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WNT Signaling Affects Gene Expression in the
Ventral Diencephalon and Pituitary Gland
Growth

Mary Anne Potok,' Kelly B. Cha,! Andrea Hunt,' Michelle L. Brinkmeier,' Michael Leitges,>
Andreas Kispert,® and Sally A. Camper'*

We examined the role of WNT signaling in pituitary development by characterizing the pituitary phenotype
of three WNT knockout mice and assessing the expression of WNT pathway components. Wn#5a mutants
have expanded domains of Fgf10 and bone morphogenetic protein expression in the ventral diencephalon
and a reduced domain of LHX3 expression in Rathke’s pouch. Wn#4 mutants have mildly reduced cell
differentiation, reduced POU1F1 expression, and mild anterior lobe hypoplasia. Wnt4, Wnt5a double
mutants exhibit an additive pituitary phenotype of dysmorphology and mild hypoplasia. Wn#6 mutants have
no obvious pituitary phenotype. We surveyed WNT expression and identified transcripts for numerous
Wnts, Frizzleds, and downstream pathway members in the pituitary and ventral diencephalon. These
findings support the emerging model that WNT signaling affects the pituitary gland via effects on ventral
diencephalon signaling, and suggest additional Wnt¢ genes that are worthy of functional studies.
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INTRODUCTION

The pituitary gland is a central organ
in the endocrine system of all verte-
brates and is responsible for the pro-
duction and regulation of peptide hor-
mones necessary for growth and
development; regulation of thyroid
function, lactation, sexual matura-
tion, and fertility; and the ability to
respond to physiological stresses
(Cushman and Camper, 2001). The
mature gland is composed of three
lobes in rodents: the posterior lobe,
the intermediate lobe, and the ante-

rior lobe, which is comprised of five
major pituitary hormone-producing
cell types (Japon et al., 1994).

The posterior lobe is derived from
neural ectoderm, whereas the anterior
and intermediate lobes of the pitu-
itary gland arise from Rathke’s pouch,
a primitive structure resulting from
an invagination of the oral ectoderm
beginning at embryonic day (E) 9.0 in
the mouse. The pouch pinches off from
the remaining oral ectoderm at ap-
proximately E11.5 and is character-
ized by a domain of apoptosis at the

separation point (Charles et al., 2005).
In early pituitary development, the
dorsal aspect of the pouch undergoes
extensive cell proliferation, and cells
migrate out ventrally and rostrally
from Rathke’s pouch and form the an-
terior lobe (Ikeda and Yoshimoto,
1991; Ward et al., 2005).

Pituitary development is mediated
by the temporal and spatial expres-
sion of transcription factors in the
pouch in response to bone morphoge-
netic protein (BMP) and fibroblast
growth factor (FGF) signaling in the
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surrounding tissues of the developing
gland (Ericson et al., 1998; Dasen et
al., 2001; Davis and Camper, 2007).
These factors include the POU-do-
main transcription factor Pitl, re-
cently renamed Poulf1, and its prede-
cessor Prophet of Pitl (Propl); LIM
homeodomain factors Islet1 (Isll),
Lhx3, and Lhx4; the pituitary ho-
meobox genes PitxI and Pitx2; and the
Rathke’s pouch homeobox gene Rpx
(Hesx1; Watkins-Chow and Camper,
1998; Cushman and Camper, 2001).
Additionally, members of the SOX
family of transcription factors have
also been implicated in pituitary
gland size and shape formation
(Camper, 2004; Rizzoti and Lovell-
Badge, 2005).

In addition to the various transcrip-
tion factors involved in pituitary de-
velopment, WNT signaling is emerg-
ing as an important contributor. Both
the canonical and noncanonical WNT
pathways are highly conserved
throughout evolution and are essen-
tial for proper growth, development,
and organogenesis in both vertebrate
and invertebrate organisms (Rijsewijk
et al., 1987, Cadigan and Nusse,
1997). In the canonical pathway, a
core set of proteins respond to WNT
and prevent CTNNB1 (B-catenin)
from being proteolyzed, thus, allowing
B-catenin to activate target genes that
modulate cell fate, proliferation, and
apoptosis. In the noncanonical path-
way, WNTs function independently of
B-catenin and can activate CamKII
and protein kinase C (PKC), GTP-
binding proteins that in turn activate
phospholipase C (PLC) and phospho-
diesterase (PDE), and also the planar
cell polarity (PCP) pathway that acti-
vates Jun-N-terminal kinase (JNK;
reviewed in Kohn and Moon, 2005).

Several lines of investigation sup-
port roles for WNT signaling in pitu-
itary gland organogenesis. For exam-
ple, B-catenin can regulate the
activity of three transcription factors
with roles in pituitary development:
Pitx2, Nrbal (Sf1), and Tcf712 (Tcf4;
Kioussi et al., 2002; Brinkmeier et al.,
2003, 2007; Gummow et al., 2003).
Downstream factors in the WNT path-
way are also important for proper
pituitary development. Tcf4~/~ em-
bryos exhibit severe pituitary over-
growth, with a threefold increase in
anterior lobe volume (Brinkmeier et

al., 2003). The mechanism underlying
the overgrowth appears to involve ex-
panded BMP and FGF expression
(Brinkmeier et al., 2007). Pitx2 is ex-
pressed in many tissues where WNT
signaling is active, and in the pres-
ence of LiCl, which artificially acti-
vates downstream WNT signaling, an
increase in Pitx2 expression is de-
tected in the developing Rathke’s
pouch at E10.5, as well as in cultured
pituitary cells at this time point
(Kioussi et al., 2002). Pitx2 activity is
also increased in the presence of a con-
stitutively active form of B-catenin ex-
pressed in the gonadotrope-like aT3-1
pituitary cell line. Wnt11 has been im-
plicated as a target of Pitx2 and
B-catenin in cardiac development
(Zhou et al., 2007), but the WNT(s)
responsible for the B-catenin—medi-
ated activation of Pitx2 in the pitu-
itary have yet to be identified. More-
over, the presence of activated
B-catenin has not been demonstrated
in the developing anterior pituitary.
In addition, nuclear accumulation of
B-catenin and subsequent activation
of TCF/LEF transcription factors can
occur after gonadotropin-releasing
hormone (GnRH) stimulation in
mouse pituitary gonadotrope-like cells
(Gardner et al., 2007). Because GnRH
receptor, like other G-protein coupled
receptors can activate the canonical
WNT signaling pathway, B-catenin
activation of Pitx2 or other critical
transcription factors could be inde-
pendent of a WNT signal.

Direct evidence for WNT signaling
in pituitary development stems from
pituitary abnormalities arising from
disruption of Wnt5a and Wni4 (Treier
et al., 1998; Cha et al., 2004). Wntba
mRNA expression has been detected
in the ventral diencephalon adjacent
to the pituitary and in the pituitary
primordium beginning at E9.5 (Treier
et al., 1998). Wnt5a mutant embryos
exhibit abnormal branching and loop-
ing of the developing pituitary, al-
though all hormone-producing cell
types are generated (Cha et al., 2004).
Wnt4 is expressed from E9.5 onward
in Rathke’s pouch and in the oral ec-
toderm. Expression becomes re-
stricted to the dorsal aspect of the
pouch by E14.5. Mice deficient in
Wnt4 reportedly have a reduced pop-
ulation of cells producing growth hor-
mone (GH), thyroid-stimulating hor-

mone (TSH), and the alpha subunit
common to luteinizing hormone (LH),
follicle stimulating hormone, and TSH
(alpha glycoprotein hormone sub-
unit = «GSU or chorionic gonadotro-
pin alpha = CGA) at E17.5 (Treier et
al., 1998). The mechanisms underly-
ing the defects in Wnt5a and Wnit4
mutants have not been elucidated.

