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ABSTRACT 
 
 

AUTOMATED NATURAL-LANGUAGE PROCESSING FOR INTEGRATION AND 
FUNCTIONAL ANNOTATION OF COMPLEX BIOLOGICAL SYSTEMS 

 
by 
 

Carlos F. Santos 
 
 
 
 
Co-Chairs: David J. States and Brian D. Athey 
 
 

This dissertation discusses the use of automated natural language processing (NLP) for 

characterization of biomolecular events in signal transduction pathway databases.  I also 

discuss the use of a dynamic map engine for efficiently navigating large biomedical 

document collections and functionally annotating high-throughput genomic data.  An 

application is presented where NLP software, beginning with genomic expression data, 

automatically identifies and joins disparate experimental observations supporting 

biochemical interaction relationships between candidate genes in the Wnt signaling pathway. 

I discuss the need for accurate named entity resolution to the biological sequence databases 

and how sequence-based approaches can unambiguously link automatically-extracted 

assertions to their respective biomolecules in a high-speed manner.  I then demonstrate a 

search engine, BioSearch-2D, which renders the contents of large biomedical document 

collections into a single, dynamic map.  With this engine, the prostate cancer epigenetics 

literature is analyzed and I demonstrate that the summarization map closely matches that 

provided by expert human review articles.    Examples include displays which prominently 

feature genes such as the androgen receptor and glutathione S-transferase P1 together with 

the National Library of Medicine’s Medical Subject Heading (MeSH) descriptions which 

match the roles described for those genes in the human review articles. In a second 

application of BioSearch-2D, I demonstrate the engine’s application as a context-specific 

functional annotation system for cancer-related gene signatures.  Our engine matches the 

annotation produced by a Gene Ontology-based annotation engine for 6 cancer-related gene 
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signatures.  Additionally, it assigns highly-significant MeSH terms as annotation for the gene 

list which are not produced by the GO-based engine.   I find that the BioSearch-2D display 

facilitates both the exploration of large document collections in the biomedical literature as 

well as provides users with an accurate annotation engine for ad-hoc gene sets.    In the 

future, the use of both large-scale biomedical literature summarization engines and 

automated protein-protein interaction discovery software could greatly assist manual and 

expensive data curation efforts involving describing complex biological processes or disease 

states.
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CHAPTER I  
 

Introduction 
 

1.1 Overview 

This dissertation discusses the use of computational natural language processing to cull 

data from the research literature and place extracted observations in biomedical context.  

Natural language understanding is difficult to automate, but an increasing number of 

successful implementations of automated biomedical knowledge extraction from free text are 

being reported[1-3].  We discuss the need for accurate named entity resolution to biological 

sequence databases and how sequence-based approaches can unambiguously link 

automatically extracted assertions to their respective biomolecules in a high-speed manner.   

We also describe a large-corpus summarization engine which clusters and maps articles, 

named entities, and biological topics from standardized ontologies into a single user-

browseable window in real time.  The system enables efficient partitioning of large document 

clusters into easily-browsed clusters of biologically-related topics. 

Recent, successful applications of natural language parsing in molecular biology include 

recognizing molecular interactions[3, 4], inhibition relationships[5], and pathways[1, 6].  To 

date, much work has focused on extracting specific classes of relationships from article text 

(“binds”, “inhibits”, etc.), but relatively little attention has been given to the problem of 

defining when, where and under what circumstances these relationship apply.  In a related 

problem, biomedical text search results are still primarily returned in a text manner not easily 

amenable to large-scale review.   Mapping the distribution of annotations relevant to 

biomolecules in a literature corpus (in effect the contextual role of individual genes within 

the corpus) remains a daunting challenge even in cases where review articles exist covering 

those documents. 
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Representing and capturing biological knowledge and context from free-form biomedical 

text are major goals of this project.  To that end, both the automated parsing system we apply 

to the Wnt pathway as well as the context-specific search engine, BioSearch-2D we have 

developed provide novel ways of extracting or mapping biological facts (protein interactions 

and functional annotation) in a high speed, contextual manner from the literature. 

The major focus of this work is recent peer reviewed literature indexed in the National 

Library of Medicine’s Pubmed database.  This includes the vast majority of the academic 

biomedical literature. 

1.2 Signal Pathway Annotation 

Detailed signal pathway annotation and model construction is by nature an arduous task 

for human readers to accomplish.  The task is complicated for heavily-investigated pathways 

like the Wnt signal transduction cascade or other major cellular pathways due to the large 

volume of papers published for biological interactions involving members of the pathway.  

For the Wnt signal transduction literature, for instance, there were 239 MeSH-annotated 

“Signal Transduction” Wnt pathway MEDLINE articles in 2003 and 889 articles for the 

period from 2000 to 2004.    Expanding the search to include other co-factors or major 

proteins in the pathway expands the results to many thousands of articles. 

For a pathway like Wnt/Frizzled, up-to-date models are essential for investigators in the 

field; without an accurate model, experimental evidence may be annotated out of biological 

context or inconsistent with experimental evidence.   Comprehensively annotated models of 

complex pathways like Wnt are also essential for hypothesis-generation and experiment 

validation,  yet with the exception of periodic reviews on the subject, there are few sources of 

Wnt-signaling information that are kept up to date with the latest published literature. 

Previous authors[7-14] have used NLP-based systems to extract biological molecule 

annotation information[7], to detect protein-protein interaction information[8, 15, 16], or to 

improve indexing and recall into searches from MEDLINE abstracts[12, 17].   Methods 

employed include a mixture of text mining and indexing for terms which can be classified by 

Bayesian statistics[10], structured grammar matches[18], or word filtering of known entities, 

as well as the use of partial and full parsers.   Full parsers have been employed to discover 
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protein-protein interactions with promising results, highlighting the utility of this approach.  

In contrast to full-sentence parse systems reported previously, our application is fully open-

source and structured in an XML format that can be easily translated into other 

representations, including diagramming applications or ontologies[14]. The named entity 

module we present employs a word-statistic chi-squared test, but begins with a partial parser 

to derive the necessary named entities; the full parser module provides deeper phrase 

attachment, syntax information, and grammatical relations, but requires as a pre-filter, a 

hand-selected list of verbs for protein-protein interaction and most importantly, the named 

entity list derived from the partial parse.    

A continuing challenge in protein-protein interaction detecting remains the detection of 

specific biologically-relevant molecule names from source literature, and domain-specific 

usage of names that requires extensive ontological development behind an NLP pipeline 

before the results can be usefully represented.  

In our annotation system, we avoid the need to generate and maintain a large-scale 

ontology by taking advantage of both the Link full parser[19]’s phrase attachment facilities, 

as well as fast partial-parser [20] (Cass)  noun-phrase annotation to generate a list of words 

specific to Wnt signal transduction and the general MeSH-annotated signal transduction 

literature.   The fast partial parser’s ability to detect and annotate multiple-word noun phrases 

within the text, coupled with a simple statistical test allows the system to automatically build 

a corpus-specific named entity list without requiring maintenance of an extensive set of 

background annotation or dictionaries.    While this approach is only a first-pass 

disambiguation of the named entities found within the corpus (e.g. it does not link to actual 

sequence or cross-reference data), for the queries likely to be of interest to a human domain 

expert, we find this automated named entity annotation to be at least as specific as the 

human-constructed signaling pathway entities available in the public domain, and in some 

cases, the entities we detect are actually more specific instances of proteins in the human 

model. 

Following the named entity generation, we detect the actual interaction and protein-

associations, with a full parser, the CMU Link parser[19] to reduce grammatically 

complicated sentences into simplified “tuples”, which roughly correspond to specific 
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biological assertions made in any particular sentence.  This representation allows us to query 

the corpus for named entity interactions, where the assertion “tuple” syntax provides a direct 

linking verb between two named entities (rather than a simple search for co-occurrence, the 

parse logic behind each “tuple” reproduces with a high degree of accuracy and flexibility the 

core assertions made by each sentence in a paper).  Coupling our specific over-represented 

Wnt signaling terms, with the parser output yields various relevant possible additions to the 

canonical Wnt pathway, as well as provides provenance and annotation for a majority of the 

interactions present in the pathway where source material was not annotated.    

1.3 A Visual Map to the Literature 

The biomedical literature continues to grow at an accelerated rate, yet the search engines 

most commonly used to access it remain the keyword-based retrieval engines like NCBI 

Entrez-Pubmed (http://www.ncbi.nlm.nih.gov/PubMed/) and Google Scholar 

(http://scholar.google.com).  In active fields like cell signaling or oncology, the size of these 

engines’ query results quickly overwhelms human reading ability.  Making matters worse, 

due to the context-dependent nature of scientific research, the first or most recent article(s) 

returned are typically only a small fraction of those required to comprehensively describe the 

full body of knowledge contained in the literature on the queried disease condition or 

biomolecular process.   

In order to interpret the results of any given returned result, then, users must not only 

select a few articles of interest from their search, but then also undertake the additional task 

of browsing at least in passing the co-referencing papers and related publications returned by 

the search engine.  Quite often, review articles exist which assist by offering expert opinion 

and summarization of bodies of literature, but these typically focus on specific sub-

disciplines within the literature and once published do not update themselves to reflect new 

findings. 

Even considering the publication of review articles, however, the overall growth in the 

literature is now such that even relatively limited searches often return overwhelming 

volumes of results.  As of early 2008, a query of MEDLINE for the phrase “cancer AND 

epigenetics” retrieves 5,348 articles; limiting the same query to “epigenetics AND prostate 

cancer” reduces this number to a still-substantial 285 articles.  Similarly, a query for 
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“prostate cancer AND apoptosis” results in well over 3,000 articles and 472 reviews, an 

intractable number of papers for all but the most determined reader.    Overall, the process of 

discovering the context and function of gene or disease processes within a result remains a 

formidable and time-consuming task for a human reader.  The problem becomes even worse 

when discussing complex systems in biology within variable contexts, such as multi-factorial 

disease or signal transduction pathways with variable roles.  A literature search of “Wnt 

AND signal transduction” for example (returning papers relating to the Wnt family of 

secreted signaling proteins) yields 3,525 articles, of which roughly 1,500 discuss Wnt-related 

genes in a developmental biology context and 845 discuss Wnt’s in the context of cancer 

biology.   Currently, approximately 50 genes are believed to comprise the core of this 

pathway[21], yet extracting the oft-varying role of these genes from the hundreds of 

experimental publications describing them remains a task which challenges even expert 

human readers. 

A number of biomedical search alternatives to the Pubmed search engine have been 

developed which attempt to better organize the result sets returned by queries.  These include 

text displays of ontology-based clustered results [22], graphical [23] and textual [23] displays 

of clusters of documents.  Also, some search engines include documents not indexed by 

MEDLINE (Google Scholar) but still present results in a series of text-pages like the Pubmed 

search engine.  All of these primarily return abstracts or titles in lists or as node-edge graphs.  

Search results from these engines often do not directly display the precise distribution of 

named entities within those results in a single comprehensive view.  Furthermore, in some 

cases the engines are often limited in retrieval size [22] on the underlying corpus, leading to 

undercoverage when analyzing the relationships between many hundreds of entries actually 

present in the result (for example, MeSH headings corresponding to documents and their 

genes within a given corpus). 

Gene- and MeSH-based topic clustering applications in the biomedical literature have 

been reported in prior work, for instance PubGene [24], a system for automated extraction of 

explicit and implicit biomedical knowledge from publicly available gene and text databases 

to create a gene-to-gene co-citation network.  The system described does not function as a 

search interface to article subsets; rather, it explores relationships and similarities within 

genes in MEDLINE abstracts.  Other approaches describe clustering strategies using MeSH 
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topics, such as the gene-to-phenotype clusters reported by Jennsen Korbel [25] but these are 

largely one-time analyses rather than search engines in their own right.  In yet others, such as 

the heatmap queries in Lydia [26], the analyses or engines are not focused specifically on 

biomedical content. 

The RefViz literature analysis tool [27] may perhaps be the closest available overview 

heatmap utility available to that which we discuss in this project, as it displays a literature 

clustering and retrieval heatmap for documents.   Unlike Biosearch-2D, however, RefViz 

does not cluster results based on organism-specific gene lists or controlled external 

ontologies.  RefViz instead renders the distribution of topics into more of a word-based map 

rather than a gene-concept-centered map.   

Previous work on information extraction in biomedicine includes a number of reports 

which attempt to extract information about genes from scientific texts using the co-

occurrence of terms in a sentence or abstract[17, 28-31].  These approaches, like ours, extract 

genes within an actual biological context [24], [17], but unlike our current implementation, 

they do not attempt to summarize a corpus specifically using this approach nor allow for 

reclustering specific subsets of documents according to user-selectable criteria.  Both do 

report, however, that co-occurrence of gene names in an abstract frequently reflects an actual 

biological relationship between co-occurring genes. 

 Masys,et al.[32] describe a system of keyword profiles for genes based Medical Subject 

Headings (MeSH), but the system is not presented as a user-navigable search engine. 

A close comparison to our utility could be CoPubMapper by Alako, et al. [33] but like the 

other approaches, the analysis presented does not form a direct interface for a search into the 

literature (so the actual keyword clusters are hidden) and it is not implemented as a web-

based utility, but rather was performed as a one-time analysis task.  Alako, et al. [33] also 

report differences in the name tagging algorithm and normalization to our name matching 

algorithm. 

