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Abstract: We develop a risk-sensitive strategic facility sizing model that makes use of readily obtainable data and addresses both
capacity and responsiveness considerations. We focus on facilities whose original size cannot be adjusted over time and limits the
total production equipment they can hold, which is added sequentially during a finite planning horizon. The model is parsimonious
by design for compatibility with the nature of available data during early planning stages. We model demand via a univariate random
variable with arbitrary forecast profiles for equipment expansion, and assume the supporting equipment additions are continuous and
decided ex-post. Under constant absolute risk aversion, operating profits are the closed-form solution to a nontrivial linear program,
thus characterizing the sizing decision via a single first-order condition. This solution has several desired features, including the
optimal facility size being eventually decreasing in forecast uncertainty and decreasing in risk aversion, as well as being generally
robust to demand forecast uncertainty and cost errors. We provide structural results and show that ignoring risk considerations can
lead to poor facility sizing decisions that deteriorate with increased forecast uncertainty. Existing models ignore risk considerations
and assume the facility size can be adjusted over time, effectively shortening the planning horizon. Our main contribution is in
addressing the problem that arises when that assumption is relaxed and, as a result, risk sensitivity and the challenges introduced
by longer planning horizons and higher uncertainty must be considered. Finally, we derive accurate spreadsheet-implementable
approximations to the optimal solution, which make this model a practical capacity planning tool. © 2008 Wiley Periodicals, Inc.
Naval Research Logistics 55: 218–233, 2008
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1. INTRODUCTION

Capacity planning decisions are a critical part of a firm’s
manufacturing strategy, affecting responsiveness, flexibility,
exposure to risk, ability to meet customer needs and many
other tactical issues. This article considers the facility siz-
ing decision faced by a risk-averse agent. Once deployed,
the facility size cannot be adjusted, and limits the quan-
tity of production equipment in the plant. During the use-
ful life of the facility, equipment can be added sequentially
to address demand growth and control delivery leadtimes.
This problem is most relevant in high-tech industries such
as semiconductors and bio-technology, where the aforemen-
tioned conditions prevail and demand is highly uncertain.
The nonadjustable nature of the sizing decision and pro-
longed facility lives (typically five to seven years) give rise to
long planning horizons, which combined with high demand
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uncertainty make the agent’s decision a challenging problem.
In this article we develop a model for finding the optimal
facility size by maximizing the expected utility of profits,
which include investment in both the initial facility as well
as subsequent equipment additions. For consistency with the
level of data available at the time of the sizing decision, we
model multi-period demand using a univariate random vari-
able and arbitrary demand profiles, assuming ex-post and
continuous equipment additions. Under these assumptions
and constant absolute risk aversion (CARA), operating prof-
its are the closed-form solution to a nontrivial linear program,
which allows to characterize the sizing decision via a single
first-order condition.

There is a vast literature on capacity planning under uncer-
tainty. With a few exceptions, we restrict our review to papers
studying single-agent, single-location optimal capacity level
decisions. For a recent comprehensive review, including tim-
ing of capacity adjustments, multiple capacity types, multiple
agents, and more, see Van Mieghem [31].
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Most capacity planning studies assume risk-neutrality,
including articles analyzing equipment addition. Swami-
nathan [28] studies multi-period equipment procurement
with a scenario-based mixed-integer stochastic program
which does not directly model responsiveness. Several papers
study single-period equipment configuration using queuing
models to estimate cycle times. For instance, Hopp et al. [18]
develop an optimization model that minimizes tool-set cost
subject to throughput and cycle time constraints, evaluated
using a queuing network model and a decomposition solu-
tion approach. Other examples in this group include Bard
et al. [6], Bitran and Tirupati [10], Suri et al. [27], Rajagopalan
and Yu [23], and Benjaafar [8]. Another line of research
studies continuous-time models to determine the timing and
scale of capacity expansions, as in Ryan [25] (and refer-
ences therein), who considers fixed installation leadtimes.
She incorporates responsiveness by developing a policy that
provides a specified service level. Within the semiconduc-
tor capacity planning literature, a few authors have proposed
modular designs, which spread the facility sizing decision
over time to reduce initial capital expenditures and facilitate
better alignment between capacity and demand. Benavides
et al. [7] calculate facility expansion times and scales using
a cash flow model that ignores operational details. Angelus
et al. [3] obtain (s, S) type structural results for a finite hori-
zon capacity expansion model with fixed installation lead
times. Cakanyildirim et al. [11] provide a bottleneck-based
algorithm to determine tool expansion and contraction times,
along with modular facility expansions. Although modular
expansions may be practical in some industries, they remain
to be proven as a practical alternative in high technology
capital intensive settings including semiconductor manufac-
turing. See Wu et al. [30] for a recent review of capacity
planning in the high-tech industry. These capacity-planning
models incorporate operational responsiveness requirements,
but their degree of detail requires a level of data accuracy
available only for planning horizons associated with modu-
lar facility expansions or equipment addition. In this article
we develop a model to support facility sizing decisions made
over the longer planning horizons imposed by nonmodu-
lar designs. Even though the model addresses responsive-
ness requirements in subsequent equipment addition deci-
sions, its parsimony and transparency make it compatible
with data availability associated with longer planning hori-
zons. As far as we are aware, this is the first model com-
bining these two features. The solution developed below
is robust to cost estimate errors and easily implementable,
which makes the model compelling as a decision-support
tool.

From a corporate finance perspective it can be argued
that publicly traded firms should make capacity decisions to
maximize their market capitalization while adopting a risk-
neutral attitude towards unsystematic or “non-diversifiable”

risk. However, this conclusion relies on strong assumptions
about capital markets, and if the market has imperfections,
firms should be risk-sensitive [31]. Still, the literature on risk-
sensitive capacity planning by single agents is quite limited
and mostly restricted to inventory settings. Several authors
have studied risk-sensitive newsvendor models. Risk pref-
erences are usually incorporated into single-agent models
(inventory and otherwise) either using variations of a mean-
variance formulation or via an explicit utility function. Under
mean-variance preferences, the agent maximizes expected
profits minus a fixed parameter times their standard devi-
ation, where the parameter is an measure of risk aversion.
Lau [21] and Chen and Federgruen [12] use this approach
for several basic inventory models and find the effect of risk
aversion on standard policies. The mean-variance method is
attractive for its simplicity, but is seriously limited by sym-
metrically treating positive and negative deviations of operat-
ing profits from the mean. This has led to alternative heuristic
formulations. Sankarasubramanian and Kumaraswamy [26]
maximize the probability of exceeding a target profit for
specific demand distributions, and Li et al. [22] extended
that model to study two products with uniformly distributed
demands. Additional formulations can be found in Anvari [4],
Chung [13], and Anvari and Kusy [5]. Another approach is
to maximize the expected von Neumann-Morgenstern utility.
Although it involves an explicit utility function, this method
is more general and does not assume a symmetric distribution
of operating profits. Indeed, the expected utility formulation
under the assumptions of perfect capital markets, CARA,
and normally distributed operating profits, is equivalent to the
mean-variance formulation [31]. Lau [21] calculates the opti-
mal order quantity for the risk-averse newsvendor assuming
a polynomial approximation to a general utility. Eeckhoudt
et al. [15] consider a newsvendor model with general risk-
averse utility function and general demand distribution, and
examine the sensitivity of the solution to changes in the
various price and cost parameters. They show that the opti-
mal value is always decreasing in risk aversion for general
concave utility functions. Van Mieghem [32] extends their
analysis to a newsvendor network. Agrawal and Seshadri
[2] analyze quantity and pricing decisions of a newsven-
dor with general concave risk-averse utility. They show that
in comparison to a risk-neutral newsvendor, the risk-averse
newsvendor’s order quantity is lower while her price can be
higher or lower depending on how pricing affects the demand
distribution. We use the expected utility method, and follow-
ing Howard [19] and Walls and Dyer [29], we assume the
existence of a risk-averse corporate utility function, which
is independent of any external effects on the firm’s equity.
For practical purposes, we generally assume CARA corpo-
rate preferences and thus ignore wealth effects. This article
extends the risk-sensitive newsvendor model to nonmodu-
lar facility sizing with subsequent equipment additions, the
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two models coinciding under the assumption of a stationary
demand over the planning horizon. Along with other struc-
tural results, we show that the feature of the risk-sensitive
newsvendor’s optimal decision being decreasing in risk aver-
sion shown by Eeckhoudt et al. [15], extends to our setting;
a desired property for a decision support tool.

We have limited our review of risk-sensitive models to
research that is most closely related to ours. But as evidenced
by Gan et al. [16] and the references therein, this area has
recently received increased attention, with particular empha-
sis on multiple agents in supply chains, and to a lesser extent
on multiperiod inventory models.

