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SUMMARY

A multi-scale paradigm is proposed that utilizes periodic, small-scale, integral compliant mechanisms
within larger-scale structures for the attenuation of vibro-acoustic response. Amplification principles serve
as the basis for the design of these mechanisms in achieving reduced energy transmission. The spectral
finite element method is exploited for a force–velocity and energy flow analysis of the resultant truss-like
structures. A genetic algorithm is employed to optimize structure size for greatest effectiveness in the
frequency range of interest. This study demonstrates that a significant decrease in structural vibration
is achievable and suggests promising applications including the design of acoustic isolation panels for
broadband vehicle noise reduction. Copyright q 2007 John Wiley & Sons, Ltd.

Received 10 November 2006; Revised 22 March 2007; Accepted 30 March 2007

KEY WORDS: structures; finite element methods; vibrations; mid-frequency; sound transmission;
compliant mechanism

1. INTRODUCTION

The vibration of lightweight structures in the 1–10 kHz middle frequency region generates noise,
which has an adverse effect on human performance and perception of quality [1–5]. Typical
solutions, such as spring–mass absorbers, visco-elastic coatings, and active control, are effective
across these frequencies. Nonetheless, they often lead to greater system complexity or weight [6, 7].
Accordingly, the objective of this work is to introduce a new technique for the reduction of middle
frequency structural-borne noise.
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Much work has been performed over the last century in order to understand the basic principles of
wave propagation in periodic lattices and structures [8–10]. Structures with band gap characteristics
have been identified and have become the subject of recent investigation [11–16]. Such structures
have frequency bands in which wave propagation is either hindered (i.e. stop bands) or unhindered
(i.e. pass bands). The ability to control the location and range of stop bands, also known as response
attenuation zones, has garnered further interest specific to the vibration of and sound radiation
from sandwich beams made with periodic truss cores [17, 18]. The traditional square core, as well
as ‘reentrant’ or negative Poisson ratio core topologies have been examined. From this prior work
it is well established that as frequency of vibration increases, wavelength decreases, producing
localized deformations in structures. In view of this, a methodology is introduced herein, which
encompasses integrated, designed, small-scale compliance to achieve noise reduction.

To reduce middle frequency response, the principle of mechanical advantage is exploited as
a design tool to limit energy transmission. In this paper, a novel use of compliant mechanisms
is followed to attain the mechanical advantage. From the computational standpoint, an efficient
spectral finite element approach is employed in order to accurately predict the structural dynamic
response and reduce the size of the analysis [19]. The output of this analysis includes basic
velocity and energy flow information to provide insight into the performance of the structures. A
genetic algorithm capable of optimizing truss-like structures that have a large number of non-linear,
inter-related variables is then brought forth to supplement the initial design process [20, 21].

The paper is organized as follows: in Section 2, a brief review of the spectral finite element
method is given. Then, the analysis and design of a compliant mechanism unit cell and structure
is introduced in Section 3. Genetic algorithm optimization of the compliant mechanism unit cell is
presented in Section 4. Finally, conclusions are drawn in Section 5 along with directions of future
effort including prototype testing for model validation.

2. THE SPECTRAL FINITE ELEMENT METHOD—REVIEW

This section provides a brief review of the spectral finite element method. A comprehensive
development of the dynamic stiffness matrix for both the rod and the beam element, along with
background details on the formulation of the method, can be found in [19].

Consider a general linear frame element that combines the degrees of freedom of both a
rod element and a beam element, shown in Figure 1. The element material density, Young’s
modulus, cross-sectional area, length, and area moment of inertia are denoted by �, E, A, L ,

Rod (2 DOF Total) Beam (4 DOF Total)

F1 F2

u1 u2

v1, θ1 v2, θ2

V1 V2

M1 M2

ρ, E, A, L ρ, E, I, L

Figure 1. Rod and beam element nodal degrees of freedom and loads.
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and I , respectively. The rod element axial loads and displacements are specified, respectively, by
Fi and ui , while the beam transverse loads, moments, transverse displacements, and rotations are
given, respectively, by Vi , Mi , vi , and �i , where i denotes the node number of interest.