Our search engine in contrast is primarily gene-versus-concept centered, and is a true 

web-based application, motivated by a need to analyze and explore the role of genes and their 

roles as described in a literature subset chosen at query time.  Our first application for the 

system explores the prostate cancer genomic literature for those papers describing 



7 

methylation and epigenetic changes in tumor progression. Rendering a heatmap of the genes 

versus MeSH topics relating to articles discussing the genes, the application scales to cover 

the many hundreds of genes observed in the corpus and the correspondingly large collection 

of MeSH topics corresponding to articles in which those genes are found.  The map itself is 

rendered and presented via a Flash-based website, allowing rich, interactive, corpus-wide 

exploration and document retrieval guided by the image features themselves. 

To demonstrate the coverage of these maps, we analyze the results from a focused major 

disease query, “prostate cancer AND epigenetics”, as well as the literature discussing a major 

signaling pathway, the Wnt pathway.   We select topics within these collections and analyze 

the map coverage against human-authored reviews in both cases and a curated web resource 

in the case of Wnt.  Our results suggest that an automated mapping of even a complex corpus 

in a heatmap corresponds closely to the gene-concept discussion provided by the human 

reviews and reference websites. 

1.4 Contextual Functional Annotation  

The annotation of gene list results produced by high-throughput genomics and 

proteomics experiments has resulted in a vast number of gene expression signatures and 

canonical reference lists corresponding to important disease and clinical states.   Typically, 

the functional annotation of these gene lists into biological context relies on annotation 

utilities which calculate the relative enrichment of ontology terms for genes found in the 

input list compared to the term frequency assigned to genes in a genome-wide context.   The 

majority of these annotation utilities employ the Gene Ontology[34] as their primary 

annotation ontology. Additionally, some provide additional annotations such as protein-

protein interaction lists, protein functional domains, disease associations, pathways, sequence 

features, homologies, and selected curated literature references [35-38] [39-41].    These 

utilities are varied, and include both executable software as well as websites like GoMiner 

[42], EASEonline [35], GeneMerge [43], eGOn [44], FuncAssociate [45], GOTree Machine 

(GOTM) [46], GOSurfer [47, 48], Ontology Traverser, CLENCH [49], GOToolBox [50], 

FatiGO [39, 40, 51], and DAVID [35-38].  A complete review of these utilities is described 

by Khatri, et al. [52].    
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Additionally, annotation tools like the Molecular Concept Maps described by Rhodes, et 

al. [53-55] are available which link microarray studies to a number of oncology-related 

ontologies in order to better allow annotation of clinically distinct cancer gene profiles.  In 

one published report, Tomlins, et al. describe common shared genes between cancer 

signatures annotated between different cancer types and specific gene repression signatures 

in both breast and prostate cancers, demonstrating the power of incorporating non-GO 

ontologies in a highly-focused biological context. [53-55]. 

To date, Gene Ontology-based annotation engines rely on an intermediate curation step to 

assign genes to ontology terms based on literature or experimental observation.  As Khatri, et 

al. note, these mapping efforts have historically been fairly accurate [56] and extensive yet 

mostly assigned in an automated fashion (as of February 2008, there exist 182573 GO 

annotations for 35113 human genes, of which only 52,246 were not derived electronically) 

(http://www.geneontology.org).  By contrast, MeSH annotation is performed manually by 

human curators on individual MEDLINE articles.   Linking article-derived MeSH terms to 

genes, therefore, could provide a more tightly-coupled gene annotation than annotations 

obtained through secondary-source ontologies. 

Khatri, et al. further highlight a key limitation to the current batch of annotation engines, 

in that annotations “related to those genes [which] are involved in several biological 

processes” are limited to single contexts. Due to the nature of the GO hierarchy, most current 

tools weight biological processes equally.  In effect, these tools make “restricting the query to 

specific clinical areas…a challenge since the basic annotation itself is largely restricted to 

basic biological processes”.   They describe a specific example in the case of BRCA, which 

has a distinct biological roles as both tumor suppressor as well as in carbohydrate metabolism  

[52].  Depending on the gene signature in which it is found, the annotations may differ for 

the gene, which in turns impacts the accuracy of any biological inferences made on that 

annotation.   

In terms of user-interface, the vast majority of existing utilities remain largely text-based, 

with results returned being large term lists with statistical significance values assigned to 

each term.   These text lists are often produced in batch manner and returned as series of 

dense text annotations which seldom reflect internal categories between the genes analyzed.  
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A few graphical interfaces have been developed to address the usability limitations of these 

text results, including two-color plots rendered by DAVID, where they are described as “… 

the most powerful graphic presentations in DAVID applications” by the authors. [35, 57]   

We have developed an integrated MeSH annotation system in conjunction with a 

literature concept mapping utility, BioSearch-2D.    From a user-submitted gene list, the 

system renders hierarchically-clustered, dynamic two-dimensional maps representing the 

distribution of a large set of human gene identifications in biomedical text versus selected 

MeSH terms.  Coloring on the map corresponds to statistically-significant annotations 

assigned to MeSH terms.  These maps directly represent the distribution of MeSH terms 

corresponding to submitted gene lists as well as the statistical significance in a single unified 

display, instead of in a series of text lists.  We find that the maps match key functional 

annotation assignments produced by GO-based engines, as well as use a two-dimensional 

map to render context-specific annotations clustering and intuitive distribution plots which 

identify functional subgroups in submitted gene lists. 
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CHAPTER II  
 

Wnt pathway curation using automated natural language processing: 
combining statistical methods with partial and full parse for knowledge 

extraction 
 

2.1 Background 

Wnt signaling is a very active area of research with highly relevant publications 

appearing at a rate of more than one per day. Building and maintaining databases describing 

signal transduction networks is a time consuming and demanding task that requires careful 

literature analysis and extensive domain specific knowledge.  For instance, more than 50 

factors involved in Wnt signal transduction have been identified as of late 2003.   In this 

chapter we describe a natural language processing (NLP) system that is able to identify 

references to biological interaction networks in free text and automatically assembles a 

protein association and interaction map.   

A “gold standard” set of names and assertions was derived by manual scanning of the 

Wnt genes website [58]  (http://www.stanford.edu/~rnusse/wntwindow.html) including 53 

interactions involved in Wnt signaling.  This system was used to analyze a corpus of peer 

reviewed articles related to Wnt signaling including 3,369 Pubmed and 1,230 full text papers.  

Names for key Wnt-pathway associated proteins and biological entities are identified using a 

chi-squared analysis of noun-phrases over-represented in the Wnt literature as compared to 

the general signal transduction literature.  Interestingly, we identified several instances where 

generic terms were used on the website when more specific terms occur in the literature, and 

one typographic error on the Wnt canonical pathway.  Using the named entity list and 

performing an exhaustive assertion extraction of the corpus, 34 of the 53 interactions in the 

“gold standard” Wnt signaling set were successfully identified (64% recall).  In addition, the 

automated extraction found several interactions involving key Wnt-related molecules which 



11 

were missing or different from those in the canonical diagram, and these were confirmed by 

manual review of the text.  These results suggest that a combination of NLP techniques for 

information extraction can form a useful first-pass tool for assisting human annotation and 

maintenance of signal-pathway databases. 

2.2 Introduction 

Detailed signal pathway annotation and model construction can be an arduous task for 

human readers to accomplish.  The task is complicated for heavily-investigated pathways like 

the Wnt signal transduction cascade or other major cellular pathways due to the large volume 

of papers published for biological interactions involving members of those pathways.  In the 

Wnt signal transduction literature, for example, there were 239 MeSH-annotated “Signal 

Transduction” AND Wnt pathway articles in 2003, and 889 articles for the period from 2000 

to 2004.  Expanding the search to include other co-factors or major proteins in the pathway 

expands the results to many thousands of articles. 

For a pathway like the Wnt pathway, up-to-date models are essential for investigators in 

the field; without accurate models, experimental results may be placed outside of the proper 

biological context or key insights may be missed altogether if the model structure is 

incorrect.  Comprehensively-annotated models of complex pathways like Wnt are also 

essential for hypothesis-generation and experiment validation, yet with the exception of 

periodic reviews on the subject, there are few sources of Wnt-signaling information that are 

kept consistent with the latest published literature. 

In the past, various groups [7-14] have used NLP-based systems to extract biological 

molecule annotation information [7], to detect protein-protein interaction information [8, 15, 

16], or to improve indexing and recall into searches from MEDLINE abstracts [12, 17].   

Methods included a mixture of text mining and indexing, with some groups using 

classification by Bayesian statistics [10], structured grammar matches [18], or word filtering 

of known entities, as well as the use of partial and full parsers.  Full parsers have been 

employed to discover protein-protein interactions with promising results, highlighting the 

utility of this approach[14], however they are not available as open-source.  
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We have developed an automated NLP-based system to assist in the generation of up-to-

date pathway models from the literature, that can automatically detect and rank key 

interacting proteins in an article corpus like that of Wnt signaling. 

The named entity module we present employs a word-statistic chi-squared test, but 

begins with a partial parser to derive the necessary named entities.  Then, the full parser 

module provides deep phrase attachment, syntax annotation, and grammatical relations, and 

extracts interaction statements by filtering results with a list of verbs and the named entity list 

derived from the partial parse.  

We avoid the need to generate and maintain a large-scale named entity list by taking 

advantage of both the Link parser’s [19] phrase attachment facilities, as well as fast partial-

parser’s [20] noun-phrase annotation to generate a list of words specific to Wnt signal 

transduction.   Our system uses the fast partial parser coupled with a simple statistical test to 

automatically build a corpus-specific named entity list without requiring an extensive pre-

computed synonym list.    While this approach is only a first-pass disambiguation of the 

named entities found within the corpus, for the queries likely to be of interest to a human 

domain expert, we find this automated named entity annotation to be at least as specific as 

the human-constructed signaling pathway entities available in the public domain. 

Following named entity extraction, we detect the actual interaction and protein-

associations with the Link parser[19].  The parser allows us to reduce grammatically 

complicated sentences into simplified “tuples” which roughly correspond to specific 

biological assertions made in any particular sentence.  The 3-tuple representation permits fast 

searches for a direct linking verb between two named entities.  The search we perform yields 

various relevant possible additions to the canonical Wnt pathway, as well as provides 

provenance and annotation for a majority of the interactions present in the pathway where 

source material was not annotated.    
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2.3 Methods: Article XML Processing and Full Parse 

2.3.1 HTML Retrieval and XML Conversion 

Full-text and MEDLINE articles are retrieved using NCBI’s LinkOut e-retrieval utility 

[59].   For an initial query, an XML file of retrieved UI (Pubmed ID) entries serves as a 

corpus index, from which local Perl script retrieves where possible the full-text article (via 

LinkOut URL) and MEDLINE entry.  The latter entry serves as a backup entry for cases 

where full-text may not be present, or where the NCBI LinkOut URL yields only a PDF file. 

For the Wnt signaling pathway, we queried Pubmed with: 

(“Signal Transduction”[MeSH] OR Wnt[All fields] OR Akt[All Fields] OR catenin[All 

Fields] OR frizzled[All Fields]) 

The query yielded 3523 articles (full analysis in supplementary data), of which 3369 

could be retrieved in XML. Of these 3369 documents, the majority (2914) had a parseable 

abstract field (either from HTML or MEDLINE record), and of the 455 that did not, the 

papers were often review papers, with the XML tag marked as “TOP”. The full corpus 

composition is available as supplementary data. The query was restricted to the past five 

years (1999/03/03 to 2004/03/01). 

2.3.2 XML Document Structure Parsing 

To normalize successfully-retrieved HTML papers, we developed a document-structure 

parsing script in Perl (v. 5.6.0) that extracts into XML-format the Titles, PMID, Abstract, 

Methods/Materials, Conclusions, Figures, Tables, and References sections of full-text 

articles: We parse sentences within all sections by default, only explicitly excluding sections 

parsed as “References”.  It is important to note that of the 3369 retrieved papers, over 10% 

had no explicitly-labeled “abstract” section (even if one was provided in the MEDLINE).] 

2.3.3 Pre-Processing and Parse 

For parsing, we process and exclude non-parseable sections like references and tables in 

each paper.  Articles are then processed through a Link grammar parser [19] (version 4.1a; 

http://www.link.cs.cmu.edu/link/ftp.html) on a 16-node Linux cluster.  
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2.3.4 Link Parser Output 

For each sentence, the parser yields word associations as a flat list with left-hand terms 

“attached” by a grammar relation to terms on the right.  The “subject-verb-object” relations 

provided by the parser form the core assertions we wish to capture from the parse.  The 

parser captures the main verb of each clause or sentence, links it with the proper subject 

noun, and object if present, yielding a subject-verb-object assertion which we extract as a 3-

tuple. 

2.4 Methods: Assertion Representation via Link Parsing: Subject-Verb-
Object Tuples 

2.4.1 Tuple Format 

The structures we call tuples are Link-grammar-parser derived structured, hierarchical 

representations of grammatical relations between phrases and words within sentences.    

Generally, each tuple takes the form of a three-component structure: 

In our tuple format: 
 
<int pmid="12952940"> 

<protA>Wnt</protA> 
<protB>Frizzled</protB> 
<assert> 

<src_sent>...</src_sent> 
<tuple> 

<subj>...</subj> 
<verb> ... </verb> 
<obj> ... </obj> 

</tuple> 
</assert> 

</int> 
 

Each interaction (int),contains two named entities protA and protB , with assert element 

which contains a sentence (src_sent), and a tuple element (tup).  The tup contains a subject 

(subj),  verb (verb), and an object (object). The subject and object terms can be either single 

or multi-word nouns, attached to modifying prepositional phrases, adjectives, and articles.  

Verbs are single words, and are marked as verb.  Objects follow the specific verb marked. 
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Some authors [9] employ sophisticated template-matching with  partial parse-based 

algorithms when detecting interactions.  These systems are faster than our parse, but often 

require substantial manual template generation for the partial parser. 

