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Abstract: We consider a supply chain in which a retailer faces a stochastic demand, incurs backorder and inventory holding costs
and uses a periodic review system to place orders from a manufacturer. The manufacturer must fill the entire order. The manufacturer
incurs costs of overtime and undertime if the order deviates from the planned production capacity. We determine the optimal capacity
for the manufacturer in case there is no coordination with the retailer as well as in case there is full coordination with the retailer.
When there is no coordination the optimal capacity for the manufacturer is found by solving a newsvendor problem. When there
is coordination, we present a dynamic programming formulation and establish that the optimal ordering policy for the retailer is
characterized by two parameters. The optimal coordinated capacity for the manufacturer can then be obtained by solving a nonlinear
programming problem. We present an efficient exact algorithm and a heuristic algorithm for computing the manufacturer’s capacity.
We discuss the impact of coordination on the supply chain cost as well as on the manufacturer’s capacity. We also identify the
situations in which coordination is most beneficial. © 2008 Wiley Periodicals, Inc. Naval Research Logistics 55: 130–141, 2008
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1. INTRODUCTION

In both the periodic and the continuous review stochastic
inventory models that appear in the literature, it is standard to
assume that the manufacturer either has an extremely large
capacity or that they can increase or decrease their capac-
ity at will at a negligible cost. In fact, this assumption is so
strongly ingrained in the analysis that even if the manufac-
turer experiences difficulties in production (for example, due
to the shortage of materials or due to a breakdown), the man-
ufacturer is expected upon resumption of production not only
to make up for the backlog immediately but also to restore the
inventory to the prescribed levels at the very next shipment.

However, we know from the aggregate production plan-
ning literature that when overtime as well as undertime are
allowed, there is an optimal rate at which production should
be organized. In addition, there is anecdotal evidence that
well-managed firms increase and decrease their capacity to
match demand. Such fine tuning is achieved by resorting to
overtime, short term subcontracting, capacity sharing with
other manufacturers, etc. Presumably in these firms the opti-
mal capacity is first chosen and adjustments through overtime
and undertime are made from period to period in response to
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changes in the mix and the volume of demand. With increased
visibility provided by collaborative planning technologies,
as adopted by Cisco, Dell, and other companies, we argue
that the manufacturer can plan and execute such short-term
changes in capacity nowadays more easily than was possible
in the past. However, as a consequence, suppliers are expected
to fill orders completely even though their capacity is finite.
This is in contrast to traditional production–inventory mod-
els in which the manufacturer is assumed to have the option
to backlog an order, for example, see Holt et al. [12]. There-
fore, in this article we focus on the case where the production
facility has no option but to fill the entire order. We seek the
optimal rate of production with the assumption that this rate
can be deviated from, but increasing or decreasing this rate
requires an effort as well as more expensive resources.

Several researchers have noted that joint capacity and
inventory planning can reduce costs in a supply chain. The
queueing theoretic work in this regard is summarized suc-
cinctly in Buzacott and Shanthikumar [4]. In contrast to our
work, capacities in queueing network models for manufac-
turing systems are considered fixed at least for the short
term. There are many articles that deal with capacity plan-
ning problems that consider stochastic demand and allow
overtime; for example, see the survey in [24]. These studies
do not infer or use the structure of the optimal coordinated
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retailer ordering policy to determine the optimal capacity.
Production–inventory models with capacity constraints have
attracted increased attention since the work of Federgruen
and Zipkin [6, 7]. Models with stationary demand have been
studied also by Tayur [23], Ciarallo et al. [5], and Glasser-
man and Tayur [8–10]. Kapuscinski and Tayur [14] study the
periodic demand case. A survey of the work done in this area
until 1999 can be found in Kapuscinski and Tayur [15]. In
these articles, capacity is assumed to be given. Moreover, it
has been shown that the base stock policy is optimal for the
stationary case as well as for the periodic demand case.

The articles of Bradley and Arntzen [3] and Bradley and
Glynn [2] are exceptions to this stream of work. They examine
how the capacity and inventory decisions can be optimized
jointly. The contributions in these two articles are to treat
the capacity as well as the base stock level as decision vari-
ables. In the first article, overtime is allowed and capacity
can thus be changed at a cost. In the second article it is
presumed that the firm uses a base-stock policy to manage
its inventory. The authors conclude that adding capacity and
lowering inventory may be beneficial. In contrast to these arti-
cles, we assume that orders have to be filled completely, there
are costs to changing the production rate and we determine
the jointly optimal ordering policy and the optimal capac-
ity. Parker and Kapuscinski [19] consider a two-stage serial
system with finite capacity at both stages. Under some condi-
tions on the capacity levels at the two stages, they show that
the optimal inventory control strategy is modified echelon-
base stock policy.

Another related article is that of Huggins and Olsen [13].
They consider a two-stage supply chain where ordering of
stage one must be satisfied by stage two, using emergency
shipping at a setup cost and a higher unit cost if needed, the
optimal ordering policy at the first stage is determined by
two numbers. There is infinite capacity at stage two and the
leadtime is zero. They transform their problem using echelon
inventory levels and obtain the optimal policy for each stage
to minimize total discounted cost over an infinite horizon.
The centralized optimization model and ordering policy at
stage one in Huggins and Olsen are similar to ours after stage
two fixes its production strategy to stationary base-stock level
equal to the capacity. However, for the Huggins and Olsen
result to hold, the demand distribution has to be assumed to
be logconcave.

Two of the questions we intend to address in our model
are: (i) What is the retailer’s optimal ordering policy that
minimizes the supply chain cost when there are overtime
and undertime costs for the manufacturer? (ii) How to deter-
mine the optimal capacity under coordination and how does it
compare to the decentralized case? The results in this article
specify the structure of the optimal policy in answer to the
first question. As for the second question, unlike the decen-
tralized case for which there is a simple formula for the

optimal capacity, the optimal centralized capacity requires
the solution of a nonlinear program. We provide an efficient
algorithm to solve the nonlinear program. Our algorithm uses
a decomposition approach based on the structure of the con-
trol policy. It breaks up the search for the optimal capacity
into a search for two numbers, namely an upper and a lower
threshold limit; and a search for the capacity that depends
on these limits. This solution procedure, even though it pro-
duces the optimal solution, does not yield additional insights
into when coordination is beneficial. Therefore, we make a
key simplification to obtain approximate formulae for the
threshold limits. This procedure yields a heuristic method
for computing the optimal coordinated capacity. The heuris-
tic is efficient and yields results that are close to optimal.
The arguments leading to the development of the heuristic
provide combinations of problem parameters that might influ-
ence the benefit of coordination the most. These insights are
used to design and carry out numerical experiments to study
the extent of cost reduction from coordinating the ordering
and capacity decisions. Finally, even though we are unable
to formally establish a relationship between the centralized
and decentralized optimal capacity, our extensive numeri-
cal studies suggest that the optimal capacity is lower under
coordination.

