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The Optimal Projection Equations for Fixed-Order 
Sampled-Data Dynamic Compensation with 

Computation Delay 

DENNIS S .  BERNSTEIN,  LAWRENCE D. DAVIS, AND 
SCOTT W. GREELEY 

Abstract-For an LQG-type sampled-data regulator problem  which 
accounts for computational delay and utilizes an averaging A/D device, 
the equivalent  discrete-time  problem is shown to be  of increased order due 
to the inclusion of delayed  measnrement states. The optimal projection 
equations for reduced-order,  discrete-time  compensation are applied to 
the augmented  problem to characterize  low-order  controllers. The design 
results are illustrated on a tenth-order flexible  beam  example. 

I. INTRODUCTION 

Classical sampleddata control  theory  has  been  extensively  developed 
[1]-[7]  and  is  widely  used  in  practical  applications. Sampleddata design 
based  upon modem optimal  control  theory  has also been  developed, 
although to a  considerably  lesser  extent  [8]-[14]. The goals of the present 
note are twofold. First, for an LQG-type sampled-data  regulator  problem 
which  explicitly  accounts for computational  delay,  we  obtain an equiva- 
lent  discrete-time  problem (Theorem 2.1 and  Corollary 2.1). The timing 
diagram in Fig.  1  illustrates  the  unavoidable  delay  in the feedback loop 
(see Section II for notation).' A salient feature of  this  problem is that 
rather  than  replace the continuous-time  white  noise  measurement  model 
by  a  discrete-time  version  (which  is often done in the literature  since 
continuous-time  white  noise  cannot  be  sampled),  we  employ  an  averag- 
ing-type A/D device as in [8, p. 821 [see (2.5)]. 

The second  goal  of  the  note  is to present  a  novel  design  procedure 
which  is  applicable to the  equivalent  discrete-time  problem,  and  which 
thus  directly  accounts for the delay  effects.  Since  the  discrete-time  model 
is of augmented order n + I (n = number  of  plant states, I = number  of 
measurements),  it seems natural to seek  dynamic  feedback  of  reduced 
order. To this end, we  apply  the  optimal  projection  equations for discrete- 
time  dynamic  compensation to the  equivalent  discrete-time  problem to 
characterize  optimal controllers of order n, 5 n + 1. These equations, 
which were previously  derived  in [I71 for the  continuous-time case, are 
discussed  in  [15],  [16].  Note  that,  in  practice, the computational  delay 
(and, hence,  sample  interval)  in  real-time  controller  implementation 
depends  directly  upon  the controller order n,. For example,  by  reducing 
n, the  sample  rate can effectively be increased.  Thus, the engineering 
tradeoffs of performance versus controller order and sample  interval  can 
be  investigated  using  the results of this  note. 

This note also includes formulas for integrals of matrix  exponentials 
arising  in  the sampleddata/discrete-time conversion,  along  with an 
algorithm for solving  the  optimal  projection  equations. The results are 
applied to a  tenth-order  flexible  beam  example. 

II. SAMPLED-DATA PROBLEM AND E~UIVALENT DISCRETE-RME 
FORMULATTON 

The following  notation  and  definitions  will  be  used  throughout. 

I,, Orx, ,  Or r X r identity  matrix, r X s zero matrix, Or,, 
4 i . j )  ( i ,  j )  element  of  matrix Z 
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compensator is  strictly  proper. In the note the results are stated for the more general case 
' For  simplicity, the timing diagram  Fig. 1 applies to  the case in which the 

in which a direct (static) feedthrough term Dcj(k)  is included. 
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Timing diagram for sampled-data  controller. 

transpose  of  vector or matrix 2, (23-1 
matrix  with  unity  in the ( i ,  i )  position and zeros 
elsewhere 
expected  value, real numbers, r X s real matrices 
matrix  with  eigenvalues  in  open  unit disk 
diagonalizable  matrix  with  nonnegative  eigenvalues 
[181, ~191 

positive  integers,  1 I n, 5 n + I 
n, m, I ,  n,-dimensional  vectors 
n x n, n x m, I x n matrices 
n, x n,, n, X I ,  m x n,, m X I matrices 
n, I-dimensional  zero-mean  continuous-time  white 
noise  processes 
n x n nonnegativedefinite intensity of w1 
I X i positivedefinite intensity of w, 
n x I cross intensity  of w1, w2 
n x n nonnegative-definite  state  weighting  matrix 
m X m positivedefinite control  weighting  matrix 
n x m cross weighting  matrix  such  that R,  - 
RI2R;'R y2 is  nonnegative  definite 
discrete-time  index, 1, 2, 3, . a .  