Our interaction detection searched for phrases with two named entities flanking any of a 

select group of stemmed verbs.  The verb list itself was manually compiled from a listing of 

verbs found in the corpus and from verbs in general usage likely to be found describing 

protein-interactions.  These “direct” and “indirect” physical interaction verbs are split into: 

 
Direct interaction verbs:  
bind (bound), interact(-s,-ed), stabilize(-s,-d), phosphorylate(-s,-d), 
ubiquinate(-s,-d), sumoylate(-s,-d), degrade(-s,-d), block(s) 

 
Indirect interaction verbs: 
induc(-es,-ed), trigger(-s,-ed), block(s), enhance(s), synergize(s), 
cooperate(s), localizes, regul(-ates)(-ion), activate(s), inhibit(s), 
control(s), translocate(s), antagonize(s), amplif(-y)(-ies), transduce(s), 
degrade(s), trigger(s) 
 

2.4.2 Tuple Examples  

The system outputs tuple assertions from sentences in XML: 
 

<assert> 
<src_sent> 

Wnt8 binds to LRP6 and Frizzled8. 
</src_sent> 
<tup> 

<subj>Wnt8</subj> 
<verb mod="v">binds.v</verb> 
<obj><p pp="to">LRP6</p></obj> 

</tup> 
</assert> 

 
In the sentence above, “Wnt8 binds to LRP6 and Frizzled8.” yields two assertion tuples: 

the binding of “Wnt8” to “LRP6” and a matching tuple (not shown) for the binding of 

“Wnt8” to “Frizzled8”. 

In addition to direct interactions, sentences where a verb suggesting an interaction is 

found within the object, we make the assertion as being the closest preceding matching verb 

or gerund matching within the phrase for the named entity in the object.  
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2.5 Methods: Automatic Name Extraction from a Partial Parser 

The Cass parser [60] is a fast (10000 sentences/hour) deterministic partial parser that we 

use to construct a named entity set specific to the current domain.  The parser has several key 

advantages over a parser like Link that make it a worthwhile choice for a named entity 

recognizer, primarily its good specificity for detecting selected “phrase chunks” of sentences 

at speeds which are many orders of magnitude greater than those achieved with a full parser 

like Link.   This markup allows us to statistically compile named-entity candidates (noun 

phrases) from the small topic-specific corpus against a massive background corpus (all 

“signal transduction”), while reserving the use of a computationally-expensive full parser 

only for determining tuples in the small corpus. 

We used the Cass parser to select named entities (noun phrases) for the Wnt pathway by 

comparing the occurrence of named entities in the Wnt-specific article corpus against their 

occurrence in a “background” signal-transduction literature corpus (10000 records, yielding 

8873 parsed articles corresponding to the PubMed query “Signal Transduction”[MeSH] from 

the previous two years).   

By comparing the frequency of “Wnt” to “signal transduction” noun phrases, we 

calculated one-degree of freedom chi-squared values for Wnt Cass noun-phrases relative to 

the Signal Transduction corpus and ranked them according to that chi-squared value.  

Significance was set as p<0.001.  Examples of over-represented Wnt terms included both 

single phrases, as well as compound phrases.   

For every NX term, X2 was calculated as: 
wi : the number of occurrences of NX term i in the Wnt-specific corpus 
W:  the total number of NX terms in the Wnt-specific corpus 
si :  the number of occurrences of term i in the signal-transduction corpus 
Si : the number of occurrences of term i in the signal-transduction corpus 
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Note that not all terms were proteins, since the terms are noun-phrases in general. In the 

application, proteins of interest were filtered at search time manually where found.  Noun 
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phrases we detected included both single (“Wnt”) and multiple-word forms that would 

otherwise be missed by a dictionary-based search (e.g. “casein kinase i epsilon”).   
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2.6 Methods: Automatic Name Extraction Using a Full Parser 

2.6.1 Full-Parse Phrase-Derived Named Entity Extraction from the Link Parser 

The second named entity-extracting module in the pipeline scans the tuples generated 

(Wnt-specific tuples) from the Link parse for tuples derived from sentences such as  “X is … 

a protein” and “the Y protein”.   For every tuple formatted with “is” as the verb, we find the 

subject, and if it is a single word or phrase, capture the predicate phrase for that tuple, and 

append the subject into an index entry one word at a time, recursively.  For example: 

 
Sentence: E-cadherin is a transmembrane glycoprotein .. 
 
E-cadherin >> is >> glycoprotein 
E-cadherin >> is >> transmembrane glycoprotein 
 
E-cadherin >> Append to "glycoprotein" file 
E-cadherin >> Append to "transmembrane glycoprotein" file 

 
After categories are formed and the first set of names is input, the system re-scans the 

entire corpus for phrases of the form “article X Y”, where article is either “a”, “an”, or “the”, 

Y is a term category (e.g. “protein”), and X is a non-whitespace term.  This second pass 

allows us to capture a small additional fraction of terms of the form “the Wnt protein”, where 

the last word in the phrase is a solid term category like “protein”. 

The end result of both passes is a series of categories or category files, comprising a 

shallow ontology.  This auto-categorization system yielded 7066 distinct categories for the 

3306-article Wnt-signaling specific corpus, and 24474 terms within those categories, of 

which 24323 were unique terms.  The largest categories are not surprisingly commonly 

discussed terms, including “protein”, “gene”, “proteins”, etc. 

We find the terms extracted are very specific as they are directly extracted from direct 

declarative statements in the corpus. 

2.6.2 Manual Annotation Results 

Our precision and recall are measured as to the correct fraction of overall interactions 

returned and the percentage of the interactions captured in the gold standard[58], 

respectively.  Results are given in Table 1. 
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2.6.3 Calculation of Precision 

We define precision as the fraction of correct tuples returned by the parser.  These tuples 

are tuples where the sentence actually supported evidence for a direct physical binding 

interaction or mentioned an indirect but biological relationship between the two protein 

entities in the tuple. 

From the corpus, we derived a set of 6787 Tuples/Interactions, of which 1210 were 

unique pair-wise.  We tested 5% (randomly selected) of the data set (340 sentences), 

representing individual unique sentences with their tuples and the two interacting proteins, 

and hand-scored assertions for the accuracy of the tuple and named-entity search to 

determine if the sentences support the interactions noted.  This tests the performance of the 

parse/extraction software without explicitly biasing the sampling towards a subset of the 

corpus (e.g. interactions which only contain a few papers in the entire corpus). For the parser 

evaluation, we tally but ignore from the final count all name-detection errors as these are a 

function of the named-entity module or of the human input. 

“Direct” verb tuples are more useful for actual diagramming of physical pathways, but 

the “indirect” interactions are still indicative of relationships between distant pathway 

components.  Tuples may be useful as a validation of models built with the system.   We are 

not measuring interaction directionality at present in the system. 

2.6.4 Calculation of Recall 

The exact recall metric for a system like ours is difficult to calculate manually, as it 

would require determining the total number of “facts” made about binding proteins in the 

articles scanned.  We therefore calculate recall as the fraction of the “gold standard” 

interaction set we are able to reproduce compared to the Wnt genes homepage, rather than as 

the fraction of interactions detected against the absolute “assertion or interaction” count in 

the corpus. 
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2.6.5 Domain Specificity 

By default, all returned interactions that are “correct” are within the domain. The corpus 

itself is the domain we examine, and we expect a “Wnt” corpus to therefore contain only 

within-domain interactions.    

 

2.6.6 Discussion: Use of a Partial Parser for Named Entity Extraction 

The Cass parser lacks certain phrase attachment and coordination capabilities of Link, but 

we found that its relatively good accuracy and very high speed allowed us to use Cass as a 

named entity extractor.    Cass’ finite-state grammar rules allow us to extract multiple-word 

noun phrases without requiring the use of an external dictionary or coordination and 

integration with existing synonym lists. 

In actual usage, we found that compiling extensive named-entity lists from other 

databases provided little benefit, as in the end, interactions adding to the “gold standard” will 

be manually verified before being submitted as authoritative.    Extracting the named entities 

from the text itself yields word phrases that are guaranteed to match (even if they are spelling 

variants), and allows extraction of useful assertions that can later be verified for accuracy.  

As expected, this process is extremely fast, but can occasionally introduce spurious 

“interactions” between terms and common phrases. 
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2.7 Results: Comparison of Automatic Wnt Pathway Annotation and the 
Existing Gold Standard 

The system discovered various high chi-squared terms with additional or different 

annotations than those present in the gold standard: 

2.7.1 The Phosphorylation Interaction between CKI-epsilon (CK1e) and APC 

In the diagrammed gold-standard Wnt-signaling pathway, no specific mention of CK1-

epsilon (CKIe, CKI epsilon) interaction with APC is made, and on closer inspection, Kishida 

et al.[61] do make a statement of the direct phosphorylation between the two molecules. 

2.7.2 The Phosphorylation of beta-catenin  by CKII (CK2) 

The Wnt genes gold standard mentions CK2 as CKII in the context of binding to 

Dishevelled, but does not specifically show direct interaction of CK2 with beta-catenin in the 

protein interaction figures although links to a paper describing phosphorylation of beta-

catenin by CK2 are provided.   Our search independently found two articles, including the 

cited articles[62] and a morphological study[63] which describe the direct interaction of CK2 

with beta-catenin directly.  The chi-squared values for CK2 and beta-catenin are 1179.50 and 

40537.69, respectively, suggesting these terms are significantly over-represented in the Wnt 

literature as a whole, and suggesting this interaction should be a directly-featured pair in the 

gold standard map. 

2.7.3 Six3 And Wnt Regulation 

The Wnt genes website lists Six3 (Sine oculis homeobox (Drosophila) homologue 3) as a 

Wnt target gene[64].  Six3 also feedbacks to repress Wnt expression, an interaction note 

mentioned on the website and specifically not mentioned in the table of Wnt feedback target 

genes.  A paper cited by the website describes this interaction[65]. 

2.7.4 Pathway Expansion: Wnt Downstream Targets  

Chen, et al. report that Wnt-1 signaling inhibits apoptosis and caspase activation induced 

by cancer chemotherapy [66].  Such distant pathway cross-talk events of activation and 

regulation between Wnt and other pathways are difficult to curate manually and by definition 

are often not fully referenced in “canonical” diagrams. In particular, remote downstream 
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activation or cross-talk between proteins downstream of the canonical pathway are areas 

where statements in the literature could be mined by automatic annotation software.  

2.7.5 Wnt-7a and LMX-1b  

Lmx1b is induced in the mouse dorsal mesenchyme by wnt-7a and it is both necessary 

and sufficient to specify dorsal limb pattern[1].  The activation pattern was not noted in the 

Wnt genes website, but was found amongst the interactions by the machine parse (in article 

PMID 12588849) [1]. 

2.7.6 Typographical corrections: Pygopus and Pygopos 

Human typists are not infallible, and the name recognizer component of the pathway 

automatically discovered the Pygopus name but missed the interaction with Pygopos.  The 

latter term resulted in the term list after human entry, and manual review showed the spelling 

error arose from a spelling error on the annotation itself from the Wnt signaling canonical 

pathway.   The example serves not as any particular criticism of the pathway map, but rather 

highlights the risk of relying on human typed input into pathway annotations; automated 

systems do not fatigue or commit unintentional typographical mistakes whereas human input 

can lead to a certain degree of error even in highly-curated databases. 

2.8 Conclusion 

Our results with automatic component identification and interaction detection in the Wnt 

signaling pathway suggest that natural language techniques are able to substantially improve 

the coverage of canonical reference literature and signaling models.   The high precision and 

processing speed of this automated signaling interaction pipeline demonstrates the value of 

full-parsers and statistical techniques.  Using this approach as a “first-pass” filter into the 

literature can usefully assist scientist maintaining databases and information resources in 

complex and rapidly evolving fields such as signaling pathways.  As with any fully-

automated system, however, the recall rates with respect to the known canonical models do 

not yet match those of an expert human reviewer.   

In the future, we expect to capture directionality and type of interaction in a more robust 

way for our assertions.   This will require more template development, and may require the 
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use of an ontology for an outside reference source for error-detection of incorrect assertions.  

The role we most expect this system to serve is a real-time scanning facility for new articles, 

searching for newly-discovered interactions.  Automated computational methods are capable 

of analyzing a much broader coverage of literature than would be feasible for a human 

reviewer to perform.  In this role, there is a premium on specificity to avoid overloading the 

manual reviewer with erroneous matches, and our results suggest that deep-parsing, 

automated natural language processing technology is now capable of achieving this 

requirement. 

We found that our auto-categorization module, using statistical and natural-language 

parsing techniques allowed us to build a named entity list at run-time, rather than requiring a 

cumbersome fixed named entity assembler before the processing.  This approach was 

perhaps our main advantage in this pipeline, because unlike general English-language texts, 

the biomedical literature enjoys a substantial human-hierarchical index via the MeSH tags 

provided by MEDLINE.   

MeSH indexing provides a powerful tool for building reference and background article 

sets that can be used to search a specific article corpus for biologically-relevant named 

entities which are typically over-represented with high statistical significance.    The fast 

partial parser CASS serves a useful role in assigning multiple-word entities.  CASS is 

uniquely powerful in its ability to efficiently process very large collections of text.  This 

speed is a result of algorithmic efficiencies which are unlikely to be matched by more 

complete full-parsers.  The combination of fast partial-parse, exploiting MeSH indexing and 

statistical analysis of multiple word phrases significantly simplifies our task of assembling a 

comprehensive term list. 

