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INTRODUCTION

R
aman spectroscopy can provide details of the chemi-

cal composition of tissues. It is a nondestructive

technique requiring no sample preparation, making

it an attractive method for in vivo and in vitro char-

acterization of biological tissues. A Raman spectrum
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ABSTRACT:

Raman spectroscopy shows potential in differentiating

tumors from normal tissue. We used Raman spectroscopy

with near-infrared light excitation to study normal breast

tissue and tumors from 11 mice injected with a cancer cell

line. Spectra were collected from 17 tumors, 18 samples of

adjacent breast tissue and lymph nodes, and 17 tissue

samples from the contralateral breast and its adjacent

lymph nodes. Discriminant function analysis was used for

classification with principal component analysis scores as

input data. Tissues were examined by light microscopy

following formalin fixation and hematoxylin and eosin

staining. Discriminant function analysis and histology

agreed on the diagnosis of all contralateral normal, tumor,

and mastitis samples, except one tumor which was found to

be more similar to normal tissue. Normal tissue adjacent to

each tumor was examined as a separate data group called

tumor bed. Scattered morphologically suspicious atypical

cells not definite for tumor were present in the tumor bed

samples. Classification of tumor bed tissue showed that

some tumor bed tissues are diagnostically different from

normal, tumor, and mastitis tissue. This may reflect

malignant molecular alterations prior to morphologic

changes, as expected in preneoplastic processes. Raman

spectroscopy not only distinguishes tumor from normal

breast tissue, but also detects early neoplastic changes prior

to definite morphologic alteration. # 2007 Wiley

Periodicals, Inc. Biopolymers 89: 235–241, 2008.
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provides a molecular fingerprint, and the intensity of the

Raman peaks is directly proportional to the concentration of

the molecules. Traditional disease classification including

cancer is based on the morphologic appearance of tissues

(histology). These morphologic changes are accompanied by

changes in chemical composition. Thus, Raman spectroscopy

is likely to be a useful technique.1–11

The objectives of this study were to evaluate the sensitivity

and specificity of Raman spectroscopy in differentiating

between cancer and normal breast tissue in a mouse model.

MATERIALS AND METHODS

Animal Experiments
All experiments received prior approval from the Animal Investiga-

tion Committee at Wayne State University. A highly malignant

BALB/c tumor cell line (4T1) was used in this study.12 Eleven

BALB/c (Taconic Farms, Germantown, NY) female mice (6- to 8-

weeks old) were injected subcutaneously at the nipple of the 5th

mammary gland on one side, with a suspension of 1 3 105 4T1 tu-

mor cells. All mice developed tumor nodules at the injection site.

The mice were humanely killed 10–14 days following injection.

Tumors and adjacent breast tissue were removed for analysis. Adja-

cent breast tissue often included lymph nodes. The contralateral

mammary gland and its adjacent lymph nodes were also removed.

Specimens were evaluated histologically and with near-infrared

(NIR) Raman spectroscopy. When lymph nodes were found histo-

logically, they were also analyzed with Raman spectroscopy. Samples

were divided in two. One was submitted for histology and one for

Raman spectroscopy. After Raman spectroscopy, the samples used

for Raman analysis were also submitted for histology.

Histology
Samples were fixed in 10% (v/v) neutral buffered zinc formalin so-

lution (Richard Allan Scientific) and processed overnight. Following

embedding, 5 lm sections were cut and stained with hematoxylin–

eosin.

NIR Raman Spectroscopic Measurements
Raman spectra were recorded using a Renishaw Raman microscope

(RM1000, equipped with a thermoelectric cooled 578 3 385 pixel

CCD), using a 203 objective in the 600–1800 cm21 spectral range.

A 785 nm laser line was used to excite the Raman spectra with

50 mW of power at the sample. The spectra were collected in line-

mode with a measured length and width of laser excitation of

130 lm 3 25 lm. Typical cell size is on the order of 20 lm, and the

line-mode was used to acquire spectra from a range of cells. This

should be the preferred method in the operating room, as the sur-

geon would be unable to sample each cell individually because of

limited cell selectivity and time constraints.

