Let (Ae, Be, Ce) be given and assume 
there exists ~ ~ R ~ × ~ satisfying 

~ N ~ (3.14) 

and 

0 = + A'V + + (3.15) 

Then 

( .,{, D ) is stabilizable (3.16) 

if and only if 

A e is asymptotically stable. (3.17) 

Furthermore, in this case 

II H(s)II  ~ < v, (3.18) 

0 < ~ ,  (3.19) 

and 

J ( A  e, Be, Ce) < J (A , , ,  Be, Ce, ~) ,  (3.20) 

where 

j r (Ae ,  Be ' Ce ' ~ )  iX tr ~ k .  (3.21) 

Proof. Theorem 3.6 of [9] and (3.16) imply that 
(A, [7-2~k.~ + 17"] 1/2) is also stabilizable. Using 
Lemma 12.2 of [9] and the assumed existence of a 
nonnegative-definite solution to (3.15), it follows 
that A is asymptotically stable. Since A is lower 
block triangular, A asymptotically stable implies 
A e is asymptotically stable. Conversely, since A is 
assumed to be asymptotically stable, (3.17) implies 

is asymptotically stable and thus (3.16) holds. 
The proof of (3.18) follows from a standard 
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manipulation of (3.15); for details see Lemma 1 of 
[8]. To prove (3.19) subtract (3.12) from (3.15) to 
obtain 

0 = ~ ( ~ _  (~) + ( ~ _  0)A~r + ~, 2~/~ ~,  (3.22) 

which, since / l  is asymptotically stable, is equiv- 
alent to 

~ - O =  [~e~ir[y-2~R~]e 'C~rdt>_O.  (3.23) 
"0 

Finally, (3.20) follows immediately from (3.19). 
[] 

Lemma 3.1 shows that the H~ constraint is 
automatically enforced when a nonnegative-defi- 
nite solution to (3.15) can be shown to exist. 
Furthermore, the solution ~ provides an upper 
bound for the steady-state covariance Q along 
with a bound on the L 2 state-estimation error 
criterion. Next, we present a partial converse of 
Lemma 3.1 which guarantees the existence of a 
nonnegative-definite solution to (3.15) when (3.18) 
is satisfied. 

Proof. Since -~ is invertible, (3.15) implies 

Next, subtract (3.24) from (3.26) to obtain 

0 : - b )  + ' - 

q'- " /2~ - 11 /~-  1 . (3.27) 

which, since /[  is asymptotically stable, is 
equivalent to 

o~ -r 1 ] - -- y 2 ~  1 / t 3 = /  e A , [ y 2 ~ - l p ~  0 -  croat>0. 
"0 

(3.28) 

Thus (3.28) implies /5 < y 2 ~  1 or equivalently, 
,,~1/2/3~1/2 ~ yz/~. Hence, 

V 2 ~ ~k max ( , , .~1/2/~1/2  ) = X . . . . .  ( p l / 2 ~ / 3 1 / 2  ) 

~ ~k max ( / ~ 1 / 2 0 t ~ 1 / 2  ) = )kmax ( P 0 ) .  [] 

4. The auxiliary minimization problem and neces- 
sary conditions for optimality 

Lemma 3.2. Let (A~, Be, Ce) be given, suppose A,, 
is asymptotically stable, and assume the H~ state- 
estimation error constraint (3.18) is satisfied. Then 
there exists a unique nonnegative-definite solution 
satisfying (3.15) and such that ~ + y - 2 ~ / ~  is 
asymptotically stable. Furthermore, ~ is the 
minimal solution to (3.15). 

Proof. The result is an immediate consequence of 
Theorems 3 and 2 of [3], pp. 150 and 167, along 
with the dual of Lemma 12.2 of [9]. [] 

As discussed in the previous section, the re- 
placement of (3.12) by (3.15) enforces the H a 
state-estimation error constraint and results in an 
upper bound for the L 2 state-estimation error 
criterion. That is, given an estimator (A  e, B e, C,,) 
satisfying the H~ estimation constraint, the actual 
L 2 state-estimation error criterion is guaranteed to 
be no worse than the bound ,,¢(A~, B<., C e, 2 )  if 
(3.15) is solvable. Hence, J ( A  e, Be, C,,, ~ )  can 
be interpreted as an auxiliary cost which leads to 
the following optimization problem. 