At a deeper level of text interpretation, the Link parser provides us with grammatical 

relations, which allows us to move beyond simple association statistics to access the 

information encoded in the grammatical structure of sentences.  While some sentences in 

biomedical text are too complex to be accurately parsed using current technology, we find 

that parsers such as Link are able to accurately and efficiently parse the majority of sentences 

in the molecular biology literature.  Using the integrated approach described above, we are 

beginning to be able to analyze the knowledge encoded in biomedical text. 
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Table 1: Performance of the Automated Pathway Analysis and Examples 
 
 Count 

(%) 
Interact
ion as 
Detected 

 Example Sentences of 
this Error or Type 

Short-
format 
Link Tuple 
(not in 
XML) 

Total manually 
sample counted 

370   

Total incorrect 
names (ignored from 
both tallies below) 

22 (5.9) Akt <->  
Tir 

12896980 
 

Although Akt activity 
was also induced by 
Tiron and DPI, the 
other two free-ra 
dical scavengers 
examined , only 
selenite supported 
cell growth.         

LIN: [ Akt 
activity.n
] 
v:<was.v> 
[m:<induce
d.v> only 
[pp by 
Tiron]] 

Total 
indirectly/categori
cally correct 
interactions 
(A pathway...B 
pathway...ignoring 
name errors) 

129 
(37.1%) 

Akt <-> 
PI3-
kinase  
 

14557259 Akt is activated by 
many growth factors 
and cytokines in a 
PI3-kinase-dependent 
manner. 

Akt 
v:<is.v> 
[m:<activa
ted.v> [pp 
in [ a 
PI3-
kinase-
dependent 
manner.n]] 
[pp by [ 
many 
cytokines.
n]]] 

Total 
directly/physical 
interaction correct 
(A->binds->B ignore 
name errors) 

215 
(61.7%) 

Dvl <-> 
Axin 

11113207  Consistent with these 
results, Dvl interacts 
with Axin  and 
inhibits GSK-3 beta-
dependent 
phosphorylation of 
beta-catenin, APC, and 
Axin in the Axin 
complex .      

Dvl 
v:<interac
ts.v> [pp 
with Axin] 

Total correct 
names, but error in 
the parse (ignoring 
name errors): 

4 (1.1%) Dvl <-> 
Axin 

11113207 Consistent with these 
results, Dvl interacts 
with Axin  and 
inhibits GSK-3 beta-
dependent 
phosphorylation of 
beta-catenin, APC, and 
Axin in the Axin 
complex 

Dvl 
v:<inhibit
s.v> [pp 
in [ the 
Axin 
complex.n]
] 

Total Gold Standard Associations Detected 31 of 53 (58.4) 
Parse/Extract Precision 
Total correct (direct+indirect, ignoring name errors): 

344 of 370 (92.3) 

Parse/Extract Recall with respect to Gold Standard 
Review Derived Set 

31/53 (58.4) 

Separate Unique Interactions (overall) 1176 
Separate Unique With Correct Name Recognition 1043 
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CHAPTER III  
 

Grounding of Free Text to Biomolecular Sequence Databases 
 

3.1 Background 

Accurate mapping of free-text named entities to precisely defined biological entities 

remains a critical and necessary step for rapid integration of high-volume, automated 

information extraction methods into systems biology models, pathway or biomolecular 

interaction graphs.  Here we describe a full-text pipeline focused on the Wnt signaling 

pathway which exploits short DNA primer sequences in full text to establish statistically-

validated sequence alignments as the basis for mappings from free named entities to 

standardized Genbank sequence entries.  Using the published literature as an intermediary 

database, we are able to map from the core Wnt signaling pathway to a more extensive set of 

precisely identified Wnt related molecules.  We find that primers are ideally suited for 

unambiguous genomic localization, but are found with relatively low frequency in full text 

and abstract papers.   

Modern natural language processing and information extraction systems are able to 

leverage massive computational power against the human-authored biomedical text databases 

in order to process heterogeneous text into machine-readable assertions that can form the 

basis for improved systems biology models, pathway or biomolecular interaction graphs, or 

biomolecular annotations.  In many named entity discovery utilities published to date, 

however, the basis for assigning named entity to curated names arises largely from a variety 

of matching algorithms which scan free text and match the output entities to annotation lines 

or standard names in biological databases on the basis of name-to-name string match. [7, 8, 

14, 67-70] 

. We find that PCR primers, when present in biomedical articles, are well-suited as 

readily-alignable, unambiguous anchors into genomic sequence databases.  These primers 
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can serve as high precision markers for data integration tasks, allowing precise anchoring of 

free text named entities to curated definition entries and standardized gene names in 

biomolecular databases.  In many cases, primer sequences allow a greater degree of precision 

in entity definition than that which was used by the original author (due to colloquialism or 

‘canonical’ entity naming).  Of additional interest computationally, the search space 

reduction achieved when comparing individual article’s named entities (e.g. noun chunked 

phrases) against the relatively small set of aligned definition lines allows even low-

stringency, low-performance searches to efficiently match entries while still maintaining high 

accuracy.  The results from our pipeline demonstrate the utility of exploiting these 

unambiguous PCR primer sequences to anchor free-text named entities to genomic 

coordinates and existing gene models and show how these experimental entries can perhaps 

yield higher precision matches to sequence than simple string matching alone. 

3.2 Methods 

We have developed a full-text and abstract-based automated text processing pipeline 

described previously[71] in order to mine the biomedical literature databases from HighWire 

Press (http://highwire.stanford.edu/), Pubmed Central (http://www.pubmedcentral.nih.gov/), 

and the NCBI’s Pubmed/MEDLINE 

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed).   In the pipeline, full-text and 

MEDLINE articles are retrieved using NCBI’s Linkout e-retrieval utility[59]. For a given 

MEDLINE/Pubmed query, an XML file of retrieved UI (Pubmed ID) entries is processed by 

a series of Perl scripts which retrieve when possible the full-text article (via LinkOut URL) 

and MEDLINE entries corresponding to individual articles.  While full-text is the desired 

output, the pipeline in the vast majority of cases also maintains the latter as a backup entry 

for cases where full-text may not be present, or where the NCBI LinkOut URL yields only a 

PDF file. 

As previously described, the pipeline focuses primarily on the corpus of Wnt signal 

transduction literature retrievable via the MEDLINE query: 

(“Signal Transduction”[MeSH] OR Wnt[All fields] OR Akt[All Fields] OR catenin[All 
Fields] OR frizzled[All Fields]) 
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As of the time of this manuscript (mid-2005), the pipeline contains 3334 articles 

(MEDLINE, html, and/or PDF).  Of these articles, 1269 are available as full-text articles 

which we process into  XML format, and the remainder are available as abstract-only or in 

HTML which we fail to parse (but retain as HTML or MEDLINE source) (1967 papers); the 

remainder are only present as placeholders in the case of errors or missing abstract data . 

3.2.1 Article Processing 

Retrieved articles are processed into XML, then split into sentences and parsed by the 

Cass [60] partial parser for noun-phrase extraction as previously described[71].   Briefly, 

files from the original HTML are converted into one-sentence-per-line format, parsed by the 

Cass parser, and noun (NX) phrase entries are extracted and stored into a Microsoft SQL 

Server relational database.  This database also maintains the MEDLINE records for 

individual articles, which allows the system to query the NLM Medial Subject Heading[1] 

entries provided  for each paper in the database.  These MeSH entries allow querying of 

standard species names (‘Human’, ‘Humans’, ‘Rat’, ‘Rats’, ‘Mice’) for each paper.  

 
Table 2: Corpus Composition 
 

Wnt Signal Pathway Documents 
HTML or abstract 
only 

1967 

Full Text (XML 
parseable) 

1269 

Error or Missing 108 
 

Retrieved papers in either full-text or abstract format were indexed by species. DNA 

primers were extracted by scanning the original HTML and XML source for the regular 

expression /([ACGTRYSW]{8,})/.    Species-specific sequence alignment to genomic 

locations were performed on primers by an NCBI BLAST [72] search (databases for species-

specific DNA primer searches were the human genome NCBI release 35 [66], NCBI Mouse 

Genome Assembly 33[73], and NCBI Rat Genome v3.1 [74]; BLAST parameters included 

an e-value of <0.1 with MegaBLAST and output in tabular format with gi-lines displayed).  

BLAST-aligned DNA primer sequences were then mapped to their respective genomic 

locations by querying the Ensembl genome database for each species’ respective set of 

primers in the corpus.   Primers with matches against Ensembl were stored in the database 
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together with the Ensembl identifiers, definition names, and gene names as well as with their 

specific genomic locations.    

 
Table 3: DNA Primers by Paper Format 
 

Format Distinct Primers 
Found 

HTML-only (full text) 
or abstract 

435 

Full Text, HTML-to-
XML Parseable 

1981 

 

3.2.2 Named Entity Matching (Ensembl to Cass Noun Chunks)  

Named entities extracted from the articles in the corpus by NX noun-phrase chunking 

after parsing with the CASS partial parser were stored in a relational database.  The resulting 

named entities included noun-phrases with protein names but these were not scanned directly 

by a dictionary matching these names against a definition line.   Instead, from the BLAST 

results and the subsequently matched Ensembl database search, we matched the sequence 

gene name and description lines in Ensembl for each primer against the Cass named entities 

(NX chunks) as follows.  Note that for each match operation, we also maintain a record of 

the method used to match (“criteria”) in the database. 

1) An exact match was performed if possible (case-insensitive stringwise comparison) on the 
definition line and the gene name itself against the NX phrase. (criteria label: “exact”) 
2) If the full-match failed, a match was performed on any parenthetical content in the 
Ensembl description line against the NX phrase (criteria label: “paren”) 
3) Also, the two longest words (special non-word characters excluded) in the Ensembl 
description line were matched against the NX phrase. (criteria label: “2-word”) 
4) As a last resort, a “stemming” operation was performed: the base match of terms like 
“Wnt7” were stripped of the trailing numerals, and the base name (“Wnt”) was matched 
against the NX phrase. (criteria label: “basematch”) 
5) All matched names and NX’s of length 2 characters or shorter were excluded for the scan. 
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Table 4: Results of Primer Scanning (Sorted by Species) in the Corpus 
 

Species 
(MeSH) 

Distinct 
Documents 
Containing 
Primers 

Distinct 
Primers 
Found in 
Corpus 

Distinct 
Documen
ts with 
BLAST-
alignable 
hits 

Distinct 
Ensembl 
ID 
matches 
to 
primers 
(by 
BLAST) 

Distinct 
name 
(Ensembl 
gene 
name) of 
primers 
(by 
BLAST) 

Distinct 
Matched 
Named 
Entities 
(NX 
phrases 
in free 
text)* 

Distinct 
Matched 
Ensembl 
Gene 
Names 
(vs. 
Named 
Entites) 

Human(s
) 

209 1277 140 847 436 2999 160 

Mice 151 1006 110 834 356 2181 122 
Rats  56 335 39 460 162 554 46 

*Named entities are labeled distinct tuple-wise, as they are contained within tuple 
assertions extracted by the pipeline.  See [71] for a discussion of tuples. 

3.3 Results 

Within the corpus, we resolved a large number of names from the Ensembl database’s 

description and gene name fields in each species to noun phrases matched by the parser (see  

Table 4).  Table 5 shows example matches, with the Ensembl Gene Name entry labeled as it 

matches to a Cass-derived NX phrase match.  The phrase matches are often unable to match 

exactly, in which case the two-word (two longest definition line words) or the stemmed 

(base) were used to determine a match.  For instance, Frizzled-1 was stemmed in the record 

for paper “PMID:11287180” (Pubmed id 11287180) to the term “Frizzled”, which then 

matched a noun phrase entry “Frizzled” detected by Cass.  The exact primer in this instance 

was the nucleotide sequence ‘GTACTGAGCGGAGTGTGTTTTCT’, mapping to the mouse 

gene Frizzled-1.  It is interesting to note the generic “Frizzled” usage in this instance: the 

stemmed terminology used by the authors is not as informative as a free-text entry in its own 

right, but becomes readily-resolvable when anchored to a sequence by the DNA alignment of 

“GTACTGAGCGGAGTGTGTTTTCT” to the Ensembl Entry “ENSMUSG00000044674”.  
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Table 5: Example Matches: DNA Primers Aligned to Ensembl and Matched Against 
CASS Partial Parse NX Phrases 
 

Ensembl 
Gene Name 

Source Paper Ensembl Description 
Match 
(words/characters) 

Cass NX Phrase Match 
(Noun Phrase Named Entity) 

EnsemblID Criteri
a 

Apc PMID:11854293 Adenomatous+polyposis axin/adenomatous polyposis 
coli -directed targeting 

ENSMUSG000000058
71 

2-word 

AXN2_MO
USE 

PMID:11809808 Axin+2 Axin2 cDNA ENSMUSG000000001
42 

2-word 

Catnb PMID:10884377 catenin+Beta B beta-catenin mRNA levels ENSMUSG000000069
32 

2-word 

PGR PMID:12554765 Progesterone+receptor progesterone receptor ENSG00000082175 2-word 
NM_199472 PMID:11809808 glyceraldehyde-3-

phosphate+dehydrogenas
e 

glyceraldehyde-3-phosphate 
dehydrogenase 

ENSMUSG000000556
76 

2-word 

AXIN2 PMID:11940574 Axil Axil ENSG00000168646 paren 
Fzd1 PMID:11441081 Frizzled-1(Frizzled) Frizzled ENSMUSG000000446

74 
basema
tch 

Sfrp2 PMID:11287180 frizzled-related+frizzled-
related 

secreted Frizzled-related 
proteins 

ENSMUSG000000279
96 

2-word 

CDKN1A PMID:11463845 p21(p21) Akt-mediated p21 
phosphorylation 

ENSG00000124762 basema
tch 

Cdk5rap2 PMID:12177059 Fragment(Fragment) fragment ENSMUSG000000392
98 

basema
tch 

EDG2 PMID:11485975 LPA-1(LPA) Three LPA receptors ENSG00000198121 basema
tch 

 
Exact match is a highly-stringent criteria for matching names.  Not surprisingly, the 

performance of the algorithm exceeds 99% precision when sequences are directly aligned 

and matched string-wise to names.  When compared with the total group of NX phrases 

returned over the articles with primers in the corpus, the recall remains relatively low, 

however.  These results are not surprising, however, as the named entities with primers occur 

rarely compared to general noun phrases.  Nonetheless, as an anchor point for exact match 

for curation, the exceedingly high precision obtained with this method is a desirable 

outcome. 

