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and that 

Now 

so that (C,, A6) is detectable iff (C;, A;) is detectable, i = 1, 2. 
Therefore, (Aa, B6, C,) is stabilizable and detectable iff (A, ,  Bi, C;) is 
stabilizable and detectable, i = 1, 2; since the  latter condition holds by 
assumption, it follows that u(A,) = u(A,,) C C- is equivalent to H,(s) 
stable. 

III. CONCLUDING REMARKS 

The proof given here  shows that the injection of the virtual input vector 
6 renders the resulting system stabilizable from 6 and detectable from y, 
provided the subsystems are individually stabilizable and detectable. 
Under these conditions, the  transfer function relating y to 6 naturally gives 
the  correct stability information. The generalization of this result to a 
feedback system consisting of several subsystems is straightforward. It is 
hoped that the proof given here will provide further insight into the useful 
result established in [ 11. 
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The  Optimal  Projection  Equations  for Reduced-Order 
State  Estimation 

DENNIS S. BERNSTEIN AND DAVID C.  HYLAND 

Abstract-First-order necessary conditions for optimal, steady-state, 
reduced-order state estimation for a linear, time-invariant plant in the 
presence of correlated  disturbance and nonsingolar measurement noise 
are derived in a new and highly simplified form. In contrast to the  lone 
matrix Riccati equation arising in the full-order (Kalman fiiter) case, the 
optimal steady-state reduced-order estimator is characterized by three 
matrix equations (one modified Riccati equation and two modified 
Lyapunov equations) coupled by a projection whose rank is precisely 
equal to the  order of the  estimator and which determines the  optimal 
estimator gains. This coupling is a graphic reminder of the suboptimality 
of proposed approaches involving either model reduction followed by 
“full-order” estimator dksign or fnll-order estimator design followed by 
estimator-reduction techniques. The results given here complement 
recently obtained results which characterize the  optimal reduced-order 
model by means of a pair of coupled modified Lyapunov equations [7] 
and the  optimal fixed-order dynamic  compensator by means of a coupled 
system of two modified Riccati equations  and two modified Lyapunov 
equations [a]. 

I. INTRODUCTION 

It has recently been shown (see [1]-[7l) that the first-order necessary 
conditions for the problems of optimal model reduction and optimal fixed- 
order  dynamic compensation can be formulated in terms  of  an “optimal 
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projection” matrix which arises as a direct consequence of optimaLity. 
These necessary conditions, by virtue  of their remarkable simplicity, 
yield insight into the  structure  of the optimal design and permit the 
development of alternative numerical algorithms [2], [4], [7]. The 
purpose of this note is to develop analogous first-order necessary 
conditions for  the reduced-order state-estimation problem. Since this 
problem falls midway between the problems of open-loop model 
reduction and closed-loop fixed-order dynamic compensation, it is not 
surprising that the necessary conditions for these problems are corre- 
spondingly related. Specifically, while the optimal projection equations 
for model reduction consist of a system of two matrix equations (a pair of 
modified Lyapunov equations) and the optimal projection equations for 
fixed-order dynamic compensation comprise a system of four matrix 
equations (a pair of modified Lyapunov equations plus a pair of modified 
Riccati equations), the optimal projection equations for reduced-order 
state estimation form a system of three matrix equations (a pair  of 
modified Lyapunov equations along with a single modified Riccati 
equation). In each case the system of matrix equations is coupled by an 
oblique projection (idempotent matrix) which determines the gains of the 
optimal reduced-order system, whether it be a model, estimator, or 
compensator. 

The need for designing an optimal reduced-order state estimator for a 
high-order dynamic system follows directly from real-world constraints 
on computing capability. A further motivation is the fact that although a 
system may have many degrees of freedom, it is often the case that 
estimates of only a small number of state variables are actually required. 
In the face of these practical motivations, numerous approaches to 
designing reduced-order state estimators have been proposed. See [8] for 
a recent review of previous results. 

