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CHAPTER I

Introduction

Data assimilation refers to the process of using measurement data along with

model information to estimate the value of a certain variable. We come across var-

ious data assimilation applications in our daily life. For example, before crossing

a road, we estimate the speed of oncoming vehicles by using visual images of their

position at different instances in time. These visual images serve as measurements,

while our knowledge relating quick changes in the position to greater speeds serves

as the model. GPS systems use estimation algorithms to determine the location of

GPS receivers using signals from GPS satellites. In many feedback control applica-

tions, whenever the exact value of a feedback variable is unknown, controllers use an

estimate of that variable for feedback. Hence, the performance and stability of the

controller depends on the accuracy of the estimates. For example, guidance and nav-

igation algorithms in satellites and spacecraft use critical orbital parameters that are

obtained using estimation algorithms. Terrestrial weather agencies use estimation

algorithms that run on supercomputers to predict the daily weather and issue critical

meteorological warnings. Finally, estimation algorithms are used as fault diagnos-

tic tools in fuel cell monitoring and many industrial applications like semiconductor

manufacturing.

1
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There are many ways to estimate an unknown quantity using available data. Most

of these estimation techniques use either a deterministic or statistical framework for

estimation, that is, the unknown variable x is assumed to be either a random quantity

or a deterministic variable. Most estimation techniques use a model framework to

capture the relationship between the available measurements y, the unknown variable

x, and the model parameters and known inputs. Finally, many estimation techniques

involve minimizing a certain performance criteria. Specifically, if x̂ is an estimate

of x, so that the error in the estimate is given by x − x̂, then the objective of most

estimation algorithms is to obtain an estimate x̂ that results in a small magnitude

of the error x − x̂.

One of the earliest estimation techniques, the least-squares method, was devel-

oped by Carl Friedrich Gauss in 1809. Consider a static model

y = uTx,

where x is the unknown variable, u contains the known inputs and model parame-

ters, and y is the available measurement. Assume that n measurements, y1, . . . , yn,

corresponding to n inputs u1, . . . , un are available so that

Yn = Unx,

where

Yn ,

[

y1 · · · yn

]T

, Un ,

[

u1 · · · un

]T

.

Assuming UT
n Un is invertible, the estimate x̂ that minimizes

JLS , ‖Yn − Unx̂‖2,

is given by x̂n = x̂LS,n, where

x̂LS,n = (UT
n Un)−1UT

n Yn.
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The least-squares technique is still widely used for estimation because of its simplicity

[1–3]. The subscript n in x̂LS,n denotes the fact that x̂LS,n is the best estimate

obtained using n measurements and input data, Yn and Un, respectively. Whenever a

new measurement yn+1 and input value un+1 are available, the new measurement and

input value are appended to Yn and Un, and a new least-squares estimate x̂LS,n+1 can

be obtained. However, when the number of measurements n becomes large, the size

of Un increases, and constructing UT
n Un is computationally expensive. Alternatively,

the recursive-least-squares (RLS) procedure can be used to improve the least-squares

estimate of x by updating the previously obtained least-squares estimate using only

the new set of measurements [4]. RLS is a computationally efficient procedure for

incorporating new measurements to improve prior state estimates.

In many cases, the relationship between the input u, the unknown variable x, and

the measurement y, is more complicated. Furthermore, all the inputs that affect the

model are not known, and sensors that produce measurements are inherently noisy.

One simple framework that models such a scenario is the linear Gauss-Markov model

given by the following dynamical system

xk+1 = Akxk + Bkuk + wk, k > 0

yk = Ckxk + vk,

where k indicates the time step, xk is the unknown random variable, uk is the known

input, yk is the measured output, wk is the unknown external disturbance affecting

the plant, vk is the sensor noise, and Ak, Bk, and Ck are matrices containing known

model parameters. A number of systems are modeled by the linear Gauss-Markov

model. For example, consider rigid-body motion governed by Newton’s second law.

The state x comprises of the position and velocity of the body, while inputs u and
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w denote known and unknown forces acting on the body, and Ak and Bk contains

physical parameters like the mass of the body. Often, the dynamics of nonlinear

systems like an aeroplane in flight is linearized about a mean trajectory, and a linear

model is used. In this case, the state x contains altitude and pitch deviations from

the nominal trajectory, whereas w denotes unknown forces acting on the aeroplane,

like turbulence effects.

The objective of state estimation is to obtain estimates of the state xk using

measurements yk. If wk ≡ 0 and x0 is known, then the estimator

x̂k+1 = Akx̂k + Bkuk, k > 0

with x̂0 = x0 yields x̂k = xk for all k > 0. Hence, if all the inputs to a dynamical

system and the value of the initial state are known, exact estimates of the state

can be obtained without using any measurement data. However, since there are

always external disturbances affecting the plant, generally wk 6= 0 and since direct

measurements of the state x are unavailable, one generally has only a poor estimate

of the initial state. In this case, the measurement yk is used along with model

information to obtain better estimates of the state xk. The use of measurement data

and model information to obtain better estimates of the state is referred to as data

assimilation.

A linear estimator has the structure

x̂k+1 = Akx̂k + Bkuk + Kk(yk − ŷk), k > 0

ŷk = Ckx̂k,

where Kk is the estimator gain that injects the difference between the measured data

and estimated measurement to improve the state estimates. If wk and vk are zero-

mean normally distributed white noise, the Kalman filter provides optimal estimate
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of the state xk [5, 6]. The Kalman filter is a linear estimator with a special estimator

gain. Specifically, in the Kalman filter, Kk depends on the error covariance Pk defined

by

Pk , E
[

(xk − x̂k)(xk − x̂k)
T
]

.

Therefore, in order to provide optimal estimates of the state xk at every time step

k, the Kalman filter updates the error covariance Pk using the Riccati equation

Pk+1 = (A − KkCk)Pk(Ak − KkCk)
T + KkRkK

T
k + Qk,

where Qk and Rk are the variances of wk and vk. For low-dimensional systems, the

Kalman filter is a simple and efficient tool to obtain optimal state estimates. Owing

to its simplicity, the Kalman filter has been used in a number of applications ranging

from econometric analysis to the Apollo missions.

When the order of the dynamical system is high, for example, the dimension of

xk can be greater than 105 in terrestrial weather and ocean-climate models, imple-

menting the Kalman filter is computationally intractable. Various extensions of the

Kalman filter have been developed to address these computational issues. In many

cases, estimates of only a certain subset of the state are required, and one approach

that is employed in such a case is the reduced-order estimator. In these reduced-

complexity estimators, a reduced-order model of the dynamics is used to propagate

the state estimates instead of the full-order model. In [7, 8], a projection process is

used to obtain the optimal reduced-order estimator dynamics, while the full-order

dynamics are used to propagate the error covariance. Hence, although the computa-

tional burden of updating the state estimates is less, covariance propagation remains

a computationally demanding task.
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Alternatively, reduced-order estimators that use a reduced-order covariance are

developed in [9]. In these estimators, model-reduction is first performed using vari-

ous techniques like truncation and balancing, and an estimator is designed using the

reduced-order model. Although such a construction does not yield optimal reduced-

order estimators, the computational advantage of propagating a reduced-order co-

variance outweighs the degradation in performance.

Next, consider the following system with nonlinear dynamics and measurement

map

xk+1 = f(xk, uk, wk, k), k > 0

yk = h(xk, vk, k).

The Kalman filter provides optimal estimates only when the dynamics and measure-

ment map are linear. Estimators for nonlinear systems are an area of active research

[10–13]. Optimal estimators for nonlinear systems are usually infinite-dimensional

and cannot be easily implemented. Furthermore, propagating the error covariance

of nonlinear estimators is difficult even for scalar nonlinear systems [10, 12]. How-

ever, a number of suboptimal techniques are used to deal with nonlinear systems.

Amongst these, the extended Kalman filter and SDRE filter are some of the most

simple approaches to nonlinear state estimation [14, 15]. In these extensions of the

Kalman filter, the estimator state is propagated using the nonlinear model

x̂k+1 = f(x̂k, uk, 0, k) + Kk(yk − ŷk), k > 0

ŷk = h(x̂k, 0, k).

The estimator gain depends on the pseudo-error covariance that is propagated using

the Riccati equation with either the Jacobians of the dynamics and measurement
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maps or state-dependent factorizations taking the place of Ak and Ck. Although

these estimators are not optimal, they have been used successfully in a number of

areas.

Since these filters are extension of the Kalman filter, they suffer from the same

computational disadvantages when used for large-scale systems. Moreover, since the

dynamics are nonlinear, the projection and balancing techniques used for linear sys-

tems cannot be used to obtain a reduced-order model. Furthermore, in systems based

on spatially distributed models or spatially discretized partial differential equations,

for example, such systems arise in weather forecasting and atmospheric applications,

it is difficult to obtain the Jacobian or a parametrization of the nonlinear dynamics.

Another approach to state estimation of nonlinear systems involves running mul-

tiple copies of the model in parallel. Such techniques are commonly referred to as

particle filters [16]. In particle filters, the Kalman filter estimator gain expression

is used for data injection. However, the error covariance is calculated from the col-

lection of state estimates instead of the Riccati equation. The ensemble Kalman

filter, developed in [17], injects randomly generated noise into multiple copies of the

model to simulate the effect of the external disturbance wk on the plant dynamics.

In [18, 19], a deterministic approach is used to generate the collection of state es-

timates. Specifically, the columns of the pseudo-error covariance matrix is used to

re-initialize the multiple copies of the model at every time step. In all the variations

of the particle filter, the ensemble size, that is, the number of copies of the model,

determines the computational requirements. The ensemble size of the deterministic

particle filters is determined by the size of the pseudo-error covariance matrix. For

example, the ensemble size of the unscented Kalman filter is 2n + 1, where n is the

dimension of the state to be estimated. However, computational resources place a
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limit on the number of copies of the model that can be simulated in parallel.

One of the methods used to reduce the ensemble size is to apply the particle

filtering algorithms to a truncated model. Specifically, these localized approaches

construct ensembles of only the subset of the state whose estimates are desired [20].

The localized ensemble members are then used to construct a reduced-order pseudo-

error covariance that is then used to construct the localized estimator gain. For

example, in weather prediction applications, if estimates of certain atmospheric vari-

ables in only a specific region are required, then multiple copies of a model of only

that region are created and used for data assimilation. Moreover, data injection is

also restricted to state estimates corresponding to the local region. However, con-

straining data injection to a certain subset of the state in an ad-hoc manner may

result in poor estimates of the state in other regions.

Yet another technique to reduce the ensemble size is given in [21, 22]. A common

feature shared by these algorithms is that a low-rank approximation of the pseudo-

error covariance is first constructed and then certain columns of this approximation

are truncated. Since the ensemble members are re-initialized at every time step using

the truncated low-rank approximation of the pseudo-error covariance, the truncation

method influences the performance of these reduced ensemble estimation algorithms.

Furthermore, these truncation algorithms involve an additional computational bur-

den that is not present in the original full ensemble algorithms.

This dissertation addresses the problem of developing reduced-complexity algo-

rithms for data-assimilation of large-scale linear and nonlinear systems. Throughout

this discussion, we assume that we have a discrete-time model of the underlying dy-

namics. The remainder of this introduction summarizes the contents of each chapter,

and outlines the original contributions of each chapter.
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Chapter II Summary

The original contribution of Chapter II is an optimal linear estimator that con-

strains output injection to a specific subset of the state estimate. Two versions of

the new linear estimator are presented and their performance is quantified. Re-

sults on the stability of the new estimator when used for state estimation of linear

time-invariant systems are also presented.

Chapter III Summary

Reduced-order estimators for linear time-varying systems is considered in Chap-

ter III. Specifically, we derive the optimal filter using a finite-horizon cost so that,

unlike the infinite-horizon approach [7, 8], the resulting estimator does not require

the solution of algebraic Riccati or Lyapunov equations.

Chapter IV Summary

In Chapter IV, we present a new reduced-rank square-root filter for linear systems

that is based on the Cholesky factorization of the pseudo-error covariance. Specifi-

cally, Chapter IV provides a filter whose performance, in many cases, is better than

the reduced-rank square-root filters in [21, 22] that use the singular value decom-

position. Furthermore, the filter presented is also computationally more efficient

compared to the reduced-rank square-root filters that use the singular value decom-

position. Finally, we present cases when the new reduced-rank square-root filter that

uses the Cholesky factorization is equivalent to the Kalman filter.

Chapter V Summary

The performance of two nonlinear estimation algorithms, the extended Kalman

filter and the unscented Kalman filter, is compared in Chapter V for various nonlinear

systems that contain nondifferentiable dynamics. Specifically, we are interested in

data assimilation of one-dimensional compressible flow using a finite-volume model,
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and the comparisons performed in Chapter V show the superiority of the unscented

Kalman filter over the extended Kalman filter when the nonlinearities in a system

become severe.

Chapter VI Summary

Within Chapter VI, we extend the results of Chapter IV for state estimation of

nonlinear systems. Specifically, we incorporate the reduced-rank square-root filter

presented in Chapter IV within the framework of the unscented Kalman filter pre-

sented in Chapter V, thus reducing the ensemble size and hence the computational

requirements to propagate the error covariance. We compare the performance of this

new filter with an analogous version that uses the singular value decomposition. The

comparisons performed shows the superiority of this new filter in both estimation

accuracy and computational requirements.

Chapter VII Summary

In Chapter VII, we present a technique that extends the localized data assimila-

tion algorithms presented in [9]. The algorithms in [9] inject data into only a certain

subset of the state and propagate a reduced-order error covariance. Hence, correla-

tions between certain subsets of the state and the measured subspace are neglected.

In Chapter VII, we compensate for the neglected correlation by using a static esti-

mator gain based on steady-state correlations. Thus, using this new technique we

are able to significantly improve estimates without a significant increase in the online

computational requirements. We use this new estimation technique for data assim-

ilation of two-dimensional magnetohydrodynamic flow using a finite-volume model

that is implemented on parallel processors.



CHAPTER II

Kalman Filtering With Constrained Output

Injection

This chapter considers an extension of the Kalman filter that uses measurement

data to directly update the estimates of only a specific subset of the state. Specifi-

cally, we consider state estimation of discrete-time linear systems with time-varying

state dimension. In the first part of this chapter, we derive the one-step and two-

step versions of the new filter. The one-step version of the filter uses both the model

information and measurement data in a single step, while the two-step version of

the filter uses the model information and measurement data in two distinct steps.

We derive bounds on the performance of both versions of the new filter, and also

present a condition that guarantees their equivalence. The last part of this chapter

deals with conditions that guarantee the asymptotic stability of the new filter for

linear time-invariant systems. The results presented in this chapter are published in

[23, 24].

2.1 Introduction

The classical Kalman filter provides optimal least-squares estimates of all of

the states of a linear time-varying system under process and measurement noise. In

11
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many applications, however, optimal estimates are desired for a specified subset of

the system states, rather than all of the system states. For example, for systems

arising from discretized partial differential equations, the chosen subset of states can

represent a subregion of the spatial domain. However, it is well known that the

optimal state estimator for a subset of system states coincides with the classical

Kalman filter [14, pp. 104-109].

For applications involving high-order systems, it is often difficult to implement

the classical Kalman filter, and thus it is of interest to consider computationally

simpler filters that yield suboptimal estimates of a specified subset of states. One

approach to this problem is to consider reduced-order Kalman filters. These reduced-

complexity filters provide state estimates that are suboptimal relative to the classical

Kalman filter [7, 8, 25, 26]. Alternative variants of the classical Kalman filter have

been developed for computationally demanding applications such as weather fore-

casting [27–30], where the classical Kalman filter gain and covariance are modified

so as to reduce the computational requirements.

The present chapter is motivated by computationally demanding applications

such as those discussed in [27–30]. For such applications, a high-order simulation

model is assumed to be available, but the derivation of a reduced-order filter in the

sense of [7, 8, 25, 26] is not feasible due to the high dimensionality of the analytic

model. Instead, we use a full-order state estimator based directly on the simulation

model. However, rather than implementing the classical Kalman filter, we derive an

optimal spatially localized Kalman filter in which the structure of the filter gain is

constrained to reflect the desire to estimate a specified subset of states. Our devel-

opment is also more general than the classical treatment since the state dimension

can be time varying, which is useful for variable-resolution discretizations of partial
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differential equations. Some of the results in this chapter appeared in [31].

The use of a spatially localized Kalman filter in place of the classical Kalman filter

is also motivated by computational architecture constraints arising from a multipro-

cessor implementation of the Kalman filter [32] in which the Kalman filter operations

can be confined to the subset of processors associated with the states whose estimates

are desired.

2.2 Spatially Localized Kalman Filter

We consider the discrete-time dynamical system

xk+1 = Akxk + Bkuk + wk, k > 0, (2.2.1)

with output

yk = Ckxk + vk, (2.2.2)

where xk ∈ R
nk , uk ∈ R

mk , yk ∈ R
lk , and Ak, Bk, Ck are known real matrices of

appropriate size. The input uk and output yk are assumed to be measured, and

wk ∈ R
nk+1 and vk ∈ R

lk are zero-mean white noise processes with variances and

correlation

E [wkw
T
j ] = Qkδkj, E [wkv

T
j ] = Skδkj, E [vkv

T
j ] = Rkδkj, (2.2.3)

where δkj is the Kronecker delta, and E [·] denotes expected value. We assume that

Rk is positive definite. The initial state x0 is assumed to be uncorrelated with wk

and vk. Note that the dimension nk of the state xk can be time varying, and thus

Ak ∈ R
nk+1×nk is not necessarily square.

For the system (2.2.1) and (2.2.2), we consider a state estimator of the form

x̂k+1 = Akx̂k + Bkuk + ΓkKk(yk − ŷk), k > 0, (2.2.4)
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with output

ŷk = Ckx̂k, (2.2.5)

where x̂k ∈ R
nk , ŷk ∈ R

lk , Γk ∈ R
nk+1×pk , and Kk ∈ R

pk×lk . The nontraditional

feature of (2.2.4) is the presence of the term Γk, which, in the classical case is the

identity matrix. Here, Γk constrains the state estimator so that only estimator states

in the range of Γk are directly affected by the gain Kk. For example, Γk can have

the form

Γk =















0

Ipk

0















, (2.2.6)

where Ir denotes the r× r identity matrix. We assume that Γk has full column rank

for all k ≥ 0.

Next, define the state-estimation error state ek by

ek
△
= xk − x̂k, (2.2.7)

which satisfies

ek+1 = Ãkek + w̃k, k ≥ 0, (2.2.8)

where

Ãk
△
= Ak − ΓkKkCk, w̃k

△
= wk − ΓkKkvk. (2.2.9)

Furthermore, we define the state-estimation error

Jk(Kk)
△
= E [(Lkek+1)

TLkek+1], (2.2.10)
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where Lk ∈ R
qk×nk+1 determines the weighted error components. Then,

Jk(Kk) = tr [Pk+1Mk] , (2.2.11)

where the error covariance Pk ∈ R
nk×nk is defined by

Pk
△
= E [eke

T
k ] (2.2.12)

and Mk
△
= LT

k Lk ∈ R
nk+1×nk+1 . We assume that Mk is positive definite for all k > 0.

The following lemma will be useful.

Lemma 2.2.1 The error (2.2.7) satisfies

E [ekw̃
T
k ] = 0. (2.2.13)

It thus follows from (2.2.8) and (2.2.13) that

E [ek+1e
T
k+1] = ÃkE [eke

T
k ]ÃT

k + E [w̃kw̃
T
k ]. (2.2.14)

Note that (2.2.3) and (2.2.9) imply that

E [w̃kw̃
T
k ] = Q̃k, (2.2.15)

where

Q̃k
△
= Qk − ΓkKkS

T
k − SkK

T
k ΓT

k + ΓkKkRkK
T
k ΓT

k . (2.2.16)

It thus follows from (2.2.12), (2.2.14), and (2.2.15) that Pk satisfies

Pk+1 = ÃkPkÃ
T
k + Q̃k. (2.2.17)

Therefore,

Jk(Kk) = tr[(ÃkPkÃ
T
k + Q̃k)Mk]. (2.2.18)

It follows from (2.2.9) and (2.2.16) that Jk(Kk) can be expressed as

Jk(Kk) = tr
[(

(Ak − ΓkKkCk)Pk(Ak − ΓkKkCk)
T + Q̃k

)

Mk

]

. (2.2.19)
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2.3 Removing the Noise Correlation

In the classical case where nk = n and Γk = In for all k > 0, the correlation

Sk can be removed by introducing a linear combination of the measurements as

deterministic inputs to the plant [34, pp. 181-183]. For the case Γk 6= In, we now

state a condition under which we can derive an equivalent system with uncorrelated

process and sensor noise.

Proposition 2.3.1 Let k > 0 and suppose there exists Hk ∈ R
pk×lk such that

ΓkHkRk = Sk. (2.3.1)

Then

Jk(Kk) = Jk(Kk), (2.3.2)

where

Jk(Kk) , tr
[(

(Ak − ΓkKkCk)Pk(Ak − ΓkKkCk)
T + Qk + ΓkKkRkK

T

k ΓT
k

)

Mk

]

,

(2.3.3)

Kk , Kk − Hk, Ak , Ak − ΓkHkCk, (2.3.4)

and

Qk , Qk − ΓkHkS
T
k − SkH

T
k ΓT

k + ΓkHkRkH
T
k ΓT

k . (2.3.5)

Proof. It follows from (2.3.5) that (2.2.18) can be expressed as

Jk(Kk) = tr
[(

(Ak − ΓkKkCk)Pk(Ak − ΓkKkCk)
T + Qk + ΓKkRkK

T

k ΓT
k

−ΓkKkS
T
k − SkK

T

k ΓT
k + ΓkKkRkH

T
k ΓT

k + ΓkHkRkK
T

k ΓT
k

)

Mk

]

.

Using (2.3.1) yields (2.3.3). 2



17

Note that replacing Ak, Qk, and Kk in (2.2.18) by Ak, Qk, and Kk, respectively,

and setting Sk = 0 in (2.2.18) yields (2.3.3). Hence, Jk(Kk) is the cost of a system

with uncorrelated process and sensor noise. It follows from (2.3.2) that Jk(Kk) can

be minimized with respect to Kk, and Kk can be determined by using (2.3.4). If

Γk is square and thus invertible by assumption, then Hk = Γ−1
k SkR

−1
k . In general,

however, there may not exist a matrix Hk satisfying (2.3.1).

2.4 One-Step Spatially Constrained Kalman Filter

In this section we derive a one-step spatially constrained Kalman filter that

minimizes the state-estimation error (2.2.18). For convenience, we define

Ŝk , AkPkC
T
k + Sk, R̂k , Rk + CkPkC

T
k , (2.4.1)

and πk ∈ R
nk+1×nk+1 by

πk
△
= Γk(Γ

T
k MkΓk)

−1ΓT
k Mk. (2.4.2)

Note that πk is an oblique projector, that is, π2
k = πk, but is not necessarily symmet-

ric. Next, define the complementary oblique projector πk⊥ by

πk⊥
△
= Ink+1

− πk. (2.4.3)

Proposition 2.4.1 The gain Kk that minimizes the cost Jk(Kk) in (2.2.18) is

given by

Kk = (ΓT
k MkΓk)

−1ΓT
k MkŜkR̂

−1
k , (2.4.4)

where the error covariance Pk is updated using

Pk+1 = AkPkA
T
k + πk⊥ŜkR̂

−1
k ŜT

k πT
k⊥ + Qk − ŜkR̂

−1
k ŜT

k . (2.4.5)
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Proof. Setting J ′
k(Kk) = 0 and using the fact that ΓT

k MkΓk is positive definite for

all k > 0 yields (2.4.4). It follows from [36, p. 286] that, for all 0 < α < 1, all distinct

A1, A2 ∈ R
n×m, and positive-definite B ∈ R

m×m, tr
[

α(1 − α)(A1 − A2)B(A1 − A2)
T
]

>

0. Hence, the mapping A → tr(ABAT) is strictly convex. It thus follows that Jk(Kk)

is strictly convex, and hence Kk in (2.4.4) is the unique global minimizer of Jk(Kk).

To update the error covariance, we first note that

ΓkKk = πkŜkR̂
−1
k , (2.4.6)

where πk is defined by (2.4.2). Now, using (2.4.6) with (2.2.17) yields (2.4.5). 2

If either Mk = Ink+1
or Lk = ΓT

k , then πk is the orthogonal projector

πk = Γk(Γ
T
k Γk)

−1ΓT
k , (2.4.7)

and it follows from (2.4.4) that

Kk = (ΓT
k Γk)

−1ΓT
k ŜkR̂

−1
k . (2.4.8)

Alternatively, specializing to the case in which Γk is square yields πk = In and

πk⊥ = 0, as well as the standard Riccati update equation

Pk+1 = AkPkA
T
k + Qk − (AkPkC

T
k + Sk)(Rk + CkPkC

T
k )−1(CkPkA

T
k + ST

k ). (2.4.9)

In this case the Kalman filter gain is given by

Kk = (AkPkC
T
k + Sk)(Rk + CkPkC

T
k )−1 (2.4.10)

and the estimator equation is

x̂k+1 = Akx̂k + Bkuk + Kk(yk − ŷk). (2.4.11)
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Furthermore, the one-step filter provides optimal estimates of all of the states, that

is, the filter does not depend on the state-estimate error weighting Lk.

Next, we show that increasing the number of estimator states that are directly

injected with the output improves the filter performance. Define π̂k and π̂k⊥ by

π̂k , Γ̂k(Γ̂
T
k MkΓ̂k)

−1Γ̂T
k Mk, π̂k⊥ , I − π̂k. (2.4.12)

where Γ̂k has full column rank. Next, let K̂k be the optimal gain given by (2.4.4)

with Γk replaced by Γ̂k, that is,

K̂ , (Γ̂T
k MkΓ̂k)

−1Γ̂T
k MkŜkR̂

−1
k , (2.4.13)

and let P̂k+1 be the corresponding error covariance when K̂k is used, that is,

P̂k+1 = AkPkA
T
k + π̂k⊥ŜkR̂

−1
k ŜT

k π̂T
k⊥ + Qk − ŜkR̂

−1
k ŜT

k . (2.4.14)

Proposition 2.4.2 Assume that Mk = I, let Γ̂k = [Γk Gk], and assume Γ̂k has

full column rank. Then

tr(P̂k+1) 6 tr(Pk+1). (2.4.15)

Proof. Noting that πk and π̂k are symmetric, it follows from (2.4.12) that

π̂k = πk + πk⊥Gk(G
T
k πk⊥Gk)

−1GT
k πk⊥. (2.4.16)

Therefore,

πk⊥ = π̂k⊥ + πk⊥Gk(G
T
k πk⊥Gk)

−1GT
k πk⊥. (2.4.17)

Hence, subtracting (2.4.14) from (2.4.5) yields

tr(Pk+1 − P̂k+1) = tr((πk⊥ − π̂k⊥)ŜkR̂
−1
k ŜT

k ) > 0. 2
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2.5 Two-Step Spatially Constrained Kalman Filter

In this section, we consider a two-step state estimator. The data assimilation

step is given by

wda
k = ΥkKw,k(yk − yf

k), k > 0, (2.5.1)

and

xda
k = xf

k + ΓkKx,k(yk − yf
k), k > 0, (2.5.2)

where wda
k ∈ R

nk is the data assimilation estimate of wk, xda
k ∈ R

nk is the data

assimilation estimate of xk, and xf
k ∈ R

nk is the forecast estimate of xk. The forecast

step or physics update is given by

xf
k+1 = Akx

da
k + Bkuk + wda

k , k > 0, (2.5.3)

yf
k = Ckx

f
k. (2.5.4)

Here, Υk is analogous to Γk in ensuring that only components of the process noise

estimate in the range of Υk are directly affected by the gain Kw,k. We assume that

Υk has full column rank for all k ≥ 0. In traditional notation, xda
k is denoted by

x̂k|k to indicate that x̂k|k is the estimate of xk obtained by using the measurements

y0, . . . , yk, while xf
k is denoted by x̂k|k−1 to indicate that x̂k|k−1 is the estimate of

xk obtained by using the measurements y0, . . . , yk−1. The notation xf
k and xda

k is

motivated by the data assimilation literature [35].

Define the forecast state error ef
k by

ef
k

△
= xk − xf

k (2.5.5)

and the forecast error covariance P f
k by

P f
k , E [ef

k(e
f
k)

T]. (2.5.6)



21

It follows from (2.2.1) and (2.5.3) that

ef
k+1 = Ake

da
k + wk − wda

k , k ≥ 0, (2.5.7)

where the data assimilation error state eda
k is defined by

eda
k

△
= xk − xda

k . (2.5.8)

Lemma 2.5.1 The forecast error ef
k satisfies

E [ef
kw

T
k ] = 0, (2.5.9)

E [ef
kv

T
k ] = 0. (2.5.10)

Now, define the process noise estimation error

Jw,k(Kw,k)
△
= E

[

(

Hk(wk − wda
k )

)T
Hk(wk − wda

k )
]

, (2.5.11)

where Hk ∈ R
dk×nk+1 determines the weighted error components. For convenience,

define

Nk , HT
k Hk, χk , Υk(Υ

T
k NkΥk)

−1ΥT
k Nk, χk⊥ , Ink+1

− χk. (2.5.12)

Proposition 2.5.1 The gain Kw,k that minimizes the cost Jw,k(Kw,k) is given

by

Kw,k = (ΥT
k NkΥk)

−1ΥT
k NkSk(CkP

f
kC

T
k + Rk)

−1. (2.5.13)

Proof. Substituting (2.5.1) into (2.5.11), and using (2.2.3) and (2.5.9) in the

resulting expression yields

Jw,k(Kw,k) = tr
[(

Qk − SkKT
w,kΥT

k − ΥkKw,kST
k + ΥkKw,k(CkP f

kCk + Rk)KT
w,kΥT

k

)

Nk

]

. (2.5.14)

As in the proof of Proposition 2.4.1, Jw,k(Kw,k) is strictly convex. To obtain the

optimal gain Kw,k, we set J ′
w,k(Kw,k) = 0, which yields (2.5.13), the unique global

minimizer of Jw,k(Kw,k). 2
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Next, define the state-estimation error

Jx,k(Kx,k)
△
= E [(Lke

da
k )TLke

da
k ] (2.5.15)

so that

Jx,k(Kx,k) = tr
[

P da
k Mk

]

, (2.5.16)

where the data assimilation error covariance P da
k ∈ R

nk×nk is defined by

P da
k

△
= E [eda

k (eda
k )T]. (2.5.17)

It follows from (2.5.2), (2.5.5), and (2.5.8) that

eda
k = K̃x,ke

f
k − ΓkKx,kvk, (2.5.18)

where

K̃x,k , I − ΓkKx,kCk. (2.5.19)

Substituting (2.5.1) and (2.5.18) into (2.5.7) yields

ef
k+1 = (AkK̃x,k − ΥkKw,kCk)e

f
k + wk − (AkΓkKx,k + ΥkKw,k)vk. (2.5.20)

Next, define

Rf
k

△
= Rk + CkP

f
kC

T
k (2.5.21)

and

Qf
k , Qk − (AkP

f
kC

T
k + Sk)(R

f
k)

−1(AkP
f
kC

T
k + Sk)

T

+
(

Akπk⊥P f
kC

T
k + χk⊥Sk

)

(Rf
k)

−1
(

Akπk⊥P f
kC

T
k + χk⊥Sk

)T

+ AkP
f
kC

T
k (Rf

k)
−1CkP

f
kA

T
k − Akπk⊥P f

kC
T
k (Rf

k)
−1CkP

f
kπ

T
k⊥AT

k .

(2.5.22)
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Proposition 2.5.2 The gain Kx,k that minimizes the cost Jx,k(Kx,k) is given by

Kx,k = (ΓT
k MkΓk)

−1ΓT
k MkP

f
kC

T
k (Rf

k)
−1, (2.5.23)

where P da
k and P f

k are given by

P da
k = P f

k − P f
kC

T
k (Rf

k)
−1CkP

f
k + πk⊥P f

kC
T
k (Rf

k)
−1CkP

f
kπ

T
k⊥ (2.5.24)

and

P f
k+1 = AkP

da
k AT

k + Qf
k. (2.5.25)

Proof. Using (2.5.17) and (2.5.18), P da
k satisfies

P da
k = K̃x,kP

f
kK̃

T
x,k − K̃x,kE [ef

kv
T
k ]KT

x,kΓ
T
k − ΓkKx,kE [vk(e

f
k)

T]K̃T
x,k + ΓkKx,kRkK

T
x,kΓ

T
k .

(2.5.26)

Substituting (2.5.10) into (2.5.26) and substituting the resulting equation into (2.5.16)

yields

Jx,k(Kx,k) = tr[(K̃x,kP
f
kK̃

T
x,k + ΓkKx,kRkK

T
x,kΓ

T
k )Mk]. (2.5.27)

To obtain the optimal gain Kx,k, we set J ′
x,k(Kx,k) = 0, which yields (2.5.23). As

in the proof of Proposition 2.4.1, it can be shown that Jx,k(Kx,k) is strictly convex,

and hence Kx,k in (2.5.23) is the unique global minimizer of Jx,k(Kx,k). Substituting

(2.5.9) and (2.5.23) into (2.5.26) yields (2.5.24).