All Raman measurements used a 10 s exposure time, and three

exposures were averaged to obtain a better signal-to-noise ratio. The

spectral resolution was 4 cm21. To assess intrasample variability,

multiple measurements (n � 12) were made on each sample at dif-

ferent regions. This was accomplished by placing samples on an xyz

motorized, computer-controlled sample stage. Points to be analyzed

were chosen randomly from the microscopic image of the tissue

available on the Renishaw spectrometer.

Raman Spectrum Processing
Raman spectra of tissues contain a combination of Raman scatter-

ing, intrinsic tissue fluorescence, and noise. Preprocessing steps

include cosmic-ray removal, noise subtraction, and removal of tis-

sue fluorescence and normalization of the data. Each spectrum was

represented as a set of 601 variables at 2 cm21 intervals. A median

filter was applied to the raw data to eliminate cosmic rays or spikes.

Then noise was filtered using wavelets.13 The background fluores-

cence was subtracted from the denoised spectra using a modified

cubic spline algorithm. Unlike other cubic spline fits, this algorithm

requires no a priori knowledge of the spectra.14 The subtracted spec-

trum was normalized so that the minimum and maximum values of

the spectrum were 0 and 1, respectively. Matlab version 6.5 was used

to preprocess the data.

Tissue Classification Methods and Data Analysis
Principal component (PC) analysis was first used to reduce the

dimensionality of the dataset to simplify the data analysis. Discrimi-

nant function analysis (DFA) was used for tissue classification. It is

a supervised classification method that builds classification rules for

a number of prespecified categories.15 It correlates the weighting

coefficients (scores) of the PCs calculated for each Raman spectrum

with diagnostic categories. A leave-one-out classification algorithm

was used to ensure the validity of the analysis.

RESULTS

Histological Evaluations

From the contralateral side, we collected normal breast tis-

sue which often contained lymph nodes (Figure 1a). From

the injected side, we collected tumor (Figure 1b), and adja-

cent breast tissue with lymph nodes (Figure 1c). We will

refer to adjacent breast tissue with its accompanying lymph

nodes as the tumor bed. Histology confirmed poorly differ-

entiated adenocarcinoma in all 17 tumor samples. No defi-

nite tumor cells were found in any of the normal mammary

tissue (tumor bed or contralateral), and no definite tumor

cells were found in any of the lymph nodes from either side.

The tumor bed samples showed reactive stromal cells, some

inflammatory cells, and a few scattered large atypical cells

with large hyperchromatic nuclei and a moderate amount of

cytoplasm; however, they displayed no definite tumor aggre-

gates (Figure 1c). In practice, atypical cells are hard to clas-

sify and are often overlooked. Two mice showed mastitis (fat

necrosis and chronic inflammation) in their mammary

gland tissue, one from tumor bed and two from contralat-

eral breast (Figure 1d).

236 Kast et al.

Biopolymers DOI 10.1002/bip



Raman Spectroscopy

We collected 650 spectra. Because of the small size of the

mammary glands and lymph nodes, we were not able to sep-

arate these tissues grossly. Some of the breast tissue samples

contained tiny lymph nodes, and some of the lymph node

samples contained breast tissue. For this reason, we analyzed

the spectra in four diagnostic categories: (a) contralateral

breast with lymph node, (b) tumor, (c) tumor bed, and (d)

mastitis. Figure 2 shows the corresponding normalized mean

Raman spectra. Note the visual differences in the peak

heights of the four spectra.

Data Analysis
Mean Spectra Analysis. We first conducted an analysis of

normal, tumor, and mastitis tissues to confirm the diagnostic

ability of DFA. Raman and histology agreed in all cases, except

one tumor sample which was more characteristic of normal

tissue (Table I). This may be because the sample was largely

made up of normal cells, with fewer tumor components.

We then analyzed the data using all four tissues—that is

including tumor bed (Figure 2). These were also analyzed using

DFA, with PC scores as the input using leave-one-out analysis.