The next section presents the model. Sections 3 and 4 study
the cases without and with coordination, respectively. Section
5 discusses computational issues, and a heuristic computa-
tional method is proposed. Section 6 presents some numerical
examples. The article concludes with a discussion in Section
7. Finally, some proofs are provided in the Appendix.

2. THE MODEL

Consider a two-stage supply chain that consists of a pro-
ducer and a retailer. The retailer uses a periodic review sys-
tem, with the length of review period being, without loss
of generality, one. The customer demands during the review
periods D1, D2, . . . are independent and identically distrib-
uted (i.i.d.) random variables. For simplicity we assume that
the demands are continuous random variables with a com-
mon distribution function, and let D be a generic one period
demand. Demand not filled at the retailer is backlogged. The
cost of carrying inventory is h and the cost of backlogged
inventory is b. These costs are assessed on the quantities
(inventory and backlog) at the end of the review period. The
retailer’s problem is to find the optimal inventory control
policy that minimizes the infinite horizon total discounted
cost.

The retailer orders from the producer each period. The
items are supplied by the producer who sets up the produc-
tion upon receipt of the order and manufactures the quantity
ordered. A key assumption in this article is that the producer
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must fill each order in its entirety in a finite time τ , either
by using their own capacity or by outsourcing when neces-
sary, see Manne [18] and Parker and Kapuscinski [19] for a
similar assumption as well as Van Mieghem [24] for a discus-
sion on modeling unsatisfied demand and capacity shortages.
The leadtime τ includes the time to manufacture and ship the
product. As discussed in the Introduction, the assumption of
constant order fulfillment leadtime implies that capacity is
infinite. The reality is that the producer incurs costs to pro-
vide such service. The combination of the assumptions that
demand at the retailer may be backlogged whereas demand
at the producer must be satisfied reflects situations in which
the customer is willing to wait, there is cost incurred by the
retailer due to backlogging, such as loss of goodwill and loss
of future sales, and the manufacturer serves multiple retail-
ers and offers a standard delivery contract including a fixed
leadtime of τ and a fixed price.

We shall also assume that the manufacturer cannot build
up inventory to satisfy future orders. For example, this could
apply to products that have limited shelf-life or where fresh-
ness matters. The variable cost of production is c. In addition,
the manufacturer incurs a capacity utilization related cost of
production that is a convex function of the order quantity.
This cost is based on the production capacity, a, of the sup-
plier and the quantity ordered. The total cost of producing a
quantity x, denoted as C(x), is given by

C(x) = cx + cu(a − x)+ + co(x − a)+, (1)

where x+ = max{x, 0}. Thus, deviations of the production
rate from the capacity, which is a function of the cost of
resources used as well as the planned availability of resources,
are costly. In this expression the coefficients, cu and co stand
for the cost of under- and over-utilization, respectively. When
the unused capacity can be used for secondary work, cu can
be negative and the only assumption we need to make is
cu + co > 0. The cost due to under-utilization could arise
even when there is an alternative spot market for the prod-
uct or when it is possible to sell to other customers. In both
cases, production and logistics related costs, namely, the cost
of fulfilling the open market demand or the cost of switch-
ing production and fulfillment to another customer, might be
higher due to the unplanned nature of work.

The manufacturer’s problem is to choose the production
capacity, a, to minimize her infinite horizon expected total
discounted cost. We assume that the value of a is determined
initially at time zero and remains unchanged from then on.
We also assume that there is a cost of capacity Ca per unit
of capacity per review period. In general, this comprises all
costs including the fixed charges allocated to the production
of the orders from the retailer, direct and indirect operating
expenses, and maintenance expenses.

In the decentralized problem the retailer and the manu-
facturer determine their optimal strategy without knowing
any cost information of the other party, which we call a
system without coordination. In the centralized problem a
central planner, with information from both the manufacturer
and retailer, determines the optimal policy for both entities.
In the following two sections we discuss the solution for
the manufacturer and retailer without and with coordination,
respectively.

3. THE CASE WITHOUT COORDINATION

Suppose the manufacturer charges the retailer a price c

per unit, who then sells to the market at the price of p per
unit. In the case without coordination the retailer manages a
classical inventory problem and intends to minimize the total
discounted holding and backorder costs. Let the demand over
τ + 1 periods be Dτ+1 with cumulative distribution function
F(·). The discounting factor is α. The optimal policy for the
retailer is a base-stock policy with the base stock level S

determined by (see for example, [1])

F(S) = b − (1 − α)c

h + b
. (2)

This result states that, at the beginning of each period
always raise the inventory position, which is inventory on
hand plus inventory on order minus backorders, to S. As
a result, the demands for the retailer transfer from period
to period to the manufacturer. Therefore, the manufacturer’s
optimization problem in this case can be recast nicely. The
base stock policy essentially forces the manufacturer to man-
ufacture the demand during the previous review period. The
cost to the manufacturer is therefore given by

cuE[(a − D)+] + coE[(D − a)+] + cE[D].
The manufacturer can optimally choose the value of a. The
problem is to minimize

Caa + cuE[(a − D)+] + coE[(D − a)+] + cE[D].
The objective function is convex in a. Thus, the optimal
solution is obtained by setting the derivative equal to zero,
i.e.,

Ca + cuP {D ≤ a} − co(1 − P {D ≤ a}) ≡ 0.

The optimal solution is given by solving for a in

P {D ≤ a} = max

{
co − Ca

co + cu
, 0

}
. (3)

This expression suggests that for firms that find it very expen-
sive to add capacity (high Ca) but who also wish to stay
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responsive to the retailer’s needs, may find it worthwhile
to simply subcontract the entire order quantity. For exam-
ple, many firms moved to outsourcing their needs in the
1990’s, see for example, [11]. On the other hand, firms that
are adept in adding capacity for a family of products should
be producing them.

