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Lyapunov bound suggested by recent work of Petersen and Hollot is 

In this paper, the finite algorithm for strict Hurwitz invariance of a 
convex combination of polynomials (due to Bialas [5] and Fu and Barmish 
[6])  is extended to a strict Schur invariance test and to generalized stability 
tests. These tests have a main advantage over the “Edge Theorem” in [4], 
i.e., they are computationally efficient and exact. However, the Edge 
Theorem is more versatile since it applies to arbitrary regions of the 
complex plane. In contrast, the results presented here are restricted to 
images of the open complex left-half plane under real linear fractional 
transformations. 
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utilized in conjunction with the guaranteed cost approach of Chang and 
Peng to guarantee robust stability with robust performance bound. 
Necessary conditions which generalize the optimal projection equations 
for fixed-order dynamic compensation are used to characterize the 
controller which minimizes the performance bound. The design equations 
thus effectively serve as sufficient conditions for synthesizing dynamic 
output-feedback controllers which provide robust stability and perform- 
ance. 

I. INTRODUCTION 

As is well known, LQR and LQG controllers lack guaranteed 
robustness with respect to arbitrary parameter variations [l], [2]. Thus, it 
is not surprising that there is considerable interest in the analysis and 
synthesis of feedback controllers which are robust with respect to 
structured real-valued plant parameter uncertainty. The present paper was 
motivated in particular by the guaranteed cost control approach of Chang 
and Peng [3], [4] and the robust stability technique of Petersen and Hollot 
[5]-[7]. In [3], Chang and Peng consider a modified Riccati equation 
whose solutions are guaranteed to provide both robust stability and 
performance over a specified range of parameter variations. On the other 
hand, Petersen and Hollot in [5]-[7] consider a different modified Riccati 
equation which utilizes a quadratic Lyapunov bound to provide robust 
stability over a range of structured plant variations. In the present paper, 
we combine aspects of both of these approaches to obtain both robust 
stability and performance. 

Our preference for the Petersen-Hollot bound over the bound originally 
proposed by Chang and Peng is based upon the fact that the former is 
differentiable with respect to the Riccati solution, while the latter is not. 
We exploit this smoothness by utilizing the optimal projection approach 
for fixed-order dynamic compensation [8] in place of full-state feedback 
considered in [3], [4], [6], [7]. A systematic, in-depth treatment of the 
Chang-Peng, Petersen-Hollot, and other bounds (such as the right shift/ 
multiplicative white noise bound considered in [9]-[Ill) will be the 
subject of a future paper [12]. 

As discussed in [8], the optimal projection approach to fixed-order 
dynamic compensation is based upon a system of two modified algebraic 
Riccati equations and two modified algebraic Lyapunov equations which 
directly generalize LQG theory to the case of reduced-order controllers. 
To ensure robust stability and performance for reduced-order controllers, 
the present paper utilizes the Petersen-Hollot quadratic Lyapunov 
technique to bound the performance of controllers of fixed dimension. 
The performance bound is then interpreted as the cost functional for an 
auxiliary minimization problem whose optimality conditions directly 
generalize the results of [8]. Specifically, we again obtain a coupled 
system of algebraic Riccati and Lyapunov equations with additional terms 
arising from the Petersen-Hollot bound. When uncertainty is absent, 
these equations specialize immediately to the result of [8] which, in turn, 
specializes to LQG when the compensator order is equal to the plant 
dimension. 

Although the optimal projection equations are necessary conditions for 
optimality, it is important to stress that in the present paper they are 
obtained not for the original cost function, but rather for a bound on the 
cost. The necessary conditions for the auxiliary minimization problem 
thus effectively serve as sufficient conditions for the original problem. 
Hence, even if a numerical solution of the extended optimal projection 
equations fails to produce the globally optimal controller, robust stability 
and performance are still guaranteed for all local extremals. Our approach 
thus seeks to rectify one of the main drawbacks of necessity theory by 
guaranteeing both robust stability and performance. Nevertheless, a 
numerical algorithm for computing the global optimum is given in [ 151. 

