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ABSTRACT 

 

 

 Our understanding of the function of RNA has grown significantly since the 

central dogma of molecular biology described RNA as a rudimentary conveyor of the 

genetic message.  In the genomic era, we are beginning to learn the true depth and 

breadth of the non-coding (nc)RNA repertoire. A key attribute of RNA molecules is the 

conformational dynamics that they explore.  Here, we have applied studies of structure, 

dynamics, and metal binding to models of helix 27 from 16S rRNA to elucidate the 

function of this important component of the ribosome.  Our studies reveal the kinetic and 

thermodynamic framework within which this isolated helix undergoes secondary 

structure rearrangement.  Both NMR and fluorescence techniques demonstrate 

millisecond exchange between the 885 and 888 conformations, defining an equilibrium 

constant close to one.  Fluorescence studies also show that the antibiotic tetracycline 

interferes with this conformational exchange.  Metal binding studies of helix 27 have 

confirmed data from ribosomal crystal structures and further correlated local and global 

metal binding features of this RNA. 

Another general attribute of RNA is its inherent lability. The great promise of a 

new class of therapeutics based on small interfering (si)RNA molecules and the RNA 

interference pathway has forced researchers to overcome the nucleolytic vulnerability of 

RNA molecules, primarily by introducing chemical modifications.  Work in this thesis 

demonstrates that siRNA degradation in blood serum is asymmetric, where the guide 

strand is predisposed to efficient degradation due to differential stability of the terminal 

base pairs. We further show that a simple pattern of chemical modifications greatly 

stabilizes siRNAs in regions particularly susceptible to nuclease cleavage.  We have 

shown that 21 and 24-nucleotide siRNA-like double-stranded RNAs are specifically 

protected in cell extract, a result which demonstrates intracellular siRNA stability and 

may help explain recent results suggesting that, once inside the cell, chemical
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modifications to siRNAs do not significantly increase the potency of the silencing effect.  

Taken together, the work presented in this thesis has helped to illuminate the function of 

important ncRNA molecules, furthering our understanding of how ncRNA contributes to 

the structural, catalytic, and regulatory landscape that defines the cellular lifecycle. 
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CHAPTER 1:  
 

NON-CODING RNA IN THE GENOMIC ERA 

 

The scientific era subsequent to the publication of the human genome sequence 

(1, 2) has been—and continues to be—a revolutionary time in biomedicine.  It was 

thought that knowledge of the sequence of human genes would greatly advance 

functional and therapeutic studies and finally provide definitive evidence for the origins 

of human complexity.  While the human genome sequence has enabled rapid progress in 

the field of functional genomics, the simple knowledge of DNA sequence has proven 

insufficient to explain human complexity relative to lower organisms. Expectations for 

the number of protein coding genes in the human genome were greatly overestimated; the 

sheer size of the human genome (3 x 109 bases) suggested that the number of coding 

genes in humans would be much higher than the 21,858 noted in the Ensembl human 

genome annotation from September 2007, a total number of protein coding genes that is 

approximately equal to that of the worm Caenorhabditis elegans.  It is known that 

>98.5% of the human genome does not code for protein (3, 4).  The precise fraction of 

the genome that is actually transcribed into RNA is unclear.  Published data suggests that 

10-60% of the mamallian genome is transcribed (5-8), a large range that is reflective of 

the different techniques used to probe for transcription.  However, it has been speculated 

that all of the non-repetitive elements of the genome are transcribed (8).  This pervasive 

1.1 Introduction 
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transcription of the human genome and new discoveries describing an expanded 

regulatory scope for RNA make it clear that the roles non-coding (nc)RNAs play in the 

cell are significant, and may harbor the keys to understanding the developmental and 

regulatory networks that underlie human complexity. 

Phenomenologically, a number of disease states have been identified as 

originating from mutations in ncRNA, including a host of metabolic disorders associated 

with anticodon-loop mutations in a mitochondrial tRNA (9) and Type II diabetes derived 

from mutations in intronic and intergenic regions (10).  Other ncRNAs that affect 

fundamental cellular processes have been identified, including six ncRNAs essential for 

cell viability, one repressor of Hedgehog signaling, and one repressor of the transcription 

factor nuclear-factor of activated T-cells (NFAT) (11).   

ncRNAs are a diverse group of RNA molecules with a combination of structural, 

catalytic, or regulatory functions that range in size from alternatively spliced transcripts 

many kilo-bases (kb) in length to 22-nucleotide small microRNAs (4).  Structural 

ncRNAs include small nuclear (sn)RNAs, ribosomal (r)RNAs, and transfer (t)RNAs.  

These molecules primarily provide scaffolds and elements for the sequence-specific 

recognition of RNA substrates. snRNAs assemble with a number of protein factors to 

form the spliceosome, the eukaryotic complex that is responsible for splicing introns out 

of pre-mRNAs before mRNAs are exported from the nucleus for translation.  The 

snRNAs provide critical recognition of elements of the pre-mRNA including the branch 

site adenosine (12).  In addition to the essential recognition and structural roles played by 

the snRNAs, evidence is emerging that snRNAs may also be the catalytic moiety of the 

splicesome (13, 14).  Another group of structural RNAs, the rRNAs, co-assemble with 

more than 50 proteins to form the two ribosomal subunits.  The 30S subunit and 16S 

rRNA binds the messenger (m)RNA and monitors the interaction of the tRNA anticodon 

and the mRNA codon.  The universally conserved 16S rRNA bases A1492, A1493, and 

G530 intimately interact with the minor groove of the first two codon:anticodon base 

pairs, monitoring the presence of cognate tRNA in part via A-minor motifs (15-17).  

Once the presence of a cognate tRNA has been verified, a series of long-range 

interactions that still remain elusive transmit the correct codon:anticodon base pairing 

from the 30S subunit to the GTPase factor binding region of the 50S subunit, where EF-
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Tu is induced to hydrolyze  GTP while the ribosome moves toward full tRNA 

accommodation (17).  Once the tRNA has been accommodated into the peptidyl-

transferase site of the 50S subunit, the CCA ends of the A and P site tRNAs are aligned 

by conserved bases in 23S rRNA.  The precise alignment of the tRNA, and by extension, 

alignment of the peptidyl-tRNA ester and the nucleophilic primary amine of the 

aminoacyl tRNA, provide for a lowering of the entropy of activation, accelerating the 

reaction by a factor of 2 x 107 over the uncatalyzed reaction (18).  

Catalytic ncRNAs include the glmS riboswitch and the class of small ribozymes 

from sub-viral particles.  The glmS riboswitch is an RNA structure located in the 5’-

untranslated region (UTR) of the glmS mRNA from B. subtilis.  The glmS protein product 

synthesizes the small molecule metabolite glucosamine-6-phosphate (GlcN6P), and 

recent results demonstrate that the 5’-UTR of the glmS mRNA harbors a ribozyme that 

activates upon the binding of GlcN6P, finally resulting in reduced expression of the glmS 

gene (19, 20).  This example of a negative feedback loop regulated by the action of a 

metabolite responsive ribozyme is a novel mechanism for regulation of gene expression 

by a catalytic RNA.  The small ribozymes are a structurally diverse class of RNAs named 

the hammerhead, hairpin, hepatitis delta virus (HDV), and Neurospora Varkud satellite 

(VS) ribozymes.  Each of these ribozymes undergo a complex series of conformational 

changes associated with the various intermediates along the reaction pathway, finally 

catalyzing the site specific cleavage of its own RNA backbone (21).  The cleavage events 

generate monomeric copies from rolling circle transcribed multimeric copies of their 

parent sub-viral genomes.  These ribozymes have served as proto-typical systems for 

understanding the interplay of dynamics with the catalytic cycle in RNA systems (22-24).   

Regulatory RNAs include small interfering (si)RNAs, micro (mi)RNAs, and the 

NRON RNA which acts as a repressor of the transcription factor NFAT (11).  RNA 

interference (RNAi) is a cellular pathway that utilizes siRNAs and miRNAs to attenuate 

gene expression through different, yet related mechanisms.  RNAi and siRNAs are 

discussed in more detail in subsequent sections of Chapter 1 of this thesis.  miRNAs are 

expressed and processed into 21-23 nucleotide RNAs that go on to be incorporated into 

the RISC complex.  Whereas siRNAs have perfect complementarity to the target and 

guide the cleavage of mRNA, miRNAs imperfectly base pair inside the 3’-UTR of 
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mRNAs and lead to the inhibition of translation and sequestration of mRNA.  miRNAs 

have been implicated in regulating developmental timing and, by consequence, in genetic 

mis-regulation associated with cancer (25, 26).   Yet another example of a regulatory 

RNA is the non-coding repressor of NFAT (NRON) RNA (11).  The NRON RNA is a 

large alternatively spliced ncRNA that may represent a new class of regulatory RNAs.  

The transcription factor NFAT is  imported into the nucleus when phosphorylated in 

response to a calcium signal.  The NRON RNA has been shown to bind NFAT, the 

kinase responsible for phosphorylating NFAT, the protein that activates the kinase in 

response to the  calcium signal, and an importin protein that transports NFAT to the 

nucleus (11).  This implies that NRON functions to localize these related factors to the 

same physical region of the cell, overcoming slow rates of activation due to dilution 

effects.  If this is a general trend, perhaps common to many transcriptional activators, it 

will highlight both the structural and regulatory aspects of ncRNAs while providing a 

rich new paradigm for studying ncRNA function.  

The work presented in this thesis will outline how studies of the dynamics, 

degradation, and chemical modification of ncRNAs provide important insight into the 

function and applications of this important class of molecules. The ncRNAs discussed in 

subsequent chapters of this thesis are representative RNAs from two of these groups, 

helix 27 from the structural rRNA 16S RNA and a regulatory siRNA. 

 

 The dynamics of an RNA are intimately related to its folding.  Although RNA 

folding is a hierarchical process, with secondary structure preceding tertiary structure 

formation, it is disordered.  Strong secondary structure interactions and untimely 

formation of tertiary contacts, either representing a native contact or an off-pathway state, 

can lead to kinetically trapped states that require resolution (27).   This multitude of 

folded states may also serve the purpose of supplying a number of functional 

conformations and enhancing the functional characteristics of a given molecule (28).  A 

number of systems illustrate the intimate relationship between RNA dynamics and 

1.2 RNA Dynamics 
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function, bridging several classes of RNA molecules.  For example, the small catalytic 

RNA called the hairpin ribozyme undergoes a large multi-domain rearrangement to carry 

out catalysis (24, 29).  Dynamics of very large RNAs are also important, including the 

large-amplitude motions involved in the ribosomal translocation step (30).  Dynamics 

also prove important in binding events, highlighted by the structural dynamics of 16S 

rRNA during ribosome assembly (31, 32) and the interactions of the HIV-Tar RNA with 

small molecule substrate mimics and potential drugs (33, 34).   These systems have been 

studied in detail using a number of key biophysical techniques including single molecule 

fluorescence resonance energy transfer (FRET) and NMR spectroscopy.  These studies, 

enumerated below, also reiterate the necessity of understanding RNA dynamics in order 

to help understand function. 

 The two-way junction form of the hairpin ribozyme is an ideal system to study 

RNA folding, as it is comprised of two domains that dock together to promote catalysis.  

The folding of the ribozyme towards docking involves a large conformational transition 

that is ideally studied using FRET (29).  Single molecule (sm)FRET studies have 

revealed that heterogeneous folding kinetics of the hairpin ribozyme underlie the 

heterogeneous cleavage kinetics observed in ensemble assays of catalytic activity (24, 

35). Further studies have identified mutations far removed from the cleavage site that 

affect catalysis, suggesting a network of coupled motions in the ribozyme (36).   