2.1. Rod element formulation

In the development of a spectral rod element, the mass is not lumped at the ends of the element as
is often done with a conventional finite element formulation [22]. Rather, the mass is considered
distributed evenly along the length, which allows for the propagation of longitudinal waves through
the element, acting as a waveguide. It has been established that the space–time solution for the
longitudinal displacement of a point on the rod can be represented by

u(x, t) = ∑
n
ûn(x,�n)e

i�nt (1)

In fact, (1) represents the general solution for the time harmonic variation of any variable,
where � is the frequency and (1) is summed over the number of frequencies of interest, n. In
this equation, the ˆ nomenclature is established to represent a spectral quantity. Thus, the spectral
displacements for the rod element are represented by ûn , which have the form

ûn = Ae−iknx + Be−ikn(L−x), kn = �n

√
�

E
(2)

This expression for ûn is the frequency-dependent rod element shape function. Observe that the
wavenumber, kn , depends on not only frequency, but also the material through which longitudinal
waves are traveling. In the equations that follow, the subscript n is dropped, however still implied.

The coefficients A and B can be solved for in terms of the nodal displacements by applying
the boundary conditions

û(x = x1, �) = û1 (3)

û(x = x2, �) = û2 (4)

where x1 = 0, x2 = L (5)

Consequently,

[
A

B

]
= 1

1 − e−i2kL

[
1 −e−ikL

−e−ikL 1

] [
û1

û2

]
(6)

The nodal forces for a rod element are found in terms of the spectral element stiffness matrix
by taking the result from (6), placing it in (2), and forming expressions for the rod element axial
loads:

F̂i = ni E A
dû

dx

∣∣∣∣
x=xi

where ni =
{−1 for i = 1

1 for i = 2
(7)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 73:470–492
DOI: 10.1002/nme



MID-FREQUENCY STRUCTURES WITH INTEGRAL COMPLIANT MECHANISMS 473

resulting in

F̂1 = −E A
dû

dx

∣∣∣∣
x=x1

(8)

F̂2 = E A
dû

dx

∣∣∣∣
x=x2

(9)

or, in matrix form,[
F̂1

F̂2

]
= E A

ik

1 − e−i2kL

[
1 + e−i2kL −2e−ikL

−2e−ikL 1 + e−i2kL

] [
û1

û2

]
(10)

F̂r = K̂rd̂r (11)

2.2. Beam element formulation

The development of the spectral beam element is similar to that of the rod element. Bending
degrees of freedom allow for the transmission of flexural or transverse waves through the beam
element rather than the longitudinal waves propagating in a rod element. Hence, the space–time
solution for the transverse displacement of a point on the beam can be represented by

v(x, t) = ∑
n

v̂n(x,�n)e
i�nt (12)

The frequency-dependent spectral displacements and wavenumber for the beam element have
the form

v̂n =Ce−iknx + De−knx + Fe−ikn(L−x) + Ge−kn(L−x), kn = √
�n

[
�A

E I

]1/4
(13)

Based on this displacement function, the rotation, �̂n , at each end of the beam can be found by
taking the derivative of (13) with respect to x :

�̂n = dv̂n
dx

(14)

Applying the known boundary conditions to the element allows for the solution of the coefficients
C, D, F , and G:

v̂(x = x1, �) = v̂1 (15)

�̂(x = x1, �) = �̂1 (16)

v̂(x = x2, �) = v̂2 (17)

�̂(x = x2, �) = �̂2 (18)
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Consequently,

⎡
⎢⎢⎢⎢⎣
C

D

F

G

⎤
⎥⎥⎥⎥⎦= Q̂

⎡
⎢⎢⎢⎢⎢⎣

v̂1

�̂1

v̂2

�̂2

⎤
⎥⎥⎥⎥⎥⎦ (19)

Matrix Q̂ is not given here for the sake of brevity, but is easily obtained using symbolical
computation software. The beam nodal loads are then found, in terms of the spectral stiffness
matrix, by substituting the coefficients C, D, F , and G back into (13) and differentiating the
resulting displacement function to form the moment and shear force at each node:

V̂i = ni E I
d3v̂

dx3

∣∣∣∣
x=xi

(20)

M̂i = −ni E I
d2v̂

dx2

∣∣∣∣
x=xi

(21)