Here, we examine the role of WNT
signaling in modulating ventral dien-
cephalon gene expression and pitu-
itary gland organogenesis. In the ab-
sence of Wntba, we show that FGF
and BMP expression patterns are per-
turbed in the ventral diencephalon,
supporting the idea that WNT and
FGF signaling pathways interact in
pituitary development (Wang and
Shackleford, 1996; Brinkmeier et al.,
2007). We confirmed that mice defi-
cient in Wnt4 alone exhibit reduced
pituitary growth, although the effect
on cell type specification is less dra-
matic than previously suggested. Us-
ing a classic genetic double mutant
analysis, we tested for functional re-
dundancy between Wnt5a and Wnt4
and found evidence that the mutant
phenotypes are additive in the pitu-
itary gland. Wnt6 is expressed near
the pituitary gland during critical
times in development; however, exam-
ination of embryos deficient in Wnt6
showed no obvious pituitary malfor-
mation. Because the effects of defi-
ciencies of Wnt4, 5a, or 6 are unlikely
to account for the consequences of de-
ficiencies in the known, critical,
B-catenin-regulated transcription fac-
tors in the pituitary gland, we con-
ducted a gene expression survey and
identified several WNTs, FZDs, and
WNT pathway molecules expressed in
the pituitary and/or neighboring tis-
sues in early development (E12.5—
E14.5). We cataloged their spatial and
temporal expression in the developing
and adult pituitary gland, producing
several candidate genes for future
studies. In conclusion, our data sug-
gest that the WNT signaling pathway
regulates pituitary development, in
part, through functional intersection
with other signaling pathways. The
identification of additional WNT path-
way components in the pituitary and
ventral diencephalon provides addi-
tional targets for investigation to
more fully understand pituitary devel-
opment.
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Fig. 1. Loss of Wntba may alter pituitary gland patterning in early development. A-F: Immunohistochemical staining for WNT5A protein was
performed on wild-type paraffin sections from embryonic day (E) 10.5 to E16.5 and adult pituitary glands. Expression is detected throughout the caudal
and rostral domains of the ventral diencephalon from E10.5 to E12.5. WNT5A immunostaining is also present in Rathke’s pouch at E10.5 and E11.5,
but the signal is no longer evident in the pouch by E12.5. At E14.5, WNT5A is expressed in the developing posterior lobe, as well as in the ventral
anterior lobe, extending into the rostral tip. WNT5A expression is waning by E16.5, but is evident again in the adult pituitary in the anterior and
intermediate lobes (A,l), but not in the mature posterior lobe (P). Insets are slides at each time point without primary antibody. G-V: Expression of
signaling molecules and transcription factors was performed at E10.5 on Wnt5a wild-type and mutant embryos. G,H: PITX2 antibody staining is
detected throughout Rathke’s pouch at E10.5, and in extra oral ectoderm invaginations (G,H, arrows). I-L: TCF4 and B-CATENIN are expressed
normally in the ventral diencephalon at this time. M-P: Hesx7 mRNA expression in the oral ectoderm is unaffected (M,N), as is ISL1 protein (O,P). Q,R:
LHX3 expression is truncated on the caudal side compared with wild-type (brackets). R: Extra invaginations of oral ectoderm do not express LHX3
(arrow). S,T: Phosphorylated SMAD1 (pSMAD1) is detected by immunohistochemistry. Brackets are used to mark the boundary of pPSMAD1 expression
from the infundibulum to where expression extends into the ventral diencephalon. U,V: Fgf10 is detected in the developing ventral diencephalon in
E10.5 embryos by in situ hybridization, with brackets used to demarcate its domain of expression.

RESULTS

Wnt5a Mutant Embryos
Exhibit Altered Expression
of BMP and FGF in the
Ventral Diencephalon

Wntba is required for normal pituitary
morphology, but the expression pat-

tern of the protein has not been re-
ported and the mechanism of action
has been elusive (Cha et al., 2004).
WNTS5A protein is detectable as early
as E10.5 in Rathke’s pouch in the cells
lining the presumptive lumen (Fig.
1A). WNT5A is also present in the
ventral diencephalon, particularly in

the basal cells lining the lumen, with
little or no expression in the cells on
the apical aspect. At E11.5, WNT5A is
expressed in both the rostral domain
and caudal domain of the ventral di-
encephalon, and in Rathke’s pouch
(Fig. 1B). The rostral domain is de-
marcated by the normal expression of
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Fig. 2. Wnt4 has a mild effect on pituitary cell specification. Immunostaining for the pituitary hormones reveals that each of the major cell types have
begun to differentiate properly by embryonic day (E) 16.5 (n = 2) and E18.5 (n = 3). Sagittal sections of embryos were stained with antibodies that
recognize the pituitary hormones. A,B: Pro-opiomelanocortin (POMC) and its cleavage product adrenocorticotropic hormone (ACTH) are unchanged
in the mutant at E16.5. C,D: Steroidogenic factor 1 (SF1), marking pregonadotropes, is also unchanged at E16.5. E-J: The alpha subunit shared by
thyrotropes and gonadotropes, aGSU, appears unchanged both at eE16.5 (E,F) and E18.5 (G,H), as does FOXL2 at E18.5 (I,J). K,L: Growth hormone
(GH) is present at E16.5 in the wild-type and mutant. Arrowheads indicate positive growth hormone cells. M, N: Thyroid-stimulating hormone 8 subunit
(TSHp) is also present by E16.5. Insets show enlarged picture of anterior lobe region. O-R: PIT1 staining identifies presomatotropes, prelactotropes,
and prethyrotropes in the wild-type and mutant at E16.5 (O,P) and E18.5 (Q,R). A slight dysmorphology is seen in anterior lobe tissue surrounding the
lumen in mutants at E16.5 (B,D,L,P) and E18.5 (H,R). Inmunostaining was developed with fluorescein isothiocyanate or diaminobenzidine (DAB), and
sections are counterstained with methyl green or hematoxylin.

Bmp4 and Fgf10, and the caudal do-
main includes diencephalon tissue
that strongly expresses TCF4 (Brink-
meier et al., 2007; Davis and Camper,
2007). This pattern of protein immu-
noreactivity is consistent with the re-
ported expression pattern of Wntsa
mRNA (Treier et al., 1998). Protein
expression persists in the infun-
dibulum and ventral diencephalon
through E14.5, and it is detectable in
the ventral region of the anterior lobe
at E14.5 (Fig. 1D). The major expres-
sion domain of WNT5A in the dien-
cephalon corresponds with the major
expression domain of TCF4 (Brink-

meier et al., 2007). Additionally, some
protein expression is detected in the
anterior and intermediate lobes of the
adult pituitary, but no expression is
detected in the posterior lobe of the
adult (Fig. 1F).

We examined expression of several
transcription factors in Wnt5a mu-
tants in an effort to elucidate the
mechanism underlying the dysmor-
phology. PITX2 protein expression is
present in Rathke’s pouch at E10.5,
indicating that the cells comprising
the characteristic dysmorphic oral ec-
toderm have committed to pituitary
cell fate (Fig. 1H). Wnt5a mutants

show unaltered expression of TCF4 in
the lower domain of the ventral dien-
cephalon (Fig. 1I,J). Unlike previous
reports of TCF4 expression (Cha et al.,
2004), immunoreactivity detected
with this antibody correctly mimics
Tcf4 mRNA expression from E10.5 to
E18.5, and no protein is detected in
the Tcf4 knockout (Brinkmeier et al.,
2007; Davis and Camper, 2007). Ex-
pression of an activated form of
B-catenin, which should be detected in
cells responding to canonical WNT
signaling, is unaltered in the Wnt5a
mutant (Fig. 1K,L).