An important fact pointed out in [8] and [9] is that reduced-order 
estimators designed by means of either model reduction followed by 
“full-order”  state estimation or full-order estimation followed by 
estimator reduction will not be optimal for the given order. In the present 
paper this point is graphically confirmed by the fact that the three matrix 
equations characterizing the optimal reduced-order state estimator reveal 
intrinsic coupling (via the optinial projection) between the “operations” 
of optimal estimation (the modified Riccati equation) and optimal model 
reduction (the pair of modified Lyapunov equations). 

II. PROBLEM  STATEMENT  AND MAIN RESULT 

The following notation and definitions will be used throughout the 
paper: 

n, 1, ne, P 

A, C,  L 
A,, Be, C, 
w,(t),  t t o 

wz(t), t t o 

VI 2 

R 
I, 
Z T  

Z-T 
W Z ) ,  No, P ( Z )  
P 

stable matrix 

nonnegativedefinite matrix 

positivedefinite matrix 

nonnegative-semisimple matrix 

X ,  Y ,  Xe, Y e  

J2 3 r x s  
. I  

positive integers, 1 5 ne I n 
n ,  I, ne, p-dimensional vectors 
n x n, I x n, p X n real matrices 
ne X ne, ne x I, p X n, real matrices 
n-dimensional white noise with nonne- 
gative-definite intensity VI 
/-dimensional white noise with posi- 
tive-definite intensity V2 
n X lmatrix satisfying E [ ~ ~ ( t ) w ~ ( s ) ~  

p X p positive-definite matrix 
r X r indentity matrix 
transpose of vector or matrix Z 
( Z 3 - I  or (Z-l)T 
null space, range, rank of matrix Z 
expected value 
real numbers, r X s real matrices 
matrix with eigenvalues in open left 
half plane 
symmetric matrix with nonnegative 
eigenvalues 
symmetric matrix with positive eigen- 
values 
matrix similar to a nonnegative-defi- 
nite matrix 

= vI26(t - S) 
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positive-semisimple matrix matrix similar to a positivedefinite 

positivediagonal matrix diagonal matrix with positive diagonal 
matrix 

elements 

We consider the following optimal reduced-order state-estimation 
problem. Given the system 

X=AX+ w1, (2.1) 

y = c x + w , ,  (2.2) 

design a reduced-order state estimator 

ie = A& + B a ,  (2.3) 

ye= CPC, (2.4) 

which minimizes the error criterion 

J(A,, Be, C,) P lim Z[(LX-ye)TR(L~-y,)] .  
I-= 

In this formulation the matrix L identifies the states, or linear combina- 
tions of states, whose estimates are desired. The order ne of the estimator 
state x, is determined by implementation constraints, Le., by the 
computing capability available for realizing (2.3),  (2.4) in real time. 
Hence, ne is considered to be fixed in what follows and the problem is 
concerned with determining A,, Be, and C,. 

To guarantee that J is finite it is assumed that A is stable and we restrict 
our attention to the set of stable reduced-order estimators 

Q i { (Ac, Be, C,) : A,  is stable}. 

Since the value of J is independent of the internal realization of the 
transfer function corresponding to (2.3) and (2.4), without loss of 
generality we further restrict our attention to the set of admissible 
estimators 

a,  P {(Ae,  Be, C,)EQ : 

(Ae, Be) is controllable and (Ac, C,) is observable}. 

The following lemma, whose proof is givep in [T ,  is needed for the 

Lemma 2. I :  Suppose Q, P E 3""" are nonnegative definite. Then 
is nonnegative semisimple. Furthermore, if ~ ( o p )  = ne, then there 

statement of the main result. 

exist G ,  r E a n e x "  and positive-semisimple M E . 3 " ~ " " ~  such that 

QP= G J M r ,  (2.5) 

rGT=In,. (2.6) 

For convenience in stating the Main Theorem we shall refer to G ,  r E 
2 " e ' "  and positive-semisimple-M E Li3"e""esatisfying (2.5) and (2.6) as a 
(G ,  M ,  r)-factorization of QP. Furthermore, define the notation 

r & G T ,  r ,  2 I n - r  
and 

Q P QCT+ VI,, 

where Q E P ' x " .  