An alternative approach for incorporating risk sensitivity
to decision-making is via financial or operational hedging,
where instead of maximizing the expected utility reflecting
risk-adjusted profits, the focus is on mitigating risk without
substantially affecting expected profits. Birge [9] analyzes
how to integrate financial hedging in a linear capacity invest-
ment model, while Gaur and Seshadri [17] show the viabil-
ity of financial hedging using instruments correlated with
the firm’s profits. Financial hedging can be effective, but
it requires specific tradable instruments, which not always
exist. Ding et al. [14] study integrated operational and finan-
cial hedging decisions faced by a global firm selling in
domestic and foreign markets subject to currency exchange
rate risk, and analyze the relationship between financial and
operational hedges.

The goal of this article is to develop a model to support
facility sizing decisions affecting future equipment additions.
The model is sensitive to the risk inherent in the capac-
ity decision and anticipates the operational context it will
influence. Its parsimony makes it both capable of yield-
ing structural results and consistent with the level of data
available for long-term planning; thus, an effective deci-
sion support tool. The rest of the article is organized as
follows. In Section 2 we formulate a modeling framework
for capacity planning that incorporates the requirements
for designing responsive plants. In Section 3 we derive
structural results for the optimal solution. In Section 4 we
describe the steps necessary for using our models in prac-
tice, including two alternative approximations along with
numerical tests of their accuracy. The article concludes in
Section 5.

2. MODEL FORMULATION

2.1. Problem Description

Strategic capacity planning for a new production facil-
ity can be viewed as a single facility sizing (FS) decision
followed by a series of equipment addition (EA) decisions.
The FS decision establishes the size (floorspace) of the plant,
while the EA decisions populate it with equipment. Our focus

is primarily on the FS decision. In particular, we concentrate
on the variable part of the FS decision (i.e., floorspace propor-
tional to the number of machines to be installed) as opposed
to the fixed part (i.e., floorspace for administration, utilities,
etc.).

We assume fixed products and production processes, and
a finite number of EAs which take place at predefined time
periods. We also assume a known utility function reflect-
ing the firm’s risk attitude. The problem consists of select-
ing a FS, and an EA sequence consistent with it, to max-
imize expected utility of profits with respect to a demand
forecast.

An important consequence of capacity decisions is the
responsiveness of the production facility. One way to con-
sider this in a model is to assume the existence of a constraint
on cycle time. If demand is known with a high degree of
certainty (e.g., at the EA decision level), queueing network
approximations can be used to evaluate cycle time (see e.g.,
Bitran and Tirupati [10], Suri et al. [27] or Hopp et al. [18]).
Unfortunately, the same approximations cannot be used at the
FS decision level because at this early decision phase demand
is highly uncertain. So, as a proxy for a cycle time constraint
we assume a limit on utilization for all resources. By capping
utilization we limit the amount of queueing that can occur. In
practice, and depending upon data availability, the utilization
limits can be obtained by (1) using simulation or analytic
models (e.g., Bitran and Tirupati [10] or Hopp et al. [18])
for a representative equipment configuration, (2) using his-
torical utilizations of similar stations in existing facilities, or
(3) setting uniform utilization limits across all stations (our
tests indicate that 70% to 85% is appropriate in most cases).
It is worth noting that a major semiconductor manufacturer
uses precisely this type of utilization constraint in sizing their
wafer fabs.

2.2. Model Formulation

To address the above problem we formulate a two-stage
model. In the first stage a demand forecast is generated
for a set of future expansion times t1, t2, . . . , tT and the
FS decision is made. In the second stage demands for all
ti are revealed simultaneously and an optimal EA sched-
ule, subject to the FS decision, is generated. Although in
reality demands are revealed sequentially, we approximate
the timing of the EA decisions in this manner for pur-
poses of modeling the FS decision. Note that in this frame-
work, the first EA corresponds to the initial equipment
configuration.

Within the plant we assume each product follows a deter-
ministic routing, visiting some of the N different stations
in the facility. Processes and technologies are fixed over the
planning horizon and we assume that every station is part of
at least one product’s routing. We define
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Sp = number of total steps in the routing of product p

(1 ≤ p ≤ P),
nps = station visited by product p, on the sth step of its

routing (1 ≤ s ≤ Sp),
α̂ps = surviving fraction of incoming parts of product p,

due to yield loss at station nps(0 < α̂ps ≤ 1),
αps = ∏s

j=1 α̂pj = cumulative yield of product p after
completing the first s steps in its routing, with
αp0 = 1 (0 ≤ s ≤ Sp),

τps = effective mean process-time for the sth step of
product p,

an = floorspace requirement per tool (including aisle,
support, etc.) at station n (1 ≤ n ≤ N),

un = maximum utilization allowed at station n

(1 ≤ n ≤ N),
k = net cost per unit floorspace for the duration of the

planning horizon discounted to the time of the FS
decision (includes salvage value),

cnt = marginal installation cost per additional tool for
periods t through T at station n discounted to the
time of the FS decision (includes salvage value),

rpt = present value of net revenue per unit throughput
of product p for period t ,

z = total floorspace (primary (FS) decision variable),
xnt = number of tools added at station n for period t

(secondary (EA) decision variable),
λpt = release rate of product p during period t (sec-

ondary decision variable).

The demand rate for product p in period t is fpqtD, for
1 ≤ p ≤ P , 1 ≤ t ≤ T , where the qt and fp, which are
positive with

∑T
t=1 qt = ∑P

p=1 fp = 1, constitute a demand
profile, and D is a random variable representing total demand
rate across all products and installation periods. A demand
forecast consists of a demand profile together with estimates
of the median m and coefficient of variation (cv) v of D. For
a measure of central tendency, we choose the median instead
of the mean because we believe its compatibility with sce-
narios makes it easier for the forecaster to estimate, and also
because it is not subject to a disproportionate influence of
rare events with extreme values. In this context, the cv can
be interpreted as a measure of confidence in the forecaster’s
prediction of D. Note that the demand rate expression implies
that the proportion of demand for each product remains con-
stant across all periods. We also assume a fixed product mix,
and λptαp = fpθt , for 1 ≤ p ≤ P , 1 ≤ t ≤ T , where θt

is the aggregate throughput for period t and αp = αpSp
is

the total cumulative yield of product p. (Note that the λpt

represent release rates, while the θt represent throughput or
output rates.)

To formulate the model in terms of aggregate product, a
unit of which consists of fp units of product p for all products,

we define

rt =
P∑

p=1

fprpt , 1 ≤ t ≤ T

τn =
P∑

p=1

fp

αp

Sp∑
s=1

αp,s−1τps[nps = n], 1 ≤ n ≤ N ,

where the notation [A] stands for 1 if statement A is true and
0 otherwise. Note that τn is the average process time at station
n adjusted for yield. Since the number of tools at station n in
period t is

∑t
i=1 xni , the utilization constraints are

θt τn∑t
i=1 xni

≤ un, 1 ≤ n ≤ N , 1 ≤ t ≤ T , (1)

where the left-hand side of (1) is station n’s utilization in
period t . Let

Jn = τn

un

, 1 ≤ n ≤ N , (2)

When (1) is binding, θtJn = ∑t
i=1 xni is the number of tools

required at that station to achieve utilization un. Therefore,
if station n’s utilization is un for every n, the total amount of
floorspace required is θta, where

a =
N∑

n=1

anJn.

Given D, the discounted net revenues generated by a facil-
ity of size z (excluding floorspace costs), can be represented
as a solution to the following optimization problem (P):

R(z|D) = max
T∑

t=1

rt θt −
T∑

t=1

N∑
n=1

cntxnt

s.t. θtJn −
t∑

i=1

xni ≤ 0, 1 ≤ n ≤ N , 1 ≤ t ≤ T (3)

θt ≤ qtD, 1 ≤ t ≤ T (4)
T∑

t=1

N∑
n=1

xntan ≤ z (5)

θt , xnt ≥ 0, 1 ≤ n ≤ N , 1 ≤ t ≤ T .

Note that (3) are the maximum utilization constraints
(1) rewritten using (2). Constraints (4) limit throughput to
available demand, and (5) is the floorspace constraint.

Hence, the optimal FS decision z∗ is the floorspace that
maximizes expected utility of net profit, that is

z∗ = max
z≥0

EU [R(z|D) − kz]. (6)
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Note that the FS and EA decisions are linked via equation
(6) and problem (P). The latter ignores any integrality con-
ditions for the equipment capacity variables xnt . The main
reasons for this choice are tractability and robustness of the
R(·|D) function. These are primary concerns in an environ-
ment of highly uncertain data like ours. If the optimal solution
z∗ is not a sum of multiples of the floorspace requirements
an then, for implementation purposes, a more practical floor-
space decision may be obtained by fine-tuning the utilization
parameters un. But even without this, a solution obtained by
the methods we describe here captures the tradeoffs among
the main decision factors. The final decision will necessar-
ily have to be adjusted in accordance to additional practi-
cal requirements not considered in any long-term strategic
model.

