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Abstract

We study the problem of identifiability of distributions of flows on a graph
from aggregate measurements collected on its edges. This is a canonical
example of a statistical inverse problem motivated by recent developments in
computer networks. In this paper (i) we introduce a number of models for
multi-modal data that capture their spatio-temporal correlation, (ii) provide
sufficient conditions for the identifiability of nth order cumulants and also for
a special class of heavy tailed distributions. Further, we investigate conditions
on network routing for the flows that prove sufficient for identifiability of their
distributions (up to mean). Finally, we extend our results to directed acyclic
graphs and discuss some open problems.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

An increasing variety of network data is available from modern computer networks. These
data differ in their granularity, accuracy, volume and delay [13]. An important area of interest
is to collect aggregate data on the network’s edges in order to infer origin—destination traffic
volumes. This is a canonical example of a statistical inverse problem and has applications
in network capacity planning and fault diagnosis, traffic forecasting and provisioning and
routing protocol configuration [11, 17]. Another application comes from road networks,
where it is of interest to decompose aggregate traffic volumes collected from loop detectors to
the corresponding origin—destination traffic flows [8]. The objective of this study is to obtain
conditions under which network-wide traffic volumes (flows) can be estimated from aggregate
(limited resolution) data.

A computer network is comprised of nodes corresponding to network elements such as
workstations, routers and switches and links that connect those elements. A network flow
contains all the traffic originating at a node and destined for some other node in the network.
Each flow can in principle traverse a set of paths connecting its origin and destination, which is
determined by the routing policy. In computer networks, the flow traffic is carried on packets,
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whose payload is expressed in bytes, while on road networks, the traffic is carried on vehicles.
The volume of traffic measured on a link may refer to either the number of packets and/or the
number of bytes in computer networks, and such data for a particular time interval—typically
of the order of a couple of minutes—are available through queries using the simple network
management protocol (SNMP) [15]. The volume of traffic on a link is the sum of volumes of
all flows traversing that link. This produces highly aggregate data and the question of interest
is to estimate various statistics of the underlying flows.

Modelling and estimation of flow volumes in computer networks has attracted a lot of
attention recently and has implications at all time scales. At short time scales (less than 1 h)
network service providers are interested in anomaly detection [1, 9], where sudden change in
the flow volume distribution may indicate a malicious attack or equipment failure. At moderate
time-scales (1 h to 1 week) estimates of flow volumes are useful for traffic engineering tasks
such as load balancing and routing protocol configuration [17]. At larger time-scales it is
of interest to monitor the changing nature of network traffic. For example, it is fairly well
documented that the bulk of network traffic is moving away from connection-oriented HTTP
to connection-less peer-to-peer traffic [6].

The aggregate nature of link load (SNMP) data leads to an inverse problem. The
estimability and usability of any model of flow volumes requires that it should be uniquely
identifiable. If two distinct sets of values for the free parameters of the model lead to the same
distribution of observable data then the model is unidentifiable from the data. In this paper, we
introduce models that can capture the spatio-temporal dependence observed in flow volumes
and can be shown to be identifiable (up to mean) under reasonable conditions.

1.1. Literature review

The problem of estimating flow volumes from aggregate link traffic measurements was
introduced by Vardi [19], where the term network tomography was used to describe a
particular class of statistical inverse problems. In [19], the focus was on estimating mean
flow volumes under the assumption that they are Poisson distributed with parameter A ; for
flow j. Estimability (identifiability) of A; was proved using the parametric form of the
density of a Poisson random variable. The proof proceeds through writing the exact non-
zero probability associated with observing a certain vector of link measurements. Due to
the Poisson assumption, enough such non-zero probability events can be constructed to show
identifiability of all A ;. To obtain a solution for the A ;, maximum likelihood estimators based
on the normal approximation of the Poisson distribution, as well as based on the method of
moments were also proposed. A mean—variance relationship that generates a full rank system
of linear equations was also used in [3], where flow volumes were modelled as being normally
distributed with flow variances proportional to their means. The proportionality assumption
leads to identifiability of means through identifiability of variances; however, it has been found
that such models do not estimate accurately enough the distribution of X in large high-speed
computer networks [14].

Another class of models imposes other types of constraints for obtaining identifiable
(estimable) solutions. For example, gravity models [20] assume that flow f; between nodes
ny and n, is proportional to the total amount of traffic departing node n; and the total amount
of traffic entering node n,. This model assumes complete independence between source
and destination nodes that also tends to be violated in backbone networks [11]. The above
assumption introduces enough constraints to regularize the problem for a unique solution. A
Kalman filter based approach suggested in [16] provides best linear estimates of flow volumes
assuming a specific temporal dependence structure with known parameters. Recently, a
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sufficient condition for identifiability of second- and higher order cumulants (see section 4) of
the distributions of flow volumes was established in [4], under strong assumptions regarding
independence of the flows. Further, an estimator based on the characteristic function of
the aggregate data was proposed. The ideas developed in some of the above papers have
been employed in [17] and [12] to develop practical traffic volume estimators for continuous
monitoring of real networks.

1.2. Problem formulation and basic notation

Consider a network described by a (directed) graph G = (V, E) with vertex (node) set V
and edge (link) set E. Each edge ¢ € E is an ordered pair of vertices ¢ = (ny,n;) € E
that connects vertex ny to ny,ny,ny € V. Flows f;, j = 1,...,J, correspond to ordered
pair of vertices and a volume measurement variable X ; is associated with each flow j, with
J < |V|?. Each flow may traverse several paths. A path P of length L p is a sequence of nodes
connected by edges, i.e. for P = (ny,...,np,41), (n;,niv1) € E, fori =1,..., Lp. We say
ej = (nj,niy) € P,i =1,...,Lp,and ny and ny 4 are the origin and destination vertices
of the path P. Let P(j) denote the set of paths traversed by flow j and w;(P) the proportion
of flow j carried on path P. Note that all paths in P(j) have the same origin—destination node
pair. Hence

P@) ={P :w;(P) > 0},

> wip)=1.

PeP(j)

The set of functions {P(j), w;(P)} determines the routing policy of the network.

Observations are made on edges which are a linear combination of the volume
measurement variables corresponding to the flows passing through respective links. The
traffic volume on edge e is given by

Yezz Z w;(P)X;.
J PeP®)
eeP

This can be written in vector notation as
Y = AX,

where Y is a L x 1 vector of observations on L edges, X is a J x 1 vector of measurement
variables associated with J flows and A is a L x J routing matrix where [A];; indicates the
fraction of the jth flow that traverses the ith link. In certain cases, it will be assumed that A
is a binary matrix corresponding to each origin—destination flow traversing through exactly
one path; i.e. w;(P) = 1 for a single P € P(j). The matrix A is typically not full rank as
there are many more flows (O (n?), where n is the number of nodes in the graph, than links
(O (n)). Our objective is to state assumptions and derive conditions on the routing matrix A
under which certain distributional parameters of X are uniquely determined by the distribution
of Y which is observed.

For example, consider the network in figure 1 that has 6 nodes and 5 bi-directional links.
Let Y, be the total number of bytes that traverse link e in a time interval. Further, let X,, »,) be
the number of bytes in the flow from node n; to node n, during the same time interval. Then
each Y, is a sum of X(. ., s corresponding to the flows passing through link e. For example,
for ey = (3,4) and e, = (4, 3) we have

Yo, = X5+ X6+ Xos) + X6 + X34
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Figure 1. Example topology.

Figure 2. Aggregate volume measurements.

and
Ye2 =S X(5,1) + X(6'1) + X(5,2) + X(6,2) + X(4,3).

Thus, each Y, is a linear combination of the X..,. Here the number of links L = 10 and the
number of flows J = 30.

Now consider the setup in figure 2, where the network is comprised of three nodes and
two links. Observations on links 1 and 2 are respectively given by

Y1 = X1+ X5, Y, = Xp + Xj5.

As a preview of the basic idea on identifiability, note that if the flow volumes X; are
independent random variables, then their variances are ‘identifiable’ from the joint distribution
of observed edge volumes Y; and Y, as follows:

Var(Y;) 1 1 0 Var(X)
vy = Var(Y>) =10 1 1 Var(X,) | = Bv,.
Cov(Yy, Y») 0 1 0 Var(X3)

Thus, v, that contains the variances and the covariance of (Y}, ¥>) uniquely determines v, that
contains the variances of X, X, and X3, since B is a matrix of full rank. For the purpose of
this paper, a matrix C will be called full rank if Cx = 0 for a vector x, implies x = 0. Now,
the matrix B is clearly a function of the routing matrix A given by

110
A:(o 1 1)‘

Thus, we define the matrix function B(R, R), with R and R both n x m as follows. Let function
gir,iz) : {1,...,n}> = {1,...,n?} be an ordering of the pairs (i, i») € {1,...,n}>. Then
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define B(R, R)g(il’iz).j = R,-,,ji?iz,j. For example, for R = [rij]ox3, R = [Fijl2x3 We get

riifir riefi o risis
riifa1 riefa i
ra1Fir rofia rafis
r1f21 rofn T23i

B(R,R) =

Matrices of the form B(A, A) play a crucial role in subsequent developments. Note that rows
of B(A, A) are element-wise products of rows in A and each row in B(A, A) indicates common
flows between a pair of links. It can therefore be seen that ‘identifiability’ of variances of the
X, is related to the matrix B(A, A) being full rank when the X; are uncorrelated.

