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Abstract

In radiotherapy a common method used to compensate for patient setup error
and organ motion is to enlarge the clinical target volume (CTV) by a ‘margin’
to produce a ‘planning target volume’ (PTV). Using weighted power loss
functions as a measure of performance for a treatment plan, a simple method can
be developed to calculate the ideal spatial dose distribution (one that minimizes
expected loss) when there is uncertainty. The spatial dose distribution is
assumed to be invariant to the displacement of the internal structures and the
whole patient. The results provide qualitative insights into the suitability of
using a margin at all, and (if one is to be used) how to select a ‘good’ margin
size. The common practice of raising the power parameters in the treatment
loss function, in order to enforce target dose requirements, is shown to be
potentially counter-productive. These results offer insights into desirable dose
distributions and could be used, in conjunction with well-established inverse
radiotherapy planning techniques, to produce dose distributions that are robust
against uncertainties.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Three-dimensional conformal radiotherapy (3DCRT) and intensity-modulated radiotherapy
(IMRT) allow a significant amount of control over the shape of the radiation dose distribution.
As a consequence, tumour target volumes with complex irregular shapes can be treated with
high doses of radiation while surrounding healthy tissues and organs at risk (OAR) are spared as
much as physically possible (Shepard ef al 1999). However, if not properly taken into account
during treatment planning, uncertainties caused by daily setup procedures at the beginning of
each treatment fraction, as well as the inter- and intra-fraction motion of the internal organs,
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can lead to significant differences between the dose distribution calculated by a treatment plan
and the actual dose distribution delivered to a patient (Bortfeld er al 2004, van Herk 2004,
Lujan et al 1999).

In state-of-practice radiotherapy treatment planning, a common method used to account
for these uncertainties is to enlarge the clinical target volume (CTV) by a ‘margin’ to produce
a ‘planning target volume’ (PTV) (ICRU 1993). The width of the margin is typically set to
be some number £ times the standard deviation of the patient setup error and/or the internal
organ motion (van Herk ez al 2000, van Herk 2004).

Three questions immediately come to mind:

(a) is this enlargement procedure a reasonable way to account for uncertainties due to patient
setup error and internal organ motion;

(b) if so, what value of k should be used;

(c) when an OAR is located in the neighbourhood of a CTV, so that the use of margins
usually leads to a conflicting situation where the PTV overlaps with an OAR (Li and Xing
2000, Baum et al 2006), how can we determine the tradeoff between maximizing target
coverage and minimizing OAR complications?

The answer to these questions requires the existence of some agreed-upon underlying
measure of performance for a treatment plan. In some recent analyses (e.g., van Herk et a/
(2000), McKenzie et al (2000), Stroom et al (1999), Killoran et al (1997)), the performance
measure is essentially the coverage probability, i.e., the probability that ‘no part of the CTV
accumulates a dose less than, for instance, 95% of that prescribed’; however no mention
is made of the potential damage to OARs and healthy tissue that might be incurred by any
particular plan. Others (Shepard et a/ 1999, Li and Xing 2000, Unkelbach and Oeltke 2004,
Rehbinder et al 2004) use a quadratic cost structure to capture both under-treatment of the
CTV and damage to OARs and healthy tissue.

This paper presents a simple method for calculating the ideal spatial dose distribution:
one that minimizes the expected loss when there is uncertainty. The focus is on constructing
ideal spatial dose distributions which are robust against uncertainty; the problem of how to
deliver such dose distributions once they have been constructed is not addressed.

Throughout this paper the assumption is made that the spatial dose distribution is invariant
to the displacement of the internal structures and of the whole patient (Bortfeld et al 2004,
Li and Xing 2000). That is, for a given set of beam configurations and fluence profiles,
the resulting dose distribution is assumed to be fixed in space and not affected by small
displacements of the patient anatomy. Put another way, the organs move within a stationary
‘dose cloud’ (Bortfeld et al 2004) without affecting the cloud. Our goal is to find such a
stationary dose cloud which is optimal under uncertainty with respect to some treatment loss
function. The invariance assumption, although not always realistic, makes clear the effect
of various parameters on the overall delivered dose. It also allows associating a point in the
treatment room with a loss, rather than associating a point in the patient with a loss. The
result is a simple and intuitive method for calculating the optimal amount of dose that should
be delivered to any point in the treatment room. The model also provides qualitative insights
into the suitability of using a margin at all, and (if one is to be used) how to select a ‘good’
margin shape.