 In the case of the much larger ribonuclear protein (RNP) complex of the 

ribosome, very large amplitude motions have been uncovered to be important in 

translation.  Both cryo-EM and FRET studies have revealed large intersubunit motions 

during the process of translocation, where the A and P site tRNAs are moved through the 

ribosome to make space for the next aminoacyl tRNA (30, 37).  These dramatic and 

reversible motions highlight the dynamic nature of the ribosome, requiring large-scale 

motions such as this in order to utilize and coordinate all macromolecular components of 

the translational cycle.  Interestingly, it has been shown that EF-G is not absolutely 

required to promote translocation  and that the antibiotic sparsomycin, which binds in the 

region of the peptidyl-transferase center of the 50S subunit, can catalyze translocation 

(38).  This finding further shows that the underlying rearrangements of translocation are 

inherent to the ribosome, and that EF-G or sparsomycin serve to unlock these motions at 
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the appropriate (or inappropriate, in case of the antibiotic) time.  In addition, there is a 

need to understand the local motions of the ribosome that trigger, promote, and/or 

constitute these global conformational changes. In spite of the fact that the ribosome is a 

profoundly complex macromolecular machine whose detailed inner workings still remain 

elusive, it is clear that conformational dynamics are key components to the function of 

the ribosome.   

 The assembly of the ribosome is also a very dynamic process whereby a well-

defined series of proteins bind to the rRNAs.  While studies on the subunits as a whole 

have revealed important alternate conformations during assembly (31), detailed studies 

on models of regions of 16S rRNA have revealed important dynamics that enable binding 

of a series of ribosomal proteins, including S15, S6, and S18 (32, 39, 40).  This important 

rRNA three-way junction samples conformational states that enable S15 binding, while 

S15 binding induces rearrangements that enable subsequent binding of S6 and S18.  This 

interplay of RNA dynamics and ligand binding seems to be a general trend, as the HIV-

Tar RNA also undergoes large dynamics in the free state, sampling conformations that 

are recognized by various ligands, including a Tat protein mimic and various small 

molecule drugs (33, 34, 41, 42). 

 

 Translation is the process through which the ribosome, the cellular protein 

polymerase, decodes mRNA in a rapid, dynamic process with high fidelity between the 

mRNA codon and the amino acid finally incorporated into the growing protein chain.  

The rRNAs in prokaryotic ribosomes perform a number of functions in this process, the 

most important of which are verifying the correct codon:anticodon base pairing (16), 

catalyzing peptide bond formation in the active site of the large ribosomal subunit (18, 

43), and engaging in the dynamic rearrangement of the ribosome to move the mRNA-

tRNA complex by precisely one codon through the ribosome (30).  A schematic of the 

elongation cycle of translation is pictured in Figure 1-1.  The recent X-ray (44-47) and 

cryo-EM studies (30, 48, 49) of the ribosome have revealed and provided a structural  

1.3 The Role of 16S rRNA Helix 27 in Translation  
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Figure 1-1.  Schematic Description of translation elongation. A)  Detailed cartoon 

indicating the orientation and interaction of the factors required for binding of aminoacyl 

tRNA to an open A site and the subsequent proofreading steps.  B)  Description of the 

final steps of the elongation cycle including translocation.  Reprinted from reference (17) 

with permission from Elsevier. 
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basis for some rearrangements that constitute the translational cycle.  However, it has 

proven difficult to identify the intrasubunit motions that contribute to the large (30-60 Å) 

motions inferred from low resolution cryo-EM structures. A central question in the field 

concerns how the individual elements of the ribosome rearrange during the large-scale 

dynamic motions that are revealed by the cryo-EM studies.   

The most dramatic of these motions is associated with the process of 

translocation, where the translation factor EF-G catalyzes the ratchet-like rearrangement 

of the 30S subunit with respect to the 50S subunit, moves the mRNA:tRNA complex 

precisely one codon through the ribosome, and readies the A-site for the next incoming 

aminoacyl-tRNA (17, 30). Detailed models combining the X-ray and cryo-EM data have 

revealed that Helix 27 (H27) from 16S rRNA lies on the axis of the ratchet like 

intersubunit motion that describes translocation (48, 49).  H27 also makes an important 

intersubunit bridge (46), and has been implicated in sensitivity to the antibiotics 

streptomycin and tetracycline (50, 51).  Early studies on H27 suggested that it cycled 

between two alternate secondary structures and impacted the fidelity of the decoding 

process (52, 53).  Recent work has called this hypothesis into question (54), but the work 

presented in Chapter 2 of this thesis demonstrates that an isolated H27 model system is 

dynamic, interchanges between two relevant conformations on the millisecond time scale, 

and that the dynamics are sensitive to the antibiotic tetracycline (55).  It is unclear what 

functional role H27 may play in translation and how these H27 dynamics may be 

suppressed in the context of the ribosome.  Chapters 2, 3 and 6 discuss the larger context 

of our studies on H27. 

 

 An attempt to make purple petunia flowers by overexpression of corresponding 

genes instead yielded white flowers (56).  This unexplained phenomenon was an early 

indication of the RNAi pathway (56).  Only when Fire and Mello demonstrated in 1998 

that double-stranded (ds), but not single-stranded RNA mediates specific knockdown of 

genes in the nematode worm C. elegans (57), a discovery that was awarded with the 

1.4 RNAi and Chemically Modified siRNAs 
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Figure 1-2.  The RNA interference pathway. A cartoon depiction of the RNAi 

pathway, including Dicer dependent generation of siRNAs, RLC binding of siRNAs, and 

target cleavage.  Reprinted, with permission, from the Annual Review of Biomedical 

Engineering, Volume 8, Copyright 2006 by Annual Reviews www.annualreviews.org 

(58). 
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Nobel Prize in 2006, did scientists become aware of the RNAi pathway (Figure 1-2). The 

RNAi pathway is evolutionarily ancient.  Found in fungi, plants, and animals, the RNAi 

pathway most likely evolved to protect against viruses and selfish genetic elements, but  

adapted to regulate cellular development through the miRNA pathway (25).  Early 

studies that demonstrated the utility of RNAi in mammalian cells not only introduced an 

indispensable reverse genetics tool, but also laid the groundwork for a new class of 

therapeutics (59). 

 In the presence of long, “naked” dsRNA molecules, a cellular RNase III-type 

enzyme called Dicer is called to action and processes the dsRNA into ~21-23 nucleotide 

pieces, called siRNAs (60, 61).  These siRNAs are bound by Dicer and another protein 

called R2D2, which sense the thermodynamic asymmetry of the siRNA termini as R2D2 

binds the 5’ phosphate at the most stably base-paired end of the siRNA duplex and 

selects the strand to be excluded from the RNA-induced silencing complex (RISC) (62).  

The Dicer-R2D2-siRNA complex recruits Argonaute 2 (Ago2), the catalytic engine of 

RISC, and other proteins to form the RISC complex, after which the passenger strand of 

the siRNA is discarded and the RISC complex is ready to catalyze the sequence specific 

recognition and site specific cleavage of mRNA molecules and concomitant reduction in 

gene expression (63).      

 The exquisite specificity of target cleavage is somewhat compromised by the 

similarity of the siRNA and miRNA pathways (64).  An siRNA can function as a 

miRNA, whose requirement for binding to the mRNA is considerably less stringent, 

involving complementarity of only an 8-nucleotide “seed sequence” compared to the 19-

nucleotide perfect complementarity required for target cleavage with an siRNA guide 

(64, 65).  While these issues can be overcome to some degree by bioinformatics analysis 

and careful siRNA design, recent work has shown that position specific 2’-O-Me 

modification can alleviate these off-target effects (66).  

From a therapeutic standpoint, scientists can design dsRNA molecules that when 

introduced into the cell, function as siRNAs and degrade any RNA molecule identified by 

the sequence of the dsRNA drug.  This pathway makes it possible to target essentially 

any intracellular RNA, including previously “undruggable” genetic targets, 

macromolecules that are not receptors or enzymes.  This strategy is not without its 
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limitations, which include delivery and stability of the dsRNA drug (67, 68).  The 

inherent nuclease sensitivity of RNA molecules forced an early focus on the 

incorporation of chemical modifications into the siRNA strands, providing stability 

towards intracellular and extracellular ribonuclease (RNase) enzymes.  The earliest such 

modification was the incorporation of deoxy nucleotides into the 3’ overhangs 

characteristic of siRNAs (59), but have recently included a more diverse series of 

modifications.  Specific correlations between modifications and function are listed in 

Table 1-1, but the general rules that have emerged are as follows: the 5’-end of the guide 

strand must have a free hydroxyl or phosphate; 2’ ribose modifications including 2’-

fluoro and 2’-O-Me are tolerated on both the guide and passenger strands; the RNA 

backbone can be stabilized by phosphorothioate modification; pyrimidine bases can be 

modified on the guide strand (67). 

Recent work has suggested that chemical modification of siRNA is required for 

very different reasons, depending on the environment of the siRNA (66, 69). Chemical 

modifications clearly stabilize siRNAs in extracellular fluids like blood serum, as is 

demonstrated in Chapter 5 of this thesis and elsewhere (70-79).  However, two recent 

reports in the literature and work presented in Chapter 4 of this thesis suggest that 

siRNAs are relatively protected inside the cell (69, 80).  The origin of this protection is 

unclear, but it may arise from stable siRNA binding by Dicer and R2D2, restricting the 

siRNA at stage prior to RISC assembly, through an as yet unknown mechanism, until a 

target for the siRNA is present.  These findings do not imply that chemical modifications 

to siRNA are obsolete in the intracellular milieu.  In fact, it has been shown that 2’-O-Me 

chemical modifications at the one and two positions of the guide strand significantly 

reduce harmful “off-target” effects of siRNAs (66).  Work in Chapter 5 has utilized this 

important pattern of chemical modifications to selectively stabilize particularly nuclease 

labile regions of an siRNA, thus satisfying independent extracellular and intracellular 

requirements by using the same modification. 

siRNA therapeutics are being developed in a clinical setting, with early toxicity 

and efficacy studies underway with an inhaled siRNA targeting respiratory syncytial 

virus (81). siRNAs have been shown to decrease low-density lipoprotein cholesterol 

levels in both mouse and primate models of hypercholestorelemia (82, 83).  These data 
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are certainly promising, but there remains much to learn about siRNA function both in 

and outside the cell in order to support development, application, and future discovery of 

RNAi related therapies. 