More generally, let Y (¢) denote the vector of observations on the links during measurement
interval 7. These observations may be byte count or packet count as obtained from SNMP
data. Further, let X () be the (unobserved) vector of flow measurements (packet count or byte
count) in the same measurement interval. We will view X (¢) (and hence Y (¢)) as random
vectors satisfying some stochastic model. Thus, we can posit the following model:

Y(t) = AX (1), t=1,.... (1)

In this formulation the routing matrix A does not change over time. In some cases the
dependence on ¢ may be dropped for the sake of notational convenience.

As mentioned earlier, the matrix A is typically not full rank. Thus, (1) cannot be solved
for X (¢). However, under certain distributional assumptions on X (), the observations Y (¢)
are sufficient to estimate parameters of the distribution of X (7). The distribution of X (¢)
can be modelled at different levels of complexity from independent and identically (i.i.d.)
Gaussian to long range dependent with cycles induced due to diurnal or weekly patterns. The
true structure of network data is quite complex and one needs to balance the need for faithful
representation with analytic tractability and computational feasibility. In this paper, we present
certain conditions on the distribution of X and the routing policy or network structure that result
in identifiability of the distribution of X (up to uncertainty in the mean). These conditions are
quite often satisfied in computer networks. Note that in general, means (i.e. E(X)) are not
identifiable, since adding a constant vector ¢ from the null space of the routing matrix A to X,
leaves Y (= AX) unchanged. Let £(X) denote the distribution of X and M be a set of possible
distributions, i.e. £L(X) € M. Then, identifiability is formally defined as follows.

Definition 1. The distribution of a random vector X € R’ is identifiable up to mean under
model M, from observations of the form' Y = AX, if for Yy = AX, and Y, = AX,, L(Xy),

L(X;) e M, Y, 4 Y, implies that X, 4 X> + ¢ for some constant ¢ € R’.

1.3. Main contributions

In this paper, we present a broad framework that models dependence between flow volumes
that are present in computer networks. This framework is based on a latent variable model
which represents a random vector as a product of two terms, one that captures the dependence
structure and another that captures other parameters. This framework also allows for various
types of measurements on each flow and thus accommodates different modalities and temporal
correlations. As a special case of this framework, we investigate the independent connections
model for data networks, which takes into account the most important dependence between
flow volumes and yet is simple enough that identifiability (up to mean) can be guaranteed
for reasonably large classes of networks. Next, conditions for identifiability are derived
for the general model, by separately handling variances and the remaining parameters of
the distribution to get around the inherent nonlinearity of a latent variable model. Some
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elements of these ideas have been previously explored for a single type of measurement
with no spatial or temporal dependence structure in [3, 4, 17]. It is worth noting that using
a latent variable model to account for dependence, makes the conditions for identifiability
significantly more involved. Further, identifiability is established for stable (heavy tailed)
distributed flow volumes, by leveraging the theory of minimal representations to establish a
connection between identifiability in the stable and the Gaussian case, since in the former
second moments (variances) do not exist.

The sufficient condition for identifiability under the proposed general model involves
a variant of the B matrix being of full rank. We subsequently show that identifiability is
guaranteed for a reasonably large class of networks for the independent connections model,
by stating explicit assumptions on the network routing and edge weights. This result is of
significant practical importance for designing networks with desired properties. The proof
borrows ideas from [17], but is significantly more involved due to the presence of a dependence
structure amongst flows. Finally, stronger results regarding identifiability can be obtained for
networks represented by directed acyclic graphs and/or when two-dimensional measurements
can be gathered.

The remainder of the paper is organized as follows: In section 2, we present the general
distributional modelling framework under which we derive our results. In section 3, we
specialize the general framework to the independent connections model which is useful
for real data networks. In section 4, we derive conditions for identifiability of various
distributional parameters under the general model. In section 5, we show that under reasonable
assumptions on the routing scheme, the required conditions for identifiability are satisfied for
the independent connections model, while in section 6 we look at certain special cases of
interest for computer networks. Finally, in section 7 we present a discussion on some of the
results and point to open problems.

2. A general modelling framework

In the network tomography literature, flow volumes are usually modelled as being independent
across time and space, while packet and byte volumes have never been considered
simultaneously. We provide next a framework to capture the most interesting dependences in
flow volumes. Assume that there are measurements of type 1, ..., K on each flow. These
different measurement types may correspond to different ‘modalities’, such as packet volume
or byte volume, different time lags or both. Let X®) denote the flow measurements of type k.
Each X® is a vector of length J, where J is the number of flows. Thus, X (/-k) denotes the kth
measurement on the jth flow, 1 <k < K and 1 < j < J. For type k observations we have
the following model

y® — Ax® 2
fork =1, ..., K. Stacking together all types of measurements, we get
y® A 0 - 0\ /XD
Y@ 0 A --- 0] x® B
Y = = = AX, 3)
Y(.K) () () .. A X('K)

where Y is a vector of length LK A is a LK x JK matrix and X is a vector of
length JK. Let ¥x = Cov(X) be the JK x JK covariance matrix of the flows. Define
Q=1{1,..., JK}2 = {(q1,92) : q1,92 € {1,...,JK}}, the set of pairs of indices in X.
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Now, g € Q can be used to index the covariance matrix, [Xx], = [¥x],, 4,- The dependence
between elements of X can be specified in one of the following ways:

(1) Covariance model. The covariance model will be specified through Q, C Q such that
(g,q) € Qy forall g € {1,...,JK} and if (g1, q2) € Qp then (¢2,q1) € Qu. Note
that Q) gives the set of admissible non-zero covariance matrices, i.e. if ¢ € Q — Qyy,
then [¥Xx], = 0. Restricting the number of non-zero covariances reduces the number of
parameters which is important for identifiability purposes.

(2) Latent variable model. Let Z € R’X be a random vector of latent variables of length
J K, where its elements are assumed to be independent with identical (say unit) variances.
Further, assume that

Ch O -+ 0 7,
Cy Cpn -+ 0 Z,
X=Cz=| . . ) I 4)
Cxi Ckr -+ Ckk Zx
where C (and thus Cu,k=1,....K ) are lower triangular matrices. The coefficient

matrix C belongs to a set C that is expected to capture the spatial dependence and
defines the latent variable model space. Note that even though we refer to C as our
model, the distribution of Z is an important component of this modelling framework. We
would concern ourselves with identifiability of parameters (other than variances) of the
distribution of Z. Clearly identifiability of C and distributional parameters of Z would
depend on whether C is sufficiently small.

Examples of the models Q,; and C are given in section 3.

Note that Xy is a function of C and model definitions Q,, and C should be compatible in
order to be used simultaneously. The latent variable model is more general, as it accommodates
more distributional parameters for X than just variances and covariances. Now, let S(Qy)
be the set of symmetric positive definite matrices X for which X, = 0 for g ¢ Qy. It
can be immediately seen that S(Qyy) is a convex cone in the n,,-dimensional space, where
ny = 1{q € Qu : q1 < g2}|. Due to the fact that the set of positive semidefinite matrices has
a non-empty interior [2] and since S(Qyy) is a projection of that set, S(Qy) has a non-empty
interior in the n y;-dimensional space. In general, there may not be a one-to-one correspondence
between elements of S(Qy,) and C. However, for the following specification of Q,; and C this
correspondence follows immediately.

3. Independent connections model for data networks

We start by illustrating some important features of network traffic volume using a publicly
available data set that motivates specific features considered in the proposed model (data
are obtained from |http://www-dirt.cs.unc.edu/ts/|). The data are essentially a 4-variate time
series where the four variables are packet and byte volumes of forward direction and reverse
direction traffic on a link. Each observation represents the traffic traversing that link ina 10 s
interval. We limit ourselves to the first 700 observations for illustration. The four time series
are plotted in figure 3.

The temporal dependence is visible in the time series and can be more clearly seen through
their auto-correlation functions shown in figure 4, which for a time series x(#), at a given lag
£, corresponds to the observed correlation between x(z) and x(¢ — £) over all values of ¢.
For each of the four time series considered, the auto-correlation functions are significantly
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Figure 3. Byte (top) and packet (bottom) volume time series from the Abilene network.

greater than zero and decay with increasing lag. The simplest possible model for such time
series is an auto-regressive model. Auto-regressive models were fitted to each of the four time
series and the appropriate order of each model was chosen by the Akaike information criterion
(AIC). The orders of the models were four for a forward byte volume, eight for a reverse byte
volume and five for both forward and reverse packet volumes, respectively. The residuals from
these models have the following correlation matrix (FB = forward byte, FP = forward packet,
RB = reverse byte, RB = reverse packet)

FB FP RB RP
FB || 1.00 0.83 0.04 0.22
FP || 0.83 1.00 0.24 0.44
RB || 0.04 0.24 1.00 0.89
RP || 0.22 0.44 0.89 1.00

Thus, it can be clearly seen the strong dependence between packet and byte volumes and
between forward and reverse flows. Finally, the quantiles of the residuals obtained from the
auto-regressive models were compared to those of a standard normal distribution. Figure 5
clearly shows that the quantiles of the observed error distribution are more extreme than those
of a normal distribution indicating the presence of heavier tails.