2. The general model

This section presents a general model of treatment of a single CTV in the neighbourhood of
a single OAR (in section 3.3 the model is extended to include multiple CTVs and OARs).
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Position of the patient given realization 2= z*

x

Position of the patient given realization 2 = 2

T =

L4

Nominal position of the patient

Figure 1. Tllustration of random displacement. x’ is the room coordinate of the point with no
displacement, i.e., the patient is in the ‘nominal position’. z' and z> are examples of possible
displacements. x' and x> are the room coordinates of the point given realizations Z = z' and
7 = 7%, respectively.

The assumptions and notation are given first; later sections discuss specific forms of ideal
dose distributions for certain critical functions. Throughout the paper, random variables are
denoted by capital letters, their realizations by the respective lower case letters and vectors by
bold face letters.

2.1. General assumptions and definitions

X . . . . . . .
X = I:x;] is a three-dimensional vector representing the coordinate of a point in the
X3

treatment room (relative to an arbitrary fixed origin). This coordinate system is referred
to as the treatment room coordinate system, or simply room coordinates.

’

X
o x = [xi] is the room coordinate of a point on the patient when there is no displacement.
x/

e 7 is a three-dimensional random vector representing the random displacement of the
patient anatomy.

e The joint cumulative distribution function for Z is F(z) = Prob.{Z <z} =
Prob.{Z| < 71, Z> < 22, Z3 < z3}. Let X be a random vector representing the room
coordinate of a point X’ on the patient. From the above definitions, X = x’ + Z. Given
realization Z = z, the point X' = x — z on the patient is located at the room coordinate x
(see figure 1).

e As implied by the above definition of displacement of the patient anatomy, only rigid
body motions are considered; rotations and organ deformation are ignored.

e The location of the patient when there is no displacement (i.e., z = [000]7) is referred
to as the nominal position.

e #(x') is the desired (‘target’) dose to be delivered to patient location x'.
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e L(d, 1) isthe loss (‘cost,” or ‘penalty’) associated with delivering dose d to a point having
dose target 7. An implicit assumption is made that the (biological) loss at any point does not
depend on the dose at any other point. In other words, the loss associated with irradiation
of a part of a structure is independent of irradiation of other parts of that structure. In
effect, the loss function only captures local effects. Although this assumption is valid
for many clinical situations and has been extensively used, there are some situations (for
example, when organ effects are important) for which it is not valid (Alber and Niisslin
1999).

e y(x) is the dose delivered to the point on the patient located at room coordinate X.
The function y(-) represents the spatial dose distribution, assumed to be invariant to
displacement of the internal structures and of the whole patient. In other words, it is the
dose cloud within which the organs move without affecting the cloud (Li and Xing 2000,
Bortfeld et al 2004). Since y(x) is the result of decisions made by treatment planners, it is
referred to as the ‘planned’ dose distribution. When Z = z, the dose delivered to patient
location X' is

dx) = yx +12). (1)

Note that y(x) is exactly what van Herk calls the ‘desired/ideal dose distribution’
Dplannea(x) (van Herk er al 2000). If there were no uncertainty, we would have liked
to have y(x) = 1(x).

e S; and S, are three-dimensional regions on the patient representing CTV and OAR,
respectively:

S; = {x X' is a point in the CTV}, )
S, = {x: X is a point in the OAR}. 3)

e Given a point at room coordinate X, S;(x) and S, (x) are the sets of all realizations Z = z
such that the point is within the CTV and OAR, respectively:

Sx)={zz=x—-x,X €8]}, 4)
S,x)={zz=x—-X.,X€8,}. (5)

e p,(x) and p,(x) are the probabilities that a point at room location x will be covered by
the OAR and CTV on the patient, respectively. That is,

Po(X) = / dF(z), (6)
z€S,(x)

pi(X) = / dF(z). (7
z€S; (X)

2.2. Calculating overall expected loss

The overall expected loss is the performance measure used for evaluating any planned dose
distribution y(-). In this subsection, formulae for calculating this measure are derived.