In matrix form,

F̂b = K̂bd̂b (22)

where

F̂b =

⎡
⎢⎢⎢⎢⎢⎣

V̂1

M̂1

V̂2

M̂2

⎤
⎥⎥⎥⎥⎥⎦ and d̂b =

⎡
⎢⎢⎢⎢⎢⎣

v̂1

�̂1

v̂2

�̂2

⎤
⎥⎥⎥⎥⎥⎦ (23)

2.3. Frame element formulation and implementation

The spectral frame finite element and conventional frame finite element are formulated in a similar
manner. The 2× 2 matrix, K̂r, of the spectral rod element and the 4× 4 matrix, K̂b, of the spectral
beam element can be combined to describe a two-dimensional spectral frame element with three
(i.e. longitudinal, transverse, and rotational) degrees of freedom per node. The resulting dynamic
stiffness matrix, K̂f, is 6× 6 and, in terms of assembly on a global level, implemented in precisely
the same way as in the conventional formulation.

Major differences are that the global stiffness matrix is complex and frequency dependent, and
wave propagation effects are included eliminating the need for a separate mass matrix. The step-
by-step time integration problem from the conventional formulation now becomes a step-by-step
frequency problem, and instead of solving a differential equation in time a pseudo-static equation
in frequency must be solved. Additionally, element subdivisions of structural members for proper
mass and stiffness distribution are no longer required, reducing problem size. Single elements
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between structural discontinuities can be utilized. Therefore, due to the ability to accurately and
efficiently model wave propagation, this computational approach serves as an appropriate tool for
straightforward modal analysis in the middle frequency range.

2.4. Spectral finite element method—numerical implementation

In the following sections, the spectral finite element method was numerically implemented as a
computational code in MATLAB. The initial step in the numerical scheme is to define the geometry
and material parameters for the structure of interest. Since the dynamic stiffness matrix and nodal
load vector for each element are frequency dependent, they are next computed within a predefined
loop that steps over a set number of frequencies. Additionally, within this computational loop, the
global dynamic stiffness matrix and nodal load vector are assembled. The application of boundary
conditions then follows to condense the system, and the spectral displacements at the frequency
of interest are computed by solving the equilibrium equations d̂= K̂−1F̂ for the structure. The
spectral displacements are then stored to disk and the computational loop is stepped through at
the next frequency increment.

3. COMPLIANT MECHANISM UNIT CELL AND STRUCTURE—ANALYSIS AND DESIGN

Earlier research [18] has demonstrated the suitability of using a local level ‘unit cell’ analysis in
predicting the global response of periodic truss structures like those shown in Figures 2 and 3.
In evaluating the vibro-acoustic behavior of such structures, the output (i.e. top layer) root-mean-
square (RMS) normal velocity traditionally has been of interest since sound in a fluid domain is
linked to pressure level variation and hence to the energy of motion or normal velocity of a radiating
object [17]. This section builds upon prior work by establishing that compliant mechanisms can
be used effectively at a local unit cell level to attenuate broadband vibro-acoustic response on a
global level. Specifically, the unit cell can be thought of as a framework into which a compliant
mechanism topology is placed in order to employ local level deformations and reduce the output
normal velocity of a structure.

Figure 2. Square core unit cell.

Figure 3. Periodic square core structure.
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3.1. Compliant mechanism unit cell and structure—concept and definitions

Generally, a compliant mechanism topology with a large mechanical advantage is sought. Let Fin
and Fout be the respective input and output force vectors; similarly vin and vout denote the velocity
vectors of the points of force input and output, respectively. Then, assuming that the velocity and
force vectors are parallel, and assuming conservation of power we have, according to [23], that

MA= Fout
Fin

= vin

vout
(24)

where the scalar quantities denote the corresponding magnitudes and MA is the mechanical
advantage. Thus, for a given input speed, vin, the output speed, vout, can be reduced by seek-
ing a mechanism topology with a large mechanical advantage.

A prototypical rigid link 4-bar mechanism is shown in Figure 4 with a compliant mechanism
unit cell realization of the rigid link mechanism given in Figure 5. This mechanism topology was
first examined for micro-electro-mechanical (MEM) device applications [24], and was selected
for investigation in this work since its general behavior is well characterized, making it a suitable
benchmark. This mechanism is considered part of a class of mechanisms known as ‘inversors’,
where the input and output move in opposite directions. As a point of departure, while MEM
applications have applied actuators in generating mechanism motion, the following work exercises

1

F

Fout

in

2

3

4

Figure 4. Rigid link 4-bar mechanism diagram (numbers denote links).