 

 

 

 

 

Passenger strand Guide strand RNAi function 
5’-end capping 3’-end capping Not affected 
3’-end capping Unmodified Not affected 

Unmodified 5’-end capping Severely affected 
2’-fluoro pyrimidines 2’-fluoro pyrimidines Not affected 

2’-deoxy Unmodified Moderately affected 
Unmodified 2’-deoxy Severely affected 
2’-O-methyl Unmodified Moderately affected 
Unmodified 2’-O-methyl Severely affected 
Unmodified 2’-O-methyl (position 1&2) Reduced off-target 

2’-O-(2-methoxyethyl) Unmodified Not affected 
Unmodified 2’-O-(2-methoxyethyl) Moderate to Severe 

Phosphorothioate Unmodified Not affected 
Unmodified Phosphorothioate Moderately affected 

Phosphorothioate Phosphorothioate Moderately affected 
3-methyl-U 3-methyl-U Severely affected 
Unmodified C5-halogenated pyrimidine Not affected 

 
 
 

Table 1-1. siRNA chemical modifications and RNAi function.  Strand specific impact 

of chemical modifications on RNAi potency.  Reproduced from reference (67). 
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CHAPTER 2:  
 

DYNAMICS INHERENT IN HELIX 27 FROM ESCHERICHIA COLI 16S 

RIBOSOMAL RNA1 

 

The ribosome is the universal protein biosynthesis machine. As such, it exhibits a 

high degree of structural organization which gives rise to the organized dynamic motions 

involved in the process of translation. Numerous large-scale structural rearrangements 

have been visualized by trapping and subsequent cryo-electron microscopy of 

intermediate functional states (84, 85). For example, upon binding of elongation factor G 

(EF-G), a large conformational reorganization is observed in which the small and large 

ribosomal subunits undergo a relative ratchet-like motion in conjunction with many local 

conformational changes, facilitating the translocation of the messenger (m)RNA and A- 

and P-site transfer (t)RNAs (30, 48, 49, 86, 87). The limited resolution of the cryo-EM 

maps (up to ~10 Å), however, prevents elucidation of the link between the observed 

global movement of the subunits and their local molecular reorganization. By contrast, 

recent advances in X-ray crystallographic analysis of ribosomal subunits have provided a 

wealth of atomic-resolution, yet largely static, structural information (44, 88, 89).  

                                                 
1 Adapted with permission from Hoerter, J.A., Lambert, M.N., Pereira, M.J., and Walter, N.G., 
Biochemistry 43, 14624-36. Copyright 2004, American Chemical Society.  FRET, UV crosslinking, and 
antibiotic assays were carried out by John Hoerter, NMR experiments were carried out by Meredith 
Lambert, and assignment of the UV crosslink was carried out by Miguel Pereira.  

2.1 Introduction 
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Figure 2-1. Helix 27 in the central domain of E. coli 16S rRNA. A) Location of H27 in 

the crystal structure of the 30S ribosomal subunit (PDB ID 1FJF) (88), as viewed from 

the interface with the 50S subunit. H27 is colored in red, the remainder of the 16S rRNA 

is in gray, and the small subunit proteins are in blue. This representation of the 30S was 

constructed with Nuccyl and rendered with MacPyMOL, DeLano Scientific, 

www.pymol.org. B) Secondary structure of the 30 S subunit, with H27 highlighted in red, 

adapted from (90). C) The 885 conformation, observed in all crystal structures of the 30S 

ribosomal subunit, is characterized by an 885-912 base pair and the 7-nucleotide loop E 

motif, whereas a proposed alternative base pairing scheme, the 888 conformation, 

manifests in an 888-912 base pair. 
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Clearly, 16S ribosomal (r)RNA is a central player in these structural 

rearrangements. It is the primary interaction partner for messenger RNA, it is responsible 

for message decoding and proofreading which enable subsequent peptidyl transfer, and it 

appears to undergo substantial shape changes including an opening and closing motion 

upon cognate tRNA selection (91, 92). While recent normal mode analyses on simplified 

models suggest that shape-dependent dynamic properties of the global architecture may 

provide the framework for large-scale conformational changes in the ribosome (49), 

details of the temporal and spatial coordination between local and global rearrangements 

are not well understood. 

Helix 27 (H27) of 16S rRNA (comprising nucleotides 885 to 912 in Escherichia 

coli 16S rRNA) is a highly conserved RNA motif in the central domain of small subunit 

RNA. It lies on the axis of the inter-subunit ratchet motion in a location of potentially 

large conformational dynamics (49) (Figure 2-1), it is packed against the decoding center 

in helix 44 that senses and reports on correct tRNA selection, and its tetraloop acts as an 

inter-subunit bridge (46, 48, 49, 86, 88, 89). All of these observations are suggestive of a 

potential key role of H27 in ribosome dynamics and function, and more specifically in 

the linkage between correct codon recognition and the resulting cascade of steps that 

ultimately result in translocation. Evolutionary conservation was originally used to 

predict a base pair between G888 and C912 (93), but is also consistent with base pairing 

between G885 and C912 given the fact that the 3’ most CUC triplet can pair with either 

the 5’ most GGG or the subsequent GAG triplet by a simple 3-nucleotide slippage 

(Figure 2-1) (94). Dahlberg and co-workers, inspired by the finding from Stutz and co-

workers that a C912U mutation conferred streptomycin resistance, isolated mutants that 

suppress the effects of a deleterious C912G mutant in E. coli. They demonstrated that a 

compensatory mutation, G885C, restored growth rates to nearly those of wild-type, 

experimentally supporting the 912-885 base-pairing scheme (53). Subsequently, the same 

group introduced mutations into 16S rRNA to selectively stabilize either the 912-885 or 

the 912-888 base-pairing scheme (henceforth referred to as the 885 and 888 

conformations, respectively) and tested for a resulting phenotype in E. coli (52). In 

conjunction with cryo-electron microscopy studies of the mutated ribosomes, this work 

supported the notion that H27 cycles between the 885 and 888 conformations during 
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translation and that this local conformational switch impacts the accuracy of A site tRNA 

decoding by triggering numerous changes in global ribosome architecture (95). However, 

only the 885 conformation has been observed in all functional ribosome states 

investigated by X-ray crystallography to date (54, 89, 91, 92, 96, 97), where it appears to 

be stabilized by the common loop E motif (98). 

This discrepancy prompted Dahlberg and co-workers to reexamine their genetic 

approach. They found that two secondary mutations, C1192U in 16S RNA and A2058G 

in 23S RNA, introduced as genetic markers and initially thought to be silent, had 

“synergistic effects” with mutations in H27. In the absence of these secondary mutations, 

an E. coli strain that produces mutant ribosomes incapable of adopting the 888 

conformation exhibits essentially the same growth rate as wild-type, calling the original 

switch helix hypothesis into question (54). 

With this recent change in the interpretation of the existing genetic, biochemical, 

and structural data a number of questions arise – Is a slippery sequence such as that of 

H27 indeed trapped in only one conformational state, the 885 conformation? Or is 

conformational exchange still occurring, and with what rate? Given that base pairs in 

RNA can be as short-lived as sub-milliseconds (99, 100), it is possible that 

conformational exchange of a slippery sequence may actually be quite rapid. Insight into 

the kinetics and thermodynamics of such conformational exchange will not only help 

understand local structural dynamics in the ribosome, but will also shed light on 

conformational changes in slippery sequences involved in biological processes such as 

ribosomal frameshifting (101) or substrate recognition in the Neurospora VS ribozyme 

(102).  

Here, we have used the isolated H27 sequence to define a kinetic and 

thermodynamic framework of conformational exchange between the 885 and 888 

conformations. Similar studies of isolated structural motifs from the ribosome have 

previously led to fundamental insights into the hierarchical assembly of the central 

domain of the 30S subunit (40), the mechanism of decoding and its modulation by 

antibiotics (103), and the thermodynamic stability of novel RNA motifs discovered in the 

ribosomal crystal structures (104). Utilizing a complementary set of techniques, including 
1H NMR spectroscopy, UV-induced photo-cross-linking, and steady-state fluorescence 
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resonance energy transfer (FRET) spectroscopy, we find that the isolated H27, under a 

variety of ionic conditions, exists in a dynamic equilibrium between the 885 and 888 

conformers with millisecond exchange times and an equilibrium constant close to 1. 

FRET assays also show that the antibiotic tetracycline appears to specifically interfere 

with an induced shift towards the 888 conformation, a finding that is consistent with 

crystallographic localization of tetracycline bound to the 885 conformation of H27 in the 

30S ribosomal subunit and that may pertain to tetracycline’s mode of action. Taken 

together, our results invoke the notion of a structurally very dynamic helix 27 and beg the 

question of how these inherent structural dynamics may be suppressed within the 

ribosome. 

 

RNA and DNA Preparation. Three different RNA constructs derived from H27 of 

E. coli 16S rRNA were generated for our NMR studies. The Native construct (GGG GAG 

UAC GGC CGC AAG GUU AAA ACU C) represents the unmodified E. coli H27 

sequence, comprising nucleotides 885-912. RNA constructs 885 (5’-GGG GAG UAC 

GGC CGC AAG GUU AAA ACC C-3’) and 888 (5’-GGG GAG UAC GGC CGC AAG 

GUU AAA ACU CCC C-3’) were designed to specifically represent the H27 912-885 

and 912-888 base-pairing schemes, respectively (Figure 2-1). These constructs suppress 

slippage of the base pairs at the helix terminus through a U911C mutation in the 885 

construct, thus affording three stable G-C pairs in the 885 conformation versus a 

destabilizing A:C mismatch in the 888 conformation, and through extending the terminal 

helix of the 888 construct by three G:C base pairs that only can form in the 888 

conformation. The constructs were run-off transcribed from double-stranded DNA 

templates containing an upstream T7 RNA polymerase promoter. Transcription reactions 

contained 40 mM Tris-HCl, pH 7.5, 15 mM MgCl2, 5 mM dithiothreitol (DTT), 2 mM 

spermidine, 4 mM of each rNTP, 5 units/ml inorganic pyrophosphatase, and 0.1 mg/ml 

T7 RNA polymerase (purified in His-tagged form from an over-expressing strain as 

described (105)) and were incubated at 37 oC overnight (~16 h). Full-length transcript 

2.2 Materials and Methods 
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was isolated after denaturing, 8 M urea, 20 % (w/v) polyacrylamide gel electrophoresis 

by UV shadowing, diffusion elution of small gel slices into 5 mM EDTA, and ethanol 

precipitation. For NMR, the RNA was further purified by anion exchange 

chromatography on Sephadex A-25 (Sigma), and dialysis into NMR buffer (10 mM 

NaiPO4, pH 6.4, 0.1 mM EDTA, 50 mM NaCl) by ultrafiltration using Centricon-3 

concentrators (Amicon). Samples were concentrated to approximately 200 mL, and NMR 

buffer was added to a final volume of 225-250 mL, including the addition of 5% final 

volume of 99.9% D2O (Aldrich or Cambridge Isotope Labs) for lock. Final RNA 

concentrations ranged from 0.5-1.2 mM as measured by UV absorption, where 1 A260 

unit equals 37 µg/mL of RNA. Microvolume NMR tubes (Shigemi) were used for NMR 

data collection. 

RNA construct EH27 (5’-CCG CCU GGG GAG UAC GGC CGC AAG GUU 

AAA ACU C-3’) for UV-cross-linking experiments contains an extended H27 sequence 

(nucleotides 879-912) in which a 5’ overhang facilitates the binding of DNA 

oligonucleotides. It was synthesized by Dharmacon, Inc. (Lafayette, CO), deprotected as 

recommended by the manufacturer, purified on a denaturing 8 M urea, 20 % (w/v) 

polyacrylamide gel, eluted into crush and soak buffer (500 mM NH4OAc,  0.1% sodium 

dodecyl sulfate (SDS) 0.1 mM EDTA), chloroform extracted, precipitated as described 

above, and further purified by C8-reverse-phase HPLC with a linear acetonitrile gradient 

in triethylammonium acetate as described (28, 106). For determining the binding rate of 

9mer DNA to EH27, this construct was 5’ fluorescein labeled to generate construct 

5’FEH27. To this end, EH27 RNA (final concentration of 0.9-1 µM) was mixed with 5 

mM [γ-S]ATP (Sigma), and 1 unit/µl of T4 polynucleotide kinase (Takara) in 50 mM 

Tris-HCl, pH 8.0, 10 mM MgCl2, and 5 mM DTT and incubated at 37 °C for 3 h (107). 