When the spatial dose distribution y(-) (which is invariant to displacement of the internal
structures and of the whole patient) is used, the expected loss Lp[X, v(-)] at patient location
x' is given by the ‘convolution’ equation:

Lplx, y()] = /L[d(X'),t(X')]dF(Z) = /L[y(x/+Z),t(X/)]dF(Z)- ®)

z z
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Equivalently, the expected loss Lg[x, y(-)] can be expressed in terms of room location x by
substituting X' = x — z in the right-hand integral of equation (8):

Lglx. y()] = /L[y(X), 1(x —2)]dF (2). 9)
The total expected loss, A[y(-)], using spatial dose distribution y(-) is then:
A1 = [ ToX.yO1ex = [ Iatxy01ax (10

Since, by assumption, the loss at any room location does not depend on the amount of dose
delivered to any other location, the total expected loss A[y(-)] can be minimized by choosing
the spatial dose distribution y(-) that minimizes the integrand at each point x of equation (9).

An ‘optimal’ dose distribution (or the ideal spatial dose distribution) is therefore given
by the function y*(-) that minimizes Lrlx, y(-)] for each value of x. The resulting expected
loss at patient location X’ is Z; (x') = Lp[X, y*(-)], the expected loss at room location X is
Z; (x) = Lg[x, y*(-)] and the minimum total expected loss is

A= Ay ()] = /,Z;(x’) dx’' = ff’;(x) dx. an

X X

2.3. Weighted power loss function

An illustrative functional form for L, used in many IMRT treatment plan designs (see, for
example, Tsien et al (2003), Kessler et al (2005) and Alber and Niisslin (1999)), is the
weighted power loss function (WPLF)

LId(X), t(x)] = w(x)|t(x) — d(x)["™. (12)
The weight w(-) > 0 and power b(-) > 1 are typically given by
) w, ifx es, (13)
wx) =
w, ifx e
bx) b, ifx eS, (14)
X =
b, ifx eS;.
Substituting (12) into (9), we obtain
Lelx yO1 = [wix=olix—2) = 500/ 7 dF 2 (s)
z
when a WPLF is used.

3. Calculation of optimal dose distribution

Suppose the CTV has prescribed target dose 7(x'), X' € S, while the OAR has target dose
zero.
Recalling that X' = x — z, the target dose function becomes

0 X €S, 0 x—z€S,
t(x) = =t(x—12) = (16)
(x') X €S T(X—2z) Xx—z€S
or equivalently, using equations (4) and (5),

. B 0 z € S,(X) 7
(=2 = T(X —12) z € §/(Xx). 1n
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Equation (9) can then be written as

Lglx. y()] = / Liyx), t(x —2)]dF(z) + L[y(x), 0] dF(z). (18)
z€S; (X) z€S,(x)
Using equations (13) and (14)
w,|t (X)) — d(x)|% X €S,
Lld(X),t1(x)] = ) = 60| (19)
w; |1 (x) — d(x)|" X' €8,
where w, > 0 (b, > 1) and w, > 0 (b, > 1) are weights (powers) for OAR and CTV,
respectively.
Using equations (1) and (17) and substituting equation (19) into (18) gives
Lglx, y()] = / wilt(x —2) — y®)|" dF (@) + w,y(x)™ dF (2). (20)
2€S,(X) 2€S,(x)

We see from equation (20) that when x is fixed and b,, b; > 1, Lr[x, y(-)] is convex in
y(x) (as long as y(x) > 0), so finding the function y*(x) that minimizes Lgr[x, y(x)] simply
involves finding the value of y(x), at every point X, that satisfies %ZR [x, y(x)] = 0.

For example, if the loss function is a weighted quadratic (i.e., b, = b, = 2) such as
assumed in Shepard er al (1999), Li and Xing (2000), Unkelbach and Oelfke (2004) and
Rehbinder et al 2004, it can be readily shown that y(x) satisfies

) w; ZES{(x)r(x—z)dF(z) o
y'(x) = .
W fyes, 00 4F @) +w, fzeS,,(x) dF(z)

3.1. Homogeneous CTV

If the CTV is homogeneous, so that the desired radiation has the same value t(x") = 7 for all
points x” in the CTV, then equation (20) becomes

Lilx, y()] = wi|t — y(®)|” /

dF (z) + woy(x)% / dF(z)
2€S, (X)

z€S, (X)

= w P (X7 = Y + 1w, o () y (%) (22)
Since in this paper we do not consider multiple fractions, which might involve optimal dose
distributions that deliver higher doses at certain regions than the target dose (Unkelbach and

Oelfke 2004, Lof et al 1995), equation (22) makes clear that the optimal value of y(x) cannot
exceed 7 for any X, so it can be re-written as

Llx, y()] = w, p,(x) (T — y(x)? + w, po () y(x)™.