We used the mean spectra of each tissue to analyze the data, and

then reanalyzed the data using individual spectra (Table II).

Using mean spectra, 14 of 17 normal samples were correctly

identified, 16 of 17 tumor samples were correctly identified,

and all mastitis samples were correctly identified. Raman accu-

racy decreased slightly when including tumor bed, presumably

because some tumor bed samples had characteristics of tumor

while some had characteristics of normal tissue. Of 18 tumor

bed samples, 9 were similar to the contralateral breast (normal),

and 6 had specific changes separating them from normal tissue,

2 showed changes consistent with mastitis, and only 1 sample

showed changes consistent with the other tumor samples. All

mastitis samples were correctly identified.

Individual Spectra Analysis. Individual spectra also con-

firmed the ability of Raman to differentiate normal, tumor,

and mastitis tissues. All normal and mastitis spectra were cor-

rectly identified, and 91% of tumor spectra were correctly

identified. The other 9% were classified as normal and masti-

tis, consistent with normal pockets trapped within the tumor.

Using individual spectra, 79% of normal tissue samples

were correctly identified, while the other 21% were identified

as tumor bed. Within the tumor group, 0.4% were identified

as normal, 10% were called tumor bed, 2.2% were called

mastitis, and 87.3% were called tumor. All mastitis samples

were correctly identified. Within the tumor bed, 49.2% of

samples were identified as normal, 5.6% were identified as

FIGURE 1 Histology images of typical (a) normal mammary gland with small benign lymph

node seen in the left lower field, (b) tumor, (c) tumor bed (arrows point to atypical cells), and (d)

mastitis.
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FIGURE 2 Mean Raman spectra of (a) normal mammary gland tissue with lymph nodes, (b) tu-

mor, (c) tumor bed, and (d) mastitis. The gray region designates the 95% confidence interval for

each peak.

Table I Leave-One-Out DFA Classification Results Using Three Data Groups

Tissue Type

Mean Spectra Analysis (n) Casewise Analysis (n)

Samples Normal Tumor Mastitis Samples Normal Tumor Mastitis

Normal 17 17 189 189

Tumor 17 1 16 229 15 209 5

Mastitis 3 3 37 37

The number in each column represents the number of cases per group as classified by the diagnostic method.

Table II Leave-One-Out Results of DFA for Tumor Bed Analysis

Tissue Type

Mean Spectra Analysis (n) Casewise Analysis (n)

Samples Normal Tumor Mastitis Tumor Bed Samples Normal Tumor Mastitis Tumor Bed

Normal 17 14 3 189 150 39

Tumor 17 16 1 229 1 200 5 23

Mastitis 3 3 37 37

Tumor bed 18 9 1 2 6 195 96 11 10 78

The number in each column represents the number of cases per group as classified by the diagnostic method.
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tumor, 5.1% were identified as mastitis, and 40% were accu-

rately called tumor bed.

DISCUSSION
Several literature sources identify specific molecular struc-

tures with specific Raman peaks. The relevant peak assign-

ments for our data are noted in Table III. The Raman spec-

trum of normal mammary gland and associated lymph nodes

(Figure 2a) is dominated by contribution from lipids. The

peaks at 1004, 868, and 762 cm21 reflect the protein-rich

composition of the tissue.

The Raman spectra of mammary gland tumors (Figure 2b)

reflect increased protein and reduced lipid compared to

normal mammary gland tissue. This is demonstrated by (i)

decreased intensity of the 1746 cm21 peak due to C¼¼O

stretch of phospholipids, (ii) the decreased intensity of the

1440 cm21, and (iii) new or more intense protein peaks

around 1576, 1446, 1338, 1318, 1258, 1174, 1004, 936, 854,

830, 642, and 622 cm21.

The spectral profile of tumor bed (Figure 2c) produced

the same peaks as normal mammary gland tissue, with some

slight changes in the peak intensities.