Sox3 mutants and heterozygotes
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share a similar dysmorphic pituitary
phenotype with the Wnt5a mutants at
E10.5 and E11.5. The dysmorphology
in Sox3 mutants has been attributed
to the expanded domains of BMP and
FGF signaling and HesxI expression
(Rizzoti et al., 2004). Hesx1 expression
is unaltered in Wnt5a mutants at
E11.5 (Fig. 1IM,N) or at E12.5 (Cha et
al., 2004), suggesting that Wnt5a is
not upstream of Hesx1. Wnt5a mu-
tants exhibit truncated expression of
another homeobox gene, LHX3, at the
caudal aspect of the pouch, where
multiple invaginations of oral ecto-
derm tissue occur. Expression of an-
other LIM homeodomain factor, ISL1
is unaltered in the Wnt5a mutants
(Fig. 10-R).

Signals emanating from the ventral
diencephalon form distinct bound-
aries of expression around Rathke’s
pouch. Early in development, the
transcription factor SIX3 and signal-
ing molecules such as BMP4, FGFS,
and FGF10 are expressed in the por-
tion of the ventral diencephalon that
evaginates to become the infundibu-
lum, and later the posterior lobe of the
pituitary gland (Treier et al., 1998;
Cha et al., 2004; Davis and Camper,
2007). This domain of expression in
the ventral diencephalon forms a dis-
tinct rostral-caudal boundary of ex-
pression with Sonic hedgehog (Shh)
(Davis and Camper, 2007). Immuno-
histochemistry with an antibody that
detects the phosphorylated form of
SMAD1 (pSMAD1) was used as an in-
dicator of active BMP signaling. In
normal mice, expression of pSMAD1 is
detected in the caudal domain of the
ventral diencephalon in the same area
as Fgf10 transcripts. In the absence of
Wntba, pSMAD1 expression extends
rostrally, beyond the normal border of
the caudal domain (Fig. 1S,T). Fgf10
expression is mutually exclusive with
TCF4 expression and demarcates the
boundaries of the caudal and rostral
domains of the ventral diencephalon
in wild-type E10.5 embryos. In Wni5a
mutant embryos, however, Fgf10 ex-
pression is no longer limited to the
caudal domain. The expression do-
main is expanded along the ventral
diencephalon into the area that would
normally constitute the rostral do-
main (Fig. 1U,V). Thus, Wnt5a defi-
ciency causes expansion of both BMP

and FGF signaling domains in the
ventral diencephalon.

Wnt4 Has a Mild Effect on
Pituitary Cell Specification

Previous studies report a dramatic de-
crease in levels of GH, TSH, and
oaGSU immunoreactivity at E17.5 in
Wnt4-deficient animals (Treier et al.,
1998). To explore the mechanism that
underlies the hormone reduction in
these animals, we examined the pitu-
itary phenotype of the Wnt4 mutants.
To ensure our analysis would be com-
parable to the previous study, we used
the same mutant mice on the same
genetic background (Treier et al.,
1998). We confirmed that there is no
reduction in pro-opiomelanocortin
(POMC) immunoreactivity in the an-
terior or intermediate lobes of mutant
embryos, where it marks differenti-
ated corticotropes and melanotropes,
respectively (Fig. 2A,B). Equal SF1
expression at E16.5 in wild-type and
mutants suggests that the pregona-
dotrope population is unaffected by
loss of Wnt4 (Fig. 2C,D). In contrast to
previous reports, we observed no ap-
preciable reduction in chorionic go-
nadotropin alpha (CGA or «GSU) im-
munoreactivity at E16.5 or E18.5
(Treier et al., 1998). Furthermore, we
observed no reduction in levels of
FOXL2 (Fig. 21,J), a protein that is
coexpressed with aGSU in pregonado-
tropes and prethyrotropes, and acti-
vates aGSU transcription in cell cul-
ture and transgenic mice (Ellsworth et
al., 2006). At E16.5 and E18.5, we ob-
served a slight reduction in GH and
TSHB immunoreactivity in Wn¢4 mu-
tant pituitaries (Fig. 2K-N). PIT1-
positive cells were reduced in the mu-
tant embryos relative to wild-type at
E16.5 and E18.5 (Fig. 20-R), which
could underlie the reduced number of
somatotropes and thyrotropes. The
consistent reduction in PIT1 expres-
sion suggests that the differentiated
cell populations are reduced and not
simply developmentally delayed.

To confirm these qualitative results,
we quantified the immunoreactivity of
each hormone at E18.5 (Fig. 3). GH
immunoreactivity is significantly re-
duced in the mutants with a 66%
reduction in activity relative to wild-
type (P = 0.03). TSH immunoreactiv-
ity in the anterior lobe of the Wnt4

Effect of Wni4 on Pituitary
Hormone Immunoreactivity
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Fig. 3. Effect of Wnt4 on pituitary hormone
immunoreactivity. Sagittal sections taken at
embryonic day (E) 18.5 from three wild-type
and three mutant E18.5 Wnt4 embryos were
stained for growth hormone (GH), Thyroid-stim-
ulating hormone B subunit (TSHB), alpha glyco-
protein hormone subunit («GSU), and pro-opi-
omelanocortin (POMC). White bars represent
wild-types and black bars represent mutants.
Average optical density (OD) for each genotype
was obtained from three slides and repeated
three times using ImagePro Plus software. Op-
tical density parameters were set independently
for each hormone; therefore, OD levels are not
comparable between the different hormones.
OD units are arbitrary and represented in the
graph as 1x10E6. Repeated measures analysis
of variance analyses of the average optical den-
sity for each hormone were performed to deter-
mine statistical significance. For GH, P =
0.0317; for TSHB, P = 0.0402; for aGSU, P =
0.0495; for POMC, P = 0.8635. Asterisks indi-
cate P values at 0.05.

mutants is reduced 78%, which is sig-
nificant (P = 0.04). The difference in
aGSU immunoreactivity at E18.5 is
not obvious, but quantification of
oGSU levels in mutants revealed a
mild 27% reduction of immunoreactiv-
ity compared with wild-type, with a
borderline level of significance (P =
0.0495), suggesting that there could
be a subtle reduction. As expected,
POMC immunoreactivity in the ante-
rior lobe, which did not appear to be
grossly altered in Wni¢4 mutants, ex-
hibited no statistically significant
change when quantified; the 9% dif-
ference between wild-type and mutant
yields a P value of 0.86.

Independent Roles of Wnit4
and Wnt5a in Development

The canonical and noncanonical Wnt
signaling pathways may interact and
influence one another in development
(Topol et al., 2003; Zhou et al., 2007).
Wnit4 is frequently associated with the
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Fig. 4. A mild additive pituitary phenotype in a Wnt4, Wnt5a double mutant. A: Hematoxylin and eosin-stained paraffin sections of a Wnt4, Wntba
double mutant at embryonic day (E) 10.5. Sections are oriented sagittally, with rostral to the left and caudal to the right. An arrowhead indicates
dysmorphology of Wnt5a mutant. B: Coronal sections of embryos at day E18.5 were stained with antibodies to anterior pituitary hormones to examine
cell specification. Dysmorphology of the Wnt5a mutant (c) is indicated by the bracket. Prohormone convertase 2 (PC2) immunostaining shows
differentiation of parts of the dysmorphology of Wnt5a mutants into melanotropes (w, arrows). A Wnt4*/~, Wnt5a"/~ embryo is shown for comparison.
Sections are developed with diaminobenzidine (DAB) and counterstained with methyl green or hematoxylin.

noncanonical class of WNT molecules,
although some WNTs can activate dif-
ferent signaling pathways depending
on context (Mikels and Nusse, 2006). To
determine whether loss of Wni4-medi-
ated signaling affects the canonical
pathway in the pituitary and ventral
diencephalon, we analyzed expression
of the activated form of B-catenin in the
rostral domain of the ventral dienceph-

alon and found it was undisturbed. We
also found no changes in TCF4 immu-
noreactivity in the ventral diencepha-
lon at E12.5 or LefI mRNA levels in
Rathke’s pouch at E16.5 in Wnt4 mu-
tants (data not shown).