If b, > 1 and b, > 1, for a fixed x, Lg[x, y(-)] is convex and differentiable in y(x) (as long
as y(x) > 0) and, therefore, is minimized by setting the derivative of the above expression to
zero, yielding

biw; p () (7 — (X)) = bow, po () y ()™

Letting
b() otro
w(x) = 2eWoPe® 23)
byw; p; (X)
the optimal dose distribution y*(x) at room location x is the solution to
=y @) —a®y* ®* " =0. (24)

We consider four special cases:
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1.If b, =b, = b > 1, then
T

VX)) = —. (25)
L+ [a(x)]T
2. If b, =1and b, > 1, then
y*(X) = min {r, ;1} . (26)
[oe(x)] 7o

3.If b, =1and b, > 1, then

Y (%) = max {0, T — [a(x)]7}. 27)
4. If b;, b, > 1 and b, is an integer, then equation (24) can be written:

(b -1
> ( y )r'(—y(x))b"' —a@y™ ' =0, (28)
i=0
and y*(x) can be calculated by finding the smallest nonnegative real root of the polynomial
on the left-hand side of equation (28).

A comparison of these functions and their dependence on the joint cumulative distribution
function F(z) is deferred to the discussion in the next subsection.

3.1.1. Illustrative numerical example. Although the preceding results hold for 3D, for
ease of illustration, this section shows numerical examples when motion is restricted to two
dimensions: the dose distribution is that of a single intensity-modulated radiation field at
the plane normal to the field axis and passing through the isocentre (Bortfeld er al 2002).
The distribution of Z is a two-dimensional normal distribution (using a multi-dimensional
normal is a common assumption, see Lujan et a/ (1999), Lam et al (2005)). Incorporating all
uncertainty about the value of the systematic error into the random error allows us, without
loss of generality, to set the mean to zero. That is, the probability density function of Z is

f2(z:0,%) = Q) VBT 1e T (29)

where X is the covariance matrix

2
5= [G‘ “f} , (30)

012 0,

1
the mean is assumed to be zero) is the covariance of Z; and Z,.

Figure 2 represents a simplification of an ‘isolated” CTV. Figure 3(a) shows the optimal
dose distribution for this simple case when the loss function parameters are b, = b, = 2, w; =
15w, =1, =1and, X = [ (1) ?] As can be seen, the dose distribution is ‘blurred’, as will
be discussed in section 4.1.

Figure 4 shows the optimal dose distributions for the special cases given in equations
(25)—(28) at the one-dimensional slice (the white line) shown in figure 2 when w, = 15, w, =

o? = E[Z,z] is the variance of Z;,i = 1, 2, and 01, = Cov(Z,, Z,) = E[Z,Z,] (recall that

l,t=1and, ¥ = [(1) (1)] As can be seen, the form of the WPLF, and in particular the values

of power parameters b, and b, (see section 4.3), has a significant effect on the shape of the
resulting optimal dose distribution.

Furthermore, figure 5 shows the impact of the joint cumulative distribution function of
Z on the optimal dose distribution at the same one-dimensional slice when the parameters of
the WPLF are b, = b, =2, 7 = 1, w, = 15, and w, = 1. In order to make the comparisons
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Simple case: rectangular CTV completely surrounded by OAR

Patient is in nominal position.

0.9
0.8
07
0.6
0.5
04
03
0.2

0.1

Figure 3. (a) Optimal blurred dose distribution compared to (b) optimal margin dose distribution
for CTV geometry shown in figure 2. 7 =1, w; = 15, w, = l and & = [(') ?], ()b, =2,b, =2
by =1,b, = 1.

meaningful, we use joint cumulative distribution functions with equal marginal standard
deviations. Note that the optimal dose distribution when the random displacement is uniformly
distributed falls off more sharply than when the random displacement is normally distributed,
and is zero beyond a certain point. This is not surprising because, unlike the normal
distribution, the uniform does not have an infinitely long ‘tail’.