To update the forecast error covariance, we substitute (2.5.1) into (2.5.7) so that

ef
k+1 = Ake

da
k − ΥkKw,kCke

f
k + wk − ΥkKw,kvk.
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Hence,

P f
k+1 = AkP

da
k AT

k + Qk + ΥkKw,k(CkP
f
kC

T
k + Rk)K

T
w,kΥ

T
k

+ AkE [eda
k wT

k ] + E [wk(e
da
k )T]AT

k − AkE [eda
k (ef

k)
T]CT

k KT
w,kΥ

T
k

− ΥkKw,kCkE [ef
k(e

da
k )T]AT

k − AkE [eda
k vT

k ]KT
w,kΥ

T
k

− ΥkKw,kE [vk(e
da
k )T]AT

k − E [wk(e
f
k)

T]CT
k KT

w,kΥ
T
k

− ΥkKw,kCkE [ef
kw

T
k ] − E [wkv

T
k ]KT

w,kΥ
T
k − ΥkKw,kE [vkw

T
k ]

+ ΥkKw,k(CkE [ef
kv

T
k ] + E [vk(e

f
k)

T]CT
k )KT

w,kΥ
T
k .

(2.5.28)

Substituting (2.5.18) into (2.5.28), and using (2.5.9) and (2.5.10) in the resulting

expression yields (2.5.25). 2

The two-step estimator can be summarized as follows:

Data assimilation step:

wda
k = ΥkKw,k(yk − yf

k), (2.5.29)

Kw,k =
(

ΥT
k NkΥk

)−1
ΥT

k NkSk(R
f
k)

−1, (2.5.30)

xda
k = xf

k + ΓkKx,k(yk − yf
k), (2.5.31)

Kx,k = (ΓT
k MkΓk)

−1ΓT
k MkP

f
kC

T
k (Rf

k)
−1, (2.5.32)

P da
k = P f

k − P f
kC

T
k (Rf

k)
−1CkP

f
k + πk⊥P f

kC
T
k (Rf

k)
−1CkP

f
kπ

T
k⊥. (2.5.33)

Forecast step:

xf
k+1 = Akx

da
k + Bkuk + wda

k , (2.5.34)

P f
k+1 = AkP

da
k AT

k + Qf
k. (2.5.35)

Assume that Γk and Υk are square for all k > 0. Substituting (2.5.29) and (2.5.31)
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into (2.5.34) yields the familiar one-step Kalman filter

xf
k+1 = Akx

f
k + Bkuk + (AkP

f
kC

T
k + Sk)(Rk + CkP

f
kCk)

−1(yk − yf
k). (2.5.36)

Furthermore, substituting (2.5.33) into (2.5.35) yields

P f
k+1 = AkP

f
kA

T
k − (AkP

f
kCk + Sk)(Rk + CkP

f
kC

T
k )−1(CkP

f
kA

T
k + ST

k ) + Qk. (2.5.37)

Next, as in Proposition 2.4.2, we show that when additional estimator states

are directly injected with the output data, the performance of the two-step filter

improves. Define K̂x,k by (2.5.23) with Γk replaced by Γ̂k, that is,

K̂x,k = (Γ̂T
k MkΓ̂k)

−1Γ̂T
k MkP

f
kC

T
k (Rf

k)
−1. (2.5.38)

Furthermore, let P̂ da
k be the corresponding data assimilation error covariance when

K̂x,k is used instead of Kx,k, that is,

P̂ da
k , P f

k − P f
kC

T
k (Rf

k)
−1CkP

f
k + π̂k⊥P f

kC
T
k (Rf

k)
−1CkP

f
kπ̂

T
k⊥. (2.5.39)

Proposition 2.5.3 Let Mk = I, Γ̂k = [Γk Gk], and assume that Γ̂k has full

column rank. Then

tr(P̂ da
k ) 6 tr(P da

k ). (2.5.40)

Proof. Subtracting (2.5.39) from (2.5.24) and using the fact from (2.4.17) that

πk⊥ − π̂k⊥ is positive semi-definite, it follows that

tr(P da
k − P̂ da

k ) = tr
[

(πk⊥ − π̂k⊥)P f
kC

T
k (Rf

k)
−1CkP

f
k

]

> 0. 2
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2.6 Comparison of the One-Step and Two-Step Filters

When Γk and Υk are square, comparing (2.4.9) with (2.5.37) and (2.4.11)

with (2.5.34) shows that the two-step filter is equivalent to the one-step filter with

Kk = AKx,k+Kw,k, x̂k = xf
k and Pk = P f

k. When Γk and Υk are not square, we obtain

a sufficient condition under which the one-step and two-step spatially constrained

Kalman filters are equivalent.

Proposition 2.6.1 Suppose that x̂0 = xf
0 and P0 = P f

0 , and, for all k > 0,

Akπk⊥P f
kC

T
k + χk⊥Sk = πk⊥

(

AkP
f
kC

T
k + Sk

)

. (2.6.1)

Then the one-step filter (2.4.4), (2.4.5) and the two-step filter in (2.5.29)-(2.5.35)

are equivalent, that is, for all k > 0, x̂k = xf
k and Pk = P f

k.

Proof. Substituting (2.5.22) and (2.5.33) into (2.5.35) yields

P f
k+1 = AkP

f
kA

T
k +

(

Akπk⊥P f
kC

T
k + χk⊥Sk

)

(Rf
k)

−1
(

Akπk⊥P f
kC

T
k + χk⊥Sk

)T

− (AkP
f
kC

T
k + Sk)(R

f
k)

−1(AkP
f
kC

T
k + Sk)

T + Qk.

(2.6.2)

Substituting (2.6.7) into (2.6.2) yields

P f
k+1 = AkP

f
kA

T
k + πk⊥(AkP

f
kC

T
k + Sk)(R

f
k)

−1(AkP
f
kC

T
k + Sk)

TπT
k⊥

+ Qk − (AkP
f
kC

T
k + Sk)(R

f
k)

−1(AkP
f
kC

T
k + Sk)

T.

(2.6.3)

Since P f
0 = P0, it follows from (2.4.1), (2.4.5), and (2.5.21) that, for all k > 0,

P f
k = Pk.

Next, substituting (2.5.1) and (2.5.31) into (2.5.34) yields

xf
k+1 = Akx

f
k + Bkuk + (AkπkP

f
kC

T
k + χkSk)(R

f
k)

−1(yk − yf
k). (2.6.4)

Now, (2.5.21) and (2.6.7) imply that

xf
k+1 = Akx

f
k + Bkuk + πk(AkP

f
kC

T
k + Sk)(CkP

f
kC

T
k + Rk)

−1(yk − Ckx
f
k). (2.6.5)



27

It follows from (2.2.4) and (2.4.4) that, for all k > 0,

x̂k+1 = Akx̂k + Bkuk + πk(AkPkC
T
k + Sk)(CkPkC

T
k + Rk)

−1(yk − Ckx̂k). (2.6.6)

Since x̂0 = xf
0 and P f

k = Pk for all k > 0, (2.6.5) and (2.6.6) imply that x̂k = xf
k for

all k > 0. 2

Note that, if Γk and Υk are square, then πk⊥ = 0 and χk⊥ = 0, and thus (2.6.7)

is satisfied. Furthermore, if Sk = 0 or πk = χk, then Proposition 2.6.1 specializes to

the following result.

Corollary 2.6.1 Suppose that x̂0 = xf
0, P0 = P f

0 , and, for all k > 0, either

Sk = 0 or πk = χk. If

Akπk⊥ = πk⊥Ak, (2.6.7)

for all k > 0, then the one-step filter (2.4.4), (2.4.5) and the two-step filter in

(2.5.29)-(2.5.35) are equivalent, that is, for all k > 0, x̂k = xf
k and Pk = P f

k.

Next, we present a converse of Proposition 6.1.

Proposition 2.6.2 Assume that the one-step filter (2.4.4), (2.4.5) and the two-

step filter in (2.5.29)-(2.5.35) are equivalent, that is, for all k > 0, x̂k = xf
k and

Pk = P f
k. Then, for all k > 0, there exists an orthogonal matrix Uk ∈ R

lk×lk such

that

(Akπk⊥P f
kC

T
k + χk⊥Sk)(R

f
k)

−1/2Uk = πk⊥(AkPkC
T
k + Sk)(R

f
k)

−1/2. (2.6.8)

Proof. Since Pk = P f
k for all k > 0, subtracting (2.4.5) from (2.6.3) yields

πk⊥ŜkR̂
−1
k ŜT

k πT
k⊥ = (Akπk⊥P f

kC
T
k + χk⊥Sk)(R

f
k)

−1(Akπk⊥P f
kC

T
k + χk⊥Sk)

T. (2.6.9)
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Hence, (2.6.8) follows from (2.4.1) and [36, p. 193]. 2

Neither the one-step nor the two-step filter performs consistently better than the

other. However, there are special cases when the performance of one filter is better

than the other.

Proposition 2.6.3 Assume that Ck = 0 and Pk = P f
k. If Γk is square and Υk is

not square, then

Pk+1 6 P f
k+1. (2.6.10)

Alternatively, if Γk is not square and Υk is square, then

P f
k+1 6 Pk+1. (2.6.11)

Proof. Assume that Γk is square and Υk is not square. It then follows from (2.4.2),

(2.4.3) and (2.5.12) that

πk⊥ = 0, χk⊥ 6= 0.

Substituting (2.5.33) and (2.5.22) into (2.5.35), and using Ck = 0 and πk⊥ = 0 yields

P f
k+1 = AkP

f
kA

T
k + χk⊥Sk(R

f
k)

−1ST
k χT

k⊥ − Sk(R
f
k)

−1ST
k + Qk. (2.6.12)

Substituting Ck = 0 and πk⊥ = 0 into (2.4.5) yields

Pk+1 = AkPkA
T
k − Sk(CkPkC

T
k + Rk)

−1ST
k + Qk. (2.6.13)

Subtracting (2.6.13) from (2.6.12) yields (2.6.10).

Alternatively, if Υk is square and Γk is not square, then

πk⊥ 6= 0, χk⊥ = 0.

Substituting (2.5.33) and (2.5.22) into (2.5.35), and using Ck = 0 and χk⊥ = 0 yields

P f
k+1 = AkP

f
kA

T
k − Sk(CkP

f
kC

T
k + Rk)

−1ST
k + Qk. (2.6.14)
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Substituting Ck = 0 into (2.4.5) yields

Pk+1 = AkPkA
T
k + πk⊥SkR̂

−1
k ST

k πT
k⊥ − SkR̂

−1
k ST

k + Qk. (2.6.15)

Subtracting (2.6.14) from (2.6.15) yields (2.6.11). 2

2.7 Comparison of the Open-Loop and Closed-Loop Covari-
ances

Next, we consider the zero-gain filter

x̂ol,k+1 = Akx̂ol,k + Bkuk (2.7.1)

with the zero-gain state-estimation error state

eol,k , xk − x̂ol,k. (2.7.2)

It follows from (2.2.1), (2.7.1) and (2.7.2) that

Pol,k+1 = AkPol,kA
T
k + Qk, (2.7.3)

where the zero-gain error covariance Pol,k ∈ R
nk×nk is defined by Pol,k , E

[

eol,ke
T
ol,k

]

.

First, we show that the performance of the Kalman filter is better than the perfor-

mance of the zero-gain filter.

Proposition 2.7.1 If πk = Ink+1
and Pk 6 Pol,k, then Pk+1 6 Pol,k+1.

Proof. Since πk = Ink+1
, it follows from (2.4.3) that πk⊥ = 0, and hence (2.4.5)

implies that

Pk+1 = AkPkA
T
k + Qk − ŜkR̂

−1
k ŜT

k . (2.7.4)

Subtracting (2.7.4) from (2.7.3) yields

Pol,k+1 − Pk+1 = Ak(Pol,k − Pk)A
T
k + ŜkR̂

−1
k Ŝk > 0. 2
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If πk 6= Ink+1
, then πk⊥ 6= 0, and subtracting (2.4.5) from (2.7.3) yields

Pol,k+1 − Pk+1 = Ak(Pol,k − Pk)A
T
k + ŜkR̂

−1
k ŜT

k − πk⊥ŜkR̂
−1
k ŜT

k πT
k⊥, (2.7.5)

which suggests the following negative result.

Proposition 2.7.2 If πk 6= Ink+1
and Pk = Pol,k, then Pk+1 6 Pol,k+1 is not

always true.

Proof. Let k > 0, nk = nk+1 = 2, and

Ak =







0 α

0 0.5






, Ck =

[

0 1

]

,

where 24α2 + 2α < 1, and

Qk = 0, Sk = 0, Rk = I, Lk = I, Γk =







1

2






.

Furthermore, let Pk and Pol,k have the scalar entries

Pk =







p1,k p12,k

p12,k p2,k






, Pol,k =







pol,1,k pol,12,k

pol,12,k pol,2,k






.

It follows from (2.4.5) and (2.7.3) that, if Pk = Pol,k, then

pol,1,k+1 − p1,k+1 =

(

24α2 + 2α − 1

25

)

p2
2,k

1 + p2,k

.

Hence, pol,1,k+1 < p1,k+1, and thus Pol,k+1 − Pk+1 is not positive semidefinite. 2

The following result guarantees that the performance of the constrained filter is

better than the performance of the zero-gain filter.
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Proposition 2.7.3 If Pk 6 Pol,k, then

tr(Pk+1Mk) 6 tr(Pol,k+1Mk). (2.7.6)

Proof. It follows from (2.4.3) and (2.7.5) that

tr((Pol,k+1 − Pk+1)Mk) =tr(Ak(Pol,k − Pk)A
T
k Mk) + tr(πkŜkR̂

−1
k ŜT

k Mk

+ MkŜkR̂
−1
k ŜT

k πT
k − πkŜkR̂

−1
k ŜT

k πT
k Mk).

(2.7.7)

Since πT
k Mkπk = Mkπk = πT

k Mk, it follows that

tr((Pol,k+1 − Pk+1)Mk) = tr(Ak(Pol,k − Pk)A
T
k Mk) + tr(πkŜkR̂

−1
k ŜT

k πT
k Mk)

= tr(LkAk(Pol,k − Pk)A
T
k LT

k ) + tr(LkπkŜkR̂
−1
k ŜT

k πT
k LT

k ) > 0.

2

In fact, in the example in Proposition 2.7.2, Mk = I and

tr(Pol,k+1) − tr(Pk+1) =

[

22

25

(

α +
3

22

)2

+
5

44

]

p2
2,k

1 + p2,k

> 0. (2.7.8)

Hence, tr(Pk+1) 6 tr(Pol,k+1), and the one-step filter with constrained output injec-

tion performs better than the zero-gain filter. Although Proposition 2.7.3 guarantees

that the performance of the one-step filter with constrained output injection is bet-

ter than the zero-gain filter at time k + 1, it follows from Proposition 2.7.2 that

Pk+1 6 Pol,k+1 may not be true. Hence, Proposition 2.7.3 does not guarantee that

the performance of the one-step filter with constrained output injection is better

than the zero-gain filter at time k+2, that is, tr(Pk+2) 6 tr(Pol,k+2) may not be true.

The following result gives a condition under which the state estimates in the

range of Γk are better than the corresponding estimates from the zero-gain filter.

Proposition 2.7.4 If Pk 6 Pol,k, then

ΓT
k MkPk+1MkΓk 6 ΓT

k MkPol,k+1MkΓk. (2.7.9)
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Proof. Note that

ΓT
k Mk(Pk+1 − Pol,k+1)MkΓk =ΓT

k MkAk(Pk − Pol,k)A
T
k MkΓk − ΓT

k MkπkŜkR̂
−1
k ŜT

k MkΓk

− ΓT
k MkŜkR̂

−1
k ŜT

k πT
k MkΓk + ΓT

k MkπkŜkR̂
−1
k ŜT

k πT
k MkΓk.

(2.7.10)

It follows from (2.4.2) that

ΓT
k Mkπk = ΓT

k Mk. (2.7.11)

Substituting (2.7.11) into (2.7.10) yields

ΓT
k Mk(Pk+1 − Pol,k+1)MkΓk = ΓT

k MkAk(Pk − Pol,k)A
T
k MkΓk − ΓT

k MkŜkR̂
−1
k ŜT

k MkΓk

6 0.

2

Assume that Γk has the form (2.2.6). Then, it follows from Proposition 2.7.4

that, if Mk = I, that is, all of the states are weighted, then the state estimate in the

range of Γk obtained using the Kalman filter with constrained output injection are

better than the state estimates obtained when data assimilation is not performed.

However, state estimates that are not in the range of Γk may be worse than estimates

obtained when no data assimilation is performed.

2.8 Steady-State Filters for Linear Time-Invariant Systems

Next, we discuss the steady-state behavior of the one-step spatially con-

strained Kalman filter for linear time-invariant systems. For all k > 0, let Ak = A,

Bk = B, Ck = C, Γk = Γ , Lk = L, Qk = Q, Sk = 0 and Rk = R. Assuming R

is positive definite, it follows from Proposition 4.1 that the optimal gain Kk that

minimizes Jk is given by

Kk = (ΓTMΓ )−1ΓTMAPkC
TR̂k, (2.8.1)
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where

R̂k , CPkC
T + R, M , LTL. (2.8.2)

Furthermore, the covariance update is given by

Pk+1 = APkA
T + Q + π⊥APkC

TR̂−1
k CPkA

TπT
⊥ − APkC

TR̂−1
k CPkA

T, (2.8.3)

where

π , Γ (ΓTMΓ )−1ΓTM, π⊥ , I − π. (2.8.4)

If limk→∞ Pk exists, then the filtering process reaches statistical steady state. If Γ is

square and thus by assumption nonsingular, then yk − ŷk is directly injected into all

of the estimator states. In this case, the following lemma guarantees the existence

of limk→∞ Pk.

Lemma 2.8.1 If Γ is square and (A,C) is detectable, then P , limk→∞ Pk exists

and is positive semidefinite. If, in addition, (A,Q) is stabilizable, then P is positive

definite and A−ΓKC is asymptotically stable, where K , Γ−1APCT(CPCT+R)−1.

Proof. Since Γ is square, it follows from (2.4.2) and (2.4.3) that π = I and

π⊥ = 0. Hence, it follows from (2.8.3) that

Pk+1 = APkA
T − APkC

T(CPkC
T + R)−1CPkA

T + Q. (2.8.5)

Since (A,C) is detectable, it follows from [34, pp. 100-101] that, if P0 is positive

semidefinite, then P , limk→∞ Pk exists and satisfies the algebraic Riccati equation

P = APAT − APCT(CPCT + R)−1CPAT + Q. (2.8.6)

If (A,C) is detectable and (A,Q) is stabilizable, it follows from [34, pp. 101-103]

that P is positive definite and A − ΓKC is asymptotically stable. 2
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When Γ is not square, the existence of limk→∞ Pk is not guaranteed. In fact, we

have the following negative result when π 6= In.

Proposition 2.8.1 Assume that π 6= In and A is asymptotically stable. Then

limk→∞ Pk does not always exist.

Proof. Consider the example in Proposition 7.2. It follows from (2.8.3) that

p2,k+1 = p2,k

(

1

4
+

1

100

[

8(α − 1)2 − 25
] p2,k

1 + p2,k

)

. (2.8.7)

Hence, if α satisfies

(α − 1)2 > 25 (2.8.8)

and

p2,0 >
175

8(α − 1)2 − 200
, (2.8.9)

then, for all k > 0, p2,k+1 > 2p2,k, which implies that limk→∞ p2,k = ∞. Hence, if

P0 ∈ R
2×2 satisfies (2.8.9), then limk→∞ Pk does not exist. 2

Next, we present a converse result concerning the existence of limk→∞ Pk. For all

M ∈ R
n×m, let R(M) denote the range of M .

Proposition 2.8.2 Assume that (A,Γ ) is stabilizable. If P = limk→∞ Pk exists

and R(πAPCT) = R(Γ ), then (A,Γ,C) is output feedback stabilizable.

Proof. Letting k → ∞ in (2.8.3) yields

P = APA + Q + π⊥APCTR̂−1CPATπT
⊥ − APCTR̂−1CPAT, (2.8.10)

where R̂ , CPCT + R. We can rewrite (2.8.10) as

P = APAT + Q − ΓKCPAT − APCTKTΓT + ΓKR̂KTΓT, (2.8.11)
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where

K , (ΓTMΓ )−1ΓTMAPCTR̂−1. (2.8.12)

Hence, (2.8.11) can be expressed as

P = (A − ΓKC)P (A − ΓKC)T + Q + ΓKRKTΓT. (2.8.13)

Next, define Ã and Γ̃ by

Ã , A − ΓKC, Γ̃ , ΓKR1/2. (2.8.14)

Since (A,Γ ) is stabilizable and R(Γ ) = R(πAPCT), it follows from [36, pp. 510,

551] that (Ã, Γ̃ ) is also stabilizable. Let λ ∈ C be an eigenvalue of Ã. Then, there

exists an eigenvector x ∈ C
n of Ã such that

x∗Ã = λx∗. (2.8.15)

Furthermore, (2.8.13) implies that

x∗Px = x∗ÃP ÃTx + x∗(Q + Γ̃ Γ̃T)x. (2.8.16)

Substituting (2.8.15) into (2.8.16) yields

(1 − |λ|2)x∗Px = x∗(Q + Γ̃ Γ̃T)x. (2.8.17)

If |λ| > 1, then (2.8.17) implies that

x∗(Q + Γ̃ Γ̃T)x = 0 (2.8.18)

and hence

x∗Γ̃ = 0. (2.8.19)
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It follows from (2.8.15) and (2.8.19) that λ is an unstable and uncontrollable eigen-

value of (Ã, Γ̃ ), which contradicts the fact that (Ã, Γ̃ ) is stabilizable. Hence, |λ| < 1

and Ã is asymptotically stable. Since K given by (2.8.12) renders A−ΓKC asymp-

totically stable, (A,Γ,C) is output feedback stabilizable. 2

The following result provides a sufficient condition for Pk to be bounded when C

is square and nonsingular.

Proposition 2.8.3 Assume that C is square and nonsingular. If

sprad(π⊥A) < 1, (2.8.20)

then Pk is bounded.

Proof. Since C is nonsingular, (2.8.3) can be expressed as

Pk+1 = APkA
T + Q + π⊥APk(Pk + C−1RC−T)−1PkA

TπT
⊥

− APk(Pk + C−1RC−T)−1PkA
T.

(2.8.21)

Next, consider the Lyapunov equation

P̃k+1 = (A − ΓK̃)P̃k(A − ΓK̃)T + Q + ΓK̃K̃TΓT + AR̃AT, (2.8.22)

where

K̃ , (ΓTMΓ )−1ΓMA (2.8.23)

and

R̃ , C−1RC−T. (2.8.24)

Using (2.8.23), we rewrite (2.8.22) as

P̃k+1 = π⊥AP̃kA
TπT

⊥ + Q + πAATπT + AR̃AT. (2.8.25)
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Since π⊥A is asymptotically stable and Q+πAATπT+AR̃AT is positive semidefinite,

P̃ = limk→∞ P̃k exists for all positive-semidefinite P̃0. Subtracting (2.8.21) from

(2.8.25) yields

P̃k+1 − Pk+1 = AR̃(R̃ + Pk)
−1R̃AT + πAATπT

+ π⊥APk(Pk + R̃)−1R̃ATπT
⊥ + π⊥A(P̃k − Pk)A

TπT
⊥.

(2.8.26)

It follows from (2.8.26) that, if P̃k > P̃k, then P̃k+1 > Pk+1. Hence, if P0 6 P̃0, then

Pk 6 P̃k for all k > 0. Furthermore, since P̃k converges to P̃ for every choice of P̃0,

it follows that Pk is bounded. 2

Numerical results suggest that the following strengthening of Proposition 8.3 is

true.

Conjecture 2.8.1 Assume that C is square and nonsingular. If

sprad(π⊥A) < 1, (2.8.27)

then limk→∞ Pk exists.

Example 2.8.1 Let

A =







0 5

0 3






, C = I,Q = 0, R = I, (2.8.28)

and choose

Γ =







γ1

γ2






, (2.8.29)

where γ1, γ2 ∈ R so that

π =
1

γ2
1 + γ2

2







γ2
1 γ1γ2

γ1γ2 γ2
2






, π⊥ =

1

γ2
1 + γ2

2







γ2
2 −γ1γ2

−γ1γ2 γ2
1






. (2.8.30)
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Note that

π⊥A =
1

γ2
1 + γ2

2







0 5γ2
2 − 3γ1γ2

0 3γ2
1 − 5γ1γ2






(2.8.31)

and hence

sprad(π⊥A) =
1

γ2
1 + γ2

2

|3γ2
1 − 5γ1γ2|. (2.8.32)

It follows from Conjecture 2.8.1 that, if

−(γ2
1 + γ2

2) < 3γ2
1 − 5γ1γ2 < γ2

1 + γ2
2 , (2.8.33)

then limk→∞ Pk exists. The shaded region in Figure 2.1 indicates values of γ1 and

γ2 that satisfy (2.8.33). Next, we choose various values of γ1, γ2 and numerically

evaluate Pk as k → ∞ using (2.8.3). The values of γ1, γ2 for which limk→∞ Pk exists,

are indicated by ‘•’ and the values of γ1, γ2 for which limk→∞ Pk does not exist are

indicated by ‘×’. The numerical results are consistent with Conjecture 8.1.

2.9 N-Mass System Example

Consider the N -mass system shown in Figure 2.2 with stiffnesses k1, . . . , kN+1 >

0 and dashpots c1, . . . , cN+1 > 0. Let qi denote the position of mass mi. Define

q ,

[

q1 · · · qN

]T

, M , diag(m1, . . . ,mN). (2.9.1)

K ,





























k1 + k2 −k2 0 · · · 0 0

−k2 k2 + k3 −k3 · · · 0 0

0 −k3 k3 + k4 · · · · · · 0

...
. . . . . . . . .

...

0 0 0 · · · −kN kN + kN+1





























, (2.9.2)



39

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−15

−10

−5

0

5

10

15

γ
1

γ 2

Figure 2.1: The shaded region indicates the values of γ1, γ2 that satisfy (2.8.33). The
dots indicate the values of γ1, γ2 for which limk→∞ Pk exists, whereas the
values of γ1, γ2 for which limk→∞ Pk does not exist are indicated by ‘×’.
These numerical results are consistent with Conjecture 2.8.1.
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Figure 2.2: N -Mass System
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C ,





























c1 + c2 −c2 0 · · · 0 0

−c2 c2 + c3 −c3 · · · 0 0

0 −c3 c3 + c4 · · · · · · 0

...
. . . . . . . . .

...

0 0 0 · · · −cN cN + cN+1





























, (2.9.3)

We assume that d masses are disturbed by unknown force inputs w ∈ R
d, which are

zero-mean white noise with unit intensity, while p masses are actuated by known

force inputs u ∈ R
p. Let u and w have entries

u =

[

u1 · · · up

]T

, w ,

[

w1 · · · wd

]T

(2.9.4)

and let Bu and Dw have entries

Bu =

[

Bu,1 · · · Bu,p

]

, Dw =

[

Dw,1 · · · Dw,d

]

, (2.9.5)

where, for all i = 1, . . . , p and j = 1, . . . , d, Bu,i and Dw,j are defined by

Bu,i =

[

01×î−1
1

m
î

01×N−î

]T

, Dwj
=

[

01×ĵ−1
1

m
ĵ

01×N−ĵ

]T

(2.9.6)

and î and ĵ correspond to the masses on which forces ui and wj act, respectively.

The equations of motion can be written in first-order form as

ẋ = Ax + Bu + D1w, (2.9.7)

where A ∈ R
2N×2N , B ∈ R

2N×m, D1 ∈ R
2N×d, and x ∈ R

2N are defined by

A ,







0N IN

−M−1K −M−1C






, B ,







0N

Bu






, D1 ,







0N

Dw






,

x
△
=

[

q1 · · · qN q̇1 · · · q̇N

]T

.

(2.9.8)
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Next, we assume that measurements of the positions of l masses are available so that

the output y ∈ R
l can be expressed as

y = Cposx + v, (2.9.9)

where Cpos ∈ R
l×2N has entries

Cpos =















C
[1]
pos

...

C
[l]
pos















(2.9.10)

and, for all i = 1, . . . , N , C
[i]
pos ∈ R

1×2N is defined by

C [i]
pos ,

[

01×(̂i−1) 1 01×(N−î) 01×N

]

, (2.9.11)

where î corresponds to the index of the mass whose position measurements are avail-

able. With the sampling time ts = 0.1 s, we obtain the zero-order-hold discrete-time

model of (2.9.7) and (2.9.9) given by

xk+1 = Axk + Buk + D1wk, (2.9.12)

yk = Cposxk + vk. (2.9.13)

Signal Masses
Known force input u m1, m5, m10

Unknown force input w m4, m15, m18

Position measurement y m9, m12

Table 2.1: Forcing and measurement signals in the N -mass system.

Let N = 20, so that the (2.9.7) has order n = 40 with known inputs u ∈ R
3

and unknown inputs w ∈ R
3. We assume that w is zero-mean white Gaussian noise
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with unit covariance, and the known inputs u ∈ R
3 are chosen to be sinusoids. The

masses on which w and u act and the available measurements are given in Table 1. We

assume that the process noise and the measurement sensor noise are uncorrelated and

hence Sk = 0. The values of the masses m1, . . . ,m20, damping coefficients c1, . . . , c21,

and spring constants k1, . . . , k21 are mi = 10 kg for i = 1, . . . , 20, ci = 0.8 N-s/m and

ki = 5 N/m for i = 1, . . . , 21. Finally, we assume that the process noise and sensor

noise are uncorrelated, that is, Sk = 0 for all k > 0. Next, we obtain estimates

of the position and velocity of m1, . . . ,m20 using two sets of measurements y, one

with a signal to noise ratio (SNR) of 20 dB and another with a SNR of 1 dB. The

measurements of position of m9 and m12 with different signal to noise rations are

shown in Figure 2.3.

We first choose Γk = I2N and Lk = I2N , that is, the available measurements are

injected into all of the states of the estimator, and the errors between all of the states

and the corresponding state estimates are weighted. In this case, the one-step and

two-step Kalman filters are equivalent. The state estimates are obtained using the

two-step filter (2.5.31)-(2.5.34). The root mean square (RMS) value of the error in

the estimates of position of m4 when measurements with a signal to noise ratio of

20 dB and 1 dB, respectively, are used is shown in Figure 2.4. The RMS value of

the errors in position and velocity estimates of m1, . . . ,m20 are plotted in Figure 2.5

and Figure 2.6, respectively.

Next, we obtain estimates by constraining the output injection into only some of

the states of the estimator. First, we choose Γk = Λ1 for all k > 0, where

Λ1 ,

[

024×8 I24 024×8

]T

(2.9.14)

so that the measurements are injected into only the estimates of the positions and
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Figure 2.3: Noisy measurements of the positions of m9 and m12 with SNR = 20 db
and SNR = 1 dB. These measurements are used to estimate the positions
and velocities of masses m1, . . . ,m20.
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velocities of m5, . . . ,m16. Furthermore, we choose Lk = I2N so that the errors in

all of the state estimates are weighted equally. The RMS value of the error in the

position estimate of m4 obtained when Γk = Λ1 for all k > 0 is shown in Figure 2.4.

The RMS value of the errors in position and velocity estimates of m1, . . . ,m20, are

shown in Figure 2.5 and Figure 2.6, respectively. Finally, we choose Γk = Λ2 for all

k > 0, where

Λ2 ,

[

08×16 I8 08×16

]T

(2.9.15)

so that only the estimates of the positions and velocities of m9, . . . ,m12 are directly

affected by the measurements y. Again, we choose Lk = I2N for all k > 0, and the

performance of the estimator with Γk = Λ2 for all k > 0 is shown in Figure 2.4,

Figure 2.5 and Figure 2.6.

When Γk = I2N , the measurements are injected directly into all of the states of

the estimator, and Figure 2.4 confirms the expected fact that the performance of the

classical Kalman filter with Γk = I2N is better than the estimators with Γk 6= I2N .

Note that the number of states into which measurements are injected when Γk = Λ2

is less than the number of states that are directly affected by measurements when

Γk = Λ1, and it follows from Figure 2.4 that reducing the number of estimator

states that are directly affected by measurements degrades the performance of the

estimator. These observations are consistent with Proposition 2.5.3.

Although the errors in the position and velocity estimates of all of the masses

are weighted in all three cases Γk = I2N , Γk = Λ1, and Γk = Λ2, Figure 2.5 and

Figure 2.6 demonstrate that the error in the position and velocity estimates of all of

the masses is the least when Γk = I2N and the measurements are directly injected

into all of the estimator states. Finally, it can be seen that when the measurements
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Figure 2.4: Root mean square value of the error in estimating the position of m4

obtained using the two-step filter with Γk = I2N (classical Kalman fil-
ter) and Γk 6= I2N using two different sets of measurements, one with
SNR= 20 dB and another with SNR = 1 dB. When Γk = Λ1, measure-
ments are directly injected into the estimates of only the positions and
velocities of masses m5, . . . ,m16, whereas when Γk = Λ2, measurements
are directly injected into estimates of only the positions and velocities
of masses m9, . . . ,m12. As expected, the performance of the estima-
tors with constrained output injection (Γk 6= I) is not as good as the
estimator with Γk = I2N . Since the zero-gain filter does not use the mea-
surements, its performance does not depend on the value of the SNR of
the measurements.
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Figure 2.5: RMS value of the errors in the position estimates of all of the masses when
measurements with (a) SNR =20 dB and (b) SNR = 1 dB are injected
into all of the state estimates (Γk = I2N) and when measurements are
injected into only the position and velocity estimates of some of the
masses (Γk 6= I2N). The performance of the zero-gain filter with Kk ≡ 0
is also shown for comparison. When measurements are injected into a
larger number of the estimator states, the performance of the estimator
improves. The arrows indicate the masses whose position measurements
are available. As the SNR of the measurement increases, the difference
in the performance of the filters with Γk = I2N and Γk 6= I2N decreases.
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Figure 2.6: RMS value of the errors in the velocity estimates from the optimal filter
with Γk = I2N and Γk 6= I2N when measurements with (a) SNR = 20 dB
and (b) SNR = 1 dB are used. When Γk 6= I2N , the one-step and two-
step filters are not equivalent, and the results presented here are obtained
using the two-step estimator. The performance of the estimators with
Γk 6= I2N improves when additional states of the estimator are directly
injected with measurements.