Finally, we show that the quadratic term 
"¢ 2~fi~ in (3.15) also constrains the Hankel norm 
of the estimation error E [ L x ( t ) - ~ ( t ) ]  when 
is positive definite. To show this let P ~ t~ ~ be the 
observability Gramian for the augmented system 
(A-, /), /~) which satisfies 

0 = A-rp + PA + R.  (3.24) 

Proposition 3.2. Let ( Ae, Be, C,,) be given and 
assume there exists ~ P~ satisfying (3.15) and 
(3.16) or, equivalently, (3.17). Then 

x'& (b0) _< (3.25) 

Auxiliary Minimization Problem. Determine (A e, 
Be, Ce, 2 )  which minimizes J ( A  e, B e, C,., 2 )  
subject to (3.14) and (3.15). 

It follows from Lemma 3.1 that the satisfaction 
of (3.14)-(3.16) leads to (1) A,, stable; (2) H~ 
estimation error bound ~,; and (3) an upper bound 
(3.21) for the L 2 state-estimation error criterion. 
Hence it remains to determine (A  e, Be, C,,) which 
minimizes J (  A e, B e, C,,, 2 )  and thus provides an 
optimized bound for the actual L 2 criterion 
J(A~,, B,,, Co). Rigorous derivation of the neces- 
sary conditions for the Auxiliary Minimization 
Problem requires additional technical assump- 
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tions. Specifically, we restrict (Ae, Be, Ce, ~)  to 
the open set 

~Lx {(Ae ' Be , Ce ' ~) :  .~EDh,  

,4 + y - 2 ~ k  is asymptotically stable, 

and (Ae, B e, Q~) is controllable 

and observable. } 

nonnegative-definite matrix p1/20p1/2, it follows 
that QP has nonnegative eigenvalues. Thus, the 
eigenvalues of I,  + y - 2 ~ p  are all greater than one 
so that the above inverse exists. [] 

Finally, for arbitrary Q ~ R "×" define 

Qa A= QC T + ii12, ~, ~ LTRL. (4.9) 

Remark 4.1. The set 5 p constitutes sufficient con- 
ditions under which the Lagrange multiplier tech- 
nique is applicable to the Auxiliary Minimization 
Problem. Specifically, the requirement that ~ be 
positive definite replaces (3.14) by an open set 
constraint, the stability of ,'1 + 3,-2~/~ serves as a 
normality condition, and (-4e, Be, Ce) minimal is 
a nondegeneracy condition. 

The following lemma is needed for the state- 
ment of the main result. 

Lemma 4.1. Let Q, /3  ~ N" and suppose rank 0/3 
-~ n e. Then there exist n e × n G, F and n e × n e 
invertible M, unique except for a change of basis in 
R "e, such that 

0/3 = GTMF, (4.1) 

FG T = I,, .  (4.2) 

Furthermore, the n × n matrices 

r a= GTF, (4.3) 

"c A & I. - ~, (4.4) 

are idempotent and have rank n~ and n -  n e, re- 
spectively. If,  in addition, 

rank 0 = rank /3 = ne, (4.5) 

then 

= r 0,  /3 =/3r .  (4.6), (4.7) 

Finally, if P ~ N" then the inverse 

S& ( / ~ + y  2Qp)- I  (4.8) 

exists. 

Proof. Conditions (4.1)-(4.7) are a direct conse- 
quence of Theorem 6.2.5 of [7]. To prove that the 
inverse in (4.8) exists, note that since the eigenval- 
ues of QP coincide with the eigenvalues of the 

Theorem 4.1. I f  (A e, Be, C e, ~ ) ~ 5  a solves the 
Auxiliary Minimization Problem then there exist Q, 
P, Q , /3  E t~ ~ such that 

A e = F ( A  - Q , v f l c  - y - a Q Z Q P S ) G T ,  (4.10) 

B e = tO.V2', (4.11) 

C e = L ( 1 ,  + v - 2 Q p S ) G  T, (4.12) 

~ = [ Q + 0 F Q  rOr~OFT], (4.13) 

and such that Q, P, Q, /3 satisfy 

O = AQ + QA T + V 1+ 3,- 2QZQ 

- -  1 T ~ a , r  ± , - Q . V 2  Qa + r ± Q . V 2  l"~v r (4.14) 

0 = ATp + PA - y - 4 S T p Q Z Q P S  

= 

= 

+rv~(I, + y - 2 Q p s ) T x ( I ,  + y 2 Q p S ) r ± ,  

(4.15) 