Table III Tentative Peak Assignments

Normal Mam. Gland Tumor Mastitis Tumor Bed Assignment

622 C��C twisting mode of phenylalanine16–18

642 C��C twist of tyrosine16,18

666 664 T ,G and m(C��S) of cysteine (DNA/RNA)17,18

724 718 718 720 C��N (membrane phospholipid head)/nucleotide peak symmetric

choline stretch, phospholipids, (H3C)N1 stretch band16,19–21

754 752 Symmetric breathing of tryptophan18

762 758 Symmetric ring breathing of tryptophan, ms(O��P��O)16,17,19,22

784 782 U,C,T ring breathing, DNA17

830 Out-of-plane ring breathing tyrosine/m(O��P��O), DNA16

854 852 852 Ring breathing of tyrosine and m(C��C) hydroxyproline ring

specific to collagen16,17,19

868 870 Proline18

876 m(C��C), hydroxyproline11

936 m(C��C) protein backbone a-helix (proline/glycogen),
collagen16,17,19,20,23,24

968 970 d(¼¼CH) wagging3

1004 1004 1002 1004 mS symmetric ring breathing mode, phenylalanine16,17,19,24

1032 d (C��H), phenylalanine16

1046 C��O stretching of carbohydrates17

1084 1088 1084 1084 C��N stretching of proteins and lipids, m(C��C) and m(C��O) of

phospholipids17,18,25

1120 1126 1126 m(C��C)of lipids from trans��segments and m(C��N)of proteins24

1174 d(C��H), tyrosine16

1258 Amide III, b-sheet/adenine and cytosine16,17,20

1264 1264 1264 d(¼¼CH)of lipids11,16,17,20,24

1302 1302 (CH2) twist, phospholipids and collagen17,25

1318 Guanine, CH3CH2 wagging nucleic acids, CH3CH2 wagging

collagen11,17

1338 Amide III, hydrated a-helix d(N��H) and m(C��N), desmosine/

isodesmosine(elastin) (A and G of DNA/RNA)16,17,19,26

1344 A and G of DNA/RNA and CH deformation of proteins27

1364 1362 1366 Guaninine, TRP (protein), lipids18

1440 1446 1438 1440 d (CH2) d as (CH3) in proteins (around 1449) and lipids (around

1438)19,20,24,28

1576 1574 Tryptophan, Nucleic acids( guanine, adenine) TRP protein16,20,28

1656 1658 1658 1656 (Amide I, a-helix) , t(C¼¼O) of proteins collagen, elastin and

m(C¼¼C) of lipids(around 1654 cm21)17,18,26

1746 1746 m(C¼¼O) of phospholipids11,19,29

m, stretching mode; ms, symmetric stretch; mas, asymmetric stretch; d, bending mode.
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Mastitis is characterized by destruction of mature adipose

tissue with sheets of inflammatory cells and foamy macro-

phages. Raman spectra of mastitis (Figure 2d) lacked the

phospholipid peak at 1747 cm21 and showed superimposed

peaks in the 1200–1500 cm21 region, resulting in a notice-

ably broad spectral feature.

Other studies have also shown the ability of Raman spectros-

copy to accurately classify diseased tissue in brain,16,17 skin,18–24

cervix,25–27 breast,1,2,9,10,28–33 and other organs.8,11,34–44 Our

data is confirmatory, and, in addition, demonstrates changes in

the tumor bed, which probably represent the detection of

chemical signs of preneoplastic changes.

Not every Raman spectra correctly classifies every tissue

sample. The reason that some spectra from a sample are differ-

ent is that all samples contain a variety of tissues, such as

blood vessels, residual normal organ tissue, and fat.25,26 For

example, Figure 3 shows the Raman spectra of six different

points on the same tumor sample. There are clear differences

in the spectral (and therefore chemical) compositions between

points b, c, d, e, and a and f, which may reflect two trapped

normal components within a tumor sample. Even tumor sam-

ples can be expected to contain normal blood vessels and fat.

Thus, it would not be a rare event for the Raman microscope

to interrogate normal tissue within the tumor. For this reason

we take at least 12 spectra from each sample and eliminate the

obviously aberrant spectra. We then decide on the diagnosis

using the average of all spectra obtained from that sample.

