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ABSTRACT

ARCHITECTURAL AND COMPILER MECHANISMS

FOR ACCELERATING SINGLE THREAD APPLICATIONS

ON MULTICORE PROCESSORS

by

Hongtao Zhong

Chair: Scott Mahlke

Multicore systems have become the dominant mainstream computing platform. One

of the biggest challenges going forward is how to efficiently utilize the ever increasing

computational power provided by multicore systems. Applications with large amounts

of explicit thread-level parallelism naturally scale performance with the number of cores.

However, single-thread applications realize little to no gains from multicore systems.

This work investigates architectural and compiler mechanisms to automatically ac-

celerate single thread applications on multicore processors by efficiently exploiting three

types of parallelism across multiple cores: instruction level parallelism (ILP), fine-grain

thread level parallelism (TLP), and speculative loop level parallelism (LLP).

A multicore architecture called Voltron is proposed to exploit different types of paral-

lelism. Voltron can organize the cores for execution in either coupled or decoupled mode.

In coupled mode, several in-order cores are coalesced to emulate a wide-issue VLIW pro-

cessor. In decoupled mode, the cores execute a set of fine-grain communicating threads

extracted by the compiler. By executing fine-grain threads in parallel, Voltron provides

xii



coarse-grained out-of-order execution capability using in-order cores. Architectural mech-

anisms for speculative execution of loop iterations are also supported under the decoupled

mode. Voltron can dynamically switch between two modes with low overhead to exploit

the best form of available parallelism.

This dissertation also investigates compiler techniques to exploit different types of

parallelism on the proposed architecture. First, this work proposes compiler techniques

to manage multiple instruction streams to collectively function as a single logical stream

on a conventional VLIW to exploit ILP. Second, this work studies compiler algorithms to

extract fine-grain threads. Third, this dissertation proposes a series of systematic compiler

transformations and a general code generation framework to expose hidden speculative

LLP hindered by register and memory dependences in the code. These transformations

collectively remove inter-iteration dependences that are caused by subsets of isolatable

instructions, are unwindable, or occur infrequently.

Experimental results show that proposed mechanisms can achieve speedups of 1.33

and 1.14 on 4 core machines by exploiting ILP and TLP respectively. The proposed

transformations increase the DOALL loop coverage in applications from 27% to 61%,

resulting in a speedup of 1.84 on 4 core systems.
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CHAPTER 1

Introduction

Since the earliest processors came onto the market, the semiconductor industry has

depended on Moore’s Law to deliver consistent application performance gains through the

multiplicative effects of increased transistor counts and higher clock frequencies. How-

ever, power dissipation and design complexity issues have emerged as dominant design

constraints that severely restrict the ability to increase clock frequency or utilize more

complex out-of-order mechanisms to improve performance. Exponential growth in tran-

sistor counts still remains intact and a powerful tool to improve performance. This trend

has led major microprocessor companies to put multiple processors onto a single chip.

One of the most difficult challenges going forward is software: if the number of devices

per chip continues to grow with Moore’s law, can the available hardware resources be

converted into meaningful application performance gains?

In some regards, the embedded and domain-specific communities have pulled ahead of

the general-purpose world in taking advantage of available parallelism, as most system-

on-chip designs have consisted of multiple processors and hardware accelerators for some

time. However, these system-on-chip designs are often deployed for limited application

spaces, requiring hand-generated assembly and tedious programming models. The lack of
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necessary compiler technology is increasingly apparent as the push to run general-purpose

software on multicore platforms is required.

Multicore systems increase throughput and efficiency by utilizing multiple cores to

perform computation in parallel and complete a larger volume of work in a shorter period

of time. Such designs are ideal for servers where coarse thread-level parallelism (TLP)

is abundant. But for systems where single-threaded applications dominate, multicore

systems offer very limited benefits. Single-thread performance is still important in the

multicore era for several reasons. First, a large amount of existing applications are writ-

ten as single thread programs, future systems must provide ways to run them efficiently.

Second, past experiences have shown that it is much easier to write and maintain sequen-

tial programs than parallel programs; automatically accelerate single thread applications

can relieve programmers from the burden of writing explicit parallel programs. Third,

Amdahl’s law states that the maximum speedup can be achieved for a given application

is limited by the sequential portion of the program. Improving single-thread performance

for the sequential portion is also important for parallel programs.

Until recently, utilizing multicore hardware requires manually writing parallel pro-

grams. Extracting TLP from general-purpose applications is difficult for a variety of

reasons that span both the design limitations of current multicore systems and the char-

acteristics of the applications themselves. On the hardware side, processors in multicore

systems communicate through memory, resulting in long latency and limited bandwidth

communication. Synchronization of the processors is also performed through memory,

thereby causing a high overhead for synchronization. Finally, multicore systems do not

support exploiting instruction-level parallelism (ILP) in an efficient manner. In short,

current multicores are generally direct extensions of shared-memory multiprocessors that

are designed to efficiently execute coarse-grain threads. On the application side, the abun-

2



dance of dependences, including data, memory, and control dependences, severely restrict

the amount of parallelism that can be extracted from general-purpose programs. The

frequent use of pointers and linked data structures is a particularly difficult problem to

overcome even with sophisticated memory alias analysis [53]. Coarse-grain parallelism

often cannot be discovered from general-purpose applications. Frequent communication

and synchronization along with modest amounts of parallelism are dominant characteris-

tics. Thus, there is a distinct mismatch between multicore hardware and general-purpose

software.

In this dissertation, architectural and compiler techniques are proposed to acceler-

ate single thread applications on multicore systems by exploiting hybrid forms of par-

allelisms. Different types of parallelism, including instruction level parallelism (ILP),

fine-grain thread level parallelism(fine-grain TLP), memory level parallelism (MLP) and

loop level parallelism (LLP) are found to widely exist in applications and can be automat-

ically exploited in multicore systems. Architectural and compiler mechanisms to exploit

each type of parallelism (ILP, TLP, LLP) in multicore systems are addressed.

1.1 Contributions

This dissertation makes the following contributions.

• Architectural and compiler techniques to exploit ILP on multicore systems. This

thesis studied exploiting ILP on multicore systems by coalescing in-order cores to

emulate a wide-issue VLIW processor [81, 82]. The central contribution of this work

is a mechanism to completely decentralize VLIW instruction fetch, decode, and

distribution logic. This goal is achieved without sacrificing the code size benefits

of compressed instruction encodings. The compiler decomposes an application into

3



multiple instruction streams that collectively function as a single logical stream on a

conventional VLIW. Procedures, blocks, and instruction words are vertically sliced

and stored in different locations in the instruction memory hierarchy. However, the

logical organization of a single stream is maintained by the compiler to ensure proper

execution. The combination of distributed branches, and a scalar operand network,

enable efficient execution, communication and lightweight synchronization.

• Voltron Architecture. Parallelization opportunities for single thread applications

can also be created by slicing program regions into communicating sequential sub-

graphs or fine-grain threads. Fine-grain threads execute in parallel and communicate

through queues between the cores. Different from VLIW style ILP, the execution

of fine-grain threads are decoupled: the execution of one fine-grain thread can slip

with respect to other fine-grain threads. Fine-grain TLP allows concurrent execu-

tion of instructions as well as the overlapping of cache miss latencies. By executing

fine-grain threads in parallel, the multicore system provides coarse-grained out-of-

order capability using in-order cores. My work [82] found both ILP and fine-grain

TLP need to be efficiently exploited to achieve high performance. I proposed an

architecture called Voltron that supports dual-mode execution to exploit both ILP

and fine-grain TLP. Voltron can organize the cores for execution in either coupled or

decoupled mode. In coupled mode, the cores execute multiple instruction streams

in lock-step to collectively function as a wide-issue VLIW as described before. In

decoupled mode, the cores execute a set of fine-grain communicating threads ex-

tracted by the compiler. Voltron can dynamically switch between two modes with

low overhead to exploit the best form of available parallelism. My work also studied

compiler techniques for orchestrating bi-modal execution.
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• Exposing Implicit Speculative Loop Level Parallelism (LLP). Loops in general-

purpose applications are hard to parallelize because precise memory dependence

analysis necessary for parallelization and code transformations are often not possi-

ble in C and C++ applications. As a result, researchers have looked at thread-level

speculation overcome these analysis limitations. However, previous results are mod-

est at best as little TLP is available in general-purpose applications even with high

degrees of speculation. My work [83] takes a closer look at this problem to deter-

mine if thread-level speculation is inherently limited for C and C++ applications.

My work found that there is indeed substantial amounts of hidden LLP lurking

beneath the surface in general-purpose applications. But, the code cannot be par-

allelized ”out of the box”. Real dependences, both register and memory, interfere

with parallelization causing traditional compilers to behave conservatively. I pro-

pose three code transformation techniques to uncover the hidden LLP: speculative

loop fission, speculative prematerialization and infrequent path isolation. These

transformations collectively remove inter-iteration dependences that are caused by

subsets of isolatable instructions, are unwindable, or are occur infrequently. The

DOALL loop coverage in C and C++ applications more than doubled with the

application of these transformations.

1.2 Organization

The remainder of this dissertation is organized as follows. Chapter 2 provides brief

overview of multicore processor designs as well as the opportunities for accelerating sin-

gle thread applications on them. Architectural support for efficient exploitation of ILP,

fine-grain TLP and speculative LLP are presented in Chapter 3. Chapter 4 discusses

5



compiler technique to exploit fine-grain parallelism, including ILP and fine-grain TLP, in

proposed architecture. Chapter 5 discusses compiler transformations to uncover hidden

loop level parallelism in single thread applications. Chapter 6 presents experiment results

and evaluates the effectiveness of the proposed techniques. Finally, Chapter 7 summarize

the dissertation.
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CHAPTER 2

Background & Motivation

2.1 Multicore Architecture

As transistor density increases, power dissipation and on-chip wire latency have be-

come two major challenges for processor designs. Increasing single core performance is

costly in terms of power and may achieve diminishing returns on the extra transistors

used. A natural way to utilized the extra transistors is to place multiple cores on a die

to provide more computing power and throughput on a single chip. Figure 2.1 shows a

typical implementation of chip multi-processor available on the market. Two cores are

packaged in a chip in this example. Each core contains private L1 instruction and data

cache, execution pipeline, and maintains separate architectural states such as register

files. The L2 cache and main memory are shared between two cores. Two cores access

a shared memory address space, a coherence protocol, such as the MESI protocol [16], is

employed to maintain the coherence between L1 caches. Multiple threads communicate

through memory: the producer of data writes to the memory, and the consumer load

from the same memory address. The communication latency between cores on this chip

multiprocessor is much lower than that on traditional multi processor systems because
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Figure 2.1: A 2 core CMP architecture

the cores are on the same die and they shared a L2 cache. For example, in the Intel Core

Duo processor [46], the communication latency between cores can be as low as 14 core

cycles depends on the location of the data in the cache hierarchy.

In the architecture shown in figure 2.1, two cores can execute two tasks or threads at

any given time. This architecture provide benefit for users that run multiple simultaneous

tasks or explicitly threaded applications. However, single thread applications, which are

prevalent in the desktop domain, can only utilize one of the two cores. Thus single thread

applications cannot run faster on multi core processors than on single core processors.

Moreover, had the transistors used to build the second core be spent on larger caches,

an alternative single core design could provide better single thread performance than the

dual-core design does.
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2.2 Parallelization Opportunities in Single-thread Ap-

plications

The challenge with increasing single-thread application performance on multicore sys-

tems is to identify parallelism that can be exploited across the cores. We examined a set of

applications from the MediaBench and SPEC suites to identify forms of parallelism that

are feasible to automatically extract by a compiler. The parallelism consisted of three

types: instruction level parallelism (ILP), fine-grain thread level parallelism (fine-grain

TLP), and speculative loop-level parallelism (LLP).

Instruction Level Parallelism. Modern superscalar and VLIW architectures suc-

cessfully exploit ILP in single-thread applications to provide performance improvement.

Most applications exhibit some ILP, but it is often highly variable even within an applica-

tion. We observed program regions with high degrees of ILP (6-8 instructions per cycle),

followed by mostly sequential regions. Overall ILP results can also be low due to frequent

memory stalls.

Exploiting ILP in a multicore system requires low latency communication of operands

between instructions so the dependences in the program can be satisfied quickly. Most

architectures pass operands through shared register file and bypass networks, which are

absent between cores in multicore systems. Multicluster VLIW [13, 64, 78, 81] exploits

ILP across multiple clusters with separate register files. Networks connecting the clusters

transmit operands between registers with very low latency. Mechanisms similar to multi-

cluster VLIW should be provided in to efficiently exploit ILP in multicore architectures.

Fine-Grain Thread Level Parallelism. Parallelization opportunities can also be

created by slicing program regions into multiple communicating sequential subgraphs or

fine-grain threads. Fine-grain TLP allows concurrent execution of instructions as well

9



Figure 2.2: Example of fine-grain TLP

as the overlapping of memory latencies. The memory-level parallelism (MLP) achieved

by overlapping cache misses or misses with computation has large potential to increase

performance. Because the execution of fine-grain threads can slip with respect to each

other, a coarse-grain out-of-order execution capability can be provided using in-order

cores. Conventional superscalars must create opportunities for such parallelism with large

instruction windows. But, the compiler can expose opportunities across much larger

scopes and with much simpler hardware.

This work investigated two forms of TLP: decoupled software pipelining (DSWP) and

strand decomposition. Recent research on DSWP [56] exploits TLP in loop bodies. The

execution of a single iteration of a loop is subdivided and split across multiple cores.

When the compiler can create subdivisions that form an acyclic dependence graph, each

subpart can be independently executed forming a pipeline. DSWP allows good utilization

of cores and latency tolerance when balanced pipeline parallelism can be extracted from

the program.

Strand decomposition refers to slicing program regions into a set of communicating

10



subgraphs. These subgraphs are overlapped to exploit ILP and MLP. A region decom-

posed into strands is illustrated in Figure 2.2. Nodes in the graph are instructions and

edges represent register flow dependences. The gray nodes represent load instructions.

The dotted line divides the instructions into two fine-grain threads. The compiler in-

serts communication/synchronization instructions to transfer data between threads for

all inter-thread dataflow. One of the critical sources of speedup in the strands is MLP.

Strands must be carefully identified to allow overlap of memory instructions and any cache

misses that result.

Low latency asynchronous communication between cores is needed to exploit fine-grain

ILP on multicore architectures. High communication latency between cores can easily

outweighs the benefit of fine-grain TLP. Traditional multicore systems do not support

fine-grain ILP because the only way to communication between cores is through the

memory. One of the focuses of this paper is to enable execution of such threads with a

low latency communication network.

Loop-level Parallelism. Exploiting loop-level parallelism has generally been utilized

in the scientific computing domain. Most commonly, DOALL loops are identified where

the loop iterations are completely independent from one another. Thus, they can execute

in parallel without any value communication or synchronization. When enough itera-

tions are present, DOALL loops can provide substantial speedup on multicore systems.

Figure 2.4 illustrates the execution of a DOALL loop on a 4-core system. Automatic

parallelization of DOALL loops has been widely studied [4, 35] and shown a large degree

of success on a variety of numerical and scientific applications.

Although scientific applications often contain DOALL loops that can be identified

and proved by the compiler, existing compilers have difficulty proving the absence of

cross-iteration memory dependence for loops in general purpose applications due to their
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for (j = 0; j < bbSize; j++) {
Int32 a2update = zptr[bbStart + j];
UInt16 qVal = (UInt16)(j >> shifts); 
quadrant[a2update] = qVal;   
if (a2update < NUM_OVERSHOOT_BYTES)        

quadrant[a2update + last + 1] = qVal;
} 

for(cnt = 0; cnt < TMPBRK; cnt++, bp++)
if(bp->code && ((bp->adr & ~0x3) == addr))

break;

/* later use of cnt */
/* later use of bp */

(b)(a)

Figure 2.3: (a) An loop from 256.bzip2 that usually has no cross-iteration memory de-
pendences. (b) An loop from 124.m88ksim that usually has no cross-iteration
memory dependences, but has a cross-iteration control dependence.

extensive use of pointers, recursive data structures and the complex control flow. However,

parallelization opportunities still exist in these applications; a significant fraction of loops

in these applications show zero or very few cross-iteration dependences during execution.

We call such loops statistical DOALL loops.

Figure 2.3(a) shows a loop from the benchmark 256.bzip2 in SPEC INT2000. The

compiler cannot prove this loop is DOALL because the value of the variable a2update

cannot be determined at compile time. Hence, the statement quadrant[a2update] =

qVal could access the same memory location in different iterations. However, an execution

profile shows that iterations access different memory locations at run time, thus the loop

is statistically DOALL. The loop can be parallelized to speed up the execution if we

have mechanisms to detect potential cross-iteration memory dependence violations and

recover when a violation is detected. Because the number of iterations is known when the

execution enters the loop, this type of loop is referred to as DOALL-counted .

Figure 2.3(b) shows a loop from 124.m88ksim in SPEC INT92. This loop is not

DOALL because of a cross-iteration control dependence. The execution of later iterations

depends on whether any prior iteration executed the break statement. Aside from the
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iteration 0-7

iteration 0-1

DOALL 

initialization

iteration 2-3
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initialization

DOALL 

finalization

iteration 4-5

DOALL 

initialization

iteration 6-7

DOALL 

initialization

core 0 core 2core 1 core 3

Figure 2.4: Example of Loop Level Parallelism

control dependence, the loop does not have any cross-iteration dependences. If the loop

executes many iterations before exit, it is worth being parallelized. Since the number of

iterations is unknown when the execution enters the loop, this type of loop is referred to

as DOALL-uncounted . DOALL-uncounted loops require additional mechanisms to handle

discarding the side effects of unnecessary iterations.

This work found that a fair amount of statistical DOALL parallelism does exist in

general-purpose applications. The major difference is that the loops tend to be smaller

and have fewer iterations than scientific applications. Thus, the overhead of spawning

threads must be small to make this parallelism profitable to exploit. Further, DOALL

parallelism is often hidden beneath the surface of register and memory dependences. The

compiler must utilize sophisticated pointer analysis to understand the memory reference

behavior [53] and new optimizations are needed to untangle register and memory de-

pendencies in applications. One of the major focus of this dissertation is to investigate

compiler transformation to remove or isolate cross iteration dependences in loops to ex-

pose more speculative loop level parallelism.

Parallelism Breakdown. To understand the availability of each of the three types

of parallelism, I conducted an experiment to classify the form of parallelism that was best
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Figure 2.5: Breakdown of exploitable parallelism for a 4-core system.

at accelerating individual program regions for a set of single-thread applications from the

SPEC and MediaBench suites. The experiment assumes a 4-core system where each core

is a single-issue processor. Further, the system is assumed to contain mechanisms for

fast inter-core communication and synchronization as discussed in Chapter 3. Figure 2.5

shows the fraction of dynamic execution that is best accelerated by exploiting each type of

parallelism. The benchmarks were compiled to exploit each form of parallelism by itself.

On a region-by-region basis, I choose the method that achieves the best performance

and attribute the fraction of dynamic execution covered by the region to that type of

parallelism.

Figure 2.5 shows there is no dominant type of parallelism, and the contribution of

each form of parallelism varies widely across the benchmarks. On average, the fraction of

dynamic execution that is attributed to each form of parallelism is: 18% by LLP 1, 29%

by fine-grain TLP (19% percent by DSWP and 10% by strands), and 40% by ILP. 13% of

1The transformations proposed in Chapter 5 are not applied for this study. After applying those
transformations, the coverage of DOALL loops increases significantly.
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the execution doesn’t show any opportunities for all three types of parallelism as it had

the highest performance on a single core.

The results show that no single type of parallelism is a silver bullet in general-purpose

applications. The types of parallelization opportunities vary widely across the applications

as well as across different regions of an application. To successfully map these applications

onto multicore systems, the architecture must be capable of exploiting hybrid forms of

parallelism, and further the system must be adaptable on a region-by-region basis. This

finding is the direct motivation for the Voltron architectural extensions that are presented

in the next section.

2.3 Overview of Proposed Approach

In this dissertation, architectural and compiler mechanisms are proposed to accelerate

single thread applications on multicore systems by efficiently exploiting ILP, fine-grain

TLP and speculative LLP.

First, extensions to multicore processors are proposed to enable multiple cores to ex-

ecute in lockstep to exploit instruction-level parallelism (ILP). The hardware provides

mechanism for low latency inter core register communication and branch synchroniza-

tion. The hardware also supports new instructions to allow the compiler to switch cores

between sleep and normal modes to accommodate the varying degrees of ILP during the

execution. The compiler orchestrate the execution of multiple instruction streams such

that multiple cores collectively behave like a multicluster VLIW processor, thus ILP in

the applications can be efficiently exploited. Compiler is responsible for converting the

single thread application into multiple instruction streams, one for each core, and they

collectively behave like a single thread application. The combination of hardware and
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compiler techniques enables the exploitation of ILP across multiple cores. Many existing

technique to exploit ILP on VLIW processors can be directly used on multicore systems.

Second, a multicore architecture called Voltron is proposed to exploit both ILP and

fine-grain TLP. Voltron supports all the hardware mechanisms for lockstep execution to

exploit ILP. It also supports concurrent execution of communicating fine-grain threads.

Different from tradition threads, fine-grain threads can exchange register values using a

scalar operand network without going through the memory. Because the execution of

fine-grain threads can slip with respect to each other, Voltron provides a coarse-grain

out-of-order capability with multiple in-order cores. Compiler techniques are proposed to

extract fine-grain threads from single thread applications. The compiler is also responsible

for selecting the best type of parallelism to exploit for each code region.

Third, architectural and compiler mechanism to exploit speculative loop level paral-

lelism are presented. I investigated using profile information and compiler analysis to

speculatively parallelize loops in general purpose applications. On the hardware side,

a specialized transactional memory is used to support speculative parallel execution of

loop iterations. On the compiler side, a general framework is proposed to parallelize

both counted and uncounted loops. Three compiler transformations, speculative loop

fission, infrequent dependence isolation and prematerialzation, are proposed to expose

hidden parallelism that lurks beneath the surface of cross iteration register and memory

dependences.
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CHAPTER 3

Multicore Architectural Extensions for Exploiting

Parallelism in Single Thread Applications

As shown in Chapter 2, multiple forms of parallelisms exist in a wide range of single

thread applications. In this chapter, extensions for multicore architecture are proposed to

support the efficient exploitation of instruction level parallelism(ILP), fine grain thread

level parallelism(TLP) and speculative loop level parallelism(LLP).