48

are injected into a subset of the estimator states, then the estimates of the states

that are not directly affected by the measurements improve. The performance of the

zero-gain filter with Kk = 0 for all k > 0 is also plotted in figures 2.4, 2.5 and 2.6

for comparison.

2.10 Conclusions

In this chapter, we presented an extension of the Kalman filter that constrains

data injection into only a specified subset of state estimates rather than the entire

state estimate. This extension accounts for correlation between the process noise

and the sensor noise. Conditions are given under which the one-step and two-step

forms of the filter are equivalent. Future work will consider reduced-rank square

root formulations of this filter to reduce the computational burden of propagating

the covariance. More general conditions that guarantee the existence of a steady-

state covariance for linear time-invariant dynamics are also of interest. Although we

constrain output injection, the order of the estimator dynamics is equal to the order

of the plant dynamics. In the next chapter, we do not constrain output injection.

Instead, we obtain state estimates of a specific subset of the state by using a reduced-

order model of the plant dynamics.



CHAPTER III

Reduced-Order Kalman Filtering for

Time-Varying Systems

The previous chapter considered a full-order estimator, that is, the order of

the dynamics of the estimator was the same as the order of the plant dynamics.

In this chapter, we consider a reduced-order estimator for state estimation of linear

time-varying systems with time-varying state dimension. A reduced-order estimator

provides an estimate of a specific subset of the state, and uses a reduce-order model of

the plant dynamics to propagate the state estimates. We assume that a white noise

process affects the plant dynamics and also assume that measurements are corrupted

by sensor noise. In this chapter, we derive the optimal reduced-order estimator using

a finite-horizon approach. The resulting reduced-order estimator involves two covari-

ance update equations, one that resembles the discrete-time Lyapunov equation, and

another that resembles the discrete-time Riccati equation. The results presented in

this chapter can be found in [37].

3.1 Introduction

Since the classical Kalman filter provides optimal least-squares estimates of all of

the states of a linear time-varying system, there is longstanding interest in obtaining

49
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simpler filters that estimate only a subset of states. This objective is of particular

interest when the system order is extremely large, which occurs for systems arising

from discretized partial differential equations [38].

One approach to this problem is to consider reduced-order Kalman filters. These

reduced-complexity filters provide state estimates that are suboptimal relative to the

classical Kalman filter [7, 8, 25, 26]. Alternative variants of the classical Kalman filter

have been developed for computationally demanding applications such as weather

forecasting [27, 29, 30, 35], where the classical Kalman filter gain and covariance are

modified so as to reduce the computational requirements. A comparison of various

techniques is given in [9].

An alternative approach to reducing complexity is to restrict the data-injection

subspace to obtain a spatially localized Kalman filter. This approach is developed

in [23, 31] and discussed in Chapter II.

In this chapter, we revisit the approach of [7, 39], which consider the problem of

fixed-order steady-state reduced-order estimation. For a linear time-invariant system,

the optimal steady-state fixed-order filter is characterized by coupled Riccati and

Lyapunov equations, whose solution requires iterative techniques.

We extend the results of [7, 39] by adopting the finite-horizon optimization tech-

nique used in [23, 24] to obtain reduced-order filters that are applicable to time-

varying systems. The time-varying filter gains are given by recursive update equa-

tions that account for the restricted order of the filter but do not require iterative

solution methods. This technique also avoids the periodicity constraint associated

with the multirate filter derived in [40]. Related techniques are used in [41].
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3.2 Finite-Horizon Discrete-Time Optimal Reduced-Order
Estimator

Consider the system

xk+1 = Akxk + D1,kwk, (3.2.1)

yk = Ckxk + D2,kwk, (3.2.2)

where xk ∈ R
nk , yk ∈ R

pk , and wk ∈ R
dk is a white noise process with zero mean and

unit covariance. We assume for convenience that D1,kD
T
2,k = 0.

We consider a reduced-order estimator with dynamics

xe,k+1 = Ae,kxe,k + Be,kyk, (3.2.3)

where xe,k ∈ R
ne,k . Define the combined state variance Q̃k by

Q̃k , E [x̃kx̃
T
k ], (3.2.4)

where x̃k ∈ R
ñk , ñk , nk + ne,k is defined by

x̃k ,







xk

xe,k






. (3.2.5)

Consider the cost function

Jk , E
[

(

Lkxk+1 − xe,k+1

)T(

Lkxk+1 − xe,k+1

)

]

, (3.2.6)

where Lk ∈ R
ne,k×nk determines the subspace of the state x that is weighted. It

follows from (3.2.4) and (3.2.5) that Jk can be expressed as

Jk = tr
(

Q̃k+1R̃k

)

, (3.2.7)

where R̃k ∈ R
n+ne is defined by

R̃k ,







LT
k Lk −LT

k

−Lk I






. (3.2.8)
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Note that (3.2.1) and (3.2.3) imply that

x̃k+1 = Ãkx̃k + D̃1,kwk, (3.2.9)

where

Ãk ,







Ak 0

Be,kCk Ae,k






, D̃1,k ,







D1,k

Be,kD2,k






. (3.2.10)

Therefore,

Q̃k+1 = ÃkQ̃kÃ
T
k + Ṽ1,k, (3.2.11)

where

Ṽ1,k ,







V1,k 0

0 Be,kV2,kB
T
e,k






, (3.2.12)

and

V1,k , D1,kD
T
1,k, V2,k , D2,kD

T
2,k. (3.2.13)

Partition Q̃k as

Q̃k =







Q̃1,k Q̃12,k

Q̃T
12,k Q̃2,k






. (3.2.14)

Hence, it follows from (3.2.11) that

Q̃1,k+1 = AkQ̃1,kA
T
k + V1,k, (3.2.15)

Q̃12,k+1 = AkQ̃1,kC
T
k BT

e,k + AkQ̃12,kA
T
e,k, (3.2.16)

Q̃2,k+1 = Be,k

(

CkQ̃1,kC
T
k + V2,k

)

BT
e,k (3.2.17)

+ Ae,kQ̃
T
12,kC

T
k BT

e,k + Be,kCkQ̃12,kA
T
e,k + Ae,kQ̃2,kAe,k.
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Therefore, (3.2.7) and (3.2.8) imply that Jk can be expressed as

J (Ae,k, Be,k) = tr
[

Lk

(

AkQ̃1,kA
T
k + V1,k

)

LT
k

]

− 2tr
[

Be,kCkQ̃1,kA
T
k LT

k

]

− 2tr
[

Ae,kQ̃
T
12,kA

T
k LT

k

]

+ tr
[

Be,k

(

CkQ̃1,kC
T
k + V2,k

)

BT
e,k

]

+ tr
[

Ae,kQ̃2,kA
T
e,k

]

+ 2tr
[

Ae,kQ̃
T
12,kC

T
k BT

e,k

]

.

(3.2.18)

Proposition 3.2.1 Assume that Ae,k and Be,k minimize Jk. Then, Ae,k and Be,k

satisfy

Ae,kQ̃2,k = (LkAk − Be,kCk) Q̃12,k, (3.2.19)

Be,k =
(

LkAkQ̃1,k − Ae,kQ̃
T
12,k

)

CT
k

(

CkQ̃1,kC
T
k + V2,k

)−1

. (3.2.20)

Proof. Setting ∂Jk

∂Ae,k
= 0 and ∂Jk

∂Be,k
= 0 yields the result. 2

Next, we assume that Q̃2,k is invertible, define Qk, Q̂k ∈ R
nk×nk by

Qk , Q̃1,k − Q̃12,kQ̃
−1
2,kQ̃

T
12,k, Q̂k , Q̃12,kQ̃

−1
2,kQ̃

T
12,k, (3.2.21)

Ṽ2,k ∈ R
pk×pk by

Ṽ2,k , CkQkC
T
k + V2,k, (3.2.22)

and Gk ∈ R
ne,k×nk by

Gk , Q̃−1
2,kQ̃

T
12,k. (3.2.23)

Proposition 3.2.2 Assume that Q̃2,k is positive definite and Ae,k and Be,k min-

imize Jk. Then, Ae,k and Be,k satisfy

Ae,k = LkAk

(

I − QkC
T
k Ṽ −1

2,k Ck

)

GT
k , (3.2.24)

Be,k = LkAkQkC
T
k Ṽ −1

2,k . (3.2.25)
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Proof. It follows from (3.2.19) that

Ae,k = (LkAk − Be,kCk) Q̃12,kQ̃
−1
2,k. (3.2.26)

Substituting (3.2.26) into (3.2.20) yields (3.2.25). Finally, substituting (3.2.25) into

(3.2.26) yields (3.2.24). 2

Proposition 3.2.3 Assume that Ae,k and Be,k satisfy Proposition 3.2.2. Then,

LkQ̃12,k+1 = Q̃2,k+1, (3.2.27)

Q̃12,k+1 = Q̂k+1L
T
k , (3.2.28)

Q̃2,k+1 = LkQ̂k+1L
T
k . (3.2.29)

Proof. Substituting (3.2.24) and (3.2.25) into (3.2.16) and (3.2.17) yields

Q̃12,k+1 = Ak

[

Q̂k + QkC
T
k Ṽ −1

2,k CkQk

]

AT
k LT

k , (3.2.30)

Q̃2,k+1 = LkAk

[

Q̂k + QkC
T
k Ṽ −1

2,k CkQk

]

AT
k LT

k . (3.2.31)

Pre-multiplying (3.2.30) by Lk yields LkQ̃12,k+1 = Q̃2,k+1. Using (3.2.21) and LkQ̃12,k+1 =

Q̃2,k+1 yields Q̃12,k+1 = Q̂k+1L
T
k and Q̃2,k+1 = LkQ̂k+1L

T
k . 2

Next, define Mk ∈ R
nk×nk by

Mk , Ak

(

Q̂k + QkC
T
k Ṽ −1

2,k CkQk

)

AT
k , (3.2.32)

and define τk, τk⊥ ∈ R
nk×nk by

τk , GT
k Lk−1, τk⊥ , I − τk. (3.2.33)

Proposition 3.2.4 Assume that Ae,k and Be,k satisfy Proposition 3.2.2. Then,

τ 2
k+1 = τk+1, that is, τk+1 is an oblique projector.
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Proof. It follows from (3.2.32) that (3.2.30) and (3.2.31) can be expressed as

Q̃12,k+1 = MkL
T
k , (3.2.34)

Q̃2,k+1 = LkMkL
T
k . (3.2.35)

Hence, (3.2.23) and (3.2.33) imply that

τk+1 = MkL
T
k

(

LkMkL
T
k

)−1
Lk. (3.2.36)

Therefore,

τ 2
k+1 = τk+1. 2

Proposition 3.2.5 Assume that Ae,k and Be,k satisfy Proposition 3.2.2. Then,

τk+1Q̂k+1 = Q̂k+1. (3.2.37)

Proof. It follows from (3.2.21) that

Q̂k+1 = Q̃12,k+1Q̃
−1
2,k+1Q̃

T
12,k+1. (3.2.38)

Substituting (3.2.34) and (3.2.35) into (3.2.38) yields

Q̂k+1 = MkL
T
k

(

LkMkL
T
k

)−1
LkMk. (3.2.39)

Hence, pre-multiplying (3.2.39) by τk+1 and substituting (3.2.36) into the resulting

expression yields

τk+1Q̂k+1 = MkL
T
k

(

LkMkL
T
k

)−1
LkMkL

T
k

(

LkMkL
T
k

)−1
LkMk = Q̂k+1. 2
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Proposition 3.2.6 Assume that Ae,k and Be,k satisfy Proposition 3.2.2. Then,

Qk+1 = AkQkA
T
k + V1,k − AkQkC

T
k Ṽ −1

2,k CkQkA
T
k

+ τk+1⊥

[

AkQ̂kA
T
k + AkQkC

T
k Ṽ −1

2,k CkQkA
T
k

]

τT
k+1⊥, (3.2.40)

Q̂k+1 = τk+1

[

AkQ̂kA
T
k + AkQkC

T
k Ṽ −1

2,k CkQkA
T
k

]

τT
k+1, (3.2.41)

τk+1 = MkL
T
k (LkMkLk)

−1 Lk. (3.2.42)

Proof. It follows from (3.2.27) and (3.2.31) that

LkQ̂k+1L
T
k = Lk

[

AkQ̂kA
T
k + AkQkC

T
k Ṽ −1

2,k CkQkA
T
k

]

LT
k . (3.2.43)

Pre-multiplying and post-multiplying (3.2.43) by GT
k+1 and Gk+1, respectively, yields

τk+1Q̂k+1τ
T
k+1 = τk+1

[

AkQ̂kA
T
k + AkQkC

T
k Ṽ −1

2,k CkQkA
T
k

]

τT
k+1. (3.2.44)

Hence, (3.2.41) follows from Proposition 3.2.5.

Since Q̃12,k+1 = Q̂k+1Lk, (3.2.30) and (3.2.33) imply that

τk+1Q̂k+1 = τk+1

[

AkQ̂kA
T
k + AkQkC

T
k Ṽ −1

2,k CkQkA
T
k

]

. (3.2.45)

Therefore, (3.2.41) imply that

τk+1

[

AkQ̂kA
T
k + AkQkC

T
k Ṽ −1

2,k CkQkA
T
k

]

= τk+1

[

AkQ̂kA
T
k + AkQkC

T
k Ṽ −1

2,k CkQkA
T
k

]

τT
k+1.

(3.2.46)

Hence, Q̂k+1 can be expressed as

Q̂k+1 = AkQ̂kA
T
k + AkQkC

T
k Ṽ −1

2,k CkQkA
T
k

− τk+1⊥

[

AkQ̂kA
T
k + AkQkC

T
k Ṽ −1

2,k CkQkA
T
k

]

τT
k+1⊥.

(3.2.47)

It follows from (3.2.15) and (3.2.21) that

Qk+1 = AQkA
T + V1,k + AQ̂kA

T − Q̂k+1. (3.2.48)
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Therefore, substituting (3.2.47) into (3.2.48) yields (3.2.40). 2

Note that although Ae,k and Be,k depend on Q̃12,k and Q̃2,k, it follows from Propo-

sition 3.2.3 that Q̃2,k and Q̃12,k can be obtained from Qk and Q̂k. Hence, it suffices

to propagate Qk and Q̂k using (3.2.40) and (3.2.41), respectively.

Finally, we summarize the one-step reduced-order Kalman filter.

State update:

Gk = (LkQ̂kLk)
−1LkQ̂k, (3.2.49)

xe,k+1 = LkAk

(

I − QkC
T
k Ṽ −1

2,k Ck

)

GT
k xe,k + LkAkQkC

T
k Ṽ −1

2,k yk. (3.2.50)

Covariance update:

Mk = Ak

(

Q̂k + QkC
T
k Ṽ −1

2,k CkQk

)

AT
k , (3.2.51)

τk+1 = MkL
T
k (LkMkLk)

−1 Lk, (3.2.52)

Q̂k+1 = τk+1

[

AkQ̂kA
T
k + AkQkC

T
k Ṽ −1

2,k CkQkA
T
k

]

τT
k+1, (3.2.53)

Qk+1 = AkQkA
T
k + V1,k − AkQkC

T
k Ṽ −1

2,k CkQkA
T
k (3.2.54)

+τk+1⊥

[

AkQ̂kA
T
k + AkQkC

T
k Ṽ −1

2,k CkQkA
T
k

]

τT
k+1⊥.

3.3 Two-Step Estimator

Next, we consider a two-step estimator. The data assimilation step is given by

xda
e,k = C f

e,kx
f
e,k + Df

e,kyk, (3.3.1)

where xda
e,k ∈ R

ne,k is the reduced-order data assimilation estimate of Lxk and xf
e,k ∈

R
ne,k is the reduced-order forecast estimate of xk. The forecast step or physics update

of the estimator is given by

xf
e,k+1 = Ada

e,kx
da
e,k. (3.3.2)
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First, we define the combined state and forecast estimate covariance Q̃f
k ∈ R

ñk×ñk

and the combined state and data assimilation estimate covariance Q̃da
k ∈ R

ñk×ñk by

Q̃f
k , E

[

x̃f
k(x̃

f
k)

T
]

, Q̃da
k , E

[

x̃da
k (x̃da

k )T
]

, (3.3.3)

where x̃f
k, x̃

da
k ∈ R

n+ne are defined by

x̃f
k ,







xk

xf
e,k






, x̃da

k ,







xk

xda
e,k






. (3.3.4)

Define the data assimilation cost by

Jda
k , E

[

(

Lkxk − xda
e,k

)T (

Lkxk − xda
e,k

)

]

. (3.3.5)

Hence, (3.3.3) implies that

Jda
k = tr(Q̃da

k R̃k), (3.3.6)

where R̃k is defined by

R̃k ,







LT
k Lk −LT

k

−Lk I






. (3.3.7)

It follows from (3.2.1), (3.3.1), and (3.3.4) that

x̃da
k = Ãf

kx̃
f
k + D̃f

1,kwk, (3.3.8)

where Ãf
k ∈ R

ñk×ñk and D̃f
1,k ∈ R

ñk×d are defined by

Ãf
k ,







I 0

Df
e,kCk C f

e,k






, D̃f

1,k ,







0

Df
e,kD2,k






. (3.3.9)

Therefore,

Q̃da
k = Ãf

kQ̃
f
k(Ã

f
k)

T + D̃f
1,k(D̃

f
1,k)

T. (3.3.10)
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Hence, Jda
k can be expressed as

Jda
k = tr

[(

Ãf
kQ̃

f
k(Ã

f
k)

T + D̃f
1,k(D̃

f
1,k)

T
)

R̃k

]

. (3.3.11)

Partition Q̃f
k as

Q̃f
k =







Q̃f
1,k Q̃f

12,k

(Q̃f
12,k)

T Q̃f
2,k






(3.3.12)

so that substituting (3.3.9) into (3.3.11) yields

Jda
k = tr

[

LkQ̃
f
1,kL

T
k

]

− 2tr
[

Df
e,kCkQ̃

f
1,kL

T
k

]

− 2tr
[

LkQ̃
f
12,k(C

f
e,k)

T
]

+ tr
[

C f
e,kQ̃

f
2,k(C

f
e,k)

T
]

+ 2tr
[

Df
e,kCkQ̃

f
12,k(C

f
e,k)

T
]

+ tr
[

Df
e,k

(

CkQ̃
f
1,kC

T
k + V2,k

)

(Df
e,k)

T
]

.

(3.3.13)

The following result characterizes C f
e,k and Df

e,k that minimize Jda
k .

Proposition 3.3.1 Assume that C f
e,k and Df

e,k minimize Jda
k . Then, C f

e,k and

Df
e,k satisfy

C f
e,kQ̃

f
2,k =

(

Lk − Df
e,kCk

)

Q̃f
12,k, (3.3.14)

Df
e,k =

(

LQ̃f
1,k − C f

e,k(Q̃
f
12,k)

T
)

CT
k

(

CkQ̃
f
1,kC

T
k + V2,k

)−1

. (3.3.15)

Proof. Setting
∂Jda

k

∂Cf
e,k

= 0 and
∂Jda

k

∂Df
e,k

= 0 yields the result. 2

Next, we assume that Q̃f
2,k is invertible and define Qf

k, Q̂
f
k ∈ R

nk×nk by

Qf
k , Q̃f

1,k − Q̃f
12,k(Q̃

f
2,k)

−1(Q̃f
12,k)

T,

Q̂f
k , Q̃f

12,k(Q̃
f
2,k)

−1(Q̃f
12,k)

T.

(3.3.16)

Next, define V f
2,k ∈ R

pk×pk by

V f
2,k , CkQ

f
kC

T
k + V2,k. (3.3.17)

Also, define Gf
k ∈ R

ne,k×nk by

Gf
k , (Q̃f

2,k)
−1(Q̃f

12,k)
T. (3.3.18)
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Proposition 3.3.2 Assume that C f
e,k and Df

e,k minimize Jda
k and assume that

Q̃f
2,k is positive definite. Then,

C f
e,k = Lk

(

I − Qf
kC

T
k (V f

2,k)
−1Ck

)

(Gf
k)

T, (3.3.19)

Df
e,k = LkQ

f
kC

T
k (V f

2,k)
−1. (3.3.20)

Proof. It follows from (3.3.14) that

C f
e,k =

(

Lk − Df
e,kCk

)

(Gf
k)

T. (3.3.21)

Substituting (3.3.21) into (3.3.15) yields

Df
e,k = [LkQ̃

f
1,k − LkQ̃

f
12,k(Q̃

f
2,k)

−1(Q̃f
12,k)

TCT
k

+ Df
e,kCkQ̃

f
12,k(Q̃

f
2,k)

−1(Q̃f
12,k)

TCT
k ]

(

CkQ̃
f
1,kC

T
k + V2,k

)−1

.

(3.3.22)

Therefore, (3.3.20) follows from (3.3.16) and (3.3.17). Finally, substituting (3.3.20)

into (3.3.21) yields (3.3.19). 2

Next, partition Q̃da
k as

Q̃da
k =







Q̃da
1,k Q̃da

12,k

(Q̃da
12,k)

T Q̃da
2,k






. (3.3.23)

Proposition 3.3.3 Assume that xda
e,k is given by (3.3.1), and C f

e,k and Df
e,k satisfy

(3.3.19), (3.3.20). Then,

Q̃da
1,k = Q̃f

1,k, (3.3.24)

Q̃da
12,k =

(

Q̂f
k + Qf

kC
T
k (V f

2,k)
−1CkQ

f
k

)

LT
k , (3.3.25)

Q̃da
2,k = Lk

(

Q̂f
k + Qf

kC
T
k (V f

2,k)
−1CkQ

f
k

)

LT
k . (3.3.26)

Proof. It follows from (3.3.10) that Q̃da
1,k = Q̃f

1,k and

Q̃da
12,k = Q̃f

12,k(C
f
e,k)

T + Q̃f
1,kC

T
k (Df

e,k)
T. (3.3.27)
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Substituting (3.3.19) and (3.3.20) into (3.3.27) yields (3.3.25). Similarly, it follows

from (3.3.10) and (3.3.23) that

Q̃da
2,k = C f

e,kQ̃
f
1,k(C

f
e,k)

T + C f
e,k(Q̃

f
12,k)

TCT
k (Df

e,k)
T

+ Df
e,kCkQ̃

f
12,k(C

f
e,k)

T + Df
e,k

(

CkQ̃
f
1,kC

T
k + V2,k

)

(Df
e,k)

T.

(3.3.28)

Finally, substituting (3.3.19) and (3.3.20) into (3.3.28) yields (3.3.26). 2

Next, define Qda
k and Q̂da

k by

Qda
k , Q̃da

1,k − Q̃da
12,k(Q̃

da
2,k)

−1(Q̃da
12,k)

T,

Q̂da
k , Q̃da

12,k(Q̃
da
2,k)

−1(Q̃da
12,k)

T.

(3.3.29)

Corollary 3.3.1 Assume that C f
e,k and Df

e,k satisfy Proposition 3.3.2. Then,

LkQ̃
da
12,k = Q̃da

2,k, Q̃da
12,k = Q̂da

k LT
k , Q̃da

2,k = LkQ̂
da
k LT

k . (3.3.30)

Next, define Gda
k by

Gda
k , (Q̃da

2,k)
−1(Q̃da

12,k)
T. (3.3.31)

Also, define Mda
k by

Mda
k , Q̂f

k + Qf
kC

T
k (V f

2,k)
−1CkQ

f
k (3.3.32)

and define τda
k and τda

k⊥ by

τda
k , (Gda

k )TLk, τda
k⊥ , I − τda

k . (3.3.33)

Proposition 3.3.4 Assume that C f
e,k and Df

e,k satisfy Proposition 3.3.2. Then,

τda
k is an oblique projector.

Proof. It follows from (3.3.25) and (3.3.26) that

Q̃da
12,k = Mda

k LT
k , Q̃da

2,k = LkM
da
k LT

k . (3.3.34)
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Substituting (3.3.34) into (3.3.31) yields

Gda
k =

(

LkM
da
k LT

k

)−1
LkM

da
k . (3.3.35)

Therefore, it follows from (3.3.33) that

τda
k = Mda

k LT
k

(

LkM
da
k LT

k

)−1
Lk. (3.3.36)

Hence, (τda
k )2 = τda

k . 2

Proposition 3.3.5 Assume that C f
e,k and Df

e,k satisfy Proposition 3.3.2. Then,

τda
k Q̂da

k = Q̂da
k . (3.3.37)

Proof. It follows from (3.3.29) and (3.3.34) that

Q̂da
k = Mda

k LT
k

(

LkM
da
k LT

k

)−1
LkM

da
k . (3.3.38)

Hence, (3.3.37) follows from (3.3.36). 2

Proposition 3.3.6 Assume that xda
e,k is given by (3.3.1), and C f

e,k and Df
e,k satisfy

Proposition 3.3.2. Then,

Q̂da
k = τda

k

(

Q̂f
k + Qf

kC
T
k (V f

2,k)
−1CkQ

f
k

)

(τda
k )T, (3.3.39)

Qda
k = Qf

k − Qf
kC

T
k (V f

2,k)
−1CkQ

f
k + τda

k⊥

(

Q̂f
k + Qf

kC
T
k (V f

2,k)
−1CkQ

f
k

)

(τda
k⊥)T. (3.3.40)

Proof. It follows from (3.3.26) and (3.3.30) that

LkQ̂
da
k LT

k = Lk

(

Q̂f
k + Qf

kC
T
k (V f

2,k)
−1CkQ

f
k

)

LT
k . (3.3.41)

Pre-multiplying and post-multiplying (3.3.41) by (Gda
k )T and Gda

k , respectively, yields

(3.3.39).
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Next, it follows from (3.3.25), (3.3.30), and (3.3.33) that

τda
k Q̂da

k = τda
k

(

Q̂f
k + Qf

kC
T
k (V f

2,k)
−1CkQ

f
k

)

. (3.3.42)

Therefore, Proposition 3.3.4 and (3.3.39) imply that

τda
k

(

Q̂f
k + Qf

kC
T
k (V f

2,k)
−1CkQ

f
k

)

= τda
k

(

Q̂f
k + Qf

kC
T
k (V f

2,k)
−1CkQ

f
k

)

(τda
k )T. (3.3.43)

Hence, Q̂da
k can be expressed as

Q̂da
k =Q̂f

k + Qf
kC

T
k (V f

2,k)
−1CkQ

f
k − τda

k⊥

(

Q̂f
k + Qf

kC
T
k (V f

2,k)
−1CkQ

f
k

)

(τda
k⊥)T. (3.3.44)

Finally, note that (3.3.24) implies that

Qda
k = Q̃f

1,k − Q̂da
k . (3.3.45)

Substituting (3.3.44) into (3.3.45) yields (3.3.40). 2

Next, we define the forecast cost J f
k by

J f
k , E

[

(

Lkxk+1 − xf
e,k+1

) (

Lkxk+1 − xf
e,k+1

)T
]

. (3.3.46)

Hence, it follows from (3.3.3) that

J f
k = tr

(

Q̃f
k+1R̃k

)

. (3.3.47)

It follows from (3.2.1) and (3.3.2) that

x̃f
k+1 = Ãda

k x̃da
k + D̃da

1,kwk, (3.3.48)

where Ãda
k ∈ R

ñk×ñk and D̃da
1,k ∈ R

ñk×d are defined by

Ãda
k ,







Ak 0

0 Ada
e,k






, D̃da

1,k ,







D1,k

0






. (3.3.49)
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Therefore,

Q̃f
k+1 = Ãda

k Q̃da
k (Ãda

k )T + D̃da
1,k(D̃

da
1,k)

T. (3.3.50)

Substituting (3.3.50) into (3.3.47) and using (3.3.49) yields

J f
k = tr

[

Lk

(

AkQ̃
da
1,kA

T
k + V1,k

)

LT
k

]

− tr
[

LkAkQ̃
da
12,k(A

da
e,k)

T
]

− tr
[

Ada
e,k(Q̃

da
12,k)

TAT
k LT

k

]

+ tr
[

Ada
e,kQ̃

da
2,k(A

da
e,k)

T
]

.

(3.3.51)

Proposition 3.3.7 Assume that Ada
e,k minimizes J f

k, and assume that Q̃da
2,k is pos-

itive definite. Then

Ada
e,k = LkAk(G

da
k )T. (3.3.52)

Proof. Setting
∂J f

k

∂Ada
e,k

= 0 yields the result. 2

Assume that Ada
e,k is given by (3.3.52). Then the following result concerns rela-

tionships among the covariances Q̃f
12,k+1, Q̃f

2,k+1, and Q̂f
k+1.

Proposition 3.3.8 Assume that Ada
e,k satisfies (3.3.52). Then,

LkQ̃
f
12,k+1 = Q̃f

2,k+1, Q̃f
12,k+1 = Q̂f

k+1L
T
k , Q̃f

2,k+1 = LkQ̂
f
k+1L

T
k . (3.3.53)

Proof. It follows from (3.3.49) and (3.3.50) that

Q̃f
12,k+1 = AkQ̃

da
12,k(A

da
e,k)

T. (3.3.54)

Substituting (3.3.52) into (3.3.54) yields

Q̃f
12,k+1 = AkQ̂

da
k AT

k LT
k . (3.3.55)

Similarly, (3.3.49) and (3.3.50) imply that

Q̃f
2,k+1 = Ada

e,kQ̃
da
2,k(A

da
e,k)

T. (3.3.56)
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Substituting (3.3.52) into (3.3.56) yields

Q̃f
2,k+1 = LkAkQ̂

da
k AT

k LT
k . (3.3.57)

Therefore, (3.3.55) and (3.3.57) imply that LQ̃f
12,k+1 = Q̃f

2,k+1.

Assuming Q̃f
2,k+1 is invertible, LkQ̃

f
12,k+1(Q̃

f
2,k+1)

−1 = I. Therefore, it follows from

(3.3.16) that Q̃f
12,k+1 = Q̂f

k+1L
T
k and Q̃f

2,k+1 = LkQ̂
f
k+1L

T
k . 2

Next, define M f
k by

M f
k , AkQ̂

da
k AT

k . (3.3.58)

Also, define τ f
k and τ f

k⊥ by

τ f
k , (Gf

k)
TLk−1, τ f

k⊥ , I − τ f
k. (3.3.59)

Proposition 3.3.9 Assume that Ada
e,k satisfies (3.3.52). Then, τ f

k+1 is an oblique

projector, that is, (τ f
k+1)

2 = τ f
k+1.

Proof. It follows from (3.3.55), (3.3.57), and (3.3.58) that

Q̃f
12,k+1 = M f

kL
T
k , Q̃f

2,k = LkM
f
kL

T
k . (3.3.60)

Substituting (3.3.60) into (3.2.23) yields

τ f
k+1 = M f

kL
T
k

(

LkM
f
kL

T
k

)−1
Lk. (3.3.61)

Therefore, (τ f
k+1)

2 = τ f
k+1. 2

Proposition 3.3.10 Assume that Ada
e,k satisfies (3.3.52). Then,

τ f
k+1Q̂

f
k+1 = Q̂f

k+1. (3.3.62)
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Proof. Note that (3.3.16) and (3.3.60) imply that

Q̂f
k+1 = M f

kL
T
k

(

LkM
f
kL

T
k

)−1
LkM

f
k. (3.3.63)

Hence, (3.3.62) follows from (3.3.61) and (3.3.63). 2

Proposition 3.3.11 Assume that Ada
e,k satisfies (3.3.52). Then,

Q̂f
k+1 = τ f

k+1AkQ̂
da
k AT

k (τ f
k+1)

T, (3.3.64)

Qf
k+1 = AkQ

da
k AT

k + V1,k + τ f
k+1⊥

(

AkQ̂
da
k AT

k

)

(τ f
k+1⊥)T. (3.3.65)

Proof. It follows from (3.3.53) and (3.3.57) that

LkQ̂
f
k+1L

T
k = LkAkQ̂

da
k AT

k LT
k . (3.3.66)

Pre-multiplying and post-multiplying (3.3.66) by (Gf
k)

T and Gf
k, respectively, and

using Proposition 3.3.10 yields (3.3.64). Note that (3.3.53) and (3.3.55) imply that

LkQ̂
f
k+1 = LkAkQ̂

da
k AT

k . (3.3.67)

Pre-multiplying (3.3.67) by (Gf
k+1)

T and using (3.3.62) yields

τ f
k+1AkQ̂

da
k AT

k = τ f
k+1AkQ̂

da
k AT

k (τ f
k+1)

T. (3.3.68)

Therefore, Q̂f
k+1 can be expressed as

Q̂f
k+1 = AkQ̂

da
k AT

k − τ f
k+1⊥AkQ̂

da
k AT

k (τ f
k+1⊥)T. (3.3.69)

It follows from (3.2.1) and (3.3.16) that

Qf
k+1 = AkQ̃

f
1,kA

T
k + V1,k − Q̂f

k+1. (3.3.70)

Therefore, substituting (3.3.24) into (3.3.70) yields

Qf
k+1 = AkQ̃

da
1,kA

T
k + V1,k − Q̂f

k+1. (3.3.71)
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Finally, substituting (3.3.69) into (3.3.71) yields (3.3.65). 2

The two-step reduced order filter can be summarized as follows.