 
Table 6: Algorithm Performance 
 

Precision >99% (due to exact match stringency) 
Recall (average per article where 
primers are present) 

3.8% 

 
Improving the recall measure for this algorithm remains a challenge, as primers are rarely 

included except for mention when authors discuss experimental methods.   Errors observed 

with the algorithm include occasional mismatches (e.g. “fragment” matches to “fragment” in 

a noun phrase when both are present in the definition and NX phrase).  The method offers an 

improvement for phrase expansion of ‘stemmed’ or ‘canonical’ phrases (like LPA or 
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Frizzled) which remain a challenge in traditional string-based match algorithms, as the 

necessary information in many cases is lacking from the terms and therefore must be inferred 

from the surrounding context.  In contrast, exploiting secondary sources of information, like 

primer sequence-based matches, can help guide the string match with additional information 

and assist in accurate resolution of the ambiguous noun phrase to sequence.   The run-time 

performance of the algorithm is an additional benefit to sequence-based resolution.  Unlike 

string matches to dictionary, the relatively few entries and resulting miniscule search space of 

the aligned sequence description entries allows application in this case of otherwise 

intractable or very low-stringency methods (like combinatorial term matching, or word 

fragment matching).    We used a two-longest-word match as a demonstration heuristic, but 

the individual term match methods can be readily altered to more complex variants if so 

desired. 

An important aspect of this work is the precision of linking.  This allows us to assign 

higher biological significance to rare matches.  In the case of Wnt, a number of gene names 

were identified that are not part of the canonical Wnt signaling pathway.  These include 

AMHR2, BRAF (mutated Raf), and BRCA1.  With the thousand of named entities occurring 

in the corpus we scanned, these would not be significant if the mapping had even a 1% false 

positive error rate.  By using PCR primer matching for confirmation, we can identify these 

named entity resolutions as significant. 

3.4 Discussion 

A central problem in named entity resolution is the frequent use of imprecise language in 

biomedical text.  For knowledge extraction and database linking, we need to link named 

entities in text to precisely defined molecular entities, but this is frequently impossible based 

on sentence level text analysis.  For example, authors typical specify the species used as the 

basis for a body of work only once or a few times in a manuscript, and rarely qualify 

individual gene names with the species of origin.  Working at a sentence level, it is therefore 

impossible to know which species a gene name is referring to.  We have identified PCR 

primers as a class of easily recognized named entity in text that encode precise molecular 

information and allow precise named entity resolution to be performed automatically and 

reliably.  
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PCR primers are surprisingly prevalent in the molecular biology literature with 2618 

distinct primers associated with 328 distinct genes in 3334 papers.  However, the distribution 

of PCR primer data across papers is not at all uniform, and many of the primers refer to 

controls (GAPDH) of little value in knowledge extraction. 

Mapping the PCR primer to the genome is, of course, only a part of the problem.  We 

also need to associate the identified gene with text. Effectively, we use the primer match to 

dramatically restrict the search space for named entity resolution to just the text appearing in 

the gene description field.  In this way, even partial and incomplete matching can be made 

with high reliability. 

In this work, we have not attempted to map primer positions within genes, but this 

represents a potentially fertile approach for future work.  There is no standard way to refer to 

exons, particularly when a gene is subject to alternative splicing.  For example, is the first 

exon associated with an alternative transcription start site "exon 1b" or "exon 2"?  Authors 

are also inconsistent in referring to positions within exons.  For example, is "codon 1 of exon 

2" the first codon entirely contain in exon 2, or the first codon partially overlapping exon 2?  

When molecular sequence tags (both nucleic acid and peptide) are provided, it should be 

possible to resolve many of these ambiguities. 
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CHAPTER IV  
 

Heatmap Concept Mapping and Search of Biomedical Document 
Collections 

 

4.1 Background 

 Text lists such as those returned by the NCBI Entrez and Google search engines are to 

date the most widely adopted method of performing biomedical literature searches.   With the 

rapid growth of the biomedical literature in recent years, however, even relatively focused 

queries yield large result sets which are difficult, if not impossible, for humans to read 

comprehensively.   Making matters worse, in biomedical literature search, the first or most 

recent article(s) returned are typically only a fraction of those needed to fully describe a 

disease condition or biomolecular process.  We describe a system which automatically 

renders real-time browseable heatmaps of large document collections by integrating an 

automated gene-tagging algorithm with NCBI MeSH tags found in those collections.  These 

maps then serve as the interface into the query result document collection and provide users a 

visual concept map for query results.  We demonstrate that this automatically-generated, 

web-based and user-searchable heatmap can accurately represent the contents of the query in 

a manner comparable to a human review article.  The system scales to hundreds of genes and 

major topics in near real time.  To evaluate the system’s performance, we demonstrate the 

mapping of gene-concept clusters within a document collection from the prostate cancer 

literature against human review articles from that same literature.  In a second example, we 

demonstrate the system achieves a high-level of agreement with expert reviews covering the 

literature of a major developmental pathway, the Wnt signal transduction pathway, both in 

the context of developmental biology as well as in the context of cancer progression.    
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4.2 Introduction  

The biomedical literature continues to grow at an accelerated rate, yet the search engines 

most commonly used to access it remain the keyword-based retrieval engines like NCBI 

Entrez-Pubmed (http://www.ncbi.nlm.nih.gov/PubMed/) and Google Scholar 

(http://scholar.google.com).  In active fields like cell signaling or oncology, the size of these 

engines’ query results quickly overwhelms human reading ability.  Making matters worse, 

due to the context-dependent nature of scientific research, the first or most recent article(s) 

returned are typically only a small fraction of those required to comprehensively describe the 

full body of knowledge contained in the literature on the queried disease condition or 

biomolecular process.   

In order to interpret the results of any given returned result, then, users must not only 

select a few articles of interest from their search, but then also undertake the additional task 

of browsing at least in passing the co-referencing papers and related publications returned by 

the search engine.  Quite often, review articles exist which assist by offering expert opinion 

and summarization of bodies of literature, but these typically focus on specific sub-

disciplines within the literature. Once published, these articles do not update themselves to 

reflect new findings. 

Even considering the publication of review articles, however, the overall growth in the 

literature is now such that even relatively limited searches often return overwhelming 

volumes of results.  As of early 2008, a query of MEDLINE for the phrase “cancer AND 

epigenetics” retrieves 5,348 articles; limiting the same query to “epigenetics AND prostate 

cancer” reduces this number to a still-substantial 285 articles.  Similarly, a query for 

“prostate cancer AND apoptosis” results in well over 3,000 articles and 472 reviews, an 

intractable number of papers for all but the most determined reader.    Overall, the process of 

discovering the context and function of gene or disease processes within a result remains a 

formidable and time-consuming task for a human reader.  The problem becomes even worse 

when discussing complex systems in biology within variable contexts, such as multi-factorial 

disease or signal transduction pathways with variable roles.  A literature search of “Wnt 

AND signal transduction” for example (returning papers relating to the Wnt family of 

secreted signaling proteins) yields 3,525 articles, of which roughly 1,500 discuss Wnt-related 
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genes in a developmental biology context and 845 discuss Wnt’s in the context of cancer 

biology.   Currently, approximately 50 genes are believed to comprise the core of this 

pathway[21], yet extracting the oft-varying role of these genes from the hundreds of 

experimental publications describing them remains a task which challenges even expert 

human readers. 

A number of biomedical search alternatives to the Pubmed search engine have been 

developed which attempt to better organize the result sets returned by queries.  These include 

text displays of ontology-based clustered results [22], graphical [23] and textual [23] displays 

of clusters of documents.  Also, some search engines include documents not indexed by 

MEDLINE (Google Scholar) but still present results in a series of text-pages like the Pubmed 

search engine.  All of these primarily return abstracts or titles in lists or as node-edge graphs.  

Search results from these engines often do not directly display the precise distribution of 

named entities within those results in a single comprehensive view.  Furthermore, in some 

cases the engines are often limited in retrieval size [22] on the underlying corpus, leading to 

undercoverage when analyzing the relationships between many hundreds of entries actually 

present in the result (for example, MeSH headings corresponding to documents and their 

genes within a given corpus). 

Gene- and MeSH-based topic clustering applications in the biomedical literature have 

been reported in prior work, for instance PubGene [24], a system for automated extraction of 

explicit and implicit biomedical knowledge from publicly available gene and text databases 

to create a gene-to-gene co-citation network.  The system described does not function as a 

search interface to article subsets; rather, it explores relationships and similarities within 

genes in MEDLINE abstracts.  Other approaches describe clustering strategies using MeSH 

topics, such as the gene-to-phenotype clusters reported by Jennsen Korbel [25] but these are 

largely one-time analyses rather than search engines in their own right.  In yet others, such as 

the heatmap queries in Lydia [26], the analyses or engines are not focused specifically on 

biomedical content. 

The RefViz literature analysis tool [27] may perhaps be the closest available overview 

heatmap utility available to that which we discuss in this project, as it displays a literature 

clustering and retrieval heatmap for documents.   Unlike Biosearch-2D, however, RefViz 
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does not cluster results based on organism-specific gene lists or controlled external 

ontologies.  RefViz instead renders the distribution of topics into more of a word-based map 

rather than a gene-concept-centered map.   

Previous work on information extraction in biomedicine includes a number of reports 

which attempt to extract information about genes from scientific texts using the co-

occurrence of terms in a sentence or abstract[17, 28-31].  These approaches, like ours, extract 

genes within an actual biological context [24], [17], but unlike our current implementation, 

they do not attempt to summarize a corpus specifically using this approach nor allow for re-

clustering specific subsets of documents according to user-selectable criteria.  Both do report, 

however, that co-occurrence of gene names in an abstract frequently reflects an actual 

biological relationship between co-occurring genes. 

 Masys,et al.[32] describe a system of keyword profiles for genes based Medical Subject 

Headings (MeSH), but the system is not presented as a user-navigable search engine. A close 

comparison to our utility could be CoPubMapper by Alako, et al. [33] but like the other 

approaches, the analysis presented does not form a direct interface for a search into the 

literature (so the actual keyword clusters are hidden) and it is not implemented as a web-

based utility, but rather was performed as a one-time analysis task.  Alako, et al. [33] also 

report differences in the name tagging algorithm and normalization to our name matching 

algorithm. 

Our search engine in contrast is primarily gene-versus-concept centered, and is a true 

web-based application, motivated by a need to analyze and explore the role of genes and their 

roles as described in a literature subset chosen at query time.  Our first application for the 

system explores the prostate cancer genomic literature for those papers describing 

methylation and epigenetic changes in tumor progression. Rendering a heatmap of the genes 

versus MeSH topics relating to articles discussing the genes, the application scales to cover 

the many hundreds of genes observed in the corpus and the correspondingly large collection 

of MeSH topics corresponding to articles in which those genes are found.  The map itself is 

rendered and presented via a Flash-based website, allowing rich, interactive, corpus-wide 

exploration and document retrieval guided by the image features themselves. 
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To demonstrate the coverage of these maps, we analyze the results from a focused major 

disease query, “prostate cancer AND epigenetics”, as well as the literature discussing a major 

signaling pathway, the Wnt pathway.   We select topics within these collections and analyze 

the map coverage against human-authored reviews in both cases and a curated web resource 

in the case of Wnt.  Our results suggest that an automated mapping of even a complex corpus 

in a heatmap corresponds closely to the gene-concept discussion provided by the human 

reviews and reference websites. 

 

 



38 

 
Figure 1: Screen displays from the BioSearch-2D website 
 

 

 

Screen displays from the BioSearch-2D website, demonstrating the map results of a 

MEDLINE query “prostatic neoplasms AND (epigenetic OR epigenetics OR methylation OR 

methylated)”. (A) Initial search screen for input of a search phrase (MEDLINE query) and/or 

an HGNC gene symbol list.  (B) Result map for a MEDLINE query alone, showing a 

heatmap display of a portion of a genes-by-MeSH matrix in the document collection. (C) The 

result map for the MeSH topics corresponding to a user-submitted gene list (D) the gene-vs-

MeSH heatmap from panel (A), showing genes from gene list from (C) labeled in green.   
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Figure 2: BioSearch-2D Architecture Overview 
 

 
 

BioSearch-2D application architecture and data flow.  Server-side components include 

the Apache Tomcat 6.0  web server in combination with Adobe Flex 3.0 (www.adobe.com), 

the Java Server Faces application framework (http://java.sun.com), the R statistical 

computing package [75] with R-serve  (http://www.rosuda.org/Rserve/), and Microsoft SQL 

Server 2005.  The client-side web-facing interface requires a modern web browser such as 

Mozilla Firefox or Microsoft Internet Explorer with Adobe Flash Player 9.0 browser plug-in 

installed (www.adobe.com).   The Flash/Adobe Flex interface offers cross-browser 

compatibility and flexible user-interface features including the ability to instantly resize and 

recolor the image maps. 
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4.3 Methods 

The biomedical literature enjoys substantial use of standardized nomenclature.  A large 

proportion of published work has high quality metadata tags associated with individual 

papers (the standardized topic ontology known as MeSH).   Our corpus visualization system 

detects named entities (genes, proteins, etc) in collections of biomedical articles and clusters 

the collection by gene versus function.  The website then presents a two-dimensional 

searchable heatmap of tagged terms and their topics as an interface into the underlying 

collection. 