In summary, the main contribution of the present paper is the 
generalization of the optimal projection equations by means of the 
Petersen-Hollot quadratic Lyapunov bound to synthesize robustly 
stabilizing fixed-order dynamic compensators with guaranteed per- 
formance bound. It is interesting to note that even in the full-order case, 
our results, which specialize to a coupled system of three matrix 
equations, are distinct from the results of [5] which involve a pair of 
modified Riccati equations and an auxiliary inequality. Furthermore, the 
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present paper provides a robust performance bound not obtained in [5 ] -  
171. An additional, conceptual benefit of our approach is a rigorous 
optimization interpretation for the Petersen-Hollot Riccati equation 
approach. Finally, as shown in 1201 for full-state feedback, the results 
given herein can be directly applied to the H, design problem. For 
details, see [21]. 

Due to space constraints, the contents of the paper will not be reviewed 
here. We note only that the proof of Theorem 8.1, which has been omitted 
for this reason, can be found in [13], [14]. Finally, although numerical 
algorithms are outside the scope of this note, related results can be found 
in [15]. 

11. NOTATION AND DEFINITIONS 

Note: All matrices have real entries. 

z, I z,, z, < z, 
n, m ,  I ,  n,; 8 
x ,  U, Y ,  x,, 2 
A ,  AA; B, AB; C ,  AC 

A, A A  

*(.), P 

l? 

Real numbers, r x s real matrices, a r X ' ,  
expected value. 
r x r identity matrix, transpose. 
r x r symmetric, nonnegative-definite, 
positive-definite matrices. 
z, - z, E M', z, - z, E C', z,, 2 2  

E 5'. 
Positive integers; n + n,. 
n, m,  I ,  n,, A-dimensional vectors. 
n x n matrices; n x rn matrices; I x n 
matrices. 
n, x n,; n, x I; m x n, matrices. 

n x n,  m x m state, control weighting 
matrices; R ,  L 0, R2 > 0. 
n x rn cross weighting matrix; R ,  - 

n,  /-dimensional white noise. 
Intensity of w , ( . ) ,  w 2 ( . ) ;  VI z 0,  V2 > 0. 
n x 1 cross intensity of w l ( . ) ,  w 2 ( . ) .  

R12Rp'RL 2 0. 

111. ROBUST STABILITY AND ROBUST PERFORMANCE PROBLEMS 

Let 'U C anxn x R n x m  x R l x n  denote the set of uncertain 
perturbations ( A A ,  AB, AC) of the nominal plant matrices A ,  B,  and C. 

Robust Stability Problem: For fixed n, 5 n, determine (Ac ,  B,, C,) 
such that the closed-loop system consisting of the nth-order controlled 
plant 

i ( 1 )  = ( A  + AA)x( t )  + (B+  AB)u(t), t E [0, DD) ,  (3.1) 

measurements 

and n,th-order dynamic compensator 

is asymptotically stable for all ( A A ,  AB, AC)  E 'U. 
Robust Performance Problem: For fixed n, 5 n ,  determine ( A c ,  B,, 

C,) such that, for the closed-loop system consisting of the nth-order 
disturbed plant 

i ( t ) = ( A + A A ) x ( t ) + ( B + A B ) u ( t ) + w , ( f ) ,  t E [0, w), ( 3 . 5 )  
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noisy measurements 

y ( t ) = ( C + A C M t ) +  w2(t), (3.6) 

and n,th-order dynamic compensator (3.3), (3.4),  the performance 
criterion 

is minimized. 

the supremum over 'U for worst-case performance. 