The phosphorothioated RNA was phenol-chloroform extracted, ethanol precipitated, and 

desalted using a Centrispin Column (Princeton Separations). It was then diluted to 0.3 

µM and mixed with 5 mM fluorescein-5-maleimide (Molecular Probes) in 7.5 mM 

Na2B4O7 and 14% DMSO, incubated at 70 °C for 30 minutes, ethanol precipitated, and 

purified by C8-reverse-phase HPLC (28, 106). Appropriate fractions were pooled and 

passed over a NAP-5 gel filtration column (Amersham Phamacia Biotech) to yield the 

final stock solution of 5’FEH27. 
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RNA construct FEH27T for FRET experiments was synthesized in a singly 

labeled form by Howard Hughes Medical Institute Biopolymer/Keck Foundation 

Biotechnology Resource Laboratory at the Yale University School of Medicine (New 

Haven, CT) with the same sequence as construct EH27 (5’-CCG CCU GGG GAG UAC 

GGC CGX AAG GUU AAA ACY C-3’), except the cytidine in the variable position in 

the GNRA tetraloop and uracil 911, indicated as X and Y respectively, were replaced 

with the uracil analogs Fluorescein dT and Amino-Modifier C6 dT (Glen Research), 

respectively. This synthetic RNA was deprotected by treatment with triethylammonium 

trihydrofluoride, and purified by denaturing gel electrophoresis, and C8-reverse-phase 

HPLC as described above (28, 106). It was chloroform extracted and then reacted with 

tetramethylrhodamine succinimidyl ester (Molecular Probes) in 35 mM Tris-HCl, pH 7.7, 

and 14% DMSO, incubated at room temperature overnight  (~16 h) re-purified by C8-

reverse-phase HPLC, and passed over a NAP-5 column, thus yielding the doubly labeled 

FRET construct FEH27T (28, 106). 

The DNA sequences used in this study are the following: 9mer (5’-CCC AGG 

CGG-3’); F2 (5’-CCC AGG CGG TCG ACT TA-3’); cF2 (5’-TAA GTC GAC CGC 

CTG GG-3’) and Disrupter (5’-TAC TCC-3’). Oligodeoxynucleotides were synthesized 

and desalted by Invitrogen (Carslbad, CA). Synthetic DNA was used as supplied 

provided that it gave a clear solution upon addition of water and appeared homogeneous 

as judged by denaturing polyacrylamide gel electrophoresis. Otherwise, the material was 

gel purified as above. Stock concentrations were determined by UV absorbance as 

described above for RNA. 

NMR Spectroscopy. All NMR spectra were acquired in NMR buffer (10 mM 

NaiPO4, pH 6.4, 0.1 mM EDTA, 50 mM NaCl) at 8 ˚C, unless otherwise noted, on a 

Varian Inova 800 MHz spectrometer equipped with a triple resonance 1H/13C/15N probe 

with Z-gradients. Each spectrum was collected using a water flip-back solvent 

suppression scheme followed by a WATERGATE pulse scheme (108, 109). Quadrature 

detection was achieved by implementation of the States-TPPI method in all spectra (110). 

Data for the 888 construct were collected over 54 scans. 2,816 complex points were 

acquired for a sweep width of 20,000 Hz, and a recycle delay of 1.3 seconds was used. 

Data for constructs 885 and Native were collected in 512 scans with 8,000 complex 
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points and a spectral width of 20,000 Hz. A 1.5 second recycle delay was used. Spectra 

were processed with nmrPipe and visualized with Igor Pro (WaveMetrics) (111). Spectra 

were referenced to the solvent resonance position, 4.97 ppm, at 8 ˚C. All spectra were 

processed using a solvent filter and a cosine-bell apodization function. Each FID was 

zero-filled once before Fourier transforming.  

Spectra of the 885, 888, and Native constructs were baseline corrected and 

normalized to the Lorentzian fit area of the imino proton resonance arising from U904 

(~11.8 ppm). A calculated spectrum was constructed as a linear combination of the 

construct 885 and 888 spectra and minimized against the Native spectra using Levenberg-

Marquart least-squares regression as implemented in the program Igor Pro, using only the 

relative contribution of the 888 conformation, f888 (with f885 = 1-f888), as fitting parameter. 

The spectral region containing the exchange-broadened hump centered at approximately 

11 ppm in the Native spectrum was omitted for the fit. 

Thermal Denaturation. Melting temperatures (Tm) for the 885, 888, and Native 

NMR constructs were determined from thermal denaturation profiles recorded on a 

Beckman DU640B spectrophotometer equipped with High Performance Temperature 

Controller and Micro Auto 6 Tm cell holder. RNA samples (1 µM, 300 µL) were prepared 

in 10 mM sodium phosphate, pH 6.4, 0.1 mM EDTA, and 1.0 M sodium chloride and 

degassed for 5 minutes prior to obtaining UV melting curves. The temperature was 

increased from 15 ºC to 85 ºC at a rate of 1 oC/min, and the absorbance at 260 nm was 

recorded every 0.5 ºC. The first derivatives of the resulting melting profiles were fit to 

Gaussian distributions using the spectrophotometer as well as MicroCal Origin 7.0 

software, yielding Tm's as the maxima of the Gaussians. Three independent melting 

profiles were recorded for each construct to estimate the experimental error in Tm to 

approximately ±2 °C. 

UV-Induced Photo-Cross-linking. EH27 RNA was 5’ end labeled with [γ-
32P]ATP and T4 polynucleotide kinase. In case of the in vitro transcribed constructs 885 

and 888, a 5-fold excess of Disrupter DNA was added to interfere with RNA secondary 

structure, the mixture heated to 70 oC and cooled to room temperature, the RNA 

dephosphorylated with calf intestine alkaline phosphatase, phenol-chloroform extracted, 

and ethanol precipitated prior to 5’-32P labeling. The radiolabeled 885 and 888 constructs 



 

 21 

were further purified by denaturing, 8 M urea, 20 % (w/v) polyacrylamide gel 

electrophoresis, elution into 10 mM Tris-HCl, pH 7.6, 1 mM EDTA overnight, and 

ethanol precipitation.  

5’-32P labeled EH27, 885, and 888 constructs (<2.5 nM) were annealed in 

standard buffer as described above. The solutions were incubated in wells of a microplate 

floating in a circulating water bath at 25 °C. A hand held UV lamp (λ = 254 nm, 

Spectroline EF-180C) was positioned ~1.5 cm above the microplate. Appropriate time 

points were taken over a 120-minute time interval, mixed with 10 µL of 80% formamide, 

0.025% xylene cyanol, 0.025% bromophenol blue, and 50 mM EDTA and separated from 

uncross-linked one by denaturing, 8 M urea, 20 % (w/v) polyacrylamide gel 

electrophoresis and quantified using a Molecular Dynamics Storm 840 phosphorimager. 

The intensity of the upper of the two UV induced cross-links was calculated as the 

fraction of all three bands in the lane, plotted as a function of time and fit to a single-

exponential single-exponential association function 
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cross-linking rate constant kobs = τ1
-1. For assignment of the location of the cross-link in 

EH27, unlabeled EH27 was exposed to UV light, the upper cross-linked RNA band 

(cEH27) was gel purified, ethidium bromide stained and eluted as described above for 

radiolabeled RNA. It was then 5’ end radiolabeled as described above, or 3’ end labeled 

using [32P]pCp and T4 RNA ligase. The RNA was analyzed on an 8 M urea, 15 % 

wedged polyacrylamide sequencing gel, alongside ladders from partial digestion with G-

specific RNase T1 and alkaline hydrolysis of both cross-linked and uncross-linked EH27 

(112). 

Steady-state fluorescence spectroscopy. Doubly labeled FRET construct FEH27T 

was annealed at 20 nM in standard buffer (50 mM Tris-HCl, pH 7.5, 50 mM NH4Cl, 20 

mM MgCl2) by heating to 70 °C for 2 min, followed by cooling to room temperature over 

10 min. Steady-state fluorescence measurements were performed at 25 °C on an Aminco-

Bowman Series 2 (AB2) spectrofluorometer (Thermo Electron Corp.) as described 

previously (113, 114). The sample (156 µL) was placed in the fluorometer cuvette,  and 

fluorescein was excited at 490 nm (4 nm bandwidth), and fluorescence emission was 

recorded simultaneously at the fluorescein (520 nm, 8 nm bandwidth) and 

tetramethylrhodamine (585 nm, 8 nm bandwidth) wavelengths via an oscillating 
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monochromator. For the fuel strand experiment, DNA F2 (1 µL) was manually added to a 

final concentration of 100 nM. After the signals reached a new equilibrium position, 

DNA cF2 (1 µL) was added to a final concentration of 140 nM. The FRET ratio Q = 

(F585/F520) was calculated and its time trace recorded along with the single fluorophore 

data.  To test the impact of antibiotics on the DNA induced shift from the 885 to the 888 

conformation, tetracycline hydrochloride, streptomycin sulfate (both ICN Biomedical 

Inc.), and kanamycin sulfate (Fisher Scientific), were prepared at 10 mM stock 

concentration (used within 24 h; the tetracycline was protected from light). 40 nM 

FEH27T was annealed as described above in buffer consisting of 600 mM Tris-HCl, pH 

7.5, 100 mM NH4Cl, and 40 mM MgCl2. After cooling to room temperature, water and 

antibiotic stock solution were added to reach a final concentration of 20 nM FEH27T in a 

buffer similar to standard buffer, except that it contained a variable concentration of 

antibiotic and 300 mM instead of 50 mM Tris-HCl to stabilize the pH at 7.5. This 

solution was preincubated at 25°C for 1-2 minutes, fluorescence data acquisition initiated 

as described above, and 9mer DNA manually added to a final concentration of 400 nM. 

(Addition and mixing of the DNA took ~10 s in all cases.) The FRET ratio, Q, of time 

traces upon 9mer addition was normalized to its average value before 9mer addition, Q0, 

by calculating (Q-Q0)/Q0, to yield a relative FRET efficiency, which was fit to the single 

exponential increase function as described above to extract a rate constant kobs = 1/τ1 (28, 

106). None of the antibiotics absorb at 490 nm or emit in the donor to acceptor 

wavelength range, ruling out any spectroscopic interference. 

The initial FRET ratio Q0 for all samples was the same within 15%. The 

amplitude from the fit, or relative FRET increase A, was averaged for a minimum of two 

independent assays and plotted against the tetracycline concentration. These data were fit 

to a modified form of the Hill equation:  
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where Aobs,0 is the average amplitude change observed in the absence of tetracycline, A∞ 

is the amplitude change for an infinite tetracycline concentration, and KD, app is the 

apparent dissociation constant for tetracycline.  

For measurement of fast kinetics upon addition of high concentrations of 9mer 

DNA (no antibiotics), a stopped flow mixing technique was employed based on the Milli-

Flow Reactor of the AB2 spectrofluorometer (Thermo Electron Corp.). FEH27T RNA 

(800 µL) was prepared and annealed at 80 nM (diluted 1:2 in the experiment) in standard 

buffer as described above. 9mer DNA was prepared at twice its final concentration in 

standard buffer, and equal volumes of the two solutions were rapidly mixed in the Milli-

Flow Reactor at 25 °C. Excitation was set at 490 nm (8 nm bandwidth) while the 

tetramethylrhodamine fluorescence emission increase was monitored at 585 nm (16 nm 

bandwidth). (Monitoring the fluorescein emission decrease at 520 nm yielded rate 

constants within 20% of those for the tetramethylrhodamine, which is consistent with 

FRET data where both wavelengths could be monitored simultaneously). Data at 9mer 

concentrations lower than 350 µM were collected with 1-ms time resolution, while data 

at concentrations greater than 350 µM were collected at 300-µs resolution. 5-25 time 

traces were averaged and fit to a single exponential increase function as described above, 

yielding rate constants kobs = 1/τ. Error bars (dk) stem from the calculated error in τ1 (dτ1) 

derived from the fit (
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). The 9mer concentration dependence of kobs was fit to eq 

2-2 (see below) using Levenberg-Marquart least-squares regression implemented in 

Origin 7.0 (Microcal) to extract the elementary rate constants. 