Our results firmly support the ability of Raman spectra, when

appropriately averaged, preprocessed, and analyzed, to reach

the same diagnostic conclusions as histology.

While these results are promising, they may misconstrue

the actual diagnostic ability of Raman spectroscopy. All spec-

tra were collected under controlled conditions with little inter-

sample variability, under the supervision of trained patholo-

gists. In a less-controlled in vivo study, the diagnostic ability

may be reduced because of increased variability in collection

method and less premeasurement knowledge of the sample.

In clinical practice, malignant tumors are usually excised

with a significant amount of surrounding normal tissue to

guarantee complete removal of atypical and preneoplastic

cells. Raman spectroscopy indicates that surrounding normal

tissue is not the same as the contralateral normal breast.

Most of the ‘‘errors’’ that were made were in classification of

the tumor bed. Some tumor bed tissues were distinctly differ-

ent from normal, tumor, and mastitis tissues. This may

reflect malignant molecular alterations prior to morphologic

changes, as would be expected in preneoplastic processes.

Before Raman can be translated to in vivo use, many bar-

riers must be overcome. A new system should be designed,

which can be integrated into an existing surgical tool, such as

an endoscope or needle biopsy system. To meet this chal-

lenge, a fiber-optic probe must be designed, which can be

inserted into the needle or endoscope. Ideally, the fiber

would reduce the collection time to fractions of a second

while also reducing fluorescence. Accompanying software

must preprocess and classify the data in near real-time to

give an immediate diagnosis in the operating room.

Our study demonstrates that tissues have characteristic

Raman spectral features that differentiate pathologic changes

like mastitis and cancer from normal breast tissue in a mouse

model. It also suggests that Raman spectroscopy can detect

molecular preneoplastic changes prior to histologic altera-

tions. This is a rapid technique and requires no prior prepa-

ration of tissue. Tissue can be examined in vitro or in vivo in

seconds, and if a library of spectral profiles of various tissues

and pathologic conditions is created, comparison and inter-

pretation can be performed in real-time. It may offer a

quicker, less-subjective method to detect cancer as a supple-

ment to current histological methods. With the rapid devel-

opment and improvement of optic and computer technol-

ogy, fiber-optic Raman probes may be used by clinicians to

detect malignancy and by surgeons to guide surgical exci-

sions in the not very distant future.

The authors thank Children’s Hospital of Michigan, Detroit, MI, for

partially funding this effort.

REFERENCES
1. Haka, A. S.; Volynskaya, Z.; Gardecki, J. A.; Nazemi, J.; Lyons, J.;

Hicks, D.; Fitzmaurice, M.; Dasari, R. R.; Crowe, J. P.; Feld, M.

S. Cancer Res 2006, 66, 3317–3322.

FIGURE 3 Raman mapping studies. Two different Raman spectral

profiles are obtained, traces labeled scans b, c, d, and e are compatible

with Raman spectral profile of a tumor, whereas the traces labeled a

and f are similar to the spectral profiles of normal mammary gland.

240 Kast et al.

Biopolymers DOI 10.1002/bip



2. Haka, A. S.; Shafer-Peltier, K. E.; Fitzmaurice, M.; Crowe, J.;

Dasari, R. R.; Feld, M. S. Proc Natl Acad Sci USA 2005, 102,

12371–12376.

3. Lakshmi, J. Radiat Res 2002, 157, 175–182.

4. Shim, M. G.; Wong Kee Song, L.-M., Marcon, N. E.; Wilson, B.

C. Photochem Photobiol 2000, 72, 146–150.

5. Schut, T. C. B.; Witjes, M. J. H.; Sterenborg, H. J. C. M.; Speel-

man, O. C.; Roodenburg, J. L. N.; Marple, E. T.; Bruining,

H. A.; Puppels, G. J. Anal Chem 2000, 72, 6010–6018.

6. Puppels, G. J.; Schut, T. C. B.; Caspers, P. J.; Wolthuis, R.; van

Aken, M.; van der Laarse, A.; Bruining, H. A.; Buschmann, H. P.