Wnt5a mutant pituitaries begin to
show signs of abnormal development at
E10.5. In these mutants, Rathke’s
pouch tissue expands rostrally, with ex-

tra invaginations of pouch tissue on the
caudal side (Fig. 4A, c). This dysmor-
phology persists through E18.5 (Fig.
4B, c, bracket), although hormone im-
munoreactivity remains largely unaf-
fected. The dysmorphic region of Wnt5a
mutants contains some somatotropes
(Fig. 4B, c; Cha et al., 2004), and a por-
tion of differentiated corticotropes and
melanotropes as indicated by the
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Fig. 5. Wnt6 is expressed near the pituitary during formation of Rathke’s pouch, but is not
required for pituitary development. Expression of Wnt6 at critical time points of pituitary organo-
genesis is detected by in situ hybridization using NBT and BCIP (nitroblue tetrazolium/5-bromo-
4-chloro-3-indolyl phosphate) for development of the purple precipitate. Sagittal sections of
embryonic day (E) 10.5-E14.5 embryos are oriented with dorsal at the top and rostral at the left.
Overnight hybridization without a riboprobe served as a negative control. Coronal sections of
normal and Wnt6 mutant embryos at E18.5 were immunostained and developed with diaminoben-
zidine to assess cell specification with antibodies to pro-opiomelanocortin (POMC), Growth hor-
mone (GH), Thyroid-stimulating hormone B subunit (TSHR), luteinizing hormone B subunit (LHB),
and alpha glycoprotein hormone subunit («GSU). Sections are counterstained with methyl green.

POMC and prohormone convertase 2
(PC2) staining in the region (Fig. 4B, s,
w). This expression of PC2 was used to
assess the cell specificity of POMC-pos-
itive cells in the dysmorphic intermedi-
ate lobe of the Wnt5a mutants. Patches
of cells in the Wnt5a mutant are posi-
tive for PC2 immunoreactivity, suggest-
ing that only part of the dysmorphic
tissue is truly intermediate lobe. POMC
staining appears normal in the inter-
mediate lobes of all genotypes exam-
ined. These hormone-positive cell types

cannot account for all of the cells in the
dysmorphic region, however, suggest-
ing some of the cells fail to complete a
hormone-producing differentiation pro-
gram.

Surviving Wnit4, Wnt5a
Double Mutants Reveal no
Overlapping Function in
Pituitary Development

To assess the potential genetic interac-
tion of Wnt4 and Wnt5a in the pituitary,

e12.5 e12.5 e14.5 14,5 Adult Adult
+HT - - 4
HPRT

Fig. 6. Many Wnt pathway genes are ex-
pressed in the developing pituitary. Reverse
transcriptase-polymerase chain reaction (RT-
PCR) was used to detect expression of Wnt
signaling pathway members and regulators
during various times of pituitary gland develop-
ment. RNA from the specified ages was ana-
lyzed using intron-spanning primers specific to
each Wnt and Frizzled gene. For positive con-
trols, cDNAs generated from adult and embry-
onic tissues were chosen that had previously
been reported to express each Wnt or Fzd
gene. Water was used as a negative control.
HPRT-PCR products showing +RT and —RT
reactions confirm no genomic contamination in
the E12.5, E14.5, or adult pituitary cDNA. PCR
products were sequenced to confirm the iden-
tity of each gene.

we produced F1 double heterozygotes
and intercrossed them to generate
Wntd4, Wntba double mutants. The
progeny had a genetically heteroge-
neous background, which arose from
the different mixed backgrounds that
constituted the stocks for the Wnt4 and
Wnt5a mutants. Only two homozygous
double mutant embryos were obtained
at E£10.5, and neither embryo appeared
to be viable. Wnt4, Wntba double mu-
tants appear to die by an unknown in-
teraction of the two genes early in de-
velopment. At E10.5, double mutant
embryos appear dead or dying, but their
pituitaries resemble the Wnt5a single
mutant phenotypically at this age (Fig.
4A, ¢, d). At E12.5, most Wne4+/ ™,
Wnt5a~ '~ embryos are necrotic, with
development arrested at or before E10.5
(n = 6/8). One double mutant was ob-
tained from 93 embryos at E18.5. Re-
sults of a x? test show that this distri-
bution of genotypes is not attributable
to chance at either developmental
stage: at E12.5 P < 0.05 and at E18.5
P < 0.005 (Table 1).
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TABLE 1. Wnt4, Wnt5a Double Mutants Are Underrepresented?
E10.5 E12.5 E18.5
Ratios Wntb5a Wnt4 Observed Expected Observed Expected Observed Expected
1/16 +/+ +/+ 2 5 1 3 11 6
2/16 +/— +/+ 6 10 8 6 13 12
1/16 —/— +/+ 5 5 1 3 1 6
2/16 +/+ +/— 15 10 8 6 15 12
4/16 +/— +/- 24 20 18 12 36 23
2/16 —/— +/— 17 10 2% 6 7 12
1/16 +/+ —/— 4 5 5 3 5 6
2/16 +/— —/— 5 10 5 6 4 12
1/16 —/— —/— 2 5 0 3 1 6
Total 80 P <0.9 48 P < 0.05 93 P < 0.005
aResults of a x? test show that the distribution of these genotypes is likely not due to chance at e12.5 (P < 0.05) and at e18.5 (P <
0.005). *Six severely necrotic embryos were also found at this genotype.

The Wnt4~'~, Wntsa~’~ pituitary
exhibits an additive phenotype. Soma-
totropes and thyrotropes appear to be
slightly reduced in the double mutant
relative to wild-type, mimicking the
findings for Wni¢4 (Fig. 4B, d, h), while
«GSU immunoreactivity does not ap-
pear drastically reduced. LHB and
POMC immunoreactivity appears nor-
mal at all genotypes examined. The dys-
morphology evident around the lumen
of the Wnt5a mutants is also apparent
in the double mutant (Fig. 4B, d, h, 1, p,
t, X). Whereas hormone immunoreactiv-
ity remains largely unaffected, both
Wntba single mutants and the Wni4,
Wntb5a double mutant contain a dys-
morphic cleft crossing the lumen be-
tween the intermediate and anterior
lobes. The intermediate lobe of the dou-
ble mutant expresses PC2 in the same
subset of cells as the single Wnt5a mu-
tant (Fig. 4B, w, x), suggesting the cell
specification process in the double mu-
tant is not altered beyond that of the
single mutant. The combined pheno-
types among the rare viable animals
observed at either age do not appear
more severe than either single mutant,
which suggests separate roles for Wni4
and Wnt5a in pituitary development,
despite the interaction in other develop-
ing organs that causes reduced viabil-
ity.

Wnt6 Does Not Affect
Pituitary Gland Development
A cDNA library generated from dis-

sected Prop1%’? Rathke’s pouch tis-
sue at E14.5 contained Wnit6 cDNA

(Carninci et al., 2003). Wnt6 tran-
scripts are detected in tissues sur-
rounding the developing pituitary be-
ginning at E10.5. At this stage, Wnt6
is present in the pharyngeal arch. Ex-
pression in the oral ectoderm underly-
ing the pituitary is detectable at E12.5
and to a lesser extent at E14.5 (Fig. 5,
arrowheads). No expression is detect-
able in Rathke’s pouch or its deriva-
tives. Expression is extinguished in
the oral ectoderm by E18.5. Expres-
sion of POMC, GH, TSHB, LHB, and
aGSU is unchanged in Wnt6~/~ em-
bryos at E18.5. This finding suggests
that Wnt6 is dispensable for normal
differentiation of pituitary cell lin-
eages and morphogenesis.