What is nice about this solution is that the capacity deci-
sion is independent of the base stock level used by the retailer.
Thus, we conclude that as long as the retailer continues to use
a base stock policy the optimal capacity of the manufacturer
remains the same! But, this is not the optimal capacity if the
retailer is willing to relax the base stock policy. The ques-
tion is whether this is an attractive proposition. What effect
does the use of other order policy by the retailer have on the
manufacturer’s capacity?

4. THE CASE WITH COORDINATION

We now consider the case where a manager makes deci-
sions for both the retailer and the manufacturer. The objective
is to minimize the infinite horizon total discounted cost for
the entire supply chain. Thus, the optimal policy might be
to reduce the order quantity when the backlog is too high or
to raise it when the backlog is low. The intriguing question
is whether the optimal capacity will be smaller or will it be
larger under joint optimization? Whom does the policy ben-
efit? How should coordination mechanisms be designed to
allocate the benefit?

To proceed, we start the analysis by considering the case
with a finite horizon of N periods numbered from N to 1,
and discounted cost. The decision maker wishes to minimize
the N -period expected value of the discounted total cost. The
total cost includes the cost of producing the item and the cost
of backlog and carrying inventory. We first characterize the
optimal coordinated ordering policy for the retailer. That is,
for given a we want to find the optimal solution to the prob-
lem below. Assume that a central decision maker observes
an inventory position of x units at the beginning of period
n. Let Vn(x) be the value function for the n-period problem
starting at the beginning of period n. Again let 0 < α < 1
be the discount factor. Thus, V0(·) is computed recognizing
the fact that the retailer has no recourse for placing further
orders. Then

Vn(x) = min
z≥0

{C(z)+ατH(x + z)+αE[Vn−1(x + z −D)]},

where C(·) is given by (1), and H(·) is the one-period cost
function, including holding and shortage cost for the retailer:

H(x) ≡ hE[(x − Dτ+1)+] + bE[(Dτ+1 − x)+].
Recall that Dτ+1 stands for the demand over τ + 1 periods.
The cost H(x + z) equals the cost τ + 1 periods later: All

orders that are currently outstanding will be received, includ-
ing the present order of z, in τ periods. Therefore, the ending
inventory in the τ + 1-st period will be x + z − Dτ+1. By
induction, we can show that Vn(x) is convex in x for all n

(see, for example, Sobel [22]).
The following result may be of independent interest. Its

proof, along with proofs for other results, is given in the
Appendix. Let f and g be functions from R (the real line)
to R.

LEMMA 1: Suppose g(x) is a strictly increasing (decreas-
ing) function. Let x∗

1 and x∗
2 be the finite minimizers of f (x)

and g(x) + f (x), respectively. Then x∗
1 < x∗

2 (x∗
1 > x∗

2 ).
Let

Gn(y) ≡ cy + αLH(y) + αE[Vn−1(y − D)],
and let Un and Ln respectively minimize the two convex
functions −cuy + Gn(y) and coy + Gn(y). It follows from
the Lemma 1 (by letting f (y) = −cuy + Gn(y) and g(y) =
(co + cu)y) that Un > Ln.

THEOREM 1: The optimal ordering strategy for the n-
period problem is determined by two parameters Ln and
Un(Ln < Un) in such a way that

i. if x ≥ Un, then do nothing;
ii. if Un − a < x ≤ Un, then order up to Un (i.e., order

Un − x);
iii. if Ln − a ≤ x ≤ Un − a, then order exactly a, and
iv. if x ≤ Ln −a, then order up to Ln (i.e., order Ln −x).

Note that in (i) and (ii) undertime costs are incurred since
the order quantity is less than a. In (iv) overtime costs
are incurred since more than a is ordered. In (iii) neither
undertime nor overtime costs are incurred.

Once we obtain the form of the optimal ordering strategy
for the retailer, we are ready to analyze the optimal capac-
ity for the manufacturer, i.e., a. Clearly, the optimal ordering
strategy for the retailer, that is the two parameters, depends
on the capacity level a. A moment of reflection shows that
under the optimal ordering policy, the order process of the
retailer, i.e., the demand process seen by the manufacturer,
is a Markov process with transition rates that depend on the
capacity level a. We can easily show that the cost function is
convex in a. Thus finding the optimal a is straightforward.
The remaining work will be to characterize the optimal capac-
ity level a and compare it with the case when the retailer uses
a base stock policy.

Since the value function Vn clearly depends on a, we shall
also write it as Vn(x, a).

THEOREM 2: The value function Vn(x, a) is jointly
convex in (x, a).
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The result can then be extended to the infinite horizon
case with discounted cost. To see why this is true, note that
since the cost structure is nonnegative, we are dealing with a
negative dynamic programming problem, and as a result, the
method of successive approximation can be used to obtain the
optimal value function for the infinite horizon problem Put-
erman [20]. This shows that Vn(x, a) converges to V (x, a),
the discounted cost function of the infinite horizon problem.
Since Vn is jointly convex in (x, a), V (x, a) is also jointly con-
vex in (x, a). Applying another result from negative dynamic
programming, which states that if a stationary policy satisfies
the optimality equation, it is the optimal policy for the infinite
horizon problem, we conclude that the optimal policy for the
infinite horizon problem is determined by two numbers, L,
and U . We state this as a theorem.

THEOREM 3: The optimal inventory policy for the retailer
for the infinite horizon problem with discounted cost is deter-
mined by two parameters L and U . The minimum value
function V (x, a) is jointly convex in (x, a).

Therefore, in the case of coordination the optimal inven-
tory control policy for the retailer is no longer base stock, but
is determined by two numbers L and U . A natural question
is how to design a coordination mechanism under which the
retailer will follow such an ordering policy.

To design such a mechanism, let γ1 and γ2 be the total
discounted profits of the manufacturer and the retailer in the
case with no coordination, γ be the total discounted profit
of the supply chain with coordination. Note that the γ1 and
γ2 are the total discounted revenues received by the manu-
facturer and retailer, by selling the item to the retailer and
market respectively, subtract their minimum total discounted
costs under the policies in Section 3; and γ is the total dis-
counted revenue received from the market subtract the total
supply chain discounted cost calculated in Section 4. Clearly,
they satisfy

γ ≥ γ1 + γ2.