Main Theorem: Suppose (A,, Be, C,) E a, solves the optimal 
reduced-order state-esqmaLion problem. Then there exist nonnegative- 
definite matrices Q, Q, P E %"'" such that, for some (G, M ,  r)- 
factorization of Qp, A,, &, and C, are given by 

A,=r(A-QVylC)GT, 

Be=rQVTi,  

Ce=LGJ 

and such that the following conditions are satisfied: 

O = A Q + Q A T + V ~ - Q V ~ l Q T + ~ l Q V ~ l Q T ~ ? : ,  (2.10) 

O = A Q + Q A T + Q V ~ L Q T - ~ , Q V ~ l Q T r : ,  (2.11) 

O=(A-QVi 'C) 'P+t j (A-QVylC)+LJ~L-r? :LTRLr l ,  (2.12) 

p ( Q ) = p ( P ) = p ( Q t j ) = n , .  (2.13) 

Remark 2.1: It is useful to note that (2.7) can be replaced by 

A,=rAGT-BeCGT. (2.7)' 

Remark 2.2: Because of (2.6) the n x n matrix r which couples the 
three equations (2.10)-(2.12) is idempotent, Le., r 2  = r .  In general, this 
"optimal projection" is an oblique projection (as opposed to an 
orthogonal projection) since it is not necessarily symmetric. Note that 
from Sylvester's inequality and (2.6) it follows that p(r )  = ne. It should 
be stressed that the form of the optimal reduced-order estimator (2.7)- 
(2.9) is a direct consequence of optimality and not  the result of  an apriori 
assumption on the  structure  of  the reduced-order estimator. 

Remark 2.3: To obtain the standard steady-state Kalman filter result 
for  the full-order case, setp = ne = n and L = Z,,. Then T = G = I' = 
I,, and thus (2.10) reduces to the standard observer Riccati equation [ 10, 
p. 3671 and (2.7) and (2.8) yield the usual expressions. Furthermore, it 
follows from (2.7)' [ l l ,  Lemma 2.11 and standard results that (2.1 1)- 
(2.13) are equivalent to  the assumption that (Ae, Be, C,) is controllable 
and observable. 

Remark 2.4: Since Qp is nonnegative semisimple it has a group 
generalized inverse (&A# given by GTM-'I' (see, e.g.. [12, p. 1241). 
Hence, by (2.6) the optimal projection T is given by 

7 = QP(QP)*. (2.14) 

Remark 2.5: Replacing x, by Sx,, where S is invertible, yields the 
"equivalent" estimator (SA$', SB,, C3-I). Since J(A,, Be, C,) = 
J(SAS-', SE,, C s - ' ) ,  one would expect the Main Theorem to apply 
also  to (SAS-  I ,  SB,, C3-I). This is indeed the case since transforma- 
tion of the estimator state basis corresponds to the alternative factorization 

Remark 2.6: Note that, for the optimal values of A,, Be, and C,, (2.3) 
Qp = (S-TG)T(SMS-')(sT). 

assumes the observer  form 

x ~ = ~ A G T x ~ + ~ Q ~ ~ ' ( y - C G T x ~ ) .  (2.15) 

By introducing the quasi-full-state estimate P & G 'xe E 3" so that rP = 
P and x, = M E an,, (2.15) can be written as 

d = r ~ s i + r ~ ~ ; ~ ( Y - ~ 2 ) .  (2.16) 

Note that although the implemenred estimator (2.15) has the state x, E 
W e ,  (2.. 15) can be viewed as a quasi-full-order estimator whose geometric 
structure is entirely dictated by the projection r. Specifically, error inputs 
QV?'(y - '22) are annihilated unless they are contained in [ X ( r ) ]  = 
C~(T?: Hence, the observation subspace of the estimator is precisely 

Remark 2.7: Although the form of (2.16) would lead one to surmise 
that the optimal reduced-order estimator is a projection of  the optimal full- 
order  estimator, this is not generally the case for the following simple 
reason. In the full-order case Q (which appears in Q) is determined by 
solving a single Riccati equation, wh_ereas  i? the reduced-order case Q 
must be found in conjunction with Q and P to satisfy all three matrix 
equations (2.10)-(2.12). Hence,  the value of Q in the reduced-order case 
may be different from the value of Q in the full-order case.  Thus, (2.16) 
may  not be obtainable by simply projecting the  fu_ll-order result. 