'U, the undisturbed closed-loop system (3.1)-(3.4) is given by 

Remark 3.1: Note that (3.7) is precisely the LQG criterion except for 

For each controller (A, ,  B,, C,) and plant variation ( A A ,  AB, AC) E 

k ( t ) = ( A + A A ) f ( t ) ,  t E [0, m), (3.8) 

while the disturbed closed-loop system (3.3)-(3.6) is 

i ( t ) = ( A + A A ) f ( t ) +  W t ) ,  t E [0, w), (3.9) 

where 2(t)  6 [xT( t ) ,  x,T(t)] and I?(.) is white noise with intensity P E 
Nfi. 

Iv. SUFFICIENT CONDITIONS FOR ROBUST STABILITY AND 
PERFORMANCE 

In practice, steady-state performance is only of interest when the 
closed-loop system (3.8) is stable over U. The following result expresses 
the performance in terms of the steady-state closed-loop second-moment 
matrix. 

Lernrna4.1: Suppose (3.8) is stable for all ( A A ,  AB, AC) E U. Then 

where 6,- 6 Iimr+- &[f(t)2'(t)] E Mfi is the unique solution to 

o = (A + AA) QAa + QAa(A + AA) '+ P. (4.2) 

We now seek upper bounds for J(A,, R,, CJ. 
Theorem 4.1: Let Q:  N f i  x Rflcx' X RmX"c + Sfi be such that 

AAQ+QAA'<fI(Q, Bc, Cc), 

(AA,  AB, AC) E 'U, (Q,  B,, C,) E R I A X F ~ n ~ X ' X ~ ~ " x n ~ ,  (4.3) 

and, for given (Ac ,  B,, Cc), suppose there exists Q E RIfi satisfying 

O=AQ+QAT+fI(Q, B,, Cc)+ v, (4.4) 

and suppose the pair A + A A )  is stabilizable for all ( A A ,  AB,  
AC) E 'U. Then A + A A  is asymptotically stable for all ( A A ,  AB, AC)  
E 'U, 

Q A ~ c Q ,  (AA,  AB, AC) E U, (4.5) 

where QM- satisfies (4.2), and 

J(A,, B,, C,) 5 tr w-. (4.6) 

Proof: For all ( A A ,  AB, AC)  E 'U, (4.4) is equivalent to 

o = ( A + A A ) Q + Q ( A + A A ) ' + " ( Q ,  B ~ ,  c,, A A ) +  P, (4.7) 

where 

"(Q, E,, C,, AA)  6 Q(Q, B,, C,)-(AAQ+QAA').  

Note that by (4.3),  "(Q, B,, C,, A A )  L 0 for all ( A A ,  AB, AC) E 'U. 
Since (PI/,, A + A A )  is stabilizable for all ( A A ,  AB, AC) E U, it 
follows from [16, Theorem 3.61 that ((P + "(Q, B,, C,, A + 
A A )  is stabilizable for all (AA,  AB, AC) E U. Hence, (16, Lemma 
12.21 implies A + A A  is asymptotically stable for all ( A A ,  AB, AC) E 
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'U. Next, subtracting (4.2) from (4.7) yields VII. THE AUXILIARY MINIMIZATION PROBLEM 

o=(A+AA)(Q-  Q J i ) + ( ~ -  Q J 4 ) ( A + ~ A ) 7 +  *(Q, B, ,  c,, AA)  To optimize robust performance while guaranteeing robust stability, we 
consider the following problem. 

or. equivalently (since A + A A  is asymptotically stable). Auxiliary Minimization Problem: Determine (Q, A < ,  E,, C,) which 
minimizes 

- .  

Q-Q1j = & 4 + A A l r * ( Q ,  B <,  C <, A,4)e("A"'7' dtzC, 3(Q,  A , ,  &, C , )  tr W- (7.1) 

which implies (4.5). Finally, (4.5) and (4.1) yield (4.6). I 
subject to 

- 
Q E P J " ,  (7.2) 

V .  UNCERTAINTY STRUCTURE 1' 

O=AQ+QA'+C [d,M,D:+QE:N,E,Q]+ P, (7.3) 

( P '  ', A + A A )  is stabilizable, (AA,  AC) E 'U. 