Write

C(x) = cx+co(x−a)++cu(a−x)+ = −A+Bx+s(a−x)+,

where A = aco, B = c + co, and s = co + cu. Since adding
a constant κ to C(x) will not change the optimal inventory
control policy, this implies that the manufacturer could use a
two-part tariff to coordinate the chain: For each unit of time
the retailer is paid a fixed amount A+κ , each unit is charged
a unit rate of B, and the retailer is penalized for ordering
less than the capacity–for each unit of ordering below a, the
retailer is charged an additional s = co + cu, then the retailer
would follow the optimal strategy as specified.

Since by choosing the value of κ the total discounted profit
of the retailer can be any value, it is possible to reach any
allocation of the total discounted profit γ between the manu-
facturer and the retailer by choosing the appropriate value of
κ; in particular, for the retailer to receive a total discounted
profit more than γ2, and manufacturer receives a total dis-
counted profit more than γ1. Such a choice of κ will induce
the retailer and the manufacturer to participate in the contract
specified, and for the retailer to order following the optimal
policy described in Theorem 3. The actual selection of κ ,
which determines the allocation of supply chain wide total
discounted profit γ , will be determined by negotiation and
relative market power of each partner.

5. COMPARISON, COMPUTATION,
AND HEURISTIC

We now analyze the optimal capacity in the two models.
For the purpose of comparisons, we consider average cost
criterion for both models.

Recall that for the case without coordination, the demand
for the manufacturer is the same as the customer demand,
thus the optimal capacity is determined by

P {D > a} = min

{
Ca + cu

cu + co
, 1

}
.

As observed earlier, the optimal capacity is independent of
the base stock level of the retailer. The capacity level for
the manufacturer is always at a, the inventory position at the
beginning of a period for the retailer is S, see (2) and (3).
Thus the average cost per period is

c(S, a) = (Caa+cuE[(a−D)+]+coE[(D − a)+] + cE[D])
+ (bE[(Dτ+1 − S)+] + hE[(S − Dτ+1)+]),

where both a and S are determined, separately, by solving
newsvendor problems.

For the case with coordination, let x be the inventory posi-
tion at the beginning of a review period after the ordering
decision is made. Let the demand during a review period be
D. Given x, D, and the control parameters L and U , the order
quantity z will be:

z = L − x + D when x − D < L − a

z = U − x + D when x − D > U − a

z = a when L − a ≤ x − D ≤ U − a.

Note that in the first case the quantity z is greater than a and
in the second case the quantity z is less than a. Thus, the
probability that the retailer orders more than a is

P {D > a + x − L} ≤ P {D > a}
Naval Research Logistics DOI 10.1002/nav
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because the inventory position at the beginning of the review
period is between L and U . Similarly, the probability that the
retailer orders less than a is

P {D < a + x − U} ≤ P {D < a}.
The two inequalities above immediately lead to the follow-

ing result.

THEOREM 4: Orders are more likely to be equal to the
capacity of the system in the coordinated supply chain.

We prove the following stronger result in the Appendix.

THEOREM 5: The ordering process O1, O2, . . . for the
coordinated system and the ordering process Y1, Y2, . . . for
the non-coordinated system satisfy

|On − a| ≤ |Yn − a|, n = 1, 2, . . . . (4)

REMARK: Notice that (assuming stationarity) E[(On −
a)2] ≤ E[(Yn − a)2]. The mean of both On and Yn is E[D].
Therefore, the inequality can be re-written as V ar(On) ≤
V ar(Yn). Thus, the variance of the orders under the opti-
mal policy is less than the variance of demand. This shows
that Theorem 5 demonstrates the “anti-bullwhip effect” of
the optimal policy. Typically, the inequality goes the other
way and is termed the bullwhip effect—see for example Lee
et al. [16, 17].

Thus, on every sample path the coordinated order stream is
closer to capacity than the order stream in the decentralized
one. We now turn to determining the optimal parameters of
the order policy. For computational purposes suppose that the
demand distribution is discrete with probability mass func-
tion di = P {D = i} (and if the demand is continuous, it can
be discretized, as in most computational approaches, to dis-
crete demand). Also for computational purposes, suppose the
support for the demand is the finite set [0, 1, . . . , M]. If this
is not the case a common approach in computational Markov
decision processes is to truncate the demand to a finite sup-
port for some large M , see for example Sennott [21]. Our
calculations will be done for average cost.

Let d̄i = P {D ≥ i}. The inventory position at the begin-
ning of a period for the retailer is a function of In − Dn,
where In is the stationary inventory position at the begin-
ning of period n and Dn is the demand for period n. The
process {In; n = 1, 2, . . .} is a Markov chain with state space
{L, L+1, . . . , U}. A moment of reflection shows that the sta-
tionary distribution of In, that isP {In = L+i}, is independent
of L and depends only on � = U − L. Let us consider the
process In − L with state space {0, 1, . . . , �}. The transition
probabilities of In − L are

pi,0 = P {D ≥ i + a} = d̄i+a , i = 0, . . . , �, (5)

pi,j = P {i − D + a = j} = di−j+a , i = 0, 1, . . . , �,

j = 1, 2, min{�, i + a} − 1, (6)

pi,� = P {i − D ≥ � − a} =
i+a−�∑

k=0

dk ,

i = � − a, . . . , �. (7)

Recall that the policy prescribes that if the starting inven-
tory position is less than L − a, it has to be replenished to L;
if the starting inventory position is between L−a and U −a,
the amount a has to be ordered; and if the starting inven-
tory position is higher than U − a, it has to be replenished
to U . The stationary distribution, denoted by πi , satisfies the
balance equations

πi =
�∑

j=0

πjpji , i = 0, . . . , �, (8)

�∑
i=0

πi = 1. (9)

Consider, for example, the case with � = 1. Then

p0,0 = d̄a , p0,1 = 1 − d̄a ,

p1,0 = d̄a+1, p1,1 = 1 − d̄a+1.

The stationary distribution is

π0 = d̄a+1

1 − da

, π1 = 1 − d̄a

1 − da

.