4.3.1 Retrieval of Relevant Documents 

First, document abstracts are retrieved from current (2008) NCBI MEDLINE XML data 

files (http://www.nlm.nih.gov/databases/leased.html) into a Microsoft SQL Server relational 

database.   Tagging and gene-vs-MeSH tables are pre-computed with a Java-based gene 

name tagger (manuscript in preparation) and stored to minimize processing time.   For 

individual user queries, the system only queries the NCBI e-utilities for Pubmed ID’s (pmid) 

which are used as a basis for selecting the document collection to be displayed.  

4.3.2 Gene Name Tagging 

Gene name tags in our system are pre-computed following loading of the MEDLINE 

XML data into the relational database.  The system employs a two stage approach: in the first 

phase a dictionary of names and synonyms is assembled.  In the case of gene names, we use 

the NCBI Gene database as a source of both names and synonyms supplemented with 

synonyms from cross referenced databases including HGNC, the Jackson Laboratory Mouse 

Genome Informatics and Ensembl/EBI.  Note that every dictionary entry is associated with 

an entry in the gene database.  Thus, when a noun phrase is tagged by a dictionary match, we 

have an explicit link to a well defined information resource that can be used for further data 

integration. 

Where MeSH index terms are available and a species index term is applies to the article, 

we use this species information to scope the dictionary of relevant gene names and 

synonyms.  
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To assess the performance of our gene name tagging, we use the NCBI GeneRIF 

sentences as a “gold standard”.  The GeneRifs are sentences deposited by users as examples 

of text referring to a gene[76].  On the task of gene name tagging, we used the NCBI 

GeneRif collection as a gold standard.  Of  152,517 GeneRifs referring to human or mouse 

genes, we correctly tag 102,284 for a recall of 67%. Of the 132,582 GeneRifs that were 

tagged, the correct gene was identified 77% of the time.  This is a lower bound on the 

precision of tagging because the relevant noun phrase was often simply not tagged in 

GeneRifs where our tagger failed to identify the correct gene.  Our results compare favorably 

to other recent results reported in this field, but this is not a definitive 

comparison[77].   Interestingly, although each GeneRif is associated with only a single gene 

in the NCBI database, we identified 402,083 distinct references to genes in this data 

set.  When biologists refer to genes, they typically refer to several genes.  This reinforces the 

value of our document concept map paradigm. 

4.3.3 MeSH Entries 

MeSH terms (http://www.nlm.nih.gov/mesh/) are extracted from the MEDLINE records 

for individual articles in the analysis demonstrated.   

4.3.4 Hierarchical Clustering and Generation of Heatmap Summary Display 

Following name tagging, a matrix is generated of genes versus topics, and hierarchical 

clustering along both genes and MeSH axes is performed in the R statistical computing 

package hclust function, using the complete linkage method. Different clustering schemes are 

available and can be set via parameters into hclust().   

After clustering, all headers and document heatmap data are rendered dynamically in a 

Flash-based application, which allow the use of a selector marquee box for users to select 

areas within the heatmap for retrieval of articles corresponding to selected areas on the 

heatmap. 

As described in Figure 2, the system is deployed on the Apache Tomcat 6.0 web server in 

combination with Adobe Flex 3.0 (www.adobe.com), the Java Server Faces application 

framework (http://java.sun.com), the R statistical computing package [75] with R-serve  

(http://www.rosuda.org/Rserve/), and Microsoft SQL Server 2005.  The client-side interface 



42 

requires a modern web browser such as Mozilla Firefox or Microsoft Internet Explorer with 

the Adobe Flash Player 9.0 browser plug-in installed (www.adobe.com).    

  The R processing server is a 2 GHz Intel Xeon CPU running Red Hat Linux with 8Gb 

of RAM and the web and database servers are 2Ghz Intel Xeon CPUs running Microsoft 

Windows Server 2003.  

On our current hardware implementation, document retrieval limits are currently set to 

5000 documents per query to avoid remote network timeouts. The application’s overall load 

and response time is largely limited by the initial remote query step (NCBI Pubmed ID 

retrieval).  Time from submission until map display currently ranges from an average of 10-

15 seconds for submitted queries, regardless of document count.   MeSH and gene symbol 

counts returned are currently limited to the top 500 MeSH terms returned for the overall gene 

list and the top 500 genes for the overall MeSH term count principally to preserve readability 

of the heatmap on a standard display. 

In the initial search window, the system allows the user to select MeSH tree sub-

categories in order to filter the search to a subset of MeSH.   In the queries discussed in the 

following sections, queries were restricted primarily to the MeSH categories “Diseases”, 

“Chemicals and Drugs”, “Biological Sciences” and “Anatomy”.    

4.4 Review Article and Website Selection 

The review articles selected for the prostate cancer evaluation, Li, et al. Epigenetics of 

Prostate Cancer Front. Biosci. 12, 3377-3397 and Nelson, W.G., Yegnasubramanian, S., 

Agoston, A.T., Bastian, P.J., Lee, B.H., Nakayama, M. and De Marzo, A.M. (2007) 

Abnormal DNA methylation, epigenetics, and prostate cancer, Front Biosci, 12, 4254-4266. 

were selected on the basis of their deep coverage of a rapidly-evolving subject (the role of 

epigenetic mechanisms and modifications in prostate cancer) as well as for their relevance to 

the study of a human disease with major clinical significance.  Both reviews are written by 

highly-cited and published authors in the respective areas, and provide deep coverage into the 

field of investigation they cover, with the Li article citing 253 references and the Nelson 

article citing 143 references respectively.   
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4.5 Results 

We find that browseable dynamic heatmaps can be a powerful aid in summarizing the 

function of genes in literature collections.  In one case, we analyzed in detail a corpus of 

prostate cancer epigenetics articles as returned by NCBI Pubmed in January 2008 and 

compared the map coverage to the three most recent human review articles published on this 

topic.  We chose this subject area as it is a rapidly-evolving field within a subject of 

substantial clinical importance.  Accordingly, while the results discussed in this paper relate 

primarily to this focused corpus, the search engine in use accepts arbitrary NCBI/MEDLINE 

user queries for processing and is not limited to the oncology literature space. 

In the MEDLINE query “"prostatic neoplasms" AND (epigenetic OR epigenetics OR 

methylation OR methylated)”, 448 documents are retrieved and processed by our system. A 

selection from the final clustered gene vs. MeSH image map is shown in Figure 1.  On the 

website, the viewer sees a combined view, including a small “birds-eye” compressed map for 

browsing the results together with an exploration window for focusing on individual clusters.  

From this map, general trends specific to this MEDLINE query result set are easily observed, 

including a large vertical line corresponding to the androgen-receptor gene, PSA, DNA 

methyltransferases, as well as a number of MeSH terms including “prostatic neoplasms”, 

“DNA methylation”, and “Adenocarcinoma”.  In addition, a number of smaller clusters of 

other groups of genes include the apoptosis regulators Akt, Bcl-2 and apoptosis-related 

caspases, EZH2, histone methyltransferase genes, GSTP1, and DNA methylases. 

Transmembrane mucins MUC1 and MUC4 are described in a report by Singh, et al. as 

being regulated by epigenetic mechanisms in a cell line model[78]. The cluster includes 

genes associated with DNA hypermethylation  in the context of prostate cancer including E-

cadherin, pi-class glutathione S-transferase, and the tumor suppressor CDK2N.[79]  

We find that the automated gene-by-MeSH clustering itself yields genes which often 

physically interact and are clearly related to the major disease process observed in the query.  

Examples include EZH2, which is known to associate with other PcG proteins, EED and 

SUZ12, within the context of PRC2/3 complexes[80].  Also co-clustering are androgen 

receptor, FAS, and the androgen-stimulated gene PSA. 
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In Figure 3, a cluster within the image generated for the MEDLINE query “EZH2” 

references MeSH topics detailing the function of proteins associated with the Polycomb-

group protein EZH2[81] and its binding or co-regulated partners, including EED, HDAC 

(histone deacetylases), SUZ12 [82], DAB2IP [83].  The view also applies to other stages of 

disease: in a query of the term “TMPRSS2”, the androgen-responsive TMPRSS2 fusion 

gene[84, 85] associated with histone genomic epigenetic reprogramming in prostate tumors is 

shown in conjunction with ERG, ETV1, ETV4 and the MeSH term “Prostatic Intraepithelial 

Neoplasia”, “Recombinant Fusion Proteins”, “Gene Rearrangement”.  These reflect the role 

of these fusion genes as described in early prostate cancer development in the literature. [84-

87]. 

Table 7: Coverage of Gene/MeSH Clusters by BioSearch-2D Compared with Human 
Review Articles from the Prostate Cancer Epigenetics Literature. 

. 

Source 

Sections 

(within chapter) 

Sections 

Covered 

 

 

Gene Name Accuracy 

Prostate Cancer 

Epigenetics Reviews 

[88] [89] 6 5/6* 77-90%** 

Wnt Signaling 

Review [90] 5 5/5 -- 

Wnt Signaling 

Website [21] 1 -- 77-90%** 

* website covers all topics in this review article except therapeutic areas. 

** the accuracy of the gene name depends on the accuracy of the underlying tagging 

algorithm. 
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4.6 Evaluation of Coverage Against Human Review Articles 

We evaluated the gene-concept map coverage of the heatmap against human reviews 

describing epigenetic modifications in prostate cancer.   

In the first of these reviews, by Nelson, et al. [88] we find that the reviewer 

comprehensively describes major disease processes,  including "DNA Hypermethylation”, 

“Heterochromatin and Epigenetic Gene Silencing”, “DNA Hypomethylation”, 

“Demethylation and Loss of Imprinting”, “DNA Methyltransferases and Cancer 

Development”, “DNA Methylation Changes in Prostate Cancer”, “Sensitive Detection of 

Hypermethylated CpG Islands as Prostate Cancer Biomarkers”,  and “Epigenetic Gene 

Silencing as a Therapeutic Target for Prostate Cancer Prevention and Treatment.” Our search 

clusters capture the majority of the genes in the major topic areas, including EZH2, MeCP2, 

the histone deacetylase HDAC1, Mi-2, DNA methyltransferase, DAB2IP and INK4a.   In the 

loss of imprinting/hypomethylation section, another cluster captures MDB2, SP1, DNA 

methylation, but does not capture IGF-2.  In discussing the DNA methyltransferases, the 

cluster captured DMNT1 which formed the focus of the discussion.   The author discusses 

the role of GSTP1 at length, including a discussion of TMPRSS2 and the ETS family genes 

involved in gene fusions.  Of the topics mapped by our clustering algorithm, we find the 

author does not discuss the apoptosis genes (aside from TNF-associated apoptosis), the 

sirtuins, the carboxypeptidases, nor the cell cycle checkpoint genes in detail as described in 

our overall image map. 

A second review by Li, et al. [89] divides the epigenetics of prostate cancers into similar 

sections.  In our cluster maps, topics not covered include the specific details on age or dietary 

factors discussed by Li, et al.     

We exceed the coverage seen for EZH2 and DAB2IP in the article (including genes such 

as EED and SUZ12 which are not discussed in the section on histone modifications in 

prostate cancer). 

For the Wnt genes review, we focused on a recent review discussing the role of Wnt 

proteins in cancer authored by Nusse, et al. [90] and found substantial overlap with the genes 

mentioned in the review (APC, Axin, beta-catenin, LRP5, Dsh, and Dkk).  Fig. 3 illustrates 
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the central result of this query.    As with the prostate cancer example, we find additional 

topics relating to Wnt and signal transduction not discussed in the review.  These include 

papers covering the induction of fibroblast growth factors in tumors, papers discussing the 

role of various frizzled family members in tumor progression, and a specific group of articles 

discussing the role of Wnts in regulating apoptosis different cancer types like hepatomas, 

renal cell carcinomas and hepatoblastoma. 

In the Wnt genes website, we find substantial agreement between our genes mapped and 

the targeted annotation.  Using as a reference the most current (2008) Wnt target gene list 

(http://www.stanford.edu/%7ernusse/pathways/targets.html), we generated for comparison a 

map of the MEDLINE query “Wnt AND signal transduction AND TCF AND target”.  As 

with the previous review, we find substantial overlap in the list, but with genes annotated 

with additional MeSH terms according to the literature, including those expected such as 

“colonic neoplasms”, “Wnt proteins”, “beta Catenin”, “Promoter Regions (genetic)”, 

“Phosphoproteins”, and “Intercellular Signaling Peptides and Proteins”.   

Overall, we find that for genes vs. MeSH topics, coverage of the rendered searchable map 

matches that found in reviews excepting certain non-gene-rich topic areas such as novel 

therapeutics. 

4.7 Conclusions 

We have developed a system to quickly render the gene mentions within of large 

document collections into a single heatmap.   Genes clustered according to human-curated 

document annotations can assist in the analysis of larger document collections by reducing 

the many hundreds of abstracts in a collection into a series of easily-identified pixel clusters 

on a heatmap.  A side effect of the clustering is that the relative size and position of genes 

and topic clusters roughly corresponds to the importance of these topics as presented in the 

underlying corpus. 

A current limitation of the system remains its limitation to abstract texts only.  We 

anticipate that, as the availability of full-text document and open-access biomedical article 

collections improves, so will the coverage of the displayed heatmaps.   Additionally, 
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improving the gene name tagging accuracy could reduce gene mislabeling and identification 

errors. 