3.1 DVLIW: A Multicore Architecture for ILP exe-

cution

Modern uniprocessors have successfully exploited instruction level parallelism to im-

prove performance. Two widely study architecture to exploit ILP are out-of-order su-

perscalar and very long instruction word (VLIW). Both mechanisms support low latency

operand communication and synchronization among function units. Conventional multi-

core processors lack such support for fast operand communication between cores, which

prevent the exploitation of ILP across multiple cores.
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This section proposed a distributed VLIW (DVLIW) multicore architecture to exploit

ILP across multiple cores by coalescing multiple in-order cores to emulate multicluster

VLIW processors with minimal communication and synchronization overhead. The mul-

ticluster VLIW [13, 64, 78, 81] is proposed to solve the scaling problem of VLIW archi-

tectures. Traditional VLIW architecture do not scale well with large number of FUs due

to two major problems: centralized register file and wire delays. Centralized register file

becomes a bottleneck for scaling because its area and power consumption grow quadrati-

cally with the number of ports. As feature sizes decrease, wire delays are growing relative

to gate delays. This has a serious impact on processor designs as distributing control

and data each cycle takes more time and energy [2, 45, 77]. In a multicluster design, the

centralized register file is broken down into several smaller register files. Each of the

smaller register files supplies operands to a subset of the functions units (FUs), known as

a cluster. Inter cluster data communication is handled via connections between clusters.

To access data in another cluster, a cluster must first execute a inter-cluster move (IC-

MOVE) instruction to move the data to local register file. Multicluster VLIW exploits

ILP across multiple clusters of execution units. A multicluster design can be efficiently

scaled by adding more clusters as the bottleneck produced by the centralized register file

is removed.

This work extends multicore architecture to pass operands between execution units

with low latency in a way similar to multicluster VLIW does. Direct connections between

register files in each core is added to move operand value between cores. The proposed

architecture also provides ways to synchronize branches in different cores to emulate a

single VLIW instruction stream with multiple instruction streams. During the emulation,

although cores fetch independently, they execute operations in the same logical multiop

each cycle and branch to the same logical location. Procedures, basic blocks, and mul-
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Figure 3.1: Overview of multicore architecture for ILP execution. Four core example is
shown.

tiops are vertically sliced and distributed to different cores. The logical organization is

maintained by the compiler to ensure proper execution.

3.1.1 Architecture Overview

Figure 3.1 presents a block diagram of a four core DVLIW processor for ILP execution.

Cores are organized in a two dimensional array, surrounded by a banked L2 cache. Such

an organization is similar to tiled architectures, such as Raw [71]. Inter-core operand

communication is handled via connections between neighboring cores. The latency of

inter-core communication is exposed to the compiler, which schedules explicit intercore

communication operations to transfer data between register files in different cores. A

one-bit bus connecting all clusters is used for propagating stall signals. This globally

propagated stall signal maintains synchronization among multiple cores. A second bus is

used for broadcasting branch conditions and will be described later in this section.

The datapath of each core is similar to that of a conventional VLIW, with each core
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Figure 3.2: (a) Code layout on a conventional 4-cluster VLIW architecture. Rectangle
A0 represents operations in MultiOp A to be executed by cluster 0. (b) Code
layout on the proposed multicore architecture. Bold lines represent MultiOp
boundaries in (a).

having its own FUs, general purpose register file (GPR), predicate register file (PR),

branch target register file (BTR), and floating point register file (FPR). Each core also

has its own data cache; a bus-based snooping protocol is assumed to maintain coherence

among data caches. The proposed architecture does not limit the way in which data

caches are organized—any hardware or software coherence protocol will suffice. A inter-

core move unit is used to transfer data between neighbor cores. Each core has separate

control path include the instruction fetch and decode logic. In every cycle, each core

fetches operations from its I-cache according to its own PC.

When cores are coalesced to emulate a multicluster VLIW, all cores execute syn-

chronously and the execution order of operations is the same as that of a traditional

VLIW architecture. All operations in a logical instruction word are fetched and executed

at the same cycle in different cores. If any core incurs a cache miss, all cores must stall.

When emulating a multicluster VLIW, the code organization in all levels of the mem-

ory hierarchy in the proposed architecture differs from that in multicluster VLIW. In

conventional architectures with a centralized PC, all operations within the same instruc-

tion word are placed sequentially in memory, as shown in Figure 3.2(a). Thus, operations

for different clusters, e.g. A0 and A1, are placed next to each other. In the proposed ar-

chitecture, the operations for each core are grouped together, and code for different cores

is placed separately in the memory (or in separate memories), as shown in Figure 3.2(b).

20



This organization of code allows each core to compute its own next PC without know-

ing the size of operations in other cores, thus allowing all cores to fetch and execute

independently.

Code compression is important for VLIW processors because uncompressed code usu-

ally contains a large amount of NOPs, which wastes storage, consumes power, lowers

the I-cache utilization and hampers the performance. In the proposed architecture, the

code in each core can be independently compressed in their I-cache. During execution,

every core uncompress the instructions as they move from the I-cache to the execution

pipeline, multiple uncompressed instruction stream collectively form a single logical in-

struction stream to exploit ILP. The architecture does not limit the compression schemes

can be used. Almost any VLIW instruction compression scheme, including TINKER [14],

instruction templates [1, 61], or Huffman code based techniques [36], may be used to

preserve small code size while distributing the instructions.

3.1.2 Intercore Register communication

The direct connect wires between adjacent cores in Figure 3.1 allows inter core register

communication without going through the memory. Two new operations are added to the

instruction set architecture (ISA) to support the register communication communication:

PUT and GET. The PUT operation has two operands, a source register identifier and a

2-bit direction specifier. A PUT reads the value from source register and puts the value

to the bus specified by the direction specifier (east, west, north or south). The GET

operation also has two operands, a destination register id and a direction specifier. GET

gets a value from the bus specified by the direction specifier and directly writes it into the

destination register. A pair of adjacent cores communicate a register value by executing

a PUT operation and a GET operation on two cores at the same cycle. This synchronous
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communication requires the cores to execute in lock-step. Jointly executed PUT/GET

operations function collectively as an inter-cluster move(ICMOVE) in a traditional mul-

ticluster VLIW [13]. Because the communication is explicitly managed by software, no

routing or buffer hardware is required, the communication latency between two adjacent

cores can be as low as one cycle to communicate a register value between neighboring

cores.

3.1.3 Branch Mechanism

A major challenge that arises for the proposed multicore architecture is branch exe-

cution. A valid single thread of execution must be maintained using multiple instruction

streams. Therefore, each instruction stream must execute instructions from the same

logical instruction word each cycle and branch to the same logical target at the same

time. As shown in Figure 3.2(b), operations in a logical instruction word are stored in

separate locations for different cores. Thus, every core has a different branch target for

each branch operation. Different instruction rate in different cores as a result of indepen-

dent instruction compression further complicate this problem. The address offsets for a

logical branch is different in multiple cores. Special architectural and compiler support is

proposed to solve this problem.

The proposed branch mechanism is based on the unbundled branch architecture in

HPL-PD [32]. The unbundled branch architecture separately specifies each portion of

the branch: target address, condition, and control transfer point. In this manner, each

portion of a branch can be specified as soon as it becomes available to reduce the latency

associated with branches. For example, the branch target is static and can be specified well

in advance of the branch to permit instruction prefetching. In the HPL-PD architecture,

each portion of the branch is performed by a separate operation. The operations involved
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Figure 3.3: Example code segment for : (a) Multicluster VLIW, (b) Proposed multicore
architecture. The leftmost operand is the destination for each assembly oper-
ation.

in branches are as follows:

Branch target address specification. Prepare-to-branch (PBR) operations are

used to specify the target address and a static prediction for a branch ahead of a branch

point, typically initiating instruction prefetch when the prediction bit is set to taken.

Branch condition computation. Compare-to-predicate (CMPP) operations are

used to compute branch conditions, which are stored in the PR file.

Control transfer. The actual branch operations test the branch condition and per-

form the transfer of control to the target address. Control transfer operations include

branch-if-condition-true (BRCT) and branch unconditionally (BRU).

There is no dependence between the computation of the branch target address and the

computation of the branch condition, so the order of the first two steps is not restricted.

An unconditional branch does not need the computation of the branch condition, and

thus consists of only the first and last steps.

In a proposed multicore architecture that emulates a multicore VLIW, branch targets

must be computed separately for each core. The idea of an external branch is introduced

to represent the implementation of a branch on another core. For each original VLIW
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branch scheduled on a core, an external branch on all other cores must be created by

compiler to ensure that proper control flow is maintained in each instruction stream. As

a result, the HPL-PD unbundled branch process becomes slightly more complex. Four

steps are required as follows:

Branch target address specification. To specify a separate branch target for

each core, a separate PBR operation must be issued for each core. A conventional PBR

operation is used for the core with the original branch, and an external PBR (EPBR) is

created for each of the other cores. Both the PBR and EPBRs behave identically to the

original PBR, storing the branch target in a BTR register and initiating a prefetch if the

prediction bit is set. The external distinction is only a logical one. The targets of the

PBR and EPBRs correspond to the same logical block. The actual physical address for

each is filled in by subsequent assembling and linking after all of the code is fully bound.

Branch condition computation. There is no change in the branch condition com-

putation. A single CMPP operation is issued on a core and the result is stored in the

predicate register file. Unlike the branch target address which is different for each core,

the branch condition is the same for all cores.

Branch condition distribution. In the proposed architecture, each core containing

an external branch must be informed of the branch condition. A broadcast operation,

BCAST, is executed by the core where the branch condition was computed. This operation

is an inter-core move with one source and multiple destinations; it copies the branch

condition bit from the predicate register file where it was computed to the predicate

register files of the other cores. In order to save encoding size, the multiple destinations

have the same register number. (Alternately, the compiler can insert a branch condition

receive operation in all cores with an external branch, thereby broadcasting the condition

bit to arbitrary register locations in each core).
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Control transfer. If the branch condition is taken, each core transfers control to its

individual branch target. All of these branch targets correspond to the same logical block.

In the core with the original branch, a conventional HPL-PD branch operation is used.

New branch operations, called external branches (EBR), are used on the other cores.

EBRs behave exactly as BRCT operations (again the naming is for logical purposes only)

using the broadcast condition. A conservative approach is that the control transfers must

all be scheduled at the same cycle to guarantee correct execution order and enforcement

of dependences, as together they implement one branch in a traditional VLIW.

Special support is provided in proposed architecture for efficient distributed execution

of software-pipelined loops. In HPL-PD, two special registers, the loop count (LC) and

the epilogue stage count (ESC), are used to control loop execution. The LC register

automatically decreases by one in every loop iteration until it reaches zero, then the ESC

is decremented to drain the pipeline. The loop execution condition is determined solely

by testing the LC and ESC. With proposed architecture, the LC and ESC are replicated

in every core and initialized in the preloop. Once execution starts, each core updates

its own LC and ESC. As a result, the core control is completely decoupled during the

execution of software pipelined loops. Note that inter-core data communication is still

necessary to transfer register values between cores in most loops.

3.1.4 Example

Figure 3.3 shows a code example for multicore ILP execution. This is a basic block

adapted from the rawcaudio benchmark [37]. The code is compiled for a two-core pro-

cessor with each core supporting two operations of any type per cycle. The figure shows

the VLIW schedule in tabular form with each row comprising a single instruction word.

Figure 3.3(a) shows the code for a traditional multicluster VLIW. The branch at the end
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of the basic block is realized by three operations: the PBR at cycle 2, the CMPP at cycle

4, and the BRCT at cycle 6. Control is transferred to block 42 if the condition evaluates

to True. Note that no branch operations are required on cluster 1.

Figure 3.3(b) shows the corresponding code for multicore ILP execution. There are

two major changes in the code. First, the code for the basic block is split into two disjoint

pieces, one for each core, and they are stored in different memory locations. Second, three

new operations (shown in bold in the figure) are inserted. An EPBR is inserted on core

1 at cycle 0 to specify the branch target for core 1 corresponding to logical block 42. A

BCAST is inserted on core 0 at cycle 5 to transmit the branch condition contained in

predicate PR7 on core 0 to PR7 on core 1. Finally, an EBR is inserted in core 1 and

scheduled at the same cycle as the BRCT in core 0. The EBR reads the branch condition

from the register written by the BCAST, and branches to the specified target if the value

is True.

Note that the two cores enter the same logical basic block at the same time, but

with differing local PCs. Before execution of the BRCT and EBR, each core executes

instructions independently. The only inter-core control communication occurs in cycle

5 when the BCAST operation is executed, sending the branch condition from core 0 to

core 1. There are two inter-core data communications at cycles 0 and 3. The ICMOVE

operations in traditional VLIW are replaced by PUT/GET operations in DVLIW.

3.1.5 Benefits and Potential Problems of the Architecture

The proposed architecture allows efficient exploitation of VLIW style ILP across mul-

tiple cores on multicore processors. Instruction streams on multiple cores can collectively

behave like a wide VLIW instruction stream under the orchestration of the compiler.

A large body of compiler techniques for ILP exploitation on VLIW can be applied to
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the proposed architecture easily. The proposed architecture can also adapt itself to the

amount of ILP in an application. A subset of cores can be organized to collectively exploit

ILP in an application, and the rest of cores can be used to execute other tasks.

On the negative side, there are some costs associated with the proposed architecture.

The architecture needs extra operations to be inserted for every branch on every core,

which leads to increased code size. Furthermore, the dependence height of a block can be

increased if a branch is on the critical path due to the extra BCAST operation. Third,

a larger number of I-cache misses may occur since each cache is independently managed.

Last, the global stall signal bus and the branch condition bus may limit the scalability of

the processor. To address these challenges, the next few sections propose ways to reduce

the code size expansion and the impact of I-cache misses. In addition, issues regarding

procedure calls and compiler partitioning are discussed.

3.1.6 Sleep Mode

In the proposed architecture, multiple cores collectively execute a single program ex-

ploiting instruction level parallelism. Some applications may not have enough parallelism

to keep all of the cores busy, in which case some cores are idle for portions of the applica-

tion’s execution. Also, a heterogeneous multicore machine may have a core dedicated to

floating-point operations; when integer code is executed, the floating-point core is idle.

In the basic architectural model described previously, every core must keep its control

flow synchronized with other cores even if the core is not doing any useful work. If a

core branches to a block, other cores also need to branch to the same logical block at

the same time. To keep the idle cores synchronized with other cores, every empty block

must contain the EPBRs and EBRs, and at least one NOP at the beginning as a target

for other branches for synchronization. These operations in idle cores increase static code
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size and waste energy when they are executed.

A software-controlled mechanism is proposed to handle idle cores. The idea is to allow

the compiler to insert operations to explicitly place a core in sleep mode and wake a core

to resume execution. In sleep mode, the core does nothing, but values in the register files

are kept unchanged.

To support sleep mode, several new operations are introduced into the instruction set

architecture (ISA). In this architecture, switching between sleep mode and wake mode is

always done at a block boundary. Thus, the sleep operation is always executed in the same

cycle as a branch. There are three operations that can begin sleep mode: SLEEP TK,

SLEEP NT, and SLEEP AL. All of these operations have no operands, so their encoding

can be very compact. SLEEP TK (NT) sets the core it is executing on to sleep mode if

the branch executing in the same cycle is taken (not taken). SLEEP AL always sets the

core to sleep mode whether the branch is taken or not.

Sleep mode could be supported by adding a single SLEEP operation rather than three,

and giving the SLEEP operation a predicate operand. We choose to add three different

sleep operations instead of one to reduce the encoding size. SLEEP TK and SLEEP NT

get their predicate implicitly from the branch in the same cycle, so all three of these

operations can be encoded as two bits in the encoding of a branch operation. Since most

branch operations do not have a destination operand, two bits are available for sleep

modifiers, and overall code size is not affected.

Waking up a sleeping core is more complicated as it must be done by a core that is

active. The waking of a core is essentially an inter-core move. An active core moves an

instruction address to the PC register of the sleeping core, and tells the sleeping core to

start execution from that PC after a certain number of cycles so that all cores remain

synchronized. A WAKE operation is added to the ISA that has three source operands: a
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Figure 3.4: Sleep mode example: (a) Original control flow graph, (b) control flow graphs
for a 2-core architecture where core one is in sleep mode for blocks two through
five. Sleep mode is entered via the SLEEP TK operation in BB1 on Cluster 1
and exited via the WAKE operation in BB5 on Cluster 0.

core id indicating which core to wake up, a start PC where the sleeping core should begin

executing, and a delay, which is the number of cycles the sleeping core should wait before

it starts executing. This delay operand is used to give more scheduling flexibility when

multiple WAKEs must be executed and the inter-core bandwidth is limited. The WAKE

operation is also guarded by a predicate.

Figure 3.4 shows an example usage of sleep mode in the proposed architecture. Fig-

ure 3.4(a) is a portion of a control flow graph; edges labeled TK (NT) represent taken

(fall-through) paths. Figure 3.4(b) shows the same control flow graph on a 2-core ILP

machine. Assume the program does not have enough parallelism for the compiler to assign

any operations to core 1 in blocks BB2, BB3, BB4, and BB5. Without sleep mode, all of

these blocks must contain EPBR, EBR and NOPs to stay synchronized. With support

for sleep mode, a SLEEP TK operation is added in core 1 at the end of BB1, at the same

cycle as the EBR operation. If the EBR is taken, core 1 will enter sleep mode. To wake

up core 1, a WAKE operation is added in BB5 of core 0, one cycle before the branch. It

will make core 1 wake up and start execution at BB6 after a 1-cycle delay, if the branch
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is not taken (p2 is false).

3.1.7 Instruction Prefetching

In the proposed architecture, every I-cache miss requires all cores to stall. Thus, the

smaller distributed I-caches can cause more stalls due to multiplicative misses. Many of

these misses may be handled in parallel; however, differing code sizes in each core can

cause misses not to overlap perfectly. Moreover, it may not be possible to evenly partition

the code among cores, further increasing stall cycles when each core has a smaller I-cache.

To mitigate the penalty of I-cache misses, we employ the HPL-PD architecture mechanism

for software-controlled instruction prefetching to reduce stalls [32]. The idea is that PBR

and EPBR operations contain a prediction bit to initiate a prefetch of the target address

of the branch. An integer field is also added to PBR/EPBR operations to specify the

number of cache lines to prefetch. Note that prefetching is also useful on a traditional

VLIW; however, it is more important in proposed multicore machines due to the smaller

distributed I-caches.

3.1.8 Procedure Calls

There are several issues with procedure calls in the proposed architecture. First, as

stated in Section 3.1.6, sleep and wake operations are inserted at branches. If a branch is

a procedure call, the compiler may not know which cores are active in the callee function

particularly if procedures are compiled separately. Moreover, since a procedure may have

multiple callers, it is impossible to know which cores are active at the return point (call

site). The second issue is function pointer support. If a function is called through a

pointer, such as the virtual functions in object oriented languages, its address will be

determined at run time. In the proposed architecture, a function has multiple start
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addresses, one for the code in each core. Thus, each function pointer in this architecture

needs to be a vector of addresses instead of a single address. This solution requires non-

trivial compiler changes and could significantly increase the code size if function pointers

are heavily used. Finally, for functions in libraries and interrupt/exception handlers, a

single address is used to represent the entry point in traditional processors. If a vector of

addresses is used to represent a branch target in the proposed architecture, the compiler,

operating system, and user software would all need to change.

Our solution to all of these problems is to enforce a calling convention. We assume

that only the first core (core 0) is active in the first and last block of every function. If the

function needs to use more than one core, it will have explicit wake operations to activate

them. In this case, every function has only one start address, just as in a traditional

processor. Thus, function pointers and library calls can be handled smoothly. Note that

this calling convention can be relaxed for certain function calls if the source code for

both caller and callee are available, and the compiler is able to perform inter-procedural

analysis to determine the start addresses and sleep/wake states for the callee function.

An algorithm can be designed to intelligently choose between different ways to handle

function calls to achieve optimal performance and energy usage. Currently, we assume

separate compilation, so no inter-procedural optimizations are applied.

Function pointers are a special case of indirect jump where the target is another

function. Indirect jumps may also target basic blocks within the same function, such

as in table jumps generated for C switch statements. In this case, the compiler simply

replicates the branch target table for every core.
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3.1.9 Scaling Multicluster VLIW with DVLIW

The idea of DVLIW first came up in an effort to completely decentralize the data

path and control path of VLIW processors to improve the scalability of the VLIW proces-

sors. Many embedded systems perform computationally demanding processing of images,

sound, video, or packet streams. VLIW architectures are popular for such systems be-

cause they offer the potential for high-performance processing at a relatively low cost and

energy usage. In comparison to ASIC solutions, VLIWs are programmable, and therefore

can support multiple applications or software changes. Several examples of VLIW designs

include the TI C6x series, Lx/ST200, and Philips TM1300.

A major challenge with traditional VLIW processors is that they do not scale ef-

fectively or efficiently due to two major problems: centralized resources and wire delay.

Centralized resources, including the register file and instruction decode logic, become the

cost, energy, and delay bottlenecks in a VLIW design as they are scaled to support more

function units (FUs). As feature sizes decrease, wire delays are growing relative to gate

delays. This has a serious impact on processor designs as distributing control and data

each cycle takes more time and energy [2, 45, 77]. Wire delays are further exacerbated

when the processor width is scaled as the distance between FUs, register files and caches

increases, thereby forcing the signals to travel further.

To support efficient scaling of VLIW datapaths, multicluster designs have been pro-

posed. In a multicluster design, the centralized register file is broken down into several

smaller register files. Each of the smaller register files supplies operands to a subset of the

FUs, known as a cluster [13, 23]. A design can be efficiently scaled by adding more clusters

as the bottlenecks produced by the centralized register file are removed. The clustering

approach can be similarly applied to the data memory subsystem. Data caches can be par-

titioned and distributed to each cluster in the form of hardware-managed caches [24, 64]
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or software-managed buffers [25].

VLIW processors face a similar scaling problem with the control path where conven-

tional designs utilize a centralized instruction memory or cache to store instructions. A

centralized instruction fetch, decode, and distribution system issues control signals on

every clock cycle to all the FUs and storage elements in the datapath to direct their op-

eration. This centralized control system does not scale well due to complexity, latency,

and energy consumption. As processor issue width is scaled, the number of instruction

bits grows accordingly, increasing hardware cost for instruction fetch, decode, and distri-

bution. Variable-length instruction encodings can be used to reduce code size, but often

make the problem worse by increasing the complexity of the instruction alignment and

distribution networks [1]. The distance separating FUs and storage elements from the

instruction memory also grows as the design is scaled, thereby exposing the wire delay

problem in the same manner as in the datapath.