If the inventory position at the beginning of a period is
i, then the optimal ordering quantity will exceed the capac-
ity when demand is greater than i + a. Thus, the average
overcapacity cost is co

∑�
i=0 πi

∑M
j=i+a(j − i)dj . Similarly,

there will be a cost of underutilizing the capacity when
i − D ≥ � − a. Therefore, the average under utilization
cost is given by cu

∑i+a−�
k=0 (� + j − i)dj . The average cost

for the system, for a given capacity level a, can be computed
using the stationary distribution πi by evaluating

f (L, U |a) = co

�∑
i=0

πi

M∑
j=i+a

(j − i)dj

+ cu

i+a−�∑
j=0

(� + j − i)dj

+ h

�∑
i=0

πiED[(i + L − Dτ+1)+]

+ b

�∑
i=0

πiED[(Dτ+1 − i − L)+], (10)
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where ED represents the expectation with respect to the
demand Dτ+1.

Hence, our optimization problem is a nonlinear program
with objective function (10) and constraints (5), (6), (7),
(8), and (9). The decision variables are L, U , and πj , j =
0, 1, . . . , �.

Note that for each given �, the pij ’s are determined by
(5), (6), and (7), and under mild conditions on the probabil-
ity distribution of demand, the πj are uniquely determined
by the linear equations (8) and (9). That is, for a given �

the optimization of L can be considered as an optimization
problem with linear constraints. It is easily seen that for fixed
� and a, the objective function (10) is convex in L, thus the
optimization problem is a convex programming with linear
constraints. The dependency on �, however, is in general not
convex and exhaustive search methods will have to be used
to find the optimal �.

Let L(a) and U(a) be the optimal policy for a given capac-
ity level a. The cost function Caa + f (L(a), U(a)|a) is a
convex function of a as seen from Theorem 3. Therefore,
bisection search can be used to find the optimal capacity
level a.

As noted, the main computational issue lies in the deter-
mination of L and U (and, in particular, U ). In the Appendix
we develop the following simple heuristic to compute L and
U . Our numerical examples show that it performs very well.

We shall set L and U according to

P {Dτ+1 ≤ L} = max

{
b − co

b + h
, 0

}
,

P {Dτ+1 ≥ U} = max

{
h − cu

h + b
, 0

}
.

According to these formulas, if b ≤ co, then L should be
made as small as possible, while if h ≤ cu, then U should be
made as large as possible. The interpretation is as follows. If
b ≤ co, the shortage cost to the retailer is smaller than the cost
of overtime to the manufacturer. In this case it is preferable
not to exceed capacity. This in turn translates to making L

as small as possible. On the other hand, if h ≤ cu, then the
holding cost of the retailer is smaller than the cost of under-
time. In this case, we set U equal to a large value so that we
rarely underload the manufacturer. Indeed, as seen from the
numerical results in the next section, when these conditions
are satisfied, even though the optimal L and U may not be
close to the heuristic results, the optimal cost is very close
to that achieved by the heuristic, see examples in the next
section.

These expressions can be used to develop a heuristic algo-
rithm to compute the optimal capacity level a. First, the values
of L and U are computed using the two expressions above.
Once L and U are obtained, the stationary distribution of the
inventory (5), (6), (7) can be computed and the average cost,

as a function of a, is obtained. Since the dependency of the
cost on a is convex, bi-section search can be used to find the
optimal a.

Note that the ratios, (h+ co)/(h+b) and (h− cu)/(h+b)

play a role in determining L and U . This fact will be used in
the design of the numerical experiments in the next section.
The expressions for L and U can be plugged into (12) and
(13) of the Appendix to obtain

−coP {Ia − U + a ≤ D} + cuP {Ia − U + a ≥ D} + Ca ≤ 0

and

−coP {Ia − L + a ≤ D} + cuP {Ia − L + a ≥ D} + Ca ≥ 0.

This suggests that the optimal capacity might deviate the most
from the decentralized case when U − L is large. Moreover,
as seen above, the difference between U and L is related to
the ratios (h + co)/(h + b) and (h − cu)/(h + b).

6. NUMERICAL EXAMPLES

In this section, we evaluate the performance of the heuris-
tic method for computing the policy parameters. We examine
how the optimal capacity in the coordinated chain changes
with the problem parameters. We also compare the optimal
cost and capacity to those for the uncoordinated chain. On
the basis of the analysis in the previous section we know that
the ratios, (h + co)/(h + b) and (h − cu)/(h + b), play an
important role in determining the benefits from coordination.
In our numerical analysis, the effect due to the former is more
pronounced and we report only those. In addition to this, we
know that inventory costs are affected by h/(h + b) and the
volatility of demand. The carrying cost of safety stock rel-
ative to the cost of capacity is affected by h/Ca . Therefore,
we include these three parameters in our numerical study.
The ranges of the four parameters in the experiments are
as follows: the coefficient of variation (cv) demand is var-
ied in the range [0.25, 0.61], h/Ca in the range [0.25, 2],
h/(h + b) in [0.1, 0.5] and (h + co)/(h + b) in [0.25, 2]. We
modeled demand using both a negative binomial distribution
and a truncated Normal distribution on [1, ∞). By chang-
ing the parameters, we can obtain a range of values for cv.
The insights obtained from the two distributions were very
similar, so we report results only for the negative binomial
distribution. The average demand is kept fixed throughout the
experiments at 20.

The results are shown in Tables 1–4. We report the optimal
capacity in the decentralized case, the optimal capacity in the
coordinated case and the capacity given by the heuristic. We
also depict the percentage cost increase with respect to the
optimal cost for the centralized case and the L and U − L

values. The main inferences are given below.
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Table 1. Change in coefficient of variation of demand; n(1 − p)/p = 20, h = 6, ca = 4, cu = 4, b = 30, co = 15.

Capacity % increase in cost Optimal Heuristic

cv of Demand Optimal (decentr) Optimal (centra) Heuristic Optimal (decentr) Optimal heuristic L U − L L U − L

0.25 23 21 21 11.3 1.2 23 6 20 10
0.27 22 20 21 11.0 1.5 23 8 20 11
0.29 22 20 21 11.3 1.3 23 8 20 11
0.32 22 20 21 11.9 1.2 23 9 20 12
0.35 23 21 22 11.8 1.9 25 10 20 15
0.40 23 21 22 12.3 1.7 25 12 20 17
0.50 22 20 21 13.3 2.1 24 14 18 21
0.61 28 26 28 13.4 2.8 33 23 22 36

Table 2. Change in h/ca ; n(1 − p)/p = 20, ca = 4, cu = 4, b = 30, co = 15.