Data assimilation step:

xda
e,k = Lk

(

I − Qf
kC

T
k (V f

2,k)
−1Ck

)

(Gf
k)

Txf
e,k + LkQ

f
kC

T
k (V f

2,k)
−1yk, (3.3.72)

Q̂da
k = τda

k

(

Q̂f
k + Qf

kC
T
k (V f

2,k)
−1CkQ

f
k

)

(τda
k )T, (3.3.73)

Qda
k = Qf

k − Qf
kC

T
k (V f

2,k)
−1CkQ

f
k + τda

k⊥

(

Q̂f
k + Qf

kC
T
k (V f

2,k)
−1CkQ

f
k

)

(τda
k⊥)T, (3.3.74)

τda
k = Mda

k LT
k

(

LkM
da
k LT

k

)−1
Lk, (3.3.75)

Mda
k = Q̂f

k + Qf
kC

T
k (V f

2,k)
−1CkQ

f
k. (3.3.76)

Forecast step:

xf
e,k+1 = LkAk(G

da
k )Txda

e,k, (3.3.77)

Q̂f
k+1 = τ f

k+1AkQ̂
da
k AT

k (τ f
k+1)

T, (3.3.78)

Qf
k+1 = AkQ

da
k AT

k + V1,k + τ f
k+1⊥

(

AkQ̂
da
k AT

k

)

(τ f
k+1⊥)T, (3.3.79)

τ f
k+1 = M f

kL
T
k

(

LkM
f
kL

T
k

)−1
Lk, (3.3.80)

M f
k = AkQ̂

da
k AT

k . (3.3.81)

3.4 Asymptotically Stable Mass-Spring-Dashpot Example

We consider a zero-order hold discretized model of the mass-spring-dashpot struc-

ture consisting of 10 masses shown in Figure 3.1 so that n = 20. For i = 1, . . . , 10,

mi = 1.0 kg, while, for j = 1, . . . , 11, kj = 1.0 N/m and cj = 0.05 Ns/m. We set the

initial error covariance P0 = 100I and assume that V1,k = I, V2,k = I for all k > 0.

Let qi denote the position of the ith mass so that

x ,

[

q1 q̇1 · · · q10 q̇10

]

. (3.4.1)
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wn

m10

qn

Figure 3.1: Mass-spring-dashpot system

We assume that measurements of position and velocities of m1, . . . ,m4 are available

so that Ck = [I8 08×12] for all k > 0. Next, we obtain state estimates from the

reduced-order estimator with ne = 8. For the subspace estimator, we consider a

change of basis so that the system has a block upper-triangular structure. Recall

that the costs for the estimator is defined by (3.2.6) with Rk = I. The ratio of

the cost Jk to the best achievable cost when a full-order Kalman filter is used is

shown in Figure 3.2. As expected, the performance of the reduced-order filter is

never better than the full-order Kalman filter (indicated by ratios greater than 1).

Next, we assume that measurements of positions and velocities of m1, . . . ,m8 are

available so that Ck = [I16 016×4] for all k > 0. The performance of the reduced-

order estimator with ne = 16 is shown in Figure 3.2. The objective in both the cases

is to obtain estimates of Lxk, where for i = 1, . . . , ne, j = 1, . . . , n, the (i, j)th entry

of L ∈ R
ne×(n−ne) is given by

L(i,i) =



















1, if i = j,

0.05, else.

(3.4.2)

The plots also demonstrate that the one-step and two-step estimators are not equiv-

alent.
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J/
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t

τ proj. (one−step),  n
e
=8

τ proj. (two−step),  n
e
=8

τ proj. (one−step),  n
e
=16

τ proj. (two−step),  n
e
=16

Figure 3.2: Ratios of J to the corresponding full-order cost when the reduced-order
estimator is applied to the asymptotically stable mass-spring-dashpot
system for ne = 8, 16. The plots demonstrate that the one-step and
two-step estimators are not equivalent.
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3.5 Conclusion

Using the finite-horizon optimization, an optimal reduced-order estimator was

obtained in the form of recursive update equations for time-varying systems. These

estimator is characterized by the τ projector, in the recursive update equations.

Moreover, we derived one-step and two-step update equations for the reduced-order

estimator. When the order of the estimator is equal to the order of the system,

the oblique projection becomes the identity and the estimator is equivalent to the

classical optimal recursive full-order filter. We demonstrated the performance of the

reduced-order estimator for an asymptotically stable lumped-structure. Since the

reduced-order estimator does not reduce the computational requirements of prop-

agating the error covariance, we introduce an estimator in the next chapter that

reduces the computational requirement of the full-order estimator by propagating

a few columns of the square root of the error covariance instead of the entire error

covariance matrix.



CHAPTER IV

Cholesky-Based Reduced-Rank Square-Root

Kalman Filtering

Although, the reduced-order estimator in the previous chapter used a reduced-

order model to update the state estimates, the full-order covariance had to be up-

dated to obtain the optimal estimator gain. In this chapter, we consider a reduced-

rank square-root Kalman filter based on the Cholesky decomposition of the state-

error covariance. This filter propagates only a few columns of the square root of

the state-error covariance. Specifically, the columns are chosen from the Cholesky

factor of the state-error covariance. We compare the performance of this filter with

the reduced-rank square-root filter based on the singular value decomposition. The

results in this chapter are presented in [42].

4.1 Introduction

The problem of state estimation for large-scale systems has gained increasing

attention due to computationally intensive applications such as weather forecasting

[17, 38], where state estimation is commonly referred to as data assimilation. For

these problems, there is a need for algorithms that are computationally tractable

despite the enormous dimension of the state. These problems also typically entail

71
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nonlinear dynamics and model uncertainty, although these issues will not be dealt

with in this chapter.

One approach to obtaining more tractable algorithms is to consider reduced-

order Kalman filters. These reduced-complexity filters provide state estimates that

are suboptimal relative to the classical Kalman filter [7, 8, 25, 26, 39]. Alternative

reduced-order variants of the classical Kalman filter have been developed for compu-

tationally demanding applications [27, 29, 30, 35], where the classical Kalman filter

gain and covariance are modified so as to reduce the computational requirements. A

comparison of several techniques is given in [9].

A widely studied technique for reducing the computational requirements of the

Kalman filter for large scale systems is the reduced-rank filter [21, 28, 43, 44]. In this

method, the error-covariance matrix is factored to obtain a square root, whose rank

is then reduced through truncation. This factorization-and-truncation method has

direct application to the problem of generating a reduced ensemble for use in particle

filter methods [22, 45].

Reduced-rank filters are closely related to the classical factorization techniques

[46, 47], which provide numerical stability and computational efficiency, as well as a

starting point for reduced-rank approximation.

The primary technique for truncating the error-covariance matrix is the singular

value decomposition (SVD) [21, 22, 28, 43–45], wherein the singular values provide

guidance as to which components of the error covariance are most relevant to the ac-

curacy of the state estimates. Approximation based on the SVD is largely motivated

by the fact that error-covariance truncation is optimal with respect to approximation

in unitarily invariant norms, such as the Frobenius norm. Despite this theoretical

grounding, there appear to be no criteria to support the optimality of approximation
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based on the SVD within the context of recursive state estimation. The difficulty is

due to the fact that optimal approximation depends on the dynamics and measure-

ment maps in addition to the components of the error covariance.

In this chapter, we begin by observing that the Kalman filter update depends on

the product CkPk, where Ck is the measurement map and Pk is the error covariance.

This observation suggests that approximation of CkPk may be more suitable than

approximation based on Pk alone.

To develop this idea, we show that approximation of CkPk leads directly to trun-

cation based on the Cholesky decomposition. Unlike the SVD, however, the Cholesky

decomposition does not possess a natural measure of magnitude that is analogous

to the singular values arising in the SVD. Nevertheless, filter reduction based on the

Cholesky decomposition provides state-estimation accuracy that is competitive with,

and in many cases superior to, that of the SVD. In particular, we show that, in spe-

cial cases, the accuracy of the Cholesky-decomposition-based reduced-rank filter is

equal to the accuracy of the full-rank filter, and we demonstrate examples for which

the Cholesky-decomposition-based reduced-rank filter provides acceptable accuracy,

whereas the SVD-based reduced-rank filter provides arbitrarily poor accuracy.

A fortuitous advantage of using the Cholesky decomposition in place of the SVD is

the fact that the Cholesky decomposition is computationally less expensive than the

SVD, specifically, O(n3/6) [48], and thus an asymptotic computational advantage

over SVD by a factor of 12. An additional advantage is that the entire matrix

need not be factored; instead, by arranging the states so that those states that

contribute directly to the measurement correspond to the initial columns of the

lower triangular square root, then only the leading submatrix of the error covariance

must be factored, yielding yet further savings over the SVD. Once the factorization



74

is performed, the algorithm effectively retains only the initial “tall” columns of the

full Cholesky factorization and truncates the “short” columns.

4.2 The Kalman filter

Consider the discrete-time system

xk+1 = Akxk + Gkwk, (4.2.1)

yk = Ckxk + Hkvk, (4.2.2)

where xk ∈ R
n, wk ∈ R

dw , yk ∈ R
p, vk ∈ R

dv , and Ak, Gk, Ck, and Hk are known

real matrices of appropriate sizes. We assume that wk and vk are zero-mean white

processes with unit covariances. Define Qk , GkG
T
k and Rk , HkH

T
k and assume

that Rk is positive definite for all k > 0. Furthermore, we assume that wk and vk

are uncorrelated for all k > 0. The objective is to obtain an estimate of the state xk

using the measurements yk.

The Kalman filter [5, 6] provides the optimal minimum-variance estimate of the

state xk. The Kalman filter can be expressed in two steps, namely, the data assimi-

lation step, where the measurements are used to update the states, and the forecast

step, which uses the model. These steps can be summarized as follows:

Data Assimilation Step

Kk = P f
kC

T
k (CkP

f
kC

T
k + Rk)

−1, (4.2.3)

P da
k = P f

k − P f
kC

T
k (CkP

f
kC

T
k + Rk)

−1CkP
f
k, (4.2.4)

xda
k = xf

k + Kk(yk − Ckx
f
k). (4.2.5)
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Forecast Step

xf
k+1 = Akx

da
k , (4.2.6)

P f
k+1 = AkP

da
k AT

k + Qk. (4.2.7)

The states xf
k and xda

k are the forecast and data assimilation estimates of the state

xk, while the matrices P f
k ∈ R

n×n and P da
k ∈ R

n×n are the state error covariances,

that is,

P f
k = E [ef

k(e
f
k)

T], P da
k = E [eda

k (eda
k )T], (4.2.8)

where

ef
k , xk − xf

k, eda
k , xk − xda

k . (4.2.9)

Next, we consider two reduced-rank square-root filters for state estimation that

propagate approximations of a square-root of the error covariance instead of the

actual error covariance.

4.3 SVD-Based Reduced-Rank Square-Root Filter

Note that the Kalman filter uses the error covariances P da
k and P f

k, which

are updated using (4.2.4) and (4.2.7). To reduce the computational requirements,

we consider a filter that uses reduced-rank approximations of the error covariances.

Instead of updating the error covariances, we propagate predicted error covariances

P̃ da
s,k and P̃ f

s,k using reduced-rank approximations P̂ da
s,k and P̂ f

s,k. The reduced-rank

approximations are chosen so that rank(P̂ da
s,k) < n and rank(P̂ f

s,k) < n, and such that

‖P̃ da
s,k − P̂ da

s,k‖F and ‖P̃ f
s,k− P̂ f

k‖F are minimized. To achieve this, we perform a singular

value decomposition on the predicted error covariances at every time step.
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Let P ∈ R
n×n be positive semidefinite, let σ1 > · · · > σn be the singular values

of P , and u1, . . . , un ∈ R
n be the corresponding orthogonal singular vectors so that,

for i = 1, . . . , n,

Pui = σiui (4.3.1)

and

uiu
T
j =



















1, if i = j,

0, else.

(4.3.2)

Next, define Uq ∈ R
n×q and Σq ∈ R

q×q by

Uq ,

[

u1 · · · uq

]

, Σq ,















σ1

. . .

σq















. (4.3.3)

With this notation, the singular value decomposition of P is given by

P = UnΣnU
T
n , (4.3.4)

where Un is orthogonal. For q 6 n, let ΦSVD(P, q) ∈ R
n×q denote the SVD-based

rank-q approximation of a square-root of P given by

ΦSVD(P, q) , UqΣ
1/2
q . (4.3.5)

Note that SST, where S , ΦSVD(P, q), is the best rank-q approximation of P in the

Frobenius norm. Specifically, we have the following result.

Lemma 4.3.1 Let P ∈ R
n×n be positive semidefinite, and let σ1 > · · · > σn be

the singular values of P . If S = ΦSVD(P, q), then

min
rank(P̂ )=q

‖P − P̂‖F = ‖P − SST‖2
F = σ2

q+1 + · · · + σ2
n. (4.3.6)
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Proof. See [36]. 2

The data assimilation and forecast steps of the SVD-based rank-q square-root

filter are given by the following steps:

Data Assimilation step

Ks,k = P̂ f
s,kC

T
k

(

CkP̂
f
s,kC

T
k + Rk

)−1

, (4.3.7)

P̃ da
s,k = P̂ f

s,k − P̂ f
s,kC

T
k

(

CkP̂
f
s,kC

T
k + Rk

)−1

CkP̂
f
s,k, (4.3.8)

xda
s,k = xf

s,k + Ks,k(yk − Ckx
f
s,k), (4.3.9)

Forecast step

xf
s,k+1 = Akx

da
s,k, (4.3.10)

P̃ f
s,k+1 = AkP̂

da
s,kA

T
k + Qk, (4.3.11)

where

P̂ f
s,k , S̃f

s,k(S̃
f
s,k)

T, P̂ da
s,k , S̃da

s,k(S̃
da
s,k)

T, (4.3.12)

S̃f
s,k , ΦSVD(P̃ f

s,k, q), S̃da
s,k , ΦSVD(P̃ da

s,k, q), (4.3.13)

and P̃ f
s,0 is positive semidefinite.

Next, define the forecast and data assimilation error covariances P f
s,k and P da

s,k of

the SVD-based rank-q square-root filter by

P f
s,k , E

[

(xk − xf
s,k)(xk − xf

s,k)
T
]

, P da
s,k , E

[

(xk − xda
s,k)(xk − xda

s,k)
T
]

. (4.3.14)

Using (4.2.1), (4.3.9) and (4.3.10), it follows that

P da
s,k = (I − Ks,kCk)P

f
s,k(I − Ks,kCk)

T + Ks,kRkK
T
s,k, (4.3.15)

P f
s,k = AkP

da
s,kA

T
k + Qk. (4.3.16)
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Note that P̃ f
s,k and P̃ da

s,k are predicted error covariances and not covariances of

the state error. Specifically, even if P̃ f
s,0 = P f

0 , it does not necessarily follow that

P̃ f
s,k = P f

k for all k > 0. Furthermore, since Ks,k 6= Kk, the SVD-based rank-q

square-root filter is a suboptimal filter. However, under certain conditions, the SVD-

based rank-q square-root filter is equivalent to the Kalman filter. Specifically, we

have the following result.

Proposition 4.3.1 Assume that P̃ f
s,k = P f

k and rank(P f
k) 6 q. Then, Ks,k = Kk,

P̃ da
s,k = P da

k , and P̃ f
s,k+1 = P f

k+1.

Proof. Since rank(P̃ f
s,k) 6 q, it follows from Lemma 4.3.1 that

P̂ f
s,k = S̃f

s,k

(

S̃f
s,k

)T

= P̃ f
s,k. (4.3.17)

Hence, it follows from (4.3.7) that Ks,k = Kk. Furthermore, it follows from (4.2.4),

(4.3.8), and (4.3.17) that

P̃ da
s,k = P da

k . (4.3.18)

Since rank(P f
k) 6 q, it follows from (4.2.4) that rank(P da

k ) 6 q and hence (4.3.18)

implies that rank(P̃ da
s,k) 6 q. Therefore, Lemma 4.3.1, (4.3.12) and (4.3.13) imply

that

P̂ da
s,k = S̃da

s,k

(

S̃da
s,k

)T

= P̃ da
s,k. (4.3.19)

Hence, it follows from (4.3.18) and (4.3.19) that P̂ da
s,k = P da

k , and therefore (4.2.7)

and (4.3.11) imply that P̃ f
s,k+1 = P f

k+1. 2

Corollary 4.3.1 Assume that xf
s,0 = xf

0, P̃ f
s,0 = P f

0 , and rank(P f
0) 6 q. Further-

more, assume that, for all k > 0, rank(Ak) + rank(Qk) 6 q. Then, for all k > 0,

Ks,k = Kk and xf
s,k = xf

k.
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Proof. It follows from (4.2.4) and (4.2.7) that rank(P f
k) 6 q for all k. Hence,

using Proposition 4.3.1 and induction, it can be shown that Ks,k = Kk for all k > 0.

Therefore, (4.2.5), (4.2.6), (4.3.9) and (4.3.10) imply that xf
s,k = xf

k for all k > 0. 2

4.4 Cholesky-Factorization-Based Reduced-Rank Square-Root
Filter

The Kalman filter gain Kk depends on a particular subspace of the error

covariance. Specifically, Kk depends only on the correlation CkP
f
k between the error

in the measured states and the unmeasured states. We thus have the following

observation.

Lemma 4.4.1 Assume that P̂k ∈ R
n×n is positive semidefinite. Partition P̂k and

P f
k as

P̂k =







P̂q,k (P̂qq,k)
T

P̂qq,k P̂q,k






, P f

k =







P f
q,k (P f

qq,k)
T

P f
qq,k P f

q,k






, (4.4.1)

where P̂q,k, P
f
q,k ∈ R

q×q and P̂q,k, P
f
q,k ∈ R

q×q, assume that Ck has the form

Ck =

[

Iq 0

]

, (4.4.2)

and define K̂k by

K̂k , P̂kC
T
k (CkP̂kC

T
k + Rk)

−1. (4.4.3)

Furthermore, let

[

P̂q,k

(

P̂qq,k

)T
]

=

[

P f
q,k

(

P f
qq,k

)T

]

. Then, K̂k = Kk.

Proof. It follows from (4.4.1) and (4.4.2) that

CkP̂k =

[

P̂q,k (P̂qq,k)
T

]

, CkP
f
k =

[

P f
q,k (P̂qq,k)

T

]

, (4.4.4)
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and

CkP̂kC
T
k = P̂q,k, CkP

f
kC

T
k = P f

q,k. (4.4.5)

Hence, it follows from (4.2.3) and (4.4.3) that K̂k = Kk. 2

Next, we consider a filter that updates the predicted error covariances P̃ da
c,k and

P̃ f
c,k using reduced-rank approximations P̂ da

c,k and P̂ f
c,k such that rank(P̂ da

c,k) < n and

rank(P̂ f
c,k) < n, and such that ‖Ck(P̃

da
c,k − P̂ da

c,k)‖F and ‖Ck(P̃
f
c,k − P̂ f

c,k)‖F are mini-

mized. To achieve this, we perform a Cholesky factorization of the predicted error

covariances at every time step.

Let P ∈ R
n×n be positive definite. The Cholesky factorization yields a lower

triangular Cholesky factor L ∈ R
n×n that satisfies

LLT = P. (4.4.6)

Partition L as

L =

[

L1 · · · Ln

]

, (4.4.7)

so that truncating the last n − q columns of L yields the rank-q Cholesky factor

ΦCHOL(P, q) ,

[

L1 · · · Lq

]

∈ R
n×q. (4.4.8)

Lemma 4.4.2 Let P ∈ R
n×n be positive definite, define S , ΦCHOL(P, q) and

P̂ , SST, and partition P and P̂ as

P =







Pq Pqq

(Pqq)
T Pq






, P̂ =







P̂q P̂qq

(P̂qq)
T P̂q






, (4.4.9)

where Pq, P̂q ∈ R
q×q and Pq, P̂q ∈ R

q×q. Then,

[

P̂q P̂qq

]

=

[

Pq Pqq

]

.
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Proof. Let L be the Cholesky factor of P . Since L is lower triangular, LiL
T
i has

the structure

LiL
T
i =







0i−1 0(i−1)×(n−i+1)

0(n−i+1)×(i−1) Xi






, (4.4.10)

and therefore

n
∑

i=q+1

LiL
T
i =







0q 0q×q

0q×q Yq






, (4.4.11)

where Yq ∈ R
q×q. Since

P =
n

∑

i=1

LiL
T
i , (4.4.12)

it follows from (4.4.8) that

P = P̂ +
n

∑

i=q+1

LiL
T
i . (4.4.13)

Substituting (4.4.11) into (4.4.13) yields P̂q = Pq and P̂qq = Pqq. 2

Lemma 4.4.2 implies that, if S = ΦCHOL(P, q), then the first q columns and rows

of SST and P are equal.

The data assimilation and forecast steps of the Cholesky-based rank-q square-root

filter are given by the following steps:

Data Assimilation step

Kc,k = P̂ f
c,kC

T
k

(

CkP̂
f
c,kC

T
k + Rk

)−1

, (4.4.14)

P̃ da
c,k = P̂ f

c,k − P̂ f
c,kC

T
k

(

CkP̂
f
c,kC

T
k + Rk

)−1

CkP̂
f
c,k, (4.4.15)

xda
c,k = xf

c,k + Kc,k(yk − Ckx
f
c,k). (4.4.16)

Forecast step

xf
c,k+1 = Akx

da
c,k, (4.4.17)

P̃ f
c,k+1 = AkP̂

da
c,kA

T
k + Qk, (4.4.18)
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where

P̂ f
c,k , S̃f

c,k

(

S̃f
c,k

)T

, P̂ da
c,k , S̃da

c,k

(

S̃da
c,k

)T

, (4.4.19)

S̃f
c,k , ΦCHOL(P̃ f

c,k, q), S̃da
c,k , ΦCHOL(P̃ da

c,k, q), (4.4.20)

and P̃ f
c,0 is positive definite.

Next, define the forecast and data assimilation error covariances P f
c,k and P da

c,k,

respectively, of the Cholesky-based rank-q square-root filter by

P f
c,k , E

[

(xk − xf
c,k)(xk − xf

c,k)
T
]

, P da
s,k , E

[

(xk − xda
c,k)(xk − xda

c,k)
T
]

, (4.4.21)

that is, P f
c,k and P da

c,k are the error covariances when the Cholesky-based rank-q square-

root filter is used. Using (4.2.1), (4.4.16) and (4.4.17), it can be shown that

P da
c,k = (I − Kc,kCk)P

f
c,k(I − Kc,kCk)

T + Kc,kRkK
T
c,k, (4.4.22)

P f
c,k = AkP

da
c,kA

T
k + Qk. (4.4.23)

Again, like the SVD-based rank-q square-root filter, P̃ f
c,k and P̃ da

c,k are predicted

error covariances and not covariances of the state error. Hence, even if P̃ f
c,0 = P f

0 , the

Cholesky-based rank-q square-root filter is suboptimal and generally not equivalent

to the Kalman filter. However, the following result shows that, in certain cases, the

Cholesky-based rank-q square-root filter is equivalent to the Kalman filter.

Proposition 4.4.1 Assume that p = q, Ck has the form

Ck =

[

Iq 0

]

, (4.4.24)

partition P f
k and P̃ f

c,k as

P f
k =







P f
q,k (P f

qq,k)
T

P f
qq,k P f

q,k






, P̃ f

c,k =







P̃ f
c,q,k (P̃ f

c,qq,k)
T

P̃ f
c,qq,k P̃ f

cq,k






, (4.4.25)
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where P f
q,k, P̃

f
c,q,k ∈ R

q×q and P f
q,k, P̃

f
c,q,k ∈ R

q×q, and assume that

[

P̃ f
c,q,k P̃ f

c,qq,k

]

=
[

P f
q,k P f

qq,k

]

. Then, Kc,k = Kk. If, in addition, Ak has the form

Ak =







Aq,k 0

Aqq,k Aq,k






, (4.4.26)

where Aq,k ∈ R
q×q and Aq,k ∈ R

q×q, then

[

P̃ f
c,q,k+1 P̃ f

c,qq,k+1

]

=

[

P f
q,k+1 P f

qq,k+1

]

.

Proof. Partition P̂ f
c,k as

P̂ f
c,k =







P̂ f
c,q,k (P̂ f

c,qq,k)
T

P̂ f
c,qq,k P̂ f

c,q,k






, (4.4.27)

where P̂ f
q,k ∈ R

q×q is positive semidefinite and P̂ f
q,k ∈ R

q×q. It follows from Lemma 4.4.2

and (4.4.20) that

P̂ f
c,q,k = P̃ f

c,q,k, P̂ f
c,qq,k = P̃ f

c,qq,k. (4.4.28)

Therefore, it follows from Lemma 4.4.1 and (4.4.14) that Kc,k = Kk.

Next, partition P da
k as

P da
k =







P da
q,k (P da

qq,k)
T

P da
qq,k P da

q,k






, (4.4.29)

where P da
q,k ∈ R

q×q is positive semidefinite and P da
q,k ∈ R

q×q. It follows from (4.2.4)

that

P da
q,k = P f

q,k − P f
q,k(P

f
q,k + Rk)

−1P f
q,k, (4.4.30)

P da
qq,k = P f

qq,k − P f
qq,k(P

f
q,k + Rk)

−1P f
q,k. (4.4.31)

Now, partition P̃ da
c,k and P̂ da

c,k as

P̃ da
c,k =







P̃ da
c,q,k (P̃ da

c,qq,k)
T

P̃ da
c,qq,k P̃ da

c,q,k






, P̂ da

c,k =







P̂ da
c,q,k (P̂ da

c,qq,k)
T

P̂ da
c,qq,k P̂ da

c,q,k






, (4.4.32)
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where P̃ da
q,k, P̂

da
q,k ∈ R

q×q are positive semidefinite and P̃ da
q,k, P̂

da
q,k ∈ R

q×q. Therefore, it

follows from (4.4.15), (4.4.24), (4.4.27), and (4.4.32) that

P̃ da
c,q,k = P̂ f

c,q,k − P̂ f
c,q,k(P̂

f
c,q,k + Rk)

−1P̂ f
c,q,k, (4.4.33)

P̃ da
c,qq,k = P̂ f

c,qq,k − P̂ f
c,qq,k(P̂

f
c,q,k + Rk)

−1P̂ f
c,q,k. (4.4.34)

Hence, comparing (4.4.30) with (4.4.33) and (4.4.31) with (4.4.34), and using

[

P̃ f
c,q,k

(

P̃ f
c,qq,k

)T
]

=

[

P f
q,k

(

P f
qq,k

)T

]

(4.4.35)

and (4.4.28) yields

P̃ da
c,q,k = P da

q,k, P̃ da
c,qq,k = P da

qq,k. (4.4.36)

Moreover, since Sda
c,k = ΦCHOL(P̃ da

c,k, q), it follows from Lemma 4.4.2 that

P̂ da
c,q,k = P̃ da

c,q,k, P̂ da
c,qq,k = P̃ da

c,qq,k. (4.4.37)

Therefore, (4.4.36) implies that

P̂ da
c,q,k = P da

q,k, P̂ da
c,qq,k = P da

qq,k. (4.4.38)

Now assume that Ak has the form (4.4.26). Then (4.2.7) implies that

P f
q,k+1 = Aq,kP

da
q,kA

T
q,k + Qq,k, (4.4.39)

P f
qq,k+1 = Aq,kP

da
qq,kA

T
q,k + Aqq,kP

da
q,kA

T
q,k + Qqq,k, (4.4.40)

where Qk has entries

Qk =







Qq,k (Qqq,k)
T

Qqq,k Qq,k






. (4.4.41)

Furthermore, it follows from (4.4.18), (4.4.26) and (4.4.32) that

P̃ f
c,q,k+1 = Aq,kP̂

da
c,q,kA

T
q,k + Qq,k, (4.4.42)

P̃ f
c,qq,k+1 = Aq,kP̂

da
c,qq,kA

T
q,k + Aqq,kP̂

da
c,q,kA

T
q,k + Qqq,k. (4.4.43)
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Therefore, (4.4.38), (4.4.39), (4.4.40), (4.4.42), and (4.4.43) imply that P̃ f
c,q,k+1 =

P f
q,k+1 and P̃ f

c,qq,k+1 = P f
qq,k+1. 2

Corollary 4.4.1 Assume that Ck and Ak are of the form (4.4.24) and (4.4.26).

Let P̃ f
c,q,0 = P f

q,0, P̃ f
c,qq,0 = P f

qq,0, and xf
c,0 = xf

0. Then, for all k > 0, Kc,k = Kk, and

hence xf
c,k = xf

k.

Proof. Using induction and Proposition 4.4.1 yields Kc,k = Kk for all k > 0.

Hence, it follows from (4.2.5), (4.2.6), (4.4.16), and (4.4.17) that xf
c,k = xf

k for all

k > 0. 2

4.4.1 Linear Time-Invariant Systems

Next, we consider linear time-invariant systems and hence assume that, for all

k > 0, Ak = A, Ck = C, Gk = G, Hk = H, Qk = Q, and Rk = R. Next, we assume

that p < n and (A,C) is observable so that the observability matrix O ∈ R
pn×n

defined by

O ,





















C

CA

...

CAn−1





















(4.4.44)

has full column rank. Next, without loss of generality we consider a basis such that

O =







In

0(p−1)n×n






. (4.4.45)

Therefore, (4.4.44) and (4.4.45) imply that, for every positive integer i such that

ip 6 n,

CAi−1 =

[

0p×p(i−1) Ip 0p×(n−pi)

]

. (4.4.46)
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Next, we present a result that shows that the Cholesky-based rank-q square-root

filter is equivalent to the Kalman filter for a specific number of time steps. To do

this, we first present the following results.

Lemma 4.4.3 Let i be a positive integer, and for all k > 0, let P̂k ∈ R
n×n satisfy

CAi−1P̂k+1 = CAiP̂kA
T − CAiP̂kC

T(CP̂kC + R)−1CP̂kA
T + CAi−1Q. (4.4.47)

Assume that CAiP̂k = CAiP f
k and CP̂k = CP f

k. Then, CAi−1P̂k+1 = CAi−1P f
k+1.

Proof. Substituting (4.2.4) into (4.2.7) yields

P f
k+1 = AP f

kA
T − AP f

kC
T(CP f

kC
T + R)−1CP f

kA
T + Q. (4.4.48)

Pre-multiplying (4.4.48) by CAi−1 and comparing the resulting equation with (4.4.47)

yields the result. 2

Lemma 4.4.4 Assume that P̂k ∈ R
n×n satisfies (4.4.47) for all k > 0 and i =

1, . . . , r. Let CAi−1P̂0 = CAi−1P f
0 for i = 1, . . . , r. Then, for all k = 0, . . . , r,

CP̂k = CP f
k.

Proof. It follows from Lemma 4.4.3 that, for i = 0, . . . , r − 2, CAiP̂1 = CAiP f
1 .

The result follows from repeated application of Lemma 4.4.3. 2

Proposition 4.4.2 Let r > 0 be an integer such that 0 < q = pr < n. Further-

more, assume that P̃ f
c,0 = P f

0 . Then, for all k = 0, . . . , r, Kc,k = Kk. If, in addition,

xf
c,0 = xf

0, then for all k = 0, . . . , r, xf
c,k = xf

k.

Proof. It follows from Lemma 4.4.2 and (4.4.46) that, for all k > 0 and i = 1, . . . , r,

CAi−1P̂ f
c,k = CAi−1P̃ f

c,k, CAi−1P̂ da
c,k = CAi−1P̃ da

c,k. (4.4.49)
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Note that

P̃ f
c,k+1 = AP̂ da

c,kA
T + Q. (4.4.50)

Multiplying (4.4.50) by CAi−1 yields

CAi−1P̃ f
c,k+1 = CAiP̂ da

c,kA
T + CAi−1Q. (4.4.51)

Substituting (4.4.49) into (4.4.51) yields

CAi−1P̂ f
c,k+1 = CAiP̃ da

c,kA
T + CAi−1Q, (4.4.52)

for i = 1, . . . , r. Using (4.4.15) in (4.4.52) yields

CAi−1P̂ f
c,k+1 = CAi

[

P̂ f
c,k − P̂ f

c,kC
T(CP̂ f

c,kC
T + R)−1CP̂ f

c,k

]

AT + CAi−1Q,(4.4.53)

for all k > 0 and i = 1, . . . , r. Since P̃ f
c,0 = P f

0 , it follows from Lemma 4.4.2 that, for

i = 1, . . . , r,

CAi−1P̂ f
c,0 = CAi−1P f

0 . (4.4.54)

Hence, it follows from (4.4.53) and Lemma 4.4.4 that, for k = 0, . . . , r,

CP̂ f
k = CP f

k. (4.4.55)

Finally, (4.2.3) and (4.4.14) imply that, for k = 0, . . . , r,

Kc,k = Kk. (4.4.56)

Hence, it follows from (4.2.5), (4.2.6), (4.4.16), and (4.4.17) that for all k = 0, . . . , r,

xf
c,k = xf

k. 2

Hence, the Cholesky-based rank-q square-root filter is equivalent to the Kalman

filter for a fixed number of time steps that depend on the rank q of the approximations
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P̂ da
c,k and P̂ f

c,k of the predicted error covariances P̃ da
c,k and P̃ f

c,k, as well as the dimension

p of the output. However, in general P̃ f
c,k and P f

k are not equal for all k = 0, . . . , r

even though Proposition 4.4.2 implies that Kc,k and Kk are equal. Moreover, Kc,k

and Kk are generally not equal for k > r.