For an independent determination of the 9mer binding rate constant (kon), 

5’FEH27 was prepared at a concentration of 10 nM and annealed in standard buffer as 

described above for FEH27T and additionally degassed prior to measurement by placing 

the sample in a Speed-Vac vacufuge for 15 minutes. The sample (150 µL) was placed in 

the fluorometer cuvette with excitation at 490 nm (4 nm bandwidth) while emission was 

monitored at 520 nm (8 nm bandwidth). Given a stable equilibrium fluorescence signal 

from 5’FEH27, 9mer DNA was added to final concentrations of 100 nM to 1 µM, and the 

resulting kinetic fluorescence increase was fit to a single-exponential increase function as 

described above. The resulting rate constant, kobs = τ1
-1, was plotted against the 9mer 
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concentration, and these data fit by linear regression, where the slope represents the 

second order rate constant associated with 9mer binding to 5’FEH27. 

 

G890 as a key indicator for the 885 and 888 conformations  

Since the base-pairing patterns in the proposed H27 conformations are distinct, 

we determined one-dimensional (1D) imino proton (1H) NMR spectra of three different 

constructs derived from nucleotides 885 to 912 in Escherichia coli 16S rRNA (Figure 2-

2): Construct Native is unmodified; construct 885 carries a U911C mutation to selectively 

stabilize the 885 conformation; and construct 888 has an extended terminal helix to 

stabilize the 888 conformation. The secondary structures of the “locked” constructs 885 

and 888 are identical between bases 895-904, and contain a characteristic structural 

element, a GNRA tetraloop (where N can be any nucleotide, here C, and R is a purine, 

here A). The imino 1H-NMR spectra of the 885 and 888 constructs therefore exhibit 

several common features (Figure 2-2A), assigned based on imino-imino and imino-amino 

nuclear Overhauser effects (NOEs) as well as 1H-15N HSQC spectra. The resonance of 

the first G of the tetraloop appears around 10.6-10.7 ppm, an upfield position consistent 

with previous GNRA tetraloop studies (115, 116); evidence is observed for three base 

pairs immediately adjacent to the tetraloop, as indicated by the presence of imino proton 

resonances corresponding to the G895, G902, and G903 NH1 protons. The G902 and 

G903 NH1 resonances are observed between 12 and 14 ppm, consistent with Watson-

Crick base pairing of these imino protons, while an expected upfield chemical shift to 

11.57 ppm is observed for the G895 NH1 resonance involved in the G895:U904 wobble 

pair. In addition, U904 of this wobble pair shows an expected resonance at 11.77 ppm 

(Figure 2-2A). 

Notably, the G890 NH1 chemical shift is very different in the 885 and 888 spectra 

(Figure 2-2A). In the 888 construct, G890 is predicted to pair with C910, which leads to a 

G890 NH1 resonance at 12.19 ppm, corresponding to a Watson-Crick base paired imino  

2.3 Results 
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Figure 2-2. 1D imino 1H-NMR spectra of three RNA constructs based on E. coli 

H27. A) Spectra of the 885, 888, and Native constructs collected at at 8 ˚C. The spectrum 

in red is a linear combination of the 885 and 888 constructs, fitted to the spectrum of the 

Native construct. The relative fractions of the 885 and 888 conformations are f885 = 0.573 

± 0.04 and f888 = 0.427 ± 0.04, respectively. B) A temperature series on the Native 

construct shows that the resonance at ~10.2 ppm, which arises from the G890 imino 

proton in the 885 conformation, disappears above 20 oC through line broadening, much 

below the RNA melting temperature (63 oC) and the temperatures at which other 

resonances are lost (30-50 oC). 
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proton. In the 885 construct, where G890 is predicted to be looped out to form two 

hydrogen bonds, one each  to the adjacent U891 and to a phosphate oxygen on the 

opposing strand (88). The 885 G890 NH1 resonance is found as a relatively broad peak 

of diminished intensity at 10.21 ppm. This is consistent with NMR spectra of the loop E 

motif of the sarcin-ricin loop of the large-subunit ribosomal RNA, where the 

corresponding G (G2655 in E. coli 23S rRNA, G4319 in rat 28S rRNA) has a nearly 

identical chemical shift (10.18 ppm) (117, 118). Our findings therefore identify G890 as a 

key indicator of whether H27 resides in the 885 or 888 conformation. 

In the spectrum of the Native construct, as expected, 1H-NMR resonances are 

found that correspond to the GNRA tetraloop and the three adjacent base pairs, which are 

shared among all NMR constructs (Figure 2-2A). However, we also observe a broad 

featureless hump, centered around 11 ppm, that is unique to the Native construct. In long 

(~350 ms) mixing time NOESY spectra, this hump reveals NOEs to Watson-Crick base-

paired G and C amino protons, suggesting that it contains G imino proton resonances at 

the helix terminus partially protected from chemical exchange. In addition, we found two 

different resonances for the G890 NH1 proton, at 10.21 ppm and 12.19 ppm, that are 

characteristic of the 885 and 888 conformers, respectively (Figure 2-2A). This 

observation shows that the Native construct partially occupies both conformations, and 

that the 885 and 888 conformations are either in slow exchange compared to the NMR 

time scale or reside in different sub-populations of the RNA. We also performed a 

temperature series that shows that specifically the resonance at 10.21 ppm, which arises 

from G890 in the 885 conformation, disappears above 20 oC due to line broadening 

(Figure 2-2B), much below the melting temperature of the Native construct under these 

ionic conditions (63 ºC) and the temperatures at which other resonances are lost (30-50 
oC). This is consistent with the previous observation of enhanced conformational 

dynamics of the bulged G in the loop E motif of 28S rRNA compared to Watson-Crick 

base pairs (118). 

To quantify the relative contributions of the 885 and 888 conformations to the 

Native structure, we fit a linear combination of the spectra of the 885 and 888 constructs 

to the spectrum of the Native construct, using the relative contribution of the 888  
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Figure 2-3. UV-induced photo-crosslinking of construct EH27. A) Time course of 

cross-linking. After only 5 min exposure to UV light, two bands of cross-linked RNA are 

apparent after separation on a denaturing 20% polyacrylamide gel, the uppermost of 

which grows to ~28% of the total RNA over a 2-h time period with an observed rate 

constant of 1.3 hr-1. B) Mapping the major cross-linking site. The major (upper) cross-

link (termed cEH27) was prepared in large scale, radiolabeled either on the 3’ or 5’ ends 

for comparative analysis on sequencing gels by alkaline hydrolysis (OH-) and RNase T1 

digestion together with the uncross-linked EH27. The cross-link leads to a gap in the 

alkaline ladder since OH--induced backbone cleavage 3’ of a nucleotide anywhere 

between the cross-linked bases will not yield a fragment. Please note that cleavage 3’ of 

U905 still yields a band in the OH- lane of the 3’ radiolabeled cEH27, while cleavage 3’ 

of A892 is associated with the first missing fragment in the OH- lane of the 5’ 

radiolabeled cEH27, thus indicating that the cross-link (dash in the H27 depiction) occurs 

between nucleotides A892 and U905. Our sequence assignments are indicated alongside 

the sequencing ladders.  
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conformation, f888 (with f885 = 1-f888), as the only fitting parameter (Experimental 

Section) (119). An optimized calculated spectrum is found for f888 = 0.427 ± 0.04, 

suggesting that the Native construct significantly populates both the 885 and 888 

conformations under NMR conditions (Figure 2-2A). 

A novel UV-induced photo-crosslink in H27  

The 885 conformation of H27 observed in the 30S subunit crystal structures is 

stabilized by the common loop E motif (88, 89), which often yields a specific intrahelical 

photo-cross-link upon UV irradiation (98). However, in multiple UV-irradiation studies 

of the ribosome only long-range cross-links involving G894 of H27 and the 5’ domain of 

16S rRNA were observed (120-122). Irradiation of construct EH27 in standard buffer 

(chosen to resemble buffer conditions used for kinetic assays of ribosome function (123): 

50 mM Tris-HCl, pH 7.5, 50 mM NH4Cl, 20 mM MgCl2) at 25 oC with UV light at 254 

nm resulted in a major and a minor RNA-RNA photo-cross-link (Figure 2-3). The major 

cross-link has a lower gel mobility, accumulates with a single-exponential rate constant 

of 1.3 hr-1, and saturates at ~28% after two hours. (A minor, slightly higher-mobility 

cross-link also accumulates single-exponentially, is enhanced by the addition of 

magnesium, and appears to be located near the 3’ terminus.) We purified the major cross-

linked species, 32P-radiolabeled it either on the 5’ or 3’ end, and analyzed it using alkali 

and RNase T1 (G-specific) degradation. We thus found that the cross-link covalently 

couples nucleotides A892 and U905 (Figure 2-3), which is distinct from the loop E-

specific cross-link that is observed between the nucleotides equivalent to U891 and A906 

(98). Our findings therefore suggest that a structure different from a loop E motif causes 

the efficient cross-link in H27. Interestingly, neither of the two conformationally 

“locked” constructs 885 and 888 formed a cross-link under the same conditions.  

FRET demonstrates reversibility of conformational switching 

To more directly test whether the 885 and 888 conformations of H27 interconvert, 

we designed a FRET labeled construct FEH27T, in which the 5’ end of H27 is extended 

by 6 nucleotides of 16S rRNA sequence. This design allows for an assay inspired by a 

previously described DNA-fuelled molecular machine (124), in which the partially 

complementary DNA oligonucleotide F2 binds to the 5’ overhang as well as the adjacent
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Figure 2-4. Scheme and fluorescence time course of a FRET monitored experiment 

demonstrating reversibility of conformational switching of H27. Construct FEH27T is 

doubly labeled with donor (fluorescein, green) and acceptor (tetramethylrhodamine, red) 

fluorophores. Upon addition of the partially complementary DNA oligonucleotide F2 

(indicated in cyan) the donor emission decreases, while the acceptor emission and the 

resulting FRET ratio (black) increase, as expected from a shift from the 885 to the 888 

conformation. Upon addition of DNA oligonucleotide cF2 (indicated in blue), which 

forms a DNA duplex with F2 and thus removes it from FEH27T, FRET decreases back to 

its initial value.  
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nucleotides 885 to 887, eliminating the possibility of the RNA assuming the 885 

conformation thereby shifting the population toward the 888 conformation. Such a 

conformational shift is expected to result in a FRET increase between the donor 

fluorophore (fluorescein) attached to the N of the GNRA tetraloop and the acceptor 

fluorophore (tetramethylrhodamine) coupled to the base in position 911 (Figure 2-4). The 

fluorophore pair is predicted to have a distance of ~42 Å in the 885 conformation of the 

30S ribosomal subunit (88, 125), which is close to the pair’s Förster distance of ~55 Å, 

making it very sensitive to changes in that distance (28). Preliminary time resolved FRET 

analysis of FESH2T at saturating Mg2+ shows a decrease in the measured 

intrafluorophore distance of more than 5 Å upon addition of 9mer DNA. DNA 

oligonucleotide F2 itself contains a 3’ overhang, which allows its removal by addition of 

the fully complementary DNA oligonucleotide cF2 to form a long DNA duplex (Figure 

2-4). If conformational switching of FEH27T is reversible, this should lead to a FRET 

decrease.  