Figure 5. Compliant mechanism unit cell model.
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Figure 6. Periodic compliant mechanism structure.

the notion of vibro-acoustically induced response. Thus, vibration isolation is accomplished pas-
sively via a number of embedded compliant mechanisms within a structure rather than actively.
Moreover, the implementation of this mechanism is varied slightly from [24] since it is used as a
stroke reducer, instead of a stroke amplifier.

The conceptual model of a full compliant mechanism structure is shown in Figure 6, comprising
an assembly of 20 unit cells. The structure is fixed to a rigid baffle at both ends and is subjected
to a distributed load induced by an incident pressure wave.

In the compliant mechanism unit cell model given in Figure 7, frame elements 1, 2, 8, 10, 12, 14,
15 and their symmetric counterparts are shown with thicker lines. This implies that these elements
are modeled as stiffer beams than the rest of the unit cell, although they still technically have
compliance. The purpose of making elements 1, 2, and 8 stiffer is that these elements represent
the ground for the mechanism. Elements 10 and 12 provide reinforcement for link 4 as shown in
the rigid link mechanism diagram. Lastly, the input to the mechanism, element 14, and its output
counterpart, element 15, are also modeled with stiffer beams since they are transmission members
and minimal deflection is desired. The remaining elements in the unit cell are considered core
members in which greater flexibility is desired.

In terms of element connectivity within the unit cell, the ground elements are connected to the
output/top side of the structure. The mechanism input is then connected through a single element
to the bottom layer, allowing transverse waves generated by the incident pressure field to propagate
through elements 3 and 20. As the wavelength of vibration, �, approaches the length scale of the
unit cell (Figure 7), these transverse waves actuate the compliant mechanism evoking mechanical
advantage and reducing the top layer normal velocity of the structure.

While the unit cell element connectivity affects the frequency at which response attenuation
starts, the width, w in Figure 7, of the core elements in the unit cell dictates the attenuation zone
cutoff. The natural frequency of the mechanism is linked to this sizing, with increased stiffness
leading to a greater cutoff frequency. The frequency response function (FRF) amplitude and phase
of the mechanism output displacement relative to input displacement are defined to illustrate this
relationship:

Amplitude=
∣∣∣∣ v̂13 − v̂4

v̂10 − v̂2

∣∣∣∣, Phase= 180

�
[� (v̂13 − v̂4) − � (v̂10 − v̂2)] (25)
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Figure 7. Compliant mechanism unit cell model (numbers that are circled denote elements; numbers
that are not circled denote nodes).

where the output is taken as the transverse spectral displacement of node 13 relative to node 4,
while the input is taken as the transverse spectral displacement of node 10 relative to node 2.
Nodes 4 and 2 are selected since they are part of the ground of the mechanism.

Lastly, to predict the frequency at which attenuation begins, a straightforward wavenumber
analysis is used. The wavenumber for transverse waves in a beam element, from (13), and its
relationship to wavelength are combined to yield the following wavenumber–frequency equation:

k =√
�

[
�A

E I

]1/4
and � = 2�

k
⇒ �=

(
2�

�

)2
√

E I

�A
(26)

where �, E, A, and I are the physical parameters of the bottom layer elements.

3.2. Compliant mechanism unit cell and structure—analysis

Prior to solving for the response of the unit cell or structure, the spectral load vector equivalent
to the incident pressure for each element, e, must be formulated. From [18], the element spectral
load vector equivalent can be expressed as

f̂ e(ŵb,�) =
∫ Le

0
ŵb(x,�)pin dx (27)

where ŵb is the spectral weighting function for the beam element, Le is the length of the beam
element, and pin is the normally incident pressure wave amplitude.
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Symmetric boundary conditions, representative of those imposed on a unit cell when assembled
into the full structure, are enforced in the unit cell analysis. Rotational degrees of freedom of the
nodes on the left and right edges of the unit cell are constrained, with all the remaining degrees
of freedom unconstrained. For the full structure, only the degrees of freedom of nodes interfacing
with the rigid baffles are constrained.