WNT Pathway Expression in
the Pituitary Gland

Because Wnt4, Wntba, and Wnt6
were not critical for pituitary differ-
entiation, we performed a polymer-
ase chain reaction (PCR) screen for
the presence of other Wnts in the
developing pituitary gland. Intron
spanning primers were used to am-
plify Wnt and Fzd transcripts from
Rathke’s pouch RNA collected at
E12.5 and E14.5, and from adult pi-
tuitaries. The c¢DNAs generated
from the pituitary RNA, as well as
from control tissues, were used as
templates. Tissues for positive con-
trols were selected based on previous
reports of Wnt or Fzd expression in
that tissue (www.informatics.jax.
org). Adult testis, kidney, and lung,

and E12.5 head, E12.5 body, and
E14.5 body RNA were used as posi-
tive controls for this assay. From
this RT-PCR screening, transcripts
from several Wnt and Fzd genes
were identified in the pituitary with
varying temporal expression pat-
terns (Fig. 6). Identities of the RT-
PCR products were confirmed by
DNA sequencing.

Wntll and Wntl6 were expressed
at all time points examined. Other
Wnts such as Wni2b, Wnt3, and
Wnt10b were expressed only at one
time point (E14.5, E12.5, adult, re-
spectively). Wntbb, Wnit7a, and Wni7b
expression were not detected in the
pituitary gland at any of the times
examined (data not shown).

Several receptors of the WNT sig-
naling pathway were also detected in
the survey. Fzdl expression is de-
tected in the embryonic ¢cDNA, and
Fzd2, Fzd3, and Fzd4 expression is
observed at all three times in pitu-
itary development. Fzd6 and Fzd8 are
detected in developing E12.5 and
E14.5 pituitary ¢cDNA, but not in the
adult tissue. Fzd9 is not detected in
the pituitary at any of the times ex-
amined (data not shown).

Regulators of the WNT pathway
are also present in the pituitary. Wnt
inhibitory factor-1 (Wifl) is detected
throughout pituitary gland develop-
ment and in the adult. Wise, the Wni#
inhibitor in the surface ectoderm,
and its highly related counterpart
Sclerostin, Sost, were also detected
during embryonic stages.
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In Situ Hybridization
Analysis for Expression of
Wnt Pathway Members

In situ hybridization analysis of Wnts
and Frizzleds identified in the initial
RT-PCR survey reveal temporally and
spatially restricted expression of
these genes in the pituitary gland and
ventral diencephalon (Fig. 7). Wnt11
and Wnt16 are expressed in Rathke’s
pouch beginning at E10.5 and con-
tinuing through E16.5. Expression
can also be detected in the rostral,
lower domain of the ventral dienceph-
alon early in development, from E10.5
to E12.5. Wntll and Wntl6 tran-
scripts, however, appear to be ex-
cluded from the forming infundibulum
at all ages examined. Their expression
within Rathke’s pouch is concentrated
dorsally, with less hybridization sig-
nal in the area of differentiating cells
in the anterior lobe. Expression of
Fzd3 is detected in the lower domain
of the ventral diencephalon with no
detectable expression in the infundib-
ulum. This is similar to Wntl1 and
Wnt16 expression patterns. Fzd6 ex-
pression is detectable throughout the
ventral diencephalon and Rathke’s
pouch through E16.5. Dvl2 and the
negative regulator of WNT signaling,
Axin2, are expressed in the ventral
diencephalon with Wnt11, Wnt16, and
Fzd3. Dvl2 and Axin2 expression are
also concentrated in the dorsal aspect
of Rathke’s pouch.

DISCUSSION

Wnit5a Affects Patterning of
the Ventral Diencephalon

Wnt5a mutant animals exhibit pitu-
itary dysmorphology (Cha et al.,
2004). Our data implicate expanded
FGF and BMP signaling as the under-
lying mechanism for the dysmorphol-
ogy. Bmp4 is required for the invagi-
nation of Rathke’s pouch (Takuma et
al., 1998), but noggin expression is re-
quired to attenuate this dorsal BMP
activity (Davis and Camper, 2007).
The excess BMP activity that we ob-
served in Wnt5a~/~ embryos may
induce additional oral ectoderm to
invaginate, contributing to the dys-
morphology. Sox3- and Tcf4-deficient
mice exhibit expanded BMP and FGF
signaling and abnormalities in Rathke’s
pouch (Rizzoti et al., 2004; Brinkmeier

et al., 2007). Taken together, these ob-
servations support the idea of cross-talk
between the signaling pathways.

Elevated levels or temporal expan-
sion of Hesx1 transcription can cause
inappropriate induction of Rathke’s
pouch tissue from the oral ectoderm
(Dattani et al., 1998). We examined
Hesx1 expression in the oral ectoderm
of Wnt5a mutants at E11.5, but we
noted no change, suggesting that
Hesx1 does not contribute to the dys-
morphology in Wnt5a mutants. Sox3
is expressed early in development in
the ventral diencephalon and pre-
sumptive hypothalamus in a similar
pattern to that of Wnt5a (Solomon et
al., 2004), and mutations in both of
these genes result in similar expan-
sion of BMP and FGF signals. Wnt5a
and Sox3 may function in a similar
pathway or parallel pathways because
Sox3 expression is unaltered in Wnt5a
mutants (data not shown).

FGF signaling induces proliferation
and expansion of pituitary cell types
in pituitary explants, and overexpres-
sion of FGF in transgenic mice causes
excess proliferation and pouch dys-
morphology (Ericson et al., 1998;
Treier et al., 1998). Based on these
observations, we suggest that the ex-
pansion of the Fgf10 expression do-
main in Wntba mutants may induce
additional oral ectoderm tissue to dif-
ferentiate into Rathke’s pouch. The
excess tissue could result in extra
folds along the lumen, causing the
characteristic dysmorphology.

FGF overexpression interferes with
cell specification and causes striking
dysmorphology in transgenic mice,
but Wnt5a mutants have normal cell
specification and mild dysmorphology
(Treier et al., 1998; Cha et al., 2004).
This discrepancy could be due to the
fact that expansion of FGF expression
is transient and within the physiolog-
ical range in Wnt5a mutants, and the
overall level of excess FGF produced
in transgenic mice is much higher and
potentially nonphysiological. Wntba
can antagonize the canonical WNT sig-
naling pathway (Topol et al., 2003), and
it can stabilize B-catenin under certain
circumstances (Mikels and Nusse,
2006). Although the spatial and tempo-
ral expression patterns of WNT5A and
activated B-catenin overlap in tissues
adjacent to the pituitary gland, we ob-
serve no difference in levels of activated

B-catenin immunoreactivity in the
Wntb5a mutant (Fig. 1K,L). Thus, Wnt5a
is not likely to be the activating signal
for B-catenin in this context.

Lhx3 has been shown to be impor-
tant for pituitary cell survival (Zhao et
al., 2006; Ellsworth et al., 2008). For
proper LHX3 expression, other pitu-
itary factors such as Lhx4, or the com-
bination of Pitx1 and Pitx2 transcripts
are required (Raetzman et al., 2002;
Charles et al., 2005). Additionally, in-
hibition of BMP signaling (Noggin)
and Notch activation of transcrip-
tional repressors (HesI) are required
for normal expression of LHX3 (Davis
and Camper, 2007; Raetzman et al.,
2007). We observe the same exclusion
of LHX3 expression from the caudal
side of Rathke’s pouch in Wnt5a mu-
tants as was observed in Hesl mu-
tants. This finding implicates the in-
terplay of several different signaling
pathways in the activation of critical
pituitary transcription factors.