The overall heatmaps generated by BioSearch-2D are similar to “concept maps” in their 

rendering of gene sets into sub-groups described by common MeSH ontology terms.  The 

map displays the distribution of terms amongst the genes of interest and can render genes 

together according to common disease processes.  In one example, the metalloproteinases are 

clustered together in a group also containing the term “neoplasm invasiveness”, an 

association which is widely established in the biomedical literature. 

The use of a heatmap as the primary representation for the literature permits very fine-

grained representation of the contents of the corpus while allowing a human viewer to very 

quickly observe the gene groupings in the collection (the androgen-receptor, Polycomb group 

proteins, histone deacetylases, anti-apoptotic proteins, and GSTP1) along with their function 

as described by individual documents.   We are currently adapting the search engine to map 

full-text document collections and additional named-entity classes (cell lines, substance 

names, etc.) as they become more easily available.  

4.8 Funding 

This project was supported in part by a grant for the NIH/National Library of Medicine 

R01 LM008106 and is released as part of the National Center for Integrative Biomedical 

Informatics (NCIBI), NIH Grant # U54-DA021519.  

BioSearch-2D can be accessed online at http://biosearch2d.ncibi.org  



48 

 

 

 

 

CHAPTER V   
 

BioSearch-2D: Literature-Based Context-Specific Functional Annotation 
for Genomic Data 

 

5.1 Abstract 

In recent years, a large quantity of functional annotation software has been developed to 

interpret the biological function of signature gene lists from high-throughput genomic 

experiments.    By primarily adopting the standardized Gene Ontology (GO), these systems 

annotate gene lists with statistically-significant terms describing major biological processes, 

cellular components and molecular function.   In most cases, the output produced by these 

tools consists of static term lists of statistically significant matches ranked according to the 

relative enrichment of tagged terms present within the submitted list.   A number of other 

ontologies remain largely underrepresented in these efforts, however, including the NCBI’s 

MeSH vocabulary, which comprehensively annotates the biomedical literature and describes 

a broad range of topics in biomedicine, from clinical terminology to terminology about 

scientific research methodology.  We have developed a dynamic web-based utility, 

BioSearch-2D, which automatically matches gene names to MeSH annotations and then 

automatically renders a browseable gene-vs-MeSH “topic map” of statistically significant 

terms from user-submitted gene lists.  Unlike standard annotation engines, BioSearch-2D 

renders dynamic maps of literature-based topics for gene lists which cover the many clinical 

and physiological terms present in the MeSH ontology.  In addition, our engine offers allows 

specific filtering of the annotation via MEDLINE queries in order to prioritize specific 

biomedical contexts. To demonstrate the performance of this engine, we analyze a set of six 

human-annotated reference gene sets and demonstrate that our coverage matches and in 

many sets augments the results from traditional Gene Ontology-based annotation engines.  

Our map annotation of these lists yields clinical and physiological relationships in data sets 
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from cancer signature lists to canonical pathways which are not easily identifiable by 

standard annotation software.  Signature gene lists annotated include those involved in 

cellular adhesion processes, genes involved in the cell cycle, DNA repair, and genes relevant 

to cellular adhesion in metastatic lung disease. 

5.2 Introduction  

The annotation of gene list results produced by high-throughput genomics and 

proteomics experiments has resulted in a vast number of gene expression signatures and 

canonical reference lists corresponding to important disease and clinical states.   Typically, 

the functional annotation of these gene lists into biological context relies on annotation 

utilities which calculate the relative enrichment of ontology terms for genes found in the 

input list compared to the term frequency assigned to genes in a genome-wide context.   The 

majority of these annotation utilities employ the Gene Ontology[34] as their primary 

annotation ontology. Additionally, some provide additional annotations such as protein-

protein interaction lists, protein functional domains, disease associations, pathways, sequence 

features, homologies, and selected curated literature references [35-38] [39-41].    These 

utilities are varied, and include both executable software as well as websites like GoMiner 

[42], EASEonline [35], GeneMerge [43], eGOn [44], FuncAssociate [45], GOTree Machine 

(GOTM) [46], GOSurfer [47, 48], Ontology Traverser, CLENCH [49], GOToolBox [50], 

FatiGO [39, 40, 51], and DAVID [35-38].  A complete review of these utilities is described 

by Khatri, et al. [52].    

Additionally, annotation tools like the Molecular Concept Maps described by Rhodes, et 

al. [53-55] are available which link microarray studies to a number of oncology-related 

ontologies in order to better allow annotation of clinically distinct cancer gene profiles.  In 

one published report, Tomlins, et al. describe common shared genes between cancer 

signatures annotated between different cancer types and specific gene repression signatures 

in both breast and prostate cancers, demonstrating the power of incorporating non-GO 

ontologies in a highly-focused biological context. [53-55]. 

To date, Gene Ontology-based annotation engines rely on an intermediate curation step to 

assign genes to ontology terms based on literature or experimental observation.  As Khatri, et 

al. note, these mapping efforts have historically been fairly accurate [56] and extensive yet 
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mostly assigned in an automated fashion (as of February 2008, there exist 182573 GO 

annotations for 35113 human genes, of which only 52,246 were not derived electronically) 

(http://www.geneontology.org).  By contrast, MeSH annotation is performed manually by 

human curators on individual MEDLINE articles.   Linking article-derived MeSH terms to 

genes, therefore, could provide a more tightly-coupled gene annotation than annotations 

obtained through secondary-source ontologies. 

Khatri, et al. further highlight a key limitation to the current batch of annotation engines, 

in that annotations “related to those genes [which] are involved in several biological 

processes” are limited to single contexts. Due to the nature of the GO hierarchy, most current 

tools weight biological processes equally.  In effect, these tools make “restricting the query to 

specific clinical areas…a challenge since the basic annotation itself is largely restricted to 

basic biological processes”.   They describe a specific example in the case of BRCA, which 

has a distinct biological roles as both tumor suppressor as well as in carbohydrate metabolism  

[52].  Depending on the gene signature in which it is found, the annotations may differ for 

the gene, which in turns impacts the accuracy of any biological inferences made on that 

annotation.   

In terms of user-interface, the vast majority of existing utilities remain largely text-based, 

with results returned being large term lists with statistical significance values assigned to 

each term.   These text lists are often produced in batch manner and returned as series of 

dense text annotations which seldom reflect internal categories between the genes analyzed.  

A few graphical interfaces have been developed to address the usability limitations of these 

text results, including two-color plots rendered by DAVID, where they are described as “… 

the most powerful graphic presentations in DAVID applications” by the authors. [35, 57]   

We have developed an integrated MeSH annotation system in conjunction with a 

literature concept mapping utility, BioSearch-2D.    From a user-submitted gene list, the 

system renders hierarchically-clustered, dynamic two-dimensional maps representing the 

distribution of a large set of human gene identifications in biomedical text versus selected 

MeSH terms.  Coloring on the map corresponds to statistically-significant annotations 

assigned to MeSH terms.  These maps directly represent the distribution of MeSH terms 

corresponding to submitted gene lists as well as the statistical significance in a single unified 
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display, instead of in a series of text lists.  We find that the maps match key functional 

annotation assignments produced by GO-based engines, as well as use a two-dimensional 

map to render context-specific annotations clustering and intuitive distribution plots which 

identify functional subgroups in submitted gene lists. 
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Figure 3: Screenshots of the BioSearch-2D Gene Annotation Website 
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Screenshots of the BioSearch-2D Gene Annotation Website. (A) Input of literature query 
or a gene list together with several MeSH sub-categories.  (B) Results window showing the 
annotation of a 95-gene set of cancer-related genes involved in cell adhesion and 
metalloproteinases [91].  89 of the 95 genes had highly-significant annotations matching the 
Brentani annotation (“cell adhesion”, “cell movement”, “neoplasm invasiveness”, 
“cadherins”, “metalloproteinases”). In the window, two scrollable maps (overview at left and 
detail at right) contain non-black pixels represent MeSH terms (rows) from documents in 
MEDLINE where the corresponding gene (columns) was detected.  (C) Detailed view of a 
cluster of metalloproteinases (MMP9, MMP13, etc.) from the original list, and the 
corresponding MeSH terms (“Neoplasm Invasiveness”, “Matrix Metalloproteinases”, etc.). 
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5.3 Methods 

The biomedical literature enjoys substantial use of standardized nomenclature, and a 

large proportion of published work has high quality metadata tags associated with individual 

papers (MeSH terms).   Our corpus visualization system detects named entities (genes, 

proteins, etc) in collections of biomedical articles and clusters the collection by gene versus 

function.  The website then presents a two-dimensional searchable heatmap of tagged terms 

and their topics as an interface into the underlying collection.  For gene annotations, we 

expanded the map concept to include MeSH terms from MEDLINE which match genes in 

user-submitted gene lists. 

5.3.1 Gene Name Tagging 

As described by Santos, et al (manuscript in submission), gene name tags in our system 

are pre-computed following loading of the MEDLINE XML data into the relational database.  

The system employs a two stage approach: in the first phase a dictionary of names and 

synonyms is assembled.  In the case of gene names, we use the NCBI Gene database as a 

source of both names and synonyms supplemented with synonyms from cross referenced 

databases including HGNC, the Jackson Laboratory Mouse Genome Informatics and 

Ensembl/EBI.  Note that every dictionary entry is associated with an entry in the gene 

database.  Thus, when a noun phrase is tagged by a dictionary match, we have an explicit link 

to a well defined information resource that can be used for further data integration. 

Where MeSH index terms are available and a species index term is applies to the article, 

we use this species information to scope the dictionary of relevant gene names and 

synonyms.  

As described in a companion manuscript, we assess the performance of our gene name 

tagging, using the NCBI GeneRIF sentences as a “gold standard”.  The GeneRIF’s are 

sentences deposited by users as examples of text referring to a gene[76].  On the task of gene 

name tagging, we used the NCBI GeneRif collection as a gold standard.  Of  152,517 

GeneRIF’s referring to human or mouse genes, we correctly tag 102,284 for a recall of 67%. 

Of the 132,582 GeneRIF’s that were tagged, the correct gene was identified 77% of the 
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time.  This is a lower bound on the precision of tagging because the relevant noun phrase was 

often simply not tagged in GeneRIF’s where our tagger failed to identify the correct gene. 

For each gene in the annotation database, the top 500 MeSH terms are computed and 

stored in the database, ranked according to the number of distinct PMID’s returned for the 

gene-by-MeSH combination.  For example: for the human gene BCL2 (NCBI GeneID 596), 

the top genewise tagged MeSH terms sorted by decreasing document count are:  “Humans” 

(9837 articles), “Apoptosis” (6220 articles), “Proto-Oncogene Proteins c-bcl-2” (6136 

articles), “Proto-Oncogene Proteins” (2395 articles), etc.  MeSH terms are also assigned the 

major MeSH category, to allow selecting a subset of the MeSH tree for annotation and 

clustering. 

For every submitted gene list, statistical significance scores for MeSH term enrichment 

are calculated for every MeSH term assignable to the submitted list versus the null set, which 

are all genes for which MeSH terms could be assigned by the above gene name tagging 

algorithm (15513 genes overall in the human genome). P-values for enrichment of resulting 

terms are calculated identically to the DAVID EASE score calculation 

(http://david.abcc.ncifcrf.gov/content.jsp?file=functional_annotation.html#summary): for 

every MeSH term resulting from the gene list, a 2x2 contingency table and the enrichment of 

the gene list analyzed with a modified Fisher’s exact test.   P-values for each MeSH term are 

multiplied by the total number of MeSH scores (Bonferroni correction). 

For the submitted gene lists, a two-dimensional matrix is calculated, with genes as the 

columns and MeSH terms as the rows. This matrix is then hierarchically clustered with a 

Java processing pipeline submitting the matrix into an R server for clustering via the hclust 

function as previously described by Santos, et al (manuscript in submission). Finally, color is 

assigned to each row by the gene list’s degree of enrichment for that term (Fisher’s exact test; 

red: p-values < 0.01, orange: 0.01 ≤ p-value ≤ 0.05: yellow: p-value > 0.05). 

As positive control for the accuracy of our annotation we compared the annotation of 6 

curated gene lists from the Broad Institute 

(http://www.broad.mit.edu/gsea/msigdb/genesets.jsp?collection=CGP) [92],selecting from 

the C2 “curated gene sets” tree, “chemical and genetic perturbations”, and “canonical 

pathways” to that rendered in the DAVID Gene Ontology annotation engine (Table 8)  We 
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also analyzed 2 positional gene sets as negative control, selected from chromosome 1.  GO 

term annotations were assigned according to the DAVID assignments, using the default 

settings  

In order to identify related genes from the search relating to a disease process, we 

searched the Brentani cell adhesion dataset (95 genes) against the query “cell adhesion AND 

neoplasms AND metastasis” in the BioSearch-2D main literature query window.  An 

example of this search method is described in an accompanying manuscript by Santos, et al.  

Briefly, the map produced is produced from genes and MeSH terms from our literature 

database corresponding to documents returned by NCBI’s Pubmed as matching the query. 

1,698 documents were returned in the query, of which the maximum 500 genes and 500 

MeSH terms by unique article count were clustered and mapped from query result corpus.   

5.4 Results 

Gene sets input into our initial screen (see Figure 3) are rendered into a navigable 

heatmap clustered and colored according to the most significant annotations (Fisher’s exact 

test with Bonferroni correction applied to correct for multiple testing in each result map).   