DVLIW is introduced to support scalable control path design. The architecture dis-

tribute the instruction fetch, decode, and distribution logic in the same manner that the

register file is distributed in a multicluster datapath. DVLIW has a multicluster datapath

consisting of an array of clusters. Each cluster contains an instruction memory or cache

combined with fetch, decode, and distribution units that provide control within a cluster.

All clusters have their own program counter (PC) and next PC generation hardware to

facilitate distributed instruction sequencing.

With DVLIW, multiple instruction streams are executed at the same time. These

streams collectively function as a single logical stream on a conventional VLIW proces-

sor. Although clusters fetch independently, they execute operations in the same logical

position each cycle and branch to the same logical location. Procedures, basic blocks,

and instruction words are vertically sliced and stored in different locations in the instruc-
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tion memory hierarchy. The logical organization is maintained by the compiler to ensure

proper execution. The resultant DVLIW architecture is a multicore VLIW processor that

multiple cores, through compiler orchestration, can collectively executes a single program

exploiting ILP.

The DVLIW architecture derives its roots from the Multiflow TRACE and XIMD

architectures [13, 78]. The Multiflow TRACE/500 VLIW architecture contains two repli-

cated sequencers, one for each 14-wide cluster. The two clusters can execute independently

(separate threads) or rejoin to execute a single program. The XIMD architecture general-

ized and formalized this concept. An XIMD processor has multiple control units. Several

control units can operate identically, emulating a VLIW processor, or can partition the

processor resources to support the concurrent execution of multiple instruction streams.

Partitioning can vary dynamically to allow for efficient execution of parallel loops [50].

Both the Multiflow TRACE/500 and XIMD can execute one or more programs con-

currently with distributed control. These machines use a combined software/hardware

strategy that emulates a VLIW using a common but replicated program counter for all

clusters. When no instruction compression is utilized, programs within each cluster take

an identical amount of space. This allows simple branch strategies that synchronize pro-

gram counters across clusters.

The net effect of replicating a centralized PC is that it inherently limits the use of any

form of compressed instructions, particularly variable length encodings. Each instruction

sequencer must behave identically, thus each cluster must have a constant instruction rate.

NOPs must be inserted to ensure the instruction words are fully expanded and of constant

size. Further, variable length encodings for different operation types (e.g., move versus

add, or the use of different literal sizes) cannot be used. One of the central contributions

of DVLIW is the combination of architectural and compiler support to distribute the PC
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while supporting flexible instruction compression technology in order to provide efficient

usage of the instruction memory.

The design space for the VLIW control path can be taxonomized on two independent

axes: binary encoding style and degree of centralization.

The first characteristic that differentiates VLIW instruction memory systems is the

binary encoding style. VLIW instructions can be encoded using either an uncompressed

or compressed representation. Although many hybrid compression strategies involving

NOPs and variable width operations are possible, only the two extremes of NOP com-

pression are considered here to simplify the discussion. An uncompressed encoding is one

that explicitly stores NOPs for a particular FU when it is idle in a cycle. Conversely,

compressed encodings avoid explicitly storing NOPs to reduce code size. NOPs in the

code can be compressed both horizontally and vertically. Horizontal compression reduces

NOPs within a VLIW instruction, while vertical compression removes entire cycles of

NOPs between instructions.

Several compressed encodings for VLIW processors have been proposed. The TINKER

encoding accomplishes horizontal compression by using Head and Tail bits within an

operation to delineate the beginning and end of an instruction [14]. Every operation also

contains a Pause field to indicate the number of empty instructions after this instruction,

thereby accomplishing vertical compression. The Cydra 5 [61], PICO VLIW [1], and the

Intel Itanium employ multiple instruction templates to accomplish horizontal compression.

Each template provides operation slots for a subset of the FUs; the compiler selects the

closest template to remove the majority of NOPs. In addition, many techniques not only

avoid explicit NOPs but also reduce the size of useful operations. For example, data

compression methods are used to compress code in embedded systems [34, 41, 79]. Larin

and Conte presented techniques for reducing VLIW code size by Huffman compression or
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tailored encoding of the instruction set [36].

The second characteristic that differentiates VLIW instruction memory systems is

whether a centralized or distributed instruction memory is utilized. A centralized instruc-

tion memory stores operations for all FUs. Conversely, with the distributed approach,

multiple instruction memories are created with each storing operations for a subset (clus-

ter) of the FUs.

The cross product of both characteristics defines four high-level VLIW instruction

memory configurations: centralized/uncompressed, centralized/compressed, distributed/uncompressed,

and distributed/compressed as shown in Figure 3.5. Centralized/uncompressed, Fig-

ure 3.5(a), provides the simplest organization in that the instruction word length and the

position of operations for each FU are fixed, thus the mapping from I-cache to instruction

register (IR) is trivial. However, for a wide issue processor, the I-cache utilization can be

extremely low. To remove the NOPs, centralized/compressed, Figure 3.5(b), increases the

complexity of the fetch unit as it needs to partially decode the instruction to determine
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the boundary of the instruction word and correctly expand the compressed instruction

into the IR.

The scalability problem of centralized I-caches can be overcome by utilizing distributed

caches. With a distributed approach in a multicluster processor, each cluster has its own

I-cache to supply instructions. Assuming each cluster is homogeneous, all operations are

the same size, and no compression, all clusters execute the same cache entry each cycle.

Thus, the distributed/uncompressed (Figure 3.5(c)) can utilize a common PC to index

into each I-cache. The use of a common PC relies on each cluster having a constant

instruction rate during the execution. Most previous research on distributed instruction

memories falls into this category as they rely on a single PC or multiple identical PCs to

index the memories when a single program is executed. Since XIMD has no I-cache, a more

sophisticated compiler may be able to remove this restriction [78]. Another approach, the

Silo cache [14], partitions the instruction cache into silos, where each silo holds operations

for a particular set of FUs. All silos are indexed by a single PC. Although instructions

must be uncompressed, multiple instructions can coexist at the same address across silos.

The proposed DVLIW architecture falls into the Distributed/compressed category as

illustrated in Figure 3.5(d). To support compressed encodings with a distributed I-cache,

the PC must also be distributed as instruction sizes for each cluster must be allowed to

vary. All the clusters fetch independently from different PCs and compute their own next

PCs. The DVLIW architecture and its operation are discussed in detail in the following

sections.
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3.2 Voltron: Multicore Extension to Exploit Hybrid

Parallelism

Parallelization opportunities can also be created by slicing program regions into mul-

tiple communicating sequential subgraphs or fine-grain threads. Fine-grain TLP allows

concurrent execution of instructions as well as the overlapping of memory latencies. Com-

pared to traditional coarse-grain threads, Fine-grain threads contain frequent register

communications among them. The execution of fine-grain threads are asynchronous, each

thread can slip with respect to each other. Concurrent execution of fine-grain threads

provides the benefit of coarse-grain out-of-order execution on in-order cores.

To effectively deal with mapping general-purpose applications onto multicore systems,

new architectural support is needed that is capable of efficiently exploiting fine granular-

ities of parallelism. These hybrid forms of parallelism include ILP, memory parallelism,

and fine-grain TLP. To accomplish this goal, this section proposes a multicore architec-

ture, referred to as Voltron. Voltron extends conventional multicore systems by providing

architectural support to configure the organization of the resources to best exploit the

hybrid forms of parallelism that are present in an application. There are two primary

operation modes: coupled and decoupled. The coupled mode supports the functionality

of DVLIW discussed previously. In coupled mode, each core operates in lock-step with all

other cores forming a wide-issue VLIW processor. Through compiler orchestrated con-

trol flow, coupled mode exploits ILP across multiple instruction streams that collectively

function as a single-threaded stream executed by a VLIW processor. Although cores

fetch independently, they execute instructions in the same logical location each cycle,

and branch to the same logical target. In decoupled mode, all cores operate indepen-

dently on separate fine-grain threads. The compiler slices an application into multiple,
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communicating subgraphs that are initiated using a lightweight thread spawn mechanism

that operates in the same program context. Decoupled mode offers the opportunity to

efficiently exploit TLP and memory parallelism using fine-grain, communicating threads.

There are several key architectural features of Voltron that enable efficient execution

and flexible configurability. First, a lightweight operand network provides fast inter-

processor communication in both execution modes. The operand network provides a

direct path for cores to communicate register values without using the memory. Second,

a compiler-orchestrated distributed branch architecture enables multiple cores to exe-

cute multi-basic block code regions in a completely decentralized manner. This enables

single-threaded, branch-intensive applications to be executed without excessive thread

spawning and synchronization barriers. Finally, flexible memory synchronization sup-

port is provided for efficient handling of explicit memory communication and ambiguous

memory dependences.

3.2.1 Voltron Architecture Overview

Figure 3.6(a) shows an overall diagram of a four-core Voltron system. The four cores

are organized in a two-dimensional mesh. Each core is a single-cluster VLIW processor

with extensions to communicate with neighboring cores. Cores have private L1 instruction

and coherent data caches, and all four cores share a banked L2 cache and main memory.

The cores access a unified memory space; the coherence of caches is handled by a bus-based

snooping protocol. The Voltron architecture does not limit the way in which coherence

between cores is maintained; any hardware or software coherence protocol will suffice. A

scalar operand network connects the cores in a grid. The network includes two sets of

wires between each pair of adjacent cores to allow simultaneous communication in both

directions. The topology of the cores and the latency of the network is exposed to the
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compiler, which partitions the work of a single-threaded program across multiple cores

and orchestrates the execution and communication of the cores. A 1-bit bus connecting all

4 cores propagates stall signals in the coupled execution mode (discussed in section 3.2.3).

Figure 3.6(b) shows the datapath architecture of each core, which is very similar to

that of a conventional VLIW processor. Each core has a complete pipeline, including

an L1 instruction and data cache, an instruction fetch and decode unit, register files,

and function units (FUs). The execution order of instructions within a core is statically

scheduled by the compiler. A Voltron core differs from a conventional VLIW processor

in that, in addition to other normal functional units such as an integer ALU, a floating-

point ALU, and memory units, each core has a communication unit (CU). The CU can

communicate with other cores in the processor through the operand network by executing

special communication instructions.
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3.2.2 Dual-mode Scalar Operand Network

The dual-mode scalar operand network supports two ways to pass register values

between cores to efficiently exploit different types of parallelism. Although both ILP

and fine-grain TLP execution need low latency communication between cores, they have

different requirements for the network. ILP execution performance is very sensitive to the

communication latency, thus it is important to make the latency as low as possible for ILP

execution. On the other hand, the execution of multiple fine-grain threads are decoupled,

thus fine-grain threads are less sensitive to the latency. However, fine-grain threads require

asynchronous communication between cores; therefore, queue structures must be used to

buffer values. The Voltron scalar operand network supports two modes to meet the

requirement of ILP and fine-grain TLP execution: a direct mode with very low latency

(1 cycle per hop) but requires both parties of the communication to be synchronized, and

a queue mode with higher latency (2 cycles + 1 cycle per hop) but allows asynchronous

communication.

The scalar operand network in a Voltron processor consists of the communication

components in every core and the links between cores. Figure 3.6(c) shows the detail of

the CU in a Voltron core. A core performs communication with another core through the

scalar operand network by issuing special instructions to the communication unit. The

operation of the CU depends on the communication mode.

Direct mode. The direct mode communication supports the ILP execution across

multiple cores. It allows two adjacent cores to communicate a register value in one cycle.

The same PUT/GET instructions introduced in section 3.1.2 are used for direct mode

communication.

The direct mode bypass wires in Figure 3.6(c) allow the communication unit to ac-

cess the inter-core connections directly. Thus, the communication latency between two
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adjacent cores under direct mode is very low, only requiring one cycle to communicate

a register value between neighboring cores. This mode of communication requires the

cores to execute in lock-step to guarantee PUT/GET operations are simultaneously exe-

cuted. If a core needs to communicate with a non-adjacent core, a sequence of PUT and

GET pairs are inserted by the compiler to move the data to the final destination through

multiple hops.

Queue mode. Queue mode allows decoupled communication between cores. Under

this mode, the core that produces a register value does not need to remain synchronized

with the core that consumes the value. The send queue, receive queue, and the router in

Figure 3.6(c) are used to support this mode of communication. Two operations are added

to the ISA to support queue mode communication: SEND and RECV. A SEND operation

takes two operands, a source register number and a target core identifier. When a SEND

operation is executed, it reads the value in the source register and writes a message to

the send queue in that core. The message contains the value from the sender core as

well as the target core identifier. A RECV operation analogously takes two operands,

a destination register number and a sender core identifier. When a RECV operation is

executed, it looks for the message from the specified sender in the receive queue, and

writes the data to the destination register if such a message is found. It stalls the core

if such a message is not found. The receive queue uses a CAM structure to support fast

sender identifier lookup.

The router gets items from the send queue and routes them to the target core through

one or more hops. In queue mode, SEND and RECV operations do not need to be issued

in the same cycle. Data will wait in the receive queue until the RECV is executed, and the

receiver core will stall when a RECV is executed and the data is not available. Only one

pair of SEND/RECV operations is required to communicate between any pair of cores;
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Figure 3.7: Execution of a distributed branch: (a) Original unbundled branch in HPL-
PD, (b) Branch with predicate broadcast, and (c) Branch with the condition
computation replicated.

the router will find a path from the sender to the receiver. The latency of communication

between cores in the queued mode is 2 + number of hops: it takes one cycle to write the

value to the send queue, one cycle per hop to move the data, and one cycle to read data

from the receive queue. The operand network operating in queue mode is similar to the

RAW scalar operand network [72].

The two modes of communication provide a latency/flexibility trade-off. The compiler

can examine the characteristics of an application to utilize direct mode when communi-

cation latency is critical and queue mode when non-deterministic latencies caused by

frequent cache misses dominate.

3.2.3 Voltron Execution Modes

Voltron supports two execution modes that are customized for the form of parallelism

that is being exploited: coupled and decoupled. Coupled efficiently exploits ILP using

the direct mode operand network, while decoupled exploits LLP and fine-grain TLP using

the queue mode operand network.

Coupled mode. In coupled mode, all cores execute in lock-step, collectively behaving

like a wide-issue multicluster VLIW machine. The cores pass register values to each

other using the direct communication mode. The compiler is responsible for partitioning

computation, scheduling the instructions, and orchestrating the communication between

cores. In this mode, each core maintains its own control flow, but collectively emulate
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a multicluster VLIW [81]. The branch mechanism in Voltron is based on the unbundled

branch in the HPL-PD ISA [32]. In HPL-PD, the portions of each branch are specified

separately: a prepare-to-branch (PBR) operation specifies the branch target address, a

comparison (CMP) operation computes the branch condition, and a branch (BR) transfers

the control flow of the program based on the target address and the branch condition, as

illustrated in Figure 3.7(a).

Figure 3.7(b) illustrates the branch mechanism in Voltron coupled mode. To synchro-

nize the control flow in all cores, each core specifies its own branch target using separate

PBR operations. The branch target represents the same logical basic block, but different

physical block as the instructions for each core are located in different memory spaces.

The branch condition is computed in one core and broadcast to all the other cores using

a BCAST operation. Other cores receive the branch condition using a GET operation to

determine if the branch is taken or fall through. (Note, the branch condition can alterna-

tively be replicated on all cores as shown in Figure 3.7(c)). BR operations are replicated

across all cores and scheduled to execute in the same cycle. When the BR operations are

executed, every core branches to its own branch target (same logical target) keeping all

cores synchronized. In essence, separate instruction streams are executed on each core,

but these streams collectively function as a single logical stream on a conventional VLIW

processor.

If one core stalls due to cache misses, all the cores must stall to keep synchronized. The

1-bit stall bus is used to propagate this stall signal to all 4 cores. For a multicore system

with more than 4 cores, propagating the stall signal to all cores within one cycle may

not be realistic. We solve this problem using the observation that coupling more than 4

cores is rare as it only makes sense when there are extremely high levels of ILP. Therefore,

cores are broken down into groups of 4 and coupled mode execution is restricted to each

44



A

B C

D

E

F

G

I

(a) (b) (d)(c)

time timecore0 core1

B.1B.0

D.0

A.0 A.0A.1
STALL

E.0

D.1

F.0

STALL

F.1

A.0 A.1

C.1

D.0

C.0

D.1

E.1

G.1G.0

I.0 I.0

F.0 F.1

I.0 I.0

br. cond.

br. cond.

br. cond.

br. cond.

br. cond.

br. cond.

br. cond.

br. cond.

core1

A.0
A.0A.1

STALL

core0

B

D.0

D.1
STALL

A.0

A.1

C

D.1

D.0 D.1

E

F.0
F.1

spawn

bcast

br

recv
ebr

jump

br

br’

if (condition) sleep
br

recv
ebr

bcast

br

jump

G

I.1

I.0

F.0

I.0
F.1

I.1

jump

bcast
br recv

ebr

recv

ebr

bcast
br

br

br’

jump

br

br’

spawn

br. cond.

br. cond.

br. 
cond.

br. 
cond.

core0 core1

A.0

B

D.0

E

F.0

I.0

A.1

C

D.1

F.1

G

I.1

Figure 3.8: Code execution under different modes. (a) Control flow graph of a code
segment. (b) Execution of the code segment under coupled mode. (c) Control
flow graph of fine-grain threads extracted for decoupled mode. (d) Execution
of the code segment under decoupled mode.

group. Of course, decoupled mode can happen within the groups or across groups when

exploiting LLP and fine-grain TLP.

To illustrate coupled mode execution, Figure 3.8(a) shows the control flow graph

(CFG) of an abstract code segment. Each node in the graph represents a basic block in

the single-thread program. Figure 3.8(b) illustrates the code segment executing in coupled

mode on a two-core system. The compiler partitions each block into two blocks, one for

each core, using a multicluster partitioning algorithm [21]. For example, the operations

in block A are divided into A.0 and A.1 to execute on core0 and core1, respectively. The

schedule lengths of any given block are the same across all the cores; if they differ, the

compiler inserts NO OPs to ensure they match. All cores execute in lock-step and com-

municate through PUT and GET operations (not shown in the figure). When core0 stalls

due to a cache miss in A.0, both cores have to stall to keep the execution synchronized.

Similarly, when core1 stalls in D.1, both cores stall. Every branch in the original code is
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replicated to all cores. For conditional branches, such as the branch at the end of block

A, the branch condition is computed in one core and broadcast to the others.

The most important benefit of coupled mode is the low communication latency of

using the operand network in direct mode. Coupled mode can handle frequent inter-core

communication without increasing the schedule length by a large amount. The drawback

is its lockstep execution. If one core stalls, all cores stall. The stalling core prevents

other cores from making any progress even if parallelism exists. Coupled execution mode

is ideal for code with high ILP, predictable cache misses, and complicated data/memory

dependences, which require a large amount of inter-core communication and can benefit

from the low communication latency.

Decoupled Mode. The second mode of execution is decoupled where each core

independently executes its own thread. As with a conventional multicore system, stalls

on one core do not affect other cores. However, fast communication of register values

through the scalar operand network allows Voltron to exploit a much finer grain of TLP

than conventional multicore systems, which communicate through memory. The compiler

automatically extracts fine-grain threads from a single-thread program using mechanisms

described in Chapter 4. Multiple threads execute independently on multiple cores and

communicate through the scalar operand network. The network operates in queue mode

for decoupled execution.

A core initiates the execution of a fine-grain thread on another core by executing a

SPAWN operation, which sends the starting instruction address of the fine-grain thread to

be executed to the target core. The target core listens to the receive queue when it is idle.

Upon the arrival of the instruction address, it moves the value to its program counter (PC)

and starts executing from that address. All fine-grain threads share the same memory

space and stack frame, thus there is no setup for a separate context required. The live-in
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values for the fine-grain thread are received through the operand network during execution

or are loaded from memory. When the execution of a fine-grain thread finishes, it executes

a SLEEP operation, and the core listens to the queue for the starting address of the next

fine-grain thread. The register values in a core remain unchanged after a fine-grain thread

terminates. The next fine-grain thread to execute on that core can use the values in the

register file as live-in values.

Multiple fine-grain threads can collectively and efficiently execute the same multi-block

region of the original single-thread program. In this case, the branch operations in the

original code are replicated in all the fine-grain threads. The branch condition for each

branch can be computed in one thread and broadcast to others, similar to the coupled

mode. The differences here are that the branch conditions are broadcast using queue

mode, and that the branches do not need to be scheduled in the same cycle anymore. In

decoupled mode, the computation of the branch conditions can also be replicated to other

cores to save communication and reduce receive stalls. The compiler uses a heuristic to

decide if the branch condition should be broadcast or computed locally for each branch.

The right hand side of Figure 3.8 illustrates the differences in partitioning and exe-

cution in decoupled mode. In decoupled mode, the compiler divides the application into

fine-grain threads. Figure 3.8(c) depicts the threads extracted from the CFG shown in

Figure 3.8(a). The first inner loop, which includes blocks A, B, C, and D, is partitioned

between the cores. Block A is divided into two parts, A.0 and A.1 (similar to coupled

mode), while all operations in block B are assigned to core0 and all operations in block

C to core1. Block D is split analogously to block A.

Figure 3.8(d) shows the execution of these fine-grain threads in decoupled mode. Be-

fore core0 enters the first inner loop, a SPAWN operation is executed, which sends the

start address of A.1 to core1. The execution of blocks A.0 and A.1 are independent;
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stalls that occur during A.0 do not affect A.1. The cores communicate register values

using SEND and RECV operations (not shown in the figure). A.1 computes the branch

condition for the block and broadcasts it to core0 using the scalar operand network in

queue mode. After receiving the branch condition from core1, core0 branches to block

B. Since the compiler assigned all operations in block B to core0, core1 directly jumps

to block D. The branch as well as the branch condition computation is replicated across

both cores in block D, thus broadcast and receive are not needed for this block. After

two iterations, the execution exits the first inner loop, and the fine-grain thread in core1

finishes, executing a SLEEP operation. Block E in core0 will spawn another thread for

the second inner loop to execute on core1. In this example, core0 behaves as the master,

spawning jobs to core 1. This is the general strategy used by our compiler.

The most important benefit of decoupled mode is its tolerance to unexpected stalls,

such as cache misses. Each core operates in its own stall domain and thus stalls inde-

pendently. Memory parallelism can be exploited by overlapping cache misses on multiple

cores or allowing other cores to make progress on their own thread as long as dependences

are not violated. The fine-grain threads in Voltron provides a form of macro out-of-

order execution across the cores, without the hardware and complexity of a wide-issue

superscalar processor.

Hybrid execution modes are also possible in Voltron where the cores can be partitioned

into several synchronization domains. Within each domain, the cores can execute either

in coupled mode or in decoupled mode, allowing some domains to exploit ILP while

others exploit TLP. This feature provides greater adaptability to the available application

parallelism.