Following [17], the response is computed in terms of the top layer nodal RMS transverse velocity
given in decibels by

vRMS = 20 log10

⎡
⎣ �

vref

[
1

N

N∑
j=1

∣∣v̂t∣∣2j
]1/2

⎤
⎦ (28)

where � is the frequency of interest, vref is a reference velocity, v̂t is the transverse spectral
displacement of the j th node of interest, and N is the number of top layer nodes.

While the top layer RMS normal velocity of the structure is related to the energy of motion,
another measure of the reduction of sound radiated by the compliant mechanism structure is the
far-field sound pressure level (SPL). A numerical approximation to the SPL for a baffled rectangular
radiator was suggested in [18]. Specifically, the pressure level distribution in the acoustic fluid
domain above the structure is evaluated numerically using results from the spectral finite element
analysis by way of the Fourier transform solution to the Helmholtz equation:

pt(x, y,�) ∼= −i�f�
2

2�

m∑
−m

v̂t(m��x , �)
eiy

√
k2 − (m��x )2√

k2 − (m��x )2
eim��x x��x (29)

This equation is the numerical form of the integral representation of the pressure at a specific
frequency, �, of interest. The integral is approximated as a summation over m number of finite,
��x , steps, where �x is the usual transform parameter, according to [25]. In (29) �f is the density
of the fluid and k =�/ca is the acoustic wavenumber, where ca is the speed of sound in the fluid.
The form of the numerically evaluated transverse displacement transform, v̂t(m��x , �), can be
found in [18].

In the next section, the RMS normal velocity response and SPL of the compliant mechanism
unit cell and structure are compared, respectively, with that of a square core unit cell and structure.
The square core structure represents an analysis control for comparison. In all analyses the forcing
function and boundary conditions are implemented in the manner described above.

3.3. Compliant mechanism unit cell and structure—results

For this work, both the compliant mechanism structure and square core structure are assumed
to be made of aluminum with a material Young’s modulus E = 7.1× 1010 N/m2 and density
�= 2700 kg/m3. As is typical of such structures, hysteretic material damping is introduced to
account for inherent energy loss. A complex modulus, E∗ = E(1+ i�), is utilized, where the loss
factor � = 0.01. This value is slightly high relative to typical values reported for aluminum [26],
but consistent with prior research [17, 18]. However, the effect of using a slightly higher loss
factor has been explored, with the result that resonant peaks are damped whereas the fundamental
frequency response of general interest is basically unchanged.

Unit cell dimensions of 0.1m by 0.05m, and structure dimensions of 2m by 0.05m, are used.
This sizing of the unit cell leads to a compliant mechanism mechanical advantage of 8.3. The
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Figure 8. Compliant mechanism unit cell FRF.

width of core elements for the compliant mechanism unit cell is taken as 2.5mm while stiffer
members (e.g. ground, transmission, etc.) are given a width of 5.0mm. These initial widths were
chosen since they are comparable to those used in the square core structure, which has a core
member thickness of 2.5mm and a facesheet thickness of 5.0mm.

For each structure, the incident pressure field amplitude in (27) is pin = 1N/m2. In computing
the RMS transverse velocity of each structure, a reference velocity in (28), vref = 10−8 m/s, is used.
For calculation of the far-field SPL, (29) is summed from m =−100 to 100 and each structure is
assumed to be in air with �f = 1.2 kg/m3 and ca = 343m/s.

The frequency range of interest for this study is 0–6000Hz, evaluated at 10Hz frequency steps.
The unit cell FRF is given in Figure 8, where the amplitude and phase are scaled for visual clarity
by factors of 10 and 1/10, respectively. Below 2 kHz, two prominent peaks in response are visible
at 880 and 1780Hz, representing resonances of the unit cell at frequencies below the attenuation
starting frequency. Substituting the physical parameters of elements 3 and 20 into (26), along with
� = 0.1m (i.e. the length of the unit cell), gives an attenuation starting frequency of 2320Hz,
accurately predicting the response shown in Figure 8. Moreover, the FRF illustrates that within
the attenuation zone the compliant mechanism exhibits non-resonant (i.e. small amplitude), out-
of-phase ‘inversor’ behavior. At the first cutoff frequency of 5300Hz, resonance is characterized
by a large amplitude and in-phase behavior.