The spatial correlation between network-wide flow volumes was subsequently examined.
The data set used for this analysis (see [18]) gives byte volumes of all flows in a backbone
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Figure 4. Auto-correlation functions for forward bytes (top left), forward packets (top right),
reverse bytes (bottom left) and reverse packets (bottom right).

European educational network for each 15 min interval over a period of four months. As seen
in the previous example, we expect correlations between forward and reverse byte volumes to
be weaker than for packet volumes. The following analysis shows that these correlations are
still substantially stronger than other spatial correlations.

We restrict ourselves to the first 1500 observations in the time series and to 76 flows
that had no missing values and also comprised the top quarter of flows in terms of average
traffic. The time series for each flow was smoothed by a spline model in order to deal with
non-stationarities such as the well-known diurnal patterns [5, 9]. The residuals from the above
step were used to fit an auto-regressive model, with AIC-based order selection, to account
for temporal dependences. The pair-wise correlations obtained from the residual time series
from the above analysis correspond to the spatial correlations. These pair-wise correlations
can be divided into two sets: the forward-reverse ones and all the others. Figure 6 plots the
observed densities of these two sets of correlation and it can clearly be seen that the forward—
reverse correlations are stronger than the remaining ones. Although there is a bimodality in
both distributions, it is significantly more pronounced for the forward-reverse correlations.
Ideally one would like to model all significant spatial correlations. However, in order to
have a systematic and parsimonious model, we focus on the forward—reverse correlations. As
mentioned earlier, we believe that such dependence would be stronger and of greater practical
interest for packet volumes, as opposed to byte volumes.

Based on these observations, together with similar empirical findings from previous
studies (see comments at the end of the section), we outline next some useful models for
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Figure 6. Densities of observed correlations: forward—reverse(dashed) and the remaining (solid).

computer networks. The most significant spatial correlation is the one between the packet
counts of a flow and its reverse flow, i.e. for nodes n, n,, the volume of flow from n; to n,
and the volume of flow from 7, to n;. Partition the set of flows into two groups F (forward)
and R (reverse). Thus, for a particular type of measurement—say packet counts—we have

Y = Ap XY + ApX (.

(&)
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If the number of edges is L and the number of flows is J, then both Ar and A are L x J/2
matrices. For example, consider the network in figure 7 comprised of four nodes and four
links, and where all flows follow a clock-wise path. Let e; = (1,2),e; = (2,3),e3 = (3,4)
and ey = (4, 1). The above equation becomes

X2 X
Y., 11100 0\|Xaus 000 1 1 1\|Xay
Yol _lo 1 1 1 1 of|xas| [t 0000 1]||Xay
Y., 0010 1 1]]|xas 1101 0 0]]Xan
Y., 0000 0 0|Xaos 11111 1) | Xun
X (3,4 X3

Equation (5) can be rewritten as
Yy®» — Ax® ,

where A = (Ap, Ag) and X = (Xl(p”)/, X;”)/)/. In real computer networks, a large part
of the traffic is connection oriented. For example, traffic flows transported using the TCP
protocol [15], or connections involving internet (voice over IP) telephony, lead to packets being
exchanged between the two endpoints. In the former case, due to the built-in acknowledgment
mechanism of packets in the TCP protocol, while in the latter case due to the bidirectional
nature of the connection. Therefore, volumes of flow from node n; to node n, and vice versa,
are correlated [5]. One of these flows is labelled as a forward flow and the other as a reverse
flow and form a flow pair. It is reasonable to assume that flow pairs are independent with
possible dependence between forward and reverse flows of a flow pair. In particular, if second
moments exist, then the covariance matrix of X7 is of the form
Diag(érr) Diag(érr) ©
Diag(8rr) Diag(drr)/
where each of 6, §pg, Sgg is a vector of length J /2 and component-wise they correspond to
the variances of X ;p ) covariances of X Eep ) and X ;ep ) and variances of X ;ep ) respectively. Thus,
Yy is a matrix of dimension J x J. Using the framework developed in the previous section,
this model can be represented as the following covariance model:

Oy =1{q € Q:q1 =¢q,mod J/2}. (7)

If X is further assumed to be multivariate normally distributed the above model
corresponds to the following latent variable model:

(p) (p)
XF[; =C]J'le, XR[; ZCZJ'Z]]'+C3]‘Z2]‘.
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with Z;; independent normal with (possibly) different means and unit variances for all i, j.
Note that two independent latent variables, Z,; and Z,;, are associated with flow pair j. The
reverse flow in the flow pair j is the sum of a component proportional to the forward flow of
j and a unique component. This can also be written as

X\ _ (Diag(cy) 0 Z\ _ oy
x?'] ~ \Diag(c) Diag(es)) \2) — =™

Hence, the latent variable model space is given by
C={C:C;;>0,C;;=0ifi < jori # jmod J/2}. (8)

For Qy and C as in (7) and (8), if C € C then ¥y = Xx(C) € S(Qu) and (specifically)
is positive definite. Conversely, if the covariance matrix £y € S(Qy) and (specifically) is
positive definite, then there is a unique C € C corresponding to it. This simply follows from
the Cholesky decomposition of X, since Xx is assumed to be a symmetric positive definite
matrix. Thus, taking C to be the lower triangular matrix from the factorization of Xy, we get
Cov(CZ) = CCov(Z)C' = CC" = Zx. It should be noted that if X (or equivalently Z) is
modelled as multi-variate normally distributed, then identifiability of Xy (or C) is equivalent
to identifiability of the distribution of X up to mean.

The above model corresponds to having exactly one type of measurement (K = 1).
Models (7) and (8) are reasonable for larger values of K as well. Different types of
measurements on each flow (K > 1) can be observed in practice as follows:

(1) Bi-modal measurements on each flow. As mentioned earlier, there are two measurements
of interest associated with each flow in computer networks: namely, packet counts and
byte counts. We will denote the type of measurement by the superscript, (p) and (b) for
packets and bytes, respectively. Since the byte count is the sum of bytes in each packet,
there is a strong dependence between these two types of measurements, as seen in the
empirical analysis at the beginning of the section. Now consider another model, with
dependence within flows and between packet counts and byte counts of the same flow:

y® A Az 0 o\ [|x?| _
w)={0o o o | =AX.
Y 0 0 Ar Ar Xy

Again we assume independence between flow pairs, but not within the forward and reverse
flows and packet and byte measurements of the same flow pair. Specifically, if second
moments exist, then the covariance of X takes the form:

Diag(8rp,rp) Diag(8rp,rp) Diag(8rp rp) Diag(8rp rp)
Diag(8rp,rp) Diag(8rp.ry) Diag(drp,rp) Diag(Srp,rp)
Diag(8rp,rp) Diag(dgp rp) Diag(8rp rp) Diag(drp, rp)
Diag(8rp ry) Diag(Sgp ry) Diag(drp rp) Diag(Srp,rs)

Ty =

In the above, 84, pp denotes the covariance of ng) and ng) for a,b € {p, b} and
A, B € {F, B}, each of them a vector of length J/2. Thus, Xy is a matrix of dimension
2J x 2J. If X is assumed to be multivariate normal the above model has a one-to-one
correspondence with the following latent variable model:

X ;Fj) = Cyj VA 1j»

P _
XRj = csz]j +C3‘]‘Z2]‘,



Identifiability of flow distributions from link measurements 1833

b
X(F]) = C4jle + C5j22j +C6jZ3j,
b
X;?j) = C7jle + CBjZZj + C9jZ3j + C10jZ4j,
with Z; independent normal with (possibly) different means and variances for all j. Here,
four independent latent variables Z,;, Z»;, Z3; and Z4; are associated with the flow pair

Jj. Dependence between different measurements of a flow pair is induced due to shared
latent variables. Specifically Z,; induces dependence between X (’;) , the forward packet

volume and X 55.) , the reverse packet volume of flow pair j. Similarly Z;; and Z,; induce
dependence between the forward and reverse volumes of flow pair j. Note that models
(7) (8) also apply.

(2) Temporal dependence. As the empirical analysis shows, network data when viewed
over moderate time-scales exhibit not just spatial dependence of the nature captured by
previous models but also temporal dependence. This dependence can be modelled as

follows:

Y(‘”)(l‘) — AX(p)(t),

YO @) = AXP 1),

XPt) =@, XDt -+ +0,,XP 0 —m)+eP @),

XO@) =0 XO@ — 1)+ + 0y, XO(t — m) +€P (1),
where the various ®.. matrices contain the lag coefficients and €”(¢),t = 1, ..., are
i.i.d. mean O random vectors and so are € (¢),t = 1, .. .. For the purpose of illustration,
assume &, = ®,, &, | = &, and @, = O = 0 for k > 1. Assuming stationarity

of the above autoregressive models, it is easy to verify the following:

Zx.pp = PpZx.pp P, + Zpp. ©)
Ex.pp = PpEx pp P, + Zph, (10)
Xxbp = <I>bEX,bp<I>’p + X, 8))
Expp = PpTx pp P}, + Tpp, (12)
Cov(XP (1), XV (1 = 1)) = @\ Ty pp = T 0

Cov(XP (), XDt — 1) = q)lpEXJ’b = Eé(,pb’
Cov(XP (1), XV (t — 1)) = ®,Zxpp = Ty
Cov(XP (1), XP(t = 1)) = B} Sy pp = Th

where X,,, X5, X5, and X, are covariances and cross-covariances of the random noise
variables €”) (¢) and € (¢).