Indeed, when we incubated 20 nM FEH27T in standard buffer (50 mM Tris-HCl, 

pH 7.5, 50 mM NH4Cl, 20 mM MgCl2), at 25 °C, we found a relatively low FRET ratio 

of ~0.36. Upon addition of 100 nM of F2 DNA, we observed an exponential decrease in 

donor signal, accompanied by a synchronous increase in the acceptor signal, consistent 

with an increase in FRET (Figure 2-4). After ~800 s, the donor and acceptor signals 

leveled off at a FRET ratio of ~1.0. Next, we added 140 nM of the fully complementary 

cF2, which led to an exponential decrease over ~300 s to a FRET ratio of ~0.42, 

signifying an essentially complete reversal to the initial FRET ratio (Figure 2-4). In a 

control experiment, addition of cF2 to FEH27T in the absence of F2 resulted in no 

changes in the FRET ratio, as expected. These results provide direct evidence for full 

reversibility of conformational switching between the 885 and 888 conformations in H27.  

Furthermore, we noticed a dependence of the kinetics of the FRET increase on the F2 

concentration, suggesting that the observed rates report on a bimolecular reaction.  

Extracting fast rate constants of conformational switching 

 Our initial observation that the FRET increase as induced by the addition of 

partially complementary DNA oligonucleotide F2 exhibits a dependence on the DNA 
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Figure 2-5. Stopped-flow kinetics monitoring the acceptor fluorescence increase 

upon 9mer addition at different concentrations to shift the FRET labeled FEH27T 

construct into the 888 conformation. A) Circles, fluorescence emission at 585 nm with 

excitation at 490 nm, averaged over 14 individual stopped-flow time traces collected 

upon addition of 1.8 mM 9mer; black line, single-exponential fit yielding kobs = 84 ± 3 s-

1. B) Plot of kobs derived from data sets as in (A), collected over a range of 9mer 

concentrations. Black line, fit to eq 2-2 based on kinetic Scheme 2-1, yielding values for 

the forward and reverse rate constants, k1 and k-1, respectively, which characterize the 

rapid exchange between the 885 and 888 conformers.   
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concentration suggests that a bimolecular reaction, rather than unimolecular 

conformational switching, is rate limiting. To further test this notion and to ask whether a 

rate constant for conformational switching can be extracted at saturating DNA 

concentration, we performed a DNA titration experiment. We utilized a DNA 

oligonucleotide, referred to as 9mer, that binds to the same 879-887 region of FEH27T as 

F2, but lacks its 3’ overhang. A representative stopped-flow time course of the acceptor 

fluorescence signal (representative of the increase in FRET; the donor fluorescence 

decreased with similar kinetics), taken at 1.8 mM 9mer, is shown in Figure 2-5A. The 

signal increase was >30% and was complete in well under 100 ms after DNA addition. 

The data were fit with a single-exponential increase function, yielding a rate constant of 

84 ± 3 s-1. By performing this experiment over a broad range (2 µM to 1.8 mM) of 9mer 

concentrations, we obtained the titration curve shown in Figure 2-5B.  

The rate constants observed for the induced change in acceptor fluorescence are 

linearly dependent on the 9mer DNA concentration up to ~900 µM. At 9mer 

concentrations of >1 mM, a deviation from this linear dependence was observed, 

indicative of the beginning of  9mer saturation as unimolecular conformational switching 

becomes rate limiting (and thus 9mer concentration independent). To extract rate 

constants for conformational switching, we considered the following simplified reaction 

mechanism: 

 

Scheme 2-1 

This minimal reaction scheme is based on the fact that we have evidence for reversible 

switching between the 885 and 888 conformations through our “fuel-strand” experiment 

of Figure 2-4 and assumes that 9mer binding captures and traps H27 in the high-FRET 

888 conformation, thus generating the observed FRET increase.  This model does not 

account for 9mer first binding to the 885 conformation and subsequently trapping the 888 

conformation.  This mechanism does allow us to derive the following analytical 

expression for kobs: 
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! 

kobs =
k1kon[9mer]

k1+ k " 1+ kon[9mer]
  Equation 2-2 

 

To reduce the number of variables in our fit, an independent determination of the 9mer 

binding rate constant kon was necessary. To this end, ,the initially unlabeled RNA termed 

EH27,(identical in sequence to FEH27T, excepting modification)  was enzymatically 5’ 

phosphorothioated, then labeled with fluorescein-5-maleimide to yield 5’FEH27 

(Materials and Methods Section). The 5’ fluorescein label of this construct responds to 

the adjacent binding of 9mer through nucleotide-specific fluorescence dequenching (126) 

independent of conformational switching. As expected, the observed rate constant of the 

fluorescence decrease upon addition of 9mer DNA was linearly dependent on 9mer 

concentration; the slope of this linear dependence yielded the binding rate constant of 

9mer to FEH27 as previously described (126), with kon = 2.96 ± 0.45 × 105 M-1 s-1. The 

resulting fit of eq 2-2 to the titration data in Figure 2-5B then gave k1 = 250 ± 30 s-1 and 

k-1 = 750 ± 150 s-1 for conformational switching under standard conditions (50 mM Tris-

HCl, pH 7.5, 50 mM NH4Cl, 20 mM MgCl2, at 25 oC). The equilibrium constant between 

the 888 and 885 conformations ([888]/[885] = k1/k-1) is therefore 0.33 ± 0.12.  

Tetracycline inhibits conformational switching 

Tetracycline is known to bind to the 30S ribosomal subunit close to A892 of H27 

(50, 127). To ask whether tetracycline may specifically interfere with conformational 

switching of H27, we studied the effects of tetracycline and, as controls, the 

aminoglycoside antibiotics streptomycin and kanamycin on the 9mer-induced 

conformational shift of the FRET labeled construct FEH27T into the 888 conformation. 

As shown in Figure 2-6A, neither addition of 1 mM streptomycin nor kanamycin has any 

impact on the observed FRET change upon 9mer addition. By contrast, in the presence of 

1 mM tetracycline an ~50% decrease in the relative change in FRET efficiency is 

observed. We performed similar experiments in the presence of increasing concentrations 

of tetracycline, leading to a hyperbolic decrease in the relative FRET change, which 

yielded an apparent dissociation constant for tetracycline of 120 ± 40 µM (Figure 2-6B). 
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Figure 2-6. Effects of streptomycin, kanamycin, and tetracycline on the 9mer-

induced shift of the FRET labeled construct FEH27T to the 888 conformation. A) 

Plot of the relative FRET efficiency recorded after the addition of 400 nM 9mer DNA to 

FEH27T in the presence of 1 mM tetracycline, streptomycin, or kanamycin as indicated. 

B) Plot of the change in the relative FRET efficiency upon addition of 400 nM 9mer in 

the presence of increasing concentrations of tetracycline; black line, fit of the data to a 

modified form of the Hill equation (eq 2-1) to derive an apparent dissociation constant for 

tetracycline, KD,app.   

 



 

 35 

 

 

The diverse functions of RNA in storage, processing, and regulation of genetic 

information derive from its structural diversity. RNA can form long straight helices when 

storing genetic information of a virus, or assume a fold as intricate as a ribosomal particle 

when performing a tightly controlled catalytic task. The limited four-letter alphabet of 

RNA allows for a multitude of (nearly) isoenergetic alternative structures, which can 

interconvert as required for a specific task such as the translational cycle. This is perhaps 

the main reason why the ribosome was conserved up to the present day as an RNA-based 

enzyme after it enabled the template directed synthesis of peptides and protein enzymes 

in a prebiotic RNA World (44, 128).  

The kinetics and thermodynamics of interconversion of alternative folds of an 

RNA determine its functional performance. NMR studies and MD simulations suggest 

that individual base pair lifetimes are in the millisecond time range (99, 100), while a full 

ribosomal cycle probably takes several tens to hundreds of milliseconds (43, 129), 

suggesting that individual structural rearrangements in the ribosome must occur on the 

intermediate time scale. Here we have used a combination of 1D 1H-NMR spectroscopy, 

UV-induced photo-cross-linking, and fluorescence spectroscopy to acquire a kinetic and 

thermodynamic framework for a possible conformational rearrangement in the slippery 

sequence of H27 from E. coli 16S rRNA using model systems of identical sequence. We 

find a specific NMR resonance — that of the imino proton of G890, which in the 885 

conformation is looped out in a loop E motif but in the 888 conformation is involved in a 

Watson-Crick base pair — to be a key indicator for the presence of the 885 and 888 

conformations. Both the 885 and 888 conformations are highly populated in the isolated 

H27 under NMR conditions, with a slight, 57%-over-43% excess of the 885 

conformation (Figure 2-2). UV irradiation produces an efficient intramolecular photo-

cross-link between nucleotides 892 and 905 that is distinct from an 891/906 cross-link 

expected for a loop E motif (Figures 2-3 and 2-7). Taken together with the fact that 

2.4 Discussion 
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neither of the two “locked” conformers cross-links, these findings further support the 

notion that the isolated H27 coexists in multiple conformations. While these observations 

do not provide direct evidence for an exchange between conformations, fluorescence 

resonance energy transfer (FRET) shows that addition of a partially complementary DNA 

oligonucleotide rapidly shifts the 885 to the 888 conformation, revealing an elementary 

rate constant for the forward reaction  of 250 s-1 under conditions adapted from assays of 

ribosomal function (Figures 2-4 and 2-5). The reversal is three-fold as fast, thus 

thermodynamically favoring the 885 over the 888 conformation, possibly due to the 

stabilizing effect of the loop E motif. Finally, the antibiotic tetracycline, known to bind to 

the 885 conformation of H27 in the ribosomal crystal structures (50, 127) (Figure 2-7), 

suppresses the induced shift to the 888 conformation with a concentration dependence 

yielding an apparent dissociation constant of 120 µM. This is consistent with a stabilizing 

thermodynamic effect of tetracycline on the 885 conformation.  

Surprisingly Rapid Exchange Kinetics of a Slippery Sequence. The rate constants 

we estimate for the reversible interconversion of the 885 and 888 conformers of H27, 250 

s-1 and 750 s-1, are only somewhat slower than the opening rates of individual base pairs, 

depending on their nature and position in an RNA duplex. For example, non-terminal 

G:C base pairs were found to open to an extent sufficient for imino proton exchange with 

solvent at rate constants of ~20 s-1 to ~400 s-1, whereas non-terminal A:U base pairs have 

estimated opening rate constants faster than 10,000 s-1 (99). End fraying often leads to 

additional acceleration of the opening of terminal base pairs (130). The fact that the 

reversible 885-to-888 conformational change, entailing a three-base-pair slippage (Figure 

2-1C), can occur surprisingly rapidly compared to opening of a single base pair suggests 

that slippage is mechanistically not much more challenging than a simple base pair 

opening. Interestingly, little is known about the underlying molecular mechanism of 

slippage, despite the fact that it can contribute significantly to biologically important 

processes such as DNA mutagenesis and evolution of genomes (131) as well as 

ribosomal frameshifting (101). [Our results suggest that the opening of (or at least partial 

loss of hydrogen bonding in) a single base pair such as G887:C910 in the 885 conformer 

(Figure 2-1C) may be the starting point for slippage. The adjacent G888:A909 

noncanonical pair may then open to accommodate the first new pairing, G888:C910, 
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followed by rapid adjustments forming base pairs G887:U911 and G886:C912. Similar 

sliding has to happen twice more until the 888 conformation with its G888:C912 base 

pair is reached.]  One of the multiple conformational intermediates of such a sequential 

sliding mechanism may then lead to efficient cross-linking of nucleotides A892 and 

U905, which are nearly 8 Å apart and separated by an unpaired C893 in the 885 

conformation of the ribosomal crystal structures (Figure 2-7) (88). The latter notion is 

further corroborated by the fact that we do not find evidence in the NMR spectra of any 

of our three H27 constructs for involvement of U905 or G894 (G’s also have iminos) in a 

G894:U905 base pair (Figure 2-2), which is consistent with the cross-linking region 

being dynamic. 