To further clarify the relationship between Q, P. and r ,  we now show 
that there  exists a similarity transformation which simultaneously 
diagonalizes Qp and T. 

W T ? .  

Proposition 2. I :  There exists invertible 3 E R n x n  such that 
r 
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where AQ, Ap E I n e x n e  are positive diagonal, A & A&p, and the 
diagonal elements of A are the eigenvalues of M. Consequently, 

Q=7Q, P = A .  (2.19) 

Iu. PROOF OF THE M A I N  THEOREM 

The proof proceeds exactly as in [6] .  Using the fact that a, is open,  the 
Fritz John version of the Lagrange multiplier theorem can be used to 
rigorously derive the first-order necessary conditions 

O=AQ+QP+ v, (3.1) 

B =  [ LTRL  -LTRCe 
- CTRL  CTR2Cp 

and (n + ne) X (n + ne)&, p a r e  partitioned into n X n, n X ne, and n, 
x ne subblocks as 

Expanding (3.1) and (3.2) yields 
O=AQl+QIAT+V1, 

O=AQ~~+QIZA:+QI(B,C)‘+ VIZBT, (3.7) 

o=ApQ2+Q:A:+BeCQ~2+Q:2(BeC3T+B,V2B:, (3 4 
O=ATP~+P~A+(B,C)TP:z+P12B,C+LTRL, (3.9) 

O = P I A ~ + A ~ P ~ ~ + ( E , C ) ~ P ~ - L ~ R C , ,  (3.10) 

0 = AFP2 + P2Ae + C,TK2Ce. (3.11) 

Note that (3.9) is superfluous and can be omitted. Writing (3.8) as (see 
[131,[141) 

O=(A,+B,CQIZQ~’)QZ+QZ(A~+B~CQIZQ~)~+B~V~B~. 

where Q2fis the Moore-Penrose or Drazin generalized inverse of Q2, it 
follows from [l 1, Lemmas 2.1 and 12.21 that Q2 is positive definite. 
Similarly, (3.1 1) implies that P2 is positive definite. This justifies (3.4) 
and (3.5). 

Now define the n X n nonnegativedefinite matrices (see [13], [14]) 

Q = Q I  - QnQT1QT2, Q = Q I ~ Q ; ’ Q : ~ ,  P = P I ~ P T ~ P ~ ,  

and note that (3.3) implies (2.5) and (2.6) with 

G = Q f ’ Q L ,  M=QzP2, r =  - P -  2 y r  

Since Q2P2 = P? ‘’2(P!:2Q2P:i3P:’2, M is positive semisimple. Sylves- 
ter’s inequality yields (2.13). Note (2.19) and the identities 

Q ~ = Q + Q ,  (3.12) 

Q~ = r Qr T,  p 2  = GPG T .  (3.14) 

Q12=QrT, P12= -PCT, (3.13) 

Using (3.12)-(3.14),  (3.4)  and (3.5) yield (2.8) and (2.9). Also, the 
right-hand sides of (3.8) and (3.7) yield (2.7). Substituting (2.7)-(2.9) 
into(3.6)-(3.8),(3.10)and(3.11),itcanbeseenthat(3.8)and(3.11)are 
also superfluous. Finally, linear combinations of the remaining three 
equations (3.6),  (3.7), and (3.10) yield (2.10)-(2.12). 

IV. CONCLUDING REMARKS 

The question of multiple local minima satisfying the optimal projection 
equations for reduced-order state estimation and the problem of construct- 
ing numerical methods for solving these equations are beyond the scope of 
this note. It should be pointed out, however, that promising numerical 
results for  the model-reduction and fixed-order dynamiccompensation 
problems have been obtained by means of iterative algorithms that take 
full advantage of the presence and structure  of  the optimal projection [2], 

Finally, the results of this paper can be extended to include the 
following related problems: 1) discrete-time systeddiscrete-time estima- 
tor; 2) infinite-dimensional system/finite-dimensional estimator [5]; and 
3) parameter uncertainties [I], [151,  [161. 