Additional numerical examples, exploring the effect of parameter values on the shape of
the optimal dose distribution, will be discussed in the following sections.

3.2. When by = b, = 1 a ‘margin’ dose distribution is optimal

In the previous subsection the four special cases required b, > 1 and/or b, > 1. A fifth special
case, where b, = b, = 1, is of great interest, but requires a somewhat different analysis. In
this case the loss is proportional to the absolute value of the deviation of delivered radiation
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room location X, (x1 =5)

Figure 4. Optimal dose distributions for the special cases given in equations (25)—(28) at the
one-dimensional slice (the white line) shown in figure 2. t = 1, w, = 15, w, = land £ = [(‘] ‘1}]
The nominal position of the CTV is shown in red.
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0.7t :

06f .
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03t 1

o1f "

0 1 2 3 4 5 6 7 8 9
room location X, (x1 =5)

Figure 5. Comparison of optimal dose distributions when b; = b, = 2 at the one-dimensional
slice (the white line) shown in figure 2 for different joint cumulative distribution functions
(with the same marginal standard deviations) of random displacement of the patient anatomy.
T =1, w, = 15, w, = 1. The nominal position of the CTV is shown in red.

from the target, and the expected loss at point X is

ZR [Xa J’()]

w pr(X)(T — Y(X)) + Wy po(X) y(X)
wyp; (X[t — yX)(1 — a(x))], (3D
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where «(X) is now given by

W Po(X)
w; p; (X)
Again, it is straightforward to show that the optimal value of y(x) is between 0 and t for all

X. Moreover, since expression (31) is linear in y(x), the optimal dose distribution is readily
shown to be

a(x) = (32)

y*(x)zlo a(x)>1,={0 W, Po(X) > W, py(X), o)

T oax) <1, T WoPo(X) < wyp;(X).

This step function is in fact exactly the PTV created by using a border defined by the set of x
such that «(x) = 1 . That is, the dose distribution calls for no dose at points where «(x) > 1
and CTV target dose 7 at points where ¢ (x) < 1.
The resulting expected cost, using equation (31), is
w p ()T a(x) > 1,

L) = w,p (@[t — y0) (1 — a(x)] = {w P @) < 1 (34)

There are two important features of this result:

e The border defined by the set {x : «(x) = 1} is in fact the best margin border (with respect
to the WPLF loss function with b, = b, = 1), since it is the result of a cost-minimization
procedure;

e It can be shown that no WPLF other than one that is linear in the deviation from target
(i.e., with b, = b, = 1) will lead to a cost-optimal dose distribution that has this step
function (i.e., ‘margin’) structure.

Figure 3(b) shows the optimal margin dose distribution for the simple geometry shown in
figure 2 with parameters b, = b, = 1, w; = 15, w, = 1,7 = land ¥ = [(1) ?] Figure 6 shows
the optimal dose distributions with margin structure for different joint cumulative distribution
functions. Note that the best margin for the normally distributed random displacement is
slightly larger than that for the uniformly distributed random displacement, an effect due to

the infinitely long ‘tail” of the normal distribution.

3.3. General case with more than two treatment regions

The results of sections 3.1 and 3.2 can be generalized for patient anatomies with more than
two specified treatment regions (e.g., several CTVs with different target doses, several OARs
with different thresholds, and unspecified healthy tissue). Let S;, S, ..., Sy be N (three-
dimensional) regions on the patient. Regions S, S, ..., S, are CTVs with target dose 7y,
T, ..., Ty, respectively (each CTV is homogenous), and regions S,,+1, Sp+2, - - - , Sy have zero
target dose, i.e., they are the healthy regions and OARs that should be spared. Equation (22)
can be generalized as:

N

Llx. y() = Y wilt — y®)|” f dF @)+ Y wjyx)” / dF (2)
i=1 z€S; (X) j=m+1 z€S;(x)
m N
=Y wipi T —y@"+ D wip;®)yx”, (35)

i=1 j=m+1
where w; and b; are the weight and power parameters for region S;, respectively, and
pi(x) = fz 5% dF(z) is the probability that a point at room location x will be covered
by region S;.
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0.4 : : B
0.2f : i
0 _

room location X, (x1 =5)

Figure 6. Comparison of optimal dose distributions when b; = b, = 1 at the one-dimensional
slice (the white line) shown in figure 2 for different joint cumulative distribution functions
(with the same marginal standard deviations) of random displacement of the patient anatomy.
v =1, w; = 15, w, = 1. The nominal position of the CTV is shown in red.