J.; Shim, M. G.; Wilson, B. C. Pract Spectrosc 2001, 28, 540–574.

7. Manoharan, R.; Wang, Y.; Boustany, N.; Brennan, J. F.; Baraga,

J. J.; Dasari, R. R.; Van Dam, J.; Singer, S.; Feld, M. S. Proc

SPIE-Int Soc Opt Eng 1994, 2328, 128–132.

8. Kaminaka, S.; Yamazaki, H.; Ito, T.; Kohda, E.; Hamaguchi,

H.-O. J Raman Spectrosc 2001, 32, 139–141.

9. Frank, C. J.; Redd, D. C.; Gansler, T. S.; McCreery, R. L. Anal

Chem Feb 1 1994, 66(3):319–326.

10. Frank, C. J.; McCreery, R. L.; Redd, D. C. Anal Chem 1995, 67,

777–783.

11. Huang, Z.; McWilliams, A.; Lui, H.; McLean, D. I.; Lam, S.;

Zeng, H. Int J Cancer 2003, 107, 1047–1052.

12. Aslakson, C. J.; Miller, F. R. Cancer Res 1992, 52, 1399–1405.

13. Cai, T. T.; Zhang, D.; Ben-Amotz, D. Appl Spectrosc 2001, 55,

1124–1130.

14. Thakur, J. G.; Dai, H.; Serhatkulu, G. K.; Naik, R.; Naik, V. M.;

Cao, A.; Pandya, A.; Auner, G. W.; Rabah, R.; Klein, M. D.; Free-

man, C. J Raman Spectrosc 2007, 38, 127–134.

15. Tormod, N.; Isaksson, T.; Fearn, T.; Davies, T. A User Friendly

Guide to Multivariate Calibration and Classification; NIR Pub-

lications: Chichester, UK, 2002.

16. Krafft, C.; Miljanic, S.; Sobottka, S. B.; Schackert, G.; Salzer, R.

Proc SPIE-Int Soc Opt Eng 2003, 5141, 230–236.

17. Wolthuis, R.; van Aken, M.; Fountas, K.; Robinson, J. S., Jr.;

Bruining, H. A.; Puppels, G. J. Anal Chem 2001, 73, 3915–3920.

18. Fendel, S.; Schrader, B. Fresenius’ J Anal Chem 1998, 360, 609–

613.

19. Gniadecka, M.; Philipsen Peter, A.; Sigurdsson, S.; Wessel, S.;

Nielsen Ole, F.; Christensen Daniel, H.; Hercogova, J.; Rossen,

K.; Thomsen Henrik, K.; Gniadecki, R.; Hansen Lars, K.; Wulf

Hans, C. J Invest Dermatol 2004, 122, 443–449.

20. Gniadecka, M.; Wulf, H. C.; Mortensen, N. N.; Nielsen, O. F.;

Christensen, D. H. J Raman Spectrosc 1997, 28, 125–129.

21. Gniadecka, M.; Wulf, H. C.; Nielsen, O. F.; Christensen, D. H.;

Hercogova, J. Photochem Photobiol 1997, 66, 418–423.

22. Gniadecka, M.; Wulf, H. C.; Nielsen, O. F.; Christensen, D. H.;

Hercogova, J. Spectrosc Biol Mol: Modern Trends (Seventh Eu-

ropean Conference on Spectroscopy of Biological Molecules,

Madrid, 1997) 1997, 449–450.

23. Hata, T. R.; Scholz, T. A.; Ermakov, I. V.; McClane, R. W.; Kha-

chik, F.; Gellermann, W.; Pershing, L. K. J Invest Dermatol 2000,

115, 441–448.

24. Johansson, C. K.; Christensen, D. H.; Nielsen, O. F. Dansk Kemi

1999, 80, 12–13.

25. Mahadevan-Jansen, A.; Mitchell, M. F.; Ramanujam, N.; Malp-

ica, A.; Thomsen, S.; Utzinger, U.; Richards-Kortum, R. Photo-

chem Photobiol 1998, 68, 123–132.