( A - y - n Q X Q P S ) Q  + O( A - T -4 Q XQ PS )  T 

+ y - 6 Q S T P Q X Q p s  0 

- 1  T ~ s z - l r ' ~ T  T +QaV2 Qa - (4.16) T± ~.aV2 ~a'l '± , 

( A - QaV2'C + y-2Qx)T/3 

+ /3( A - Q~VzlC + y -  ZQX) 

+(In  + y -  2Qps ) T x (  I ,  + v -  2QpS ) 

- r± T(I .  + v-2Qps)T2(1. + v-2oeS)r± 
(4.17) 

(4.18) rank 0 = rank /3 = rank 0/3 = n e. 

Furthermore, the auxiliary cost is given by 

J ( A e ,  Be, C., ~ )  

= tr LTRL(Q + v - 4 Q p S Q S T p Q ) .  (4.19) 

Conversely, if  there exist Q, P, Q , /3  ~ ~"  satisfy- 
ing (4.14)-(4.18), then (Ae, Be, C~, .~) given by 
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(4.10)--(4.13) satisfies (3.14) and (3.15) with the 
auxiliary cost (3.21) given b_v (4.19). 

Proof. See Appendix A. [] 

Remark 4.2. Theorem 4.1 presents necessary con- 
ditions for the Auxiliary Minimization Problem 
which explicitly synthesize extremal full- and re- 
duced-order estimators (A~, B,, C,,). If the H~ 
estimation constraint is sufficiently relaxed, i.e., 
"y ~ ~ ,  then S = I,,. In this case equations (4.16) 
and (4.17) become decoupled from (4.15) and thus 
(4.15) becomes superfluous. Furthermore, (4.14), 
(4.16) and (4.17) specialize to the optimal projec- 
tion equations obtained in [2]. 

As discussed in [2], in the full-order (Kalman 
filter) case n , .=n ,  G = F  ~ and thus G = F = r =  
I,, and r~ = 0 without loss of generality. To de- 
velop further connections with the standard Kal- 
man filter theory assume 

1/12 = O. (4.20) 

In this case (4.15) implies that P = 0 so that the 
gain expressions (4.10)-(4.12) become 

A,, = A - Q c T v 2 1 c ,  (4.21) 

B,, = Q C T V 2  ' . (4.22) 

C,, : L, (4.23) 

while equations (4.14)-(4.16) and auxiliary cost 
(4.19) specialize to 

O = A Q + Q A I +  V 1 

+ y 2QLVRLQ- QcTv= 'CQ, (4.24) 

:¢( A,,, B,, C,,, ~ )  = tr LTRLQ. (4.25) 

Remark 4.3. Note that the necessary conditions 
for the full-order problem involve one modified 
Riccati equation. This equation is similar to the 
observer Riccati equation with the additional 
quadratic term 3' 2QLTRLQ. Finally, note that 
when the H~ estimation constraint is sufficiently 
relaxed, i.e., y --* ~ ,  (4.24) reduces to the standard 
observer Riccati equation of steady-state Kalman 
filter theory. 

5. Sufficient conditions for combined Lz/H~ 
estimation 

In this section we combine Lemma 3.1 with the 
converse of Theorem 4.1 to obtain our main result 

guaranteeing constrained H~ state-estimation er- 
ror and an optimized L~ state-estimation error 
bound. 

Theorem 5.1. Suppose there exist Q, P, Q_, P c •" 
satis[ving (4.14)-(4.18) and let (A,=, B,, C,,, 2 )  be 
given by (4.10)-(4.13). Then ( A, D) is stabilizable 
if and only if A,  is asymptotically stable. In this 
case, the transfer function H(s) defined /~v (3.5) 
satisfies the H a state-estimation error constraint 

II H(s) I I  ~ -< T, (5.1) 

and the L 2 state-estimation error criterion (3.7) 
satisfies the bound 

J(A,, ,  B,,, C,,) 

< tr LTRL(Q + y -4QPSQSTPQ), (5.2) 

Proof. The converse portion of Theorem 4.1 im- 
plies that ~ given by (4.13) satisfies (3.14) and 
(3.15). It now follows from Lemma 3.1 that the 
stabilizability condition (3.16) is equivalent to the 
asymptotic stability of A,,, the H~ state-estima- 
tion error constraint (3.18) holds, and the L 2 
state-estimation error criterion (3.7) satisfies the 
bound (3.20) which, by (4.19), is equivalent to 
(5.2). [] 