Capacity % increase in cost Optimal Heuristic

h
c a

Optimal (decentr) Optimal (centra) Heuristic Optimal (decentr) Optimal heuristic L U − L L U − L

0.25 23 20 20 24.8 8.3 27 21 21 60
0.50 23 20 19 19.0 10.9 26 13 21 60
0.75 23 20 19 15.9 9.1 25 10 21 60
1.00 23 20 19 13.7 8.7 24 9 21 60
1.25 23 20 20 12.1 1.3 24 8 21 11
1.50 23 21 21 11.3 1.2 23 6 20 10
1.75 23 20 21 10.1 0.9 23 7 20 9
2.00 23 21 21 9.8 0.7 22 6 20 8

Table 3. Change in h
h+b

; n(1 − p)/p = 20, ca = 4, cu = 4, b = 54, co = 15.

Capacity % increase in cost Optimal Heuristic

h
h+b

Optimal (decentr) Optimal (centra) Heuristic Optimal (decentr) Optimal heuristic L U − L L U − L

0.10 23 21 20 9.8 0.9 25 6 23 9
0.18 23 21 20 6.4 0.2 24 4 23 5
0.25 23 21 20 5.2 0.3 23 3 22 4
0.31 23 21 20 4.4 0.8 22 3 22 3
0.36 23 21 20 3.6 0.5 21 3 21 3
0.40 23 21 20 3.9 0.7 21 2 21 2
0.44 23 21 20 2.9 0.8 21 2 20 3
0.47 23 21 20 3.3 0.6 20 2 20 2
0.50 23 21 20 3.9 1.4 20 2 20 2

Table 4. Change in h+co
h+b

; n(1 − p)/p = 20, ca = 4, cu = 4, b = 54.

Capacity % increase in cost optimal heuristic

h co
h+co
h+b

Decentr Optimal Heuristic Decentr Heuristic L U − L L U − L

6 9 0.25 20 19 19 6.8 0.1 26 6 25 7
12 21 0.5 24 22 21 7.6 0.3 23 5 22 6
18 54 1 27 24 24 10.3 2.7 19 7 1 25
24 132 2 30 25 24 14.1 1.5 11 13 1 24
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6.1. Capacity

In all the examples, the capacity in the decentralized case
is higher than the optimal capacity in the coordinated case. It
is somewhat surprising to observe that the optimal capacity
is close to the average demand in all but a few cases. The
exceptions are when demand is very volatile and when the
cost of overtime is very large.

We expect the decentralized optimal capacity to be higher
based on our finding that the retailer’s orders are less volatile
in the coordinated system and therefore require a smaller
capacity to provide the same service level. However, this line
of reasoning is incomplete because changing the capacity
changes the steady state distribution of the inventory which
in turn affects the values of L and U . Thus, the effect of chang-
ing the capacity on total costs is ambiguous. Therefore, it is
satisfying to find that the heuristic argument for requiring
smaller capacity is borne out to be true in the experiments.
An implication of this finding is that coordinated chains have
a lower cost of switching to manufacture new products due
to the lower investment in capacity and therefore face lower
resistance to change.

The decentralized capacity deviates significantly from the
coordinated optimal capacity when the value of (h+co)/(h+
b) is large—see the last two entries in Table 4. The deviation
is large because when the cost of exceeding the ideal capacity
relative to h + b is high the “optimal” ordering policy cuts
off large orders whereas the decentralized system passes on
the large orders to the manufacturer. Thus, there is a need for
a larger capacity in the decentralized system to cope with the
higher variability in orders. The greatest difference between
the optimal capacity and that given by the heuristic are seen
when demand is extremely volatile (Table 1, cv equal to 0.61).
In other cases the capacity suggested by the heuristic is in
close agreement to the true optimal capacity.

6.2. Value of U − L

As argued in the previous section, the difference between
L and U is expected to increase with a decrease in h/Ca (due
to relatively more expensive capacity), as well as, with an
increase in (h+co)/(h+b) and a decrease in (h−cu)/(h+b)

(relatively more expensive to keep plant idle and produce
more than the ideal capacity). Subtracting the two quantities,
we obtain a key insight that the magnitude of (co+cu)/(h+b)

determines the gap between L and U . Note that in two of the
examples in Table 3, we have h < co, and as a result the
heuristic method automatically sets L to be as small as pos-
sible, which creates a large deviation from the optimal L.
Despite this, as seen from these examples, the optimal cost
is still extremely close to that of the heuristic policy.

What is somewhat surprising is that U − L increases with
increase in the volatility of demand and decrease in h/(h+b)

(see Tables 1 and 3). Both these parameters, one being large
and the other small, signify that it is optimal for the retailer
to provide a very good service. Therefore, the supply chain
has to be more responsive. However, U − L is very large in
these cases suggesting that most demand variations are not
passed on to the manufacturer! This apparent contradiction
can be explained by noticing that the retailer carries more
safety inventory and thus is able to buffer the manufacturer
from the volatility of demand. Apparently, the need for the
manufacturer to be responsive is mitigated by the isolation
effect of the large safety inventory carried by the retailer.

The values of L and U produced by the heuristic deviate
considerably from the corresponding optimal values when
the ratio of h/Ca is small. The reason is quite obvious when
we recall that the heuristic assumes that the steady state dis-
tribution of inventory does not change due to a small change
in the capacity. This is no longer true when the values of L

and U change very rapidly with a change in the value of h/Ca

(alternatively when U −L is large the assumption behind the
heuristic does not hold)—see Table 2.

Finally, notice that even though we may have been expect-
ing that the capacity a should be bracketed by L and U , it is
not always the case.

6.3. Performance of the Heuristic

The heuristic performs extremely well with regard to cost
increase over the optimal. In fact, if the holding cost and
the cost of capacity are of the same order of magnitude, the
increase in cost from using the heuristic is less than three per-
cent in most cases. The greatest increase in cost (about 10%)
occurs (in both demand scenarios) when the ratio of h/Ca is
equal to 0.25, see Table 2. The reason once again is due to the
rapid change in the steady state distribution of inventory with
change in capacity when the value of U − L is large. This
suggests that careful calculation is required when the cost of
capacity relative to the holding cost is high.