26. Mahadevan-Jansen, A.; Robichaux, A.; Lieber, C.; Shappell, H.;

Ellis, D.; Jones, H. W., III. Trends Opt Photon 2002, 71, 345–348.

27. Utzinger, U.; Heintzelman, D. L.; Mahadevan-Jansen, A.; Malp-

ica, A.; Follen, M.; Richards-Kortum, R. Appl Spectrosc 2001,

55, 955–959.

28. Frank, C. J.; McCreery, R. L.; Redd, D. C. B. Anal Chem 1995,

67, 777–783.

29. Frank, C. J.; Redd, D. C.; Gansler, T. S.; McCreery, R. L. Anal

Chem 1994, 66, 319–326.

30. Haka, A. S.; Shafer-Peltier, K. E.; Fitzmaurice, M.; Crowe, J.;

Dasari, R. R.; Feld, M. S. Trends Opt Photon 2002, 71, 349–351.

31. Haka, A. S.; Shafer-Peltier, K. E.; Fitzmaurice, M.; Crowe, J.;

Dasari, R. R.; Feld, M. S. Cancer Res 2002, 62, 5375–5380.

32. Manoharan, R.; Shafer, K.; Perelman, L.; Wu, J.; Chen, K.;

Deinum, G.; Fitzmaurice, M.; Myles, J.; Crowe, J.; Dasari, R. R.;

Feld, M. S. Photochem Photobiol 1998, 67, 15–22.

33. Redd, D. C. B.; Feng, Z. C.; Yue, K. T.; Gansler, T. S. Appl Spec-

trosc 1993, 47, 787–791.

34. Molckovsky, A.; Song, L. M.; Shim, M. G.; Marcon, N. E.; Wil-

son, B. C. Gastrointest Endosc 2003, 57, 396–402.

35. Stone, N.; Kendall, C.; Shepherd, N.; Crow, P.; Barr, H. J Raman

Spectrosc 2002, 33, 564–573.

36. Stone, N.; Kendall, C.; Smith, J.; Crow, P.; Barr, H. Faraday Dis-

cuss 2003, 126, 141–157.

37. Stone, N.; Stavroulaki, P.; Kendall, C.; Birchall, M.; Barr, H.

Laryngoscope 2000, 110, 1756–1763.

38. Venkatakrishna, K.; Kurien, J.; Pai, K. M.; Valiathan, M.; Kumar,

N. N.; Krishna, C. M.; Ullas, G.; Kartha, V. B. Curr Sci 2001, 80,

665–669.

39. Malini, R.; Venkatakrishna, K.; Kurien, J.; Pai, K. M.; Rao, L.;

Kartha, V. B.; Krishna, C. M. Biopolymers 2006, 81, 179–193.

40. Wu, J. G.; Xu, Y. Z.; Sun, C. W.; Soloway, R. D.; Xu, D. F.; Wu,

Q. G.; Sun, K. H.; Weng, S. F.; Xu, G. X. Biopolymers 2001, 62,

185–192.

41. Crow, P.; Barrass, B.; Kendall, C.; Hart-Prieto, M.; Wright, M.;

Persad, R.; Stone, N. Br J Cancer 2005, 92, 2166–2170.

42. Crow, P.; Stone, N.; Kendall, C. A.; Uff, J. S.; Farmer, J. A.; Barr,

H.; Wright, M. P. Br J Cancer 2003, 89, 106–108.

43. Crow, P.; Uff, J. S.; Farmer, J. A.; Wright, M. P.; Stone, N. BJU

Int 2004, 93, 1232–1236.

44. Nayak, G. S.; Kamath, S.; Pai, K. M.; Sarkar, A.; Ray, S.; Kurien,

J.; D’Almeida, L.; Krishnananand, B. R.; Santhosh, C.; Kartha,

V. B.; Mahato, K. K. Biopolymers 2006, 82, 152–166.

Reviewing Editor: Laurence Nafie

Raman Spectroscopy Detects Neoplastic Changes 241

Biopolymers DOI 10.1002/bip