In applying Theorem 5.1 the principal issue 
concerns conditions on the problem data under 
which the coupled Riccati equations (4.14)-(4.17) 
possess nonnegative-definite solutions. Clearly, for 

sufficiently large, (4.14)-(4.17) approximate the 
pure least squares problem considered in [2]. The 
important case of interest, however, involves small 
~, so that significant H~ estimation is enforced. 
Thus, if (5.1) can be satisfied for a given ~, > 0, it 
is of interest to know whether one such fixed-order 
estimator can be obtained by solving (4.14)-(4.17). 
Lemma 3.2 guarantees that (3.15) possesses a solu- 
tion for any fixed-order estimator satisfying (5.1). 
Thus our sufficient conditions will also be neces- 
sary so long as the Auxiliary Minimization Prob- 
lem possesses at least one extremal over ~ .  When 
this is the case we have the following result. 

Proposition 5.1. Let y* denote the infimum of 
H H(s)  II ~ over all asymptotically stable fixed-order 

estimators and suppose that the Auxiliary Minimiza- 
tion Problem has an extremal for all y > y*. Then 
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for all y > Y * there exist Q, P, Q, P ~ N" satisfy- 
ing (4.14)-(4.17). 

A p p e n d i x  A: P r o o f  o f  T h e o r e m  4.1 

To optimize (3.21) over the open set 5 p subject 
to the constraint (3.15), form the Lagrangian 

~ ( A e ,  Be, Ce, ~ ,  ~ ,  ~k) 

tr{X~/¢ + [.,t~ +~A"r + y -2~ /}~  + I~] ~ } ,  

(A.1) 

where the Lagrange multipliers X >_ 0 and ~ 
R ~ × ~ are not both zero. We thus obtain 

~-~ = ( d  + v - z ~ k ) ~ +  ~ ( d  + v -z~k)  + xk .  

(A.2) 

Setting 0£~/&~ = 0 yields 

(A.3) 

Since A + 7-z~/~ is assumed to be stable, X = 0 
implies ~ = 0. Hence, it can be assumed without 
loss of generality that X--1.  Furthermore, ~ is 
nonnegative definite. 

Now partition fi × ~, Q, P into n × n, n × ne, 
and n ~ × n ~ subblocks as 

[ ] Q1 Q12 s~= 
~= Q~ Q~ ' e~  ~ ' 

and for notational convenience define 

~ = Z21 Z 2 J 

where 

= p v ~, 
Z1 z~ PaQ1 + 12Q12, Z12 = P~QI2 + PI~Q2, 

= p T ~= Z21 " P~Q~ + ~Q12, z~ PV~2Q12 + P~Qz. 

Thus, with X = 1 the stationarity conditions are 
given by 

0~ = 

= 0,  ( A . 4 )  

0,£~ o 
0A~ = Z2 = 0, 

~A a 
= Z21C T + P~V12 + P2BeVz = O, 

OB~ 

~- 2RC,.Q2 + 27-2RCeZ~Q12 
OC~ 

- 2RLQ12 - y-2RLZ~Q12 

- 7 - 2 R L Q 1 Z 1 2 -  7 2RLZ~Q2 

~-0.  

15 

(a.5) 

(A.6) 

(A.7) 

Expanding (3.15) and (A.4) yields 

O=AQI + Q1AT + V 1 

+ 7-2(  Q1LT-  Q12CT)R( Q1LT-  Q12C?) T, 

(A.8) 

0 =AQ12 + Q,2A[+ Q,CTBTe + V, zBWe 

+ Y- 2Q1LVRLQ12 - 3'- 2QIzCfRLQI2 

-y-2Q1LVRCeQ 2 + 7-2Q12CfRCeQ2, (A.9) 

T T T 0 = AeQ 2 + Q2A~ + BeCQ1 z + Q1zC Be + BeV2B~ 

T T + Y - 2 ( Q T 2 L T - Q 2 C f ) R ( Q T 2 L T - Q x C e  ) , 

(A.10) 

g'~ Tit ~T IgT 0 = ATP1 + P1A + ... ~ 1 2  + P12B~ C 

+ Y- 2LTRLZf + 3' - 2Z1LTRL 

-- V- 2LTRCe Z T - T-  2Z,2CTRL + L TRL, 

(A.11) 