3. STRUCTURAL RESULTS

3.1. Flat Demand Profiles

We begin by considering the simplest case where the fore-
cast is flat, that is qt = q for all t . In some instances, a
flat demand profile may be consistent with anticipated mar-
ket conditions at the time of forecasting. In others, it is an
additional approximation of reality. However, even in cases
where such a profile is not expected, the forecast may be
too uncertain to build in any other shape. We treat the flat
demand case for its own sake in this section; in Section 4
we use flat profiles to develop two approximations for the
general profile case. Without loss of generality, we assume
a = 1, which is equivalent to selecting convenient floorspace
units.

To find the optimal floorspace, we first compute the
expected utility in equation (6) as a function of the decision
variable z. To do this, we condition on the random component
of the demand D in the following lemma (proof in appendix).

LEMMA 1: If qt = q for all t , given D, the discounted net
revenue generated by a facility of size z (excluding floorspace
costs) is

R(z|D) = r min(z, qD), (7)

where r = max{∑T
i=t ri − ∑N

n=1 Jnc
∗
nt : 1 ≤ t ≤ T }+ is

the dual price associated with the floorspace variable z, and
c∗
nt = min{cni : 1 ≤ i ≤ t}.

With closed-form expression (7) available, we can use
equation (6) to calculate the optimal floorspace; which is our
main goal. Let F(·) represent the cdf of the demand vari-
able D, and U(·) the utility function of a risk-averse decision
maker. We assume F to be continuous and U to be concave
and twice differentiable with U ′ > 0. Note that R(·|D) is
concave for every D, and by the assumptions on the util-
ity function, so is EU [R(z|D) − kz]. Therefore, the optimal

floorspace z∗ is well-defined in terms of equation (6). Com-
puting z∗ is just a matter of solving the first order condition,
which, denoting dEU [r min(z, qD)−kz]/dz by ϕ(z) can be
written as

ϕ(z) = −k

∫ z/q

0
U ′(rqy − kz)dF (y)

+ (r − k)U ′((r − k)z)F (z/q) = 0, (8)

where F stands for 1−F . If ϕ(z) has a zero, the concavity of
the expected utility guarantees its uniqueness. On the other
hand, if ϕ(z) < 0 for all z > 0, the solution is z∗ = 0, and
if ϕ(z) > 0 for all z ≥ 0 the solution is z∗ = ∞. When
the decision-maker is risk-neutral (i.e., U ′ = 1), equation (8)
yields the well-known newsvendor solution

F(z/q) = 1 − k/r . (9)

In general, given F(·), U(·), r , k, and q, one can compute
the root of equation (8) using standard numerical methods.
In Section 4 we present results for specific functional forms
of F and U .

The model defined by equations (6)–(8) can be thought of
as a risk-sensitive version of the classic newsvendor problem.
CARA preferences can be represented by a utility function
of the form U(x) = −e−γ x , where γ = −U ′′(x)/U ′(x) is
the degree of risk aversion (see e.g., Keeney and Raiffa [20]
p.167). Adopting the CARA assumption allows us to con-
sider compactly the effects of some parameter changes on the
FS decision. We summarize the key results in the following
theorem.

THEOREM 1: If r − k > 0 and qt = q for all t , the opti-
mal FS, z∗, is increasing in q for any risk-averse preferences,
and decreasing in k for risk-averse preferences that exhibit
CARA.

PROOF: From equation (8) and the concavity of the
expected utility, ϕ′(z) < 0 for all z. Hence, to show that
∂z∗/∂x ≥ 0(≤ 0) it is sufficient to show that ∂ϕ(z∗)/∂x ≥
0(≤ 0). The condition r − k > 0 implies that ϕ(z) in (8)
is increasing in q, which proves the first result. To prove the
second result, assume CARA and use U(x) = −e−γ x , with
γ ≥ 0. Substituting into (8) and carrying out the calculations
yields the desired result that ∂ϕ(z∗)/∂k ≤ 0. �

Note that the requirement r − k > 0 simply means that
it is profitable to build the facility. To understand the second
part of Theorem 1 intuitively, observe that when the floor-
space cost k decreases, increasing the facility size by the
same amount allows the capture of additional revenue with-
out additional risks. From equation (9) it follows that the
same result also holds in the risk-neutral case.
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The first part of Theorem 1 implicitly assumes r and k

remain fixed while q varies. However, when expressed in
terms of original parameters, q = 1/T , and since r also
depends on T , changes in q alter r . In terms of original para-
meters, the effect of T on the optimal floorspace z∗ involves
both ∂z∗/∂q and ∂z∗/∂r . Before considering that effect, we
offer an alternative interpretation for the first part of Theo-
rem 1. Specifically, if we ignore the relation between q and
T , from equation (7) note that q can represent a scaling para-
meter of demand, i.e., Dq = qD. Thus, increasing q while
keeping all other parameters fixed is equivalent to increasing
the demand across all sample paths, which leads to building
a larger facility. It follows from equation (9) that this result
also agrees with the risk-neutral case.

Let us now consider how the revenue parameter r affects
z∗. Note that, as a function of T , from its definition in Lemma
1, r(T + 1) = max{∑T +1

i=t ri − ∑N
n=1 Jnc

∗
nt : 1 ≤ t ≤

T + 1}+ = max[max{∑T
i=t ri + rT +1 − ∑N

n=1 Jnc
∗
nt : 1 ≤

t ≤ T }+, rT +1 − ∑N
n=1 Jnc

∗
nT +1] = r(T ) + rT +1. Therefore,

r increases in T . But it is also possible to vary r while T , and
hence q, is fixed. To analyze that situation, note that the first
term of ϕ(z) in condition (8) is the marginal cost in expected
utility of an increase in the order quantity z/q, and the second
term is the marginal benefit. Although the benefit increases
with r through the factor r−k, there is also the opposite effect
of a decrease in both cost and benefit because of diminishing
returns (i.e., lower U ′) for higher net revenues. Which of the
two effects dominates depends upon the particular choice of
parameters and preferences. Therefore, z∗ is not necessar-
ily increasing in r , as in the risk-neutral case, for which the
result follows directly from equation (9). For the risk-averse
case, see Eeckhoudt et al. [15] for sufficient conditions that
guarantee z∗ increasing in r; Neither CARA nor decreasing
absolute risk aversion (i.e., −U ′′(·)/U ′(·) decreasing) are.
Note that the authors show this for the newsvendor prob-
lem, which includes our flat profile problem as a special
case.

Observe from the definition of r that any sensitivity result
with respect to it can be traced back to the original set of
rt and cnt parameters. However, we caution against singling
out the specific parameters that affect r because this consti-
tutes an a posteriori analysis on the optimal EA schedule,
the modeling of which is a rough approximation whose only
purpose is to support the FS decision. As for the effect of
T on z∗, dz∗/dT = (∂z∗/∂r)(∂r/∂T ) + (∂z∗/∂q)(∂q/∂T ),
which is negative when z∗ is decreasing in r because r and
z∗ are increasing in T and q respectively, and q is decreas-
ing in T . Otherwise, the sign of dz∗/dT depends on whether
(∂z∗/∂r)(∂r/∂T ) or (∂z∗/∂q)(∂q/∂T ) dominates.

In addition to comparative statics for cost, revenue, and
planning horizon parameters, since risk-aversion is an impor-
tant element of the model, it is sensible to determine how

changes in risk attitude affect the FS decision z∗. It is straight-
forward to show that z∗ decreases as risk-aversion increases,
where an increase in risk aversion is equivalent to a concave
transformation of the utility function (in particular, for CARA
preferences with U(x) = −e−γ x , an increase in risk aversion
is achieved simply by increasing γ ). This result is not sur-
prising. The proof can be found in Eeckhoudt et al. [15] and
we therefore omit it.

As we discussed earlier, of all the data required by our
model the forecast is by far the most uncertain. For this
reason, it is imperative to investigate the effect of forecast
uncertainty on the FS decision z∗. Since demand forecasts
tend to be highly uncertain for strategic capacity planning,
the region of interest lies towards the higher end of cv val-
ues. So we begin by analyzing the behavior of z∗ in the
limit as v increases to infinity, while the median and other
parameters remain fixed. This process involves the transfor-
mation of the distribution function F , which in general, is not
uniquely determined by two parameters. To ensure the desired
effect on the distribution in the limit, namely, a complete
shift of probability mass towards the two tails, we restrict
the class of distribution functions according to the following
definition.