In Figure 3, the initial query window allows for input of a literature query or a gene list 

and selection of MeSH sub-category for annotation.  These MeSH sub-categories include 

clinical annotations (disease types, biomolecules, drug molecules) which are not present in 

the standard Gene Ontology annotation.  In the illustrated example, the results window shows 

the annotation of a 95-gene set of cancer-related genes involved in cell adhesion and 

metalloproteinases [91].  89 of the 95 genes had highly-significant annotations matching the 

Brentani annotation (“cell adhesion”, “cell movement”, “neoplasm invasiveness”, 

“cadherins”, “metalloproteinases”).  These terms are clinically meaningful and include terms 

like “Neoplasm Invasiveness” and metalloproteinases which are widely described as being 

related processes in the biomedical literature (255 articles published on these combined 

topics in 2006 alone, 1100+ articles altogether in the past five years).  In the bottom view, 

two scrollable maps (overview at left and detail at right) contain non-black pixels represent 

MeSH terms (rows) from documents in MEDLINE where the corresponding gene (columns) 

was detected.  The bottom row shows a cluster of metalloproteinases (MMP9, MMP13, etc.) 
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from the original list, and the corresponding MeSH terms (“Neoplasm Invasiveness”, 

“Matrix Metalloproteinases”, etc.). 

To assess in more detail the completeness of the annotation, we selected 6 gene sets from 

the Broad Signature Gene List Database [92]  published by Brentani, et al. [91], together with 

two positional gene sets selected at random as negative controls.   

For both engines, the positional gene sets do not return meaningful MeSH or GO terms, 

and match a sharply reduced number of genes (<20-30% of either list) in the gene list.  In 

contrast to the results returned by two-dimensional displays such as the DAVID functional 

map, our results can also be easily integrated into a literature search to find genes which may 

be related to the original list but are not included in the submitted gene list.   

We find the agreement between gene tagging based on MeSH terms to be high on curated 

gene lists.  Table 8 details the results from 6 curated sets from Brentani, et al.  along with a 

negative control of two gene sets selected at random from the positional gene sets available.  

In the cell adhesion set, 89/95 genes found were tagged by our engine, and significant MeSH 

terms included cell adhesion, cell adhesion molecules, cell movement, cadherins, among 

others relating to the topic of cell adhesion (a complete list can be obtained from the map 

software).  These terms agree well with the GO terms returned by the DAVID GO annotation 

engine, including cell adhesion, cell-cell adhesion, integrin, cell-matrix adhesion.  In the 

CELL CYCLE dataset, 89/95 genes are tagged, with clusters returned that agree well with 

the most significant GO term annotations.  
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Table 8: Functional Annotation Comparison: Terms from BioSearch-2D MeSH 
Annotation Compared to Gene Ontology Annotation Terms from DAVID (Dennis, et 
al., 2003) 
 

Set Name  
(genes tagged in 
BioSearch 2D/genes 
in gene list) 

Description BioSearch-2D Map  
Top Mesh Terms 
 (MeSH categories 
C,D,G; (p<0.01 
unless noted) 

Top GO Clusters  by 
Significance 
(DAVID default 
settings) 

Clusters Observed 
in Maps where 
MeSH 
annotation 
(p<0.01) 

Brentani CELL 
ADHESION (89/95 
genes) 

Cancer related genes 
involved in cell adhesion 
and metalloproteinases 

cell adhesion, cell 
adhesion molecules, 
cell movement, 
cadherins, integrins.  

cell adhesion, cell-
cell adhesion,  
integrin, cell-
matrix adhesion 

Cell Adhesio, 
Matrix 
Metalloproteinas
es, Lymphocyte 
Activation, beta-
catenin, 
cytoskeletal 
proteins, 
cadherins 

Brentani  CELL 
CYCLE (82/86 
genes) 

Cancer related genes 
involved in the cell cycle 

Cell cycle proteins, 
cyclins, protein-
serine-threonine 
kinases, cyclin-
dependent kinases, 
mitosis, 

cell cycle, regulation 
of progression 
through cell cycle, 
regulation of cell 
cycle 

Cell cycle proteins, 
cyclins, protein-
serine-threonine 
kinases, cyclin-
dependent 
kinases, mitosis, 
G2 phase, 
phosphorylation. 

Brentani  CELL 
DEATH  
(70/76 genes) 

Cancer-related genes 
involved in cell death 

Apoptosis, DNA 
Damage, Cell Death 
(p<0.05), Cell 
Survival (p<0.05), 
DNA Sequence 
(p<0.05) 

cell death,  death, 
regulation of 
apoptosis, 
regulation of 
programmed cell 
death 

Apoptosis, DNA 
Damage, Cell 
Death (p<0.05), 
Cell Survival 
(p<0.05), DNA 
Sequence 
(p<0.05) 

Brentani  DNA 
METHYLATION 
(22/24 genes) 

Cancer-related genes 
involved in DNA 
methylation and 
modification 

DNA damage, mutation 
(p<0.05) 

DNA metabolism, 
nuclear protein, 
DNA binding 

Binding sites 
(p<0.05), 
Apoptosis 
(p<0.05) 

Brentani IMMUNE 
FUNCTION 
(51/54 genes) 

Cancer-related genes 
involved in immune 
function 

Lymphocyte activation, 
Sequence Homology 
(p<0.05) 

Glycoprotein, 
response to biotic 
stimulus, defense 
response, humoral 
immune response, 
 signal 
transduction 

Lymphocyte 
Activation, 
Haplotypes 

Brentani DNA REPAIR 
(36/41 genes) 

Cancer-related genes 
involved in DNA repair 

DNA Damage, DNA 
replication, Base Pair 
Mismatch, DNA 
ligases, 
Endonucleases, DNA 
repair enzymes 

response to DNA 
damage stimulus, 
nuclear protein, 
 DNA 
replication,, 
nuclease activity 

DNA repair, DNA 
Damage, DNA 
replication, 
Endonucleases 

Genes in cytogenetic 
band chr10p11 
(33/142 genes) 

Negative control (Genes in 
cytogenetic band 
chr10p11) 

None: base sequence 
(p<0.05), carrier 
proteins (p<0.05) 

Unavailable (<80% 
of the list not 
mapped to GO 
terms) 

No significant 
clustering 

 Genes in cytogenetic 
band chr12q23  
(33/106 genes) 

Negative control (Genes in 
cytogenetic band 
chr12q23) 

None: Amino Acid 
Sequence (p<0.05), 
Base Sequence 
(p<0.05) 

No meaningful 
annotations: 
binding, calcium 
(p=3.3e-2) 

No significant 
clusters except 
non-specific 
“Amino Acide 
Sequence” 
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Figure 4: Map generated of gene-vs-MeSH mappings from 1698 documents resulting 
from the query “cell adhesion AND neoplasms AND metastasis” 
 

 

 

 

 

 

 

 

 

 

 

 

 

Map generated of gene-vs-MeSH mappings from 1698 documents resulting from the 

query “cell adhesion AND neoplasms AND metastasis” with highlighted (green) columns 

denoting matching genes from the Brentani cancer-related cell adhesion gene list.  Relevant 

genes not present in the original list but highlighted from the literature as involved in cell 

adhesion and invasiveness include VEGFA, CD36, EGFR, AKT1, CXCR4, among others. 
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In Figure 4, we explore the literature heatmaps produced by the search engine 

independently of the cell adhesion gene list, and overlay the gene list to identify functionally 

related genes from the literature which are not present in the original list. A gene-vs-MeSH 

map generated from 1698 documents resulting from the query “cell adhesion AND 

neoplasms AND metastasis”, with highlighted (green) columns denotes matching genes from 

the Brentani cancer-related cell adhesion gene list.  Relevant genes not present in the original 

list but highlighted from the literature as involved in cell adhesion and invasiveness include 

VEGF (see [93] for a discussion), PTLHL (implicated in tumor migration into the bone 

microenvironment [94]), EGFR (implicated in lymphatic metastasis [95]), AKT1 (suppresses 

metastasis [96]), CXCR4 (implicated in cancer stem cell dissemination and metastasis [97] 

and a potential therapeutic target).  It is important to note that several genes were mis-tagged 

by the automatic tagger, including “IV”.  These gene tagging errors are a consequence of the 

automated tagging algorithm and can be pruned by user feedback functions in development 

and by additional dictionary curation. 

5.5 Conclusions 

We have developed a MeSH annotation engine which graphically displays the most 

significant MeSH terms for a user gene list and which matches well the output from a 

reference standard GO annotation utility.  Incorporating MeSH terms, with their associated 

clinical subheadings may assist in the functional annotation of gene lists relating to major 

disease processes like cancer metastasis.  Furthermore, the ability to compare gene 

annotations with a whole-literature gene-vs-MeSH map can help identify related genes as 

described in the literature which are functionally related to the gene list submitted but which 

are not present in the original submission.   

5.6 Online Access 

BioSearch-2D can be accessed online at http://biosearch2d.ncibi.org  
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CHAPTER VI  
 

Conclusion 
 
 

Our results with automatic component identification and interaction detection in the Wnt 

signaling pathway suggest that natural language processing techniques are able to improve 

the coverage of canonical reference literature and signaling models.   The high precision and 

processing speed of this automated signaling interaction pipeline demonstrates the value of 

full-parsers and statistical techniques.  Using this approach as a “first-pass” filter into the 

literature offers a useful method for curation of databases and information resources in 

complex and rapidly evolving fields such as signaling pathways.  We find that even though 

the recall rates with respect to the known canonical models do not yet match those of an 

expert human reviewer, the system could nonetheless succeed in detecting a large percentage 

of the protein-protein interactions reported in the literature. 

In the future, we expect to capture directionality and type of interaction in a more robust 

way for our assertions; this will require additional template development, and may require 

the use of an external ontology for an outside reference source for error-detection of incorrect 

assertions.  The role we most expect this system to serve is a real-time scanning facility for 

new articles, searching for newly-reported interactions.  Automated computational methods 

are capable of analyzing a much broader coverage of literature than would be feasible for a 

human reviewer to perform.  In this role, there is a premium on specificity to avoid 

overloading the manual reviewer with erroneous matches, and our results suggest that deep-

parsing, automated natural language processing technology is now capable of achieving this 

requirement. 

We found that our auto-categorization module, using statistical and natural-language 

parsing techniques, allowed us to build a named entity list at run-time, rather than requiring a 

cumbersome fixed named entity assembler before the processing.  This approach was 
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perhaps our main advantage in this pipeline, because unlike general English-language texts, 

the biomedical literature enjoys a substantial human-curated hierarchical index via the MeSH 

tags provided by MEDLINE.  

MeSH indexing provides a powerful tool for building reference and background article 

sets that can be used to search a specific article corpus for biologically-relevant named 

entities which are typically over-represented with high statistical significance.    In our 

pipeline, the fast partial parser CASS served a useful role in assigning multiple-word entities.  

Moreover, its ability to efficiently process very large collections of text allowed us to extract 

these entities in a fairly comprehensive manner.  The combination of fast partial-parse, 

exploiting MeSH indexing, and statistical analysis of multiple word phrases significantly 

simplified our task of assembling a comprehensive term list. 

While some sentences in biomedical text are too complex to be accurately parsed using 

current technology, we find that parsers such as the Link parser [19] are able to accurately 

and efficiently parse the majority of sentences in the molecular biology literature.  Using the 

integrated approach described above, we are beginning to be able to analyze the knowledge 

encoded in biomedical text. 

Furthermore, our application of a heatmap for document search and genomic functional 

annotation demonstrates that context-specific data summarization can be successfully 

achieved in a very complete, near real-time manner over a large corpus.   

In a second application, we explored the use of a dynamic map as a means of 

summarizing the biomedical literature.  The system, BioSearch-2D, renders very fine-grained 

representations of large document collections while allowing human readers to very quickly 

observe the gene groupings in the collection.   Examples shown include the androgen-

receptor, Polycomb group proteins, histone deacetylases, anti-apoptotic proteins, and GSTP1, 

along with MeSH terms detailing their function.    The overall coverage of this map closely 

matched the coverage of the same literature provided by expert human reviews in both 

written articles as well as curated web repositories.  We are currently adapting the search 

engine to map full-text document collections with additional named-entity classes (cell lines, 

substance names, etc.) as they become more easily available.  
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The dynamic maps generated by BioSearch-2D seek to convey a similar meaning as a 

“concept maps” in their rendering of gene entities with the MeSH ontology terms.     In 

contrast to standard node-edge graphs, however, the precise distribution of biological facts in 

the map can be assessed immediately by the viewer.    By allowing an interactive search and 

rendering the content of hundreds of documents into a single map, the map intuitively 

displays related functions for genes within those documents and places them in a tightly-

defined contextual role.  Complex genomic pathways such as the Wnt pathway play differing 

roles depending on their context, and a heatmap representation coupled with a clustering 

algorithm allows for their improved annotation as the biomedical literature evolves.  Further 

development of the BioSearch-2D engine could incorporate image feature-detection 

algorithms to assist users in selecting clusters of interest.  As an initial screening component, 

we intend to color the side axes for the display according to major MeSH tree function.  For 

many of the clusters displayed, such as that for EZH2 in the prostate cancer cluster, splits 

performed by the automated clustering algorithm occasionally partition important topics in 

the image into clusters too small for the user to immediately identify.  We anticipate that 

users navigating the image may benefit from both additional map coloring options as well as 

different clustering algorithm parameters from the initial query. 

We believe that both the automated assertion extraction software and the large-scale 

annotation and summarization abilities of the BioSearch-2D engine could greatly assist 

curators in reviewing and integrating data from the literature on complex signal pathways 

like the Wnt pathway.   Both of these systems accomplish in hours (Wnt protein interaction 

software) or seconds (BioSearch-2D) tasks that would demand orders of magnitude more 

time from a human reviewer.  As the accuracy of named-entity recognition improves and 

additional databases become available, the performance of these systems will improve.  In 

the future, it may be possible to use these tools as the core of community and individual 

genomic data curation and integration efforts.  These advances could have a very high impact 

on the ability to organize bioinformatics data in a cost-effective and scientifically-appropriate 

manner.
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