0 = ATp12 + P12A~ + CTB~P2 

+ 7-  2LVRLZ~ - 7-2Z1LTRCe 

+ 7 - ZZ12CTRC. -- LTRCe, (A.12) 

0 = ATePz + P ,A ,  - y-2CTRLZ]I 

- 7-aZ21LTRC~ + CJRCe. (A.13) 

Now define the n × n matrices 

Q & Q1 - Q12Q~aQ~2, P & P, - P1zPf lP~,  
~_~ A -1 T = QI:Q2 Q~2, P e P121'£q'~, 

~--- _ _ ~  ~ - 1  D - 1 D T  
T - -  ' ~ 1 2 ~ 2  ~2 ~ 1 2 ,  

and the n~ × n,  n~ × ne,  a n d  n~ × n matrices 

G& -1 T M ~  A Qz Q12, QEP2, F = - P Z 1 P ~ .  

The existence of Q21 and P2 ~ follows from the 
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fact that ( A . ,  B,,, Q.) is minimal. See [1,2] for 
details. Note that r = GTF. Clearly, Q, P, O, and 
/3 are symmetric and nonnegative definite. 

Next note that with the above definitions, (A.5) 
implies (4.2) and that (4.1) holds. Hence ~-= GTF 
is idempotent,  i.e., ~_2= ~. Sylvester's inequality 
yields (4.18). Note  also that (4.6) and (4.7) hold. 

The components  of ~ and ~ can be written in 
terms of Q, P, Q_, P, G, and I" as 

Q1 = Q + Q, PI = P + /3 ,  (A.14) 

Q,2 = (2 F~', Pw_ = - /3GT,  (A.15) 

Q~ = FOF r, P: = G/3G T. (A.16) 

Next note that by using (A.14)-(A.16), (A.7) be- 
comes 

C, ,S= L[I , ,  + 7 2 ( Q + O ) p ] G T ,  

where 

S A  1,,, + 7 2FQpGT.  

To prove that S is invertible use (4.6) and (4.3) 
and note that 

yields (4.14) and (4.16). Using 

( A . I I )  + F ' G ( A . 1 2 I F -  (A .12 )F  - [ ( A . 1 2 ) F  l '  

and 

I " r a ( a . 1 2 ) I  " -  ( A . 1 2 ) F  - [ (A.12)/ ' ]"-  

yields (4.15) and (4.17). 
Finally, to prove the converse we use (4.10)- 

(4.18) to obtain (3.15) and (A.4)-(A.7).  Let A,,, 
B,,  Q ,  G, F, r, Q, P, Q, [', ~ be as in the 
statement of  Theorem 4.1 and define Q1, Q12, Q2, 
P~, P~2, 1"2 by (A.14)-(A.16).  Using (4.4), (4.11) 
and (4.12) it is easy to verify (A.6) and (A.7). 
Finally, substitute the definitions of Q, P, Q, /3, 
G, F and ~- into (4.14)-(4.17) along with (4.2), 
(4.3), (4.6) and (4.7) to obtain (3.15) and (A.4). 
Finally, note that 

= 0,,~,, o,,, + 011,, r '  l, 

which shows that ~ >_ 0. [] 

I,,, + V-~-FOpGr = L,, + V 2 r 0 C p G *  

1,,, + 7 - 2 ( Y Q Y T ) ( G P G T ) .  

Since F 0 F  x and GPG v are nonnegative definite, 
their product  has nonnegative eigenvalues. Thus 
each eigenvalue of IN," + y 2FOPGX is real and is 
greater than unity. Hence S is invertible. Now 
note that by using (4.2) and (4.3) it can be shown 
that 

G r~ 1 = SG~. 

The expressions (4.11), (4.12) and (4.13) follow 
from (A.6), (A.7), (4.8) and the definition of  ~ by 
using the above identities. Next, comput ing  either 
f ' ( A . 9 ) -  (A,10) or G ( A . 1 2 ) +  (A.13) yields (4.10). 
Substituting this expression for A,, into ( A . 8 ) -  
(A.13) it follows that (A .10 )=  F(A.9) and (A.13) 
= G(A.12). Thus, (A.10) and (A.13) are superflu- 
ous and can be omitted. Next, using 

( a . 8 )  + G ~ F ( A . 9 ) G  - (A.9)G - [ (A.9)G]  T 

and 

G T F ( A . 9 ) G -  ( A . 9 ) G -  [ (A.9)G]  T 
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