To obtain explicit expressions for (Ar ,  B,, Cc), we require that A B  = , - I  

(7.4) 
0,  ( A A ,  A B ,  A C )  E U. Hence, for simplicity, we write ( A A ,  A C )  E 
'U. The dual case A B  # 0 and A C  = 0 is treated in Section X .  Thus, 'U is 
assumed to be of the form 

P 

( A A ,  AC) E i i " x f ~ ~ i i ~ x "  : A A = ~  D,M,N,E,, 
,=I  

Proposifion 7.1: If (Q, Ac,  B<, C,) satisfies (7.2)-(7.4), then A + 
AA is asymptotically stable for all ( A A ,  A C )  E 'U and 

J ( A , ,  B , ,  c01d(Q, A , ,  B,,  C < ) .  (7.5) 

I' Proof; With R given by (6. I ) ,  the hypotheses of Theorem 4.1 are 

(4.6). 0 
A C = C  F,M,N,E,, MJ4,7sM, ,  N , ' N , s N , ,  i =  I ,  . . . ,  p , (5.1) satisfied so that robust stability is guaranteed with performance bound 

,=I  

where, for i = 1 ,  . . ., p :  D, E il""'i, E, E R ' t " " ,  and F, E are 
fixed matrices denoting the structure of the uncertainty; M,  E A'J and N, 
E j\Irg are given uncertainty bounds; and M,  E i l ' l " " l  and N, E i l ' j x  ' 1  are 
uncertain matrices. The closed-loop system thus has structured uncer- 
tainty of the form 

VIII. NECESSARY CONDITIONS FOR THI.: AUXILIARY MINIMIZATION 
PROBLEM 

Rigorous derivation of the necessary conditions for the Auxiliary 
Minimization Problem requires additional technical assumptions. Specifi- 
cally, in addition to (7.2), we restrict (Q, A,, Bc, C,) to the open set 

S 

I' 

{(Q, A , ,  B, ,  C , )  : Q E P', a is asymptotically stable, A A  = D,M,N,E,, 
, - I  

and ( A ' ,  B, ,  C , )  is controllable and observable}, where 

d, = [ gl:] , E, i LE, 01. 

The special case M, = p;Ir , ,  N, = .;Il, is worth noting. 
Proposilion 5.1: Let p, ,  v, 2 0,  i = I ,  . . ., p .  Then M,MT I p f I r ,  

and NTN, 5 v f l , ,  if and only if un,,JM,) 5 p, and u,,,JN,) 5 v,. 
Remark 5.1: The form of 'U given by (5.1) is directly related to the 

structured stability radius introduced by Hinrichsen and Pritchard [ 171, 
1181. Specifically, l e t p  = I ,  A?, = P, I ,~ ,  r, = s i ,  and N ,  = NI = Iri. 

VI. THE PETERSEN-HOLLOT BOUND 

Given 'U, we now specify the bound R satisfying (4.3). Note that 
because of A B  = 0, R is independent of C,. Hence, we write R(Q, B,)  for 
WQ,, B,, Cl .  

Proposition 6.1: The function 

satisfies (4 3) with 'U given by ( 5  I )  
Proof; For I = I ,  . . . ,  p ,  

O s  [d,M, - QE:N,?][D,M,- QEJN:]  

=D,M,M:D,! + QETN,!N,E,Q- (D,M,N,I?,Q+ QL?:N:M:D:) 

s D,M,D,' t QEyN,E,Q- (D,M,N,I?,Q+ Q E : N J M j 6 J )  

Summing oler I yields (4 3) 0 
Remark 6.1. The bound (6 I )  was originally proposed by Petersen in 

IS]  for unit-rank perturbations with scalar uncertain parameters A more 
general treatment appears in 171 Note that we absorb the epsilon used In 
171 into D, dnd E,. 

where (see I 191 for the definition of the Kronecker sum) 

Furthermore, the constraint (7.4) will not be accounted for explicitly since 
it can be shown that the compactness of 'U implies that the set of (Ac, B,, 
C,) satisfying (7.4) is open. 