DEFINITION 1: A continuous distribution F(·|m, v),
with median m and coefficient of variation v, satisfies the
median-cv limit conditions if for every m > 0

1. F(0|m, v) = 0 for every v > 0,
2. limv→∞ F(z|m, v) = 1

2 for all z ∈ (0, ∞),
3. There exists a function G(·|m), integrable on

[0, ∞), and some v0 > 0 such that F(z|m, v) ≤
G(z|m) for all z ∈ [0, ∞) and v ≥ v0.

The last condition of this definition is a technical require-
ment added for convenience in proofs. In practice, when time
comes to evaluate z∗ numerically, an explicit functional form
for the distribution F will be required. Given the high degree
of uncertainty, and the fact that the forecast information is
limited to the median and cv, we opt for simplicity and rec-
ommend fitting a two-parameter distribution. Two reasonable
choices for modeling demand forecasts are the lognormal and
gamma. The lognormal distribution function with median m

and cv v is

F(z|m, v) = �

(
log(z/m)

η(v)

)
, z > 0, (10)

where η(v) = √
log(v2 + 1) and �(x) = (1/

√
2π)∫ x

−∞ e−u2/2du is the standard normal distribution function.
The gamma distribution function with median m and cv v
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is most conveniently defined in terms of the complimentary
function

F(z|m, v) = Q
(
η(v),

z

m
Q−1(η(v), 1/2)

)
, z ≥ 0, (11)

where η(v) = 1/v2 and Q(η, x) = (1/�(η))
∫ ∞
x

uη−1e−udu

is the regularized incomplete gamma function, with
�(x) = ∫ ∞

0 ux−1e−udu the Euler gamma function (see e.g.,
Abramowitz and Stegun [1]). The inverse function x =
Q−1(η, 1/2) is defined as the solution to Q(η, x) = 1/2.
With these definitions, we can formally state the following
result (proof in appendix).

LEMMA 2: The lognormal and gamma distributions as
defined by equations (10) and (11) satisfy the median-cv limit
conditions.

The limiting behavior of the optimal FS decision as the cv
of demand forecast approaches infinity is characterized in the
following theorem (proof in appendix).

THEOREM 2: If qt = q for all t , the demand variable
D has distribution function F(·|m, v) satisfying the median-
cv limit conditions, and the decision-maker is either risk-
neutral, or strictly risk-averse with a utility function such
that limx→∞ U ′(x) = 0 and limx→−∞ U ′(x) = ∞, then


z∗(∞) = 0 if r ≤ 2k,
z∗(∞) = ∞ if r > 2k and U is risk-neutral,
z∗(∞) < ∞ if r > 2k and U is strictly risk-averse,

(12)

where z∗(∞) := limv→∞ z∗(v). When the last case of (12)
holds, z∗(∞) > 0 is the unique solution of

U ′(−kz)/U ′((r − k)z) = r/k − 1, (13)

and for the special case of CARA preferences with U(x) =
−e−γ x ,

z∗(∞) = qm log(r/k − 1)/β, (14)

where β = γ rqm.
The most noteworthy conclusion from Theorem 2 is the

qualitative difference, for high cv values, in the behavior of
the FS decision between the risk-neutral and strictly risk-
averse cases when the systems are sufficiently profitable (i.e.,
r > 2k). For the risk-neutral case, given the divergence of z∗
as v → ∞, the solution is necessarily sensitive to perturba-
tions in the data in the region of interest of high v values. On
the other hand, for the strictly risk-averse case, the solution
is asymptotically stable in v.

To examine this difference more closely, we make the
assumptions of CARA preferences and a lognormal demand

distribution with median m and cv v. For the risk-neutral case,
substituting (10) into equation (9) and solving for z yields

z∗ = qm exp(�−1(1 − k/r)
√

log(v2 + 1)), (15)

where �−1(·) is the inverse of the standard normal proba-
bility distribution. There are two cases: (1) when r ≤ 2k,
�−1(1 − k/r) ≤ 0 so z∗ is decreasing in v, and (2) when
r > 2k, �−1(1 − k/r) > 0 so z∗ is strictly increasing in v.
The latter case implies that when using a risk-neutral model,
and to the extent that v represents the confidence in the fore-
caster’s prediction, being conservative (i.e., overestimating
v) leads to building a larger facility than being overconfident
(i.e., underestimating v).

We would like to go beyond the limiting case and compare
the above risk-neutral solution to the one for strictly risk-
averse preferences. Unfortunately, in general it is impossible
to express the risk-averse solution in closed form. However,
we can draw some qualitative conclusions, which we present
in the following theorem (proof in appendix).

THEOREM 3: If qt = q for all t , the demand variable
D is lognormal with median m and cv v, the decision-
maker’s preferences exhibit CARA with risk aversion
−U ′′(x)/U ′(x) = γ > 0, and log(r/k − 1)/β < 1, where
β = γ rqm, then there exists vm ∈ [0, ∞) such that z∗(v) is
decreasing in v for v ≥ vm.

Note that if r/k ≤ 2, the sufficient condition log(r/k −
1)/β < 1 is satisfied for any β > 0. Theorem 3 implies that
under the CARA assumption the optimal facility size is even-
tually decreasing in the cv of the demand forecast for systems
with profitability region defined by 0 < log(r/k − 1) < β.
This is in sharp contrast with the risk-neutral case, in which
the optimal facility size is always increasing in v.

3.2. General Demand Profiles

In the previous subsection, the demand forecast was
restricted to flat profiles. In this subsection, we consider the
more general case where the demand forecast allows levels to
vary from one period to the next. As with the flat profile case,
to find the optimal floorspace we first obtain an expression for
the expected utility as a function of z from equation (6). We
do this by conditioning on the random variable D and com-
puting the discounted net revenue function R(z|D), defined
as a solution to optimization problem (P). Two characteristics
of the function R(z|D) are readily available. First, substitut-
ing z = 0 into (P) collapses the feasible region to a single
point and yields R(0|D) = 0. Second, the function R(·|D)

is concave and piecewise linear. This follows directly from
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observing that z is an objective function coefficient in the dual
of (P); a minimization problem which we denote by (D):

R(z|D) = min
T∑

t=1

σtqtD + µz

s.t.
N∑

n=1

πntJn + σt ≥ rt , 1 ≤ t ≤ T (16)

T∑
i=t

πni − µan ≤ cnt , 1 ≤ n ≤ N , 1 ≤ t ≤ T (17)

πnt , σt , µ ≥ 0, 1 ≤ n ≤ N , 1 ≤ t ≤ T ,

where µ, σt , πnt for 1 ≤ n ≤ N , 1 ≤ t ≤ T , are the dual
variables for problem (P).

Hence, fully characterizing R(·|D) requires only identi-
fying the number and location of the breakpoints, and the
values of the constant slopes between them. We do this in
Lemma 3 (proof in appendix), which is a generalization of
Lemma 1. Before proceeding, it is convenient to define bi

to be the period of the ith smallest qt , i.e., for 1 ≤ i ≤ T ,
bi = arg min{qt : 1 ≤ t ≤ T and t 	= bj for all j < i},
and also qb0 = 0, qbT +1 = ∞. This implies 0 = qb0 <

qb1 ≤ · · · ≤ qbT
< qbT +1 = ∞. Again, without loss of

generality we assume a = 1. In Section 4 we show how
to modify these results for arbitrary a, and hence, arbitrary
units.

LEMMA 3: For any demand profile, given D, the dis-
counted net revenue generated by a facility of size z (exclud-
ing floorspace costs) is

R(z|D) =
T∑

t=1

�tqbt
D−

T∑
t=1

�t(qbt
D−z)[qbt

D > z], (18)

where �t = µt − µt+1 for 1 ≤ t ≤ T , µi is the dual
price associated with the floorspace variable z when z ∈
(qbi−1D, qbi

D), with

µi = max




T∑
j=t

rj [j = bi , bi+1, . . . , bT ]

−
N∑

n=1

Jnc
∗
nt : 1 ≤ t ≤ T

}+
, 1 ≤ i ≤ T , (19)

µT +1 = 0, and c∗
nt = min{cnj : 1 ≤ j ≤ t}. In addition, we

use r to denote µ1.
To calculate the optimal floorspace we proceed as in the

flat demand case; assuming the probability distribution F is
continuous and using expression (18) together with (6). Since

R(·|D) is still concave for general demand profiles, assuming
the utility U is concave and twice differentiable with U ′ > 0
guarantees the concavity of EU [R(z|D)−kz]. It follows that
z∗ is well-defined in terms of ϕ(z) = dEU [R(z|D)−kz]/dz.
If ϕ(z) < 0 for all z > 0, z∗ = 0, if ϕ(z) > 0 for all z ≥ 0,
z∗ = ∞; otherwise, z∗ is the unique solution to ϕ(z) = 0.
As we show in the following theorem, r − k is a measure of
profitability of the system, and uniquely determines whether
it is worthwhile to build the facility or not (i.e., z∗ > 0 or
z∗ = 0). Note that r = µ1 in Lemma 3 coincides with r in
Lemma 1.