6.4. Summary of Decentralized Versus
Coordinated Chains

In summary, it seems that the greatest benefit obtained in
a coordinated chain is due to the fact that the retailer cur-
tails the variations in demand. Because of this the capacity
of the manufacturer can be kept at a lower level. The largest
savings from coordinated ordering accrue when demand is
highly volatile and the ratio h/Ca is low. We also note, when
the slack in capacity is small relative to the demand, it will
reinforce the need to coordinate between the supplier and the
manufacturer. Thus, it is not just the absence of inventory as
espoused by lean manufacturing proponents but also lower
capacity relative to demand that leads to a greater need for
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coordination. This is to be expected, tighter capacity condi-
tions imply greater benefits from coordination. It also points
out to a possible conflict of interests, tighter capacity may
motivate the manufacturer into a more opportunistic behav-
ior at the expense of the retailer, thereby leading to distrust
and lack of cooperation.

7. DISCUSSION

In this article we study the optimal capacity problem in a
supply chain. In contrast to most models in the inventory liter-
ature, we consider a case where the manufacturer is required
to satisfy the retailer’s order, through overtime, outsourcing,
etc., when demand exceeds capacity. The supplier does not
use any unused capacity to build up inventory. Both the cases
with and without coordination have been studied, and the
optimal ordering and inventory policy for each case is char-
acterized. For the case with coordination the computation of
the optimal supplier capacity becomes a complicated nonlin-
ear programming problem. We develop an efficient heuristic
method to compute the optimal capacity for that case. We pro-
vide several insights into when and why coordinated supply
chains have lower optimal capacity.

If inventory is allowed at the manufacturer, then as long
as the installation holding cost at the manufacturer is the
same as that at the retailer, the centralized optimal solution
remains the same. This is because there exists no incen-
tive for the system to keep inventory at the manufacturer,
thus any production completed at the manufacturer is imme-
diately shipped to the retailer, and it can be argued that,
when the optimization is centralized, the retailer ordering
quantity is precisely the manufacturer’s production quan-
tity. Another case where inventory is allowed but our result
remains optimal is when the leadtimes are 0. In that case
there is clearly no incentive in keeping inventory at the
manufacturer either.

APPENDIX

PROOF OF LEMMA 1: We only prove the case that g is strictly increas-
ing. We need to prove that x∗

2 < x∗
1 . First we prove x∗

2 ≤ x∗
1 . The following

relationship is satisfied:

g
(
x∗

2

) + f
(
x∗

2

) ≤ g
(
x∗

1

) + f
(
x∗

1

) ≤ g
(
x∗

1

) + f
(
x∗

2

)
,

where the first inequality follows from the assumption that x∗
2 is a minimizer

of g + f , while the second inequality follows from x∗
1 is a minimizer of

f . Thus g(x∗
2 ) ≤ g(x∗

1 ). By the assumption that g is strictly increasing we
obtain x∗

2 ≤ x∗
1 .

Note that x∗
1 and x∗

2 satisfy f ′(x∗
1 ) = 0 and f ′(x∗

2 ) + g′(x∗
2 ) = 0. If

x∗
2 = x∗

1 = x∗, then x∗ satisfies g′(x∗) + f ′(x∗) = f ′(x∗) = 0, implying
g′(x∗) = 0. This contradicts with the assumption that g is strictly increasing.
Thus, x∗

2 < x∗
1 .

PROOF OF THEOREM 1: We need to compare between ordering less
than or equal to capacity a with ordering more than capacity a, i.e., z ≤ a

and z ≥ a. The cost functions for the two scenarios, defined on z ≤ a and
z ≥ a respectively, are

g1(x, z) = cz + cu(a − z) + ατ H(x + z) + αE[Vn−1(x + z − D)]}
= −cu(x + z) + G(x + z) + cu(a + x) − cx

and

g2(x, z) = cz + co(z − a) + ατ H(x + z) + αE[Vn−1(x + z − D)]}
= co(x + z) + G(x + z) − co(a + x) − cx.

Note that g1 and g2 have a common term −cx which is independent of the
ordering decision z, thus this term will be ignored in the comparison of g1

and g2 below.
We consider several cases separately.

CASE 1: If x ≥ Un, then it follows from the convexity of −cuy + G(y)

and co(x + z) + G(x + z) that the minimum for g1 is z = 0 and for g2 is
z = a. However, since −cuy + G(y) is increasing on y ≥ Un we have

[−cux + G(x)] + cu(x + a) ≤ [−cu(x + a) + G(x + a)] + cu(x + a)

= g2(x, a).

Therefore, the optimal y∗ = x and z∗ = 0.

CASE 2: If Un − a < x ≤ Un, then x + a > Un. Hence g2

is increasing on z ≥ a and its optimum is z = a with cost function G(x+a).
The optimum of g1 can be reached by setting z = Un − x with cost function
−cuUn + G(Un) + cu(a + x). Since

[−cuUn + G(Un)] + cu(x + a) ≤ [−cu(x + a) + G(x + a)] + cu(x + a)

= G(x + a),

the optimal ordering quantity is z∗ = Un − x < a and the replenishment
level is Un.

CASE 3: If Ln − a < x ≤ Un − a, then Ln < x + a ≤ Un. In this case
the minimum of g1 cannot be reached since x + a ≤ Un, and the optimal
solution for g1 is to order a. Moreover, since x + a ≥ Ln, the best for g2

is to order a. This shows that the optimal y∗ = x + a and optimal ordering
quantity is z∗ = a.

CASE 4: If x ≤ Ln − a, then x + a ≤ Ln ≤ Un. In this case within the
range z ≤ a the best is to order a since g1 is decreasing on that range, and
the cost function value is G(x + a). The minimum of g2 can be reached by
ordering Ln − x ≥ a. Since

[coLn + G(Ln)] − co(x + a) ≤ co(x + a) + G(x + a) − co(x + a)

= G(x + a).

Thus the optimal ordering quantity is z = Ln − x > a and the optimal
replenishment level is Ln.

This completes the proof of Theorem 1.