Now assume that each of X,,, X,;, ¥;, and X, are block diagonal matrices of
the form (6), that captures the spatial correlations between the flows. Further assume
that ®, and @, are diagonal with each entry less than 1. Thus (9)—(12) imply that
Xxpp> Lxpb» Lxbp and Xxp, have the same block diagonal form given in (6). This in turn
implies that the covariances Eé(, o Elx_’ b Eé(,bp and Zé(,bb also have the form (6) and

the model (7) applies.

The independent connections model accommodates multi-modal measurements with
spatio-temporal dependence together with non-parametric distributions. It is significantly
more general than previous proposals in the literature that have usually focused on either the
independent case [3, 4] or temporal dependence alone under parametric distribution models
[16, 12]. One notable approach to modelling spatial dependence is the gravity model [20]



1834 H Singhal and G Michailidis

and its extensions [5]. These models assume that the distribution of total traffic originating
at a node to various destinations happens in accordance with a specific (though empirically
justified) pattern. Further, some stability in distribution patterns and availability of access link
data are assumed for identifiability. We have avoided these assumptions while still modelling
the most important spatial dependence and other interesting features of flow traffic data.

4. Identifiability results for the general model

In this section, we establish conditions for identifiability of the distribution of the flows
X;,j = 1,...,J, under the general dependence model introduced above. As discussed
earlier, since the routing matrix A is not full rank, the means of the flows are in general not
identifiable. Specifically, we establish the identifiability of second- and higher order cumulants
provided they exist. Second-order cumulants of a random vector correspond to covariances,
third order to skewness coefficients, etc. They can be obtained from the characteristic function,

which for a random vector T = (T, ..., Tx) is given by
Yr(0) = Ef[e/ T 0T,
for 6 = (0y,...,0k). The cumulant generating function for the same T is Kr(u) =
log Y7 (—tu). The cumulants of T are given by
arl Ik
Ky VK:_r'“_r}C Uu)|y=0-
_ o P 7 () |u=0

For a random vector T, for which the characteristic function is infinitely differentiable at 0,
the distribution is determined completely by all the cumulants or equivalently by all partial
derivatives of log ¥ () evaluated at 0. The identifiability of order n cumulants of X under
model M is defined as follows.

Definition 2. Order n cumulants (or other distributional parameters) of X are identifiable
under model M from observations Y = AX,ifforY, = AXyandY, = AX», L(Xy), L(X,) €

d N . o
M,Y, = Y,, implies that the order n cumulants (or the corresponding distributional
parameters) of X| and X, are the same.

Our strategy would be to first identify second-order cumulants of X ; and then use this
result to identify the nth order cumulants of Z; and hence of X ;, assuming these quantities exist.
Finally, we investigate the identifiability of X; for the case of a non-analytic characteristic
function, i.e. when they have a symmetric « stable (S-«-S) distribution.

4.1. Identifiability of second-order cumulants

Given the covariance model Q,y, it is fairly straightforward to get conditions for identifiability
of second-order cumulants. Define

Qu(, j) ={(q1,q2) : (( = DJ +q1,(j — DJ +q2) € Qu},
for 1 < i,j < K. Elements of Qy(i, j) indicate the admissible non-zero elements of
Y xo xo) under model Qy. Now for r = (ry, r,) we have that

[Zyoyolr = Z Ar g [Xxo xlgAr, g,
q€Qu(i.Jj)

Ifi # .
[EY(“,Y(ﬁ]r = Z Arl,ql[EX<i),X(f)]qAr2,q2 + Z Arl,ql[E)((“,X‘f)]qArg,qz-

a1=q 91742
q€Qu (i, ) q€Qu(i,j)
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Let g(r) be an ordering of r € {1,...,L}* and h(q) an ordering of ¢ € Qu (i, j). Define
matrices B(i, j, A),i # j of order L? x |Qu(i, I, as

[E(i» Js Aerrnig) = Ariqi Arrgs- (13)
Ifi =j,
[Zyoyol = D Ang[Zxo.x0lgAr.g

q1=492
qe€Qu(i,j)
+ Z (AV1,611 Aryg + ArquzArzqql)[Ex(i)vX<’)]‘1’
a<q
q€Qum(i,j)

Now let h'(q) be an ordering of ¢ € Q" = {(q1,92) : q1 < q2,(q1,q2) € Qu(, j)}-
Analogously define matrices B(i, i, A) of order L? x |Q], as

A
A

rrar Aragy q1 = g2
A + ArlquAVZJIl q1 7é q2.

Note from equations (13) and (14) that each row of B(i, j, A) corresponds to a pair of rows in
A. Further, each column corresponds to a unique non-zero element in Xx. Thus, fori # j,
the (/, m)th element of B(i, j, A) is obtained as the product of elements in A corresponding
to the pair of rows determined by / (through g) and the pair of columns determined by m
(through k). The B(i, j, A) matrices play a similar role to the B(A, A) matrix introduced in
section 1, where flow volumes were assumed to be independent.

[BG. i, Algr g = (14)

1,41 772,42

Proposition 1. The covariance matrix of the flow volumes X x is identifiable for model Qyy,
if the matrices B(i, j, A) are full rank for all i, j € {1, ..., K}. Conversely, if B(i, j, A) is
not a full rank matrix for some i, j, then there exist multivariate normally distributed random
vectors, X1 and X,, with covariances %1, ¥, € S(Qu), respectively, for which £ # X,, but

AX, =Y, v, =AX,.

Proof. Let vecy, vec, and vecs be matrix vectorizing operators such that [vec;(X)]go) =
2, [vecr (X)) ]ng) = Ly and [vec3(X)]n(q) = Xy, respectively. In other words, vecy, vec, and
vecs vectorize an entire L x L matrix, elements of a J x J matrix corresponding to Q, (i, j) and
elements of a J x J matrix corresponding to @', respectively. These vectorization operations
are consistent with orderings g(r), h(q) and h'(g). Thus, for i £ g we get

vec (Zyo yih) = B, j. A)vecy (Zxir xi)
and

vec) (Zyo yon) = E(i, i, A)vecs(Xxo x).
The first assertion now follows directly.

For the converse, recall that S(Q)) has a non-empty interior. Further, for X being a
multivariate normal random vector with mean 0, the distribution of ¥ = AX is completely
determined by its covariance. Therefore, by choosing %, ¥, e_S (Qpr) such that (the
appropriate vectorization of) ¥; — ¥, is in the null space of B(i, j, A), we can get
the required result. Specifically, if v is a vector in the null space of B(i, j, A), and
s(q)=(q1— G —1DJ,ga— (j — 1)J), then choose X; and X, such that

_ _ v s@) € QuG, )
(21 = 2aly = {0 otherwise,

where [(q) = h(s(q)) ifi # jorl(g) =l (s(q)) ifi = j. U



1836 H Singhal and G Michailidis

Recall that under the latent variable model £y = Xy (C) is a function of the latent variable
coefficient matrix. We then obtain the following result.

Corollary. If x(C) : C — S(Qu) is a one-to-one map, then C is identifiable if the matrices
B(i, j, A) are full rank for alli, j € {1, ..., K}.

4.2. Identifiability of higher order cumulants

For the latent variable model, the above corollary implies that once the coefficient matrix C
has been identified, we can proceed to identify higher order cumulants, provided they exist for
latent variables Z.

Recall that Y® = AX® for 1 < k < K. Further

k
X ® — Z é k[Z 1
=1
and therefore

k
Y(k) =A Z C‘HZ[.
=1

Notation: The notation C;. and C.; will be used to refer to the ith row and jth column
respectively of a matrix C.
Let ¢; be a row vector of length L, with 1 at the ith position and 0 otherwise. Write

ko
en¥® = ( chlzl ZZ((Arl_.)[ékl]~,j)[zl]j~

=1 j=1
Denote the logarithm of the characteristic function of the latent variables by
¢z,j.(t) =log E[e1%.
Therefore,

Lzy“’my‘“]

¢V|,r2,k(t7 S)

g Efe
k J
S b2.5u(t(An ) Cul. s + (A )[Cul. ).

=1 j=1

Let q)(Z")j ;(0) be the nth derivative of ¢z ;;(¢) at t = 0. Differentiating at (0, 0) gives

8” ri,r ) ! =~ m = n—m n
Vonrunlt,s) 3 (A )ICul)" (A )Cals)" "6 ,0)

Il
M»

R P
k=1 J
= An)ICu) )" ((Ar)[Cul. )" " 0% (0)
=1 ]:1
J
+ 3 ((An )Cuil. )" ((Ar ) [Cuily)" " 95", (0. (15)
j=1

Define the matrices B(n, m, C) as follows:

[Br,m, O)lgeryj = ((Ar)C.)" (A )C.5)" " (16)
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and sets C;, of matrices such that for
¢ " 0 .. 0

Cy Cyn -+ 0
C: . . . . )

Cxi Cka -+ Cki
={C : C €C},1 <k < K. We can then establish the following proposition.