4.5 Examples

We compare the performance of the SVD-based rank-q square-root filter and

the Cholesky-based rank-q square-root filter with the Kalman filter for two linear

time-invariant systems.

4.5.1 Compartmental Model

A schematic diagram of the compartmental model [49] is shown in Figure 4.1.

The n compartments or subsystems exchange energy through mutual interaction.

Applying conservation of energy yields, for i = 1, . . . , n,

xi,k+1 = xi,k − βxi,k − α (xi+1,k − xi,k) − α (xi,k − xi−1,k) + giwi,k, (4.5.1)

where xi,k is the energy in the i-th compartment, wi,k is the external disturbance

affecting the i-th compartment, 0 < β < 1 is the loss coefficient, and 0 < α < 1 is

the flow coefficient. It follows from (4.5.1) that

xk+1 = Axk + Gwk, (4.5.2)

where

xk ,

[

x1,k · · · xn,k

]T

, wk ,

[

w1,k · · · wn,k

]T

, (4.5.3)
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and A ∈ R
n×n and G ∈ R

n×n are defined by

A ,





























1 − β − α α 0 0 · · · 0

α 1 − β − 2α α 0 · · · 0

0 α 1 − β − 2α α · · · 0

...
. . . . . .

...

0 · · · · · · 0 α 1 − β − α





























, (4.5.4)

and

G , diag(g1, . . . , gn). (4.5.5)

Let n = 20, α = 0.35 and β = 0.5. We assume that the disturbance wk affects

all of the compartments so that gi 6= 0 for i = 1, . . . , n, and hence Q = GGT has

full rank. The external disturbance wk is modeled as a white-noise process with

unit covariance. Finally, we use measurements of the energy in the 10th and 11th

compartments to estimate the energy in all of the compartments, that is,

yk =

[

x10,k x11,k

]T

+ vk. (4.5.6)

To evaluate the performance of the SVD-based and Cholesky-based reduced-rank

square-root filters, we compare the costs Jk, Js,k and Jc,k, where

Jk , tr(P f
k), Js,k = tr(P f

s,k), Jc,k = tr(P f
c,k). (4.5.7)

Recall that P f
s,k and P f

c,k, which are the true error covariances when the reduced-

rank square-root filters are used, are given by (4.3.15)-(4.3.16) and (4.4.22)-(4.4.23),

respectively. In all cases, we initialize the three filters with xf
0 = xf

c,0 = xf
s,0 = 0 and

P f
0 = P̃ f

c,0 = P̃ f
s,0 = I20.

We compare the performance of the SVD-based and Cholesky-based filters for

q = 2, 5, 10. The steady-state performance limk→∞ Js,k and limk→∞ Jc,k of the
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SVD-based rank-q square-root filter and the Cholesky-based rank-q square-root fil-

ter, respectively, is shown in Figure 4.2. Figure 4.3 shows the performance of the

SVD-based reduced-rank square-root filter Js,k and the Cholesky-based reduced-rank

square-root filter Jc,k, when q = 2 in both cases. The cost Jk of the Kalman filter

is also plotted for comparison. Finally, we plot Jc,k/Jk and Js,k/Jk when q = 10.

Note that p = 2, and hence, r = 5 satisfies q = pr. Therefore, it follows from Propo-

sition 4.4.2 that the Cholesky-based rank-q square-root filter is equivalent to the

Kalman filter for k = 0, . . . , 5, as confirmed by Figure 4.4. In fact, the performance

of the Cholesky-based reduced-rank square-root filter with q = 10 is indistinguishable

from the performance of the Kalman filter for all k = 0, . . . , 10.

4.5.2 N-mass system

Next, we consider the mass-spring-damper model shown in Figure 4.5. The

number of masses is 10 with two states (displacement and velocity) per mass so that

n = 20. For i = 1, . . . , 10, mi = 1 kg, while kj = 1 N/m and cj = 0.2 N-s/m for

j = 1, . . . , 11. We assume that an external force wi,k acts on the mass mi, where wi,k

is a white-noise process with unit covariance so that

xk+1 = Axk + wk, (4.5.8)

where

x ,

[

q1 q̇1 · · · q10 q̇10

]T

, w ,

[

w1 · · · w10

]T

, (4.5.9)

and A ∈ R
20×20 is obtained using a zero-order-hold discretization of the continuous-

time dynamics. We assume that the displacement of the 5th mass is measured so

that,

yk = q5,k + vk, (4.5.10)
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where vk is white-noise process with unit covariance. Again, we initialize the Kalman

filter and the reduced-rank square-root filters with xf
0 = xf

c,0 = xf
s,0 = 0 and P f

0 =

P̃ f
c,0 = P̃ f

s,0 = I20.

We compare the performance of the reduced-rank square-root filters for q = 4 and

q = 8. The mean-square-error (MSE) in the estimates of the position of the masses

is shown in Figure 4.6. It can be seen that, for a specific choice of q, the performance

of the Cholesky-based rank-q square-root filter is better than the performance of the

SVD-based rank-q square-root filter. The MSE in the estimates of the velocities of

the masses is shown in Figure 4.7. The performance of the Kalman filter is plotted

for comparison. Finally, we plot the ratio Jc,k/Jk, where Jk and Jc,k are defined in

(4.5.7), for the case q = 4. It can be seen from Figure 4.9 that, in accordance with

Proposition 4.4.2, the Cholesky-based rank-q square-root filter is equivalent to the

Kalman filter for k = 0, . . . , r = q = 4 because p = 1.

4.6 Conclusions

We developed a reduced-rank square-root Kalman filter based on the Cholesky

factorization. We presented conditions under which the SVD-based reduced-rank

square-root Kalman filter and the Cholesky-based reduced-rank square-root Kalman

filter are equivalent to the Kalman filter. In general, neither the Cholesky-based nor

the SVD-based reduced-rank square-root filter consistently outperforms the other.

However, in this chapter, we presented two examples where the Cholesky-based

reduced-rank square-root filter performs better than the SVD-based reduced-rank

square-root filter. Since the Cholesky factorization is a computationally efficient al-

gorithm compared to the singular value decomposition, the Cholesky-based reduced-

rank square-root filter provides a computationally efficient alternative method for
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reduced-rank square-root filtering. In chapters II-IV, we considered reduced-complexity

algorithms for state estimation of linear systems. In the next chapter, we compare

two algorithms for state estimation of nonlinear systems.
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x1 xi xi+1 xn

xi xi+1

wi wi+1

α(xi+1 − xi)

βxi βxi+1

Figure 4.1: Compartmental model where energy is exchanged between neighboring
compartments
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reduced-rank square-root filters for q = 2, 5, 10. As q increases, the
performance of the reduced-rank square-root filters improves. Moreover,
note that n = 20 and even when q = 2, the performance of the Cholesky-
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rank square-root filters, respectively, with q = 2. The performance of the
Cholesky-based rank-q square-root filter is close to that of the Kalman
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Figure 4.6: Steady-state MSE in the estimates of the positions of the masses
m1, . . . ,m10 using the Cholesky-based and SVD-based reduced-rank
square-root filters for q = 4 and q = 8 when k → ∞. The perfor-
mance of the reduced-rank square-root filters improves as q increases,
while, for q = n, both reduced-rank square-root filters are equivalent to
the Kalman filter.
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based reduced-rank square-root filter is inferior to the performance of
the Kalman filter for all k > 0.



CHAPTER V

A Comparison of the Extended and Unscented

Kalman Filters for Discrete-Time Systems with

Nondifferentiable Dynamics

In this chapter, we consider state estimation of discrete-time nonlinear systems

with nondifferentiable dynamics. Due to the presence of nonlinear dynamics, design-

ing optimal estimators is difficult and hence we use suboptimal algorithms for state

estimation. Specifically, we compare the performances of the extended Kalman filter

and unscented Kalman filter. The extended Kalman filter uses the Jacobian of the

dynamics to propagate a pseudo-error covariance, whereas the unscented Kalman

filter is a particle based filter that calculates a pseudo-error covariance from a col-

lection of state estimates. Finally, we consider H∞ filter based extensions of the

extended Kalman filter and unscented Kalman filter. The results presented in this

chapter are given in [50].

5.1 Introduction

Because of the widespread need for nonlinear observers and estimators, this area

of research remains one of the most active [51–53]. One of the main drivers of

research in this area is applications to distributed, large scale systems, the most

visible of which is weather forecasting [38, 54, 55]. This area is often referred to as

100
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data assimilation.

The classical Kalman filter for linear systems is often applied to nonlinear systems

in the form of the extended Kalman filter (XKF) [14, 56]. In the XKF, the state is

propagated using the nonlinear dynamics, while the pseudo-covariance is propagated

using the Jacobians of the dynamics and measurement maps. We use the phrase

“pseudo-covariance” to stress the fact that the error covariance matrix in the linear

case is generally not the covariance of the error in the nonlinear case. The XKF

can be implemented in either the one-step or two-step forms, where the latter form

involves a physics update followed by a data-assimilation step.

A variation of the XKF is the state-dependent Riccati equation (SDRE) ap-

proach, in which, in place of the Jacobians, the dynamics and output map are ex-

actly factored, and the factors are used for the pseudo-covariance update [15, 57].

This approach has been studied by solving the algebraic Riccati equation and by

updating the pseudo-covariance. An interesting aspect of the SDRE approach is the

fact that, in the non-scalar case, the factorizations are not unique, while guidelines

for selecting advantageous factorizations have not been developed. Our own numeri-

cal experiments suggest that the best SDRE factorizations are close to the Jacobian,

suggesting that the SDRE filter might have limited advantages, if any, over the XKF.

In our opinion, advantages of the SDRE over the XKF have not been definitively

demonstrated.

Another approach to state estimation of linear systems are the H∞ filters [58].

Unlike the classical Kalman filter, these filters do not require the stringent Gaussian

distribution assumption of the process and sensor noise affecting the system and

guarantee a performance bound. Estimation with uncertainty in the model has also

been performed using the H∞ filter [59]. We apply the H∞ filter to nonlinear systems
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by using the Jacobians of the dynamics and measurement maps and call the resulting

filter the extended H∞ filter (XHF).

Yet another approach to nonlinear estimation involves particle filters. Here the

idea is to propagate a collection of state estimates from which statistics can be

computed. Among the various techniques that have been developed are the unscented

Kalman filter (UKF) [18, 19, 60], which deterministically constructs the collection of

state estimates, as well as the ensemble Kalman filter (EnKF) [61, 62], which uses a

stochastic construction. Although particle filters do not require the propagation of a

covariance (or pseudo-covariance) in the usual (Riccati) way, the size of the collection

determines the computational requirements [63]. Finally, we combine the H∞-filter

gain expression with the particle filter framework to obtain the unscented H∞ filter

(UHF).

This chapter focuses on discrete-time systems with dynamics that are not dif-

ferentiable. The main motivation is state estimation based on computational fluid

dynamics (CFD) models for space weather forecasting [64, 65]. In particular we fo-

cus on CFD models for hydrodynamics (HD) and magnetohydrodynamics (MHD) in

which the equations of fluid motion are approximated by finite volume schemes. In

[57, 63] we have considered SDRE and XKF methods for state estimation.

In HD and MHD, the CFD models involve nondifferentiable functions as part

of the discretization of the underlying partial differential equations [66, 67]. Con-

sequently, to avoid the need for the Jacobian, we developed SDRE filters for 1-

dimensional HD in [57]. In the present chapter, we consider an alternative approach

in which we apply XKF and XHF despite the lack of differentiability. In particular,

we compute the Jacobian at all points at which it exists, and we employ an averaged

value at points at which the dynamics are not differentiable.
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To demonstrate the accuracy of XKF, XHF, UKF, and UHF when the dynamics

are not differentiable, we consider several examples. For each example, we compare

the performance of XKF, XHF, UKF, and UHF.

5.2 The H∞ Filter

Consider the discrete-time linear time-invariant system with dynamics

xk+1 = Axk + Buk + wk (5.2.1)

and measurements

yk = Cxk + vk, (5.2.2)

where xk ∈ R
n, uk ∈ R

m, and yk ∈ R
p. The input uk and output yk is assumed to be

measured, and wk ∈ R
n and vk ∈ R

p are unknown process and measurement noise,

respectively.

Consider the cost function

J(Kk) =

∑N
i=0(xi − xf

i)
TM(xi − xf

i)

(x0 − xf
0)

TP f
0(x1 − xf

1) +
∑N

i=0 wT
i Qwi +

∑N
i=0 vT

i Rvi

. (5.2.3)

The H∞ filter ensures that inspite of the worst possible process and sensor noise, the

cost J(Kk) satisfies

J(Kk) 6
1

γ
. (5.2.4)

The data assimilation step of the robust H∞ filter is given by

xda
k = xf

k + Kk(yk − yf
k), (5.2.5)

yf
k = Cxf

k, (5.2.6)

P da
k = (I − KkC)P̃ f

k(I − KkC)T + KkRKT
k , (5.2.7)
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where

Kk = P̃ f
kC

T(CP̃ f
kC

T + R)−1 (5.2.8)

and

P̃ f
k , P f

k(I − γMP f
k)

−1. (5.2.9)

The forecast step of the H∞ filter is given by

xf
k+1 = Axda

k , (5.2.10)

P f
k+1 = AP da

k AT + Q. (5.2.11)

Note that unlike the Kalman filter, wk and vk may not be white noise processes

and hence Q and R are not their covariances, but a weighting on the uncertainty

associated with the process and sensor noise. Moreover, P f
k and P da

k in (5.2.5)-

(5.2.11) are not the error covariances. Hence, although the Kalman filter provides

optimal estimates when the process and sensor noise are white-processes, the H∞

filter guarantees a certain performance bound irrespective of the magnitude of the

process and sensor noise encountered.

5.3 The Extended Kalman Filter

Next, we consider the discrete-time nonlinear system with dynamics

xk+1 = f(xk, uk, k) + wk (5.3.1)

and measurements

yk = h(xk, k) + vk, (5.3.2)

where wk ∈ R
n and vk ∈ R

p are unknown process and measurement noise with

covariance Qk and Rk, respectively. Furthermore, we assume that Rk is positive
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definite. Since the dynamics and measurements are nonlinear functions of the state,

the discrete-time Riccati equation cannot be used to propagate the error covariance

Pk. We thus consider the extended Kalman filter (XKF) for estimating xk in (5.3.1)

using measurements (5.3.2). The two-step XKF is given by

xf
k+1 = f(xda

k , uk, k), (5.3.3)

xda
k = xf

k + Kk(yk − yf
k), (5.3.4)

yf
k = h(xf

k, k), (5.3.5)

where Kk, P da
k and P f

k are given by (4.2.3), (4.2.4) and (4.2.7), respectively, with

Ak ,
∂f(x, u, k)

∂x

∣

∣

∣

x=xda
k

,u=uk

, Ck ,
∂h(x, k)

∂x

∣

∣

∣

x=xda
k

. (5.3.6)

A one-step version of the XKF exists and note that the one-step and the two-step

extended Kalman filters are not necessarily equivalent.

If f(x, u, k) and h(x, k) are not differentiable with respect to x, the two-step XKF

(5.3.3)-(5.3.6) cannot be used to obtain an estimate of the state xk because Ak and

Ck defined in (5.3.6) may not exist for all xda
k . However, we assume that the first

order symmetric partial derivatives [68, 69] of f(x, u, k) and h(x, k) exist everywhere,

that is, for all x ∈ R
n,

∂sf(ξ, u, k)

∂sξi

∣

∣

∣

ξ=x
, lim

δ→0

f(x + δei, u, k) − f(x − δei, u, k)

2δ
(5.3.7)

and

∂sh(ξ, k)

∂sξi

∣

∣

∣

ξ=x
, lim

δ→0

h(x + δei, k) − h(x − δei, k)

2δ
(5.3.8)

exist, where ξ ∈ R
n has scalar entries ξ =

[

ξ1 · · · ξn

]T

and ei ∈ R
n is the ith

column of the n × n identity matrix. Hence, for example, although f(x) = |x| does
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not have a derivative at x = 0, it follows from (5.3.7) that ∂sf
∂sx

(0) = 0. Furthermore,

if g : R
n → R is a differentiable function, then the symmetric partial derivative and

the partial derivative are equal, that is, for all x ∈ R
n,

∂sg(ξ)

∂sξi

∣

∣

∣

ξ=x
=

∂g(ξ)

∂ξi

∣

∣

∣

ξ=x
. (5.3.9)

It follows from the symmetry of (5.3.7) that the one-sided limits are equivalent.

Specifically,

lim
δ↑0

g(x + δ) − g(x − δ)

2δ
= lim

δ↓0

g(x + δ) − g(x − δ)

2δ
. (5.3.10)

Moreover, the symmetric derivative is the average of the left and right directional

derivatives.

Next, we define the (i, j) entry of the averaged Jacobian Fs(x, u, k) ∈ R
n×n and

Hs(x, k) ∈ R
p×n of f(·) and h(·), respectively, by

Fs,i,j(x, u, k) ,
∂sfi(ξ, u, k)

∂sξj

∣

∣

∣

ξ=x
, Hs,i,j(x, k) ,

∂shi(ξ, k)

∂sξj

∣

∣

∣

ξ=x
, (5.3.11)

where fi(x, u, k) and hi(x, k) are the scalar entries of f(x, u, k) ∈ R
n and h(x, k) ∈ R

p,

respectively. It follows from (5.3.9) that if f(·) and h(·) are differentiable, then, for

all x ∈ R
n, the averaged Jacobians Fs and Hs are equal to the true Jacobians. Hence,

the two-step XKF for (5.3.1)-(5.3.2) when f(·) and h(·) satisfy (5.3.7) and (5.3.8)

is given by (5.3.3), where Kk, P da
k and P f

k are given by (4.2.3), (4.2.4) and (4.2.7),

respectively, with

Ak = Fs(x
da
k , uk, k), Ck = Hs(x

da
k , k). (5.3.12)

5.4 The Extended H∞ Filter

An alternative approach to state estimation of (5.3.1)-(5.3.2) is based on the

H∞ filter. Although, the H-infitiy filter is derived for linear time-invariant systems,
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like the extended Kalman filter, the Jacobian of the dynamics and measurements

maps can be used in the filter equations. However, the performance bounds guaran-

teed in the linear case are not valid anymore.

The extended H∞ filter is given by (5.3.3)-(5.3.5), where Kk, P da
k and P f

k are given

by (5.2.8), (5.2.7), and (5.2.11), with A and C replaced by Ak and Ck, respectively,

where Ak and Ck are defined in (5.3.12). Note that since the Jacobians are based on

the symmetric derivatives, the extended H∞ filter that uses the averaged Jacobians

can be used on nonlinear systems with nondifferentiable dynamics. Finally, we use

γ, Q and R in the H∞ filter as tuning parameters to improve the estimates. Note

that XHF may not be stable for all values of γ and hence the value of γ must be

tuned carefully.

5.5 The Unscented Kalman Filter

Another approach to state estimation of nonlinear systems is the unscented

Kalman filter (UKF). Unlike the XKF and SDRE estimator, the UKF does not

use the Jacobian of the dynamics or a factorization of the dynamics to propagate a

pseudo error covariance. The starting point for the UKF is a set of sample points,

that is, a collection of state estimates that capture the initial probability distribution

of the state [18, 19].

Let x ∈ R
n, and let P ∈ R

n×n be positive semidefinite. The unscented trans-

formation provides 2n + 1 ensembles Xi ∈ R
n and corresponding weights γx,i and

γP,i, for 0 = 1, . . . , 2n, such that the weighted mean and weighted variance of the

ensembles are x and P , respectively. Specifically, let S ∈ R
n×n satisfy

SST = P, (5.5.1)

and, for all i = 1, . . . , n, let Si denote the ith column of S. For α > 0, the unscented
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transformation X = Ψ(x, S, α) ∈ R
n×(2n+1) of x with covariance P = SST is defined

by

X ,

[

X0 · · · X2n

]

, (5.5.2)

where

Xi =



































x, i = 0,

x +
√

αSi, i = 1, . . . , n,

x −√
αSi−n, i = n + 1, . . . , 2n.

(5.5.3)

The parameter α determines the spread of the ensembles around x. Next, define the

weights γi ∈ R by

γ0 ,
α − n

α
, γi ,

1

2α
, i = 1, . . . , 2n (5.5.4)

Then,

2n
∑

i=0

γiXi = x,

2n
∑

i=0

γi(Xi − x)(Xi − x)T = P. (5.5.5)

Note that the unscented transformation described above is the scaled unscented

transformation given in [70] and ensures that the distance between the sample point

Xi and x does not increase as n increases.

UKF uses the unscented transformation to approximate the error covariance and

estimate the state xk. Letting xf
0 be an initial estimate of x0 with error covariance

P f
0 , the data assimilation step of UKF is given by

xda
k = xf

k + Kk(yk − yf
k), (5.5.6)

yf
k = Ckx

f
k, (5.5.7)

Xda
k = Ψ(xda

k , Sda
k , α), (5.5.8)

P da
k = P f

k − KkPyy,kK
T
k , (5.5.9)



109

where

Kk = Pxy,kP
−1
yy,k, (5.5.10)

Pxy,k =
2n
∑

i=0

γi(X
f
i,k − xf

k)(Y
f
i,k − yf

k)
T, (5.5.11)

Pyy,k =
2n
∑

i=0

γi(Y
f
i,k − yf

k)(Y
f
i,k − yf

k)
T + Rk, (5.5.12)

Y f
i,k = h(X f

i,k, k), i = 0, . . . , 2n (5.5.13)

and Sda
k ∈ R

n×n satisfies

Sda
k (Sda

k )T = P da
k . (5.5.14)

The forecast step of UKF is given by

X f
i,k+1 = f(Xda

i,k, uk, k), i = 0, . . . , 2n, (5.5.15)

xf
k+1 =

2n
∑

i=0

γiX
f
i,k+1, (5.5.16)

P f
k+1 =

2n
∑

i=0

γi(X
f
i,k+1 − xf

k+1)(X
f
i,k+1 − xf

k+1)
T + Qk. (5.5.17)

When the dynamics in (5.3.1) are linear, UKF is equivalent to the Kalman filter

[19]. Furthermore, in the linear case, P da
k and P f

k are the covariances of the error

xk − xda
k and xk − xf

k, respectively. However, in the nonlinear case, P da
k and P f

k are

pseudo-error covariances. The case when the process noise wk in (5.3.1) does not

enter linearly is discussed in [71]. However, since we assume that the process noise

affects the system affinely, we use the covariance Qk of wk in (5.5.17) to account for

uncertainty in the state estimates.

At every time step k, the ensemble Xda
k is constructed in (5.5.8) using the un-

scented transformation based on a square root Sda
k of P da

k satisfying (5.5.14). How-

ever, Sda
k satisfying (5.5.14) is not unique. For example, the singular value decom-

position or the Cholesky factorization can be used to obtain a square root of the
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pseudo-error covariance P da
k . Moreover, if Sda

k = Ŝda
k satisfies (5.5.14), then, for any

orthogonal matrix U ∈ R
n×n, Sda

k = Ŝda
k U also satisfies (5.5.14). For linear dynam-

ics, UKF is equivalent to the Kalman filter, and the performance of UKF does not

depend on the choice of Sda
k . However, for nonlinear dynamics, the performance of

UKF depends on the choice of Sda
k , although simulation results indicate that the

performance of UKF is similar for different choices of Sda
k .

Since the UKF involves 2n + 1 model update, the computational burden of the

UKF is of the order (2n + 1)n2 = 2n3 + n2. On the other hand, the XKF involves

a single model update and covariance propagation using the Riccati equation and

hence the computational burden of the XKF is of the order n3 + n2. Hence, when

n is large the computational burden of the UKF is approximately twice that of the

XKF. The performance of the UKF and XKF are compared in [18, 19, 72].

5.6 The Unscented H∞ Filter

Finally, we consider an extension of the UKF that is based on the H∞ filter.

The analysis step of the unscented H∞ filter (UHF) is given by

xda
k = xf

k + Kk(yk − yf
k), (5.6.1)

yf
k = h(xf

k, k), (5.6.2)

Xda
k = Ψ(xda

k , P da
k , λ), (5.6.3)

P da
k = P̃ f

k − KkP̃yy,kK
T
k , (5.6.4)
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where

Kk = P̃xy,kP̃
−1
yy,k, (5.6.5)

P̃xy,k =
2n
∑

i=0

γi(X
f
i,k − xf

k)(Y
f
i,k − yf

k)
T, (5.6.6)

P̃yy,k =
2n
∑

i=0

γi(Y
f
i,k − yf

k)(Y
f
i,k − yf

k)
T + Rk, (5.6.7)

Y f
i,k = h(X f

i,k, k), (5.6.8)

and the forecast step of the unscented Kalman filter is given by

X f
i,k+1 = f(Xda

i,k, k), (5.6.9)

xf
k+1 =

2n
∑

i=0

γiX
f
i,k+1, (5.6.10)

P f
k+1 =

2n
∑

i=0

γi(X
f
i,k+1 − xf

k+1)(X
f
i,k+1 − xf

k+1)
T + Qk, (5.6.11)

P̃ f
k+1 = P f

k+1(I − γMP f
k+1)

−1. (5.6.12)

Note that when the dynamics are linear, then the unscented H∞ filter is equivalent

to the H∞ filter presented in Section 3. Note that P f
k and P da

k are not the error

covariances and no performance bounds are guaranteed by UHF. Also, like XHF,

although the parameter γ can be chosen so that the filter yields good estimates of

the state xk, stability of UHF is not guaranteed for all values of γ.

5.7 Examples

Next, we use the XKF, XHF, UKF, and UHF for state estimation of low-

dimensional discrete-time systems with nondifferentiable nonlinearities. Specifically,

we consider nonlinearities that are not differentiable but have symmetric derivatives

everywhere. Hence, we use XKF and XHF with the averaged Jacobian and compare

the performance of XKF and XHF with UKF and UHF.
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5.7.1 Absolute Value Function

First, we consider nonlinearities that commonly occur in finite volume dis-

cretization of hyperbolic partial differential equations [66, 67]. For example, the ab-

solute value function appears in the first-order upwind discretization of an advection

equation [66]. Let x ∈ R
4 and

xk+1 = abs(sin(Mxk)) + wk,

yk = Cxk + vk,

(5.7.1)

where M ∈ R
4×4 and

C =







1 0 0 0

0 0 0 1






, (5.7.2)

and wk and vk are zero-mean white processes with covariances Qk = 0.1I4 and

Rk = 0.01I2, respectively. Note that for all x ∈ R,

∂sabs(ξ)

∂sξ

∣

∣

∣

ξ=x
=



































1, if x > 0,

−1, if x < 0,

0, if x = 0.

(5.7.3)

Hence, it follows from (5.3.11), (5.7.1) and (5.7.3) that for i, j = 1, . . . , n, the (i, j)

entry row of Fs(x) is given by

Fs,i,j(x) =



































cos(rowi(M)x)Mi,j, if sin(rowi(M)x) > 0,

− cos(rowi(M)x)Mi,j, if sin(rowi(M)x) < 0,

01×4, if sin(rowi(M)x) = 0,

(5.7.4)

and Hs(x) = C.

Figure 5.1 shows a plot of abs(sin(mx)) and it can be seen that as m increases, the

nonlinearities become more prominent, that is, the variation in the slope increases.
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Next, we compare the state estimates from XKF, XHF, UKF, and UHF for various

choices of M . The logarithm of the sum of the Euclidean norms of the errors in

the state estimates for 50 different choices of M with sprad(M) = 0.5 is shown in

Figure 5.4. Note that although the performance of the estimators varies depending

on the choice of M , numerical simulations suggest that the performance of XKF,

XHF, UKF, and UHF is almost indistinguishable for all choices of M . The error in

the state estimates when no data assimilation is performed, that is, Kk = 0 for k > 0

in XKF, is also plotted for comparison. Next, we compare the performance of all

the estimators for 50 different choices of M with sprad(M) = 10. The performance

of XKF, XHF, UKF, and UHF is shown in Figure 5.5. It can be seen that, in the

case of more severe nonlinearities, the performance of UKF and UHF is better than

the performance of XKF and XHF. The values of γ in all the cases were chosen

such that XHF and UHF are both stable for all the choices of M with a specified

spectral radius. However, the performance of XHF and UHF is very similar to the

performance of XKF and UKF, respectively.

5.7.2 Minmod Function

Next, we consider discrete-time systems involving the minmod function, which

is used in second-order upwind finite volume schemes as a slope limiter to reduce the

diffusion effects [67]. For α, β ∈ R, define

minmod(α, β) =
1

2
(sign(β) + sign(β)) min{|α|, |β|}, (5.7.5)

see Figure 5.2. Let x ∈ R
10 and

xk+1 = sin(Mxk) + minmod(MLxk,MRxk) + wk,

yk = Cxk + vk.

(5.7.6)
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We choose M ∈ R
10×10 so that sprad(M) < 1, and for i, j = 1, . . . , 10, the (i, j) entry

of ML ∈ R
10×10 is given by

(ML)i,i = 1, (ML)i,i−1 = −1, (5.7.7)

(ML)i,j = 0 if j /∈ {i, i − 1}, (5.7.8)

MR = −MT
L , and for all k, Ck = C ∈ R

2×10 is chosen to be

C =







1 01×9

01×9 1






. (5.7.9)

We assume that wk and vk are zero-mean white processes with covariances Qk =

Q = 0.1I10 and Rk = R = 0.01I2, respectively. Note that for all u, v ∈ R,

∂s

∂sα
minmod(α, β)

∣

∣

∣

(u,v)
=























































































0, if uv < 0 or u = v = 0,

0, if uv > 0 and |u| > |v|,

0, if u 6= 0, v = 0,

0.5, if uv > 0 and |u| = |v|,

0.5, if u = 0, v 6= 0,

1, if uv > 0 and |u| < |v|.

(5.7.10)

Furthermore, using a procedure similar to the previous example, the (i, j) entry of

Fs(x) ∈ R
10×10 can be obtained by using (5.7.10) and the chain rule for differentiation,

and (5.7.9) implies that Hs(x) = C.

The sum of the Euclidean norm of the error in the state estimates obtained from

XKF, XHF, UKF, and UHF for 50 different choices of M with sprad(M) = 0.5, is

shown in Figure 5.6. The performance of the four estimators for 50 different choices

of M with sprad(M) = 10.0 is shown in Figure 5.7. Again, the performance of UKF
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and UHF is better than the performance of XKF and XHF when the nonlinearities

become severe. However, the use of XHF or UHF seems to have no significant

advantage over XKF or UKF, respectively.

5.8 Simulation Example : One-dimensional Hydrodynamics

Finally, we consider state estimation of one-dimensional hydrodynamic flow

based on a finite volume model. The flow of an inviscid, compressible fluid along a

one-dimensional channel is governed by Euler’s equations

∂ρ
∂t

= − ∂
∂x

̺v, (5.8.1)

d
dt

(

p
ργ

)

= 0, (5.8.2)

ρ∂v
∂t

= −ρv ∂v
∂x

− ∂p
∂x

, (5.8.3)

where ρ ∈ R is the density, v ∈ R is the velocity, p ∈ R is the pressure of the

fluid, and γ = 5
3

is the heat capacity ratio of the fluid. A discrete-time model

of hydrodynamic flow can be obtained by using a finite-volume based spatial and

temporal discretization.

Assume that the channel consists of n identical cells as shown in Figure 3. For all

i = 1, . . . , n, let ρ[i], v[i], and p[i] be the density, velocity, and pressure at the center

of the ith cell. For all i = 1 . . . , n, define U [i] ∈ R
3 by

U [i] =

[

ρ[i] m[i] E [i]

]T

, (5.8.4)

where the momentum m[i] and energy E [i] in the ith cell are given by

m[i] = ρ[i]v[i], E [i] =
1

2
ρ[i](v[i])2 +

p[i]

γ − 1
. (5.8.5)

We use a second-order Rusanov scheme [67] to discretize (5.8.1)-(5.8.2) and obtain

a discrete-time model that enables us to update the flow variables at the center of

each cell.
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Define the flux dyad F [i] ∈ R
3 at the ith cell by

[

m
[i]
x

3−γ
2

(m
[i]
x )2

ρ[i] + (γ − 1)E [i] −γ−1
2

(m
[i]
x )3

(ρ[i])2
+ γm

[i]
x E [i]

ρ[i]

]T

. (5.8.6)

Next, define U
[i]
L and U

[i]
R by

U
[i]
L , U [i] + 1

2
minmod(U [i+1] − U [i], U [i] − U [i−1]), (5.8.7)

U
[i]
R , U [i] − 1

2
minmod(U [i+1] − U [i], U [i] − U [i−1]). (5.8.8)

The left and right flux dyad F
[i]
L and F

[i]
R is given by (5.8.6) with U [i] = U

[i]
L and

U [i] = U
[i]
R , respectively. Finally, define the second-order Rusanov flux F

[i]

Rus by

F
[i]

Rus ,
1

2

(

F
[i]
L + F

[i+1]
R

)

− c[i] 1

2

(

U
[i+1]
R − U

[i]
L

)

, (5.8.9)

where

c[i] , abs(v[i]) +

√

γp[i]

ρ[i]
. (5.8.10)

The discrete-time state update equation [66, 67] is given by

U
[i]
k+1 = U

[i]
k − ts

∆x

[

F
[i]

Rus,k − F
[i−1]

Rus,k

]

, (5.8.11)

where ts < 0 is the sampling time and ∆x is the width of each cell. It follows from

(5.8.7)-(5.8.11) that U
[i]
k+1 depends on U

[i−2]
k , . . . , U

[i+2]
k , as expected for a second-order

scheme.