In the statement  of the sampled-data  control  problem the sample 
interval h and the controller order n, are fixed and the optimization is 
performed  over the controller parameters (A,, B,, C,, 0,). For design 
tradeoff  studies h and n, can be varied  and the problem can be solved for 
each pair of  values of interest. 

Fixed-Order,  Sampled-Data  Dynamic-Compensation  Problem 

Given the nth-order continuous-time  system 

i ( t ) = A x ( t ) + B u ( t ) + w , ( r )  

with  continuous-time  measurements 

y ( r ) = c x ( t ) + D u ( t ) +  wz(t)  

design an n,th-order  discrete-time  compensator 

which,  with A/D averaged  measurements 
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and DIA zero-order-hold controls 

u( t )=l i (k) ,  t E [kh, ( k + l ) h ) ,  (2.6) 

minimizes the performance criterion 

J(A,, B,, C,, Dc) P lim E ;  
1 

1-W 

. 1: [X(S)~R~X(S)+~X(S)'R~~~(S)+U(S)~R~~(S)I ds. (2.7) 

The  main result of this section concerns propagation of the plant  and 
digitized measurements over one time step. For notational convenience, 
define 

H ( s )  1' eAr  dr. 

Theorem 2. I: For the fixed-order, sampleddata  dynamiccompensa- 
tion problem, the plant dynamics (2. l), averaged measurements (2.5) and 
performance criterion (2.7) have the equivalent discrete-time representa- 
tions 

x'(k+ l )=A'x ' (k )+B' f i (k )+w; (k ) ,  (2.8) 

j ( k ) = C ' x ' ( k -  I)+D'li(k- 1)+ w i ( k -  l), (2.9) 

J(A,, B,, C,, D,)=G+lim E[x'(k)'RR;x'(k) 
k - w  

+Z~'(k)'R;2a(k)+li(k)'Rili(k)] (2.10) 

where 

x'(k)  P x(/&), 6 P - tr 1: 1: eArVleArrRI dr ds, 

A' eAh, B' e H(h)B, C' - CH(h), D' k - C H(s) dB+ D 1 l h  
h h o  

w{(k )  and wi(k )  are zero-mean, white  noise processes with 

where 

Vi 2 jh eAsV1eArS  ds,  Vi, P - 1 eAsVIHr(s)  G!YC'+~  H(h)V,, ,  l h  1 
0 h o  

V i  B - V ~ + T  C H(s)VIH'(s)  dsCT ; h' 1: 

and 

Ri P R,+-  B r  1 HT(s)RIH(s)  dsB l h  
h o  

The proof of this theorem is a straightforward calculation involving 
standard techniques, and hence is omitted. The result is more comprehen- 
sive than previous work, however, and includes several results as special 
cases. For example, the expressions for A' and B' are standard; C' is 
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given by (10.9), [8, p. 831; R i ,  Riz, and R i  are given in [IO], [12]; and 
Vi, Vi*, and Vi can be found  in IS, p. 851. The expressions for 6 and D' 
appear to be  new. 

Note  that the averaged measurements depend  upon delayed samples of 
the  state. By augmenting the discretized state equation (2.8) to include 
these measurements, it is possible to  state the original sampleddata 
problem as a discrete-time problem. 

Corollory 2.1.- With the notation 

the fixed-order, sampled-data dynamicconpensation problem is equiva- 
lent to the following discrete-time problem. Given the (n + I)th-order 
discrete-time system 

P ( k + I ) = ~ ( k ) + B l i ( k ) + ~ ( k )  (2.11) 

with discretetime measurements 

j y k )  = &(k) (2.12) 

design an n,th-order discrete-time compensator of the form (2.3), (2.4), 
which minimizes 

J(A, ,  B,, C,, Dc)=6+lim E[2(k)rI?lP(k) 
k-or 

+22(k)Td12fi(k)+P(k)rfi21i(k)].  (2.13) 

Remark 2. I :  The equivalent cost (2.13) involves a constant offset 6 
which serves as a lower bound on the sampled-data performance, i.e., a 
"discretization floor." Note that 

h 
2 

6=- II VIR1 +O(h2) .  