Proposition 2. The nth order cumulants (n > 2) of Z are ldentlﬁable if the matrices B(i, j, A)
are full rank for all i, j € {1, ..., K} and the matrices B(n, m, C) are full rank for all Ceq
for 1 <k < K and some 1 <m < n.

Proof. From the corollary of proposition 1, matrix C is identifiable. Since (15) is true for

each pair of indices r = (r, ) € {1,..., L)?, we arrange all such equations in vector
notation to get

v=z+Bn,m,Ciy)o, (17
where

0" Pri k(1. 8)

Wlew) = =5 g gmm

s

(1,5)=(0,0)

k—1 J
[zlger) = ZZ ICul )" (Ar)[Cual. ;)" " 95" 1 (0)

and ¢; = qb(") 1(0). We will proceed inductively. Assume that ¢(") ,(0) have been identified
for/ = 1,...,k — 1. This means that z in equation (17) is known Since v is a parameter
vector of the distribution of Y, it is also known. The result now follows easily. O

4.3. Identifiability of flow volumes under stable distributions

The above strategy for identifying the parameters of the latent variable model fails in the
presence of heavy tailed distributions for the flow volumes, since second-order cumulants do
not exist. However, under the assumption that the latent variables Z are symmetric «-stable
distributed (S-«-S), sufficient conditions for identifiability can be derived. Specifically, if
the Z; are i.i.d. standard normal random variables, the corollary of proposition 1 gives a
sufficient condition for identifiability of the distribution of X, which turns out to be sufficient
for identifiability under a S-«-S distribution.

The characteristic function of a random variable W distributed according to a S-«-S law
and scale parameter o is given by

Yw (@) = E[e”V] =77

Let Z;,i = 1,...,n,beiid. S-a-S random variables with unit (say) scale coefficients.
Then, it is easy to see that any linear combination of Z; is also S-a-S. Let Y = ), a; Z; to get

Yy (0) = E[e”"] = E[e” %] = [ [ E[e“" 7] = [ [ ¥z (@:0)

= JTe el = e tarter,
i
Define measure p as the counting measure on £ = {1,...,n} and view a;,...,a, as a
function a : E — R, a(i) = a;. We then get that the scale coefficient of Y is given by
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( f g lal® d,u)l/ “. This is a useful way of viewing linear combinations of i.i.d. S-o-S random
variables. Now for a S-a-S random vector given by ¥ = M Z where M is an m X n matrix,
we have a representation M C LY(E, &, i), where £ = 2F and L%(E, £, 1) is the space of

functions a : E — R with ‘norm’ (fE lal® d,u)l/a, which is a real norm for « > 1, and
M ={me L(E,&, ) :m(j) = M, forall j and some i}.

A linear isometry from L%(Ey, &, 1) to L*(Ez, &, o) is a linear map T
LY(Ey, &, 1) — L*(E,, &, 1») such that

la|* dpey =/ 1T (a)]* dpea,
El EZ

foralla € L*(Ey, &1, u1).
As an illustration consider three representations of the same bivariate S-«-S random vector
Y, with Z;, i.i.d. S-a-S withae = 1 and Z = (Zy, Z», Z3) .

(Y4 (1 O O\ _a (1l O O\ a4 (1l 0O
Y:<Y2>_(O 2 3>Z_<0 3 2)2_(0 1 4)2'

Now Y, and Y, are independent and thus the only remaining parameters in the distribution of
(Y), Y») are the two scale coefficients which are given by the /! norm of the corresponding
rows. Clearly, the first and second representations give the same distribution since they only
differ through a permutation of columns. A key question is whether that is the only operation
under which we get different representations. In this example, there is another representation
which cannot be obtained by a permutation of the columns. It turns out that this is related to the
third column being proportional to the second column, in each of the three representations. It
has been shown that when two representations are minimal in a certain sense, they are related
through a linear isometry, which for 0 < o < 2 corresponds to (generalized) permutations.

Definition 3. A matrix M is called rigid if no column in M is proportional to another column
in M. In particular this implies that, no column in M is identically 0.

We will show next that a rigid matrix corresponds to a minimal representation (lemma 1).
Subsequently, we establish that linear isometries for 0 < o < 2 correspond to generalized
permutations (lemma 2) and that there is no linear isometry of [*(R"") onto [*(R"?) for
ny > np (lemma 3). Finally, we show that for a set C of matrices sufficiently large, non-
identifiability in the stable case leads to non-identifiability in the normal case (proposition 3).
The set C—representing the possible latent variable models—is required to be sufficiently
large in the following sense.

Definition 4. A set of n x n real matrices C will be said to be closed under column scaling if
C = (cy,...,cy) €Cimplies CDiag(a) = (aicy, ..., a,c,) € C forall a € R".

Lemma 1. [f M, Z < MyZ for Z; i.id. S-a-S,0 <o < 2,1 <i < n,and My, M, are rigid
with n columns then [M]i.. = T ([M2]x..), where T is a linear isometry of [*“(R") onto [* (R").

Proof. This result basically follows from theorem 5.2 in [7], which states that minimal
representations are related through linear isometries. All that remains to be verified, in our
setting, is that a rigid matrix M as defined above is a minimal representation as defined in [7].
Minimality in this setting is defined as follows.

Let E ={1,...,n},& = 2F and p be the counting measure on E. Let F C L%(E, £, i)
be the set of functions given by rows of M. M is a minimal representation if

p(F)=o{f/g:f.ge F}=¢.
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Since £ = 2%, the above simply means that the ratio of functions in F should ‘shatter’ each
element of £ individually, i.e. no two elements in £ should have the same image under all ratio
functions. Now since no two columns are proportional, for pair i, j € E there exist f, g € F
such that f(i)/g(i) # f(j)/g(j). Thus, we can define set A;;; € p(F) such thati € A;;
and j ¢ A;/;. Finally

{i} = m A
J#i
Thus £ = p(F). O

Lemma 2. A linear isometry T of [*(R") onto [*(R") for 0 < o < 2 is given by a generalized
permutation, i.e. for a row vector v, T (v) = vP D, where P is a permutation matrix and D is
a diagonal matrix with all diagonal entries equal to either I or —1.

Proof. This result basically follows from theorem 3.1 in [10], which states that linear isometries
are induced by regular set isomorphisms for o # 2. All that remains to be verified is that for
E =1{1,...,n}, € =2F and p the counting measure on E, the only regular set isomorphisms
are permutations. A mapping T of £ into itself is called a regular set isomorphism if for all set
A, A €&

(1) T(E-—A)=T(E)—-T(A).

) T(UgZy Ax) = Uz T(Ay) for disjoint Ay.

(3) u(T(A)) = 0if and only if u(A) = 0.

We will show that for i, j € E,i # j, T({i}) N T{j}) # ¢ leads to a contradiction.
Assume T({i})) NT({j}) = A. Now T(E — {i}) = T(E) — T{i}. But j € E — {i} and thus
ANT(E —{i}) # ¢ butsince A C T({i}), AN(T(E) — T({i})) = ¢. Thus, we obtain a
contradiction that completes the proof. (]

Lemma 3. There is no linear isometry of [*(R"") onto [*(R"?) for ny > ny, o # 2. In other
words, for E and & as before and 1| and ., being counting measures that assign non-zero
measure to ny and n, elements respectively of E, there is no linear isometry of L*(E, £, |41)
onto L“(E, £, ), for o # 2.

Proof. From corollary 2.1 in [10], for o # 2, f, g € L*(E, £, ) we have that

ILf+glg+I1f —gllg =21 flig + 218l
if and only if f(x)g(x) = 0 ae. (u). Thus,if T : L*(E, &, 1) - LY(E, &, uo) is a linear
isometry, f, g € L“(E, &, u1) and f(x)g(x) = 0a.e. (uy).
1T +T@le+ 1T =T @l =1T(f+&le +I1T(f — 2l
=If+gllg +1f - gl
=2/ llg +2lgllg
= 20T (Ol + 21T (9 lg-

This implies that 7(f)(x)T (g)(x) = 0 a.e. (i2). Hence, any linear isometry 7, for o # 2,
maps functions with disjoint supports to functions with disjoint supports. Since ) hasn; > ny
distinct support points with positive measure the result follows. ]

Proposition 3. Assume the set C of matrices is closed under column scaling. If there are
Cy, C, € C such that Cy # Cy and AC1Z < ACyZ for Z; i.id. S-a-S,0 < a < 2, then there
exist C3, Cq € C, C3 # Cy4 such that AC3Z < AC4Zf0r Z,- i.i.d. standard normal.
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Proof. We examine the following four possible cases:

Case 1. If AC| and AC; are both rigid, then AC; = AC, P D, with P being a permutation

matrix and D a diagonal matrix with all diagonal entries 1 or —1. But Z £ P DZ and therefore
C3 = Cy and C4 = C, gives the required result.

Case 2. On the other hand, if all columns of AC| and AC, are zero clearly C3 = C; and
Cy4 = C, gives the desired result.

Case 3. If ACy and AC, are rigid after removing the zero columns, proceed as follows. Define
counting measures (| and p, that assign no measure to the indices corresponding to the zero
columns in ACy and AC», respectively. Now argue as in the rigid case under measures | for
rows of AC; and u, for rows of AC,. Note that the number of elements with non-zero measure
under ) and p, respectively, has to be the same from the previous lemma and theorem 5.2 in

[7].