Next, define the state vector x ∈ R
3(n−4) by

x
△
=

[

(U
[3]
k )T · · · (U

[n−2]
k )T

]T

. (5.8.12)

For all k > 0, let uk ∈ R
3 denote the boundary condition for the first two cells, so

that

uk = (U
[1]
k )T = (U

[2]
k )T. (5.8.13)
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Furthermore, we assume Neumann boundary conditions at cells with indices n − 1

and n so that, for all k > 0,

U
[n]
k = U

[n−1]
k = U

[n−2]
k . (5.8.14)

It follows from (5.8.11) that the second-order Rusanov scheme yields a nonlinear

discrete-time update model of the form

xk+1 = f(xk, uk). (5.8.15)

Let n = 54 so that x ∈ R
150. For all k > 0, let ̺

[1]
k = ̺

[2]
k = 1 kg/m3, v

[1]
k = v

[2]
k =

vin + vin

4
sin(k) m/s, and p

[1]
k = p

[2]
k = 1 N/m2, where vin is the inlet velocity. We

assume that the truth model is given by

xk+1 = f(xk, uk) + wk, (5.8.16)

where wk ∈ R
3(n−4) represents unmodeled drivers and is assumed to be zero-mean

white Gaussian process noise with covariance matrix Q ∈ R
3(n−4)×3(n−4), where

Q = diag(Q[3], Q[4], . . . , Q[n−2]) (5.8.17)

and, for i = 3, . . . , n − 2, Q[i] ∈ R
3×3 is defined by

Q[i] =



















diag(0.05, 0.05, 0.05), if i = 10, 25, 40,

03×3, else.

(5.8.18)

It follows from (5.8.16)-(5.8.17) that the flow variables in the 10th, 25th and 40th

cell are directly affected by wk. Next, for i = 3, . . . , n − 2, define C [i] ∈ R
3×3(n−4)

C [i] ,

[

03×3(n−4−i) I3×3 03×3(i−1)

]

(5.8.19)

so that the measurement yk ∈ R
6 of density, momentum and energy at cells with

indices 6, 16, 26, 35, and 42 is given by

yk = Cxk + vk, (5.8.20)
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where

C =

[

(C [6])T (C [16])T (C [26])T (C [35])T (C [42])T

]T

, (5.8.21)

and vk is zero-mean white Gaussian noise with covariance matrix R = 0.01I30×30.

Let ts = 0.05 s and ∆x = 1 m. We simulate the truth model (5.8.16) from an

arbitrary initial condition x0 ∈ R
3(n−4) and obtain measurements yk from (5.8.20)

for various choices of vin ∈ {0.0, 1.0, 2.0, . . . , 10.0} m/s. Note that
√

γp[1]

ρ[1]
= 1.29 m/s, (5.8.22)

and hence, if vin > 1.29 m/s, then the flow is supersonic. The objective is to estimate

the density, momentum, and energy at the cells where measurements of flow vari-

ables are unavailable using XKF and UKF. It follows from (5.2.9) and (5.6.12) that

XHF and UHF involve inverting a n × n matrix which is computationally intensive

when n is large which is the case in finite volume discretization of partial differen-

tial equations. Moreover, in the previous examples, no significant improvement in

performance was noticed when the XHF and UHF were used instead of XKF and

UKF, respectively. Hence, we do not use XHF or UHF for state estimation in the

one-dimensional hydrodynamic flow example. To obtain estimates, we initialize the

three estimators with the same initial condition x̃0 6= x0. Note that f(x, u) in (5.8.15)

contains the nondifferentiable functions abs(·) and minmod(·, ·). Hence, we use the

averaged Jacobian defined in (5.3.11) in the two-step XKF. Finally, we perform state

estimation using UKF.

The error in the estimates of the energy E [30]
k in cell 30, when measurements yk

are used in XKF and UKF with vin = 1 m/s is shown in Figure 5.8. The error in

estimates of the energy E [30]
k in cell 30, when vin = 10 m/s is shown in Figure 5.9.

The sum of the Euclidean norm of error in the state estimates for different values of
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vin is shown in Figure 5.10. Note that at low inlet velocities vin, the performance of

XKF and UKF is very similar. However, at higher inlet velocities, the nonlinearities

are more severe and the performance of UKF is better than that of XKF.

5.9 Conclusion

In this chapter we compared the performance of the extended Kalman filter,

the extended H∞ filter, the unscented Kalman filter, and the unscented H∞ filter

for nonlinear systems with nondifferentiable nonlinearities. Whenever the Jacobian

fails to exist, we use an averaged Jacobian based on the symmetric derivatives in the

extended Kalman filter. We perform state estimation of one-dimensional hydrody-

namic flow based on a finite volume discretization and as the inlet velocity increases

the nonlinearities become severe and the performance of UKF is better than that

of XKF. For all the examples that we considered, whenever the nonlinearities are

not severe, the performance of XKF with the averaged Jacobian and UKF is similar.

However, whenever the nonlinearities become more severe, UKF performs better than

XKF. No significant improvement in the performance was noticed when either the

extended H∞ filter or the unscented H∞ filter was used over the extended Kalman

filter and unscented Kalman filter, respectively.
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Figure 5.1: Plot of abs(sin(mx)) for m = 0.5 and m = 2

Figure 5.2: Plot of minmod(α, β) for −5 6 α, β < 5
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· · ·

Figure 5.3: One-dimensional grid used in the finite volume scheme
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Figure 5.4: Logarithm of the sum of Euclidean norms of the errors in state estimates
obtained using XKF, XHF, UKF, and UHF for the system (5.7.1). The
performance is compared for 50 different choices of M with sprad(M) =
0.5. The chosen value of γ = 0.4 is approximately the maximal value
for which XHF and UHF are stable. The error in the estimates when
no data assimilation is performed, that is, Kk = 0 for all k > 0 in XKF
is also shown for comparison. The performance of all four estimators is
similar and better than the no data assimilation case.
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Figure 5.5: Logarithm of the sum of the Euclidean norms of the errors in state
estimates obtained using XKF, XHF, UKF, and UHF for the system
(5.7.1). The performance is compared for 50 different choices of M with
sprad(M) = 10. In this case, the performance of UKF and UHF is much
better than the performance of XKF or XHF. In fact, there are cases
when the performance of XKF and XHF is worse than the no data as-
similation case. However, the performance of UKF is very similar to the
performance of UHF, and the performance of XKF is very similar to the
performance of XHF.
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Figure 5.6: Logarithm of the sum of the Euclidean norms of the errors in state esti-
mates obtained using XKF, XHF, UKF, and UHF for the system (5.7.6).
The performance of the four estimators are compared for different choices
of M with sprad(M) = 0.5. The performance of all four estimators is
similar and better than the case when no data assimilation is performed.
We choose the largest possible γ (=1.5) such that both XHF and UHF
are stable for all choices of M .
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Figure 5.7: Logarithm of the sum of the Euclidean norms of the errors in state
estimates obtained using XKF, XHF, UKF, and UHF for the system
(5.7.6). The performance of the two estimators is compared for 50 differ-
ent choices of M with sprad(M) = 10.0. There seems to be no significant
improvement in the performance when the H∞ filters (XHF and UHF)
are used over XKF and UKF, respectively.
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Figure 5.8: The error in the estimates of energy at cell 30 obtained using XKF and
UKF when vin = 1 m/s and the flow is subsonic.
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Figure 5.9: The error in the estimates of velocity at cell 30 obtained using XKF and
UKF when vin = 10 m/s and the flow is supersonic with Mach number
7.75.
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Figure 5.10: The square root of the sum of the Euclidean norms of the errors in state
estimates, obtained using XKF and UKF for different choices of the inlet
velocity vin. The performance of UKF is better that the performance
of XKF for high inlet velocities, with a computational burden that is
twice that of XKF.



CHAPTER VI

Reduced-Rank Unscented Kalman Filtering Using

Cholesky-Based Decomposition

In the previous chapter, we demonstrated the superiority of the unscented Kalman

filter over the extended Kalman filter when the nonlinearity in the dynamical system

becomes severe. However, the unscented Kalman filter performs 2n+1 model update

at every time step, where n is the order of the system. In this chapter, we use the re-

sults presented in Chapter IV to reduce the ensemble of the unscented Kalman filter.

Specifically, we consider a reduced-rank square-root unscented Kalman filter based

on the Cholesky decomposition of the state-error covariance. The performance of this

filter is compared with an analogous filter based on the singular value decomposi-

tion. We evaluate the performance of these filters for illustrative linear and nonlinear

systems. The results of this chapter are published in [73].

6.1 Introduction

Data assimilation for large-scale systems has gained increasing attention due

to nonlinear and computationally intensive applications such as weather forecast-

ing [38, 78]. These problems require algorithms that are computationally tractable

despite the enormous dimension of the state. Reduced-order variants of the classi-

128
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cal Kalman filter have been developed for computationally demanding applications

[27, 29, 30, 35], where the classical Kalman filter gain and covariance are modified so

as to reduce the computational requirements. A comparison of several techniques is

given in [9].

An alternative technique for reducing the computational requirements of data

assimilation for high-dimensional systems is the reduced-rank filter [21, 28, 43, 74–76].

In this method, the error-covariance matrix is factored to obtain a square root, whose

rank is then reduced through truncation. The truncated square-root is then propa-

gated by the data assimilation algorithm. This technique is closely related to classical

decomposition techniques [46, 47], which provide numerical stability and computa-

tional efficiency. Factorization-and-truncation methods have direct application to the

problem of generating a reduced ensemble for use in particle filter methods [28, 45].

The primary technique for truncating the error-covariance matrix is the singular

value decomposition (SVD), wherein the singular values are used to determine which

components of the error covariance are most relevant to the accuracy of the state

estimates [21, 28, 43]. Despite the intuitively appealing nature of this approach, the

optimality of approximation based on the SVD within the context of recursive state

estimation is not guaranteed The difficulty is due to the fact that optimal approxima-

tion depends on the dynamics and measurement maps in addition to the components

of the error covariance.

In related work [42], it is observed that the Kalman filter estimate update de-

pends on the product CkPk, where Ck is the measurement map and Pk is the error

covariance. Consequently, the approximation technique developed in [42] focuses on

CkPk rather than Pk alone. In particular, it is shown in [42] that approximation of

CkPk leads directly to truncation based on the Cholesky decomposition. Unlike the
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SVD, however, the Cholesky decomposition does not possess a natural measure of

magnitude that is analogous to the singular values arising in the SVD. Nevertheless,

filter reduction based on the Cholesky decomposition provides state-estimation ac-

curacy that is competitive with, and in many cases superior to, that of the SVD. In

particular, the accuracy of the Cholesky-decomposition-based reduced-rank filter is

typically equal to the accuracy of the full-rank filter, while examples show that, in

special cases, the Cholesky-decomposition-based reduced-rank filter provides accept-

able accuracy, whereas the SVD-based reduced-rank filter provides arbitrarily poor

accuracy.

A fortuitous advantage of using the Cholesky decomposition in place of the SVD is

the fact that the Cholesky decomposition is computationally less expensive than the

SVD, specifically, O(n3/6) [48], and thus an asymptotic computational advantage

over SVD by a factor of 12. An additional advantage is that the entire matrix

need not be factored; instead, by arranging the states so that those states that

contribute directly to the measurement correspond to the left-most columns of the

lower triangular square root, only the leading submatrix of the error covariance must

be factored, yielding yet further savings over the SVD. Once the decomposition is

performed, the algorithm effectively retains only the initial “tall” columns of the full

Cholesky decomposition and truncates the “short” columns.

To assimilate data in nonlinear systems, particle filters are used to propagate

a collection of state estimates from which statistics can be computed. These tech-

niques include the ensemble Kalman filter (EnKF) [61–63], which uses a stochastic

construction, as well as the unscented Kalman filter (UKF) [18, 19, 60], which deter-

ministically constructs the collection of state estimates by perturbing the nominal

state estimate. Specifically, UKF constructs the ensemble members by using the



131

columns of the square root of the error covariance to perturb the nominal state es-

timate. For a model of order n, the n columns and their negatives result in 2n + 1

ensemble members and thus 2n + 1 model updates.

A straightforward approach to reducing the UKF ensemble size is to use a factorization-

and-truncation method to truncate n − q columns of the square root of the error

covariance and construct the ensemble members using the remaining q columns. In

[22, 28, 45], SVD-based decomposition-and-truncation is used to construct reduced-

rank approximations of the square root of the error covariance, which are then used

to construct the ensemble members resulting in a ensemble size 2q + 1.

In this paper, we use the Cholesky-based decomposition technique developed in

[42] to construct the reduced ensemble members. Specifically, we use the Cholesky

decomposition to obtain a square root of the error-covariance and select columns of

the Cholesky factor to approximate CkPk. The retained columns of the Cholesky

factor are used to construct the ensemble members. We compare the performance of

the Cholesky-decomposition-based reduced-rank UKF and the SVD-based reduced-

rank UKF on a linear advection model and a nonlinear system that exhibits chaotic

dynamics.

6.2 The Reduced-Rank Unscented Transformation

We consider the discrete-time system with nonlinear dynamics

xk+1 = f(xk, uk, k) + wk (6.2.1)

and linearly dependent measurements

yk = Ckxk + vk, (6.2.2)
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where xk, wk ∈ R
n, uk ∈ R

m, and yk, vk ∈ R
p. The input uk and output yk are

assumed to be measured, and wk and vk are uncorrelated zero-mean white noise

processes with covariances Qk and Rk, respectively. We assume that Rk is positive

definite. The objective is to obtain estimates of the state xk using measurements

yk. When the dynamics (6.2.1) are linear, the Kalman filter provides estimates that

minimize the mean-square-error (MSE) in the state estimates [5, 6]. However, for

nonlinear dynamics, we approximate the state error covariance using ensembles that

are constructed deterministically according to UKF. The starting point for UKF

is a set of sample points, that is, a collection of state estimates that capture the

probability distribution of the state [18, 19]. Letting xf
0 be an initial estimate of x0

with error covariance P f
0 , UKF is given by the following steps:

UKF data assimilation step:

xda
k = xf

k + Kk(yk − yf
k), (6.2.3)

yf
k = Ckx

f
k, (6.2.4)

Xda
k = Ψ(xda

k , Sda
k , α), (6.2.5)

P da
k = P f

k − P f
kC

T
k (CkP

f
kC

T
k + Rk)

−1CkP
f
k, (6.2.6)

where

Kk = P f
kC

T
k (CkP

f
kC

T
k + Rk)

−1 (6.2.7)

and Sda
k ∈ R

n×n satisfies

Sda
k (Sda

k )T = P da
k . (6.2.8)
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UKF forecast step:

X f
i,k+1 = f(Xda

i,k, uk, k), i = 0, . . . , 2n, (6.2.9)

xf
k+1 =

2n
∑

i=0

γiX
f
i,k+1, (6.2.10)

P f
k+1 =

2n
∑

i=0

γi(X
f
i,k+1 − xf

k+1)(X
f
i,k+1 − xf

k+1)
T + Qk. (6.2.11)

It follows from (6.2.9) that UKF involves 2n + 1 model updates, and hence the

computational burden of UKF is of the order (2n + 1)n2 = 2n3 + n2. Therefore,

when n is large, UKF is computationally expensive. We thus define an unscented

transformation for a reduced ensemble. Let x ∈ R
n and S ∈ R

n×q, where 0 <

q 6 n. The rank-q unscented transformation X = Ψq(x, S, α) ∈ R
n×(2q+1) of x with

covariance P = SST is defined by

X ,

[

X0 · · · X2q

]

, (6.2.12)

where

Xi =



































x, i = 0,

x +
√

αSi, i = 1, . . . , q,

x −√
αSi−q, i = q + 1, . . . , 2q.

(6.2.13)

Also, defining the weights

γq,0 ,
α − q

α
, γq,i ,

1

2α
, i = 1, . . . , 2q, (6.2.14)

it follows that

2q
∑

i=0

γq,iXi = x,

2q
∑

i=0

γq,i(Xi − x)(Xi − x)T = SST = P. (6.2.15)

Next, we present a case in which the unscented transformation and rank-q unscented

transformation are equivalent. The following result is a consequence of (5.5.3) and

(6.2.13).
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Lemma 6.2.1 Let x ∈ R
n, let P ∈ R

n×n be positive semidefinite with rank(P ) 6

q 6 n, and let Ŝ ∈ R
n×q satisfy ŜŜT = P . Furthermore, let S ,

[

Ŝ 0n×(n−q)

]

,

X̂ , Ψq(x, Ŝ, α), and X , Ψ(x, S, α). Then, Xi = x, for all i = q + 1, . . . , n, n+ q +

1, . . . , 2n. Moreover, X̂0 = X0, and for all i = 1, . . . , q, X̂i = Xi and X̂q+i = Xn+q+i,

where X̂i is the ith column of X̂.

Lemma 6.2.2 Assume that rank(P f
k) 6 q 6 n. Then, rank(P da

k ) 6 q.

Proof. Since rank(P f
k) 6 q, it follows that there exists Sf

k ∈ R
n×q satisfying

Sf
k(S

f
k)

T = P f
k. (6.2.16)

In fact, Sf
k = ΦSVD(P f

k, q) satisfies (6.2.16). Therefore, (6.2.6) implies that P da
k can

be expressed as

P da
k = Sf

k

[

I − (CkS
f
k)

T(CkS
f
k(CkS

f
k)

T + Rk)
−1CkS

f
k

]

(Sf
k)

T. (6.2.17)

Hence, (6.2.17) implies that rank(P da
k ) 6 q. Since rank(P da

k ) 6 q, there exists

Ŝda
k ∈ R

n×q satisfying Ŝda
k (Ŝda

k )T = P da
k . 2

Hence, if P f
k is rank deficient, then P da

k is also rank deficient. The following result

shows that the ensemble size can be reduced from 2n+1 to 2q+1 when rank(P f
k) = q.

Proposition 6.2.1 Assume rank(P f
k) 6 q 6 n, and define Sda

k ,
[

Ŝda
k 0n×(n−q)

]

,

where Ŝda
k ∈ R

n×q satisfies Ŝda
k (Ŝda

k )T = P da
k . Define X̂da

k , Ψq(x
da
k , Ŝda

k , α), and let

x̂f
k+1 ∈ R

n and P̂ f
k+1 ∈ R

n×n be given by

x̂f
k+1 =

2q
∑

i=0

γq,iX̂
f
i,k+1, (6.2.18)

P̂ f
k+1 =

2q
∑

i=0

γq,i(X̂
f
i,k+1 − x̂f

k+1)(X̂
f
i,k+1 − x̂f

k+1)
T + Qk, (6.2.19)
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where X̂ f
i,k+1 ∈ R

n is given by

X̂ f
i,k+1 = f(X̂da

i,k, uk, k), i = 0, . . . , 2q, (6.2.20)

and X̂da
i,k ∈ R

n is the ith column of X̂da
k . Then, x̂f

k+1 = xf
k+1 and P̂ f

k+1 = P f
k+1.

Proof. It follows from Lemma 6.2.1 that X̂da
0,k = Xda

0,k, for all i = 1, . . . , q,

X̂da
i,k = Xda

i,k and X̂da
q+i,k = Xda

n+q+i,k, and for all i = q + 1, . . . , n, n + q + 1, . . . , 2n,

Xda
i,k = xda

k . Therefore, the (6.2.9) and (6.2.20) imply that X̂ f
i,k+1 = X f

i,k+1 and

X̂ f
q+i,k+1 = X f

n+q+i,k+1, and for all i = q +1, . . . , n, n+ q +1, . . . , 2n, X f
i,k+1 = X f

0,k+1.

Finally, the result follows from (5.5.4), (6.2.10), (6.2.11), (6.2.14), and (6.2.18). 2

Hence, when rank(P f
k) = q < n, the ensemble size can be reduced from 2n +

1 to 2q + 1, and thus, using the rank-q unscented transformation instead of the

unscented transformation in (6.2.5) of UKF does not degrade the performance of

UKF. However, when P f
k has full rank, P da

k generally has full rank. In this case,

we construct rank-q approximations of the pseudo-error covariances and perform

estimation using the rank-q unscented transformation based on a square root of the

low-rank approximation of the pseudo-error covariance.

6.3 SVD-Based Reduced-Rank Unscented Kalman Filter

To reduce the ensemble size, we use a reduced-rank approximation P̂ f
s,k of P f

s,k.

The reduced-rank approximations are chosen such that ‖P̂ f
s,k − P f

s,k‖F is minimized

subject to rank(P̂ f
s,k) = q, where ‖ ·‖F denotes the Frobenius norm. Let P ∈ R

n×n be

positive semidefinite, let σ1 > · · · > σn be the singular values of P , and u1, . . . , un ∈

R
n be the corresponding orthogonal singular vectors. Next, define Uq ∈ R

n×q and

Σq ∈ R
q×q by

Uq ,

[

u1 · · · uq

]

, Σq , diag(σ1, . . . , σq). (6.3.1)
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With this notation, the singular value decomposition of P is given by

P = UnΣnU
T
n , (6.3.2)

where Un is orthogonal. For q 6 n, let ΦSVD(P, q) ∈ R
n×q denote the SVD-based

rank-q approximation of the square root UnΣ
1/2
n of P given by

ΦSVD(P, q) , UqΣ
1/2
q . (6.3.3)

As noted in [36], SST, where S , ΦSVD(P, q), is the best rank-q approximation of P

in the Frobenius norm .

Next, we use the singular value decomposition at each time step to obtain a

reduced-rank approximation of the pseudo-error covariance, and this reduction in

rank enables us to reduce the ensemble size. The SVD-based reduced-rank square-

root unscented Kalman filter (SVDRRUKF) is summarized as follows:

SVDRRUKF data assimilation step:

xda
s,k = xf

s,k + Ks,k(yk − yf
s,k), (6.3.4)

yf
s,k = Ckx

f
s,k, (6.3.5)

Xda
s,k = Ψq(x

da
s,k, S

da
s,k, α), (6.3.6)

Sda
s,k = Sf

s,kH
f
s,k, (6.3.7)

where

Ks,k = Sf
s,k(CkS

f
s,k)

T
(

CkS
f
s,k(CkS

f
s,k)

T + Rk

)−1
(6.3.8)

and H f
s,k ∈ R

q×q satisfies

H f
s,k(H

f
s,k)

T = Iq − (CkS
f
s,k)

T
(

CkS
f
s,k(CkS

f
s,k)

T + Rk

)−1
CkS

f
s,k. (6.3.9)
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SVDRRUKF forecast step:

X f
s,i,k+1 = f(Xda

s,i,k, uk, k), i = 0, . . . , 2q, (6.3.10)

xf
k+1 =

2q
∑

i=0

γq,iX
f
s,i,k+1, (6.3.11)

P f
s,k+1 =

2q
∑

i=0

γq,i(X
f
s,i,k+1 − xf

s,k+1)(X
f
s,i,k+1 − xf

s,k+1)
T + Qk, (6.3.12)

Sf
s,k+1 = ΦSVD(P f

s,k+1, q). (6.3.13)

Next, define P̂ f
s,k, P̂

da
s,k ∈ R

n×n by

P̂ f
s,k , Sf

s,k(S
f
s,k)

T, P̂ da
s,k , P̂ f

s,k − P̂ f
s,kC

T
k (CkP̂

f
s,kC

T
k + Rk)

−1CkP̂
f
s,k. (6.3.14)

It then follows from (6.3.7) that Sda
s,k(S

da
s,k)

T = P̂ da
s,k. Furthermore, (6.3.8) and (6.3.14)

imply that

Ks,k = P̂ f
s,kC

T
k (CkP̂

f
s,kC

T
k + Rk)

−1. (6.3.15)

Furthermore, since rank(Sf
s,k) 6 q, it follows from (6.3.14) that rank(P̂ f

s,k) 6 q and

rank(P̂ da
s,k) 6 q. Hence, (6.3.15) implies that the filter gain Ks,k depends on P̂ f

s,k,

the reduced-rank approximation of P f
s,k, and the ensemble Xda

k depends on P̂ da
s,k, the

reduced-rank approximation of P da
s,k. Also, as shown in Section 6.8, the matrix H f

s,k

satisfying (6.3.9) is not unique. Since the singular value decomposition in (6.3.13)

is computationally intensive [48], we introduce an alternative method to obtain a

reduced-rank approximation of a square root of the pseudo-error covariance.

6.4 Cholesky-Factorization-Based Reduced-Rank Unscented
Kalman Filter

The filter gain Kk of UKF depends on a particular subspace of the forecast

error covariance P f
k. Specifically, Kk depends only on the correlation CkP

f
k between
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the error in the measured states and unmeasured states. Since rank(Ck) = p, there

exists a transformation matrix Tk ∈ R
n×n such that the change of basis x̃k = Tkxk

ensures that (see Section 6.9) Ck has the form

Ck =

[

Ip 0

]

. (6.4.1)

The following result is given in [42].

Lemma 6.4.1 Partition P f
k as

P f
k =







P f
p,k (P f

pp,k)
T

P f
pp,k P f

p,k






, (6.4.2)

where P f
p,k ∈ R

p×p and P f
p,k ∈ R

p×p, and assume that Ck has the form (6.4.1). Then,

Kk =







P f
p,k

P f
pp,k






(P f

p,k + Rk)
−1. (6.4.3)

Next, to reduce the ensemble size, we construct a filter that uses a reduced-

rank approximation P̂ f
c,k of P f

c,k such that rank(P̂ f
c,k) < n and ‖Ck(P̂

f
c,k − P f

c,k)‖F is

minimized. To obtain P̂ f
c,k, we perform a Cholesky factorization of the pseudo-error

covariance P f
c,k at each time step. Assuming that P ∈ R

n×n is positive definite,

the Cholesky factorization of P yields a unique lower triangular Cholesky factor

L ∈ R
n×n satisfying

LLT = P. (6.4.4)

Truncating the last n−q columns of L =

[

L1 · · · Ln

]

yields the rank-q Cholesky

factor

ΦCHOL(P, q) ,

[

L1 · · · Lq

]

∈ R
n×q. (6.4.5)

The following result is given in [42].
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Lemma 6.4.2 Let P ∈ R
n×n be positive definite. Define S , ΦCHOL(P, q), where

0 < q 6 n, and P̂ , SST, and partition P and P̂ as

P =







Pq Pqq

(Pqq)
T Pq






, P̂ =







P̂q P̂qq

(P̂qq)
T P̂q






, (6.4.6)

where Pq, P̂q ∈ R
q×q and Pq, P̂q ∈ R

q×q. Then,

[

P̂q P̂qq

]

=

[

Pq Pqq

]

. (6.4.7)

Lemma 6.4.2 implies that, if S = ΦCHOL(P, q), then the first q columns and rows

of SST and P are equal. Next, we use the Cholesky factorization at each time

step to obtain a reduced-rank approximation of the pseudo-error covariance, thus

reducing the ensemble size. The Cholesky-based reduced-rank unscented Kalman

filter (CDRRUKF) is summarized as follows:

CDRRUKF data assimilation step:

xda
c,k = xf

c,k + Kc,k(yk − yf
c,k), (6.4.8)

yf
c,k = Ckx

f
c,k, (6.4.9)

Xda
c,k = Ψq(x

da
c,k, S

da
c,k, α), (6.4.10)

Sda
c,k = Sf

c,kH
f
c,k, (6.4.11)

where

Kc,k = Sf
c,k(CkS

f
c,k)

T
(

CkS
f
c,k(CkS

f
c,k)

T + Rk

)−1
(6.4.12)

and H f
c,k ∈ R

q×q satisfies

H f
c,k(H

f
c,k)

T = I − (CkS
f
c,k)

T
(

CkS
f
c,k(CkS

f
c,k)

T + Rk

)−1
CkS

f
c,k. (6.4.13)
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CDRRUKF forecast step:

X f
c,i,k+1 = f(Xda

c,i,k, uk, k), i = 0, . . . , 2q (6.4.14)

xf
k+1 =

2q
∑

i=0

γq,iX
f
c,i,k+1, (6.4.15)

P f
c,k+1 =

2q
∑

i=0

γq,i(X
f
c,i,k+1 − xf

c,k+1)(X
f
c,i,k+1 − xf

c,k+1)
T + Qk, (6.4.16)

Sf
c,k+1 = ΦCHOL(P f

c,k+1, q). (6.4.17)

Next, define P̂ da
c,k, P̂

f
c,k ∈ R

n×n by

P̂ da
c,k , P̂ f

c,k − P̂ f
c,kC

T
k (CkP̂

f
kC

T
k + Rk)

−1CkP̂
f
c,k, P̂ f

c,k , Sf
c,k(S

f
c,k)

T. (6.4.18)

It then follows from (6.4.11) that Sda
c,k(S

da
c,k)

T = P̂ da
c,k. Furthermore, (6.4.12) and

(6.4.18) imply that

Kc,k = P̂ f
c,kC

T
k (CkP̂

f
kC

T
k + Rk)

−1. (6.4.19)

Hence, like the estimator gain Ks,k of SVDRRUKF, the estimator gain Kc,k of CDR-

RUKF depends on a reduced-rank approximation P̂ f
c,k of the pseudo-error covariance

P f
c,k. As discussed in Section 6.8, the matrix H f

c,k satisfying (6.3.9) is not unique.

Due to the rank-reduction step (6.4.17), CDRRUKF is generally not equivalent to

UKF.

6.5 Linear Advection Model

Consider a linear advection model [78] with n cells, and let xi,k be the energy

in the ith cell at time k. The energy flow satisfies

xi,k+1 =



















xi−1,k, if i = 2, . . . , n,

xn,k, if i = 1.

(6.5.1)
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Hence, energy in the ith cell flows to the (i + 1)th cell, while the periodic boundary

condition ensures that energy is in constant circulation. We choose n = 100 and

assume that the disturbance wk enters selected cells, where wk ∈ R
n is white noise

process with covariance Qk = Q for all k > 0, and Q ∈ R
n×n is diagonal with entries

Qi,i =



















1, if i ∈ {10, 20, . . . , 100},

0, else.

(6.5.2)

Next, we assume that measurements of the energy in cells 50 and 51 are available so

that

yk =







x50,k

x51,k






+ vk, (6.5.3)

where vk is white noise process with covariance Rk = 0.1I2. Note that (6.5.3) can be

expressed as (6.2.2).

First, we use the measurements yk to estimate the energy in the remaining cells

using UKF, SVDRRUKF, and CDRRUKF. In all three cases, the initial estimates

xf
0, xf

s,0, and xf
c,0 are not equal to the initial state x0. Moreover, we choose P f

0 =

P f
s,0 = P f

c,0 = 0.1In. Finally, we choose α = 0.6 for all three filters. Note that

since the dynamics in (6.5.1) are linear, UKF is equivalent to the Kalman filter and

hence UKF provides the optimal estimates of the state xk that minimize the MSE.

The MSE of state estimates from UKF is shown in Figure 6.1. The MSE of state

estimates when data assimilation is not performed is also shown for comparison.

Next, as shown in Figure 6.2 and Figure 6.3, data assimilation is performed using

SVDRRUKF and CDRRUKF for several values of q between 5 and 100. Note that

SVDRRUKF and CDRRUKF use 2q + 1 ensemble members, whereas UKF uses

2n + 1 ensemble members. It can be seen that the performance of SVDRRUKF
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with 111 ensemble members (q = 55) is close to optimal, whereas the performance of

CDRRUKF is close to optimal with 11 ensemble members (q = 5). The steady-state

MSE of state estimates for various values of q is plotted in Figure 6.4 and Figure 6.5.

The performance of SVDRRUKF is poor when q < 55, and close to optimal when

q > 55. Thus the ensemble size can be reduced from 201 to 111 with negligible

change in the performance. Finally, note that even with q = 5, the performance of

CDRRUKF is close to optimal. Hence, the ensemble size can be reduced from 211

to 11 with negligible performance deterioration.

Next, we repeat the same procedure except with a poor estimate of the process

noise covariance for data assimilation. Specifically, we replace Qk in (6.3.12) and

(6.4.16) by Q̂k, where Q̂k = I for all k > 0. The steady-state MSE of state estimates

for different choices of q is plotted in Figure 6.4 and Figure 6.5. SVDRRUKF with a

poor estimate of the error covariance is unstable for all q 6 95 (indicated by the X’s).