Switching Between Modes. Voltron supports fast mode switching by adding a new

instruction MODE SWITCH. MODE SWITCH takes one literal operand specifying the
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new mode. When switching from coupled mode to decoupled mode, the compiler inserts

MODE SWITCH instructions in all cores and makes sure they are issued in the same

cycle (similar to the distributed branch discussed previously). To switch from decoupled

to coupled mode, the compiler inserts MODE SWITCH instructions before the coupled

code region in all cores. The MODE SWITCH behaves as a barrier, so all cores wait until

the last core reaches the switch to start synchronized execution. Note that the values in

the register files are unchanged during the mode switch. This behavior facilitates running

a single application in different modes and transparently switching between modes for

different program regions.

3.2.4 Memory Dependence Synchronization

Up to this point in the discussion, communication of register values between cores has

only been discussed. In coupled mode, the cores execute in lockstep, thus the compiler

scheduler must simply schedule the consumer of a register value after the producer by

the appropriate number of cycles. PUT and GET instructions accomplish the actual

transfer of data across the cores. In decoupled mode, the compiler inserts SEND and

RECV operations after and before the communicating operations. If the value does not

arrive when the RECV operation is executed, the receiving core stalls until the data

arrives. Thus, the needed synchronization is handled naturally by the SEND and RECV

operations.

The cores can also communicate values through memory. Stores and loads that can-

not be disambiguated by the compiler must execute in program order to ensure correct

execution. In coupled mode execution, this simply requires the compiler to enforce both

intra-core and inter-core memory dependences when the schedule is created. As long as

dependent memory are executed in subsequent cycles, the hardware will ensure the correct
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data is obtained using the coherence mechanism.

In decoupled mode, the memory dependence problem is more difficult. We take

the simple approach of just using the operand network to enforce the dependence. A

SEND/RECV pair are used to send a dummy register value from the source of the de-

pendence to the sink. Memory synchronization using SEND/RECV has two drawbacks.

First, the SEND/RECV pair occupies the CUs and bandwidth without passing any use-

ful value, which could delay other useful communication and consumes energy. Second,

the SEND/RECV goes through message queues and routing logic, incurring a minimum

latency of three cycles. Through our experimental evaluation, these drawbacks are not

that serious. The compiler can perform sophisticated analysis to remove as many false

dependences as possible [53]. Further, to reduce synchronization stalls, its important for

the compiler to place dependent memory operations on the same core. Thus, in practice,

the number of inter-core memory dependences is not large.

3.3 Multicore Extension for Speculative LLP

This work proposes mechanisms to exploit statistical loop level parallelism with min-

imal hardware cost. The spirit is to expose several generic architecture features to the

compiler and let compiler to handle speculative execution whenever possible. Hardware

is only used when the software alternative is too costly, for example, to detect dynamic

memory dependence conflicts. A number of works [27, 67, 68] have proposed executing

speculative threads in environments where much of the burden is given to hardware and

requires complex hardware to fully support thread level speculation. By employing a hard-

ware/software approach, our technique has a lower hardware cost than other hardware

centric TLS techniques while still achieve comparable performance gains.
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3.3.1 Requirements

Efficient exploitation of statistical loop-level parallelism requires extensions to tra-

ditional chip-multiprocessors to facilitate speculative parallel execution. The required

features can be supported using software or hardware mechanisms. However, software

implementations of these features usually have a large performance impact. In order to

make the parallelization of small and medium size loops profitable, architectural support

for the following features is desired.

Detection of cross-core memory dependences. If two memory operations (load

or store) access the same memory location, and at least one of them is a store, a memory

dependence exists between those two operations. Loops are parallelized if the profile

indicates that no cross-iteration memory dependences exists or they are very rare. At run

time, accesses to the same memory location from different cores must be detected, and a

recovery action must be initiated if a memory dependence is violated.

Undo/rollback. If a memory dependence violation is detected, the executions on

cores that execute higher iterations need to abort and restart. The architectural state

on the aborted core, including registers and memory content, must be rolled back to the

state before the speculative execution started. Our compiler technique provides a simple

way to roll back the necessary registers, so hardware support is not necessary to restore

register values.

Light-weight thread spawning. To exploit statistical loop level parallelism, multi-

ple threads, each thread consists one or more iterations of the loop, executes speculatively

in parallel in multiple cores. Low latency mechanism to spawn threads are essential for

the performance of statistical DOALL loops, especially for those with small loop bodies

and low trip counts.
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Figure 3.9: Block diagram of the target architecture: (a) 4-core system connected in a
mesh topology, (b) Datapath for a single core

Inter-core scalar communication. Before the parallel execution of a loop, several

scalar register values are passed to all cores to initiate the live-in values. Similarly, after

the parallel execution, live-out scalar values of the loop are passed from all cores to the

users of the live-out scalars. A low latency mechanism to pass scalar values between cores,

either through memory or a scalar operand network [72], is essential.

Instruction ordering between cores. During the speculative execution of loops,

certain actions must happen in order. More specifically, cores must commit their execution

in order. After commit, the changes made by a core cannot be undone, so the core

executing earlier iterations of the loop must be committed before cores executing later

iterations. This ordering is required for every loop, so efficient ways to enforce ordering

among cores are needed.
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3.3.2 Target Architecture

Extensions to the Voltron architecture is provided to support statistical loop par-

allelism. A specialized hardware transactional memory [28, 29, 60] is added to detect

memory dependence violations and rollback execution. Figure 3.9(a) shows the overall

structure of this architecture. It is very similar to that of the Voltron architecture de-

scribed in the previous section. Each core has private L1 instruction and coherent data

caches. All four cores share a banked L2 cache and main memory. The cores access a uni-

fied memory space; the coherence of caches is handled by a bus-based snooping protocol.

A scalar operand network connects the cores in a 2-D mesh.

Figure 3.9(b) shows the datapath architecture of each core. The inter-core memory de-

pendence detection and roll back are supported by a transactional memory in its simplest

form [29]. A transaction is a segment of code running on one core, marked by program-

mer or the compiler, that appears to execute atomically when observed by other cores.

Transactional memory supports parallel execution of transactions in multiple cores. The

transactional memory monitors addresses accessed by each core, and aborts and restarts

one or more transactions if the transactional semantics are violated. Transactional mem-

ory is a good fit for statistical DOALL execution because the iterations assigned to each

core can be viewed as a transaction: as long as the transactions are committed in the

correct order, the loop appears to execute sequentially.

Many previous work on thread level speculatiion(TLS) [6, 27, 31, 55, 67, 68, 74, 84] also

proposes architectural mechanisms to detect memory conflict in different threads and

roll back the memory state if necessary. The major difference between TLS hardware

and transactional memory is that TLS hardware supports ordering of threads and allow

value forwarding between different cores. TLS hardware maintains a total ordering of

speculative threads, if a thread with higher ID read a memory address written by a thread
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with lower ID, the hardware forwards the value to the higher thread. Data forwarding can

avoid some unnecessary aborts and potentially improve the performance. The drawback

of TLS hardware is that it is usually very complex and costly in terms of hardware area.

On the other hand, transactions in transactional memory are usually unordered. User

has to enforce the ordering of commit in software if necessary. Since there is no notion of

ordering between thread, the hardware do not forward data between transactions. The

hardware for transactional memory can be fairly simple. Transactional memory can also

be implemented in software, obviously with some performance overhead.

Since this work targets loop with no or very few cross iteration dependence. The need

for data forwarding between cores should be minimal. We choose transactional memory

for its lower hardware cost. Ordering of threads is still required. We can simply assign

an ID for every transaction, and relies on software to enforced the commit order.

Many transactional memory designs have been proposed in the literature [5, 28, 29,

47, 49, 80]. A taxonomy introduced in [49] classifies transactional memory systems based

on their version management and conflict detection mechanisms.

Version management handles the simultaneous storage of both new data (to be visible

if the transaction commits) and old data (retained if the transaction aborts). An eager

version management allows a store to put the new data in place (the target memory ad-

dress), and save the old data on the side (e.g., in a log). An lazy version management

keeps in old data in place and store the new data on the side. An eager version manage-

ment allows fast commit, because all the new data are already in place, but transaction

abort can be costly because it involves restore the old data from another place. On the

other hand, the transaction commit is slow using lazy version management but aborts can

be fast. Since we target statistical DOALL loops with very few cross iteration memory

dependences, we expect most transactions to commit without abort. An eager version
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management is a better choice for our system.

Conflict detection detects memory conflicts between transactions. If a memory ad-

dress is written in one transaction, and the same address is read or written in another

transaction, there is a memory conflict. Conflict detection can be eager or lazy. Eager

detection detects conflicting memory access immediately, and lazy detection detects the

conflicts later, usually when a transaction tries to commit. Eager detection can identify

a conflict earlier, prevent unnecessary computation that will be aborted later, and restart

the transaction earlier. Eager detection can utilize existing coherence hardware to detect

conflicts immediately, thus the hardware overhead is modest. This work assumes a eager

conflict detection policy for the transaction memory.

Our implementation of transactional memory is similar to LogTM-SE [80]. It supports

eager version management and eager conflict detection. We extend the transactional

memory in three major aspects to facilitate speculative DOALL loop execution.

First, a transaction ID is added for each transaction. For speculative DOALL loops,

we always want to abort the transaction running higher iterations when a memory conflict

is detected, We extend the transactional memory hardware with a transaction ID for the

ordering of transactions. When a conflict is detected, the transaction with higher ID will

be aborted. The transaction ID is specified by software when a transaction begins.

Second, a new ABORT instruction is inserted in the ISA. Unlike other other trans-

actional memory implementations, where transaction abort happens implicitly when a

conflict is detected, the ABORT instruction allows a core to explicitly abort transactions

on other cores. It takes an core ID as source operand and abort any pending transactions

on that core. This is needed for uncounted loops because in while loops, if one iteration

exits the loop, it needs to stop the execution on all higher cores.

Third, an abort handler is added for each transaction. An abort handler contains an
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Requirement Hardware Support Compiler Support

Detection of
Memory Conflict

Transactional memory. N/A

Rollback For memory: transactional mem-
ory.

For memory: N/A

For register: jump to abort handler. For register: implement the abort
handler to roll back registers.

Fast Spawning Scalar operand network. Insert code to send PC and live-in
scalar values.

Scalar Commu-
nication

Scalar operand network. Insert SEND/RECV to communi-
cate scalar values.

Instruction
Ordering

Scalar operand network. Insert dummy SEND/RECV to
guarantee instruction ordering.

Table 3.1: Hardware and software support to meet requirement for statistical loop level
parallelism.

code address that a transaction jumps to when an abort happens. The abort handler

allows the compiler to insert recovery code when transaction aborts. It enables several

code transformations to expose more speculative LLP. The software specifies the abort

handler when the transaction begins.

Two new instructions, XBEGIN and XCOMMIT, are used to mark the beginning

and end of a transaction, XBEGIN takes two operands, an transaction ID, and a abort

handler. XCOMMIT tries to commit a transaction. If the commit is successful, all

speculative stores in the transaction will become permanent; if the commit fails, it will

restart the transaction from the abort handler.

The roll back of register files is managed by compiler; this will be discussed later, in

Chapter 5.

The proposed architecture, together with appropriate compiler support, meets all five

requirements listed in section 3.3.1. Table 3.1 shows how the burden of meeting those re-

quirements are divided between hardware and compiler. A low-cost transactional memory
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is used to detect memory dependence violation and rollback memory state when neces-

sary. For register states, the hardware transfer the control to the address specified by

abort handler when memory dependence violation is detected, the compiler is respon-

sible for implementing the abort handler and recover the necessary register states for

re-execution. The scalar operand network in the hardware is used to support fast thread

spawning, low latency inter-core scalar communication, and enforce interior instruction

ordering. The compiler need to insert code to send PC and live-in scalar values to spawn

a thread, insert SEND/RECV instruction to communication scalar values between cores,

and insert SEND/RECV that communicate dummy values to enforce ordering of instruc-

tions in different cores.

The architecture described above supports efficient exploitation of ILP, fine-grain TLP

and statistical LLP. The compiler is in charge of selecting the best parallelism to exploit

and generate appropriate code for each core. The compiler algorithms are described in

the next chapter.

3.4 Related Work

A large body of prior work exists in the area of exploiting distributed parallelism.

This section discuss the relation of the proposed ILP, fine-grain TLP and statistical LLP

architecture with previous works:

Distributed VLIW Architecture Models. The proposed architecture exploit ILP

by emulating a multicluster VLIW. It is built directly upon prior multicluster VLIW

processor designs, including Multiflow TRACE [13], XIMD [78], and MultiVLIW [64].

The clustered register file was first introduced in the Multiflow processor to facilitate

wide-issue design. MultiVLIW has expanded this work by focusing on alternative archi-
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tecture/compiler strategies for designing scalable distributed data memory subsystems.

Interleaved data caches [24] or compiler-managed L0 buffers [25] independently supply

memory data to each cluster. The proposed architecture extends these works in an or-

thogonal direction by focusing on fully distributing the control path and applying the idea

the a multicore context.

Recently, reconfigurate multiple cores to form a larger CPU to exploit ILP has drawn

much attention. TRIPS [65] exploits distributed ILP by statically placing instructions

on different execution nodes, and the execution model if similar to that in dataflow ma-

chines. When an instruction completes, it routes the output to other execution nodes, and

dependent instructions are triggered. Core fusion [30] introduced a reconfigurable CMP

architecture that allows simple out-of-order CMP cores to dynamically fuse into larger

out-of-order processor. Mechanisms for collective fetch, rename, execution, cache access

and commit are studied. Core fusion steers the instructions to different cores at runtime,

thus it doesn’t need compilers to partition the code, which provides better software com-

patibility. On the other hand, DVLIW pre-partition the code onto different cores, thus no

complex dynamic steering logic is needed. DVLIW is also more power efficient because

no energy is spent on steering instruction at runtime.

Architectural Support for Fine-grain TLP Several architectures have been pro-

posed to exploit fine-grain parallelism on distributed, multicore systems. RAW [71] is the

most similar to this work and is a general-purpose architecture that supports instruction,

data and thread-level parallelism. In RAW, a set of single-issue cores are organized in a

two dimensional grid of identical tiles. Scalar operand networks are used to route inter-

mediate register values between tiles [72]. Both the execution on tiles and the routing

on the network are software controlled by the compiler. A dynamic routing network also

exists to route memory values. The central difference between Voltron and RAW is the
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dual execution mode capability and its associated effects on the architecture. The two

execution modes allow Voltron to exploit fine-grain TLP like RAW as well as VLIW-style

ILP.

The M-Machine [22] is a multiprocessor system that focuses on exploiting fine-grain

parallelism. One unique feature of the M-Machine is the direct inter-processor communi-

cation channels. Processors communicate intermediate results by directly writing values

into the register files of other processors. The M-Machine can exploit both ILP and

TLP using these mechanisms. Voltron assumes a more traditional organization of the

individual cores and layers on top of that the dual-mode operand network. Further, the

lack of communication queues in the M-Machine limits the amount of decoupling between

threads. The M-Machine also requires explicit synchronization between processors to ex-

ploit ILP, while coupled mode in Voltron allows implicit synchronization for lower-latency

communication. The J-Machine [51] is a multicomputer that supports fast message pass-

ing and synchronization between nodes. It showed that fine-grain parallel computing is

feasible on multiprocessors and serves as strong motivation for this work.

Distributed processing has also been investigated in the context of superscalar proces-

sors, including Multiscalar [67], Instruction Level Distributed Processing (ILDP) [33], and

TRIPS [65]. In the Multiscalar processor, a single program is divided into a collection of

tasks by a combination of software and hardware. The tasks are distributed to multiple

parallel processing units at run time and execute speculatively. Recovery mechanisms are

provided if the speculation is wrong. The ILDP architecture contains a unified instruction

fetch and decode; the front-end distributes strands of dependent operations to multiple

distributed PEs. An interconnection network connects the PEs and routes register values.

TRIPS supports explicit data graph execution, which is similar to dataflow execution, to

exploit ILP from single thread programs. The execution units on TRIPS are hyperblocks.
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At runtime, the cores fetch blocks from memory, execute them and commit the results to

architectural state. Decoupled execution in Voltron is different from these architectures

in that program execution is fully orchestrated by the compiler. The compiler partitions

the code, assigns code to cores, schedules the execution within each core and inserts com-

munication between cores. The compiler orchestrated execution allows the hardware to

be simple and efficient.

Architectural Support for Thread Level Speculation. Previous work on Thread-

Level Speculation (TLS) [55] and Thread-Level Data Speculation (TLDS) [68, 69] proposes

the execution of threads with architectural support. Those works propose programmer

identification of regions of code that can form transactions, and also discuss specula-

tion on loops. Oplinger et. al [55] in particular identify different styles of loops. This

work extends those ideas with compiler techniques for loop identification, selection, and

automatic code generation.

Multiscalar architectures [67] also support thread-level speculation, and prior work [76]

has studied graph partitioning algorithms to extract multiple threads; however, this does

not eliminate unnecessary dependences in the same way this work does.

One unique feature of the Voltron architecture is that it supports all three types

of parallelism, ILP, fine-grain TLP and statistical LLP in a single architecture. The

architecture can be dynamically reconfigured to exploit the best ILP in the code.
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CHAPTER 4

Compiler Techniques for Extracting Fine-grain

Parallelism

The execution of programs on the Voltron architecture is orchestrated by the com-

piler. Good compiler techniques are essential to application performance. This work took

advantage of advanced analysis, optimization, and transformation techniques and aug-

mented them with novel algorithms to exploit different types of parallelism. This chapter

discusses the compiler technique to exploit fine-grain parallelisms include ILP and fine-

grain TLP. Compiler techniques to exploit speculative LLP will be discussed in the next

Chapter.

4.1 Compiling for ILP execution

To exploit ILP on the Voltron architecture proposed in Chapter 3, the compiler must

partition the instructions across the cores, replicate the control flow to all cores, and

insert communication instructions to transfer values besides the conventional compiler

tasks such as scheduling and register allocation. Figure 4.1 shows the compile flow to

exploit ILP on Voltron. Each step in the compiler are explained below.
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Figure 4.1: Compiler flow for ILP extraction

Prepass partition. To exploit ILP, the compiler uses algorithms to partition instruc-

tions to different cores. The goal of the partitioning algorithm is to reduce the overall

execution time by distributing the work to multiple cores. Several effective partition-

ing algorithms have been proposed for multicluster VLIW [12, 21, 40, 52, 57]. For Voltron

coupled mode, we employ the Bottom-Up Greedy (BUG) algorithm [21], which performs

the partitioning before scheduling using heuristically-estimated scheduling times. In the

BUG algorithm, the DFG is traversed in depth-first order, with operations on critical

paths visited first. For each operation, the algorithm estimates the earliest possible com-

pletion time for each potential core assignment. The estimate considers the completion

time of the operation’s predecessors, possible communications to get operands from other

cores, and possible communications to move results to the users. The operation is then

assigned to the partition that leads to a minimal estimated completion time. The BUG

algorithm is augmented to be cognizant of non-uniform latency of the grid network and

the sleep mode support in Voltron.

This work extends the BUG algorithm in several ways. First, there is a performance

penalty for using more than 1 core in Voltron because of the need to broadcast branch

conditions. The performance-centric BUG partitioning algorithm does not model this

performance penalty. It attempts to make use of all of the parallelism available in the

machine in order to achieve the best schedule for each region of code. In many cases, this

results in an unbalanced schedule, with more operations on some cores than on others. For

example, if there is a long dependence chain in the code, this dependence chain may be
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scheduled on one core, while other independent operations are scheduled on other cores.

In such cases, it is often possible to proactively offload all of the operations from some

lightly-loaded cores to avoid the performance overhead of branch condition broadcast.

Second, if more than 1 core is needed, it is advantageous to partition the operations

as evenly as possible among the cores to reduce the instruction cache misses. The original

BUG algorithm does not take cache misses into account. It is important for the compiler

to consider cache effects when exploiting ILP on Voltron because under the lockstep

execution, if one core stalls, all cores have to stall.

One final modification to the baseline partitioning algorithm was augmenting it to

use as few cores as possible in each scheduling region while maintaining a given level of

performance. With this approach, we can maximize the number of cores that are put in

sleep mode to save energy and code size.

Dependence untangling. The compiler then performs dependence untangling. The

dependence untangling tries to reduce the dependences across cores and thus lessen inter-

core communication. To reduce data communication, the compiler can selectively replicate

certain computations so the required data can be supplied locally on each core. Our com-

piler replicates all the loop induction variable computations to all cores. An induction

variable does not depend on any variable except itself, so the replication does not cause

any communication. Often, many other operations in the loop depend on the induction

variables, so replication of the induction variables reduces the inter-core communication

normally needed to supply data to these operations. On the control side, branch conditions

are often broadcast to all cores and cause inter-core communication. We use control criti-

cal path reduction (control CPR) [66] to reduce the number of executed branches. Control

CPR uses profiling information to identify frequently executed sequences of branches, and

reduces the sequences of branches to a single branch in the common case. Control CPR
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reduces the number of dynamic branches and therefore reduces the need for inter-core

branch condition communication.

Control replication. Since each core needs to maintain its control flow separately,

the compiler replicates all branches in all cores. For conditional branches, the compiler

decides if one core should compute the branch condition and broadcast the condition to

all other cores, or if all cores should compute their own branch conditions.

Postpass partition. The compiler then performs another pass of partitioning using

the same algorithm for prepass partition on the block with the new operations introduced.

Since some computation has been replicated, BUG may change the cores to which certain

operations are assigned.

Insert communication. If the producer and consumer of a value are partitioned

to two different cores, the value must be communicated from one core to another using

PUT/GET instructions. With the cores organized as an grid, inter-core communication

costs vary based the producer and consumer cores. When a consumer is not a direct

neighbor of a producer core, a series of PUT/GET pairs must be inserted. The partition-

ing algorithm was augmented to account for differential communication latencies. The

placement heuristic attempts to place consumers closer to producers while modeling the

limited inter-core bandwidth. A greedy algorithm is employed for the routing of values,

only the shortest path between the producer and the consumer are considered for routing

the data.

After the communication instructions are inserted, optimizations are performed to

remove redundant communications to save the bandwidth and power.

Mode selection. Next, the compiler decide if a core should be sleep or active for

every basic block depending on if the core performs useful computation. The compiler

inserts SLEEP and WAKE instructions to control the execution mode of the cores.
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Scheduling and register allocation. After the operations are partitioned and

communications are inserted, the compiler performs scheduling and register allocation on

the code. The scheduling is performance globally on all cores to maintain the order all

the cross core dependences. To exploit ILP, the branches for all cores must be scheduled

in the same cycle to keep the execution synchronized; NO OPs are inserted if necessary.