The dysmorphology characteristic
of Wnt5a mutants at E18.5 has a
striking similarity to that of the grou-
cho-related Aes mutant mice, which
exhibit an abnormal connection of pi-
tuitary tissue to the intermediate lobe
(Brinkmeier et al., 2003), and some
phenotypic similarity to the Propl
mutant (Ward et al., 2005). The dys-
morphic tissue of Wnt5a mutants is
comprised of some GH-positive cells,
and cells destined to become interme-
diate lobe, although the dysmorphic
region contains some incompletely dif-
ferentiated cells. These undifferenti-
ated cells may result from an abnor-
mal connection of neural tissue to the
intermediate lobe, as seen in the
Uncx4.1 mutant mice at birth (As-
breuk et al., 2006).

Interaction between WNT5A, FGF,
and BMP signaling pathways has
been observed in other organs. Fgf10
is up-regulated in the Wnt5a mutant
lung, and overexpression of Wnt5a in
developing lung causes increased
Fgf10 expression, altered spatial pat-
tern of Bmp4 expression, and reduced
epithelial branching (Li et al., 2002,
2005). In addition, expression of Fgf8
can reduce Wnt5a expression in the
developing mouse cerebral cortex
(Shimogori et al., 2004). Together,
these findings support our hypothesis
that Wnt5a regulates Fgf10 in the
ventral diencephalon, which has an
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Fig. 7. Spatial expression patterns of Wnt pathway members in the developing pituitary and ventral diencephalon. A-E: Formation of Rathke’s pouch is illustrated
from embryonic day (E) 10.5 to E16.5. At E10.5, the oral ectoderm begins to invaginate and pinches off around E11.5 to form Rathke’s pouch. Meanwhile, the ventral
diencephalon evaginates to form the infundibulum. From E12.5 to E14.5, the anterior lobe begins to form as cells surrounding the lumen rapidly divide and migrate
out of the pouch. By E16.5, the three distinct lobes of the developing pituitary are evident, with the posterior lobe arising from the infundibulum. In situ hybridizations
were performed on wild-type sagittal sections from E10.5 to E16.5 to determine temporal and spatial patterns of expression. Slides are oriented with dorsal to the
top and rostral to the left. Inset panels (v, aa) show sense slides for negative controls. VD, ventral diencephalon; OE, oral ectoderm; OC, oral cavity; INF, infundibulum;
RP, Rathke’s pouch; C, cartilage plate of hard palate; P, developing posterior lobe; |, developing intermediate lobe; A, developing anterior lobe.
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indirect effect on Rathke’s pouch.
Thus, the balance between each sig-
naling pathway is critical for normal
pituitary gland organogenesis.

Wnt4 Causes Reduction in
the PIT1 Lineage

Wnit4 is expressed early in develop-
ment, from E9.5 in Rathke’s pouch,
with limited expression in the dorsal
aspect of the pouch through E14.5
(Treier et al., 1998; Olson et al., 2006).
Whnit4 is also expressed in the oral ecto-
derm throughout development. Wnit4
was implicated as a necessary element
in anterior pituitary precursor cell ex-
pansion and aGSU expression (Treier
et al., 1998).

Our analysis of Wnt4 mutants at
E16.5 and E18.5 reveals a mild reduc-
tion of anterior lobe size, although, in
contrast to the previous report, we see
no drastic reduction in aGSU cell
number at either E16.5 or E18.5, and
quantification of «GSU immunostain-
ing results in a barely significant
change in expression (P = 0.0495).

The pituitary transcription factor
PIT1 is responsible for differentiation
and expansion of somatotropes, thyro-
tropes, and lactotropes (Camper et al.,
1990; Li et al., 1990). We have found
Wnit4 mice have reduced PIT1, which is
likely the cause for the reduction in
numbers of somatotropes and thyro-
tropes. Pit1 deficiency does not alter the
size of the pituitary gland until several
days after birth, so the delay in Pitl
expression does not account for the pi-
tuitary hypoplasia in Wn#4 mutants
during gestation (Ward et al., 2006).

Wnt4 and Wnt5a Function
Independently in the
Pituitary Gland

Currently, 19 WNT-related genes have
been identified in the mouse (http:/
www.stanford.edu/~rnusse/wntwindow.
html). Due to the large number of mam-
malian WNT family members, WNTs
are likely to compensate for one another
in development. Wnt4 and Wnt5a may
both function in the noncanonical WN'T/
Ca?* pathway (reviewed in Kuhl et al.,
2000). Because Wni4 and Wntba are
expressed in complementary regions
in and surrounding the pituitary
gland, and have overlapping temporal
expression patterns, we conducted a

classic double mutant analysis to test
for interaction between the two genes.

Conditional mutants for Wn¢4 and
Wnt5a would be ideal for studying ge-
netic interaction in the pituitary
gland because double mutants were
underrepresented at £E10.5 and E18.5,
suggesting that Wnt4 and Wnt5a are
interacting early in development, re-
sulting in lethality of some embryos
before E10.5. Because pituitary hor-
mones are not necessary for fetal
growth or survival to term, the lethal-
ity must arise from a requirement for
either Wnt4 or Wnt5a in other organs.
We do not observe a genetic interac-
tion between Wnt4 and Wnt5a in the
pituitary glands of the surviving dou-
ble mutants. Wnt4 mutants do not
have an observable morphological
phenotype at E10.5, and a double mu-
tant at this age exhibits the character-
istic Wnt5a phenotype. At E18.5, an
additive phenotype is observed in the
double mutant. This finding suggests
that the roles of Wnt4 and Wnt5a in the
pituitary gland are functionally distinct
and not synergistic or overlapping.

Wnt6 Is Not Required for
Pituitary Gland Development

Using in situ hybridization, expres-
sion of Wnt6 was localized to the oral
ectoderm, but Wnt6 was not detected
in Rathke’s pouch tissue at any time
examined throughout development.
Expression of Wnt6 was detected by
RT-PCR in E12.5 laser-captured
Rathke’s pouch ¢cDNA (Olson et al.,
2006). This finding may indicate that
there are low levels of Wnt6 expres-
sion in Rathke’s pouch that precluded
detection by in situ hybridization, or
the laser capture may have included
oral ectoderm outside the pituitary
anlage. Despite this discrepancy in ex-
pression patterns, it is clear that Wnt6
mutants exhibit no obvious pituitary
morphological abnormalities and un-
dergo cell differentiation appropriately.
Thus, the expression of Wnit6 is not re-
quired for pituitary gland development.

Multiple Opportunities for
Wnt Signaling to Regulate
Pituitary Growth and
Development

TCF4 was detected in Rathke’s pouch,
and expression was localized by im-

munohistochemistry to the rostral do-
main of the ventral diencephalon
(Douglas et al., 2001; Brinkmeier et
al., 2007). In the absence of Tcf4, the
pituitary gland exhibits a profound in-
crease in anterior lobe size, demon-
strating an important role for TCF4 in
repressing pituitary gland growth
(Brinkmeier et al., 2003).

It is not known which WNT, if any,
regulates Tcf4 expression. An RT-
PCR survey performed on laser-cap-
tured E12.5 Rathke’s pouch c¢DNA
also reports expression of Wnts 3, 11,
and 16 at E12.5. Additionally, it was
reported that Wnts 5b, 7a, and 7b
were present at E12.5 (Olson et al.,
2006), although these transcripts
were not detected in our survey. Our
analysis suggests that Wnt11 and
Wnt16 are expressed in a pattern that
might permit them to activate Tcf4
expression (Fig. 8). Such a role has
been suggested for Wnt16 in synovial
joint formation (Guo et al.,, 2004)
where activated B-catenin is detected
in the rostral domain concurrent with
Wnt1l and Wntl6 expression. Fur-
thermore, LEF/TCF reporter expres-
sion is activated in the caudal domain
of the ventral diencephalon in an over-
lapping pattern with Fgf10 and Bmp4,
suggesting that canonical WNT sig-
naling may modulate FGF and BMP
signaling in that region (Maretto et
al., 2003).