However, it can be seen from Figure 6.5 that even with q = 5 and a poor estimate

of the process noise covariance, the performance of CDRRUKF is close to optimal.

Finally, we replace Qk in (6.4.17) by Q̂k, where Q̂k = αI for all k > 0, and perform

state estimation using CDRRUKF. The steady-state MSE of the state estimates

is shown in Figure 6.6 for various values of α. The degradation in performance

for smaller values of α is less when the ensemble size is large. However, for all

three cases q = 5, q = 15, and q = 15, the performance of CDRRUKF is close

to optimal when α > 1. This suggests that it is advantageous to overestimate the

process noise covariance. SVDRRUKF with q = 5, 15, 25 is unstable for all choices of

α = 0.005, . . . , 50. Hence, these simulations suggest that CDRRUKF is more robust

than SVDRRUKF with respect to uncertainties in the process noise covariance.
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6.6 L96 Model

Next, we compare the performance of SVDRRUKF and CDRRUKF on a non-

linear model that exhibits chaotic dynamics. The L96 model mimics the propagation

of an unspecified meteorological quantity along the latitude circle [79]. The dynamics

are governed by

d

dt
xi(t) = (xi+1(t) − xi−2(t))xi−1(t) − xi(t) + ui(t), (6.6.1)

where xi(t) ∈ R denotes the meteorological quantity at the ith grid point at time

t, ui ∈ R denotes an external forcing term, and wi denotes unknown disturbances

affecting the ith grid point. For all t > 0, the boundary conditions are defined by

x0(t) = xn(t), x−1(t) = xn−1(t), xn+1(t) = x1(t). (6.6.2)

We choose ui(t) = 8 for all i = 1, . . . , n and all t > 0. Using fourth-order Runge-

Kutta discretization with a sampling time of 0.05 s, we obtain a discrete-time model

of (6.6.1) that can be expressed as (6.2.1). Furthermore, we assume that the dis-

cretized model is corrupted by an unknown external disturbance that affects certain

cells. We choose n = 40, and assume that wk is white noise process with covariance

Qk = Q for all k > 0, where Q ∈ R
n×n is diagonal with entries

Qi,i =



















0.1, if i ∈ {5, 15, 25, 35},

0, else.

(6.6.3)

Next, we assume that measurements from cells with 20 and 21 are available so that

yk =







x20,k

x21,k






+ vk, (6.6.4)

where vk is white noise process with covariance Rk = 0.01I2. Hence, (6.6.4) can be

expressed as (6.2.2) with Ck = C ∈ R
2×40. We use the measurements yk to estimate
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the state in the cells where measurements are not available. The estimates of x20(t)

and x23(t) obtained using UKF are shown in Figure 6.7. The MSE of state estimates

obtained using UKF is shown in Figure 6.8. The error in the state estimates obtained

when data assimilation is not performed is also shown for comparison. Since n = 40,

UKF uses 81 (2n + 1) ensembles.

Next, as shown in Figure 6.9 and Figure 6.10, we reduce the ensemble size and

use SVDRRUKF and CDRRUKF with q = 10, 20, 30. Although the number of

ensembles in SVDRRUKF and CDRRUKF is the same for a fixed value of q, it can

be seen that the performance of SVDRRUKF is poor compared to the performance of

CDRRUKF for both q = 20 and q = 30. Moreover, the performance of CDRRUKF

with 61 (q = 30) ensemble members is close to the performance of UKF with 81

ensemble members. Figure 6.11 shows the difference in the MSE of state estimates

between data-free simulation and the reduced-rank filters with q = 10. Positive

values indicate the cells and time instants at which estimates from the reduced-rank

filters are better than the estimates obtained when data assimilation is not performed,

while negative values indicate the cells and time instants at which estimates from the

reduced-rank filters are worse than the estimates obtained from data-free simulation.

Next, since the process noise covariance Qk is often not readily available, we

assume that we have a poor estimate of the process noise covariance. Specifically, we

replace Qk in (6.3.12) and (6.4.16) by Q̂k, where Q̂k = αI for all k > 0. Figure 6.12

shows the time-averaged MSE of state estimates obtained using SVDRRUKF and

CDRRUKF with q = 10 and q = 20 for various values of α between 0.001 and 100.

The error in state estimates are averaged between 35 sec and 50 sec. It can be seen

that, for all values of α, the performance of CDRRUKF is superior to the performance

of SVDRRUKF. In fact, CDRRUKF with 21 ensemble members (q = 10) consistently
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outperforms SVDRRUKF with 41 ensemble members (q = 20).

6.7 Simulation Example : 1-D Compressible Flow Model

Finally, we consider state estimation of one-dimensional hydrodynamic flow

based on a finite volume model. The flow of an inviscid, compressible fluid along a

one-dimensional channel is governed by Euler’s equations

∂ρ

∂t
+

∂

∂x
̺v + wρ = 0, (6.7.1)

d

dt

(

p

ργ

)

+ wp = 0, (6.7.2)

ρ
∂v

∂t
+ ρv

∂v

∂x
+

∂p

∂x
+ wv = 0, (6.7.3)

where ρ ∈ R is the density, v ∈ R is the velocity, p ∈ R is the pressure of the fluid,

γ = 5
3

is the ratio of specific heats of the fluid, and wρ, wv, and wp are the unmodeled

source terms that affect the density, pressure and velocity of the flow. Due to the

presence of coupled partial differential equations, it is generally difficult to obtain

closed-form solutions of (6.7.1)-(6.7.3). However, a discrete-time model of the flow

can be obtained by using a finite-volume-based spatial and temporal discretization.

Assume that the channel consists of n identical cells. For all i = 1, . . . , n, let ρ
[i]
k ,

v
[i]
k , and p

[i]
k be the density, velocity, and pressure in the ith cell at time step k. For

all i = 1 . . . , n, define U [i] ∈ R
3 by

U [i] =

[

ρ
[i]
k v

[i]
k p

[i]
k

]T

. (6.7.4)

We use a second-order Rusanov scheme [67] to discretize (6.7.1)-(6.7.3), and obtain

a discrete-time model

U
[i]
k+1 = f [i](U

[i−2]
k , . . . , U

[i+2]
k , k) + W

[i]
k , (6.7.5)
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where W
[i]
k ∈ R

3 represents unmodeled source terms that affects the density, velocity

and pressure of the fluid in the ith cell, and is assumed to be zero-mean white

Gaussian process noise with covariance matrix Q[i] ∈ R
3×3. Furthermore, for all

k > 0, U
[−1]
k , U

[0]
k , U

[n+1]
k , and U

[n+2]
k denote the boundary conditions. Next, define

the state-vector xk ∈ R
3n by

xk
△
=

[

(U
[1]
k )T · · · (U

[n]
k )T

]T

. (6.7.6)

so that (6.7.5) yields a discrete-time model of the form (6.2.1), where wk ∈ R
3n is

defined by

wk ,

[

(W
[1]
k )T · · · (W

[n]
k )T

]

. (6.7.7)

Since W
[i]
k is a zero-mean white Gaussian process, (6.7.7) implies that wk is also a

zero-mean white Gaussian process with covariance Qk = Q ∈ R
3n×3n, where

Q , diag(Q[1], . . . , Q[n]). (6.7.8)

We assume that measurements of density, velocity and pressure from certain cells

are available so that yk is given by (6.2.2), with Ck = C for all k > 0, where

C ,

[

(C [i1])T · · · (C [ip])T

]T

, (6.7.9)

vk is zero-mean white Gaussian noise with covariance matrix R = 0.01I3p×3p, and for

all i ∈ {1, . . . , n}, C [i] ∈ R
3×3n is defined by

C [i] ,

[

03×3(n−i) I3×3 03×3(i−1)

]

. (6.7.10)

Let n = 100 so that xk ∈ R
300. We assume that the discretized cells are of width

1 m and choose a sampling time of ts = 0.2 s. First, we consider flow along a circular
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one-dimensional channel (see Figure 6.10). Hence, the boundary conditions are given

by

U
[0]
k = U

[n]
k , U

[−1]
k = U

[n−1]
k U

[n+1]
k = U

[1]
k , U

[n+2]
k = U

[2]
k , k > 0. (6.7.11)

We assume that unknown source terms affect cells with indices 15, 25, 75, and 85

and therefore

Q[i] =



















0.1I3, if i ∈ {15, 25, 75, 85},

0, else.

(6.7.12)

Furthermore, we use measurements of density, velocity, and pressure from cells 50

and 51 to estimate the flow variables in other regions. We assume that the nominal

initial conditions are given by

ρ
[i]
0 =



















1.5, if i ∈ {45, . . . , 55},

1, else.

, (6.7.13)

v
[i]
0 = 0, i = 1, . . . , n, (6.7.14)

p
[i]
0 =



















1.5, if i ∈ {45, . . . , 55},

1, else.

. (6.7.15)

We initialize the estimators with the nominal initial condition and initialize the truth

model by adding random perturbations to the nominal initial condition.

The evolution of density between 50 sec and 100 sec is shown in Figure 6.14. The

estimates from data-free simulation and UKF are also shown. Figure 6.15 shows the

total MSE in the state-estimates when data assimilation is performed using UKF.

The error in the state estimates when data assimilation is not performed is also

shown in the same figure. Note that we consider 100 cells and the dimension n of
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the state-vector is 300, and therefore UKF uses 601 (2n + 1) ensembles. Thus, we

update the flow variable in 60100 cells and hence UKF is computationally expensive.

Next, we reduce the ensemble size and perform data assimilation using SVDR-

RUKD and CDRRUKF. Figure 6.16 shows the total MSE in the state-estimates

obtained using SVDRRUKF with q = 100, 50, 25. Note that the dimension of the

state-vector n = 300 and degradation in performance can be seen only when q = 25.

The error in the state-estimates obtained using CDRRUKF with q = 100, 50, 25 is

shown in Figure 6.17. The performance of CDRRUKF for all values of q is close to

that of UKF. The difference in the MSE of state estimates between data-free simula-

tion and the reduced-rank filters with q = 15 is shown in Figure 6.18. Positive values

indicate the cells and time instants at which estimates from the reduced-rank fil-

ters are better than the estimates obtained when data assimilation is not performed,

while negative values indicate the cells and time instants at which estimates from the

reduced-rank filters are worse than the estimates obtained from data-free simulation.

Finally, Figure 6.19 shows the performance of SVDRRUKF and CDRRUKF for

q = 200, 150, 100, 50, 25, 15. The normalized computational time and normalized

estimation accuracy of the reduced-rank filters is shown. It can be seen that even

with q = 15, the performance of CDRRUKF is close to that of UKF although

CDRRUKF with q = 15 takes about 1/5th of the time taken by UKF. However, the

performance of SVDRRUKF with q = 15 is worse than that of data-free simulation.

6.8 Ensemble Transformation

Note that H f
s,k and H f

c,k that satisfy (6.3.9) and (6.4.13), respectively, are not

unique. Let S ∈ R
n×q, where q 6 n, C ∈ R

p×n, and R ∈ R
p×p be positive definite.
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Assume that H ∈ R
q×q satisfies

HHT = I − (CS)T
(

CS(CS)T + R
)−1

CS. (6.8.1)

In fact if H = Ĥ satisfies (6.8.1), then for all unitary matrix U ∈ R
q×q, H = ĤU

also satisfies (6.8.1). Note that (6.8.1) resemble (6.3.9) and (6.4.13). A comparison

of the performance of ensemble-based filters for different choices of H is performed

in [22]. Note that certain choices of H ensure that
∑q

i=0 coli(SH) = 0 whenever

∑q
i=0 coli(S) = 0, where coli(M) denotes the ith column of a matrix M . However,

in SVDRRUKF and CDRRUKF,
∑q

i=0 Sf
s,i,k and

∑q
i=0 Sf

c,i,k may not be equal to

zero because of the rank reduction step (6.3.13) and (6.4.17). Hence, instead of

using the results in [22, 77], we use a symmetric positive-negative pairing of the

ensembles. Specifically, (5.5.3), (6.3.6), and (6.4.10) imply that, for all i = 1, . . . , q,

Xda
s,i,k − xda

s,k = −(Xda
s,q+1−i − xda

s,k) and Xda
c,i,k − xda

c,k = −(Xda
c,q+1−i − xda

c,k), and hence

2q
∑

i=0

γx,q,iX
da
s,i,k = xda

s,k,

2q
∑

i=0

γx,q,iX
da
c,i,k = xda

c,k. (6.8.2)

Finally, using the Matrix Inversion Lemma in (6.8.1) yields

HHT =
(

Iq + (CS)TR−1CS
)−1

. (6.8.3)

Hence, either the singular value decomposition or Cholesky factorization of (6.8.3)

can be used to obtain H. Since the Cholesky factorization is computationally effi-

cient, we use the Cholesky factorization to obtain H f
s,k and H f

c,k in all our simulations.

Note that no rank-reduction is performed while obtaining H f
s,k and H f

c,k. Further-

more, our simulations did not show any significant change in the performance when

H f
s,k and H f

c,k were obtained using the singular value decomposition.
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6.9 Basis Selection for CDRRUKF

The following result given in [42] shows that CDRRUKF is equivalent to UKF

for a single time step when Ck has the form (6.4.1).

Proposition 6.9.1 Assume that Ck has the structure in (6.4.1), and let P̂ f
c,k =

P f
k. Then, CkP̂

f
c,k = CkP

f
k and hence, Kc,k = Kk.

Note that Proposition 6.9.1 guarantees that CDRRUKF and UKF are equivalent

only for a single time step. However, if the dynamics in (6.2.1) is linear and time-

invariant, that is, for all k > 0,

xk+1 = Axk + Buk + wk, (6.9.1)

yk = Cxk + vk, (6.9.2)

then a basis for the state x can be chosen so that CDRRUKF is equivalent to UKF

for r > 0 time steps. We first define the observability matrix O(A,C) ∈ R
pn×n by

O(A,C) ,





















C

CA

...

CAn−1





















. (6.9.3)

Note that for linear systems, O(A,C) determines the value of the output yk at future

instances in time. Specifically, if uk = wk = vk = 0, for all k > 0, then (6.9.1)-(6.9.3)

imply that, for all k > 0,















yk

...

yk+n−1















= O(A,C)xk. (6.9.4)
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Assume that O(A,C) has the form

O(A,C) =







In

0(p−1)n×n






. (6.9.5)

Let xk have entries

xk =

[

x1,k · · · xn,k

]T

, (6.9.6)

Then, (6.9.4) implies that, for any integer r > 0 such that pr 6 n,














yk

...

yk+r−1















=















x1,k

...

xpr,k















. (6.9.7)

Therefore, the measurements from time step k to k + r− 1 depend on only the value

of the first pr components of the state vector xk at time step k. The following result

is given in [42].

Proposition 6.9.2 Assume that O(A,C) has the form

O(A,C) =







In

0(p−1)n×n






. (6.9.8)

Let r > 0 be an integer such that pr < n and let q = pr. Furthermore, assume that

P f
c,0 = P f

0 . Then, for all k = 0, . . . , r, Kc,k = Kk. If, in addition, xf
c,0 = xf

0, then for

all k = 0, . . . , r, xf
c,k = xf

k.

Generally, the observability matrix O(A,C) may not be of the form (6.9.8). How-

ever, a suitable change of basis for the state x can be found so that the observability

matrix satisfies (6.9.8). Let T ∈ R
n×n be invertible, and define Ã , TAT−1 and

C̃ , CT−1. Let x̃ , Tx, so that in the new basis, (6.2.1) can be expressed as

x̃k+1 = Ãx̃k + B̃uk + w̃k, (6.9.9)

yk = C̃kx̃k + ṽk. (6.9.10)
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If (A,C) is observable, then (Ã, C̃) is also observable, and there exists an invertible

matrix T ∈ R
n×n such that O(Ã, C̃) satisfies (6.9.8) (see [36]). Hence, for linear

dynamics, we use (6.9.9) and (6.9.10) to construct CDRRUKF and perform data

assimilation in the new basis so that the observability matrix has the form (6.9.8),

and thus ensure that the performance guaranteed in Proposition 6.9.2 is achieved.

Moreover, all the results in Section 6.5 are obtained using a basis such that the

observability matrix has the form (6.9.8)

Next, we consider systems with nonlinear dynamics. Specifically, we consider

nonlinear systems like terrestrial-weather and ocean-climate models, where the state

vector represents physical variables like temperature, pressure, and density at specific

grid points that discretize a spatial region. For example, in a one-dimensional model,

xk can be expressed as

xk =

[

x
[1]
k · · · x

[n]
k

]T

, (6.9.11)

where x
[i]
k denotes the physical variable in the ith grid point at time step k. Further-

more, in systems modeled by finite volume schemes, the future value of the physical

variable in a particular grid point i depends only on the current value of the physical

variables in its neighboring cells. Hence, the dynamics (6.2.1) can be expressed as

x
[i]
k+1 = f [i](x

[i−b]
k , . . . , x

[i+b]
k , uk, k), i = 1, . . . , n, (6.9.12)

and b > 0 depends on the order of the finite volume scheme [66, 67]. For example,

b = 2 in a second-order finite volume scheme.

Next, let yk denote measurement of the physical variable at a particular grid-

point, so that

yk = x
[i1]
k + vk, (6.9.13)
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where i1 ∈ {1, . . . , n}. For nonlinear systems, the notion of an observability matrix

is not well developed and is an area of active research [80]. However, it follows from

(6.9.12) and (6.9.13) that, if wk = vk = 0, for all k > 0, then














yk

...

yk+r−1















=















g1(x
[i1−b]
k , . . . , x

[i1+b]
k , uk, k)

...

gr(x
[i1−rb]
k , . . . , x

[i1+rb]
k , uk, k)















. (6.9.14)

Hence, (6.9.14) can be expressed as














yk

...

yk+r−1















= g(x
[i1−rb]
k , . . . , x

[i1+rb]
k , uk, k). (6.9.15)

Now define x̃k ∈ R
n by

x̃k =

[

x
[i1]
k x

[i1−1]
k x

[i1+1]
k x

[i1−2]
k x

[i1+2]
k · · ·

]

. (6.9.16)

Then, (6.9.15) implies that yk, . . . , yk+r−1 depends on only first 2rb components of

the state vector x̃k at time step k. Hence, while using CDRRUKF for nonlinear

systems that are modeled by finite-volume schemes, we choose a basis so that the

outputs yk, . . . , yk+r−1 depend on only the first few components of the state vector.

Although it is difficult to obtain rigorous results similar to Proposition 6.9.2 in the

nonlinear case, simulation results indicate that choosing such a basis significantly

improves the performance of CDRRUKF. Furthermore, we use such a basis in all

our simulations in Section 6.6.

6.10 Conclusion

In this chapter, we presented a reduced-rank Unscented Kalman filter based on

the Cholesky decomposition. The ensemble members are reinitialized at each time
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step using the columns of Cholesky factor of the square root of the pseudo-error co-

variance matrix. In all the examples that we considered, the Cholesky-based reduced-

rank unscented Kalman filter yielded better estimates than its counterpart based on

the singular value decomposition. Moreover, the Cholesky-based filter is computa-

tionally faster than the filter based on singular value decomposition, and hence is

an attractive alternative to existing reduced-rank filters that use the singular value

decomposition.
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Figure 6.1: MSE of the state estimates obtained from UKF. Since the dynamics are
linear, UKF is equivalent to the Kalman filter. The MSE of state esti-
mates when no data assimilation is performed is shown for comparison.
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SVDRRUKF q=5
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SVDRRUKF q=25
SVDRRUKF q=35
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SVDRRUKF q=55
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Figure 6.2: MSE of the state estimates obtained from SVDRRUKF for various values
of q. SVDRRUKF with q = 5 is unstable, while the performance of
SVDRRUKF with q = 55 is close to the optimal (UKF) performance.
Note that SVDRRUKF with q = 55 uses 111 ensemble members, whereas
UKF uses 201 ensemble members.
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Figure 6.3: MSE of the state estimates obtained from CDRRUKF with q = 5. The
performance of CDRRUKF with q = 5 is close to the optimal (UKF) per-
formance. Note that CDRRUKF with q = 5 uses 11 ensemble members,
while UKF uses 201 ensemble members.
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Figure 6.4: Steady-state performance of SVDRRUKF for various values of q between
5 and 100. For each value of q, we perform data assimilation with the
exact value of the process noise covariance and with a poor estimate
of the process noise covariance. Specifically, we replace Qk by Q̂k in
(6.3.12), where Q̂k = I for all k > 0. The performance of UKF is shown
for comparison. The X’s indicate cases in which the filter is unstable.
SVDRRUKF is unstable when q = 5, irrespective of the value of the
process noise covariance used for data assimilation. When the exact
value of the process noise covariance is used for data assimilation, the
performance of SVDRRUKF is poor when q < 55 and close to optimal for
q > 55. However, when a poor estimate of the process noise covariance is
used for data assimilation, SVDRRUKF is unstable for all q = 5, . . . , 95.
These results indicate that SVDRRUKF is sensitive to uncertainties in
the estimate of the process noise covariance.
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Figure 6.5: Steady-state performance of CDRRUKF for values of q between 5 and
100. We first perform data assimilation using the correct value of the
process noise covariance, and then perform data assimilation with a poor
estimate of the process noise covariance, that is, we replace Qk in (6.4.16)
by Q̂k, where Q̂k = I for all k > 0. Note that for q = 5, the performance
of CDRRUKF is close to optimal, irrespective of the value of the process
noise covariance used for data assimilation.
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CDRRUKF q=5
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Figure 6.6: Steady-state performance of CDRRUKF with q = 5, 15, 25. In all three
cases, we use a poor estimate of the process noise covariance for data
assimilation, that is, we replace Qk in (6.4.16) by Q̂k, where Q̂k = αI for
all k > 0. In spite of the presence of an error in the process noise covari-
ance, CDRRUKF is stable and thus robust to uncertainty in the process
noise covariance. For a fixed level of uncertainty in the process noise
covariance, the performance of CDRRUKF improves when the ensemble
size increases. Moreover, for a specific choice of q, the performance im-
proves as α increases. These results suggest that it is advantageous to
overestimate the process noise covariance. The performance of SVDR-
RUKF is not shown since SVDRRUKF is unstable for all values of α and
q = 5, 15, 25.
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Figure 6.7: Estimates of x20(t) and x23(t) when measurements of x20(t) and x21(t)
are used by UKF. The results of data-free simulation are shown for com-
parison. In both UKF and data-free simulation, all of the initial states
are set to zero.
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Figure 6.8: MSE of the state estimates obtained using UKF when the exact value
of the process noise covariance is used. The MSE of the state estimates
obtained from data-free simulation is also shown for comparison.
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Figure 6.9: MSE of the state estimates obtained using SVDRRUKF with q = 20, 30.
The error in state estimates when UKF is used and for data-free simu-
lation is shown for comparison. The performance of SVDRRUKF with
q = 20 and q = 30 is poor. In fact, SVDRRUKF with q = 20 and q = 30
sometimes yields estimates that are worse than estimates obtained from
data-free simulation.
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Figure 6.10: Performance of CDRRUKF with n = 40 and q = 20, 30. Note that the
performance of CDRRUKF with q = 20 is better than the performance
of SVDRRUKF with q = 30.
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Figure 6.11: Difference in the MSE of state estimates between data-free simulation
and SVDRRUKF and CDRRUKF. We use measurements from cells 20
and 21 for data assimilation. For both SVDRRUKF and CDRRUKF,
we choose q = 10 so that the ensemble size is 21. Regions with posi-
tive values indicate the cells and time instants at which the estimates
from the reduced-rank filters are better than the estimates obtained
when data assimilation is not performed. Alternatively, negative values
indicate time instants at which the estimates from SVDRRUKF and
CDRRUKF are worse than the estimates obtained from data-free simu-
lation. Note that CDRRUKF with 21 ensembles improves the estimates
in most of the cells. However, the estimates from SVDRRUKF are ex-
tremely poor in certain cells, for example, in cells 10, . . . , 15 between
25.5 sec and 26 sec.
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Figure 6.12: Time-averaged MSE of state estimates between 35 sec and 50 sec. The
state estimates are obtained using SVDRRUKF and CDRRUKF with
q = 10 and q = 20, and a poor estimate of the process noise covari-
ance. Specifically, we replace Qk in (6.3.12) and (6.4.16) by Q̂k, where
Q̂k = αI for all k > 0. The error in the state estimates from data-free
simulation and UKF is shown for comparison. For all values of α, the
performance of CDRRUKF is better than the performance of SVDR-
RUKF. Furthermore, CDRRUKF is more robust to uncertainties in the
estimate of the process noise covariance.
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Figure 6.13: One-dimensional circular grid used in the finite volume scheme
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Figure 6.14: Evolution of density between 50 sec and 100 sec. The estimates from
(b) data-free simulation and (c) UKF are also shown.
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Figure 6.15: Total MSE of the state estimates between 0 sec and 100 sec in a
one-dimensional circular channel with periodic boundary conditions ob-
tained using UKF.
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Figure 6.16: Total MSE of the state estimates between 0 sec and 100 sec in a one-
dimensional circular channel with periodic boundary conditions. The
state estimates are obtained using SVDRRUKF with q = 100, 50, 25.
The error in the state-estimates in each cell when no data assimilation
is performed is also shown as for comparison. The performance of SV-
DRRUKF with q = 100 and q = 50 is close to that of UKF. However,
the accuracy of the estimates from SVDRRUKF with q = 25 is poor in
certain cells and in some cases worse than the estimates obtained from
data-free simulation.
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Figure 6.17: Total MSE of the state estimates between 0 sec and 100 sec in a one-
dimensional circular channel with periodic boundary conditions. The
state estimates are obtained using CDRRUKF with q = 100, 50, 25.
The error in the state-estimates in each cell when no data assimilation
is performed is also shown as for comparison. The performance of CDR-
RUKF with q = 100, q = 50, and q = 25 is close to that of UKF. Note
that the performance of CDRRUKF with q = 25 is much better than
that of SVDRRUKF with q = 25.
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Figure 6.18: Difference in the MSE of state estimates between data-free simulation
and SVDRRUKF and CDRRUKF. We use measurements from cells 50
and 51 for data assimilation. For both SVDRRUKF and CDRRUKF,
we choose q = 15 so that the ensemble size is 31. Regions with posi-
tive values indicate the cells and time instants at which the estimates
from the reduced-rank filters are better than the estimates obtained
when data assimilation is not performed. Alternatively, negative val-
ues indicate time instants at which the estimates from SVDRRUKF
and CDRRUKF are worse than the estimates obtained from data-free
simulation. Note that CDRRUKF with 31 ensembles improves the es-
timates in most of the cells. However, the estimates from SVDRRUKF
are extremely poor in certain cells.
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Figure 6.19: Normalized computational time and normalized sum of the square of
the error in the state estimates obtained from the various reduced-rank
filters. The computational time of UKF is normalized to 1 and the
error in the state estimates from data-free simulation is normalized to
1. The performance of CDRRUKF with q = 25 is close to UKF, and
the computational effort of CDRRUKF with q = 25 is only a fraction
of that of UKF. For all ensemble sizes, the superiority of CDRRUKF
over SVDRRUKF in terms of estimation accuracy and computational
effort is clearly seen.



CHAPTER VII

Reduced-Order Covariance-Based Unscented

Kalman Filtering with Complementary

Steady-State Correlation

In the previous chapter, we reduced the number of ensembles of the unscented

Kalman filter by propagating a low-rank approximation of the error covariance. In

this chapter, we consider yet another approach to reduce the ensemble size. We con-

sider an estimation algorithm that uses the full-order model for propagating the state

estimates, but uses a reduced-order model to propagate the error covariance, thus re-

ducing the size of the error covariance matrix used for data assimilation. Specifically,

multiple copies of only a specific subset of the state estimate are used to calculate the

reduced-order error covariance. Since only a reduced-order pseudo-error covariance is

calculated, we compensate for the neglected correlations by using a static estimator

gain based on steady-state correlations that can be determined offline. We use this

estimation algorithm to perform data assimilation of one-dimensional compressible

flow and two-dimensional magnetohydrodynamic flow models. The results in this

chapter have been published in [81].
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7.1 Introduction

State estimation for very large scale systems remains an area of interest re-

search. These systems arise in applications based on spatially distributed models or

spatially discretized partial differential equations. Weather forecasting and related

atmospheric applications are the main driver for this line of research [82, 83]. Al-

though the literature on reduced-order filtering extends back several decades [8, 25],

the challenge in addressing very large scale systems is to propagate the covariance

efficiently, especially in view of the fact that covariance propagation is O(n3) in

computational complexity, where n is the number of states.

To address the problem of computational complexity, a reduced-order error-

covariance propagation algorithm is developed in [20, 27] based on balanced re-

duction, and this algorithm is compared to several alternative reduced-order error-

covariance propagation algorithms in [9]. Some of these algorithms use an initial

balancing transformation, while others use an initial model truncation along with a

steady-state covariance. Algorithms that avoid the need for a balancing step are de-

sirable when the system order is sufficiently high that balancing and transformation

are prohibitive.

In this chapter we extend the approaches considered in [9] to nonlinear systems

by using the unscented Kalman filter [19]. This extension is necessitated by the fact

that large-scale applications are also typically nonlinear. Since balancing is usually

not feasible for systems of very large order, we consider nonlinear extensions of only

the algorithms studied in [9] that avoid the need for balancing. These algorithms

include the localized unscented Kalman filter (LUKF), which is essentially an un-

scented Kalman filter applied to a truncated model that includes all states that affect
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the measurements, as well as LUKF augmented by complementary steady-state error

correlations. This augmentation can be performed either without LUKF present or

with LUKF present. The former case is referred to as the localized unscented Kalman

filter with complementary open-loop steady-state correlations (LUKFCOLC), while

the latter case is referred to as the localized unscented Kalman filter with comple-

mentary closed-loop steady-state correlation (LUKFCCLC). The paper describes the

LUKF, LUKFCOLC, and LUKFCCLC algorithms in detail.

To compare the performance of the LUKF, LUKFCOLC, and LUKFCCLC al-

gorithms, we consider three examples that are computationally tractable on single-

processor machines. First, we consider a finite-volume compressible hydrodynamic

simulation for one-dimensional. Extended Kalman filter and state-dependent Ric-

cati equation techniques were applied to these problems in [50, 57, 85]. Finally, we

consider a two-dimensional finite-volume magnetohydrodynamic (MHD) simulation

using the BATSRUS MHD code developed in [84].

7.2 Localized Unscented Kalman Filter (LUKF)

Consider the discrete-time nonlinear system with dynamics

xk+1 = f(xk, uk, k) + wk (7.2.1)

and measurements

yk = h(xk, k) + vk, (7.2.2)

where xk ∈ R
n, uk ∈ R

m, and yk ∈ R
p. The input uk and output yk are assumed

to be measured, and wk ∈ R
n and vk ∈ R

p are uncorrelated zero-mean white noise

processes with covariances Qk and Rk, respectively. We assume that Rk is positive

definite.
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In many data assimilation applications involving finite volume models, the

dynamics involve nearest neighbor interactions (banded dynamics), and hence mea-

surements available in a certain spatial region seem to influence the estimates in only

a certain neighborhood around the measurement location (see Appendix A). Next,

we consider an extension of UKF that approximates the error covariance correspond-

ing to only a specific subspace of the state and not the entire state, thereby reducing

the number of ensembles needed. Assume that the state xk ∈ R
n has components

xk =

[

xT
L,k xT

E,k

]T

, (7.2.3)

where xL,k ∈ R
nL and xE,k ∈ R

nE , and nL + nE = n. Also, assume that the measure-

ments depend on the state xL so that yk can be expressed as

yk = h(xL,k, k) + vk. (7.2.4)

Finally, let Qk and P f
0 have entries

Qk =







QL,k QLE,k

QT
LE,k QE,k






, P f

0 =







P f
L,0 P f

LE,0

(P f
LE,0)

T P f
E,0






. (7.2.5)

The objective is to directly inject the measurement data yk into only the states corre-

sponding to the estimate of xL,k by using a reduced-order surrogate error covariance.

For example, in weather prediction models involving spatial dimensions, xL,k may

represent the states corresponding to a small region surrounding the location where

measurements are available, and xE,k may represent the states that are outside this

localized region.

Assume that for all k > 0, the error covariance P f
k of UKF has the structure

P f
k =







P f
L,k 0

0 0






, (7.2.6)



178

where P f
L,k ∈ R

nL×nL represents the covariance of error corresponding to the state

xL,k. Hence, it follows from (5.5.3) and (7.2.6) that if X f
k = Ψ(xf

k, P
f
k, α) then for

i = nL + 1, . . . , n, n + nL + 1, . . . , 2n,

X f
i,k = X f

1,k = xf
k. (7.2.7)

Since 2nE + 1 ensembles are exactly the same, it suffices to retain only one such

ensemble. Therefore, the number of ensembles required is reduced from 2n + 1 to

(2n+1)−2nE = 2nL +1. Furthermore, it follows from (7.2.6) that instead of a n×n

error covariance only a nL × nL reduced-order error covariance has to be estimated

using the 2nL + 1 ensembles. Applying these simplifying assumptions to UKF yields

the localized unscented Kalman filter (LUKF).