The register allocation is performed locally on each core because each core has a different

register file.

4.2 Compiling for fine-grain TLP execution

Two compiler techniques are studied to exploit fine-grain TLP in Voltron: decoupled

software pipelining (DSWP) and strand decomposition.

Extracting TLP with DSWP. We use the algorithm proposed in [56] to exploit

pipeline parallelism. To perform DSWP partitioning, a dependence graph G, including

data and control dependences, is created. The compiler detects strongly connected com-

ponents (SCCs) in the dependence graph, and merges nodes in a SCC to a single node.

As the SCCs include all the recurrences within the loop, the merged graph Gscc is acyclic.

A greedy algorithm is employed to partition Gscc. To ensure the communication between

any pair of cores is unidirectional, the partitioning algorithm process nodes in Gscc in

topological order, and avoid assigning nodes to partitions that will cause bidirectional

communication. Instructions are assigned to cores according to the result of partitioning.

The compiler inserts SENDs and RECVs for inter core dependencies.

Extracting strands using eBUG. The compiler flow for extracting strands, or

fine-grain threads, are very similar to the compiler flow for ILP extraction in Figure 4.1.

Because the asynchronous execution of fine-grain threads provides coarse-grain out-of-
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order capability on Voltron, the partitioning algorithm should take memory level paral-

lelism (MLP) into account to achieve the best performance. This work proposes a new

partitioning algorithm, called enhanced bottom-up greedy (eBUG), to extract fine-grain

threads.

The BUG partitioning algorithm for ILP extraction tries to partition the operations

to achieve minimum schedule length in all cores. When partitioning operations for fine-

grain TLP, minimum schedule length does not necessarily guarantee minimum execution

time. Memory accesses should be considered in the partitioning process. Through the

analysis of programs and their execution on Voltron, several factors that are important

for achieving good performance are identified for the partitioning algorithm.

• Likely missing loads: It is preferable to assign operations that depend on the

result of likely missing LOAD operation to the same core as the LOAD. If the

LOAD and its consumer are assigned to different cores, SEND/RECV operations

must be inserted to move the value. When the LOAD misses in the cache, both the

sender and the receiver must stall. This hurts performance as one of the cores could

be doing useful work. Note that this issue does not occur in coupled mode because

a load miss always stalls all cores.

• Memory dependences: If two memory operations can potentially access the same

memory address, and one is a STORE, the second must be issued after the first.

If they are assigned to different cores, the cores must be synchronized through

SEND/RECV pairs. This synchronization has the potential to stall a core, so it is

preferable to assign dependent memory operations to the same core.

• Memory balancing: It is beneficial to balance the data access on cores to ef-

fectively utilize the local caches even if the balancing causes increases to schedule
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length. Distributing independent memory accesses across cores also provides more

opportunity to overlap stalls.

Taking these factors into account, the enhanced bottom-up greedy (eBUG) algorithm

employs pointer analysis to identify dependent memory operations [53] and uses profiling

information to identify loads likely to miss in the cache. eBUG first processes the dataflow

graph, assigning a weight to each edge in the graph. Higher weights indicate edges that

should not be broken during partitioning. High weight edges are assigned between LOADs

that are likely to miss and the subsequent operations that consume the data. Memory

dependence edges are also assigned higher weights to favor keeping dependent memory

operations in the same strand.

After the edge weight assignment, eBUG performs the bottom-up assignment of op-

erations. This part is similar to the original BUG algorithm: the DFG is traversed in

depth-first order, with operations on critical paths visited first. For each operation, the

algorithm estimates the earliest possible completion time for each potential core assign-

ment. The estimate considers the completion time of the operation’s predecessors, possible

communications to get operands from other cores, and possible communications to move

results to the users. In eBUG, the weight on an edge is also added to the estimated

completion time of the operation if the source and destination of the edge are assigned

to different cores. eBUG also counts the number of memory operations already assigned

to each core. When considering assignment of a memory operation to a particular core,

a penalty is added to the estimated completion time if the core already has a majority

of the memory operations assigned to it. This avoids capacity misses on heavily loaded

cores and allows possible overlap of memory stalls and computation across different cores.

After partitioning is done, the compiler inserts SENDs and RECVs when a data flow

edge goes across cores. Dummy SENDs and RECVs are also inserted to synchronize
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for (i = 0; i < 1000; i++) {
*s += a[i] * b[i];
if (b[i] > *++c)

break;
} 

1:  ld    a  ß mem[3000 + i]
2:  ld    b  ß mem[5000 + i]
3:  mul t  ß a, b
4:  ld    u  ß mem[s]
5:  add   u  ß u, t
6:  st mem[s] ß u
7:  add   c  ß c, 1
8:  ld    v  ß mem[c]
9:  cmp p1 ß (b > v)

10:  br block2 if p1

11:  add   i  ß i, 1
12:  cmp p2 ß (i < 1000)
13:  br loop if p2 

(a)

(b) (c) (d)

Figure 4.2: Compiling a loop for the Voltron architecture. (a) Original loop in C code. (b)
Assembly instructions for the loop. (c) Resulting DFG partition for coupled
mode. (d) Resulting DFG partition for decoupled mode.

dependent memory operations on different cores.

The compiler then replicates branches to construct the control flow for threads. In

the decoupled mode, branches in different core do not need to be synchronized. A control

flow optimization is performed after branch replication to skip empty blocks in the cores.

The algorithm change the branches to jump to their postdominators if all blocks between

the the branch and its post dominator are empty.

Example. Figure 4.2 demonstrates the differences between BUG (coupled mode)

and eBUG (decoupled mode). Figure 4.2 (a) shows a for-loop in C, and its corresponding

assembly code is shown in Figure 4.2(b). This code includes several loads and stores, as

well as two branches (a loop-back branch and an early-exit branch). Suppose the code

is being compiled for coupled execution (BUG) on a Voltron machine with two cores.

Figure 4.2(c) shows the resulting partition of the DFG. Memory operations are shaded

and branch operations are shown with a square border. Operations to the left of the

dashed line are assigned to core 0, while operations to the right are assigned to core

1. Note that the induction variable computation and the loop-back branch (operations
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11–13) have been replicated across the cores, eliminating the need to communicate these

values between the cores. The other branch (operation 10) is also replicated since each

core must maintain its own control flow, but the computation of its branch condition

(operation 9) cannot easily be replicated. Therefore the result of operation 9 is broadcast

from core 1 to core 0.

Figure 4.2(d) shows the result of the eBUG partitioner when compiling for decoupled

execution. Suppose that the C variables s and c in Figure 4.2(a) are pointers that could

potentially alias. Then the load of c (operation 8) must occur after the store of s (oper-

ation 6) in order to maintain correctness. Therefore, eBUG prefers to assign these two

operations to the same core to avoid explicit synchronization (i.e. with SEND/RECV or

the virtual clock mechanism). Also, operations 4 and 5 are assigned to the same core as

operation 6 so that if operation 4 misses, all of its dependent operations are on the same

core and thus only one core will be stalled.
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CHAPTER 5

Compiler Techniques for Uncovering Hidden Loop

Level Parallelism in Sequential Applications

5.1 Introduction

The majority of execution time in most applications is spent in loops. One natural

way to accelerate applications on multicore systems is to automatically parallelize loops

by executing different iterations simultaneously on multiple cores.

In the scientific community, there is a long history of successful parallelization efforts [4,

8, 15, 26, 35]. These techniques target counted loops that manipulate array accesses with

affine indices, where memory dependence analysis can be precisely performed. Loop-

level and single-instruction multiple-data parallelism are extracted to execute multiple

loop iterations or process multiple data items in parallel. Unfortunately, these techniques

do not often translate well to general-purpose applications. These applications are much

more complex than those typically seen in the scientific computing domain, often utilizing

pointers, recursive data structures, dynamic memory allocation, frequent branches, small

function bodies, and loops with small bodies and low trip count. More sophisticated

memory dependence analysis, such as points-to analysis [53], can help, but parallelization
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often fails due to a small number of unresolvable memory accesses.

Explicit parallel programming is one potential solution to the problem, but it is not

a panacea. These systems may burden the programmer with implementation details and

can severely restrict productivity and creativity. In particular, getting performance for a

parallel application on a heterogeneous hardware platform, such as the Cell architecture,

often requires substantial tuning, a deep knowledge of the underlying hardware, and the

use of special libraries. Further, there is a large body of legacy sequential code that cannot

be parallelized at the source level.

A well-researched direction for parallelizing general-purpose applications is thread-

level speculation (TLS). With TLS, the architecture allows optimistic execution of code

regions before all values are known [6, 27, 31, 55, 67, 68, 74, 84]. Hardware structures track

register and memory accesses to determine if any dependence violations occur. In such

cases, register and memory state are rolled back to a previous correct state and sequential

re-execution is initiated. With TLS, the programmer or compiler can delineate regions

of code believed to be independent [9, 19, 42, 44]. Profile data is often utilized to identify

regions of code that are likely independent, and thus good candidates for TLS.

Previous work on TLS has yielded only modest performance gains on general-purpose

applications. The POSH compiler is an excellent example where loop-based TLS yielded

approximately 1.2x for a 4-way CMP and loop combined with subroutine TLS yielded

approximately 1.3x on SPECint2000 benchmarks [42]. That result improves upon prior

results reported for general-purpose applications by the Stampede and Hydra groups [27,

68]. One major limitation of prior work is that parallelization is attempted on unmodified

code generated by the compiler. Real dependences (control, register, or memory) often

mask potential parallelism. A simple example is the use of a scalar reduction variable

in a loop. All iterations update the reduction variable, hence they cannot be run in
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parallel. One notable exception is the work by Prabhu and Olukotun that looked at

manually exposing thread-level parallelism (TLP) in Spec2000 applications [58]. They

examined manually transforming applications to expose more TLP, including introducing

parallel reductions. They showed substantial increases in TLP were possible using a

variety of transformations for traditional sequential applications. However, many of the

transformations were quite complex, requiring programmer involvement.

This work extends the previous research on TLS and automatic parallelization. I

examine the feasibility of automatic compiler transformations to expose more TLP in

general-purpose applications. I target automatic extraction of loop-level parallelism,

where loops with sets of completely independent loop iterations, or DOALL loops, are

identified, transformed, and parallelized. Memory dependence profiling is used to gather

statistics on memory dependence patterns in all loop bodies, similar to prior work [42].

Note that this work does not parallelizing inherently sequential algorithms. Rather, I

focus on uncovering hidden parallelism in implicitly parallel code.

This work examine the use of TLS as a method to overcome the limitations of static

compiler analysis. This is the same conclusion reached by prior work. However, I look

beyond the nominal code generated by the compiler to find parallel loops. This work shows

that substantial loop-level parallelism lurks below the surface, but it is obstructed by a

variety of control, register and memory dependences. To overcome these dependences,

I introduce a novel framework and adapt and extend several code transformations from

domains of instruction-level parallelism and parallelization of scientific codes. Specifically,

our contributions are:

• DOALL loop code generation framework - This work introduces a novel framework

for speculative partitioning of chunked loop iterations across multiple cores. The

template handles complex cases of uncounted loops as well as counted ones and
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takes care of all scalar live-outs.

• TLP-enhancing code transformations - This work proposes several code transforma-

tions to break cross iteration dependences in nearly DOALL loops. These transfor-

mations are not entirely new, but rather are variants of prior techniques that have

different objectives and are adapted to work in the presence of uncertain depen-

dence information and TLS hardware. The optimizations consist of of speculative

loop fission, speculative prematerialization, and isolation of infrequent dependences.

5.2 Identifying Parallel Opportunities with Control

Aware Memory Profiling

5.2.1 Compiler Analysis Challenges

To illustrate more concretely the challenges of identifying TLP using compiler analysis

in general-purpose applications, we examine the frequency of DOALL loops in a variety of

applications. We use the OpenImpact compiler system, which performs memory depen-

dence analysis using inter-procedural points-to analysis [53]. A total of 43 applications

(all C source code, or C code generated from f2c) from four domains are investigated:

SPECfp, SPECint, MediaBench, and Unix utilities.1 This data serves as the baseline for

our work and motivates the further exploration of opportunities for TLS.

Figure 5.1 shows the ability of an advanced compiler to expose DOALL parallelism.

For each application, the fraction of sequential execution that is spent in DOALL loops is

presented. To derive this value, the execution frequency of all static operations that reside

in at least one DOALL loop are summed and divided by the total dynamic operation count.

1More details of the experimental setup are provided in Section 6.3.
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Figure 5.1: Fraction of sequential execution covered by DOALL loops identified through
compiler analysis.

The figure shows that the compiler analysis is not very successful with the exception of

two cases, 171.swim from SpecFP and mpeg2dec from MediaBench. The compiler is

most successful in SpecFP, where previous parallelization techniques for scientific code

are most applicable. However, the pointer analysis is only partially successful at resolving

memory dependences which substantially limits the number of DOALL loops. Figure 5.2

reinforces these results by showing the potential speedup from compiler identified DOALL

loops assuming an infinite number of cores and no memory stalls. Clearly, the bulk of

the general-purpose applications see little to no performance gain by providing additional

cores due to the lack of TLP.

TLS has the potential to provide large performance gains by allowing speculative

parallelization of loops. One key issue for TLS is to identify and parallelize the loops

that have low memory dependence probability. Memory profiling is a way to estimate the
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Figure 5.2: Potential speedup for idealized CMP using DOALL loops identified through
compiler analysis.

memory dependences in a program. The memory profiler runs the application on a profile

input and records the memory address accessed by every load and store. If two memory

instructions access the same location, a memory dependence is recorded.

For the purpose of parallelizing loops, we only care about cross iteration dependences.

If the loops are nested, we need to know in what nesting level each memory dependence

is happening. Furthermore, when the loop contains function calls, we want to know

if the called function accesses any global variable which causes cross iteration memory

dependence. Traditional memory profilers are not aware of the control structures of the

program, i.e., the loop nesting structure and function call relationships. Thus, they are

not able provide the information we need for speculative loop parallelization.

This section describes a novel control aware memory profiler which provides the fol-
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lowing unique features:

• It identifies whether a memory dependence is in the same or different iterations. In

case of cross iteration memory dependence, it gives the dependence nesting level.

• It can identify if function calls within a loop carry cross iteration dependences.

• It takes assembly code as input and doesn’t require the source code. Therefore, it

can be used for binary transformation, which benefits many legacy applications.

• It can be used to identify method level parallelism.

• It extracts the iteration distance of cross iteration memory dependences, which

enables the compiler to identify more parallelism opportunities.

In this section, the design of the profiler is presented followed by the profiling results.

.

5.2.2 Design of the Profiler

We propose a profiling technique that identifies opportunities for both loop-level par-

allelism (LLP) and method-level parallelism (MLP) in a single fast and cleanly organized

pass. During normal compiler profiling, a small amount of global state allows tracking

which function calls are statistically independent, and which loop iterations are statisti-

cally parallel. As in prior techniques, the profiler only needs to keep dynamic information

about recent memory operations which access an address. If recent memory operations

conflict with the current one, dependence edges are drawn between the static operations.

These static scheduling edges represent the required ordering in program execution. Each

time a memory address is accessed via a load or store operation, we look up the previous

dynamic operations that accessed that address. A global hash-table, called mem_hashtbl,
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function i () {
op601: call j

}

function j () {
loopA {

op701: load 2000

loopB {
op702: call k
op703: store 3000

}
}

}

function k () {
op801: store 3000

}
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Figure 5.3: Caption for flstack-loop-fig.

records the previous store and a set of previous loads. If a load occurs, and there was

a previous store in mem_hashtbl, an edge is drawn between the previous store and the

load, representing a true dependence. When a store occurs, an edge is drawn between any

previous loads and store. Subsequently, since the store serves as a barrier for that par-

ticular memory address, any prior loads or store to this address is cleared from the hash

table. While this approach works fine in the existing profilers for loads or stores within

a function, the technique presented here provides a novel way to track memory edges

between functions. This paper introduces the FLStack (Function/Loop Stack). When a

memory alias occurs, FLStack information indicates which function call caused the con-

flict, and whether it was a cross-iteration dependence for any loop nest or not.An FLStack

is a stack of function calls augmented with loop information. Each FLStack represents a

unique point in program execution, i.e, the same FLStack can not occur twice. 2

Figure 5.3 illustrates how the FLStack incorporates loop information if it is used in the

2This requires that the compiler can identify all loops which is the case in the OpenIMPACT compiler
as it was able to recognize all loops in the SPECint applications.
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program in Figure 5.3(a). When op701 is executed in loopA, the loop ID and the current

iteration number are inserted in the FLStack, as shown in Figure 5.3(b). For outer loops,

no new stack entries are needed. When entering an inner loop, such as loopB, a new

stack entry is added to record the information for all outstanding loop iterations. Thus,

when the next memory access occurs, at op801, the current FLStack looks as shown in

Figure 5.3(c). Both loopA and loopB are executing their first iterations. (The PC for

outer loop entries is drawn as a right arrow. This means to look right in the stack, which

will find the PC for the innermost loop within the same function.) This FLStack will

be recorded at address 3000 in mem_hashtbl. The next memory access is op703 which

accesses the same address. Therefore, after comparing the stacks shown in Figure 5.3(c)

and Figure 5.3(d), a mismatch is found which indicates a scheduling edge between op702 (a

function call) and op703 (a store). Since the iteration numbers at the first mismatch were

both iter0, this is not a cross-iteration edge. The next access, however, will introduce our

first cross-iteration edge. Cross-iteration edges prevent us from scheduling loop iterations

in parallel. If loopB begins its second iteration, iter1, the next memory access will be

a new dynamic instance of op801 and the FLStack will be as in Figure 5.3(e). The

iteration number for loopB has been incremented. Since op801 accesses address 3000, a

lookup in mem_hashtbl shows the access that happened in iter0 whose stack shown in

Figure 5.3(d). The first mismatch (starting from the left) is between op703 and op702.

Note that in this time, the iteration numbers are different in the stack entries where the

mismatch occurred. This edge is cross-iteration with respect to loopB and can prevent

it from getting parallelized. As the program continues to execute, if loopA iterates, the

profiler would also draw a cross-iteration edge with respect to loopA.

Since SPEC applications typically involve billions of dynamic memory accesses, several

optimizations are required to keep the runtime and memory footprint of the profiler
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reasonable. First, the size of mem_hashtbl can get extremely large when many addresses

are accessed. We alleviate this problem by removing old entries from the hashtable. When

there are more than N addresses in the table, the oldest address is simply dropped. If N

is large enough, there would be sufficient memory conflicts within N addresses to enforce

the desired ordering and thereby the profiler is still able to catch most real dependences.

In our experiments, we found that number of captured dependences flatted out at N=512.

A second optimization of the profiler’s footprint comes with determining the number

of previous loads to store for each address in mem_hashtbl. Storing multiple loads is

necessary to track anti-dependences, but there might be many dynamic loads to a single

address. We keep the footprint reasonable by only allowing M=128 previous loads; if there

are more than M loads to an address before a store is seen, false load-load dependences

are drawn. For some programs, this results in many false load-load dependences. A

third optimization prevents storing two dynamic instances of the same static load, since a

static instruction is always scheduled at the same time. This prevents almost all load-load

dependences, and allows for a smaller profiler memory footprint. Next section presents

the results of our profile analysis.

5.2.3 Profile Results

Figure 5.4 shows the fraction of serial runtime spent in parallelizable loops identified

by the profiler. A loop is parallelizable if it contains no or few profiled cross iteration

memory dependence, and contains no cross iteration register and control dependences.

Each bar in the figure consists of two parts. The lower part represents loops with no

profiled cross iteration dependences, and the upper part represents loops with infrequent

(less than 10%) cross iteration dependences. By comparing Figures 5.4 and 5.5 with

Figures 5.1 and 5.2, we realize that many more parallel loops are identified using the profile
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Figure 5.4: Fraction of sequential execution covered by DOALL loops identified through
profiling analysis.

information (statistically parallel loops) than using compiler memory analysis (provably

parallel loops). Likewise, the idealized CMP speedup is much higher if we parallelize

those loop. On average, parallelizable loops accounts for 28% of the serial execution using

profile information compared to 8% using static memory analysis. The improvement is

partly due to the limitation of static analysis on complex programs; however, our profiler’s

ability to identify loop structures and function calls is also a major factor. Because with

a traditional profiler, any memory dependence within a loop will prevent the loop from

being parallelized as there is no way to figure out whether the dependence is in the same

iteration or different iterations.

Although the profiler can identify more parallel loops than static analysis, most non-

SPECfp benchmarks still have very few parallel loops and thus poor speedup. These

poor results were confusing as we had observed that many loops in these applications
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Figure 5.5: Potential speedup for idealized CMP using DOALL loops identified through
profiling analysis.

contained no statistically significant cross-iteration memory dependences. Hence, if we

were only looking at memory dependences, the number of speculative DOALLs would be

much larger. The problem is that the loops are not DOALL due to other dependences -

namely cross iteration register and control dependences. If these dependences could be

broken by the compiler, then the number of DOALL loops would increase substantially.

The remainder of this chapter explores this direction of research, namely a set of compiler

transformations to break these dependences within the context of a speculative execution

environment.
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Figure 5.6: Distribution of execution time for loops with varying fractions of iterations
with cross-iteration dependences. The left bar represents the breakdown of all
loops for a training input. The right bar represents the breakdown of the zero
cross iteration dependence loops on the training input using a larger, evaluation
input for the benchmark.

5.2.4 Predictability of Cross-Iteration Memory Dependences

To determine the viability of predicting which loops are parallelizable based on pro-

filing information, we performed a study of the nature of cross-iteration memory depen-

dences. Register dependences are not considered because they are obvious to the compiler.

For all loops in a program, we profile to identify cross-iteration memory dependences. If

two memory operations from different iterations access the same address, and one is a

store, there is a cross-iteration dependence. For each loop, we can then obtain the frac-
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tion of iterations with a cross-iteration dependence, we call this the dependence fraction.

Figure 5.6 shows histograms of how much time is spent in loops with different dependence

fractions across various applications in the SPEC and MediaBench suites. The left set of

bars for each benchmark (gray bars) show the distribution of dependence fractions for a

training input. The y-axis represents how much serial execution time was spent in loops

with a particular dependence fraction; the percentage is out of the total execution time

spent in loops. The portion of the benchmark spent within loops is shown at the top of

each graph in parenthesis after the benchmark name.