The top layer RMS transverse velocity of the compliant mechanism unit cell and structure are
plotted in comparison with the square core unit cell and structure, respectively, in Figures 9 and 10.
The square core unit cell response exhibits four main peaks at 1120, 2600, 3870, and 5900Hz.
These peaks are also evident in the response of the square core structure, where the resonance
at 3870Hz is dominant above 2 kHz. For the compliant mechanism structure, the resonances at
880 and 1780Hz, visible in the unit cell response, are again present. Between 2320 and 5300Hz
significant broadband attenuation is apparent, most notably at 3870Hz, where a reduction upwards
of 40 dB is seen relative to the square core structure.
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Figure 9. Top layer RMS velocity comparison for unit cell.
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Figure 10. Top layer RMS velocity comparison for structure.

To supplement the FRF and RMS transverse velocity results, the deformed shapes of the unit
cell can also be plotted along with element energetics to gain additional knowledge of the behavior
of the structure. The total energy of each element is evaluated using the 6× 6 spectral stiffness
matrix, K̂f, for a given frame element once the 6× 1 spectral nodal displacement vector, d̂f,
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Figure 11. Compliant mechanism unit cell deformed shape and energy distribution at 3500Hz (dotted
lines denote undeformed configuration; continuous lines denote deformed configuration).

Figure 12. Compliant mechanism unit cell deformed shape and energy distribution at 4500Hz (dotted
lines denote undeformed configuration; continuous lines denote deformed configuration).

for that element has been computed.

Ee = | 12 d̂Tf K̂fd̂f| (30)

The deformed shape and total energy at several frequencies provide fundamental insight into the
compliant mechanism unit cell performance; see Figures 11–14. Thicker continuous lines denote
greater energy content. Within the attenuation zone (Figures 11 and 12) energy isolation is evident,
corresponding to the propagation of a transverse wave in the bottom layer and the mechanism
acting as an ‘inversor.’ At the first mechanism resonance (Figure 13) in-phase behavior is observed.
Outside the attenuation zone (Figure 14) energy flows into the core and top layer.
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Figure 13. Compliant mechanism unit cell deformed shape and energy distribution at 5220Hz (dotted
lines denote undeformed configuration; continuous lines denote deformed configuration).

Figure 14. Compliant mechanism unit cell deformed shape and energy distribution at ∼6000Hz (dotted
lines denote undeformed configuration; continuous lines denote deformed configuration).

A comparison is made of the far-field SPL in the fluid region above both structures at 1780 and
3870Hz. Figures 15 and 16, respectively, illustrate that the compliant mechanism core structure
indeed produces a higher SPL at 1780Hz, as expected based on the RMS velocity response. Note
that the structure top layer is located between −1m and +1m along the bottom horizontal axis
of these figures and that the SPL radiation patterns are dependent upon the unique deformation
of each structure. Furthermore, a reduced SPL of nearly 40 dB at 3870Hz, within the attenuation
zone, is seen in Figures 17 and 18. These results represent a significant reduction in transmitted
sound.

Moving to a global view, deformed configurations of the compliant mechanism structure are
given in Figures 19–21 at frequencies of 40, 150, and 3000Hz, respectively. It is evident that as
frequency increases, the deformed shape transitions from global to local. The local deformation at
3000Hz illustrates the propagation of a transverse wave traveling through the bottom layer of the
structure.
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Figure 15. Square core structure SPL at 1780Hz—units: dB re 20E−6 Pa.
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Figure 16. Compliant mechanism core structure SPL at 1780Hz—units: dB re 20E−6 Pa.

4. GENETIC ALGORITHM OPTIMIZATION

Having described the compliant mechanism unit cell design and analysis concept, the next logical
step in formulating a unified methodology is to optimize these structures for a desired response
in a known frequency range. As discussed in [20], the efficiency of a genetic algorithm comes
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Figure 17. Square core structure SPL at 3870Hz—units: dB re 20E−6 Pa.
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Figure 18. Compliant mechanism core structure SPL at 3870Hz—units: dB re 20E−6 Pa.

from the fact that while randomized, it uses historical information based on design fitness to
search new spaces. Additionally, a genetic algorithm can handle noisy data in a global search that
does not examine only local maxima and minima as calculus-based methods do. Thus, genetic
algorithms have a notable advantage in optimizing truss-like structures that have a large number
of non-linear, inter-related variables, which produce a broadband frequency response with many
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Figure 19. Deformed shape of compliant mechanism structure at 40Hz (dotted lines denote undeformed
configuration; continuous lines denote deformed configuration).