Iftb; > 1,i =1,2,..., N, for a fixed x, Lg[x, y(-)] is convex and differentiable in y(x)
(as long as y(x) > 0). Therefore the optimal dose distribution y*(x) at room location x is the
solution to

m N
D wipibilT — y 0" sign(y () — )+ Y wip;0b;y )7 =0, (36)
i=1 j=m+1
where
) 1, ifx > 0;
sign(x) = )
-1, otherwise.

y*(x) can be calculated using techniques similar to that described in section 3.1.
In a generalization of the special case of section 3.2, where b; = 1,i = 1,2,..., N, the
expected loss at point x in the room can be written as

m N
Lelx, yOI = Y wipi @t = y®I+ Y w;p;x)yX). (37)
i=1 j=m+1
Equation (37) shows that, for a fixed x, Lg[x, y(-)] is a piece-wise linear function of y(x),
and therefore the optimal dose distribution y*(x) must take one of the values in the set
{0, 71, 72, ..., Ty}. In other words, the optimal dose distribution has a step function structure
with possibly multiple steps.

4. Examples for various geometries and treatment loss function parameters

In this section, we present ideal spatial dose distributions calculated for the three cases of
patient geometry with varying complexity, shown in figures 2, 8 and 10. In all of these
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()

Figure 7. Effect of weight parameters: optimal dose distributions y*(x) for case I shown in
figure 2 for quadratic loss function (b, = b, = 2) and various values of w; with w, = 5,7 =1,
and zero-mean normal random displacement with ¥ = [(‘J ?] (a) w;, = 15, (b) w; = 50,
(c) w;, = 75, (d) w, = 300, (e) effect of various values of w, at the one-dimensional slice (the

white line) shown in figure 2. The nominal position of the CTV is shown in red.
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Intermadiate case: square CTV in the neighbourhood of OAR
8 T T T T

Unspecified healthy tissue
0 i i i i

0 2 4 6 8 10

Figure 8. Case II: square CTV in the neighbourhood of an OAR, surrounded by unspecified
healthy tissue. Patient is in nominal position.

the patient is in the nominal position. We also analyse the impact of various parameters of
the treatment loss function and the displacement distribution on the computed optimal dose
distributions.

4.1. Optimal blurred dose distribution versus optimal ‘margin’ dose distribution

Figure 3 shows the optimal dose distribution for the simple CTV geometry shown in figure 2
with T = 1, w, = 15, and w, = 1, and covariance matrix X = [(1) (1)] (i.e., random
displacements along different axes are uncorrelated). In figure 3(a), b, = b, = 2, and
the optimal dose distribution is ‘blurred.” In contrast, when b, = b, = 1, the optimal dose
distribution has a fixed margin, as seen in figure 3(b).

As can be seen in figure 3(a), the optimal blurred dose distribution rises smoothly from
y*(x) = 0 in the parts of the OAR that are far away from the CTV to y*(x) = 1 in the parts of
CTYV that are far away from the OAR. As can be seen in figure 3(b), the optimal margin dose
distribution, however, is either O or 1, the latter area essentially defining a PTV within which
the prescribed target dose T = 1 is planned.

In practice, the size of the margin around a CTV used to produce a PTV is commonly
calculated using a ‘margin recipe’: a formula defined in terms of the standard deviation of the
random displacement. These recipes are often ambiguous about the shape of the margin for
non-spherical CTVs. In contrast, the margin shown in figure 3(b) is not constant in distance
from the boundary of the CTV; in fact, it is smaller near the corners of the CTV. This suggests
that when designing a margin, not only the shape of the CTV and the standard deviation of
Z, but also the shape of the probability density function of Z should be considered. This is
discussed further in section 4.4.