Case 4. Now, whenever AC;| and AC, are not both rigid, without loss of generality assume
that AC; = (vi,...,v,) with vy = avy,v2 # 0,0 # 0. Choose C3 € C such that
AC; = (Uy,...,0,) where U; = v; fori > 2 and v, = (W1+¢€)v; = (V1 +€)av, and
Uy = (W1 —ea?)vy for0 < e < 1/0(2. Let ¢; be the ith column of a (n — 1) x (n — 1) identity
matrix. Thus

ACi = (v2, ..., v) (e, eq, e, ..., ep—1) = (V2,..., V) Eq,

AC3 = (v, ..., v) (V1 +€)aer, (V1 —€a?)er, e, ..., e0—1) = (v2,...,v,) Es.
NOW, E]E; = otzele’l +1 = E3Eé. SO, ACI(ACI)’ = AC3(AC3)/. HCI]CC, C4 = Cl, C3 eC
and AC,Z < AC;Z for Z; i.i.d. standard normal. O

5. Identifiability in the independent connections model

In this section, we derive sufficient conditions on the network routing that guarantee full
rankness of the matrices appearing in propositions 1, 2 and 3.

In order to gain more insight, the matrices in propositions 1 and 3 will be simplified in
the following for the independent connections model (see (7)—(8)). Recall that we defined
B(Ai, A;) as the matrix in which row g(i) is the component-wise product of row i; of A,
and row i, of A,, where i = (i1, ;) € {1, ..., L}2. Recall that if all the X ; are independent,
identifiability of variances follows from full-rankness of B(A, A). Recalling the interpretation
of the (I, m)th element of B(i, j, A) as a product of the pair of elements in A corresponding
to rows determined by /, and columns by the mth element of O, (i, j), it is straightforward to
compute the required matrices. Now define

B = (B(Ar,Ar) B(Ar,Ar) B(Ag,Ar) B(Ag, Ag)) (18)
and
B.= (B(Ap, Ar) B(Af, Ag) + B(Ag, Ar) B(Ag. Ag)). (19)

Here B is a L?> x 4J matrix and B, is a L?> x 3J matrix. Now, proposition 1 implies the
following. For K = 1, the second-order cumulants, X x, of the independent connections model
(7), are identifiable if and only if B. is full rank. For K > 1, the second-order cumulants of
the independent connections model are identifiable if and only if B is full rank.

Once second moments are identified, the corollary to proposition 1 would imply
identifiability of C in model (8). Thus, it only remains to use proposition 2 to identify
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higher moments. Note that for the independent connections model, the set C; consists of
matrices of the form

¢ Diag(cy) 0
~ \Diag(c;) Diag(c3)/) "
Thus, C., ; have either 1 or 2 non-zero entries and therefore the product of a row from A and a

column from € appearing in (16) has either 1 or 2 terms. It can then be seen that the required
matrix takes the form

Bnﬁm(cl’ C2, C3) = [Hn,m(cls CZ)’ Jn,m(c3)]7

where

n—m

[H, m(ct, c2)]ep),) = (Clj[AF]pl,j + ¢ [AR]pl,j)m (Clj[AF]pz,j + ¢ [AR]pz,j)

and

n—m

[Jn,m (63)]g(p),j = Cg ([AR]Plyj)m ([AR]PZ’]‘)
Proposition 2 implies the following: if C in model (8) is identifiable and n order cumulants of
Z exist, then they can be identified if B, ,,(ci, ¢2, ¢3) is a full rank for some 1 < m < n and
all ¢y, o, c3 € R’/2,
5.1. Minimum weight routing

In the following, assume that the routing matrix, A, is binary and that each flow traverses

exactly one path (deterministic routing), i.e. |P(j)| = 1 for j = 1, ..., J. Define the operator
R(-) on paths such that if path P = (m, ma, ..., mg_y, my) then
R(P) = (my, my_1, ..., ma, my).

Also, if P is a set of paths then R(P) = {R(P) : P € P}. A weighted graph has positive
weights associated with each edge, W(e) > O for all e € E, the edge set. The weight of a
path P is defined as the sum of weights of all edges init, i.e. W(P) =", p, W(e). We call a
(directed) graph symmetric, if the weight on edge (n;, ny) is the same as the weight on edge
(n,, ny), for all edges (n1, ny). A path P from node n; to node n, is called a minimum weight
path, if there is no path P’ from n; to n, with W(P’) < W(P). Also, we will call a (minimum
weight) routing scheme balanced if the path of the flow from node | to node n; is the reverse
of the flow from 7, to n;. In other words, if the traffic from a node n; to a node n, is carried
on path P, then the traffic from node 7, to n; is carried on R(P).

Lemma 4. Given a symmetric directed graph the following are true:

(1) Given any non-empty set P of minimum weight paths, there exist (possibly identical)
edges (fi1, f») and (11, ) such that (f1, l5) is the unique pair of nodes (ky, k), for which
there exists a minimum weight path Py € P from ki to ko containing edges ( f1, f») and
(L1, [2). These edges are the first and last edges of a path with maximum weight in the
set P.

(2) Given non-empty disjoint sets Py, Py of minimum weight paths such that R(Py) = P,
there exist edges (f1, f») and (Io, 1)) such that ( fi, o) is the unique pair of nodes (ky, k)
for which there exist minimum weight paths Py € Py and P, = R(Py) from ky to ky and
from ky to ky, respectively, containing edges ( f1, f2) and (I, 1y) respectively. These edges
are the first edges of paths Py and R(Pyy) respectively where Py is a path with maximum
weight in the set P;.



1842 H Singhal and G Michailidis

S,

Figure 8. Lemma 1, case 1.

(3) Let (f1, f») and (11, I5) be the (possibly identical) first and last edges of a minimum weight
path P. Then, there is no node pair, ky and k,, such that (f1, f») lies in a minimum weight
path Py from ki to k, and (11, I5) lies in R(Py). Also, there is no node pair k| and k, such
that (f1, f») and (I, 1y) belong to a minimum weight path from k; to k,.

Proof. To prove the first two claims note that if P; = (fj, f2, ..., [, [») is a minimum weight
path then any path P, that contains edges (f1, f>) and (/;, l;) will have weight greater than
Py unless it is also a (minimum weight) path from f; to /. This becomes clear when one
considers the two possible cases, i.e. if edge (f1, f») precedes edge (I1, ;) in P, or if edge
(11, Io) precedes edge (fi, f>) in P,. In both cases P, would have a larger weight than P;. The
first two claims now follow easily.

The third claim can be proved by contradiction. Suppose there exist nodes ki, k>, a
minimum weight path P; from k; to k, and a path P, = R(P;) such that the edge ( fi, f>) lies
in P; and the edge (/1, [5) lies in P,. This implies that (l», /1) lies in P;. We will show that P
and P; cannot both be minimum weight and this proves both assertions of the third claim. In
the following ‘4’ represents the concatenation operation where appropriate and W(P) is the
weight of the path P. Clearly ( fi, f») = (l1, [) is not possible as that would mean P; contains
both (f1, f») and (f>, f1) = (lo, ;). Let S be the (minimum weight) path from f; to /; in P.
Now P; can have two possible structures:

e Casel. Py = S1+(f1, f2)+S2+ (b, [1)+ S5 (figure 8) Since both P and P; are minimum
weight paths, we have that

W(S2) = W(S) + W(l, b).
This implies that
W(S2) + W((l2, 1)) > W(S),

which gives that P; is not a minimum weight path.
e Case2. Py = S1+(lr, 1) + S+ (f1, f»)+ S5 (figure 9). Since both P and P; are minimum
weight paths, we get that

W(S2) = W(S) + W(f1, f2)-
This implies that
W(S2) + W((f1. f2)) > W(S).

Assuming symmetric weights, the weight of R(S) is also WW(S). This in turn implies that
Pj is not a minimum weight path.

This proves the third claim and hence the lemma. ]
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Figure 9. Lemma 1, case 2.

One can now establish the following:

Proposition 4. Under balanced minimum weight routing on a symmetric graph the matrix B
is full rank.

Proof. Let

VFF

— | VFR
v=_B = O,

URF

URR

where VEF, UFR, URF, URR € RJ/Z. We need to show that VUrr = VUFR = URfF = VURR = 0.
Now let F be the ordered set of node pairs with the same ordering as in vectors X and Xg.
Also let F(i, F) be the forward flow path for node pair i and F (i, R) the reverse flow path for
the same node pair i. Define operators Pr and Pg which map a set of indices to sets of paths
as follows:

Pr(l) ={P: P =F(,F)forsomei € I},
Pr(l) ={P : P =F(, R) forsomei € I}.

Now, define

A={FG, F):vpp(i) # 0} U{F@, R) : vrr(i) # 0}

and
I={i: vpp() #Z0}U{i : vgr(i) # 0}.