The proposed mechanism for H27 conformational exchange is likely analogous to 

the essential rearrangement observed in the substrate domain of the VS ribozyme, where 

a series of adjacent guanines also facilitates slippage (102, 132). A related exchange 

between frayed base pairs has been proposed as a mechanism for branch migration in 

DNA recombination events (133, 134). As may be expected, the topologically more 

challenging branch migration between four DNA strands proceeds  with  a rate constant 

of ~35 s-1 (133) roughly an order of magnitude slower than our conformational exchange 

in H27 from 16S rRNA. Crothers and co-workers previously studied a large structural 

rearrangement involving branch migration in the spliced leader (SL) RNA from 

Leptomonas collosoma (135). In a similar approach as employed here, the authors used 

partially complementary DNA oligonucleotides to specifically shift the secondary 

structure of SL RNA towards one or the other of its two nearly isoenergetic 

conformations. Consistent with the larger scale of rearrangements in SL RNA compared 

to H27, the authors estimated an interconversion rate constant of ~7 s-1 (135), about two 

orders of magnitude slower than H27 conformational exchange. 

Thermodynamics Slightly Favors the 885 Conformation. Using the nearest-

neighbor free energy parameters of Zuker and Turner (136, 137) the 888 conformer of 

H27 is computationally predicted to be 2.5 kcal/mole more stable than the 885 conformer 

(-8.9 versus -6.4 kcal/mol). By contrast, the 888:885 equilibrium constant derived from 

our FRET experiments is 0.33, that is, it slightly favors the 885 conformation by ~0.7 

kcal/mol. Certainly, differences in conditions (1 M NaCl, 37 oC for the computational 
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prediction, 50 mM NH4Cl, 20 mM MgCl2, 25 oC in our experimental studies) may 

contribute to this discrepancy, especially since under NMR conditions (50 mM NaCl, 8 

˚C) we find an intermediate 888:885 distribution of 0.427/0.573 = 0.75. However, the 

computational algorithm does not account for the extended noncanonical base pairs in the 

loop E motif of the 885 conformation and in fact adds a penalty to the energy calculation 

for the larger “internal loop” represented by this motif (136). Of course, the 888 

conformation will also likely contain (unaccounted for) noncanonical base pairs, which 

will partially counter the imbalance in the calculation. But it is also tempting to speculate 

that perhaps the 885 conformation’s loop E motif is a particularly stable structure that 

slightly stabilizes the 885 over the 888 conformation, as we observe experimentally. 

There is reason to believe that the loop E motif may be a particularly stable structural 

element. Loop E has been recognized as a widespread organizing motif in the ribosomal 

RNAs as well as the hairpin ribozyme (98). The loop E motif, when isolated from the  

ribosomal matrix, is conducive to NMR spectroscopy (117),X-ray crystallographic 

structure determination (138) , thermodynamic measurements (139), and is reported to 

remain stable in extended molecular dynamics simulations (140, 141). Interestingly, we 

find it to be thermodynamically stabilized even further by tetracycline binding, which 

may be explained by the crystallographically observed interaction with A892 and C893 in 

the 885 conformation of H27 (Figure 2-7) (50, 127). Nevertheless, the 885 and 888 

conformations are still close to isoenergetic, suggesting that yet unknown noncanonical 

base pairs must be stabilizing the 888 conformation as well.  

The Structural and Functional Context of H27 in the Ribosome. In all crystal 

structures of the 30S ribosomal subunit, the minor groove of the H27 loop E motif closely 

packs against H44 of the 3’ terminal domain, which harbors the decoding center in 16S 

rRNA. Additionally, two bases adjacent to the H27 loop E, C893 and G894, make 

hydrogen bonding and stacking interactions, respectively, with U244 from H11 of the 5’ 

domain (88). It is plausible that these interactions within the ribosomal matrix further 

stabilize the 885 conformation over the 888 conformation, both thermodynamically and 

kinetically. A particular boost to the original switch helix hypothesis that proposed 

cycling of H27 between the 885 and 888 conformations during translation (52, 95) came 

from the fact that in all crystal structures H27 knits together distant parts of 16S rRNA,  
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Figure 2-7.H27 from E. coli 16 rRNA with bound tetracycline.   (PDB ID 1HNW) 

(50) Nucleotides 885 and 888 are colored in cyan and the looped out G890, part of loop E 

and producing a key resonance in our NMR studies, is colored red. A cross-link 

characteristic for loop E involves U891 and A906 (tan), whereas the cross-link observed 

in our studies of the isolated H27 occurs between A892 and U905 (both green). In the 

crystal structure, tetracycline (yellow) interacts with nucleotides A892 and C893 (yellow 

stick). This figure was constructed with Nuccyl and rendered with MacPyMOL. 
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particularly the decoding center in H44 with H11 of the 5’ domain. Upon message 

decoding, H27 then could plausibly transduce local dynamics into the global structural 

rearrangements observed by cryo-electron microscopy (30, 48, 49, 86, 87). If indeed no 

H27 conformational cycling occurs in present day ribosomes, as is the current assertion 

(54, 92), it is intriguing to ask how tertiary structure contacts in the ribosomal matrix may 

so completely suppress the inherent dynamics we observe for the two nearly isoenergetic 

conformations of an isolated H27. Given the high evolutionary conservation of the H27 

sequence (93) one may speculate that perhaps a prebiotic RNA-only ribosome relied on 

conformational switching. Yet when translocation became catalyzed by an EF-G-like 

protein cofactor, more subtle conformational adjustments around H27 began to suffice, 

especially in a region that overall appears to be very dynamic (49, 142). Such subtle 

adjustments may involve, for example, only partial slippage by one or two, rather than all 

three nucleotides of the full 885-to-888 conformational switch.  However, there would 

seem to remain at least the formal possibility that the catalytic action of EF-G may mask 

the deleterious effects in a cell line only producing ribosomes incapable of adopting the 

888 conformation, and that in wild type ribosomes, the H27 switch may still be active.   

Suppression of conformational adjustments around H27 may also present  another 

mode of action for the broad-spectrum antibiotic tetracycline that primarily seems to 

inhibit translation by blocking binding of aminoacylated tRNA to the ribosomal A-site. 

Two independent atomic resolution crystal structures of T. thermophilus 30S subunits in 

complex with tetracycline revealed multiple binding sites for the antibiotic (50, 127). A 

primary binding site is located near H34 in the 30S A-site, which is in agreement with 

previous biochemical studies as well as cryo-EM localization of the Tet(O) protection 

protein (143, 144). Tetracycline also  inserts between H27 and H11 to bind to A892 and 

C893,  becoming the secondary binding site that shows a slightly lower occupancy 

relative to the primary binding site when 80 µM tetracycline is  soaked into 30S crystals 

(50) (Figure 2-7). This secondary site is also observed in the ribosome upon addition of 

120 µM tetracycline through the protection of A892 from DMS modification (145) and a 

direct UV-cross-link between G890 and the antibiotic (146). Strikingly, our apparent 

tetracycline dissociation constant of 120 µM based on suppression of H27 conformational 

dynamics matches the concentration range where it appears to bind to H27 in the 
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ribosome. Clearly, tetracycline is promiscuous in its binding to RNA since four additional 

binding sites are partially occupied in one of the two 30S crystal structures (127) and it 

has been observed to inhibit catalysis in both the hammerhead and hepatitis delta virus 

ribozymes (147, 148). However, the apparent dissociation constants are markedly 

reduced (to ~500 µM) in the latter cases, suggesting that the tetracycline effect we 

observe for H27 is quite specific. Thus, while the ribosome may no longer fully exploit 

the rapid conformational dynamics inherent to a slippery sequence such as that of H27 

from E. coli 16S rRNA, a broad-spectrum antibiotic such as tetracycline still specifically 

binds  H27, presumably to inhibit translation. We are only starting to glimpse the 

complex linkage between local and global structural rearrangements in the ribosomal 

machinery during protein biosynthesis, yet it is clear that model systems such as H27 will 

help bridge our current gap in understanding. 
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CHAPTER 3:  
 

SOLUTION PROBING OF METAL ION BINDING BY HELIX 27 FROM 

ESCHERICHIA COLI 16S RIBOSOMAL RNA2 

 

As the most abundant cellular divalent metal ion, Mg2+ is thought to be crucial to 

RNA function by promoting folding through a reduction of the electrostatic repulsion 

between the negatively charged backbone phosphates. RNA electrostatic potential and 

ion distribution calculations in combination with spectroscopic and thermodynamic 

measurements have led to our current understanding that a majority of Mg2+ ions at 

physiologic (millimolar) concentrations readily traverse the solvent accessible surface of 

an RNA and move from one negative potential sink to the next on the millisecond 

timescale (149-152). Any RNA dynamics will be linked to rearrangements of this 

diffusely bound, fully hydrated cation cloud around the RNA and vice versa. 

Occasionally a Mg2+ ion may site-specifically reside in a region of particularly high 

electronegative surface potential, such as close to phosphates partially buried within a 

tightly folded RNA, however, the energetic penalty for partial dehydration must be 

overcome to form an inner-sphere coordinated metal-RNA chelate (150, 152). Recent 

                                                 
2 Adapted with permission from Lambert, M.N., Hoerter, J.A., Pereira, M.J., and Walter, N.G., RNA 11, 
1688-700.  Copyright 2005, Cold Spring Harbor Press.  Meredith Lambert carried out the NMR 
experiments, John Hoerter carried out the time-resolved FRET experiments, and Miguel Pereira carried out 
the Terbium(III)-footprinting. 

3.1 Introduction 
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Figure 3-1. Helix 27 is centrally located within 16S rRNA. a) Secondary structure map 

of 16S rRNA from E. coli, (90) with helix 27 circled. b) Helix 27 NMR construct. The 

proposed 912-885 secondary structure of the helix 27 sequence is shown in black. Gray 

nucleotides were added to preferentially stabilize the 885 conformation for NMR study. 

Dashes represent canonical Watson-Crick base pairs, dots represent known non-Watson-

Crick base pair interactions.   
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advances in x-ray crystallography have yielded many insightful RNA crystal structures, 

which often depict metal ions bound in specific sites. Relatively little is known, however, 

about how such seemingly stable metal ion binding sites in the frozen solid state of a 

crystal compare with metal ion binding properties in solution (150-154). 