Remark 2.2: Although the measurements 9(k) are noise free, the 
singularity is  not so serious as singular measurement  noise in the 
continuous-time case where the Kalman filter gains are expressed in terms 
of the inverse of the measurement  noise intensity. In the discrete-time 
case,  rather, it is required that + mT be invertible, where P is  the 
measurement  noise covariance (see [ll, p. 5301, or [15], [16]). 

Remark 2.3: The increase in plant order from n to n + f is due to the 
computational delay  and AID process. Since discrete-time LQG theory 
yields a possibly  unwieldy (n + 4th-order  controller, we seek "reduced- 
order" controllers. Note  that  in this context an nth-order controller can be 
regarded as being of reduced order. 

Remark 2.4: As pointed out in [lo], particular choices of  the sample 
interval h may result in a loss of controllability and observability for the 
equivalent discrete-time problem. Hence, these properties must  be 
verified before applying control design methods. 

m. APPLICATION OF THE OFllMAL PROJECTION f@UATIONS TO THE 
EQUIVALENT DISCRETE-TIME PROBLEM 

We  now apply the optimal projection equations for discrete-time 
dynamic compensation to the equivalent discrete-time problem. The 
following easily proved lemma will be needed. 

Lemma 3.1: Let 7 E R(n+')x(n+l), Then 
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if and only if there exist G, r E R n ~ x ( n + ' )  such that given by 

GTI'=T, (3.3) 

I'GT=InC. (3.4) 

Furthermore, G and r are unique to a change of  basis in R"c .  
Call G and r satisfying (3.3), (3.4) a projective  factorization of T. 

Furthermore,  for n x n nonnegative-definite matrices Q and 6, define 
the set of contragrediently  diagonalizing transformations 

6) d {q E Rnx":  W 1 Q 9 - T  and qT6f are diagonal}. 

It follows from [19, Theorem 6.2.5, p. 1231 that e(Q, 6) is always 
nonempty. This set does not, however, have a unique  element since basis 
rearrangements and sign transpositions may  be incorporated into e. 
Further nonuniqueness arises if Q6 has repeated eigenvalues. 

To guarantee that J is finite and independent of initial conditions, we 
restrict our consideration to  the (open) set 

is stable and (Ac, B,, C,) is minjmal . 1 
For the design problem it is required that S be nonempty, Le., that the 
augmented  system be stabilizable. We also require the  notation 

E2 6 R2+BTPB, r2 2 CQe', r1 I n + l - ~ ,  

A ,  4 A-AQCTVyle, AP A-Bi?;'(BTPA+k:,), 

x, B ( A Q ~ T +  Vd V ~ I ( A Q C T + B D ~  Q T ,  

X p  6 (BTP~+R:2+i?2D,e)TI?;1(BTP~+R^:2+l?2Dce), 

Theorem 3. I: Suppose (A,, B,, C,, 0,) E S solves the  fixed-order, 
sampled-data dynamic-compensation problem. Then there exist (n + I )  
x (n + I) nonnegative-definite matrices Q, P,  0, and p such that A,, 
B,, C,, and 0, are given by 

A,=r[A-A^QCT~~'C-BE;'(ETPa+R:,)-BD,C]GT, (3.5) 

B c = I ' [ A Q ~ T ~ ; 1 + 6 D c ] .  (3.6) 

Cc=  - [6;1(BTPA+R:2)+DcC]GT, (3.7) 

(3.13) 
,=I 

for some P E e@, p )  such that (9'-1Q&)(i,,, # 0, i = 1 ,  . . . , n,, and 
some projective factorization G, r of 7. Furthermore, the minimal cost is 

J ( A c ,  &, c c ,  D c ) = S + t r  [(MQMT+@~&T@T)R]. (3.14) 

Remark 3. I :  Theorem 3.1 can  immediately be specialized to the more 
restrictive problem  in  which the compensator is  strictly  proper. This can 
be done in both the full- and reduced-order cases by ignoring (3.8) and 
setting 0, = 0 wherever it appears. See [15], [ 161. 

Tv. NUMERICAL EVALUATION OF INTEGRALS  INVOLVING  MATRIX 
EXPONENTIALS 

To evaluate the exponentiahtegral expressions appearing in Theorem 
2.1, we utilize the approach of [20]. The idea is to eliminate the need for 
integration by computing the matrix exponential of appropriate block 
matrices. Numerical matrix exponentiation is discussed in [21]. 