THEOREM 4: Under the same assumptions of Lemma 3,
z∗ > 0 if r − k > 0 and z∗ = 0 otherwise.

PROOF: Since ϕ(z) is decreasing, z∗ > 0 iff ϕ(0) > 0. But
R(0|D) = 0 implies ϕ(0) = E[U ′(R(0|D) − 0)(R′(0|D) −
k)] = U ′(0)(r − k). Hence ϕ(0) > 0 iff r − k > 0. �

If r − k > 0, calculating the optimal FS solution amounts
to solving the first order condition ϕ(z) = 0. Its explicit form
is the following generalization of (8):

ϕ(z) = (µ1 − k)U ′((µ1 − k)z)F (z/qb1)

+
T∑

i=1

(µi+1 − k)

×
∫ z/qbi

z/qbi+1

U ′
(

i∑
t=1

�tqbt
y + (µi+1 − k)z

)
dF(y) = 0.

(20)

Given F(·) and U(·), the numerical calculation of z∗ can be
carried out using standard techniques. Equation (20) indi-
cates that allowing non-flat demand profiles introduces func-
tional complexities to the solutions. As a result, only part
of the structural results from the previous subsection can be
extended. The following is a generalization of Theorem 1.

THEOREM 5: For a general demand profile and risk-
averse preferences that exhibit CARA, if r − k > 0 the
optimal FS z∗ is decreasing in k.

PROOF: For risk-neutral preferences, ϕ(z) = E[R′(z|D)]
− k, where R′(z|D) = µi if qbi−1D ≤ z < qbi

D for
0 ≤ i ≤ T + 1, is independent of k. Hence ϕ(z) is decreas-
ing in k. The result follows from ϕ(z) being decreasing in
z. For strictly risk-averse CARA preferences, let U(x) =
−e−γ x with γ > 0, and ϕ̃(z) = ϕ(z)e−γ kz/γ . Clearly
ϕ̃(z) = 0 iff ϕ(z) = 0. Since ϕ′(z) ≤ 0 for all z, ϕ̃′(z∗) =
(−kϕ(z∗) + ϕ′(z∗)/γ )e−γ kz∗ = 0 + ϕ′(z∗)e−γ kz∗

/γ ≤ 0.
Hence, it is sufficient to show that ϕ̃(z) is decreasing in k. But
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ϕ̃(z) = E[e−γR(z|D)(R′(z|D) − k)] for this particular utility,
and ∂ϕ̃(z)/∂k = −E[e−γR(z|D)] ≤ 0, which concludes the
proof. �

We can also extend our observation on the sensitivity of
the flat profile solution to the risk aversion coefficient to the
general profile case (proof in appendix).

THEOREM 6: For a general demand profile, as the risk
aversion of the decision-maker increases, the optimal FS z∗
decreases.

Finally, we can show that for general demand profiles, the
behavior of z∗ in the limit as v increases to infinity is the same
as for flat profiles (proof in appendix).

THEOREM 7: If the flat profile assumption is replaced by
the general demand profile, the conclusions of Theorem 2
remain unchanged.

The main idea underlying the above theorem is that as
the probability mass is shifted towards the tails, the effect
of the region between qb1D and qbT

D diminishes. It follows
that the limiting behavior of the solution, as v grows towards
infinity, is independent of the demand profile. In general, the
details on how the limit is reached do depend on the profile,
so there is no straightforward generalization of Theorem 3.
However, a flat demand solution is an asymptotically correct
approximation for a general profile system. In Section 4, we
exploit this to use the flat profile model as a heuristic for the
general profile case.

4. IMPLEMENTATION

We now consider the practical issues involved in using the
above framework to compute the optimal FS solution from the
data described in Section 2. Henceforth, we assume CARA
preferences with U(x) = −e−γ x , and D to be lognormally
distributed according to (10).

To illustrate the solution method, we use the following
example representing a microprocessor wafer fab. In con-
structing this example, we used representative industry data
(see e.g., Van Zant [33]), and dataset 4 of the Sematech
semiconductor testbed datasets.

The planning horizon consists of T = 5 one-year periods,
and there are N = 150 stations. We assume nominal installa-
tion costs of $3,000,000 per tool. The total yield loss is 50%,
but for simplicity we assume it all occurs after the last opera-
tion, so that αp = 1 for every product p = 1, . . . , P . To calcu-
late revenues, we use an $85 net revenue per aggregate prod-
uct chip, and assume 350 die per wafer, resulting in a yearly
nominal revenue per throughput of 85 × 350 × 12 × 0.5 =

Table 1. Cost and revenue data for sample problem.

t 1 2 3 4 5

cnt 3,000,000 2,550,000 2,167,000 1,842,000 1,566,000
rt 179,000 152,000 129,000 110,000 93,000

$179, 000 per wafer per month (wpm). Table 1 contains the
cost and revenue parameters for a 15% discount rate. The cnt

are in units of $ per tool, and the rt in $ per wpm.
To keep the example uncomplicated, we assume zero

annual labor costs, but these can be easily incorporated into
the cnt (e.g., for annual labor costs of $200,000 per tool
across all stations, cn3 = (.85)2[3,000,000 + 200,000 +
(.85)200,000 + (.85)2200,000] = 2,539,000).

To compute the profitability r defined in Lemma 1, we
must first calculate Jn, the expected number of tools per
unit throughput at each station for the maximum utiliza-
tion un defined in (2). Dataset 4 contains an average of 1.97
tools per station, and a release rate of 3,400 wpm results
in 95% utilization. Setting maximum utilization un to 0.75
across all stations implies Jn = 1.97 × (0.95/0.75)/3400 =
7.34×10−4 per wpm for all n. A direct calculation yields r =
$333,000 per wpm, and a = ∑N

n=1 anJn = 0.110ā per wpm,
with ā = ∑N

n=1 an/N representing the mean footprint
per tool. The floorspace cost can be specified as k =
$1,000,000/ā, where kā is the mean floorspace cost per tool.

Recall that in Section 3 we set a = 1 by choosing “normal-
ized” floorspace units. Note that z and an have dimensions of
floorspace, k of money/floorspace, and a of floorspace×time,
and that these are the only elements in the model involving the
floorspace dimension. Let (z̃, ãn, k̃, ã) denote the correspond-
ing elements in normalized units. There exists ξ > 0 such
that an = ξ ãn for all n, and consequently z = ξ z̃, k = ξ−1k̃,
and a = ∑N

n=1 ξ ãnJn = ξ ã. But by design ã = 1, so ξ = a,
and z̃ = z/a, k̃ = ka. Therefore, to generalize the expres-
sions in Section 3 for any a, it is sufficient to replace every
occurrence of z by z/a, and every k by ka. For example, equa-
tion (15) for the flat demand and risk neutral case becomes
z∗/ā = (qma/ā) exp(�−1(1 − ka/r)

√
log(v2 + 1)). Using

the example’s data, ka/r = 0.330, and assuming a median
demand of qm = 3, 000 wpm for each period, qma/ā =
330, and �−1(1 − ka/r) = 0.440. For v = 2 this leads to
z∗/ā ≈ 880. Note that z∗/ā is the fab size in total number of
average sized tools.

4.1. Risk Attitude Assessment

For the risk-averse case, the solution is determined by first
order condition (20) which involves the degree of risk aver-
sion γ . Hence, we must assess the decision-maker’s utility
function to use the above method. For simplicity we assume
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CARA preferences, which is equivalent to restricting the util-
ity function to the simple form U(x) = −e−γ x . Following
Howard [19], the usual simple procedure for assessing the
corporate risk tolerance (i.e., the inverse of γ ) is to find the
amount w such that the senior executives are indifferent as
a company investment to a 50-50 chance of winning w and
losing w/2. The result w is a very close approximation to
γ −1.

Assuming the value of γ has been assessed, we now show
how to calculate the optimal FS solution, which involves solv-
ing first order condition (20). We begin with the special case
of flat demand profiles, and present the case of general profiles
in a separate subsection.