The data assimilation step of LUKF is given by

xda
L,k = xf

L,k + KL,k(yk − yf
k), (7.2.8)

xda
E,k = xf

E,k (7.2.9)

yf
k = h(xf

L,k, k), (7.2.10)

Xda
L,k = Ψ(xda

L,k, P
da
L,k, α), (7.2.11)

P da
L,k = P f

L,k − KL,kPyy,kK
T
L,k, (7.2.12)

where

KL,k = PxLy,kP
−1
yy,k, (7.2.13)

PxLy,k =

2nL
∑

i=0

γi(X
f
L,i,k − xf

L,k)(Y
f
i,k − yf

k)
T, (7.2.14)

Pyy,k =

2nL
∑

i=0

γi(Y
f
i,k − yf

k)(Y
f
i,k − yf

k)
T + Rk, (7.2.15)

Y f
i,k = h(X f

L,i,k, k), (7.2.16)
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and for i = 0, . . . , 2nL, X f
L,i,k ∈ R

nL is the (i + 1)th column of X f
L,k. Note that only

2nL + 1 ensembles are used compared to the 2n + 1 ensembles in the UKF, and

(7.2.8)-(7.2.9) imply that the measurement data is injected directly into only the

estimates of the state corresponding to the subspace xL,k.

Next, for all i = 0, . . . , 2nL, define Xda
i,k ∈ R

n by

Xda
i,k ,







Xda
L,i,k

xda
E,k






, (7.2.17)

where Xda
L,i,k ∈ R

nL is the (i + 1)th column of Xda
L,k. It follows from (7.2.6) that the

correlations corresponding to the error in the state xE,k are assumed to be zero, and

therefore, the estimate xda
E,k of the state xE,k in all the ensembles of LUKF in (7.2.17)

is the same. However, the estimate of the state xL,k is different in each ensemble.

The forecast step of LUKF is given by

X f
i,k+1 = f(Xda

i,k, uk, k). (7.2.18)

The forecast estimate of the state xk is obtained by

xf
k+1 =

2nL
∑

i=0

γiX
f
i,k+1. (7.2.19)

Next, for i = 0, . . . , 2nL, let X f
i,k+1 ∈ R

n have entries

X f
i,k+1 =







X f
L,i,k+1

X f
E,i,k+1






(7.2.20)

with X f
L,i,k+1 ∈ R

nL and X f
E,i,k+1 ∈ R

nE . Finally, to account for the increase in

the error covariance due to the process noise, represented by QL,k, the surrogate

covariance of the error in the estimate of xL,k is given by

P f
L,k+1 =

2n
∑

i=0

γi(X
f
L,i,k+1 − xf

L,k+1)(X
f
L,i,k+1 − xf

L,k+1)
T + QL,k. (7.2.21)
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Although (7.2.9) implies that data is not directly injected into the state estimates

corresponding to the subspace xE,k, it follows from (7.2.17)-(7.2.19) that the mea-

surement data affect the estimates of the state xE,k through the dynamic coupling

between xL,k and xE,k. LUKF involves 2nL + 1 model updates and therefore the

number of computations involved is of the order (2nL +1)n2. Hence, if nL ≪ n, then

LUKF is computationally efficient compared to UKF.

7.3 Complementary Steady-State Correlation

Although LUKF provides estimates of all of the states, (7.2.9) implies that

LUKF injects data directly into only that states corresponding to the estimate of xL,k.

On the other hand, UKF injects data directly into the all of states of the estimator.

Since ignoring the correlation between the error in the estimates of the states xL,k

and xE,k in LUKF may result in poor estimates, we consider a modification of LUKF

that uses a constant correlation between the error in the estimates of the states xL,k

and xE,k . In the following sections, we assume that Qk = Q and Rk = R for all

k > 0.

If the dynamics and the measurement map in (7.2.1) and (7.2.2) are linear and

time-invariant, then, the error covariance is propagated using the Riccati equation,

and under certain detectability and stabilizability assumptions, the error covariance

converges to a steady-state value that is the solution of an algebraic Riccati equation.

If the dynamics are nonlinear, then there is no guarantee that UKF or LUKF will

reach a statistical steady-state. However, simulations may indicate that after a

certain period of time, the performance of the estimators do not vary significantly,

and in that case, we assume that the estimator has almost reached statistical steady-

state.
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7.3.1 LUKF with Complementary Open-Loop Correlation (LUKFCOLC)

First, we determine a static estimator gain that is based on the steady-state

correlation between the measurements yk and the state xk. If the dynamics are linear

and time-invariant, that is f(x, u, k) = Ax + Bu and h(x, k) = Cx for all k > 0,

and (A,Q) is stabilizable, then the steady-state state covariance Pxx is the solution

of the Lyapunov equation

Pxx = APxxA
T + Q. (7.3.1)

Furthermore, the steady state correlation Pxy between the measurement yk and the

state xk is given by Pxy = PxxC
T.

However, since the dynamics are nonlinear, we approximate the steady-state state

covariance by using Monte Carlo simulations. Consider N copies of the open-loop

model of the system (7.2.1)-(7.2.2) so that for i = 1, . . . , N ,

x̃i,k+1 = f(x̃i,k, uk, k) + w̃i,k,

ỹi,k = h(x̃i,k, k) + ṽi,k,

(7.3.2)

where x̃i,0 is a random variable with the specified mean x0 and variance P f
0 , and

w̃i,k and ṽi,k are sampled from zero-mean white processes with variances Q and

R, respectively. Next, we define an approximation of the steady state open-loop

correlation POL,xy and POL,yy by

POL,xy , lim
k→∞

1

N − 1

N
∑

i=1

(x̃i,k − xk)(ỹi,k − yk)
T, (7.3.3)

POL,yy , lim
k→∞

1

N − 1

N
∑

i=1

(ỹi,k − yk)(ỹi,k − yk)
T, (7.3.4)

where

xk ,
1

N

N
∑

i=1

x̃i,k, yk ,
1

N

N
∑

i=1

ỹi,k. (7.3.5)
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Alternatively, the unscented transformation can also be used to approximate the

steady state open-loop state covariance. Note that the state covariance of (7.2.1)

is the same as the open-loop error covariance, that is the covariance of error of an

estimator when the estimator gain is zero. Hence, we use (5.5.6)-(5.5.17) with Kk = 0

for all k > 0, and define POL,xy and POL,yy by

POL,xy , lim
k→∞

Pxy,k, POL,yy , lim
k→∞

Pyy,k. (7.3.6)

If n is small, then the computational burden of using the open-loop unscented Kalman

filter to estimate the open-loop error correlation is small. However, when n is large,

approximating the error covariance by using Monte Carlo simulations with a small

N is computationally more efficient.

Finally, we define the static estimator gain KOL ∈ R
n×p based on the steady-state

open-loop correlations by

KOL , POL,xyP
−1
OL,yy. (7.3.7)

and let KOL have entries

KOL =







KOL,L

KOL,E






, (7.3.8)

where KOL,L ∈ R
nL×p and KOL,E ∈ R

nE×p. The forecast step of LUKFCOLC is given

by (7.2.17) - (7.2.21). The analysis step of the LUKFCOLC is given by

xda
L,k = xf

L,k + KL,k(yk − yf
k), (7.3.9)

xda
E,k = xf

E,k + KOL,E(yk − yf
k), (7.3.10)

yf
k = h(xf

L,k, k), (7.3.11)

Xda
L,k = Ψ(xda

L,k, P
da
L,k, α), (7.3.12)

P da
L,k = P f

L,k − KL,kPyy,kK
T
L,k, (7.3.13)
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where KL,k and Pyy,k are defined in (7.2.13) and (7.2.15).

Note that injecting measurement data yk in an estimator affects the error covari-

ances and hence, the actual closed-loop error correlation between yk and the error in

estimates xf
k − xk will be different from the open-loop error correlation POL,xy with

no data injection. However, (7.3.10) implies that the estimator gain correspond-

ing to the estimate xda
E,k is based on only the open-loop error correlation and is not

aware of the change in correlation due to data injection. On the other hand, UKF

always updates the closed-loop error covariances, thus accounting for the change in

the correlation due to data injection.

7.3.2 LUKF with Complementary Closed-Loop Correlation (LUKFC-
CLC)

Next, instead of using a static estimator gain that is based on the open-loop

steady-state correlations, we use a static estimator gain that is based on the closed-

loop steady-state correlations. Specifically, we estimate the steady-state correlations

between the error in the estimates when LUKF is used for state estimation. We

assume that LUKF has reached a statistical steady-state when the performance of

LUKF does not change significantly.

The Monte-Carlo procedure to determine the steady-state closed-loop correlation

is as follows. First, we simulate N copies of the open-loop model of the system

as shown in (7.3.2) and obtain outputs ỹi,k. Next, for i = 1, . . . , N , we perform

state estimation using LUKF with the outputs ỹi,k. Let x̃f
i,k be the estimate of x̃i,k

provided by the ith simulation of LUKF. We approximate the steady-state closed-
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loop correlations by

PCL,xy , lim
k→∞

1

N − 1

N
∑

i=1

[

x̃i,k − x̃f
i,k

] [

ỹi,k − h(x̃f
i,k)

]T
, (7.3.14)

PCL,yy , lim
k→∞

1

N − 1

N
∑

i=1

[

ỹi,k − h(x̃f
i,k)

] [

ỹi,k − h(x̃f
i,k)

]T
. (7.3.15)

Note that x̃i,k and x̃f
i,k are all simulation outputs and hence PCL,xy and PCL,yy in

(7.3.14) and (7.3.15), respectively, can be evaluated.

Alternatively, the unscented transformation can also be used to obtain an esti-

mate of the closed-loop error correlations. To do this, we first use LUKF with the

simulated measurement data ỹ1,k to obtain estimates x̃f
1,k of the state x̃1,k for k > 0.

Assuming KL,k does not vary significantly after a sufficiently long time interval, we

define the steady-state LUKF estimator gain KL by

KL , lim
k→∞

KL,k, (7.3.16)

where KL,k is the estimator gain given by (7.2.13) when obtaining the estimate x̃f
1,k.

Note that LUKF ignores correlations between certain states and hence cannot be

used to estimate the closed-loop error correlation. Instead, we use the unscented

transformation to estimate the closed-loop steady-state error correlations. Specifi-

cally, we use (5.5.6)-(5.5.17) with

Kk =







KL

0






, (7.3.17)

for all k > 0, and view the correlations Pxy,k and Pyy,k in (5.5.11) and (5.5.12) as

an estimate of the closed-loop error correlations of LUKF. We then estimate the

closed-loop steady-state error correlations PCL,xy and PCL,yy by

PCL,xy = lim
k→∞

Pxy,k, PCL,yy = lim
k→∞

Pyy,k. (7.3.18)
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Finally, the static estimator gain that is based on the steady-state closed-loop error

correlations is given by

KCL = PCL,xyP
−1
CL,yy (7.3.19)

with entries

KCL =







KCL,L

KCL,E






, (7.3.20)

where KCL,L ∈ R
nL×p and KCL,E ∈ R

nE×p.

The forecast step of LUKFCCLC is given by (7.2.17) - (7.2.21), and the analysis

step of LUKFCCLC is given by (7.3.9)-(7.3.13) with KOL,E replaced by KCL,E in

(7.3.10).

Next, we compare the performance of UKF, LUKF, LUKFCOLC, and LUKFC-

CLC on three different finite volume models.

7.4 One-Dimensional Hydrodynamics

First, we consider state estimation of one-dimensional hydrodynamic flow

based on a finite volume model. The flow of an inviscid, compressible fluid along a

one-dimensional channel is governed by Euler’s equations

∂ρ

∂t
= − ∂

∂x
̺v,

d

dt

(

p

ργ

)

= 0,

ρ
∂v

∂t
= −ρv

∂v

∂x
− ∂p

∂x
,

(7.4.1)

where ρ ∈ R is the density, v ∈ R is the velocity, p ∈ R is the pressure of the

fluid, and γ = 5
3

is the ratio of specific heats of the fluid. A discrete-time model

of hydrodynamic flow can be obtained by using a finite-volume based spatial and

temporal discretization.
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Assume that the channel consists of n identical cells (see Figure 7.4). For all

i = 1, . . . , n, let ρ[i], v[i], and p[i] be the density, velocity, and pressure in the ith cell,

and define U [i] ∈ R
3 by

U [i] =

[

ρ[i] m[i] E [i]

]T

, (7.4.2)

where the momentum m[i] and energy E [i] in the ith cell are given by

m[i] = ρ[i]v[i], E [i] =
1

2
ρ[i](v[i])2 +

p[i]

γ − 1
. (7.4.3)

We use a second-order Rusanov scheme [66] to discretize (7.4.1)-(7.4.1) and obtain

a discrete-time model that enables us to update the flow variables at the center of

each cell.

The discrete-time state update equation [66] is given by

U
[i]
k+1 = U

[i]
k − ts

∆x

[

F
[i]

Rus,k − F
[i−1]

Rus,k

]

, (7.4.4)

where ts > 0 is the sampling time and ∆x is the width of each cell, and F
[i]

Rus,k

depends on U
[i−1]
k , . . . , U

[i+2]
k . Hence, U

[i]
k+1 depends on U

[i−2]
k , . . . , U

[i+2]
k , as expected

for a second-order scheme.

Next, define the state vector x ∈ R
3(n−4) by

x
△
=

[

(U
[3]
k )T · · · (U

[n−2]
k )T

]T

. (7.4.5)

Furthermore, we assume Neumann boundary conditions at cells with indices 1, 2,

n − 1 and n so that, for all k > 0,

U
[1]
k = U

[2]
k = U

[3]
k , U

[n]
k = U

[n−1]
k = U

[n−2]
k . (7.4.6)

Let n = 54 so that x ∈ R
150. It follows from (7.4.4) that the second-order Rusanov

scheme yields a nonlinear discrete-time update model of the form

xk+1 = f(xk) + wk, (7.4.7)
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where wk ∈ R
3(n−4) represents unmodeled drivers and is assumed to be zero-mean

white Gaussian process noise with covariance matrix Q ∈ R
3(n−4)×3(n−4), so that the

flow variables in only the 5th, 15th, 25th, 35th, and 45th cell are directly affected by

wk. Next, for i = 3, . . . , n − 2, define C [i] ∈ R
3×3(n−4)

C [i] ,

[

03×3(n−4−i) I3×3 03×3(i−1)

]

(7.4.8)

so that the measurement yk ∈ R
6 of density, momentum and energy at cells with

indices 24 and 26 is given by

yk = Cxk + vk, (7.4.9)

where C =

[

(C [24])T (C [26])T

]T

and vk is zero-mean white Gaussian noise with

covariance matrix R = 0.01I6×6.

We simulate the truth model (7.4.7) with the initial condition ̺
[i]
0 = 1, v

[i]
0 = 0,

and p
[i]
0 = 1 for i = 1, . . . , n and obtain measurements yk from (7.4.9). The objective

is to estimate the density, momentum, and energy at the cells where measurements

of flow variables are unavailable using UKF, LUKF, LUKFCOLC, and LUKFCCLC.

The square root of the sum of the square of the error in the estimates of the

energy at cells 1, . . . , 50, when measurements yk are used in the UKF is shown in

Figure 7.2. The error in energy estimates when no data assimilation is performed is

also shown in the same figure for comparison. Note that the performance of UKF

degrades as the distance from the measurement cells 24 and 26 increases. Next, we

compare the performance of LUKF for various local grid sizes, that is, we set

xL ,

[

(U
[L1]
k )T · · · (U

[Ln]
k )T

]T

, (7.4.10)

where (L1, Ln) ∈ {(20, 30), (16, 34), (12, 38)}. We choose the subset xL ∈ R
3(Ln−L1+1)

of x so that xL spans the cells where measurements are available. The square root
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of the sum of the square of the error in energy estimates of LUKF is shown in

Figure 7.2 for the three different local grid sizes. It can be seen that the performance

of the LUKF improves as the size of the local grid where direct data injection is

performed increases. Furthermore, even though data is injected directly into only the

estimates of the states corresponding to the local grid, LUKF improves the estimates

of the states outside this region as well. However, for all three local grid sizes, the

performance of UKF is much better than the performance of LUKF because LUKF

ignores correlations between the measurement and the states that are outside the

local region.

Finally, we obtain the steady-state open-loop and closed-loop error correlations

defined in (7.3.6) and (7.3.18), respectively, by using the unscented transformation

method. Note that the computational effort of determining the steady-state correla-

tions using the unscented transformation is equivalent to the computational effort of

using UKF. However, once the steady-state correlations are determined offline, the

computational effort of LUKFCOLC and LUKFCCLC while performing the actual

data assimilation is similar to that of LUKF which is significantly lower than the

computational effort of UKF.

The square root of the sum of the square of the error in energy estimates when

LUKFCOLC and LUKFCCLC are used to perform data assimilation is shown in

Figure 7.3. The performance of UKF and LUKF is also shown for comparison.

We choose (L1, Ln) = (20, 30) for LUKF, LUKFCOLC, and LUKFCCLC. It can

be seen that using a static gain based on the steady-state correlations improves

the performance. Moreover, the performance of LUKFCCLC is better than the

performance of LUKFCOLC because LUKFCCLC accounts for the change in the

measurement-error correlation when data is injected during estimation.
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1 2 3 n − 1 nn − 2
· · ·

Figure 7.1: One-dimensional grid used in the finite volume scheme
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Figure 7.2: Square root of the sum of the square of the error in energy estimates at
the various cells using UKF and LUKF with 3 different local grid sizes.
Although the local grid size where data is directly injected increases, the
performance of LUKF shows only a minor improvement. The cells where
disturbance enters the system are indicated by ’•’ and the cells where
measurements are available are indicated by ‘H’.
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Figure 7.3: Square root of the sum of the square of the error in energy estimates from
LUKF, LUKFCOLC, and LUKFCCLC. All three estimators use a time
varying estimator gain to inject data into the cells with index between
20 and 30. The error in energy estimates from UKF is performed is also
plotted for comparison. The performance of LUKFCCLC is close to that
of UKF.
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7.5 Two Dimensional Magnetohydrodynamics Using BAT-
SRUS

BATSRUS (Block Adaptive-Tree Solar-wind Roe-type Upwind Scheme) [84] is a

finite volume scheme used to model the interactions between the magnetic field of

various planets with the solar wind. The dynamics of the flow variables is governed

by Euler’s equations and Maxwell’s electromagnetic equation. BATSRUS divides

the three-dimensional spatial domain into cubes of various sizes and a finite volume

discretization technique similar to the one mentioned in the previous section is used to

model the dynamics of the flow variables density, momentum, pressure, and magnetic

field. BATSRUS has the ability to change the resolution of the grids adaptively so

that enhance resolution can be obtained in regions of interest. However, we do not

use this feature in our simulations. Instead, we use BATSRUS to test the data

assimilation techniques on a simple 2-D magnetohydrodynamic bowshock model.

Consider a 2D spatial grid comprising of 4800 square cells with index (i, j) for

i = 1, . . . , nx = 40 and j = 1, . . . , ny = 120, that covers a rectangular region spanning

the coordinates −10 6 xc 6 10 and −30 6 yc 6 30. We use BATSRUS to model the

dynamics of the flow variables density (ρ), momentum (mx,my), pressure (p) and

magnetic field (Bx, By) in each cell. The flow variables at the edges are determined

by the boundary conditions and the flow variables at the interior cells are updated

using the second-order Rusanov scheme. We choose initial flow conditions so that

the flow is supersonic. We assume floating boundary conditions for all cells along

the edges, except for two cells at locations indicated by ‘◮’ in Figure 7.4 that are

assigned reflective boundary conditions so that a bow-shock is created.

Let U [i,j] ∈ R
6 denote the flow variable at the center of (i, j) cell. Next, define
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the state vector x ∈ R
6(nx−4)(ny−4) by

x ,

[

U
[3,3]
k · · · U

[nx−2,ny−2]
k

]

(7.5.1)

so that the system dynamics are given by (7.2.1). We assume that wk in (7.2.1) is

zero-mean white Gaussian process noise with covariance Q so that only the cells with

coordinates indicated by ‘•’ in Figure 7.4 are directly affected by wk. We simulate

the truth model for 1 minute with a sampling time of ts = 0.01 s. We assume that

noisy measurements yk of the flow variables ρ, mx, my, Bx, By and E at cells within

the bow-shock region with coordinates indicated by ‘�’ in Figure 7.4 are available so

that yk is given by (7.2.2), where h(xk, k) = Cxk and C depends on the coordinates

of the cells where measurements are available.

The density and magnetic filed lines at t = 1 minute are shown in Figure 7.4. The

bow-shock is the semi-circular region where the density is higher than the density

of inflow at the boundary cells. Note that the magnetic filed lines tend to curve

around the bow-shock region. Next, we perform data assimilation using LUKF,

LUKFCOLC, and LUKFCCLC. Figure 7.5 shows a plot of the difference in square

root of the sum of the squares of error in energy estimates between the no data

assimilation case and LUKF, LUKFCOLC, and LUKFCCLC. Hence, positive values

indicate a significant improvement in the estimates. Note that the state dimension

n = 25056 and since UKF requires 2n + 1 = 50113 ensembles, we do not use UKF

to obtain the state estimates. Also, we use Monte Carlo methods to determine the

steady-state correlations used in LUKFCOLC and LUKFCCLC. The local region

used in LUKF, LUKFCOLC and LUKFCCLC is shown in Figure 7.4 by the solid

lines and xL contains the state variables in this region.
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Figure 7.4: A bowshock is formed when supersonic flow from the left edge interacts
with a stationary object (‘◮’). The cells where disturbance enters the
system is indiacted by ‘�’ and the cells where measurements are available
are indicated by ‘•’. The local region corresponding to the state xL is
indicated by the shaded rectangular region around the measurement cells.
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Figure 7.5: The difference in the error in the square root of the sum of the square
of error in pressure estimates between the no data assimilation case and
LUKF (left), LUKFCOLC (middle), and LUKFCCLC (right). The hor-
izontal and vertical axis denote the x and y spatial coordinates. Positive
values indicate regions where the estimators improve the estimates of the
state compared to the no data assimilation case.
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7.6 Conclusion

We presented extensions of the the unscented Kalman filter that propagates a

reduced-order pseudo-error covariance. To compensate for the neglected correlation

between certain states and the measurement, we present two methods that use a com-

plementary static estimator gain based on correlations between the measurements

and the neglected states. The use of a static estimator gain based on the open-

loop and closed-loop correlations helps improve estimation performance without a

significant increase in the online computational burden.



CHAPTER VIII

Conclusions and Future Work

This dissertation presented reduced-complexity algorithms for data assimilation

of large-scale linear and nonlinear discrete-time systems. Chapters II-IV dealt with

linear systems and presented new estimation algorithms that are variations of the

Kalman filter. Chapters V-VII presented variations of the unscented Kalman filter

for data assimilation of nonlinear systems and dealt with reducing the ensemble size

of the unscented Kalman filter.

The main contribution presented in Chapter II is an estimator that injects data

into only a specific subset of the state. Unlike the Kalman filter, the estimator

presented in Chapter II depends on the weighting on the error in the state estimates.

Thus, a possible extension is to develop methods that determine the exact subspace

of the state estimate that has to be injected with data in order to get a better

estimate of a specific subset of the state. Another possible extension would be to

obtain rigorous conditions that guarantee the stability of the spatially constrained

estimator when used for linear systems.

In Chapter III, we obtained a reduced-order estimator using a finite-horizon cost-

minimization technique. Although this estimator used a reduced-order dynamics to

propagate the estimator state, the full-order covariance had to be propagated. Future

196
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research may include developing square-root versions of the reduced-order estimator

so that the rank reduction techniques used in Chapter III can be used to reduce the

computational cost of propagating the full order error covariance.

Chapter IV introduced a reduced-rank square-root estimator that propagates a

low-rank approximation of the error covariance by performing a Cholesky decompo-

sition of the error covariance at every time step. Although this estimator provides

better estimates than the analogous filter based on the singular value decomposition

in many examples, future work could determine rigorous conditions that guaran-

tees better estimates from the Cholesky-based estimator. The performance of the

Cholesky-based estimator improves when a certain basis for the state is used during

estimation. Hence, yet another extension would be to determine the basis transfor-

mation that yields the best performance for time-invariant systems.

Chapter V marks the transition from estimation of linear systems to estimation

of nonlinear systems. Comparisons of the extended Kalman filter and unscented

Kalman filter indicate that the unscented Kalman filter provides significantly better

estimates compared to the extended Kalman filter when the nonlinearities in the

system dynamics become severe. Moreover, since the Jacobian of the dynamics is

not necessary, the unscented Kalman filter serves as a convenient algorithm for state

estimation of complex large-scale systems like hydrodynamic and magnetohydrody-

namic flow that are modeled using finite volume schemes. Future work could involve

determining methods to ensure that the ensemble members that are reinitialized at

every time step satisfy physical constraints, for example, the value of density in all

of the ensemble members should be positive at every time step.

Chapter VI combines the unscented Kalman filter introduced in Chapter V and

the reduced-rank square-root estimator introduced in Chapter IV. The resulting
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variation of the unscented Kalman filter uses a reduced ensemble that is constructed

using the columns of the Cholesky factor of the pseudo-error covariance. In the

examples in Chapter VI, we use a basis transformation that is inspired by the ob-

servability matrix of banded linear systems. Future work could consider extensions

to the case when the measurements are nonlinear functions of the state. Another

possible extension could be to determine the basis transformation of the state vector

that yields the best performance.

Finally, Chapter VII dealt with an estimator that uses a static estimator gain

based on steady-state correlations to compensate for the neglected correlations in

localized data assimilation schemes. Thus, data injection could be performed on a

larger subset of the state estimate without additional online computational effort.

Future extensions could consider comparisons between this estimation algorithm and

the estimator in Chapter VI.
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APPENDIX A

Correlation Bounds for Discrete-time Systems

with Banded Dynamics

We consider the steady-state error covariance for a discrete-time system with

banded dynamics. Such systems frequently arise from the spatial and temporal

discretization of partial differential equations. In such systems, the magnitudes of

the entries of the steady-state covariance matrix typically decrease as the distance

from the diagonal increases. We obtain a bound on the entries of the covariance

matrix beyond a given distance from the diagonal. The results here have been

published in [86].

A.1 Banded Matrices

Let A ∈ R
n×n and assume that the nonzero entries of A are restricted to a

banded region around the main diagonal. We define the semi-width ω(A) of A to be

ω(A) , min{l : Ai,j = 0 for all i, j such that |i − j| > l}. (A.1)

For example, if A is diagonal, then ω(A) = 0; if A is tridiagonal, then ω(A) = 1; and

if A is pentadiagonal, then ω(A) = 2. Clearly, ω(A) 6 n − 1. It is easy to see that

ω(AB) 6 ω(A) + ω(B). More generally, we have the following observation.
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Proposition A.1.1 Let A1, . . . , Ap ∈ R
n×n. Then,

ω (A1 · · ·Ap) 6 min

{

n − 1,

p
∑

i=1

ω(Ai)

}

. (A.2)

A.2 Correlation Bounds

Consider the linear time-invariant discrete-time system

xk+1 = Axk + wk, (A.1)

where xk, wk ∈ R
n and wk is zero-mean white noise with covariance Q. Furthermore,

we assume that A is asymptotically stable, that is,

sprad(A) < 1, (A.2)

where for all A ∈ R
n×n, the spectral radius of A is defined by

sprad(A) , max{|λ| : λ ∈ spec(A)}. (A.3)

The positive-semidefinite state covariance Pk , E [xkx
T
k ], where E [·] denotes the ex-

pected value, is updated using

Pk+1 = APkA
T + Q. (A.4)

Since A is asymptotically stable and Q is positive semidefinite, P , lim
k→∞

Pk exists

and satisfies the discrete-time Lyapunov equation

P = APAT + Q. (A.5)

Furthermore,

P =
∞

∑

i=0

AiQAiT. (A.6)
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Let ε > 0 satisfy

sprad(A) < ε < 1, (A.7)

so that

sprad(
1

ε
A) =

1

ε
sprad(A) < 1. (A.8)

It thus follows from (A.6) that

P =
∞

∑

i=0

ε2iQi, (A.9)

where Q0 = Q and, for all i = 1, 2, . . ., Qi is defined by

Qi ,

(

A

ε

)i

Q

(

AT

ε

)i

. (A.10)

Since ω(εA) = ω(A) = ω(AT), it follows from (A.2) that, for all i = 0, 1, . . .,

ω(Qi) 6 min
{

n − 1, 2iω(A) + ω(Q)
}

(A.11)

Next, for i = 0, . . . , n − 1, define Hi ∈ R
n×n by

Hi ,





































1 · · · 1 0 · · · 0

...
. . . . . . . . .

...

1
. . . . . . 0

0
. . . . . . 1

...
. . . . . . . . .

...

0 · · · 0 1 · · · 1





































, (A.12)

where the semi-width of the band of ones is chosen such that

ω(Hi) = i. (A.13)

Now, for i = 0, . . . , n − 1, define Pi by

Pi , Hi ◦ P, (A.14)
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where ◦ denotes the Schur product. Then the (k, l) entry of Pi is given by

(Pi)k,l =



















Pk,l, if |k − l| 6 i,

0, else.

(A.15)

For all j = 0, 1, . . . and i = 0, . . . , n − 1, if ω(Qj) 6 ω(Hi), then (1n − Hi) ◦ Qj = 0,

where 1n is the n × n matrix whose entries are all equal to 1. Therefore, for i =

0, . . . , n−1, taking the Schur product of (A.9) with 1n−Hi and using (1n−Hi)◦P =

P − Pi yields

P − Pi =
∞

∑

j=L(i)

ε2j(1n − Hi) ◦ Qj, (A.16)

where L : N → N is defined by

L(i) , max

{

0, floor

(

i − ω(Q)

2ω(A)

)

+ 1

}

. (A.17)

Proposition A.2.1 Assume that A ∈ R
n×n satisfies (A.2) and let ε > 0 satisfy

sprad(A) < ε < 1. Let ‖ · ‖ be a norm on R
n×n. Then,

σA , max
i∈N

1

εi
‖Ai‖ (A.18)

exists.

Proof. It follows from (A.8) that limi→∞
1
εi A

i = 0. Hence, σA exists. 2

Proposition A.2.2 Assume that A ∈ R
n×n satisfies (A.2) and let ε > 0 satisfy

sprad(A) < ε < 1. Let ‖ · ‖ be a monotonic submultiplicative norm on R
n×n. Then,

for i = 0, . . . , n − 1,

‖P − Pi‖ 6
ε2L(i)

1 − ε2
σ2

A‖Q‖. (A.19)
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Proof. Since ‖ · ‖ is monotonic, it follows that, for all i = 0, . . . , n − 1 and

j = 0, 1, . . .,

‖(1n − Hi) ◦ Qj‖ 6 ‖Qj‖. (A.20)

Furthermore, since ‖ · ‖ is submultiplicative, it follows that, for all j = 0, 1, . . . ,

‖Qj‖ 6 ‖Q‖‖ 1

εj
Aj‖2. (A.21)

Hence, it follows from Proposition 3.1 that, for all j = 0, 1, . . .,

‖Qj‖ 6 ‖Q‖σ2
A. (A.22)

Taking the norm of P − Pi in (A.16) and using (A.20) yields

‖P − Pi‖ 6 ε2L(i)‖QL(i)‖ + ε2L(i)+2‖QL(i)+1‖ + · · · . (A.23)

It then follows from (A.22) that

‖P − Pi‖ 6 σ2
A‖Q‖(ε2L(i) + ε2L(i)+2 + · · · ). (A.24)

Since 0 < ε < 1,

∞
∑

j=L(i)

ε2j =
ε2L(i)

1 − ε2
. (A.25)

Therefore, (A.24) and (A.25) imply (A.19). 2

A.3 Compartmental Model Example

We consider a system comprised of n compartments or subsystems that ex-

change energy through mutual interaction [49]. Applying conservation of energy

yields, for i = 1, . . . , n,

xi(k + 1) = xi(k) − βxi(k) − α (xi+1(k) − xi(k)) − α (xi(k) − xi−1(k)) , (A.1)
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where 0 < β < 1 is the loss coefficient and 0 < α < 1 is the flow coefficient. It follows

from (A.1) that

x(k + 1) = Ax(k), (A.2)

where

x ,

[

x1 · · · xn

]T

(A.3)

and A ∈ R
n×n is defined by

A ,





























1 − β − α α 0 0 · · · 0

α 1 − β − 2α α 0 · · · 0

0 α 1 − β − 2α α · · · 0

...
. . . . . .

...

0 · · · · · · 0 α 1 − β − α





























. (A.4)

Since A is tridiagonal, ω(A) = 1. We choose n = 20 and evaluate P using (A.5) with

Q = In for (α, β) = (0.1, 0.8). The spectral radius of A, and the chosen value of ε

are shown in Table 1. We choose ‖ · ‖ to be the Frobenius norm ‖ · ‖F.

α β sprad(A) ε
0.1 0.8 0.2 0.4, 0.3, 0.21

Table A.1: Parameters used in the compartmental model example.

Note that for (α, β) = (0.1, 0.8), sprad(A) < 1 and hence, σA defined in (A.18)

exists and is determined numerically. Next, for i = 0, . . . , 9, we plot ε2L(i)

1−ε2 σ2
A‖Q‖F

and ‖P − Pi‖F with (α, β) = (0.1, 0.8) in Figure 1. Note that ‖Q‖F =
√

20. The

magnitudes of the entries of the steady-state covariance P for (α, β) = (0.1, 0.8) are

plotted in Figure 2. It can be seen that the magnitude of the entries of the covariance

decrease as the distance from the diagonal increases.
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