4.2. Effect of weight parameters on the optimal dose distribution

Figures 7(a)—(d) show that when w; (the relative cost of under-treating a point in the CTV)
increases, the optimal dose distribution y*(x) delivers more dose to the boundary of the CTV
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Figure 9. Effect of power parameters on case II shown in figure 8 with 7 = 5, w;, = 50, w, =5,
wy, = 1, and b;, = 2, and zero-mean normal random displacement with £ = [} (1)] (a) Reference
for comparison: optimal dose distribution for b, = b, = 2. (b) Optimal dose distribution when
b; = 10 and b, = 2. (c) Optimal dose distribution when b, = 10 and b, = 2. (d) Difference
between optimal dose distribution when b; = 10 in (b) and reference dose distribution in (a).
(e) Difference between optimal dose distribution when b, = 10 in (c¢) and reference dose
distribution in (a).

(and therefore ‘covers’ the CTV better). The specific effect of w, can be seen more clearly by
looking at y*(x; = 5, x,) in figure 7(e). As w, (the relative cost of delivering dose to a point
in the OAR) increases, it can be shown that it has a similar effect: less dose is delivered to the
OAR points.
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Complex case: U-shaped CTV in the neighbourhood of OAR
10 T T T T

Unspecified healthy tissue
0 i i i i

0 2 4 6 8 10

Figure 10. Case III: U-shaped CTV in the neighbourhood of an OAR. Patient is in nominal
position.

4.3. Effect of power parameters on the optimal dose distribution

Consider case II: the geometry shown in figure 8 and a WPLF with weight parameters w;, w,,
and w;, and power parameters b;, b,, and by, for the CTV, OAR, and the unspecified healthy
tissue, respectively. These parameters give rise to a loss function that achieves a particular
tradeoff between the goal of achieving a prescribed dose, t, to the CTV versus the goal
of sparing the OAR and healthy tissue. It is common practice to raise (lower) the weight
parameter of a treatment region in order to emphasize (de-emphasize) the treatment objective
for that region. It is also common to change the relative values of b;, b,, and b;, to achieve
the same effect. In section 4.2 it was shown that raising the weight parameter of a treatment
region indeed emphasizes the treatment objective of that region. In this section, we assess
the impact of power parameters on the dose distribution while keeping the other parameters
constant.

Figure 9(a) shows the optimal dose distribution for case II with respect to a WPLF with
b; = b, = 2. Figures 9(b) and (c) show the optimal dose distributions with respect to a WPLF
with b, = 10 and b, = 2 and a WPLF with b, = 2 and b, = 10, respectively. These dose
distributions will serve as the reference for comparisons. Figure 9(d) shows the difference
between the reference dose distribution in figure 9(a) and the optimal dose distribution y*(x)
when b, = 10 shown in figure 9(b). As can be seen from the figure, the value of the optimal
dose distribution at the CTV points when b, = 10 is smaller than that when b, = 2. This is
contrary to a common intuitive notion that raising the power parameter b, results in a higher
dose to the CTV.

Figure 9(e) shows the difference between the reference dose distribution in figure 9(a)
and the optimal dose distribution when b, = 10 shown in figure 9(c). Although points in the
OAR which are closer to the CTV receive lower doses when the power parameter b, is raised
from 2 to 10, points further away from the CTV receive higher doses.

To explain the above, perhaps counterintuitive, observations, consider the structure of
the expected loss function Lg[x, y(-)] at room location x, for the case II geometry shown in
figure 8 (see equation (35)):

Llx, y()] = w, p, (X7 — yX)|* + wo po(X)y(X)P + wy pr () yx)™.  (38)
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Recall that p,(x), p,(X) and p; (x) are the probabilities that a point at the room location x will
be covered by the CTV, OAR and healthy tissue regions, respectively.

Since the optimal value of y(x) should never exceed t for any x, equation (38) can be
re-written as

w; pr(X) (T =YX+ w, po ()Y (%) + wy pp () y ()7 (39)
w; pr ()T (1 = X)) + w, po ()T F(X)? + wy py (x) T F (%), (40)

ZR [Xv Y()]

where y(x) = y(x)/t. Obviously, 0 < J(x) < 1and 0 < 1 —y(x) < 1. Therefore, when b, is
raised, t” increases, while (1 — S)‘(x))b’ decreases. Similarly, when b, is raised, b increases,
while y(x)? decreases. Which of these terms dominates when the power parameters are raised
depends on the relationship between the values of 7, b;, b,, b, and $(x), as demonstrated by
the numerical results. As can be seen in figures 9(d) and (e), raising the power parameter of
the treatment region can decrease the optimal value of y(-) at some points, and raise it at other
points of the same treatment region.