Examining this structure, we hypothesize that the loops with zero dependences are

unlikely to have dependences for other input sets, and would be good candidates for

parallelization. To check this, we profiled only these loops using an evaluation input for

the benchmark; the result is also presented in Figure 5.6. The right set of bars (dark

gray bars) show the distribution of dependence fractions of the loops that we expect to be

zero (since they were zero in the training input). For most benchmarks, the hypothesis is

strongly supported. One notable exception is 256.bzip2, where one loop representing 7%

of the execution changes its memory dependence behavior significantly with the larger

input set.

One particular concern in systems that hardware to detect such memory dependences

(e.g., coherent caches) is false sharing. The data in Figure 5.6 was consistent across cache

line sizes of 4 to 64 bytes. While this is not a comprehensive study, we conclude that

false sharing does not significantly affect the identification of statistical DOALL loops.

This confirms the false sharing results presented in [68]. With highly predictable memory

dependences, these loops are promising candidates for speculative parallelization; however,

we have thus far ignored the feasibility of handling register dependences.
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5.3 Uncovering Hidden Loop Level Parallelism

As shown in the previous sections, without any code transformation, out-of-the-box

loop level parallelization opportunities for general applications are limited, even with TLS

hardware support. After manually studying a wide range of loops, we found that many

parallel opportunities were hidden beneath the seemingly sequential code. With proper

code transformations, critical cross iteration dependences can be untangled resulting in

many more speculative DOALL loops. In this section, we first introduce our code gener-

ation scheme for speculative DOALL loops. It handles both counted loop and uncounted

loop with cross iteration control dependences. Subsequently, we present techniques to

handle cross iteration dependences that hinder loop level parallelism. In addition to some

well-known techniques, we introduce three novel transformations to untangle register and

memory dependences: speculative loop fission, speculative prematerialization, and isola-

tion of infrequent dependences.

5.3.1 Code Generation

After choosing candidate loops for parallelization using the profile information, the

compiler distributes loop execution across multiple cores. In this work, we categorize

DOALL loops into DOALL-counted and DOALL-uncounted. In DOALL-counted, the

trip count is known when the loop is invoked (note, the trip count is not necessarily a

compile-time constant). However, for DOALL-uncounted, the trip count is unknown until

the loop is fully executed. While loops and for loops with conditional break statements

are two examples of DOALL-uncounted loops that occur frequently. In these cases, the

execution of every iteration depends on the outcome of exit branches in previous iterations.

Therefore, these loops contain cross iteration control dependences. In this section, we
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introduce our code generation framework for handling control dependences and executing

both speculative DOALL-counted and DOALL-uncounted loops.

Figure 5.7 shows the detailed implementation of our code generation framework. In the

proposed scheme, the loop iterations are divided into chunks. The operating system passes

the number of available cores and the chunk size to the application. Our framework is

flexible enough to use any number of available cores for loop execution. We insert an outer

loop around the original loop body to manage the parallel execution between different

chunks. Following is a description of the functionality of each segment in Figure 5.7.

Spawn: To start, the master thread spawns threads containing chunks of loop iter-

ations. It sends the necessary parameters (chunk size, thread count, etc.) and live-in

values to all threads.

Initialization: In the initialization block, all participating cores receive the required

parameters and live-in values. Since live-in values are not changed in the loop3, we only

send them once for each loop execution. This block also computes the starting iteration,

IS, for the first chunk. After initialization, each core manages its own iteration start value,

thus parallel execution continues with minimum interaction among the threads.

In order to capture the correct live-out registers after parallel loop execution, we use

a set of registers called last-upd-idx, one for each conditional live-out (i.e., updated in an

if-statement). When a conditional live-out register is updated, we set the corresponding

last-upd-idx to the current iteration number to keep track of the latest modifications to the

live-out values. If the live-out register is unconditional (i.e., updated in every iteration),

the final live-out value can be retrieved from the last iteration and no last-upd-idx is

needed.

Abort Handling: The abort handler is called when a transaction aborts. If the TM

3If a live-in value is changed in the loop, it generates a cross iteration register dependence and the
loop cannot be parallelized.
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RECV live_outs and 
last_upd_idx values 
Set live_outj to the 
last updated value

for (all live_outs)
 SEND(live_outj,0)

 SEND(last_upd_idxj,0)

DONE

Receive CS, SS, TC and live-ins
IS = IS_init + CS * SS * thread_id
for (all live_outs)

 last_upd_idxi = -1;

THREAD0?

Initialization

Parallel 
Loop

Consolidation

Abort 
Handler

for (i=IS;i<IE;i+=SS)
 // original loop code 
 live_outk =… //kth liveout assignment
 last_upd_idxk= i;
 if (brk_cond)
   local_brk_flag = 1;

   break;

XBEGIN
 if (global_brk_flag) break;

 IE = min(IS+CS*SS,n)

perm = RECV(THREADj-1)
XCOMMIT
if (local_brk_flag)
   global_brk_flag = 1;
   kill_other_threads;
elseif (IE < n)
   SEND(perm,THREADj +1)

IS+=CS * TC * SS;

if (IS < n) & 
(!local_brk_flag)

Spawn jobs to available cores

Send CS, SS, TC and live-ins to all threads
Spawn

Yes No

Figure 5.7: Detailed code generation framework for speculative loop parallelization.
Transaction scope is marked by XBEGIN and XCOMMIT. (CS: chunk size,
IS: iteration start, IE: iteration end, SS: step size, TC: thread count)
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hardware does not backup the register file, we can use the abort handler to recover certain

register values in case of transaction abort. More specifically, we need to recover the live-

out and last-upd-idx register values. We need to backup these registers at the beginning

of each transaction, and move the backup value to the registers in the abort handler.

Moreover, we also add recovery code in the abort handler for some of our transformations

as described in the next section.

Parallel Loop: The program stays in the parallel loop segment as long as there are

some iterations to run and no break has happened. In this segment, each thread executes

a set of chunks. Each chunk runs iterations from IS to IE. The value of IS and IE are

updated after each chunk using the chunk size (CS), thread count (TC) and step size

(SS).

Each chunk of iterations are enclosed in a transaction, demarcated by XBEGIN and

XCOMMIT instructions. The transactional memory monitors the memory accessed by

each thread. It aborts the transaction running higher iterations if a conflict is detected,

and restarts the transaction from the abort handler.

Commit Ordering:Chunks are forced to commit in-order to maintain correct exe-

cution and enable partial loop rollback and recovery. In order to minimize the required

bookkeeping for this task, we use a distributed commit ordering technique in which each

core sends commit permission to the next core after it commits successfully. These per-

missions are sent in the form of dummy values to the next core. The RECV command

near the end of the main block causes the core to stall and wait for dummy values from

the previous core.

Break Handling: For uncounted loops, if a break happens in any thread, we don’t

want to abort higher transactions immediately, because the execution of the thread is

speculative and the break could be a false break. Therefore, we use a local variable
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local brk flag in each thread to keep track of if a chunk breaks. If the transaction commits

successfully with local brk flag set, the break is not speculative any more, and a transaction

abort signal is sent to all threads using a software or hardware interrupt mechanism. In

addition, a global brk flag is set, so that all threads break the outer loop after restarting

the transaction as a result of the abort signal. The reason for explicitly aborting higher

iterations is that if an iteration is started by misspeculation after the loop breaks, it could

produce an illegal state. The execution of this iteration might cause unwanted exceptions

or might never finish if it contains inner loops.

Consolidation: After all cores are done with the execution of iteration chunks, they

enter the consolidation phase. In this period, each core sends its live-outs and last-

upd-idx array to THREAD0 that selects the last updated live-out values. All threads

are terminated after consolidation and THREAD0 continues with the rest of program

execution.

We carefully designed the framework to keep most of the extra code outside the loop

body, so they only execute once per chunk . The overhead in terms of total dynamic

instructions is quite small.

5.3.2 Dependence Breaking Optimizations

This section focuses on breaking cross iteration register dependences that occur when

a scalar variable is defined in one iteration and used in another. First, we examine

several traditional techniques that are commonly used by parallelizing compilers for sci-

entific applications: variable privatization, reduction variable expansion, and ignoring

long distance memory dependences. These optimizations are adapted to a speculative

environment. Then, we propose three optimizations specifically designed for a specula-

tive environment: speculative loop fission, speculative prematerialization and infrequent

88



1: while (node) {
2:   work(node);
3:   node = node->next;
   }

   // Sequential
   count = 0;
1: while (node) {
4:   node_array[count++]= node;
3:   node = node->next;
   }

   // Parallel
   XBEGIN
    node = node_array[IS];
    i = 0;
1': while (node && i++ < CS) {
2:    work(node)
3':   node = node->next
    }
   if (node != node_array[IS+CS]
      kill_higher_iter_THREADs();
   XCOMMIT

(a)

(b)

(c)
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Figure 5.8: Speculative loop fission (a) Original loop (b) Original data flow graph (c) Data
flow graph after fission (d) Loop after fission - (rf: register flow dependence, c:
control dependence, m?: unlikely cross-iteration memory dependence

dependence isolation. These transformations are adaptations of existing ones used in the

scientific and ILP compilers.

5.3.2.1 Traditional Dependence Breaking Optimizations

Variable privatization. Cross iteration input, anti- and output dependences can

be removed by register privatization. Since each core has a separate register file, register

accesses in different cores are naturally privatized. Live-in scalars are broadcast to each

core during initialization, thus all false dependences on scalars are removed. Handling

output dependences for live-out variables is tricky. Since the value of a live-out variable

is used outside the loop, we need to find out which core performed the last write to the

register. This is not obvious if the register is updated conditionally. As described in the

previous section, the code generation template handles this case by assigning an integer

value on each core for each live-out register. This value is set to the last iteration index

where the live-out variable is written. The compiler inserts code after the loop (in the
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consolidation block in Figure 5.7) to set the live-out registers to their last updated values

in the loop based on the stored iteration index.

Reduction variable expansion. Reduction variables, such as accumulators or vari-

ables that are used to find a maximum or minimum value, cause cross iteration flow

dependences. The most common case is the sum variable when all elements of an array

are summed. These dependences can be removed by creating a local accumulator (or

min/max variable) for each core, and privately accumulating the totals on each core. Af-

ter the loop and in the consolidation block, local accumulators are summed or the global

min/max is found amongst the local min/max’s.

Ignoring long distance memory dependences. When the number of iterations

between two memory dependences is larger than some threshold, there is an opportu-

nity for parallelization by simply ignoring the dependence. Intuitively, if the distance

between memory accesses is n, the compiler can make n−1 iterations execute in parallel.

Subsequently, if we set the chunk size as cross iteration distance/number of cores, our

scheme in Section 5.3.1 generates the proper code for parallel execution of the loop.

5.3.2.2 Speculative Loop Fission

By studying benchmarks, we observed that many loops contain large amounts of par-

allel computation, but they cannot be parallelized due to a few instructions that form

cross iteration dependence cycles. We call these loops almost DOALL loop as the bulk of

the loop is DOALL, but a small recurrence cycle(s) inhibits parallelization. The objec-

tive of speculative loop fission is to split the almost DOALL into two parts: a sequential

portion that is run on one core followed by a speculative DOALL loop that can be run

on multiple cores. The basic principles of this optimization are derived from traditional

loop fission or distribution [4].
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for (k=0;k<num_nets_affected;k++) {

    inet = nets_to_update[k];

    if (net_block_moved[k] == FROM_AND_TO)

       continue;

    if (net[inet].num_pins <= SMALL_NET) {

       get_non_updateable_bb (inet, 

&bb_coord_new[bb_index]);

    }

     ...... 

     ...... 

    bb_index++;

 }

for (k=0;k<num_nets_affected;k++) {

    if (net_block_moved[k] == FROM_AND_TO) 

       continue;

    bb_index_array [k] = bb_index;

    bb_index++;

}

XBEGIN
 bb_index = bb_index_array[IS];

 for (k = IS; k < IS + CS ; k++) {
    inet = nets_to_update[k];

    if (net_block_moved[k] == FROM_AND_TO)

       continue;

    if (net[inet].num_pins <= SMALL_NET) {

       get_non_updateable_bb (inet, 

&bb_coord_new[bb_index]);

    }

     ......

     ......

     bb_index++;

 }

if (bb_index != bb_index_array[k])
    abort_higher_threads;
XCOMMIT

Abort_handler: 

  bb_index = bb_index from aborting core;
  k = k from the aborting core;

  for (;k<num_nets_affected;k++) {
    if (net_block_moved[k] == FROM_AND_TO) 
       continue;
    bb_index_array [k] = bb_index;
    bb_index++;

}

Spawn parallel chunks with abort handler;

(a)

(b)

(c)

Figure 5.9: Example of speculative loop fission from 175.vpr: (a) original loop (b) loop
after fission (c) abort handler.

Figure 5.8(a) shows a classic example of such a loop. A linked list is iterated through,

with each iteration doing some work on the current node. Figure 5.8(b) shows the data

dependence graph for the loop, with the important recurrence of operation 3 to itself.

Note that there may be an unlikely memory dependence between operations 2 and 3 as

indicated by the “m?” edge in the graph. Such a situation occurs when the compiler

analysis cannot prove that the linked list is unmodified by the work function. For this

loop, the sequential portion consists of the pointer chasing portion (i.e., operation 3) and

the DOALL portion consists of the work performed on each node (i.e., operation 2).

The basic transformation is illustrated in Figure 5.8(c). The strongly connected com-

ponents, or SCCs, are first identified to compose the sequential portion of the loop.

Dependences that will be subsequently eliminated are ignored during this process. These

include control dependences handled by the DOALL-uncounted schema (i.e., the control

dependence from operation 1 to 3), unlikely memory dependences (i.e., the memory de-
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pendence from operation 2 to 3), and register dependences caused by reduction variables.

In this example, the SCC is operation 3. The sequential portion is then populated with

two sets of nodes. First, copies of all dependence predecessors of the SCC are added (op-

eration 1 in Figure 5.8(c)). Second, a new operation is introduced for each register flow

edge that is cut between the SCCs and the remaining operations. In the example, there is

a register flow edge from operation 3 to 2. A new operation is created (operation 4) that

stores the value communicated via the edge into an array element. For this example, each

node pointer is stored into the array. In essence, the register flow dependence is converted

into a through-memory dependence. The result is the dependence graph shown on the

left portion of Figure 5.8(c) and the code shown at the top of Figure 5.8(d).

The parallel portion of the loop consists of the entire original loop, including the SCCs,

with a few modifications as shown in Figures 5.8(c) (right portion) and 5.8(d) (bottom

portion). Each parallel chunk is seeded with a single value computed in the sequential

loop for each register flow edge that was cut. In the example, node is set to node array[IS]

or the index of the starting iteration of the chunk. The body of the DOALL is identical to

the original loop, except that only a fixed number of iterations are performed, CS or chunk

size. Note that each parallel chunk is sequential, yet all parallel chunks are completely

decoupled due to array variables produced by the sequential loop (i.e., node array).

The final change is a test to ensure that each live-out SCC variable has the same value

that was computed in the sequential loop. For the linked list example, this tests whether

the current parallel chunk modified the starting element of the next chunk. This test

combined with the transaction commit ensures that the linked list was not modified during

the parallel portion. In cases where the compiler can prove no modifications are possible,

this check is not necessary. The final parallel code is presented in Figure 5.8(d). Note that

only the transaction scope portion of the code is shown for clarity. This code is dropped

92



   for (...) {
1:   current = … ;
2:   work(last);
3:   last = current;
   }

   XBEGIN
1':  current = 
3':  last = 
    for (...) {
1:    current = … ;
2:    work(last);
3:    last = current;
    }
   XCOMMIT

(a) (b)

1

2

3

(c)

Figure 5.10: Example of speculative prematerialization: (a) original loop, (b) dataflow
graph, and (c) loop after transformation.

into the DOALL-uncounted template in Figure 5.7 to complete the parallelization.

Our loop fission scheme is different from traditional loop fission technique in that both

the sequential and parallel loops are speculative. Since the sequential loop contains com-

putations from every iteration, it could conflict with one or more of the parallel chunks.

For example, in Figure 5.8(a), the work function could modify the linked list. This means

that node array contains one or more incorrect values. Such a memory dependence vio-

lation must be detected and rollback performed. The combination of the transactional

semantics and the additional tests added after each parallel chunk to test the SCC vari-

ables ensure there are no unexpected memory dependences between two parallel chunks

(transaction commit) and between the sequential and parallel chunks (explicit test in-

serted by the compiler). To simplify the problem, we don’t allow inclusion of any store

instruction in the sequential loop besides the ones that write to the new arrays. Our

experiments show that very few fission candidates are lost by this requirement. When a

parallel loop chunk reaches the end of its execution, it can commit only if all previous

chunks have committed and no conflicts are detected, thereby ensuring correctness.

When the abort handler is invoked due to a memory dependence conflict, it must first

abort all threads executing higher numbered iterations. Then, it restarts the execution of

the sequential loop to re-initialize all the relevant values for the new arrays (i.e., node array

in the example). To ensure that modifications to data structures by later iterations do not
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affect earlier iterations, the sequential loop is run only from the starting iteration of the

next thread after abort (iteration start + chunk size or IS+CS) to reset only the relevant

portion of the new array(s).

To show a real example of speculative loop fission, Figure 5.9(a) presents an important

almost DOALL loop from the SPECint application 175.vpr. This example is different

from the previous example in that it is not a linked list traversal. The variable bb index

carries a cross iteration register dependence. The variable is not an induction variable

because it is not updated in every iteration due to the continue statement. The split loops

are shown in Figure 5.9(b). The first loop is the sequential loop and contains the cross

iteration dependences. It produces value of bb index on every iteration and stores them

to a new array called bb index array. The second loop is the parallel loop, where each

chunk is decoupled through the use of bb index array. Finally, the abort handler for the

loop is presented in Figure 5.9(c).

Two alternatives for parallelizing almost DOALL loops are DOACROSS [4] and specu-

lative decoupled software pipelining (DSWP) [75]. We consider speculative fission a better

option than DOACROSS for two reasons. First, DOACROSS does not work with itera-

tion chunking. If chunks of many iterations are executed in the DOACROSS manner, the

first iteration in a chunk has to wait for data from the last iteration of the previous chunk,

which basically sequentializes execution. For loops with small bodies, iteration chunking

is very important to get performance improvement. Second, DOACROSS execution is

very sensitive to the communication latency between threads because each iteration has

to wait for data from the previous iteration. With speculative loop fission, the commu-

nication between the sequential part and the parallel part can happen in parallel and

thereby the total execution time would be much shorter.

Speculative DSWP converts almost DOALL loops into a producer-consumer pipeline.
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for (colctr = compptr ->downsampled _width - 2;
 colctr > 0; colctr--) {

  nextcolsum = 
    GETJSAMPLE (*inptr0++) * 3 + 
    GETJSAMPLE (*inptr1++);
  *outptr++ = 
    (JSAMPLE ) ((thiscolsum * 3 + lastcolsum + 8) 
     >> 4);
  *outptr++ = 
    (JSAMPLE ) ((thiscolsum * 3 + nextcolsum + 7) 
     >> 4);
  lastcolsum = thiscolsum ; 
  thiscolsum = nextcolsum ;
}

colctr = IS - 2; 
inptr0 = inptr0_init;
inptr1 = inptr0_init;

nextcolsum = GETJSAMPLE (*inptr0++)*3 
    +   GETJSAMPLE (*inptr1++);
thiscolsum = nextcolsum ;

colctr = ++;
nextcolsum = GETJSAMPLE (*inptr0++)*3 
    + GETJSAMPLE (*inptr1++);
lastcolsum = thiscolsum ; 
thiscolsum = nextcolsum ;

for (colctr = IS;colctr >IS–CS;colctr --) 
{
    // The original loop body goes here
    ......
}

Init 

inductions

Iteration 

iter_start -2

Iteration 

iter_start -1

Chunk from 

iter_start

Figure 5.11: Example of speculative prematerialization from djpeg.

This has the advantage of overlapping the sequential and parallel portions. However,

when the two portions are not relatively equal sized, the pipeline can be unbalanced. This

problem can be alleviated by replicating pipeline stages. We believe DOALL execution is

more scalable and more compatible with conventional transactional semantics.

5.3.2.3 Speculative Prematerialization

A special type of cross iteration register dependence can be removed through a trans-

formation called speculative prematerialization. The idea of prematerialization is to ex-

ecute a small piece of code before each chunk to calculate the live-in register values, so

the chunks can be executed in parallel instead of waiting for all previous iterations to

finish. Rematerialization is a technique commonly used by register allocators where its

more efficient to recompute a value than store it in a register for a long period of time.

Here the objective is different, but the process is similar.

Prematerialization can remove cross iteration dependences on registers that are not

part of dependence cycles and are defined in every iteration. For each register that satisfies

those two conditions, pre-execution of at most one iteration will generate the live-in value
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for( j=0; j<=nstate; ++j ){
if( tystate [j] == 0 ) continue ;
if( tystate [j] == best ) continue ;
count = 0;
cbest = tystate [j];
for (k=j; k<=nstate; ++k)
if (tystate [k]==cbest) ++count;
if ( count > times) {
best = cbest;
times = count;

}
}

j=0;
while (j<=nstate ){
for( ; j<=nstate; ++j ){
if( tystate [j] == 0 ) continue ;
if( tystate [j] == best ) continue ;
count = 0;
cbest = tystate [j];
for (k=j; k<=nstate ; ++k)
if (tystate [k]==cbest) ++count;

if ( count > times) {
break;

}   
if (count > times) {
best = cbest;
times = count; j++;
}

}

(c) (d)

1: 

2: 

m

m

A

B

C

1: 

2: 

m
m

A

B
C

C
’

(a) (b)

Figure 5.12: Example of dependence isolation: (a) mechanics of transformation for an
abstract loop, (b) example loop from yacc.

for a chunk. If a loop contains n registers that need to be prematerialized, at most n

iterations need to be pre-executed.

Figure 5.10 illustrates the transformation. The original loop and dataflow graph are

presented in Figures 5.10 (a) and (b). There is a cross iteration register flow edge from

operation 3 to 2 corresponding the the variable last. The transformation is accomplished

by peeling off a copy of the source of the register flow dependence and all its dependence

predecessors. In this case, the source of the register flow dependence (operation 3) and its

dependence predecessor (operation 1) are peeled and placed in the loop preheader. The

resultant loop is shown in Figure 5.10(c). On the surface, this loop is still sequential as the
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dependence between operations 3 and 2 has not been eliminated. However, the peeling

decouples each chunk from the prior chunk allowing the chunks to execute in parallel.