Remark 8.1: The constraint (Q, A , ,  B , ,  C,) E S is not required for 
either robust stability or robust performance since Proposition 7.1 shows 
that only (7.2)-(7.4) are needed. Rather, the set S constitutes sufficient 
conditions under which thc Lagrange multiplier technique is applicable to 
the Auxiliary Minimization Problem. Specifically, the condition Q > 0 
replaces (7.2) by an open set constraint, the stability of 6 serves as a 
normality condition, and ( A ' ,  Bc, Cc) minimal is a nondegeneracy 
condition. 

For arbitrary Q,  P E ii"'" define the following notation: 

Po = B i P + R { , ,  Q,, = QC7+ V I . + c  D,M,F:, 
/ I  

A,. = A - B R , ~ P , ,  A ,  = A - Q , v ~ ~ ~ c ,  v-" = v 2 + i  F,M,F; 
/ I  

The tollowing tdctorization lemma is needed For details. see 181 
Lemma 8.1 If Q, P E )'If7 and rank QP = n, ,  then there exibt n, x n 

G ,  r ,  dnd n, x n, invertible M wch that 

QP= G i m ,  (8.1) 

r G 7 = I,, (8 2) 
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Furthermore, G, M, and r are unique except for a change of basis in a".. 
As shown in [8], the matrix r defined by 

8 QP(QP)H==cTr (8 .3)  

is an oblique projection where ( ) #  denotes group generalized inverse [8]. 
For convenience, define the complementary projection r1 8 I,, - r.  

Theorem 8.1: If (Q, A,, B,, C,) E S solves the Auxiliary 
Minimization Problem with U given by (5. l ) ,  then there exist Q, P ,  0, P 
E RI" such that 

(8.4) 

A, = r (A - BR;I P,, - Q., Vio' C + QE)  G T ,  ( 8 . 5 )  

and such that Q, P ,  Q, P satisfy 

o = AQ + QAT+ vI + D+ QEQ- Q~ v~;'Q;+ r L  Q~ V ; ~ ' Q T ~ ; ,  (8.8) 

O =  [A + ( Q +  Q ) E ]  ' P +  P [ A  + ( Q +  &)E] 

+RI -P,'R;IP,+r; P ,TR; lPo~l ,  (8.9) 

o = ( A ~  + QE) Q + $(A + QE) T + QEQ + Q~ vin' QT- I Q. viol Q;. ; , 
(8.10) 

o = (A, + QE)TP+ P(A, + QE) + P,'R;~ P, - T :  P T R ;  (8.1 1) 

rank Q = rank P = rank QP = n,. (8.12) 

Furthermore, the auxiliary cost is given by 

3(Q, A,, Bc, C,)=tr [(Q+Q)Rl+QPBR;lP,-RlzR;lP,Q]. (8.13) 

Conversely, if there exist Q, P ,  Q, P E RI" satisfying (8.8)-(8.12), then 
(Q, A,,  B,, C,) given by (8.4)-(8.7) satisfy (7.2) and (7.3) with cost 
(8.13). 

Proof: See [13], [14]. 0 
Remark 8.2: Theorem 8.1 presents necessary conditions for the 

Auxiliary Minimization Problem which explicitly characterize extrema1 
quadruples (Q, A,, B,, C,). These necessary conditions consist of a 
system of two modified Riccati equations and two modified Lyapunov 
equations coupled by both the optimal projection r and uncertainty terms. 
Several special cases can immediately be discerned. For example, in the 
full-order case n, = n, set r = I,, so that r1 = 0. Now the last term in 
each of (8.8)-(8.11) can be deleted and-G and r in (8.5)-(8.7) can be 
taken to be the identity. Furthermore, P plays no role so that (8.11) is 
superfluous. Note that in this case, (8.8) is independent of P and Q. 
Setting further D,, E,, and F, to zero, it can be seen that (8.10) and (8.11) 
drop out, while (8.8) and (8.9) reduce to the standard separated Riccati 
equations of LQG theory. If, alternatively, the reduced-order constraint is 
retained, but the uncertainty terms are deleted, then the results of [8] are 
recovered. 