We will show that when A is non-empty, there exists an element in v which is non-zero and
when / is non-empty there exists another element in v which is non-zero. Use A as the set
of paths in the first part of lemma 4 to identify edges (f1, f>) and (/;, ;) which are traversed
by exactly one flow (say) F); € A. Now, recall that each ordered pair of link indices (ry, r;),
corresponds to a row g(ry, ) in B. Consider the row of B corresponding to (fi, f) and
(1, b):

_ (D () (1) (1)
rn= (rFF’ 'rrR>TRF> rRR)'

Note that elements of rf;l} and ’";elz)e indicate the forward and reverse flows common to links

(f1, f») and (I1, [), elements of r}ll)e indicate node pairs for which forward flow traverses

(f1, f») while reverse flow traverses (I, />) and elements of rg} indicate node pairs for
which reverse flow traverses ( fi, f») while forward flow traverses (I, ;). We then claim the
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following:
(1) r(i) # 0 and vpp (i) # 0 if and only if F(i, F) = Fy.
(2) ri2(i) # 0 and vrg(i) # O if and only if F(i, R) = Fy.
(3) i) =rg) i) =0 foralli.
The first two claims follow directly from the first part of lemma 4. The third claim follows
from the third part of lemma 4. Therefore,

VFF
UFR
r ;é O
URF
URR

and we obtain a contradiction.

Now use Pr(I) and Pg([I) as the sets of paths in the second part of lemma 4 to identify
edges (ny, m;) and (np, my) which are traversed by the forward and reverse flows (or vic_e
versa) of exactly one node pair, say the iy th node pair, i)y € I. Consider the row of B
corresponding to (ny, m;) and (ny, my):

2 2 @ (2
r2 = (g TFRs TR TRR)-
Note that rf,)e(i )r,(f} (i) = 0 for all i. Now we claim the following:

(1) [rER@vrg(@)| + |rip()vrr ()| # 0if and only if i = iy
(2) r2.(i) = ri;(i) = 0 for all i.

The first claim follows directly from the second part of lemma 4. The second claim
follows from the third part of lemma 4. Therefore,

VFF
UFR
ry ;é 0.
URF
URR

Thus at least one of the rows of v will be non-zero for .4 and/or / non-empty. This completes
the proof of the result. 0

Corollary. The matrices EC and B, p(c1, ca, c3) are full rank for all 1 < m < n and all
c1, ¢2, ¢3 € RY? under balanced minimum weight routing on a symmetric graph.
These results follow easily by comparing the above matrices to B.

6. Special cases
We examine next certain special cases of interest for computer networks.

6.1. Hierarchical graphs

The conditions of minimum cost routing and deterministic routing are not required for proving
identifiability in special classes of networks. In one of the early papers on network tomography,
Cao et al [3] proved that second moments are identifiable if the network has a hierarchical
structure. In such a structure, there exists a set of ‘internal’ nodes that neither generate nor
sink traffic. Flows exist only between pairs of non-internal (terminal) nodes, which are only
connected to internal nodes and not to other non-internal nodes directly. This is a reasonable
model if the network under consideration corresponds to a combination of a backbone network
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and subnetworks, with the latter being connected amongst themselves through the backbone
network. Hence, the nodes of the backbone network are considered internal nodes.

When there is no dependence between forward and reverse flows and only one type of
measurement is considered, identifiability of second cumulants depends on full rankness of
B(A, A). The matrix B(A, A) can easily be shown to be full rank for hierarchical networks.
The proof (see [3]) rests on the fact that for all flows, there exist rows in B which have exactly
one non-zero entry occurring at the corresponding indices. For any flow, consider the edge
that connects the source node to the first internal node and the edge that connects the last
internal node to the destination node. The only flow common to these two edges is the flow
under consideration. Thus, the row in B corresponding to this pair of edges has exactly one
non-zero entry occurring at the index corresponding to the flow under consideration. Note
that neither minimum cost routing, nor deterministic routing is required for the argument. In
fact, the matrix B (and hence B, and By m(c1, 2, c3)) can be shown to be full rank, which
implies identifiability of second (and higher) cumulants under the independent connections
model.

Proposition 5. The matrix B is full rank for hierarchical networks.

Proof. We will prove that given i € {1, ...,2J} there exists a row r in B such that r is the
ithrow of a2J x 2J identity matrix. Index i corresponds to flow pairi’ = ((i — 1) mod J/2)+1.
Fori € {1,...,J/2} (i € {l,...,J/2}) choose ordered pair (ij, i) to be the indices
of the first and last edges respectively of the forward (reverse) flow of flow-pair i’. For
ie{J/2+1,...,J} G e{J+1,...,3J/2}) choose ordered pair (i, i) to be the indices of
the first edges respectively of the forward and reverse (reverse and forward) flows of flow-pair
i’. Now, choosing r to be the g(iy, i)th row of B gives the required result. |

In the following, we use a similar idea to prove identifiability of second moments for
directed acyclic graphs.

6.2. Directed acyclic graphs

A directed graph with no cycles is called a directed acyclic graph (DAG). An important
example of a DAG is a tree. Clearly there are no reverse (say) flows and A = Ap. Thus,
identifiability depends on the full rankness of B = B(A, A).

Proposition 6. For a directed acyclic graph, the matrix B is full rank.

Proof. Note that all finite DAG have at least one root node. Define d(n) for a node n to be the
maximum length of paths from any root node to n. Also define d(n) = 0 for n being a root
node. Note that if there is a path from node n; to node n, of length /, then d(n;) < 1 +d(n,).
For flow f, define d(f) = d(ny) — d(n,), where n, and n; are the destination and origin
nodes of flow f, respectively.

Now suppose Bx = 0 for x # 0. Consider the set P, of paths traversed by flows
corresponding to non-zero entries in x. Let P be defined as follows:

P = argmax d(P).
P’eP,

Let ey, e, be the first and last edges of P, and n;, n, its origin and destination node,
respectively. It can be shown that the flow f from n; to n; is the only flow for which the
corresponding entry is non-zero in x and that traverses both e; and e,. If not, let f’ be another
flow corresponding to a non-zero entry in x that traverses both e; and e,. Let n and n), be the
origin and destination nodes of flow f’. Since e, is traversed by f’, there exists a path from
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to ny and thus d(n}) < d(n1), with equality if and only if n| = n;. Similarly, d(n}) > d(n»),
with equality if and only if n, = ny. Thus, for any path P’ of f', d(P') > d(P), with equality
if and only if n} = n; and n}, = n,. But P’ € P, since f’ corresponds to a non-zero entry
inx. Thus f' = f.

Now, consider the row r in B corresponding to edges e; and e,. There is exactly one index
i for which x; # 0 and r; # 0. Thus, Bx # 0 which is a contradiction. O

Remark. Note that the above proof does not require deterministic routing. Further, it seems
that it does not require minimum cost routing. However, it is easy to construct weights, such
that any routing scheme in a DAG is a minimum cost routing scheme. Simply use d(n,)—d(n)
as the weight of the edge from n, to n,. A telescoping sum argument implies that any path
from a node n; to node n;, has weight d(n,) — d(n) and therefore all paths are minimum cost
ones.

Remark. Also note that in general, first moments of flows would not be identifiable in a
DAG based on link measurements alone as the matrix A would have more columns than rows.
However, A can be shown to be full rank for DAGs under the following conditions:

(1) Only flows originating at a root node are present.
(2) Only flows terminating at a leaf node are present.

The proof is straightforward. Assume that the first condition is true (the argument for the
second condition is analogous). Suppose Ax = 0 for a non-zero x. Let P be the set of paths
traversed by flows corresponding to non-zero entries in x. Select P € P with maximum
weight under the weighting scheme described above. Let r be the row in A corresponding to
the last edge in P. Then, r;x; # 0 if and only if flow i corresponds to P. Hence, rx # 0 and
we obtain a contradiction.

6.3. Two-dimensional measurements

Note that the identifiability of second cumulants is driven by the fact that the covariance
between two links is the sum of variances of flows common to both of them. Now, assume
deterministic routing, i.e. that A is binary. In principle, if we could get direct measurements
of the type 7, ., for all pairs of edges e; and e, that give the volume of flows common to
e and e, then we should be able to solve for individual flow volumes. To see this note that
T = {7;;} satisfies

vec(7) = B(A, A)X.

Thus, we have the following result.

Proposition 7. If B(A, A) is full rank and A binary, the full distribution of X is identifiable
from T . In particular, means of the flow volume distribution are also estimable.

Remark. The technology in current computer networks does not allow collection of the
necessary data 7, ., for all pairs of edges e; and e, since that would require tagging individual
packets. At present this seems feasible only for edges incident on the same node. On the
other hand, loop detectors on road networks makes collection of such data feasible for a
number of edge pairs. One direction of future work would be to study the case of having such
measurements available for a subset of edge pairs.
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7. Discussion and concluding remarks

The problem of identifiability of distributions of flows on a graph from aggregate
measurements collected on its edges has been considered and resolved for a fairly general
dependence structure. We presented a modelling framework that can accommodate multi-
modal measurements with spatio-temporal distributions and provided empirical justification
for it. The first proposition and its corollary provide verifiable conditions for identifiability
of covariance and the latent variable models, respectively. The second proposition provides
sufficient conditions for identifiability of higher order cumulants under the latent variable
model. Proposition 3 shows that identifiability under a normal latent variable model implies
identifiability under the related S-«-S model under mild conditions. Proposition 4 and its
corollary provide reasonable sufficient conditions on the network structure (topology and
routing scheme) so that the second and higher cumulants of the independent connection
model are identifiable. Propositions 5, 6 and 7 deal with identifiability of second-order
cumulants for special networks and measurement schemes. We address next some open
issues.