One important thing to note is that the prematerialization code is speculative because

other iterations could modify variables it uses. This is akin to speculative fission where

the linked list is modified during its traversal. In the simple example, a pointer used

to compute current could be changed, thereby invalidating the prematerialized variables.

Thus, the prematerialization code must be part of the transaction that contains the chunk.

If any memory conflict is detected in the prematerialization code or the loop itself, the

transaction corresponding to higher number iterations is aborted and restarted.

To illustrate a real application of prematerialization, Figure 5.11 shows a loop in the

application djpeg from MediaBench. The variables lastcolsum, thiscolsum, and nextcol-

sum form a 3-wide sliding window in the loop. Variables nextcolsum and lastcolsum both

carry cross iteration dependences that prevent DOALL execution. Speculative premate-

rialization can be applied because the value of nextcolsum and lastcolsum are defined in

every iteration, and the cross iteration dependences do not form cycles. The right half of

Figure 5.11 shows the parallel code after prematerialization. A prematerialization block

is inserted before each chunk to compute the live-in values for nextcolsum and lastcolsum.

In the prematerialization code, portions of the previous two iterations are executed to

prematerialize two variables.

5.3.2.4 Infrequent Dependence Isolation

Another form of almost DOALL loops are loops with infrequently occurring cross-

iteration dependences. The sources or sinks of the dependence edges are contained in

infrequently executed conditional clauses. Thus, the majority of the time the loops are

DOALL. Isolation does not break any dependences, but rather transforms the control flow
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structure of the code to allow the compiler to parallelize the portion of the loop that is

DOALL. The transformation is similar to hyperblock formation, but again the objectives

are changed [43].

Cross-iteration register and memory dependences are eligible for isolation as well as

calls to libraries where the compiler does not have complete memory dependence informa-

tion. Library calls are typically treated conservatively and and thus inhibit paralleliza-

tion. Isolation optimizes the common case by restructuring a loop into a nested loop.

The schematic transformation is illustrated in Figure 5.12(a)(b). The example loop con-

sists of three basic blocks, A, B, and C. A dependence cycle exists between operations 1

and 2, contained in blocks A and B, respectively. Assume that block B is infrequently

executed. Isolation converts the A-B-C loop into a nested loop structure as shown in

the figure. The inner loop contains the frequent, DOALL portion, namely A-C. And, the

outer loop contains the sequential portion, namely A-B-C. Block C is duplicated as in

hyperblock formation to eliminate side entrances into the loop. The resultant inner loop

is an DOALL-uncounted. When control enters block B, parallel execution is aborted, and

the cross iteration dependence is properly enforced.

Figure 5.12(c)(d) illustrates the application of dependence isolation to a loop from

the Unix utility yacc. Figure 5.12(c) shows the original code in which the outer for loop

is not parallellizable due to two cross-iteration register dependences that are shown by

arrows. However, according to the profile information, the if statement at the bottom

of the loop rarely evaluates to True. Therefore, we can transform the loop to that in

Figure 5.12(d). This code is transformed by adding an outer while loop and the unlikely

if block is replaced by a break statement. When the condition count > times is True,

the outer for loop will break and the if statement in new while loop is entered. After

execution of this block, the for loop continues running from the iteration it left off. The
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outer for is now DOALL.

5.4 Loop Selection

Simply parallelize a loop can sometimes reduce the performance of the program be-

cause of the parallelization overhead. The limited amount of available cores also prevents

the parallelization of loops in all nesting levels. The compiler need to select and paral-

lelize a subset of all the parallelizable loops, such that the overall performance gain is

maximized. This section discusses the loop selection algorithm. The algorithm selects

loops based on profile information, loop nesting structure, and available resources.

5.4.1 Estimating Performance Gain for Individual Loops

The compiler first estimates the performance gain for parallelizing each loop individ-

ually. The performance gain for loop L can be calculated as follows:

G(L, n) = S(L) − P (L, n) (5.1)

G(L, n) is the performance gain measured in number of cycles for loop L with n

cores. S(L) is the sequential execution time for loop L from profile. P (L, n) is the

estimated parallel execution time on n cores. Depending on the type of the loop (counted,

uncounted) and transformations needed to parallelize the loops (reduction expansion,

speculative fission, infrequent dependence isolation, prematerialization), the formula to

compute P (L, n) varies. For a basic counted or uncounted loop, P (L, n) can be computed

as below:

P (L, n) = Tloopbody + Toverhead + Trollback (5.2)
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Tloopbody is the time spent in the parallel loop body. It includes the time spent in

parallel chunks, as well as the time spent in ”leftover” iterations that can not be evenly

divided into parallel chunks.

Toverhead includes three parts: per iteration overhead, per chunk overhead, and per

loop overhead. Per iteration overhead is the most expensive because it happens in every

iteration. The code generation framework incurs per iteration overhead only if the loop

contains conditionally updated live out register. Per chunk overhead includes the XBEGIN

and XCOMMIT to start and commit a transaction; the computation to update iteration

start (IS) and iteration end (IE); the SEND and RECV to pass commit permission; and

the checking of the global commit flag for uncounted loops. If the compiler choose the

chunk size intelligently, the number of chunks should be moderate. Per loop overhead

happens every time the loop is invoked. It includes the spawning overhead, the loading

of live-in values, the gathering of live-out values, and the initialization of break flag for

uncounted loops.

Trollback is the overhead for rolling back the execution. Everytime a conflict is detected,

a chunk of iterations will be re-executed. The frequency of the rollback is estimated using

profiled cross iteration dependence frequency.

For loops that require transformations, the transformation overheads are also consid-

ered when caculating the parallel execution time.

5.4.2 Loop Selection

If nested transactions are not allowed, only one loop can be parallelized at any given

time. For a certain loop, if any of its outer loop or inner loop is chosen to be parallelized,

it cannot be selected to parallelize. The goal of loop selection is to select a set of loops to

parallelize under such constraint to maximize the overall performance.
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Input: Loop Graph (LG)

Output: Set of selected nodes (selected)

foreach Node n in LG do

compute performance gain G(n);

end

foreach Node n in LG in reverse topological order do

max gain(n) = G(n);
children gain = 0;
foreach Child node cn of n do

children gain += max gain(cn);

end

if max gain(n) < children gain then

max gain(n) = children gain;

end

end

BFS queue.enqueue(root nodes in LG);
while BFS queue not empty do

n = dequeue (BFS queue);
if G(n) == max gain(n) then

selected.add (n);

end

else

BFS queue.enqueue( children nodes of n);

end

end

return selected;

Algorithm 1: Loop selection algorithm

The selection algorithm is illustrated in Algorithm 1. The input for the selection

algorithm is the loop graph for the program, Each node in the loop graph represents a

loop. There is an edge from A to B if loop B is directly nested in loop A. The loop graph

consists of multiple trees, Every outer most loop in a procedure is a root for a tree. The

inner most loops will be leaves for the trees.

The algorithm then calculate the potential gain for parallelizing each loop using the

method described in section 5.4.1, and assign the gains as weights for the nodes in the

graph. The loop selection problem becomes selecting a set of nodes from the graph such

that the sum of the weight of selected nodes are maximized, under the constraint that at

most 1 node can be selected from any path from a root to a leaf node.
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After computing the node weights, The compiler computes the max gain for every

node. The max gain for a node is the maximum possible performance gain achieved by

selectively parallelizing the loop and all its inner loops, subjecting to the contraint that

only one loop can be parallelized in any path to a leaf node. The max gain for a node

can be computed as follows:

max gain(node) = max(G(node),
∑

n∈CHILD(node)

max gain(n)) (5.3)

The compiler visits all nodes from leaves to roots using reverse topological order. The

time complexity to compute max gain is O(n), where n is the number of nodes in the

loop graph.

After the computation of max gain, the compiler selects loops using a breadth first

search (BFS) order, such that outer loops are considered before inner loops. If the esti-

mated gain and the max gain for a node is the same, the maximum gain can be achieved

by parallelizing this loop. The node will be selected and all its children nodes will not

be considered. If the estimated gain is less than the max gain, the children nodes will be

considered in BFS order.

All three parts of the algorihtm, gain computation, max gain computation and node

selection have complexity of O(n), thus the overall time complexity for the algorithm is

O(n).

5.5 Related Work

There is a large amount of previous work in TLS [6, 27, 31, 55, 67, 68, 74, 84] and TLDS [68,

69] that propose speculative execution of threads along with the required architectural

support. For example, Multiscalar architectures [67] support TLS, and prior work [76]
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has studied graph partitioning algorithms to extract multiple threads; however, this does

not eliminate unnecessary dependences in the same way this work does. Our work builds

upon previous research and proposes compiler transformations to expose more specula-

tive parallelism in loops. In particular, the Hydra project [55] classifies loops to different

categories and introduces compiler techniques to parallelize the code. This work extends

those ideas with compiler techniques for loop identification, selection, transformation,

and code generation. MSSP [84] transforms code into master and slave threads to ex-

pose speculative parallelism. It creates a master thread that executes an approximate

version of the program containing a frequently executed path, and slave threads that run

to check results. Conversely, our transformations have different execution models. Both

speculative fission and infrequent path isolation create parallel threads executing different

iterations. No dedicated checker threads are needed.

Several works have proposed full compiler systems [6, 19, 42, 59, 69] that target loop-

level and method-level parallelism. In [42], the authors introduce a compilation framework

for transformation of the program code to a TLS compatible version. Profile information

is also used to improve speculation choices. The Mitosis compiler [59] proposes a general

framework to extract speculative threads as well as pre-computation slices (p-slices) that

allow speculative threads to start earlier. Our prematerialization is similar to p-slices,

but prematerialization is highly targeted to loop recurrences that can be unwound to

decouple iterations and must maintain register and control dependences, while p-slices

can speculatively prune paths. Du et al. [19] propose a compilation framework in which

candidate loops for speculation are chosen based on a profile-guided misspeculation cost.

A general compilation strategy for TLS is introduced in [6]. Their method is applicable

to loops as well as other parts of the program. Due to the application of this general

approach, many opportunities in loop transformation and parallelization are skipped.
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Chen et al. [11] use pointer analysis to figure out memory dependences. However, this

sophisticated pointer analysis prevents full characterization of memory accesses in the

program. Also, as mentioned before, our work transforms many loops to make them more

parallelizable. We extend previous work in that we studied a comprehensive set of existing

and new transformations to expose more parallel opportunities hidden under removable

dependences.

The LRPD Test [62] and variants [48] speculatively parallelize DOALL loops that

access arrays and perform runtime detection of memory dependences. These techniques

work well for codes that access arrays with known bounds, but not general single-threaded

programs.

Speculative decoupled software pipelining (DSWP) [75] presents another technique

for thread extraction on loops with pointer-chasing cross-iteration dependences. DSWP

pipelines a single iteration across multiple cores. This has the advantage of overlapping

the sequential and parallel portions. However, when the two portions are not relatively

equal sized, the pipeline can be unbalanced. Our approach has benefits in load balancing

and scalability, particularly for small recurrence cycles. Further, DSWP checkpoints ar-

chitectural state for every iteration in flight using a versioned memory. Storage grows with

the length of the pipeline. A separate commit thread synchronizes the memory versions

and handles commits. Conversely, speculative fission uses a conventional transactional

memory where only one buffer per core is required and no commit thread.

The JPRM [10] framework uses a dynamic approach for loop parallelization. Al-

though this might lead to more accurate speculation, the overhead of dynamic binary

manipulation might become too high. Furthermore, dividing the loop too chunks with a

length of one iteration incurs a significant bookkeeping overhead.

Previous work also researched exploiting fine-grain parallelism in loops. Lee et. al. [39]
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studied running loop iterations simultaneously with communications through register

channels. This technique is good for loops with cross-iteration dependences that can-

not be removed through transformations. Our previous work [82] studied exploiting fine-

grain parallelism in a single iteration, which is orthogonal to this work and can be applied

simultaneously.
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CHAPTER 6

Experimental Evaluation

This chapter evaluates the effectiveness of the proposed architecture and compiler

techniques for accelerating single thread applications on multicore systems.

6.1 Exploiting ILP

6.1.1 Methodology

To evaluate exploiting ILP on the DVLIW architecture, an experimental system in-

cluding compiler, assembler, linker, and simulator was built using the Trimaran toolset [73].

The DineroIV trace-driven cache simulator [20] was integrated into the simulator to pro-

vide cache performance data.

Speedup on 2-core and 4-core DVLIW processors are measured against a 1-core pro-

cessor. Each core has 2 integer units, 1 floating-point unit, 1 memory unit, and 1 branch

unit in each core. Operation latencies similar to those of the Intel Itanium are assumed.

The L1 I-caches are 4-way associative with 64-byte blocks. The size of L1 I-cache in each

core is of 8KB.

DVLIW processors with 2 and 4 cores are also compared to multicluster VLIW ma-
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chines with a centralized control path (CVLIW) to measure the improvement in scalability

and power consumption. Each cluster in the baseline VLIW has the same amount of re-

sources as a DVLIW core. The L1 I-caches are 4-way with 64-byte blocks; total sizes

of 8K, 16K, and 32K are examined. Each L1 I-cache in a DVLIW cluster has a size of

total L1 size
#clusters

. For example, in the four-cluster configuration, a DVLIW machine with four

4K L1 I-caches is compared to a machine with a conventional 16K L1 I-cache.

32K data caches are assumed for all experiments. The L1 miss latency is a minimum

of 10 cycles. All machines have a unified, centralized 8-way 256K L2 cache with 128-byte

blocks. The cores/clusters are configured in a mesh for both DVLIW and the baseline.

The latency for inter-core communication is 1 cycle per hop.

The compiler employs hyperblock region formation; loops were software-pipelined if

possible and unrolled otherwise. Unless otherwise specified, sleep mode is used for DVLIW

machines. The performance of the MediaBench benchmarks [37] and a subset of the

SPECint2000 benchmarks were evaluated.1 The multimedia benchmarks have character-

istically high ILP, making them ideal candidates for wide-issue machines, while the SPEC

benchmarks are more irregular and difficult to partition effectively.

6.1.2 Results

DVLIW Speedup over Single Core. Figure 6.1 shows the speedup of ILP execu-

tion on 2 core and 4 core systems. The baseline, 1.0 in the figure, represents the execution

time of benchmarks on a single-core processor. The Bottom-Up Greedy(BUG) algorithm

is used to partition operation to multiple cores. Our compiler make sure the control flow

in multiple cores are synchronized and inserts communications. As shown in the figure,

1Benchmarks in the suites but missing from the evaluations were left out due to problems with the
Trimaran compiler system.
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Figure 6.1: Speedup for ILP execution.

on average, a speedup of 1.22 is achieved in the 2 core system and a 1.32 speedup is

achieved on the 4 core system. The speedup that we achieve is closely related to the

amount of ILP in the benchmark that can be exploit by a VLIW compiler. Benchmarks

that expose high ILP on VLIW processors, such as gsmencode and gsmdecode, achieve

higher speedup while benchmarks that displayed low ILP on VLIW processors, such as

the security related benchmark pegwitenc and pegwitdec, achieved low speedup. Notice

that in the figure, some benchmarks suffers a slight slow down. This is due to the new

operations inserted by the compiler to maintain the correct control flow, such as EBR and

BCAST, which increase pressures on the I-cache and causes more I-cache misses. The

compiler is not aware of this effect and can possibly slowdown the execution. The re-

sult in this figure shows that the DVLIW architecture provide a mechanism for multicore
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Figure 6.2: Relative execution time on a 4-cluster DVLIW processor with total I-cache
sizes of 16K and 32K.

systems to leverage existing VLIW compiler research to exploit ILP in the applications.

DVLIW vs. CVLIW Performance. One question about the performance of

DVLIW would be, how well does multicore DVLIW perform compare to conventional

multicluster VLIW with same amount of resource. Figure 6.2 shows the percentage change

in execution time on 4-cluster DVLIW versus a 4-cluster CVLIW. Two bars are presented

for each benchmark; they represent total I-cache configurations of 16K and 32K. The

baseline for each bar is the execution time on the CVLIW machine with the corresponding

total I-cache size. A positive value means the execution time was longer on DVLIW. Each

bar in the graph is divided into 2 parts; the lower part represents the portion of execution

time due to the increase in computation, such as the EPBRs, BCASTs and WAKEs. The

upper part represents the change in I-cache miss stalls.

On average, the execution time increases due to the extra computation is about 5%.

For gsmencode and gsmdecode, the computation time is shorter because a different clus-
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Configuration 16-issue Traditional VLIW 2 × 8 DVLIW 4 × 4 DVLIW 8 × 2 DVLIW

Hardware area (mm2) 6.317 2.638 0.843 0.307
Power (µW ) 95.112 46.792 25.296 12.504

Table 6.1: Comparison of hardware cost and power consumption for the instruction
align/shift/distribution networks of various VLIW configurations.

tering algorithm is used for DVLIW to set more clusters to sleep mode, which could

result in a different schedule. A closer look into the data shows that most of the slow-

down in the computation is because some BCASTs are inserted on the critical path and

thus increase the schedule length. This observation suggests that advanced instruction

replication techniques [3] could be used to reduce execution time on DVLIW in the future.

The I-cache stalls vary widely across different benchmarks and I-cache configurations.

The L1 cache misses increase in the DVLIW architecture for most benchmarks because the

code size on DVLIW increases, and the code is not evenly distributed across clusters while

the I-cache hardware is evenly divided between the clusters. A more detailed study of the

g721encode benchmark on the 16K I-cache configuration shows that a large unrolled loop

body can fit into the 16K centralized I-cache, but in the 4-cluster DVLIW, the I-cache for

each cluster is only 4K. The loop is not divided evenly and cannot fit in the 4K I-cache

in one of the clusters. This results in cache misses every iteration of the loop.

One thing to note is that the CVLIW machine is not scalable. As the number of

FUs increases (up to 20 in these experiments), it becomes unrealistic to implement a

VLIW with centralized control. Thus, DVLIW is compared with an ideally-scaled CVLIW

instead of a realistic design in the prior experiments. The modest overhead of DVLIW

should therefore be considered a positive result.

DVLIW vs. CVLIW Cost and Energy. The cost and energy of the DVLIW

instruction fetch and distribution subsystem are compared to that of a traditional VLIW

(CVLIW) which uses a centralized control path architecture. Table 6.1 compares hard-
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Figure 6.3: Reduction in dynamic global communication signals of a 4-cluster DVLIW
processor.

ware cost and power consumption of the instruction align/distribution logic for DVLIW

and CVLIW. The issue width of all configurations is 16 and the TINKER encoding is

assumed [14]. To employ compressed encodings, shift, align, and distribution networks

are required in both CVLIW and DVLIW. The shift/align network is required because the

beginning of variable-length instructions will not always be aligned to the beginning of a

cache line. A distribution network is required because the control bits must be delivered

to all the FUs but the positions of control bits for FUs are not fixed. The cost of these

networks increase quadratically with the issue width, because the number of MUXes and

the number of inputs for each MUX increase with the issue width. Using the Synop-

sys Design Compiler, we synthesized the major components of these networks. As can

be seen from the table, the distributed organization of the DVLIW can effectively con-

trol this quadratic cost and energy consumption of the alignment and distribution logic.
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Figure 6.4: Relative energy consumption for the instruction fetch subsystem of a 4-cluster
DVLIW processor.

By distributing the networks, a large centralized network can be avoided for wider issue

machines.

The key benefit of DVLIW is that most instruction fetch and distribution can be

done locally. Only rarely is global distribution of control bits necessary. For purposes

of this analysis, we define a global signal as an inter-cluster transfer or transfer between

a centralized memory and a cluster. A local signal is one that is contained within a

cluster (possibly including a local I- or D-cache.) Figure 6.3 compares the number of

bytes distributed globally on a 4-cluster DVLIW and CVLIW. Three bars are shown

for each benchmark. The first bar shows the increase in inter-cluster data communica-

tion on DVLIW architectures, including BCASTs and WAKEs; this increase is generally

negligible. The second bar shows the ratio of globally distributed instruction bytes on

the CVLIW to globally distributed instruction bytes on DVLIW. On the CVLIW with
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Figure 6.5: Effectiveness of sleep mode on a 4-cluster DVLIW.

centralized I-fetch, all the instruction bits need to be distributed on global wires (both

L1 hits and misses), while on DVLIW, only L1 cache misses need to be transferred on

global wires. The ratio varies from 20 to 1,000,000 across the benchmarks. The third bar

shows the total reduction of global traffic including both inter-cluster move and instruc-

tion fetch. The total ratio is not as large as the fetch ratio because inter-cluster data

transfers represent a significant portion of the global traffic that does not change much

on DVLIW.

The reduction in global traffic combined with a more efficient cache organization leads

to potential energy savings for DVLIW over a traditional VLIW. Focusing on the in-

struction fetch subsystem, Figure 6.4 reports the relative energy on a 4 cluster DVLIW

architecture. A value of 1 in the figure is the instruction fetch energy consumption on a

CVLIW processor with the same issue width and centralized control path. Our instruc-

tion energy consumption model consists of 3 parts: align/distribution, interconnect, and

the L1/L2 caches. The align/distribution energy was presented previously in Table 6.1.
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Figure 6.6: Comparison of the relative code size of 2- and 4-cluster DVLIWs with VLIWs
having a distributed I-cache and a shared PC.

The interconnect energy corresponds to the energy consumed to broadcast the control

signals from the I-cache to the FUs. We use a wire energy model similar to that of [70].

Finally, the L1/L2 cache energy is derived from Cacti [63].

As shown in Figure 6.4, DVLIW on average reduces the energy consumption of the

instruction align/distribution network by 67%, interconnect by 80%, and the caches by

21%. The total energy consumption on the control path is reduced by 54% on average.

One thing to notice is that three benchmarks (cjpeg, djpeg and 255.vortex) consume

more I-cache energy in the DVLIW processor. This is because although DVLIW has

smaller and more efficient caches, the number of I-cache accesses and L1 misses for these

benchmarks increases by a large amount. However, the energy savings on the instruction

align/distribution network and interconnect compensate for the increase in I-cache energy

consumption, and the total energy coa large fraction of control path is reduced. In a real
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Figure 6.7: Comparison of the relative stall cycles and execution time on a 4-cluster
DVLIW with a VLIW having a distributed I-cache and a shared PC.

processor, instruction fetch consumes a large fraction of power dissipated by the processor.

For example, instruction consumes 27% of CPU power in the StrongARM SA-100 [18],

and almost 50% of CPU power in the Motorola MCORE [38]. The energy savings on the

control path translate to a significant power reduction for the whole chip.