4.2. Flat Demand Profiles

4.2.1. Solution

The case of risk-neutral preferences (i.e.,γ = 0) admits the
closed-form solution (15) (with z/a and ka replacing z and
k, respectively). If preferences are strictly risk-averse (i.e.,

γ > 0), the optimal FS is the solution to first order condi-
tion (8), which cannot be expressed in closed form. However,
after some algebra and a change of variable, (8) leads to the
equivalent condition

eβζ

∫ ζ

0
e−βu�′

(
log u

η

)
du

ηu
+ (ρ − 1)

[
�

(
log ζ

η

)
− 1

]
= 0,

(21)

where �(·) is the standard normal distribution, and ζ =
z/aqm, β = γ rqm, ρ = r/ka, and η = √

log(v2 + 1)

are all dimensionless. It follows from this equation that the
optimal solution ζ ∗ depends only upon β, ρ, and v. Figure 1
contains plots of ζ ∗(v, β, ρ) as a function of v for several
values of β and ρ, generated by solving (21) via standard
numerical methods.

The ranges for v and β in the plots of Figure 1 were cho-
sen to include the majority of cases one would expect when
solving these types of FS problems, and hence define the
practical region of interest. These plots contain the necessary
information to calculate an approximation of z∗ for any set

Figure 1. Optimal FS in terms of dimensionless parameters. Curve labels correspond to log10 β. [Color figure can be viewed in the online
issue, which is available at www.interscience.wiley.com]
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of parameter values in the practical region of interest. We
illustrate by calculating the optimal FS for our sample prob-
lem. Assuming a risk tolerance of w = $500,000,000 (see
previous section), we get γ = w−1 = 2 × 10−9/$. The first
step is to calculate ρ = 333,000/110,000 = 3.0 and β =
2×10−9 ×333,000×3000 = 2.0, with log10 β = 0.3. Using
the values for the sample problem yields qma/ā = 330, and
z∗/ā = 330ζ ∗. The value of ζ ∗ for any v in the practical
region of interest can be interpolated using the log10 β = 0.2
and 0.4 curves in the ρ = 3 plot from Figure 1. Hence, for
v = 2, ζ ∗ has lower and upper bounds of 0.75 and 0.90,
and z∗ ≈ 270ā (compared with 880ā for the risk-neutral
case), where ā is the average footprint per tool. Evidently,
risk aversion level has a substantial impact on the optimal
facility size.

4.2.2. Observations

The general nature of the solutions depicted in Fig. 1 allows
us to complement the structural analysis of Section 3 with
the following numerically-based observations, valid over
the practical region of interest: (1) the sufficient condition
log(r/k − 1) < β is not necessary for z∗ to be eventually
decreasing in v, (2) the condition log(r/k − 1) < β is vio-
lated only in cases of extremely high profitability and/or
extremely low risk-averseness, (3) if the sufficient condi-
tion is satisfied (and even if it is slightly violated, i.e.,
log(r/k − 1)/β < 2)), z∗ is quite insensitive to changes
in v, for v ≥ 2 (v ≤ 10), (4) if the sufficient condition
is strongly violated, z∗ is always increasing in v; represent-
ing a continuous transition from the risk-neutral case, and
(5) even for moderate risk-averseness and relatively low v,
the quantitative discrepancy with the risk-neutral solution is
substantial.

4.3. General Demand Profiles

4.3.1. Solution

The first order condition for general demand profiles is
(20). For the risk neutral case (i.e., U ′(·) = 1), and assuming
F(0) = 0 it reduces to

T∑
t=1

�tF(z/qbt
)/r = 1 − k/r , (22)

which is the generalization of newsvendor first order condi-
tion (9). However, in this case, there is no general closed-form
solution for T > 1. If F is lognormal, after substituting the
functional form (10) one must solve (22) numerically.

For the strictly risk-averse case (with CARA prefer-
ences and lognormal F ), the first order condition (20) is
equivalent to

T∑
i=1

(ρµi+1/r − 1)eβζ(1−µi+1/r)

∫ ζqb1 /qbi

ζqb1 /qbi+1

e−βδiu�′
(

log u

η

)

×du

ηu
+ (ρ − 1)

[
1 − �

(
log ζ

η

)]
= 0, (23)

where ζ = z/aqb1m, β = γ rqb1m, δi = ∑i
t=1 �tqbt

/rqb1 ,
and η = η(v) and ρ are defined above. The solution ζ ∗ is
uniquely determined by ρ, β, v, µi/r , and qb1/qbi

(2 ≤
i ≤ T ); altogether 2T + 1 dimensionless parameters. This
large number makes it impracticable to generate plots or
tables similar to those for flat demand profiles, so equa-
tion (23) must be solved numerically on a case-by-case
basis.

The floorspace dual prices µi can be calculated directly
using equation (19). Alternatively, one can solve T ver-
sions of the linear program (D) with D = 1 and fixed
z (using floorspace units such that a = 1). To calculate
µi , where 1 ≤ i ≤ T , set z to any value in (qbi−1 , qbi

),
e.g., z = (qbi−1 + qbi

)/2, and solve; the resulting µ∗ cor-
responds to µi . Table 2 shows a typical demand profile, and
the corresponding dual prices (in $ per wpm) for the sample
problem.

4.3.2. Two Approximations

To avoid solving equation (23) numerically, we propose
two approximations involving flat demand profiles, with solu-
tions readily available from the plots in Fig. 1. As we pointed
out in Section 3, these approximations are asymptotically
correct.

In both approximations, all parameters in the flat-demand
model retain their original values, and the value of q is set to
either

q = 1/T , (24)

or

q =
T∑

t=1

qbt
�t/r . (25)

Table 2. Demand profile and floorspace dual prices for sample
problem.

t 1 2 3 4 5

qt 2/14 4/14 4/14 3/14 1/14
µt 333,000 240,000 114,000 3,550 0
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Figure 2. Comparison of approximations (24) (long dashes) and
(25) (short dashes) with the exact solution for the sample problem
with non-flat profile.

Approximation (24) avoids the calculation of the dual
prices µt , but proved to be less accurate than approximation
(25) in almost all numerical tests. For the sample problem
with the profile from Table 2, q = 0.200 for (24) and
q = 0.148 for (25). Figure 2 depicts plots of the exact
solution and the two approximations as functions of v (recall
that z∗/ā is the floorspace in total number of average sized
tools). For v = 2, z∗/ā = 225, approximations (24) and (25)
yield respectively 272 (< 21% relative error) and 227 (< 1%
relative error).

4.3.3. Example Extension

We extend the example from the beginning of this section
to illustrate how the demand profile, cost structure and risk
coefficient γ affect the FS decision. Table 3 shows a set of
six sample demand profiles. Profiles A–C are permutations
of each other and thus exhibit different trends and a common
dispersion, which is the highest in the set. Profiles D and E
exhibit similar dispersions and trends. We include flat profile
F for comparison purposes.

In addition to the demand profile, the cost structure is
a strong driver of EA decisions. To gauge the cost struc-
ture effect on EA and FS decisions, we include the results
of a no discounting cost structure with cnt = 3, 000, 000,

Table 3. Sample demand profiles.

Profile q1 q2 q3 q4 q5

A 4/30 5/30 6/30 7/30 8/30
B 4/30 6/30 8/30 7/30 5/30
C 8/30 7/30 6/30 5/30 4/30
D 14/72 14/72 15/72 15/72 15/72
E 14/72.5 14.25/72.5 14.5/72.5 14.75/72.5 15/72.5
F 1/5 1/5 1/5 1/5 1/5

rt = 170, 000 for all n and t . With no penalty for early
equipment additions, our model suggests identical EA sched-
ules for demand profiles A–C, with all the equipment added
in the first period, which leads to identical FS decisions as
illustrated in the lower portion of Fig. 3.

Under the cost structure from Table 1 in which both equip-
ment cost and revenue parameters depreciate at a typical rate
of 15%, our model suggests different EA schedules for pro-
files A–C. Given the optimal FS z∗, the increasing demand
profile A calls for EAs in periods 1–4, provided the real-
ized demand D is moderate (i.e., D < z∗/qb4 ). The EA
for the first period (xn1) increases linearly with D and is
of course flat beyond D > z∗/qb1 . The EAs for periods 2
to 4 (xnt , t = 2, 3, 4) increase linearly with D (all with the
same rate, which is lower than that of xn1), peak (at z∗/qbt

)
and decrease linearly thereafter since D > z∗/qbt

implies
the FS constraint is binding for bt , bt+1, . . . bT . Similarly, the
increasing-decreasing demand profile B calls for EAs in peri-
ods 1–3, xn1 increasing in D (with the highest rate) and flat
beyond D > z∗/qb1 . Both xn2 and xn3 increase linearly with
D (with the intermediate and lowest rates respectively), peak
(at z∗/qb3 and z∗/qb4 respectively) and decrease thereafter.
The decreasing demand profile C calls for an EA in the first
period only. The EA decisions for demand profiles D and E
are qualitatively similar to those for profile A, but as a result of
the small demand dispersion, any EA beyond the first period
is very small relative to the EA for the first period. Using dif-
ferent cost structures produced qualitatively anticipated EA
schedules. For instance, when revenues decrease at a faster
rate than equipment costs, EAs decrease in general and are
omitted in late periods relative to when revenues and costs
decrease at the same rate, since it takes more revenue peri-
ods to amortize the EA investment. Also, if equipment costs
for any period are higher than in an earlier period, the model
may call for buying equipment earlier than needed to take
advantage of lower early costs.