The spatial and temporal pattern of
Wntl11 expression mimics the expres-
sion of Wnt16 (Fig. 8). While Wnt16 is
thought to activate the canonical
WNT/B-catenin pathway, Wnt11 is of-
ten classified with Wnt5a in the non-
canonical WNT pathway. It is possible
that both canonical and noncanonical
signaling pathways are actively par-
ticipating in patterning of the ventral
diencephalon and Rathke’s pouch.
Wntl1l is proposed to have overlap-
ping functions with FGF ligands and
receptors and members of the BMP
family in regulation of ureteric
branching (Majumdar et al., 2003).
Wnt11l and Wnt5a regulate conver-
gent extension movements in the ze-
brafish, and their activities are nega-
tively regulated by a gradient of BMP
signaling (Myers et al., 2002). This
finding suggests that Wnt11 and
Wnt5a may similarly pattern the pitu-
itary gland, in part by influencing
BMP signaling, but may not be in-
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Extracellular Components

Wnt11/Wnt16/Fzd3
Wnt5a

Whnt Regulators/
Signaling Factors

Axin2/Dvi2
FGF/BMP

Nuclear Components

p-catenin

Fig. 8. Gene expression summary of bone morphogenetic protein (BMP), fibroblast growth factor (FGF), and WNT signaling molecules. Signals
from the ventral diencephalon and from Rathke’s pouch early in development are important for proper patterning of the pituitary gland. These
signals are expressed in a spatially restricted manner that is important for regulating pituitary shape and growth. Wnt4 has a limited window of
expression in Rathke’s pouch (Treier et al., 1998). WNT5A is expressed throughout the ventral diencephalon and in Rathke’s pouch early in
development. Wnt11, Wnt16, and Fzd3 are expressed in the rostral domain of the ventral diencephalon, and excluded from the caudal domain
and infundibulum. Their expression is also seen in Rathke’s pouch, where it becomes dorsally concentrated by E14.5. These factors, along with
Axin2 and DvI2, are expressed in a mutually exclusive pattern relative to FGF and BMP, suggestive of an antagonistic regulation. Fzd6 has no
such restriction and is expressed throughout the pouch and ventral diencephalon. Downstream effecter TCF4 is also expressed throughout the
ventral diencephalon, particularly on the apical side. Activated B-CATENIN expression is seen in the rostral domain of the ventral diencephalon.
Taken together, these expression studies suggest extensive Wnt activity in the developing pituitary gland, with potential for overlapping
functions among different members of the family.

volved in specification of the hormone-
producing cell types.

The expression patterns of Axin2
and Dvl2 are also similar to the ex-
pression patterns of Wn¢ll1 and
Wnt16 (Fig. 8). AXIN2, known to be
an inhibitor of canonical WNT sig-
naling, was reportedly expressed in
the ventral aspect of Rathke’s pouch
from E11.5 to E14.5 (Olson et al.,
2006). Our Axin2 probe was gener-
ated from a full-length ¢cDNA that
was completely sequenced. This
probe revealed an expression pat-
tern beginning at £10.5 in Rathke’s
pouch, and continuing through
E16.5. The specific pattern of expres-
sion, including concentrated mRNA
signal in the dorsal aspect of the
pouch, as well as in the rostral do-
main of the ventral diencephalon,
supports our hypothesis that Wnt
signaling is active in the pituitary
and adjacent ventral diencephalon.
Whereas Olsen et al. (2006) report
no change in expression of Axin2 in
E14.5 PropI null embryos, Axin2 ex-
pression has been shown to be down-
regulated in Propl?’¥ P1 cDNA
compared with wild-type by means of
gene expression microarray analysis,
suggesting more than just a circum-
stantial connection between Propl
and WNT signaling (Mortensen and
Camper, unpublished observations).

Wnt10b is unique among the WNTs
we surveyed in that it is expressed only
in the adult pituitary gland. Wnt10b ex-
pression is detected in a high fraction
(11/14) of human pituitary adenomas
(Howng et al., 2002). WNT expression
in adult pituitary might affect BMP sig-
naling in the same way that we ob-
served in pituitary development. This
finding could be significant because
BMP4 promotes cell proliferation in the
prolactinomas, the most common type
of pituitary adenoma (Paez-Pereda et
al., 2003).

In conclusion, we have clearly de-
fined the roles of Wnt5a, Wnt4, and
Wnt6 in development of the pituitary
gland, and implicate additional
WNT family members that may play
functional roles. The ability of WNTs
to influence BMP and FGF signaling
pathways emerges as a common
theme in the pituitary gland
(Camper, 2004; Rizzoti et al., 2004,
Brinkmeier et al., 2007; Davis and
Camper, 2007). Disruption of this
balance in two WNT mutants results
in patterning defects, dysmorphol-
ogy, and a developmental delay in
cell specification. The discovery of
numerous other WNT family mem-
bers expressed in the pituitary gland
and ventral diencephalon suggests
that there may be multiple roles for
WNT genes in pituitary development

and a great deal of overlapping func-
tion among WNT family members.

EXPERIMENTAL
PROCEDURES

Mouse Care and Embryo
Preparation

Wnt5a mutant mice on a mixed
129SvP™ and C57BL/6 background
were obtained from Stephen Jones
(Yamaguchi et al., 1999) and main-
tained at the University of Michigan
by heterozygote matings. The 129-
Wnit4t™14me | J mutant mice were ob-
tained from The Jackson Laboratory
and maintained at the University of
Michigan by heterozygote matings
and matings with wild-type C57BL/6J
females, also from The Jackson Labo-
ratory. We will refer to these mice as
Wnt4~'~. Wnt4, Wnt5a double mu-
tants were obtained by intercrossing
double heterozygous animals obtained
from a Wnt4"/~ X Wntba™’~ paren-
tal cross. A Wnt6 null allele was gen-
erated by Andreas Kispert at the In-
stitute for Molecular Biology at
Hannover Medical School, Germany,
where E18.5 embryos were generated
by heterozygous matings. Exon 3 and
exon 4 were deleted from the Wnt6
locus to ensure generation of a null
allele. Integrity of the null allele was
ascertained by restriction fragment
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length polymorphism analysis. The
generation of the Wnt6 allele will be
fully reported elsewhere. Mice were
housed under the supervision of the
Unit for Laboratory Animal Medicine
and the University Committee for Us-
age and Care of Animals, and all pro-
cedures were in compliance with the
principles outlined in the NIH Guide-
lines for the Care and Use of Experi-
mental Animals. Genotyping was per-
formed as previously described for
Wnit4 (Stark et al., 1994) and Wntba
(Cha et al., 2004). Noon of the day of
the vaginal plug is designated as em-
bryonic day 0.5. Embryos were dis-
sected and fixed 30 min overnight in
3.7% formaldehyde in phosphate buff-
ered saline at 4°C. Embryos were de-
hydrated to 100% ethanol, embedded
in a Citadel 1000 (Thermo Electric,
Chesire, England) paraffin-embed-
ding machine and sectioned sagittally
or coronally at 6pum thickness for im-
munohistochemistry and in situ hy-
bridization.