In more complicated (and more realistic) instances of the planning problem, where
multiple CTVs with various target doses may be present (see the derivation in section 3.3),
and where components of a power loss function may have more sophisticated definitions (e.g.,
Kessler et al (2005)), these counter-intuitive effects may not be as pronounced. However,
this simple analysis demonstrates that the fundamental properties of the loss function, and the
resulting optimal dose distribution, need to be carefully considered in the design of radiation
treatments. The examples serve to underscore the impact of these properties, and our analysis
provides tools that can be generalized and utilized for realistic planning problems in the future.

4.4. Effect of covariance matrix ¥ on the optimal dose distribution

Figure 11 shows various optimal ‘margin’ dose distributions (b, = b, = b, = 1) and
optimal ‘blurred’ dose distributions (b, = b, = b, = 2), for the case III geometry shown
in figure 10, with t = 1, w, = 50, w, = 5, w;, = 1, and various covariance matrices X.
As can be seen in these figures, the shape of the probability density function of Z, which
is determined by the covariance matrix X, has a great influence on the shape of the optimal
dose distributions. Therefore, if measurement data indicate that there is correlation between
random displacement along different axes of the coordinate system used in treatment planning,
it should be incorporated into the treatment plan.

5. Optimal deliverable dose distributions

In previous sections, we focused on calculating ideal spatial dose distributions. Unfortunately,
delivering these may be difficult in practice. A more realistic approach might be to minimize the
total expected loss given in equation (10) with respect to the beamlet intensities. However, this
problem presents a much more difficult mathematical and computational challenge, requiring
additional simplifications and assumptions to make it tractable.

On the other hand, one could use the ideal spatial dose distributions as a target dose for
beamlet optimization. This is a mathematically simpler problem than minimizing the total
expected loss.

Although these two problems are not equivalent, preliminary computations show that,
under reasonable assumptions about the shape of the dose deposition kernel and the joint
cumulative distribution function of the random displacement, the deliverable optimal dose
distributions and associated fluence maps that result from the two approaches are very close
to each other.
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Figure 11. Effect of covariance matrix X: optimal dose distributions y*(x) for case III geometry
shown in figure 10 with t = 1, w; = 50, w, = 5, w, = 1 and zero-mean normal random
displacement with ¥ = [;17"12]], where o1», covariance of Z; and Z», is varied. (a) o1 = 0,
br =b, =bp =1,(b) 012 =0,br = by, = b, =2,(¢) 012 =0.5,by =b, =bp, =1,(d) 012 =
0.5,by =b, =b, =2,(e) 012 =-02,by =b, =bj, = 1,(f) 012 = —0.2, by = b, = b, = 2.
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6. Summary and conclusions

Optimal (i.e., expected cost minimizing) dose distributions—in general—do not exhibit sharp
margins: the dose is essentially zero over the OAR and healthy regions that are far away from
the CTV, rise smoothly over the regions that are in the vicinity of the boundary between the
OAR or healthy tissue and CTV, and are close to the prescribed target dose over regions of the
CTV that are far away from the OAR and healthy tissue.

No WPLF other than one that is proportional to a linear deviation from target (i.e., WPLF
with b; = 1,i = 1,2,..., N where N is the number of treatment regions in the patient’s
anatomy) will lead to a cost-optimal dose distribution that has a margin structure. As a
consequence, although margins may be easier to think about, they are not optimal unless the
underlying measure of performance (or loss function) in evaluating the dose distribution is a
WPLF withb; =1,i =1,2,..., N.

Analysis and numerical experiments show that the common practice of raising powers to
penalize deviation from target may be counter-productive.

Moreover, the shape of the probability distribution of the random displacement can have
a significant effect on the shape of optimal blurred and optimal margin dose distributions, and
therefore, correlation of motion along different axes must be taken into account in the design
of dose distributions.

Finally, we re-emphasize the fact that, although our results offer insights into desirable
dose distributions, actually delivering them may be difficult, if not impossible. However,
there is an extensive literature on the development of fluence patterns, commonly known as
inverse planning, to deliver a desired dose distribution, or one which is as close to the desired
dose distribution as possible. Our results can be used in conjunction with such well-established
inverse planning procedures to produce radiotherapy dose distributions that are robust against
random displacements.
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