Remark 8.3: When solving (8.8)-(8.12) numerically, the uncertainty 
terms can be adjusted to examine tradeoffs between performance and 
robustness. Specifically, the bounds M, and NI and structure matrices D,, 
E,, and F, appearing in Q,,, D, E, and V, can be varied systematically to 
determine the region of solvability of (8.8)-(8.12). 

Ix. SUFFICIENT CONDITIONS FOR ROBUST STABILITY AND 
PERFORMANCE 

Theorem 9.1: Suppose there exist Q, P ,  Q, P E RI" satisfying (8.8)- 
(8.12), and assume that (PI'*, A + AA) is stabilizable for all (AA, ACj 
E ?I with A,, B,, C,given by (8.5)-(8.7) and U given by (5.1). Then A 

+ AA is asymptotically stable for all (AA, AC) E U and the closed-loop 
performance is bounded by (8.13). 

Proof: Theorem 8.1 implies that Q given by (8.4) satisfies (7.2) and 
(7.3).  With the stabilizability assumption, the result follows from 
Proposition 7.1.  0 

X. THE DUAL CASE 

In place of (5. I ) ,  assume now that AC = 0, (AA, AB, AC) E U, and 
define 

P 

(AA,  A B )  E E P ~ X  E P ~  : AA = D,M,N,E,, 
, = I  

P 1 A B = C  D,M,N,G;, M , M Y ~ ~ , ,  NJN,SN, ,  i = l ,  " . , p  , (10.1) 
, = I  

w h e r e , f o r i =  1 ,  ~ ~ ~ , p : D , E  W""'~,E~E M'~"" , andG,€  R' ixmare 
fixed matrices denoting the structure of the uncertainty; and M;, N,, M,, 
and N, are as before. For arbitrary Q, P E R""" define the following 
notation: 

P 

Po 8 BTP+R:,+C GTN~E,,  Qa 8 QC'+ vI2, 
,=I 

P 

A, 6 A-BR,'P,,, A, A - $ V , ' C ,  Rao 8 R 2 + z  GfN8C,. 
! = I  

The main result guaranteeing robust stability and performance for the 

Theorem 10.1: Suppose there exist P ,  Q, P ,  Q E RI" satisfying (8.12) 
dual problem can now be stated. For details,-see [13], [14]. 

and 

o = A  T P +  PA + R ,  + E + PDP- PTR io1P0 + r ;  PTR (10.2) 

O =  [A  + D ( P + P ) ]  Q +  Q[A + D ( P +  P)] 

+ VI -Q~Vv,'Q,'+r.Q~VslQ,'r;, (10.3) 

(10.4) 

0 = (ap + DP) Q + Q(ap + DP) '+ Qn Vi1&,'- r1 Q. V;'&:T;, (10.5) 

and assume that (I?]'*, A + AA) is detectable for all (AA, AB) E U 
with A,, B,, C, given by 

A, = r ( A  - Qo V ;  I C - BR iolPo + DP) G ', (10.6) 

B, = rQa V i  I ,  (10.7) 

C,= -Rz-alPgGT, (10.8) 

and U given by (10.1). Then, with (10.6)-(10.8), A + AA is 
asymptotically stable for all (AA, AB) E U and the performance of the 
closed-loop system satisfies 

Remark 10.1: Even in the case AB = 0, AC = 0, the performance 
bounds (8.13) and (10.9) are generally different. 