DVLIW Sleep Mode. To demonstrate the effectiveness of sleep mode in reducing

code size, Figure 6.5 compares the relative code size with and without sleep mode enabled

for a 4-cluster DVLIW machine. The code size is reported relative to the 4-cluster CVLIW

with a fully compressed encoding. On average, DVLIW code size decreases from 1.77 times

that of a CVLIW without sleep mode to 1.40 when sleep mode is used. This shows that

in parts of the application that do not have high ILP, significant code size and energy

savings can be realized by turning off unused clusters.

DVLIW vs. Distributed Uncompressed Instruction Memory. The obvious
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alternative to DVLIW is to distribute the control path, but with a single PC, similar

to the Multiflow TRACE system as shown in Figure 3.5(c). With this approach, code

compression cannot be employed as discussed in Section 2. Figure 6.6 compares the

normalized code size of DVLIW and the distributed uncompressed architecture. On the

y-axis, a value of 1 is the code size of the benchmark on a CVLIW machine with a fully

compressed encoding. Again, the TINKER encoding is assumed in our experiments [14].

Four bars are presented for each benchmark. The first bar is the normalized code size of

the benchmark on the 2-cluster DVLIW machine. The second bar shows the normalized

code size on a 2-cluster distributed machine with uncompressed encoding. The third

and fourth bars show corresponding data for 4-cluster configurations. On average, the

normalized code size is 1.2 on the 2-cluster DVLIW and 1.4 on the 4-cluster DVLIW.

The increase in code size on DVLIW is due to the introduction of EPBRs, BCASTs,

EBRs, WAKEs and other related operations such as spill code. As stated before, the

fully uncompressed encoding must be used for distributed architectures with a shared PC

or multiple identical PCs. As shown in the figure, the code size on DVLIW machines is

much smaller than the code size on those machines.

Figure 6.7 shows the relative stalls and execution cycles of a 4-cluster DVLIW over

the corresponding processors with uncompressed distributed I-cache. The datapath of

both machines is identical. The TINKER encoding is used for DVLIW, while the shared

PC machine uses an uncompressed encoding. As shown in the figure, on average, stall

cycles decrease by 70% on DVLIW and consequently, the total execution time reduced

by 30%. One benchmark 164.gzip is slightly slower on DVLIW because the I-cache stalls

account for a small fraction of the total execution time, and the overhead incurred by

extra operations on DVLIW outweighs the benefit of fewer I-cache stalls. However, for

the majority of benchmarks, the benefits of smaller code size and fewer I-cache misses
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more than compensate for the overhead of extra operations.

6.2 Exploiting Fine Grain TLP

6.2.1 Experimental Methodology

This work implements DSWP and eBUG to exploit fine-grain TLP. The compiler also

performs most common optimizations to generate better quality code.

The multicore simulator models VLIW cores, dual-mode interconnect network, and

coherent caches. It performs functional simulation for each VLIW core. The processor

model utilizes the HPL-PD instruction set [32] and the latencies of the Itanium processor

is assumed. The dual-mode interconnect is modeled to simulate both direct and queue

mode communication. We assume a three cycle minimum latency for queue mode (2

cycles plus 1 cycle per hop) and a one cycle minimum latency for direct mode (1 cycle per

hop). The four core processor is connected in a mesh as was depicted in Figure 3.6(a).

Large portions of the M5 simulator [7] is utilized to perform detailed cache modeling,

incorporating the full effects of maintaining cache coherence. Voltron is assumed to be

a bus-based multiprocessor where coherence is maintained by snooping on a shared bus

using the MOESI protocol.

We evaluate a two-core and a four-core Voltron processor against a single core baseline

VLIW machine. In all experiments, each core is a single-issue processor.

Performance is evaluated on a subset of benchmarks from the MediaBench and SPEC

2000 suites. Not all benchmarks could be included due to compilation problems in Tri-

maran.
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Figure 6.8: Speedup for fine-grain TLP execution.

6.2.2 Results

Figure 6.8 shows the speedup of TLP execution on 2 core and 4 core systems. Again,

the baseline, 1.0 in the figure, represents the execution time of benchmarks on a single-

core processor. The eBUG algorithm is used to partition operation to multiple cores.

Our compiler inserts communications and insure the correct memory access ordering.

As shown in the figure, on average, a 1.09x speedup is achieved on the 2 core system

and a 1.14x speedup is achieved on the 4 core system. Since eBUG extracts fine-grain

from individual basic blocks or hyperblocks. The speedup that can be achieve is closely

related to the amount of parallelism within the block. Because the decoupled execution

mode has a higher communication latency, the fine-grain TLP execution can have a lower
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Figure 6.9: Breakdown of synchronization stalls by type on a 4-core system. Each bench-
mark has two bars: the left bar is for decoupled mode and the right for coupled
mode.

speedup compared to ILP execution. However, if the application has many cache misses,

decoupled execution has the benefit of being able to overlap undeterministic latencies.

Benchmarks that have a lot cache misses, such as 179.art, performs better in fine-grain

TLP execution than ILP execution. Note that there are room to improve the performance

of TLP execution through a better compiler algorithm. The compiler algorithm can

examine scopes larger than a single block to expose more parallelism. That’s one direction

of my future work.

Memory and communication stalls. Figure 6.9 shows the relative execution time

each benchmark spends on stalls under coupled and decoupled mode when executing on

a 4-core Voltron processor. Stall cycles are normalized to the total execution time of the

benchmark under coupled mode. Two bars are shown for each benchmark. The first bar

shows the average stall cycles for all 4 cores in decoupled mode, and the second shows
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the stall cycles in coupled mode. Every bar in the graph has several parts representing

the reasons the cores can stall. The bottom-most two parts of each bar show the average

stalls due to instruction and data cache misses. For decoupled mode, they are followed by

stalls due to receive instructions and synchronization before function calls and returns.

The receive stalls are further separated into data receives and predicate receives to study

how much stalling is caused by control synchronization.

As the data indicates, decoupled mode always spends less time on cache miss stalls

because different cores are allowed to stall separately. On average, the number of stall

cycles under decoupled mode is less than half of that under coupled mode. This explains

why it is beneficial to execute memory intensive benchmarks in decoupled mode. How-

ever, decoupled mode suffers from extra stalls due to scalar communication and explicit

synchronization, which hurts the performance if such communication and synchronization

is frequent.

6.3 Uncovering Hidden LLP

6.3.1 Methodology

We implemented the algorithms discussed in the previous section in the OpenIMPACT

compiler [54]. The algorithms identify opportunities for control dependence speculation

(DOALL-uncounted loops), register reduction variable expansion, long distance memory

dependence iteration chunking, speculative loop fission, speculative prematerialization,

and infrequent dependence isolation. For reduction variable expansion, the compiler iden-

tifies reduction variables for summation, production, logical AND/OR/XOR, as well as

variables for finding min/max. For speculative loop fission, the compiler identifies loops

where the sequential part represents less than 3% of the dynamic execution of the loop. For
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infrequent dependence isolation, the frequency of cross iteration register dependence and

library calls has to be less than 10%. For long distance memory dependences, a threshold

of 4 iterations is assumed. These thresholds were experimentally chosen to maximize the

speedup. Several benchmarks from SPEC CPU 92/95/2000, MediaBench [37], and Unix

utilities are studied and we show the results for all the benchmarks that successfully ran

through our system.

Our multicore simulation system models 1-8 single-issue in-order processor cores sim-

ilar to the ARM-9. The simulator models a scalar operand network, where we assume

a 3 cycle latency to communicate register values between neighboring cores. A perfect

memory system is assumed. We use a software transactional memory [17] to emulate the

underlying hardware transactional memory described in Section 3.3. We assume that the

transaction abort incurs an average of 500 cycles overhead and requires execution of the

reset block as well as re-execution of the chunk. Successfully committed transactions do

not incur extra overhead besides XBEGIN and XCOMMIT instructions.

6.3.2 Results

Figure 6.10 shows the fraction of the dynamic sequential execution that can be par-

allelized after applying all our proposed transformation techniques. On average, 61% of

the sequential execution can be speculatively parallelized. This number is more than

twice the coverage of 28% using TLS without any transformation, and 8.5 times the 7%

gain by relying on static analysis alone (see Figure 5.1). More importantly, for SPECint

benchmarks, the transformations are able to uncover loop level parallelism in 55% of the

sequential execution, where previous techniques yield poor results.

Figure 6.11 shows the speedups achieved on 2-core, 4-core and 8-core machines com-

pared to a single core. One stacked bar is shown for each configuration. The lower part
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Figure 6.10: Fraction of sequential execution covered by speculative DOALL loops after
transformations

shows the speedup results without our proposed transformations. Therefore, only counted

loops with no or very few cross iteration dependences from profiling are parallelized. The

higher part of the stack bar shows the speedup after all transformations are applied. The

compiler chooses the most profitable loop to parallelize if multiple nesting levels can be

parallelized.

On average, we achieved a speedup of 1.36 with transformations compared to the 1.19

speedup without transformation on a 2-core machine. In addition, we got much higher

speedups on 4-core and 8-core configurations as the average speedup increases from 1.41

to 1.84 for the 4-core machine and from 1.63 to 2.34 for the 8-core machine after applying

transformations.

The speedup values vary widely across different benchmarks. For SPECfp bench-

marks, significant speedup values are achieved due to the inherent parallel nature of the
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Figure 6.11: Effect of the compiler transformations on performance for 2, 4, and 8 core
systems. The bottom portion of each bar shows the baseline with TLS only
and the top portion shows the combined affects of all transformations.

applications. In the SPECint benchmarks, the average speedups are 1.19, 1.37 and 1.50

for 2-core, 4-core and 8-core configurations, which is a considerable improvement over

previous techniques. As shown in the figure, the baseline compiler cannot extract much

parallelism from these benchmarks due to the large number of inter-iteration register and

control dependences typically found in C applications.

The speedups for MediaBench benchmarks are generally higher than SPECint, while

the Unix utility benchmarks have similar results to SPECint. If we consider reduction

variable expansion as part of the baseline, the speedups without transformations increase

to an average of 1.24, 1.59 and 1.95, respectively. Our new transformations still achieve

considerable speedups on top of that. It should also be noted that reduction variable ex-

pansion helped mostly in the SPECfp benchmarks compared to the integer applications.

The new transformations are especially helpful for SPECint benchmarks where traditional

transformations alone are largely unsuccessful. Note that high coverages shown in Fig-

ure 6.10 do not always translate to high speedup numbers. Mpeg2enc is an example of
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Figure 6.12: The first two bars show the effect of inter-core communication through mem-
ory systems versus scalar operand network. The last bar shows the speedup
without any parallelization overhead.

such a case. The loops identified as parallel in this example have a small loop body and

low trip count. Therefore, the parallelization overhead makes it much less appealing for

parallelizing such loops. Another observation is that the SPECfp benchmarks are quite

scalable. Several benchmarks such as 171.swim, 172.mgrid and 179.art achieve almost

linear speedup on 4 and 8 cores.

As mentioned before, we use Scalar Operand Network (SON) to communicate register

values between the cores and maintain commit orderings. In Figure 6.12, we studied

the effects of SON and also the code generation framework on the benchmark speedups.

This figure shows the speedup values on a 4-core machine with different configurations.

Three bars are shown for each benchmark. The first bar shows the speedup assuming we

don’t have a scalar operand network and all communications between the cores must go
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through the shared L2 cache. In this scheme, the commit order is maintained using locking

primitives. We assume communication between cores takes 30 cycles. The second bar

shows the case when we have a SON can communicate register values between neighboring

cores with a 3-cycle latency. This is the same data from Figure 6.11. As shown in the

figure, for some benchmarks such as 171.swim, 179.art and 175.vpr, we can achieve nearly

the same speedup with and without the SON. These benchmarks have large loop bodies

with high trip counts, and the communication overhead is amortized by large chunks of

parallel work. On the other hand, benchmarks, such as pegwitdec, pegwitenc, and grep,

suffer significantly from lack of the SON. The loop sizes in these benchmarks are small to

medium, and the high communication overhead easily takes away all the benefits resulting

from parallelization. On average, the speedup without the SON is 1.70 compared to the

1.85x speedup with the SON. We can see that a reasonable benefit can be achieved from

the transformations without a SON as well. The third bar in Figure 6.12 shows speedups

without the parallelization overhead. Our speculative parallelization framework decreases

the performance gain by about 10% on average compared to the configuration with zero

parallelization overhead.

Table 6.2 shows the the fraction of the dynamic sequential execution that can be par-

allelized with different techniques. It also shows the abort frequencies during speculative

execution. The first 7 columns show the coverage of different transformation techniques.

Each element represents the time spent in loops that are parallelized by a certain trans-

formation. For example, by applying reduction variable expansion in 052.alvinn, loops

that account for 97% of the sequential execution time can become parallelizable. For the

transformation in each column, we assume the techniques in columns to the left have been

applied, so the data in a column represents the additional parallelism being uncovered.

If both the outer and inner loop in a nested loop are parallelized by a certain technique,
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Bench DOALL CS RE SF PM IDI LD AF
SpecFP

052.alvinn 55 0 97 94 0 0 0 0
056.ear 99 0 0 0 0 0 0 0
171.swim 98 0 2 98 0 0 0 0
172.mgrid 98 0 0 97 0 0 0 0
177.mesa 68 0 6 0 0 0 0 0
179.art 51 0 77 100 94 77 0 0
183.equake 66 0 41 16 0 44 0 0
188.ammp 10 16 0 1 0 0 0 0

SpecINT
008.espresso 8 12 18 9 25 3 22 2
023.eqntott 2 95 0 30 0 1 97 0
026.compress 1 0 0 29 0 0 0 0
072.sc 1 3 14 5 0 24 0 0
099.go 4 2 0 8 0 3 1 1
124.m88ksim 15 1 0 34 0 34 0 0
129.compress 2 0 9 4 0 0 0 0
130.li 0 0 0 17 0 0 44 1
132.ijpeg 60 19 1 16 9 26 0 0
164.gzip 9 0 0 2 0 0 0 1
175.vpr 0 0 0 79 0 0 100 0
181.mcf 1 1 0 42 0 0 1 2
197.parser 12 0 2 6 0 0 1 1
255.vortex 0 0 0 0 0 0 0 0
256.bzip2 5 1 0 100 0 0 49 2
300.twolf 1 0 0 54 0 2 1 0

MediaBench
cjpeg 53 0 2 9 0 6 0 0
djpeg 29 23 23 59 23 0 0 1
epic 86 0 87 85 0 0 1 0
g721decode 8 0 36 0 0 0 0 0
g721encode 7 0 34 0 0 0 0 0
gsmdecode 12 3 0 0 0 0 0 0
gsmencode 12 2 47 0 0 1 0 0
mpeg2dec 92 5 67 5 0 3 0 0
mpeg2enc 13 84 33 31 10 0 0 0
pegwitdec 26 0 0 31 0 0 0 0
pegwitenc 28 0 0 32 0 0 0 0
rawcaudio 0 0 0 0 0 0 0 0
rawdaudio 0 0 0 0 0 0 0 0
unepic 41 0 10 12 0 0 0 0

Utilities
grep 0 43 0 0 0 0 0 0
lex 21 5 0 70 0 2 0 0
yacc 33 52 17 2 0 3 20 6

average 27 9 15 28 4 5 8 0

Table 6.2: Percentage sequential code coverage of various transformations – Last column
shows the Abort frequencies in the benchmarks. Coverages higher than 20%
are highlighted. (CS:control speculation for uncounted loop, RE: reduction
expansion, SF: speculative fission, PM: prematerialization, IDI: infrequent de-
pendence isolation, LD: ignore long distance dependence, AF: abort frequency).
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only the time spent in the outer loop taken into account. If the outer and inner loop are

parallelized by two different techniques, the time spent in the inner loop will show up in

two categories. Therefore, the numbers in a row could add up to more than 100%.

The first column shows the coverage of parallel loops without any transformations. The

second column shows the fraction of time spent in DOALL-uncounted loops. On average,

control flow speculation alone enables an additional 9% of the sequential execution to

execute in parallel. Moreover, it is an enabling technique for other transformations. For

example, infrequent dependence isolation converts a loop into a nested loop, and the inner

one is DOALL-uncounted. The third column is for register reduction variable expansion.

On average, it converts 15% of the execution into parallel loops. This is a relatively simple

transformation and provides good performance improvement. For any system that tries

to parallelize sequential programs, reduction variable expansion should be the first low

hanging fruit to go for.

The next column shows fraction of time spent in loops that can be parallelized by

speculative loop fission. On average, it enables 28% of the execution to partially execute

in parallel. This transformation has the largest potential among the ones that we studied.

It is especially useful for SPECint benchmarks for which other techniques do not provide

much benefit.

Prematerialization, infrequent dependence isolation, and iteration chunking for long

distance memory dependence each improve parallel coverage significantly for certain bench-

marks. In contrast to control speculation, reduction expansion and fission, they each affect

less than 50% of the benchmarks. However, in the benchmarks which they show benefits,

it is usually quite significant. On average, they improve the parallel coverage by 4%, 5%

and 8%, respectively.

The last column in the table shows the abort frequency during speculative execution.
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The abort frequency is the number of aborted iterations divided by the total number of

iterations in the benchmark. As shown in the figure, they are quite low, and most bench-

marks have abort frequencies less than 2%. We also studied the stability of the profile

results on different inputs. We found loops without cross iteration memory dependence

on one input usually do not have cross iteration memory dependence using other inputs as

well. As a result, speculative DOALL loops are mostly consistent across different inputs.

6.4 Exploiting Hybrid Parallelism

6.4.1 Experimental Methodology

The compiler implements techniques to exploit ILP, fine-grain TLP and statistical LLP

described in Chapter 4 and Chapter 5. For each basic block in the program, the compiler

selects the best type of parallelism to exploit to achieve the best speedup. The compiler

first looks for opportunities to exploit loop level parallelism. The algorithm in Section 5.4

is used to selected profitable loops to parallelize. Loops are parallelized first because

they provide the most efficient parallelism; neither communication nor synchronization

is needed between cores for the parallel execution of the loop body. For blocks that are

not in a parallel loop, the compiler applies the partitioning algorithm for ILP and TLP

separately, the execution mode with higher estimated performance gain is selected.

This section evaluates two-core and four-core Voltron processors against a single core

baseline VLIW machine. We assume there is no overhead to switch between different

execution modes for this study.
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Figure 6.13: Speedup on 2-core and 4-core Voltron exploit hybrid parallelism.

6.4.2 Results

Figure 6.13 shows the speedup for exploiting all three types of parallelism utilizing

both coupled and decoupled modes. The compiler uses a heuristic to select the best type

of parallelism to exploit for each block in the program. The results show that the hybrid

parallelism is much more effective at converting the available resources into performance

gain than either individual type of parallelism. Overall, the speedup for a 2-core system

is 1.22, 1.09, and 1.41 when exploiting ILP, TLP and LLP separately. If the best type

of parallelism is exploited for each block, the speedup for exploiting hybrid parallelism is

1.66. For 4 core systems, the speedup for exploiting ILP, TLP and LLP is 1.32, 1.14 and

1.97. By exploiting hybrid parallelism, the speedup will 2.44.

During hybrid execution, the architecture spends significant amounts of time exploiting
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Figure 6.14: Breakdown of sequential execution time best accelerated by exploiting dif-
ferent types of parallelism.

different types of parallelism. Figure 6.14 shows the percentage of sequential execution

time spent exploiting ILP, TLP, LLP or executing on a single core. This experiment

assumes a 4-core system. This figure shows that there is no dominant type of parallelism,

and the contribution of each form of parallelism varies widely across the benchmarks. On

average, the fraction of dynamic execution that is attributed to each form of parallelism

is: 54% by LLP, 19% by fine-grain TLP, and 23% by ILP. 4% of the execution doesn’t

show any opportunities for all three types of parallelism as it had the highest performance

on a single core.

This figure is similar to Figure 2.5 in Chapter 2. The difference is that the experiment

conducted for Figure 2.5 does not apply the LLP uncovering transformations proposed in

Chapter 5. After applying the transformations, more loops can be parallelized and more

130



execution time are spent exploiting LLP. However, as shown in the figure, ILP and TLP

are still important source of performance improvement and they need to be exploited

when coarse grain parallelism are not available.
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CHAPTER 7

Summary

The micorprocessor industry is gradually shifting from single-core to multicore sys-

tems. A major challenge going forward is to get the software to utilize the vast amount of

computing power and adapt single thread applications to keep up with this advancement.

This dissertation proposed architectural and compiler mechanisms to automatically ac-

celerate single thread application on multiple systems by efficiently exploiting three types

of parallelism: instruction level parallelism(ILP), find-grain thread level parallelism(TLP)

and speculative loop level parallelism(LLP).

First, this dissertation proposed a multicore architecture, called DVLIW, to exploit

ILP across multiple cores. DVLIW allows multiple in-order cores to dynamically coa-

lesce into a wide VLIW processor. Compiler manages multiple instruction streams to

collectively function as a single logical stream on a conventional VLIW. A synchronized

branch mechanism is proposed to facilitate the collective execution. The same techniques

in DVLIW can also be applied to decentralize the control path in conventional VLIW

processors to improve the scalability and reduce energy consumption. The scalability

and energy savings are achieved without sacrificing the code size benefits of compressed

instruction encodings.
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Second, this dissertation proposes a multicore architecture, referred to as Voltron,

that is designed to exploit the hybrid forms of parallelism that can be extracted from

general-purpose applications. The unique aspect of Voltron is the ability to operate in

one of two modes: coupled and decoupled. In coupled mode, the cores execute in lock-

step forming a wide-issue VLIW processor. Each core executes its own instruction stream

and through compiler orchestration, the streams collectively execute a single thread. In

decoupled mode, the cores operate independently on fine-grain threads created by the

compiler. Coupled mode offers the advantage of fast inter-core communication and the

ability to efficiently exploit ILP across the cores. Decoupled mode offers the advantage

of fast synchronization and the ability to overlap execution across loop iterations and in

code regions with frequent cache misses.

Finally, this dissertation studied the automatic parallelization of loops in general-

purpose applications with TLS hardware support. By studying the benchmarks, I found

that a considerable amount of loop-level parallelism is buried beneath the surface. This

work adapted and introduced several code transformations to expose the hidden paral-

lelism in single-threaded applications. More specifically, I introduced speculative loop

fission, isolation of infrequent dependences, and speculative prematerialization to untan-

gle cross iteration data dependences, and a general code generation framework to handle

both counted and uncounted speculative DOALL loops. With the new transformation

techniques, more than 61% of dynamic execution time in the general applications can

be parallelized compared to 27% achieved using traditional techniques. On a 4-core ma-

chine, our transformations achieved 1.84x speedup compared to 1.41x speedup without

transformations.
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