PROOF OF THEOREM 2: We prove it by induction. The result is
clearly true for n = 0. Suppose fn(x, a) is jointly convex in (x, a). Since
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C(z, a)+ατ H(x+z)+αE[fn−1(x+z−D, a)] is jointly convex in (x, z, a),
where

C(z, a) = cz + co max{z − a, 0} + cu max{a − z, 0},

we conclude that

fn(x, a) = min
z≥0

{C(z, a) + ατ H(x + z) + αE[fn−1(x + z − D, a)]}

is jointly convex in (x, a).

PROOF OF THEOREM 5: Let {Xn; n = 1, 2, } be the inventory posi-
tion process for the coordinated system with state space {L, L + 1, . . . , U}.
Clearly, Yn = Dn, the demand process. Thus, we only need to prove
|On − a| ≤ |Dn − a|.

The optimal ordering quantity for the coordinated system is (i) On = L−
Xn−1+Dn if Xn−1−Dn ≤ L−a, (ii) On = a if L−a < Xn−1−Dn ≤ U−a,
and (iii) On = U − Xn−1 + Dn if U − a < Xn−1 − Dn ≤ U . We consider
these three cases separately.

First, suppose Xn−1−Dn ≤ L−a. Then On−a = L−Xn−1+Dn−a ≥ 0.
Furthermore, it follows from Xn−1 ≥ L that

0 ≤ On − a ≤ Dn − a.

Hence (4) is satisfied.
Second, suppose L − a < Xn−1 − Dn ≤ U − a. Then On = a and

0 = On − a ≤ |Dn − a|,

thus (4) is also satisfied.
Finally, suppose U − a < Xn−1 − Dn ≤ U . Then

0 ≥ On − a = (U − Xn−1) + (Dn − a) ≥ Dn − a,

and it implies that

|On − a| ≤ |Dn − a|.
This completes the proof of Theorem 5.

Development of heuristic policy in Section 5

For convenience we imagine that the inventory level is continuous and let
g(·) stand for the density function of the stationary inventory distribution. To
develop a heuristic algorithm, we parametrize the stationary density function
of the inventory before an order (I ′

a) is placed as ga . The expected total cost
per period is

∫ L−a

−∞
[ED[h(L − Dτ+1)+ + b(Dτ+1 − L)+] + c(L − x)

+ co(L − x − a)ga(x)]dx +
∫ U−a

L−a

[ED[h(a + x − Dτ+1)+

+ b(Dτ+1 − a − x)+] + ca ga(x)]dx

+
∫ U

U−a

[ED[h(U − Dτ+1)+ + b(Dτ+1 − U)+] + c(U − x)

+ cu(a − U + x)ga(x)]dx + Caa.

Assume that even though the distribution of inventory changes with a the
effect of this change in distribution of inventory on the cost is negligible for

small perturbations of a. Keep U and L fixed. Also assume that the expected
value of production equals the average demand. In other words,

∫ L−a

−∞
c(L − x) ga(x)dx +

∫ U−a

L−a

ca ga(x)dx

+
∫ U

U−a

c(U − x) ga(x)dx = cE[D].

With this in mind, differentiate the expected one period cost with respect to
a to get the first derivative of the total expected cost using Leibniz rule as

− coP {I ′
a ≤ L − a} + cuP {I ′

a ≥ U − a} +
∫ U−a

L−a

[hP {Dτ+1 ≤ a + x}

− bP {Dτ+1 ≥ a + x} ga(x)]dx + Ca .

Let Ia be the inventory position after placing the order. The above expression
is equivalent to

− coP {Ia − D ≤ L − a} + cuP {Ia − D ≥ U − a}

+
∫ U−a

L−a

(hP {Dτ+1 ≤ a + x} − bP {Dτ+1 ≥ a + x} ga(x))dx + Ca .

Setting the derivative equal to zero we get

− coP {Ia − L + a ≤ D} + cuP {Ia − U + a ≥ D}

+
∫ U−a

L−a

(hP {Dτ+1 ≤ a + x}

− bP {Dτ+1 ≥ a + x} ga(x))dx + Ca ≡ 0. (11)

Also after some algebra we obtain the following bounds

− coP {Ia − L + a ≤ D} + cuP {Ia − U + a ≥ D}
+ P {Dτ+1 ∈ (Ia − U + a, Ia − L + a)}(hP {Dτ+1 ≤ L}
− bP {D ≥ L}) + Ca ≤ 0, (12)

− coP {Ia − L + a ≤ D} + cuP {Ia − U + a ≥ D}
+ P {Dτ+1 ∈ (Ia − U + a, Ia − L + a)}(hP {Dτ+1 ≤ U}
− bP {Dτ+1 ≥ U}) + Ca ≥ 0. (13)

These expressions can be used to interpret how the cost parameters of the
retailer affect the capacity decision. Notice that, in all these expressions, the
last term is of a “smaller” order of magnitude in comparison with the remain-
ing terms because it equals the product of two probabilities. The term will
be even smaller if h, b and (U − L) are small. For example, if the values of
h and b are relatively small compared to co and cu, then the optimal capacity
is less dependent on the retailer’s cost parameters (not fully independent as
it still depends on the values of L and U ). On the other hand if (U − L) is
large then the last term is no longer negligible. Similarly, if the holding and
backorder costs are much larger than the cost of deviating from the planned
capacity, then the capacity decision is more dependent on the values of h

and b. We return to this issue after solving for L and U .
Turning to the determination of L and U , if we differentiate the expression

∫ L−a

−∞
[ED[h(L − Dτ+1)+ + b(Dτ+1 − L)+]

+ co(L − x − a) ga(x)]dx +
∫ U − a

L − a

[ED[h(a + x−Dτ+1)+

+ b(Dτ+1 − a − x)+] ga(x)]dx

+
∫ U

U−a

[ED[h(U − Dτ+1)+ + b(Dτ+1 − U)+]

+ cu(a − U + x) ga(x)]dx
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with respect to L and U to get respectively (using the same assumption that
the distribution of inventory is unaffected due to changes in L or U ) the first
order conditions

hP {Dτ+1 ≤ L} − bP {Dτ+1 ≥ L} + co = 0,

hP {Dτ+1 ≤ U} − bP {Dτ+1 ≥ U} − cu = 0.

Solving these equations yields

P {Dτ+1 ≤ L} = b − co

b + h
, P {Dτ+1 ≥ U} = h − cu

h + b
. (14)

This leads to the heuristic policy proposed in Section 5.
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