7.1. Dependence structure

A natural question to consider is if it is possible to establish our results under a more
general dependence structure between the various measurements of the forward and reverse
flows of a flow pair. Specifically, we assume flow pairs to be independent but do not
assume a latent variable model. Consider a general characteristic function for a flow

pair j
lﬂj(f, s) = E[exp(itXFj +iSXRj)],

where Xr; and Xp; are the forward and reverse components of the flow pair j. Similarly let
Yy,.v, (t, s) be the joint characteristic function of Y; and Y, and ¢y, v, (¢, s) = log ¥y, v, (, 5).
Then it can be shown that

0"y, 1, (1, 5)
8tk8sn—k

k
(7,5)=(0,0) i r=0

n—k

ko n—k r k—r 4l n—k—1 jl+r,n—r—2k—I
E C, ClAF.leR,leF,ZjAR,Zj ¢j 0, 0),
=0

where "C,, is the coefficient of x™ in (1 + x)" and

™k log (¢, )

n,k FASE]

o (¢, - orJjrZ
J (@ ) atnosk

Attempting to arrange all such equations into a linear system gets cumbersome and leads to
implicitly defined matrices. On the other hand, assuming minimum cost routing should lead
to considerable simplification. One direction of future work would be to investigate in greater
detail such a dependence structure.

7.2. Network routing and a counter-example

In section 5, it was shown that minimum cost routing and symmetric weights was sufficient to
ensure the full rankness of the B and hence (B) matrices. The following example shows that
absence of these conditions renders the result invalid.
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Consider the network shown in figure 7. Here

X2
X3
X4
X3
X4
X34
X
X3,
X
X3
X2
X3

Yo
Y3
Y4
Yy

c oo~
S O = =
[ R
S O = O
S = = O
S = O O
=)
—_—_ 0o o
= =)
_— O =
—_ o o ~
—_ O = =

Denote by A the matrix above. Thus, neglecting the repetitions in B = B(A, A) we get

el el oeoBoloNel =N
elelelel = =)
= == =)
—_—_- O O = O o O O O
—_ O O O O O o o o O
_—_O m, m, O =0 O~
— O O = O O O O O~
—_ O = = O O O = = =

O O OO O OO oo~
S OO OO OO ==
O O O O == = = e
O O OO = = O = O O

()

Note that in this case B is a 10 x 12 matrix and thus cannot be full rank. If symmetric
weights are enforced, but not minimum cost routing (or vice versa) the example would still
hold. This example shows that in the absence of minimum cost routing or symmetric weights,
the full rankness of B (and hence B) is not guaranteed.

7.3. Weaker conditions for identifiability of the independent connections model

The above counter-example shows that the only possibility of relaxing the conditions for
proposition 4 is to prove the result under non-deterministic routing. To be able to apply the
same techniques as in the current proof, given vector x # 0 we should be able to identify a
row rin B (or B(A, A) for the independence case) such that r;x; # 0 for exactly one i. The
row r is identified as the row corresponding to the terminal edges of a ‘maximal’ flow. For
minimum cost, balanced and deterministic routing, a maximal flow is just the longest flow of
a set. For non-deterministic routing a maximal flow P, given a set of flows P would need to
satisfy the following. P € P is maximal if there is no pair of nodes n; and n, such that there
are paths Py, P, € P where P; is from n; to n, or vice versa fori = {1, 2} and P, traverses
the first edge of P and P, traverses the last edge of P. Simply choosing a path with the largest
weight in P would not suffice in this case. It is not clear if such a maximal flow always exists.

In summary, extending proposition 4 to the case of non-deterministic routing remains an
open problem.



Identifiability of flow distributions from link measurements 1849

Acknowledgments

The authors would like to thank two anonymous referees for useful comments and suggestions
that improved the presentation of the material. They would also like to thank Professor Stilian
Stoev for many helpful discussions and suggestions on the material of section 4.3. This
research was supported in part by NSF grant DMS-0505535.

References

(1]

[2]
[3]

[4]
[3]
[6]

(7]
[8]

[9]

[10]

(11]

[12]

[13]

[14]

[15]
[16]

[17]

(18]
[19]

(20]

Barford P, Kline J, Plonka D and Ron A 2002 A signal analysis of network traffic anomalies IMW "02: Proc.
2nd ACM SIGCOMM Workshop on Internet Measurment (New York: ACM Press) pp 71-82

Boyd S and Vandenberghe L 2004 Convex Optimization (Cambridge: Cambridge University Press)

Cao J, Davis D, Wiel S and Yu B 2000 Time-varying network tomography: router link data J. Am. Stat.
Assoc. 95 1063-75

Chen A and Cao J 2006 Method of one-dimensional projections for network tomography Statistical Inverse
Problems (IMS Lecture Note Series) ed R Liu, W Strawderman and C H Zhang

Erramilli V, Crovella M and Taft N 2006 An independent-connection model for traffic matrices IMC *06: Proc.
6th ACM SIGCOMM on Internet Measurement (New York: ACM Press) pp 251-6

Hamada T, Chujo K, Chujo T and Yang X 2004 Peer-to-peer traffic in metro networks: analysis, modeling, and
policies Network Operations and Management Symposium pp 425-38

Hardin C D 1982 On the spectral representation of symmetric stable processes J. Multivariate Anal. 12 385401

Kwon J and Varaiya P 2005 Real-time estimation of origin-destination matrices with partial trajectories from
electronic toll collection tag data Transp. Res. Record 1923 119-26

Lakhina A, Crovella M and Diot C 2004 Diagnosing network-wide traffic anomalies SIGCOMM '04: Proc.
2004 Conf. on Applications, Technologies, Architectures, and Protocols for Computer Communications (New
York: ACM Press) pp 219-30

Lamperti J 1958 On the isometries of certain function spaces Pacific J. Math. 8 459—-66

Lawrence E, Michailidis G, Nair V N and Xi B 2006 Network tomography: a review and recent developments
Frontiers in Statistics ed Fan and H Koul (London: Imperial College Press) pp 345-64

Liang G, Taft N and Yu B 2006 A fast lightweight approach to origin—destination IP traffic estimation using
partial measurements /EEE Trans. Inf. Theory 52 263448

Liu Y, Towsley D, Ye T and Bolot J C 2005 An information-theoretic approach to network monitoring and
measurement IMC *05, Internet Measurement Conf. (New Orleans, LA, USA)

Medina A, Taft N, Salamatian K, Bhattacharyya S and Diot C 2002 Traffic matrix estimation: existing
techniques and new directions Proc. 2002 Conf. on Applications, Technologies, Architectures, and Protocols
for Computer Communications (New York: ACM Press)

Peterson L L and Davie B C 2003 Computer Networks: A Systems Approach (San Francisco: Morgan Kaufmann)

Soule A, Lakhina A, Taft N, Papagiannaki K, Salamatian K, Nucci A, Crovella M and Diot C 2005 Traffic
matrices: balancing measurements, inference and modeling Proc. Joint Int. Conf. on Measurement and
Modeling of Computer Systems (New York: ACM Press)

Soule A, Nucci A, Cruz R, Leonardi E and Taft N 2004 How to identify and estimate the largest traffic
matrix elements in a dynamic environment SIGMETRICS ' 04 /Performance '04: Proc. Joint Int. Conf. on
Measurement and Modeling of Computer Systems (New York: ACM Press) pp 73-84

Uhlig S, Quoitin B, Balon S and Lepropre J 2006 Providing public intradomain traffic matrices to the research
community ACM SIGCOMM Comput. Commun. Rev. 36

Vardi Y 1996 Network tomography: Estimating source—destination traffic intensities from link data J. Am. Stat.
Assoc. 91 365-77

Zhang Y, Roughan M, Duffield N G and Greenberg A G 2003 Fast accurate computation of large-scale IP
traffic matrices from link loads Proc. Int. Conf. on Measurements and Modeling of Computer Systems,
SIGMETRICS 2003 pp 206-17


http://dx.doi.org/10.2307/2669743
http://dx.doi.org/10.1016/0047-259X(82)90073-2
http://dx.doi.org/10.3141/1923-13
http://dx.doi.org/10.3141/1923-13
http://dx.doi.org/10.1109/TIT.2006.874412
http://dx.doi.org/10.1109/TIT.2006.874412
http://dx.doi.org/10.2307/2291416

	1. Introduction
	1.1. Literature review
	1.2. Problem formulation and basic notation
	1.3. Main contributions

	2. A general modelling framework
	3. Independent connections model for data networks
	4. Identifiability results for the general model
	4.1. Identifiability of second-order cumulants
	4.2. Identifiability of higher order cumulants
	4.3. Identifiability of flow volumes under stable distributions

	5. Identifiability in the independent connections model
	5.1. Minimum weight routing

	6. Special cases
	6.1. Hierarchical graphs
	6.2. Directed acyclic graphs
	6.3. Two-dimensional measurements

	7. Discussion and concluding remarks
	7.1. Dependence structure
	7.2. Network routing and a counter-example
	7.3. Weaker conditions for identifiability of the independent connections model

	Acknowledgments
	References