Figure 20. Deformed shape of compliant mechanism structure at 150Hz (dotted lines denote undeformed
configuration; continuous lines denote deformed configuration).

Figure 21. Deformed shape of compliant mechanism structure at 3000Hz (dotted lines denote undeformed
configuration; continuous lines denote deformed configuration).

resonant peaks [21]. Accordingly, a genetic algorithm is chosen over a calculus-based method and
is coupled to the aforementioned spectral finite element analysis. The genetic algorithm used in this
study has the standard operations, according to [20], found in most applications: (1) selection of
candidate individuals from an initial population according to their fitness value (FV); (2) crossover,
where portions of two individuals are combined to create a new individual; (3) mutation, where
small, random changes are introduced. Additionally, an elitist survival strategy is implemented to
ensure that the fittest individual from a given population survives in the next generation [21].

4.1. Genetic algorithm optimization—analysis

It is appropriate to define an objective in terms of ‘response tuning.’ As mentioned in Section 3.1,
changing the thickness of various beamwidths within the unit cell alters the attenuation zone breadth
(due to modification of the mechanism stiffness and consequently natural frequencies). Hence, the
objective for this model is to use a genetic algorithm to optimize the size of various beams in
the unit cell and decrease the response over an extended frequency range. More specifically, the
objective function is to minimize the following fitness value:

min FV= ∑
n

vRMS (31)

where the RMS velocity, vRMS, is summed over the number of frequencies, n, spanning a frequency
interval.

For the size optimization analysis a total of nine element width variables are used, one for
each of the following elements: 4–7 and 9–13 (see Figure 22). Symmetry is enforced about the
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Figure 22. Compliant mechanism unit cell model (numbers that are circled denote elements).
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Figure 23. Flowchart of computations for unit cell genetic algorithm size optimization.

centerline of the unit cell. The elements chosen for size optimization include the mechanism core
and top layer elements, but not the ground, transmission, or bottom layer elements. The latter
groups, not selected for size optimization, are considered paramount to the behavior established
in Figure 8. For example, the bottom layer element width should not be modified since that will
change the frequency at which the attenuation zone begins, according to (26).

4.2. Genetic algorithm optimization—numerical implementation

A flowchart of the unit cell genetic algorithm size optimization routine is shown in Figure 23. The
optimization algorithm was numerically implemented in MATLAB in tandem with the spectral
finite element analysis computational code. The numerical procedure requires the generation of an
initial random population after which spectral finite element analyses are conducted to compute
the fitness value for each individual over the specified frequency range. From there the optimizer
performs selection, crossover, and mutation and the fitness values of the new population members
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are computed using the spectral finite element analysis. This procedure is iterated over a set number
of generations and the final size optimized design is obtained.

4.3. Genetic algorithm optimization—results

The width of each element was allowed to vary +75%/−50% from an initial value of 2.5mm.
An 18-bit binary encoding was used in the genetic algorithm for the nine variables. A population
size of 10 was iterated over four generations. Given the range of FVs for the members of the
population, individuals within the top 80% were selected and copied into a mating pool with fitter
members more represented. Among those surviving individuals, 80% of them were allowed to
crossover (i.e. breed), after which a mutation rate of 1% was applied.

The compliant mechanism unit cell was optimized to minimize the fitness value over the
frequency interval of 5000–7000Hz at frequency steps of 10Hz with n = 200 in (31). In particular,
response peaks at 5400 and 6200Hz were targeted for reduction. The RMS transverse velocity of
the optimized unit cell response was then computed over the entire 0Hz–10 kHz range at 10Hz
frequency steps and is shown in Figure 24. An average reduction of 9 dB was achieved over the
5000–7000Hz frequency range with a significant reduction of 25 dB at 5400Hz and 30 dB at
6200Hz. Comparing the initial and optimized responses, it is clear that the unit cell resonances
have been shifted to the right across the majority of the 10 kHz range, implying a somewhat stiffer
structure.