[41, [71. 

ACKNOWLEDGMENT 

The authors wish to thank Dr. F. M. Ham for directing their attention 
to the reduced-order state-estimation problem as a fruitful appiication of 
the optimal projection approach. 

REFERENCES 

D. C. Hyland, “Optimality conditions for fmed-order dynamic compensation of 
flexible spacecraft with uncertain parameters,” AIM 20th Aerosp. Sci. Meet., 
Orlando, FL, Jan. 1982, paper 82-0312. 

methods and illustrative results,” AIAA 2 1 s  Aerosp. Sci. Meet., Reno. NV, Jan. 
-, “The optimal projection approach to fmed-order compensation: Numerical 

D. C .  Hyland and D. S .  Bernstein, “Explicit optimality conditions for fixed-order 
1983. paper 83-0303. 

dynamic compensation,” in Proc. 22nd IEEE Conf. Decision Conir., San 

D. C .  Hyland, “Comparison of various controller-reduction methods: Suboptimal 
Antonio, TX, Dec. 1983, pp. 161-165. 

versus optimal projection,” in h o c .   A I A A  Dynam. Specialists Conf., Palm 

D. S .  Bemstein and D. C. Hyland, “The optimal projection equations for fixed- 
Springs, CA, May 1984, pp. 381-389. 

order dynamic compensation of distributed parameter systems,” presented at the 
AIAA Dynam. Specialists Conf.. Palm Springs, CA. May 1984. 
D. C. Hyland and  D. S. Bemstein, “The optimal projection equations for fixed- 
order dynamic compensation,” IEEE Trans. Automat.  Contr., vol. AC-29, pp. 
10341037, 1984. -. “The optimal projection approach to model reduction and the relationship 
between the methods of Wilson and Moore,” in Proc. 23rd Conf. Decision 

C .  S .  Sims, “Reduced-order modelling and filtering,” in Control and Dynamic 
Contr., Las Vegas, N V ,  Dec. 1984. 

Systems, Vol. 18. C. T. Leondes, Ed., 1982, pp. 5s-103 ’ 

D. A. Wilson and R. N. Mishra, “Design of  low order estimators using reduced 

K. Kwakemaak and R. Sivan, Linear Optimal  Control  Systems. New York: 
models,” Int. J. Contr., vol. 23, pp. 447456, 1979. 

W. M. Wonham, Linear Multivariable Control: A Geometric  Approach. 
Wiley-Interscience, 1972. 

S .  L. Cambell and C.  D. Meyer, Jr.. Generalized Inverses of Linear 
New York: Springer-Verlag. 1974. 

Transformations. London: Pitman, 1979. 
A. Albert, “Conditions for positive and nonnegative definiteness in terms of 

E. Kreindler and A. Jameson, “Conditions for nomegativeness of partitioned 
pseudo inverse,” SIAM J. Appl.  Math., vol. 17, pp. 434440, 1969. 

P. J .  McLane, “Optimal linear filtering for linear systems with statedependent 
matrices,” IEEE Trans.  Automat.  Contr., v d .  AC-17, pp. 147-148, 1972. 

noise,” Inr. J.  Contr., vol. 10, pp. 42-51, 1969. 
D. S .  Bernstein and D. C. Hyland, “Optimal pmjectiodmaximum entropy 

Model Error and Concepts and Compensation. Boston, MA, June 1985. 
stochastic modeling and reduced-order design synthesis,” IFAC Workshop on 

Legendre Series Approach to Identification and Analysis 
of Linear Systems 

P. N. PARASKEVOPOULOS 
Abstract-In  this  paper  the  Legendre  operational  matrix of integration 

is introduced,  and it is subsequently used for the  identification  and 

This paper is based on a prior submission of March 11, 1983. 
Manuscript h e i v e d  October31. 1983; revised May 22, 1984and December 18. 1984. 

of Thrace, Xanthi. Greece. He is now with the Division of Computer Science, 
The author was with the Department of Electrical Engineering, Democritus University 

Department of Electrical Engineering, National Technical University of Athens, Athens, 
Greece. 

0018-9286/85/0600-0585$01 .OO 0 1985 IEEE 