Proposition 4. I :  Consider the following partitioned matrix exponen- 
tials of order (3n + I )  X (3n + /), (3n + m) X (3n + m ) ,  (2n + m )  
X (2n t m),  and ( 3 4  X (3n), respectively: 

V. NUMWCAL  SOLUTION OF THE DISCRETE-TIME O m A L  
PROJECTION EQUATIONS 

The following algorithm is proposed for solving (3.9)-(3.12). 

Algorithm 5.1: 
Step I :  Initialize k = 0 and T ( O )  = In+,. 
Step 2: With T 7tk) solve (3.9)-(3.12) for Q(" 6 Q, P*) = A p, Q(k) 

Q, and p ( k )  d p .  
Step 3: If k 2 1 check for convergence: If Il(Q(*), PCk), Q ( k ) ,  p(k)) - 

(Q(k-'), P(k- l ) ,  e"-'), p(k-l))ll > to1 then continue; else go 
to Step 6. 

Step 4: Select B('[) E e(Q(", PCk)) and update d k + ' )  = E"' 

Step 5: Increment k and go to Step 2. 
Step 6: Evaluate (3.5)-(3.8) with Q = P = PCk), Q = @k), p 

\k (k)Ei(P (k) )  - I I 
i =  I 

= pw,  GTr = +f), rcT = I,,,. 

Remark 5.1: In solving the Riccati equation (3.9), the nonhomoge- 
neous term is taken to be P t 7 1 Q ~ { .  which is nonnegative definite. 
Similar remarks apply to (3. IO). 
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continuous-time systems [22], 1231:  robust sampleddata control of 
uncertain systems with  multiplicative noise [24]-[27];  multirate  sampling 
1281,  1291;  alternative A/D and DIA devices and asynchronous  sampling/ 
control  update; infinitedimensional systems [30], [3 11. 
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TABLE I 
COST J FOR BEAM EXAMPLE 

12 

10 

8 

6 

4 

2 

--- 
1.1677 

1.1683 

1.2086 

1.3330 

1.4789 

1.3715 

1.3723 

1.3823 

1.4421 

1.5752 

2.0425 

Open-Loop Coat (u4) is 101.73 

3.0134 

3.0134 

3.0162 

3.0195 

3.0812 

3.3406 

Remark 5.2: The  critical  step of Algorithm 5.1 is the choice of *(k) for 
constructing  the  projection 7(k + I).  Since W )  can include  basis  rearrange- 
ments,  the choice of q(k) essentially corresponds to a selection of n, rank- 
1 eigenprojections  out of n + I possible eigenprojections. This selection 
is discussed at length in 1221 where  it is pointed  out that the choice of 
eigenprojections  determines  which local extremal  will  be  reached by  the 
algorithm.  Component-cost  methods  have thus been utilized as a 
promising selection criteria.  Because of the  eigenprojection  structure of 
the  necessary conditions, Algorithm 5.1 is fundamentally  different  from 
gradient  search  methods. 

VI. ILLUSTRATIVE EXAMPLE: CONTROL OF A FLEXIBLE BEAM 

Consider  a  simply  supported beam of length two with two colocated 
sensor/actuator  pairs  placed at coordinates (I, = 55/172 and = 45/43. 
Define 

A =block-diag -u t  -2giJi , ui=iz, i = l ,  ..., 5 ,  t=0.005, 
i = l : . . . S  lo ‘1 

B,, ,=0.5(-  ly+’(l+(- 1)’) sin ( i ~ 0 , / 4 ) ,  

i = l ,  ..., 10, j = 1 ,  2, C=B‘, 

r - .  

For n, = 10, 8, 6, 4, 2 continuous-time  controllers  were  designed  using 
the results of [17]  and, for n, = 12, 10, 8, 6, 4, 2 and h = 0.1, 0.5, 
strictly  proper (0, = 0) discrete-time  controllers  were  obtained  from 
Theorem 3.1. The results are summarized in Table I. 

m. DIRECTIONS FOR FURTHER DEVELOPMENTS 

The following extensions and  related  developments  immediately 
suggest  themselves:  reduced-order,  discrete-time  modeling/estimation of 
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