The final width of each size optimized element is given in Table I and the initial and optimized
unit cell structures are shown in Figures 25 and 26, respectively. Element width is represented
by varying line thickness. The thicker elements in the optimized structure are consistent with the
notion of it being stiffer, leading to a shift of the unit cell resonances toward higher frequencies.
These optimization results are quite promising given that only four generations were evaluated,
each with a population size of only 10 individuals.
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Figure 24. RMS velocity of compliant mechanism unit cell.
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Table I. Initial and optimized width of elements in the compliant
mechanism unit cell.

Element number Initial width (mm) Optimized width (mm)

4 2.5 3.3
5 2.5 3.3
6 2.5 3.3
7 2.5 4.3
9 2.5 4.3

10 2.5 2.3
11 2.5 3.3
12 2.5 4.3
13 2.5 4.3

Figure 25. Initial compliant mechanism unit cell.

Figure 26. Optimized compliant mechanism unit cell.

5. CONCLUSIONS

In this study, an analysis, design, and optimization methodology was introduced for structures with
integral compliant mechanisms for middle frequency structural-borne noise attenuation. The com-
putational utility of the spectral finite element method was discussed. Several concepts and analysis
tools were outlined for initial unit cell sizing and structure design, including (1) amplification prin-
ciples for topology selection, (2) the compliant mechanism FRF, (3) the wavenumber–frequency
analysis, and (4) the deformed shape/energy distribution analysis. A genetic algorithm optimiza-
tion routine was shown to provide control in adjusting the attenuation frequency range. Results
of a specific computational example verified that, using this assemblage of numerical methods,
structures with enhanced vibro-acoustic properties can be realized.

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Engng 2008; 73:470–492
DOI: 10.1002/nme



490 E. M. DEDE AND G. M. HULBERT

This work brings together several stand-alone research areas including structural dynamics,
compliant mechanism design, spectral finite element computational analysis, and structural opti-
mization. This study suggests that this approach to the problem of vibration-induced
noise, implemented during the design stage of a vehicle or structure, can be added to the list of
existing solutions. Moreover, the fact that these structures have possible load bearing capability
also suggests that they can fulfill multi-functional objectives.

Further work is being performed on the analysis, design, manufacturing, and testing of a
compliant mechanism prototype structure for model validation. Future computational research
will explore an enhanced genetic algorithm optimization routine to include shape and topology
optimization. Additional research is also being carried out in conjunction with the design of 3-D
truss-like structures for acoustic attenuation panels and other unique applications.

APPENDIX: NOMENCLATURE

List of symbols

n number of frequencies
m number of transform parameter steps
i element nodal index
j structure top layer nodal index
N number of top layer nodes
�, �f material density
E Young’s modulus
� loss factor
A element cross-sectional area
L , Le length of element
w width of element
I element area moment of inertia
Fi , F̂i longitudinal force and longitudinal spectral force, respectively
ui , ûi longitudinal displacement and longitudinal spectral displacement, respectively
Vi , V̂i transverse force and transverse spectral force, respectively
Mi , M̂i moment and spectral moment, respectively
vi , v̂i transverse displacement and transverse spectral displacement, respectively
�i rotation
�̂i spectral rotation
�, �n frequency
k, kn wavenumber
F̂r, F̂b rod and beam element spectral force vectors, respectively
d̂r, d̂b, d̂f rod, beam, and frame element spectral displacement vectors, respectively
K̂r, K̂b, K̂f rod, beam, and frame element spectral stiffness matrices, repectively
Fin,Fout input and output force vectors, respectively
vin, vout velocity vectors of points of force input and output, respectively
Fin, Fout magnitude of input and output force vectors, respectively
vin, vout input and output speeds, respectively
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� wavelength of vibration
f̂ e element spectral load vector equivalent to the incident pressure
ŵb spectral weighting function for the beam element
pin normally incident pressure wave amplitude
pt pressure in the fluid domain above the structure
vRMS RMS velocity
vref reference velocity
v̂t transverse spectral displacement of a top layer node
ca speed of sound in air
�x transform parameter
��x transform parameter step
Ee total energy of element

Abbreviations

RMS root mean square
MA mechanical advantage
MEM micro-electro-mechanical
FRF frequency response function
SPL sound pressure level
FV fitness value
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