Remark 10.2: The case in which AB and AC are simultaneously 
nonzero also appears to be tractable and leads to additional terms in the 
design equations. The bound considered in [ 1 1 1  also permits this case. 
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I. INTRODUCTION 

Recent work on robustness analysis methods for multivariable systems 
has led to the development of structured singular value techniques (e.g., 
[I] ,  [2]) which provide a means of assessing the impact of system 
uncertainty on closed-loop stability and performance. A key missing 
element in these analysis methods is the ability to describe the frequency 
response uncertainty associated with any given system. When system 
identification techniques are used to derive the system description, 
however, it becomes possible to quantify system uncertainty statistically, 
and recent efforts have demonstrated that uncertainty information on the 
estimated parameters of the system model can be transformed into 
corresponding information on the frequency response uncertainty of the 
system [3], [4]. For difference equation models, the transformation from 
the parameter space to the frequency domain is nonlinear, a result which 
necessitates the use of linear approximations and produces a statistical 
description of uncertainty that fails to account for the interfrequency 
dependence of the frequency response estimates. On the other hand, 
Cloud and Kouvaritakis [4] have shown that these problems can be 
avoided by the use of weighting sequence models to describe system 
dynamics. 

The uncertainty description developed in [4] assumes that the system 
can be accurately described by a finite weighting sequence model, an 
assumption that is valid for all stable systems. This assumption, in turn, 
implies that the “correct” model order (i.e., truncation level) is known. 
As a result, the identification process must not only be able to generate 
appropriate parameter estimates, it must also be able to identify the 
“correct” level of truncation. In effect, this second requirement is a 
restatement of the standard model order selection problem, a problem 
which has been widely investigated in the literature (e.g., [5 ] ) .  But for the 
frequency response applications of interest here, appropriate solutions 
must focus on generating accurate frequency response information. When 
this perspective is taken, it becomes clear that the standard order selection 
criteria are not well suited to the task because they focus on generating 
accurate inputloutput descriptions rather than accurate frequency re- 
sponse descriptions. 

In this paper, a new criterion is derived to identify the “correct” 
truncation level based on frequency response considerations. The 
development begins by highlighting a geometric interpretation of the 
standard “input/output” order selection problem. These geometric results 
are then transformed into the frequency domain to produce the new 
“frequency response-based’’ criterion for truncation selection, and 
simulation results are presented to demonstrate its use. Armed with the 
“correct” truncation level generated by this criterion, it is now possible 
to implement the techniques described in [4] to produce a valid description 
of frequency response uncertainty for any given system. 

11. MODEL ORDER SELECTION: A GEOMETRIC PERSPECTIVE 
A Frequency Response-Based Model Order Selection 

Criterion 

DAVID J. CLOUD AND BASIL KOUVARITAKIS 

Consider the discrete-time system with weighting sequence elements 
{el, 02, 03, . . * } whose true response at sample k to the set of inputs { u(k 
- I), u(k - 2), . . . , u(0)) is given by 

k 

Abstract-The use of weighting sequence models to describe the yo(k)  = e,u(k- i )  =dpO (1) 
, = l  dynamics of physical systems provides an effective means of translating 

the uncertainty associated with the model parameter estimates derived 
from noisy input/output data into corresponding frequency response 
uncertainty information. However, an appropriate truncation level must 
be established to accomplish this task. This paper addresses the trunca- 
tion problem from a frequency response perspective and proposes a new 
criterion based on frequency response considerations to select the proper 
truncation. 

where 00 = [e, . . . eklr and d; = iu(k - 1) . . . u ( ~ ) l .  The measured 
output at sample k is then given by 

Y ( k )  =vO(k) + 4 k )  (2) 

where ~ ( k )  is assumed to be an element of a white noise sequence with 
variance ut. For a set of N measurements, we may stack the scalars ym(k) 
and c(k) as elements of the vectors y m  and E, respectively, and may then 
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rewrite (2) as 

(3) 

where the rows of Do are given by the vectors d; for k = 1, . . . , N. 
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