Immunohistochemistry,
In Situ Hybridizations,
and Histology

Immunohistochemistry for the pitu-
itary hormones was performed on par-
affin sections as previously described
(Kendall et al., 1994), and visualized
with diaminobenzidine (DAB) chro-
mogen. Antibodies used in fluorescent
immunohistochemistry were incu-
bated at 4°C overnight. Rabbit anti-
phosphorylated SMAD1 (pSMADI;
Cell Signaling Technology, Inc., Dan-
vers, MA) was used at 1:200 dilution
overnight, and goat anti-WNT5A
(R&D Systems Inc., Minneapolis, MN)
at a 1:100 dilution overnight. Mouse
anti-Lim3 (LHX3) monoclonal anti-
body (Developmental Studies Hybrid-
oma Bank, U of Iowa) was used at a
1:200 dilution and mouse anti-TCF4
(Upstate Cell Signaling, Charlottes-
ville, VA) was applied at 1:100. Mouse
anti-activated B-CATENIN monoclo-
nal antibody (Millipore, Billerica, MA)
was used at a 1:100 dilution. The pu-
rified antibody for PITX2 was a gift
from Dr. Phil Gage (University of
Michigan), and was generated by Dr.
Tord Hjalt, (Lund University, Swe-
den). Antibody staining was per-
formed after treating slides with 3%
H,0O,:methanol 1:1 for 20 min fol-

lowed by boiling 10 min in 0.1M citric
acid pH 6.0. Primary antibodies were
added after a 30-min block in TSA
blocking reagent. For pSMAD1 and
PITX2, biotin-conjugated anti-rabbit
secondary antibody at 1:200 (Jackson
Immunoresearch, West Grove, PA)
was used and for WNT5A, biotin-con-
jugated anti-goat secondary antibody
at 1:200 was used (Vector Labs, Bur-
lingame, CA). For LHX3, TCF4, and
B-CATENIN, biotin-conjugated anti-
mouse secondary antibody from the
M.O.M Kit (Vector Labs) was used.
Amplification and detection were car-
ried out with the TSA Fluorescein
System (Perkin-Elmer, Wellesley,
MA) according to the manufacturer’s
directions.

Quantification of immunostained
pituitary sections was performed us-
ing the ImagePro Plus 6.2 software
program (Media Cybernetics, Inc., Be-
thesda, MD; Meynen et al., 2007;
Mitchell et al., 2007). Three sagittal
slides were taken from each of three
Wnit4 mutant and three wild-type or
heterozygous embryos at E18.5. The
anterior lobes of these sections were
selected as the area of interest, and
immunoreactive sites exclusively in
the anterior lobes were identified us-
ing the program’s histogram based
color selection, which was set to recog-
nize the DAB-stained cells. For GH,
TSHB, «GSU, and adrenocorticotropic
hormone, the ImagePro Plus inte-
grated optimal density (I0D) was cho-
sen to quantify the amount of DAB
staining for each slide, and the sums
of optical density for each section were
recorded, resulting in a calculation in
arbitrary units for the amount of each
hormone present. Each section was
analyzed three separate times to en-
sure the software program was read-
ing the samples consistently, and
therefore the optical density for each
slide was averaged. The averaged I0OD
values for the three slides for each of
the six embryos examined were ana-
lyzed for significance using a repeated
measures analysis of variance test in
StatView 5.0.1 from SAS Institute,
Inc. (Cary, NC), and P-values were
generated using P < 0.05 as signifi-
cant.

In situ hybridizations were per-
formed on paraffin sections using
digoxigenin-labeled antisense ribo-
probes (Roche, Indianapolis, IN) as

previously described (Douglas et al.,
2001). Probes for Wnt11, Wntl16, and
Fzd3 were generated from RT-PCR
products as described below, cloned
into pGEM-T Easy cloning vector
(Promega, Madison, WI), and verified
by DNA sequencing. Wntl1 was sub-
cloned into pBluescript (Stratagene,
La Jolla, CA), and the antisense probe
was linearized with Kpnl and labeled
with T3 polymerase. Wnt16 was lin-
earized with Ncol and labeled with
SP6 polymerase, and Fzd3 was linear-
ized with Sphl and labeled with SP6
polymerase. Probes were diluted 1:50
and hybridized at 50°C overnight.
Probes for Wnt6, Fzd6, Axin2, and
Dvl2 were obtained from embryonic
pituitary cDNA libraries (Carninci et
al., 2003). Wnt6 was linearized with
Notl and labeled with T3 polymerase
and hybridized at 55°C. Fzd6, Axin2,
and Dvl2 were linearized with Sall,
labeled with T3, and hybridized at
53°C. A plasmid containing Fgf10 was
a gift from Brigid Hogan (Duke Uni-
versity Medical Center), and a probe
was generated using BamHI to linear-
ize and T3 polymerase to label. A plas-
mid containing Hesx1 was a gift from
Paul Q. Thomas (University of Ad-
elaide, Australia). An antisense probe
was generated by BamHI lineariza-
tion and labeling with T3 polymerase,
and sense probe generated with EcoRI
and T7. For negative controls, sense
probes were generated or no probe
was added for hybridization. Hema-
toxylin and eosin staining were per-
formed as previously described (Cha
et al., 2004).

RT-PCR

RNA was isolated from Rathke’s
pouches dissected from wild-type em-
bryos at E12.5 and E14.5, and from
wild-type adult pituitaries using the
Trizol method per manufacturer di-
rections (Invitrogen, Carlsbad, CA).
Five micrograms total RNA was
treated for 30 min with DNasel (Pro-
mega) and purified with the RNeasy
Mini Kit (Qiagen, Valencia, CA).
cDNA was generated using a Super-
Script First-Strand Synthesis System
for RT-PCR (Invitrogen) as suggested
by the manufacturer. One microliter
of resulting cDNA was used as tem-
plate in a 25-pl PCR reaction. Intron-
spanning primers were used to am-
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plify PCR products on a Mastercycler
gradient PCR machine (Eppendorf, New
York, NY). The PCR was performed un-
der the following conditions: 92°C for 3
min, followed by 40 cycles of 92°C for
30 sec, annealing temperature for 45 sec,
and 72°C for 1 min, followed by a final
extension at 72°C for 10 min. Primer
sets are listed 5'-3" as follows: Wnt2b
GAGGAGGCGATATGATGG, AGT-
CAGAGGCTTGAAGTG; Wnt3 G-
CTGCCAAGAGTGTATTCG, CC-
TGTTCTGTTGCGGTAG; Wnt10b
CTGTTCTTGGCTTTGTTCAGTCG,
CAGAGTTGCGGTTGTGGGTATC;
Wnt1l AAGGACTCAGAACTTGTG-
TATC, CCTGGTGTGGTGTCTTCC;
Wnt16 GACCGAATGTTCCTGTGAC,
CGTAGCAGCACCAGATAAAC; Fzd1
CCGGCCGGCTGAGCTTGGAACT,
CAGGCGCGTACATGGAGCACAGGA,;
Fzd2 TCGCCTGCTACTTCTATGAG,
ACCTGGGAGAGGGGAAAG; Fzd3
GGATGACCAAAGAAGCAAAGC,
GGATGACCAAAGAAGCAAAGGC;
Fzd4 TACATCTGGGTGAAGAGGA-
GCCTG, CTGCCAAAAACCAAGTGA-
GTGTC; Fzd6 CGGAATGGCAGGGA-
AAGC, TGTACCACTGGGCTACTCTC;
Fzd8 TGCCCTGCCACAACCCCTT-
CTTTA; and CAGCGCGGGGCCAGT-
GGTCTCATA.

Wifl primers were as described
(Heller et al., 2002). Wise and Sost
primers were as described (Yanagita
et al., 2006). PCR products were puri-
fied using a QiaExII Gel Extraction
Kit (Qiagen) and sequenced to confirm
their identity. Positive control cDNA
was generated from E12.5 head, E12.5
body, E14.5 head, and E14.5 body,
liver, kidney, lung, and testis and
used as positive controls for each
primer set. HPRT primers were used
to determine quality of the cDNA and
as a negative control on nontran-
scribed RNA.
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