The upper portion of Fig. 3 illustrates the differences in
the optimal FS decision for all profiles and two risk coeffi-
cients. Note that the FS is increasing from A to B and from B
to C, which reflects the fact that under the given conditions,
the effect of the higher net present value in the decreasing
demand profile overcomes the value of EA postponement
in the increasing demand profile. Figure 3 suggests that the
risk coefficient γ can be expected to have the most signif-
icant effect on the FS decision, followed by cost structure,
demand profile dispersion and demand profile trend. Observe
that in this model the benefits from a low dispersion demand
profile come from a more efficient use of equipment across
periods rather than from reduced demand uncertainty. Given
a risk factor and cost structure, Fig. 3 also illustrates the
value of using non-flat demand profiles if available. More-
over, the reduction in FS resulting from the use of non-flat
demand profiles should be considered conservative because
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Figure 3. Facility sizing decision under demand profiles in Table 3, two cost structures and two risk coefficients.

in this model the EA decisions represent a best possible case
since they follow demand realization. This fact has manager-
ial relevance for decision makers considering adoption of the
model.

5. CONCLUSIONS

In this article, we have developed a practical facility siz-
ing tool that can be implemented with obtainable data. This
approach is superior to existing capacity planning frame-
works because it incorporates risk attitude considerations
and explicitly considers the need for designing responsive
plants. The solution has several desirable features, including
the optimal facility size being eventually decreasing in fore-
cast uncertainty and decreasing in risk aversion, as well as
being generally robust to cost errors, forecast uncertainty, and
changes in the demand profile—except when the uncertainty
is unusually low. The approximations, which can be easily
implemented in a spreadsheet, proved to be quite accurate in
extensive numerical tests.

Analysis of the optimal solution shows that neglecting
risk attitude considerations can result in poor facility sizing
decisions that deteriorate with increased forecast uncertainty,
which constitutes an important managerial insight.

APPENDIX: PROOFS

PROOF OF LEMMA 1: We construct an explicit solution for problem (P)
and prove optimality. There are two cases.

Case 1.

Suppose r > 0. We want to show that an optimal solution involves
capturing demands only during periods t∗ through T , where t∗ =
arg max{∑T

i=t ri − ∑N
n=1 Jnc

∗
nt : 1 ≤ t ≤ T }, so that sufficient equip-

ment capacity must be available on or before period t∗. The best installation
time for station n is t(n) = arg min{cni : 1 ≤ i ≤ t∗}. Consider the proposed
solution: xnt = min(z, qD)Jn[t = t(n)], and θt = min(z, qD)[t ≥ t∗], for
all t and n, which is feasible and has objective value (7), as can be verified by
direct substitution into the constraints (3)–(5) and the objective function of
problem (P). To prove optimality, we show the existence of a feasible dual
solution with the same objective value.
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The dual of problem (P), for the special case of a flat demand pro-
file (qt = q for all t) is: min{∑T

t=1 σtqD + µz :
∑N

n=1 πntJn + σt ≥
rt ;

∑T
i=t πni − µan ≤ cnt ; πnt , σt , µ ≥ 0; for all 1 ≤ t ≤ T and 0 ≤ n ≤

N}. We can characterize the dual solution in terms of a linear system of
equations. Let n0 be a station index such that t(n0) = t∗ (its existence
is a direct consequence of the definition of t∗), and define the index set
X = {(n, t) : t = t(n) for all n, or 1 ≤ t < t(n) for all n 	= n0, or t∗ <

t ≤ T for all n 	= n0}. Let the linear system � = {∑N
n=1 πntJn + σt =

rt for all 1 ≤ t ≤ T ;
∑T

i=t πni − µan = cnt for all (n, t) ∈ X; πnt =
0 for all n 	= n0 and t(n) ≤ t < t∗; σt = 0 for all 1 ≤ t < t∗}. For the
case z < qD, the proposed dual solution is the solution to the system
� ∪ �1, and for the case z > qD, the solution to the system � ∪ �2; where
�1 = {σt = 0 for all t∗ ≤ t ≤ T }, and �2 = {µ = 0;

∑T
i=t πni − µan =

cnt for all t∗ < t ≤ T and n 	= n0}. The proposed dual solution is well-
defined because the rank of both systems is equal to the number of dual
variables (NT + T + 1). Moreover, manipulating the equations of the
systems � ∪ �1 and � ∪ �2, we show that any solution of either sys-
tem satisfies the dual constraints, hence, the proposed dual solution is
feasible. Finally, combining some of the equations of system � yields:∑T

t=t∗ σt + µ = ∑T
t=t∗ rt + ∑N

n=1 Jncnt(n). Comparing this expression

with the dual objective function
∑T

t=1 σtqD +µz for the cases z < qD and
z > qD, and using the equations from �1 and µ = 0 from �2 respectively,
we show that the objective value of the proposed dual solution is (7).

Case 2.

Suppose r = 0. In this case, the system is not profitable; no stream of
revenues can exceed the equipment costs. Therefore, the optimal solution is
xnt = θt = 0 for all n and t , with objective value zero. �

PROOF OF LEMMA 2: For the lognormal, condition (i) is verified by
direct substitution. If 0 < z/m < ∞ implies limv→∞ F(z|m, v) =
limη→∞ �(log(z/m)/η) = �(0) = 1/2, from which condition (ii) fol-
lows. Note that conditions (i) and (ii) imply that in the limit, half of the
probability mass shifts to 0+ and half to infinity. For (iii), observe that
�(log(z/m)/η) is decreasing in η when z > m. Then, for any v0, if we
define G(z|m) = F(z|m, v0) for z > m, and G(z|m) = 1/2 for z ≤ m, G

is integrable and clearly satisfies F(z|m, v) ≤ G(z|m) for all z ∈ [0, ∞)

and v ≥ v0. The proof for the gamma distribution is analogous and is
omitted. �

PROOF OF THEOREM 2: Integrating by parts the first term of
equation (8) and simplifying yields

ϕ(z|m, v) = k

∫ z/q

0
F(y|m, v)dU ′(rqy − kz)

+ [r − k − rF (z/q|m, v)]U ′((r − k)z)

− kF (0|m, v)U ′(−kz)

= k

∫ z/q

0
F(y|m, v)dU ′(rqy − kz)

+ [r − k − rF (z/q|m, v)]U ′((r − k)z),

where the second equality follows from condition (i) in Definition 1. Taking
the limit we get

lim
v→∞ ϕ(z|m, v) = U ′((r − k)z)(r − k)/2 − U ′(−kz)k/2. (26)

When computing the limit of the integral, we exchanged limit and integra-
tion; which is valid by virtue of condition (iii) in Definition 1, and Lebesgue’s
dominated convergence theorem (see e.g., Rudin [24] p. 26).

For the risk-neutral case, substituting U ′ = 1 into the right hand side of
(26) yields r/2 − k. It follows that the optimal FS solution is z∗(∞) = 0
when r/2 − k ≤ 0, and z∗(∞) = ∞ otherwise. For the strictly risk-
averse case, if r − 2k ≤ 0, from (26) we get limv→∞ ϕ(z|m, v) ≤
[U ′((r − k)z) − U ′(−kz)]k/2 < 0 for all z > 0 (the second inequality
due to U ′ being strict decreasing), and hence, z∗(∞) = 0. If r − 2k > 0,
expression (26) as a function of z has a zero iff equation (13) has a solu-
tion. But since U ′ is strictly decreasing in its argument, for all z ≥ 0, the
numerator of the left hand side of (13) is increasing in z, and the denomina-
tor is decreasing in z, and hence, the quotient is strictly increasing in z. In
addition, evaluating the quotient at zero yields U ′(0)/U ′(0) = 1, and using
the limit values of U ′, limz→∞ U ′(−kz)/U ′((r − k)z) = ∞. Therefore, as
1 < r/k − 1 < ∞, equation (13) has a unique solution z∗(∞) ∈ (0, ∞).
Finally, substituting U(x) = −e−γ x into equation (13) yields (14). �

PROOF OF THEOREM 3: If r − k ≤ 0, z∗ = 0 for all v ≥ 0. Hence,
assume r − k > 0. The proof has three steps: (1) we derive an equivalent
first order condition ϕ̃(z|v) = 0, and show that ϕ̃(z|v) is decreasing in z,
(2) we show that if there exists a vm such that z∗(vm) ≤ qm, then z∗(v) is
decreasing in v for v ≥ vm, and (3) we prove the existence of vm.

(1) Let ϕ̃(z|v) = ϕ(z|v)e−γ kz/γ . Then ϕ̃(z|v) = 0 iff ϕ(z|v) = 0.
Using this definition and substituting U(x) = −e−γ x into (8) yields
ϕ̃(z|v) = −k

∫ z/q

0 e−γ rqydF (y|m, v) + (r − k)e−γ rzF (z/q|m, v), which
is decreasing in z. (2) Integrating by parts and simplifying we can write
ϕ̃(z|v) = −γ rqk

∫ z/q

0 e−γ rqyF (y|m, v)dy − e−γ rz[rF (z/q|m, v)− r + k].
For any z ≤ qm, the argument ofF in both terms is≤ m, and hence, from def-
inition (10), F is increasing in v. It follows that ϕ̃(z|v) is decreasing in v for
z ≤ qm. Therefore, if z∗(vm) ≤ qm then ϕ̃(z∗(vm)|v) ≤ ϕ̃(z∗(vm)|vm) = 0
for any v ≥ vm, which together with step (1) and the definition of z∗(v)

implies z∗(v) ≤ z∗(vm). As z∗(v) ≤ qm, given any v′ ≥ v, the result
z∗(v′) ≤ z∗(v) follows directly from the same reasoning. (3) Combining
limiting result (14) with the condition log(r/k − 1)/β < 1 implies that
limv→∞ z∗(v) < qm, and hence, there exists a sufficiently large vm such
that z∗(vm) ≤ qm. This concludes the proof. �

PROOF OF LEMMA 3: The main part of the proof is computing the dual
price of z. Before proceeding, note that any optimal solution to (P), denoted
by {θ∗

t , x∗
nt }, satisfies

max
1≤t≤T

θ∗
t =

T∑
i=1

x∗
ni/Jn, 1 ≤ n ≤ N . (27)

To show this observe that because of the utilization constraints (3), if (27) is
false, there exists some station n for which the inequality in (3) is strict. In
this case, a new solution can be constructed by modifying the x∗

nt variables
according to

∑T
i=1 x∗

ni ← min(maxt θ∗
t Jn,

∑T
i=1 x∗

ni ). But by direct sub-
stitution, it follows that this modified solution is feasible and has a higher
objective value, which contradicts the optimality of the original solution,
and thus proves (27). Notice that (27) implies

∑T
t=1 x∗

nt /Jn = ∑T
t=1 x∗

n̂t
/Jn̂,

for any stations n and n̂. Substituting into (5) yields the tighter floorspace
constraints

T∑
t=1

xnt ≤ zJn, 1 ≤ n ≤ N . (28)

Having shown these two results, we are now ready to compute the dual
price of z. We begin with the case z > qbT

D. Combining (27) with the
demand constraints (4) leads to

∑T
i=1

∑N
n=1 x∗

ni ≤ qbT
D. This means that

the floorspace constraint (5) is not tight, and hence, µT +1 = 0 by com-
plementary slackness. Observe that in this case, the optimal net revenue is
not affected by floorspace and is only limited by profitability. Note also that
even without the floorspace constraint (5), given D, the finite forecast always
guarantees a bounded solution.
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Turning to the more general case, let z ∈ (qbi−1 D, qbi
D), with 1 ≤ i ≤ T .

According to (28), a unit increase in z allows an increase of Jn units in the
total equipment capacity at station n. To evaluate the net benefit of such
an increase in capacity, note that because of the utilization constraint (3),
to produce an additional unit of throughput during the periods t through
T , Jn units of equipment must be added at each station n, on or before
period t . For station n, this represents a cost increase of c∗

nt Jn, where
c∗
nt = min{cnj : 1 ≤ j ≤ t} is the incremental cost per unit of capacity

at station n for use during period t and beyond. This reflects the possibility
of obtaining lower costs by installing the equipment before it is required.
The total incremental cost is obtained by adding costs for all stations, i.e.,∑N

n=1 c∗
nt Jn. Although this additional capacity allows to increase produc-

tion during periods t through T , additional revenues are only accrued for
the periods where more demand can be captured by increasing z; namely
bi , bi+1, . . . , bT . The additional revenue for this increase in equipment
capacity available during period t is then

∑T
j=t rj [j = bi , bi+1, . . . , bT ],

and the net revenue is obtained by selecting the most convenient period
of availability, i.e., max{∑T

j=t rj [j = bi , bi+1, . . . , bT ] − ∑N
n=1 Jnc

∗
nt :

1 ≤ t ≤ T }. If this quantity is positive, it corresponds to µi ; the addi-
tional profits resulting from a unit increase in z. On the other hand, if the
quantity is negative, the original optimal net revenue was limited by prof-
itability, and an increase in floorspace is not useful, hence µi = 0. Equation
(19) follows from combining the two cases, and since the reasoning only
used the assumption z ∈ (qbi−1 D, qbi

D), the expression for µi is valid for
the whole interval. This completes the determination of all the breakpoints
and slopes.

Finally, using R(0|D) = 0 and the continuity at the breakpoints yields
R(z|D) = µiz + ∑i−1

j=1(µj − µj+1)qbj
D for z ∈ (qbi−1 D, qbi

D), where
1 ≤ i ≤ T + 1. This expression can be cast into (18) after some
algebra. �

PROOF OF THEOREM 6: If r−k ≤ 0, z∗ = 0 for any risk-averse utility,
hence, we assume r − k > 0. An increase in risk is equivalent to a concave
transformation V (·) of the risk-averse utility U(·), where V ′ > 0 and V ′′ ≤
0. Let ϕ̂(z) = dE[V ◦U(R(z|D)−kz)]/dz. Since ϕ̂(·) is decreasing, it is suf-
ficient to show that ϕ̂(z∗) ≤ 0, where z∗ solves ϕ(z) = 0. Towards this end,
we first show that R(z|·) is increasing for every z. Let D′ > D, then for every
z ≥ 0 there exist j ≤ i such that z ∈ [qbi−1 D, qbi

D) ∩ [qbj−1 D
′, qbj

D′).
From (18), R(z|D) = µiz+∑i−1

t=1(µt −µt+1)qbt D, but qbi−1 D < z implies∑i−1
t=j (µt − µt+1)qbt D ≤ (µj − µi)z, which leads to R(z|D) ≤ R(z|D′).

Recall that the µt are decreasing in t , with µ1 − k = r − k > 0 and
µT +1 − k = −k < 0, therefore, there exists some 1 ≤ � ≤ T such that
µ� −k > 0 and µ�+1 −k ≤ 0. Partitioning into the different intervals where
R′(z|D) is constant,

ϕ̂(z) =
T +1∑
i=1

(µi − k)E[V ′(U(R(z|D) − kz))

× U ′(R(z|D) − kz); qbi−1 D ≤ z < qbi
D].

For 1 ≤ i ≤ �, µi −k > 0, and we use E[V ′(U(R(z|D)−kz))U ′(R(z|D)−
kz); qbi−1 D ≤ z < qbi

D] ≤ V ′(U(R(z|z/qb�
) − kz))E[U ′(R(z|D) −

kz); qbi−1 D ≤ z < qbi
D], where the inequality follows from R(z|·)

and U(·) being increasing and V ′(·) decreasing. On the other hand, for
�+1 ≤ i ≤ T , µi −k ≤ 0, and we use E[V ′(U(R(z|D)−kz))U ′(R(z|D)−
kz); qbi−1 D ≤ z < qbi

D] ≥ V ′(U(R(z|z/qb�
) − kz))E[U ′(R(z|D) −

kz); qbi−1 D ≤ z < qbi
D]. Combining the two sets of inequalities yields

ϕ̂(z) ≤ V ′(U(R(z|z/qb�
)))ϕ(z). It follows that ϕ̂(z∗) ≤ 0, and hence

ẑ∗ ≤ z∗; where ẑ∗ solves ϕ̂(z) = 0, so the proof is complete. �

PROOF OF THEOREM 7: Integrating by parts the last T terms of (20)
and simplifying leads to

ϕ(z|m, v) = (µ1 − k)U ′((µ1 − k)z)

−
T∑

i=1

�iF(z/qbi
|m, v)U ′

(
i−1∑
t=1

�tqbt z/qbi
+ (µi − k)z

)

+ kF (0)U ′(−kz) −
T∑

i=1

(µi+1 − k)

×
∫ z/qbi

z/qbi+1

F(y|m, v)dU ′
(

i∑
t=1

�tqbt y + (µi+1 − k)z

)
.

To calculate the limit as v → ∞, we exchange the limit and integration in
the last T terms of this expression, and after some algebra, we get equation
(26). The result follows from the remainder of the proof of Theorem 2. �
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