Helix (H)27 is located within the decoding region of 16S ribosomal (r)RNA from 

Escherichia coli (Fig. 3-1a) (45). Cryo-electron microscopy studies have indicated that 

relative ratcheting motions of the 30S and 50S ribosomal subunits during translational 

translocation are centered around H27 (49), which serves as an inter-subunit bridge in a 

very dynamic region of the ribosome (155). In 1997 Lodmell and Dahlberg proposed that 

the H27 stem-loop is dynamic and alternates between two plausible base-pairing patterns 

(Fig. 3-1b), the 912-885 (885) and 912-888 (888) conformations, early in the translational 

cycle (52). Subsequent crystal structures of “open” and “closed” forms of the 30S subunit 

in complex with aminoglycoside antibiotics consistently depict H27 in the 885 

conformation (91), as do crystal structures of hyperaccurate ribosomes containing S12 

mutations (97). Follow-up studies by the Dahlberg group revealed that their previous 

findings originated from a synergistic effect between H27 and selective marker mutations 

(54), suggesting that H27 indeed does not need to switch between conformations during 

translation. In contrast, an isolated H27 exists in a rapid dynamic equilibrium between the 

885 and 888 conformations, indicative of a low energy barrier for conformational 

switching (55). A simple extension of the terminal helix of this isolated H27 stabilizes the 

885 conformation (55), making it a suitable system to probe the metal ion binding of this 

ribosomal structural element in solution. This is of particular interest since the 885 

conformation contains a loop E motif (Fig. 3-1b), a common structural motif in RNA 

(98). Bacterial 30S ribosomal subunit crystal structures depicting magnesium ion binding 

sites consistently place two such Mg2+ binding sites at opposite ends of H27 (44-46, 156, 

157) ; one (Mg73) adjacent to the G886-U911 pair, and another one (Mg126) within the 

GNRA tetraloop (Fig. 3-1b), a common metal ion binding site (154, 158-160). The metal-

RNA distances are all >2.8 Ǻ, consistent with the notion that these metal ions are outer-

sphere (diffusely) bound. However, it is unclear whether in solution similar and/or 

additional sites are occupied. 
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To begin to probe the relationship between metal ion binding sites inferred from 

crystal data of H27 and those in solution, we have applied NMR chemical shift assays, 

Tb3+ footprinting, and time-resolved (tr)-FRET based distance measurements to an 

extended construct representing the 885 conformation of H27 from E. coli 16S rRNA 

(Fig. 3-1b). Our NMR and Tb3+ footprinting data verify the crystallographically observed 

base-pairing pattern and Mg2+ binding sites in solution (44-46, 156, 157). In addition, 

NMR analyses point to metal ion interactions in the vicinity of the tandem G894-U905 

and G895-U904 wobble pairs that are not predicted by the crystal structures, while time-

resolved (tr)-FRET measurements reveal an end-to-end distance increase in H27 upon 

association with Mg2+. We propose that only a subset of H27-metal ion interactions are 

described in crystal structures of the small ribosomal subunit where magnesium ion 

binding sites are observed, and that local dynamics on the NMR timescale afforded by 

solution conditions may contribute to these differences. Our studies of H27 highlight 

potential discrepancies between RNA-metal ion interactions in solution and in crystals. 

 

Design and synthesis of the helix 27 NMR construct.  Helix 27 RNA construct 885 

(5’-GGC GGG GAG UAC GGC CGC AAG GUU AAA ACU CGC C-3’) (Fig. 3-1b) 

was designed with the addition of extra G and C nucleotides to the helix terminus of the 

natural H27 sequence to stabilize the 912-885 conformation over the 912-888 and prevent 

switching between the two H27 base-pairing patterns. The molecule was transcribed in 

vitro from a double-stranded DNA template containing a T7 RNA polymerase promoter 

region, as described previously (55). For the uniformly 13C/15N-labeled sample, 

isotopically enriched nucleotides (Silantes) were substituted for unlabeled nucleotide 

triphosphates. Following transcription, EDTA was added to the reactions to a final 

concentration of 60 mM, and reaction mixtures were extracted with an equal volume of 

phenol followed by two extractions with equal volumes of a 24:1 CHCl3:isoamyl alcohol 

mixture. Centricon-3 centrifugal filter devices (Amicon) were used to concentrate the 

protein-free extracts and remove excess nucleoside triphosphates. H27 885 samples were 

3.2 Materials and Methods 
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then separated from abortive transcripts and template DNA by electrophoresis on 

denaturing, 8 M urea, 20% polyacrylamide gels. RNA was detected by UV shadowing 

and appropriate bands were excised and eluted by crushing and soaking in 5 mM EDTA. 

The RNAs were further purified by anion exchange with Sephadex A-25 resin, and 

exchanged into NMR buffer (10 mM NaiPO4, pH 6.4, 0.1 mM EDTA, 50 mM NaCl) 

using Centricon-3 concentrators. Samples were concentrated to approximately 200 µL, 

and 99.9% D2O (Aldrich) and NMR buffer were each added to the samples in 

predetermined amounts so that the final volume for each sample was 225 µL, and the 

final concentration of D2O (for lock) was 5%. Final concentrations, determined by 

absorbances at 260 nm, of the 885 construct were ~0.35 mM and ~0.6 mM, for the 

homonuclear and 13C/15N isotopically labeled samples, respectively. D2O-matched 

microvolume NMR tubes (Shigemi) were used for data collection.  

NMR data acquisition and processing.  One-dimensional Mg2+ titration 

experiments with the helix 27 885 construct were performed at 4 ºC on a 600 MHz 

Bruker Avance spectrometer. Spectra were collected with 128 transients, and a jump-and-

return water suppression scheme coupled with a WATERGATE pulse train was utilized 

(108, 109). Sterile-filtered 1 M and 100 mM stock solutions of magnesium chloride 

hexahydrate, 99.995% (Aldrich), were carefully added to each sample to stepwise 

increase their Mg2+ concentrations. Magnesium ion concentrations noted in Figure 3-3 

and referred to throughout the text reflect the final concentration of the added metal ions 

in molar equivalents, relative to the RNA concentration, and are not adjusted to reflect 

the free metal ion concentrations according to uptake of metal ions by the RNA or the 0.1 

mM EDTA background present in the NMR sample buffer. The sample was allowed to 

re-equilibrate at 5 ºC and was re-locked and re-shimmed, the probe was re-tuned, and the 

π/2 pulse recalibrated for each Mg2+ concentration. Spectra were processed with 

NMRPipe using a solvent filter and a cosine-bell apodization function, and zero-filled 

once before Fourier transforming (111). NMRDraw was used to visualize each spectrum 

and detect peaks (111). Data were then reprocessed using Bruker software to create the 

stacked plot shown in Figure 3-3. Plots of chemical shift (accurate to an error of about 

±0.004 ppm due to limited digital resolution of the spectrum (sweep width (ppm) divided 

by number of acquisition points)) vs. added Mg2+ equivalents were fit with the following 
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binding isotherm for a system in fast exchange, where the RNA concentration is of the 

same magnitude as the metal ion concentration (161, 162). 
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Equation 3-1 

 

δobs is the observed chemical shift, δf is the chemical shift of the unbound imino proton, 

δb is the chemical shift of the fully bound proton, [ion]t is the total added magnesium ion 

concentration in mM, [RNA]t is the RNA concentration, and Mg1/2 is the magnesium half-

titration point. Chemical shifts reported are accurate within the digital resolution of the 

spectrum, or sweep width (ppm) divided by the number of acquisition points. The digital 

resolution in the Mg2+ titration data is therefore 0.004 ppm. It should be noted that the 

Mg2+ concentrations used to compute the binding isotherms are added metal ion 

concentrations, and do not reflect the true free metal ion concentration since the 

polyanionic RNA uptakes an unknown number of the metal ions in solution. Therefore, 

the extracted magnesium half-titration points, Mg1/2, can only be compared relative to 

those of other resonance shifts within the same sample (163). 

NOESY spectra of exchangeable protons with and without cobalt(III) hexammine, 

as well as the imino 1H-15N HSQC spectrum, were also acquired at 5 ºC on the Bruker 

Avance 600 MHz spectrometer. NOESY spectra were collected with 350 and 150 ms 

mixing times for samples with and without 2 mM hexamminecobalt(III) chloride, 

99.999% (Aldrich), respectively. NOESYs were acquired with 2048 complex points, 256 

increments, and a sweep width of 12,019.231 Hz in both the directly and indirectly 

detected dimensions. The carrier was placed at the water proton resonance position in all 

cases. In the 1H-15N HSQC experiment, 15N decoupling parameters, delays, sweep width 

(1824.568 Hz) and carrier position (150.911 Hz) were optimized for observation of imino 
1H-15N cross peaks. 2048 complex points and 512 increments were collected, with a 1H 

sweep width of 17985.612 Hz. In these experiments, quadrature detection was achieved 

by implementation of the States-TPPI method (110), and spectra were processed and 
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visualized with NMRPipe and NMRView software (111). Processing for these spectra 

included apodization with a cosine-bell function, application of a solvent filter, and zero-

filling once prior to Fourier transforming.  

 

Terbium(III) footprinting experiments.  Helix 27 construct Tb885 (5’-CCG CCU 

GGG GAG UAC GGC CGC AAG GUU AAA ACU CAG GCG G-3’) was obtained 

commercially (Dharmacon) and deprotected according to manufacturer’s protocols. 

Tb885 was subsequently 5’ end labeled using [γ-32P]ATP and purified by denaturing, 8 

M urea, 20% polyacrylamide gel electrophoresis. The band corresponding to the H27 

construct was excised and eluted by diffusion into 1 mM EDTA overnight at 4 ºC, and 

then ethanol precipitated. For the footprinting reactions, radiolabeled Tb885 and (≥ 4 

nanomoles) was first dissolved in 5 µL 2× annealing buffer (100 mM Tris pH 7.5, 40 mM 

MgCl2, and 100 mM NH4Cl) and 4 µL distilled deionized water, heated at 70 ºC for two 

minutes, and allowed to cool at room temperature for an additional five minutes. 1 µL of 

10× Tb3+ solution (20 mM TbCl3, 5 mM MES pH 5.5) was added to the reaction mixture 

and incubated at 25 ºC for two hours. A control reaction containing 5 mM MES, pH 5.5 

buffer, instead of 10× Tb3+ buffer, was also run in parallel. 50 mM EDTA was added to 

the 10 µL reactions to stop it, and the Tb885 RNA construct was subsequently ethanol 

precipitated overnight. Precipitated Tb885 RNA was analyzed on an 8M urea, wedged 

20% polyacrylamide sequencing gel after resuspension in loading buffer containing 80% 

formamide and 0.025% each of xylene cyanol and bromophenol blue. The Tb885 RNA 

sample was run alongside a sequencing ladder of RNA partially digested by G-specific 

RNase T1 and alkaline hydrolysis. Gels were exposed to phosphorimager screens 

overnight at room temperature, and bands were quantified using ImageQuant software of 

a Molecular Dynamics Storm 840 phosphorimager. The relative extent of excision at 

each nucleotide (Π) was calculated as described (164) from the following equation: 
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where x is the analyzed nucleotide position in the RNA, and 0 mM Tb(III) is the control 

reaction, described above. Data from the Tb885 constructs were further normalized 

relative to the value calculated for ΠC899, which allowed for comparison of results from 

different gels. Results were within 5% error between experiments. 

 

Time-resolved FRET measurements.  RNA construct F885T for FRET 

experiments was synthesized in a singly fluorescein-labeled form by the Howard Hughes 

Medical Institute Biopolymer/Keck Foundation Biotechnology Resource Laboratory at 

the Yale University School of Medicine (New Haven, CT) with the same sequence as 

construct 885 (5’-GGC GGG GAG UAC GGC CGX AAG GUU AAA ACY CGC C-3’), 

except that the C899 within the GCAA tetraloop and U911, indicated as X and Y 

respectively, were replaced with Fluorescein dT and Amino-Modifier C6 dT (Glen 

Research), respectively. The synthetic RNA was deprotected, purified, and subsequently 

labeled with tetramethylrhodamine succinimidyl ester (Molecular Probes) as previously 

described (55).  

The global structures of the doubly-labeled, conformationally locked H27 

construct F885T was studied as a function of Mg2+ concentration by tr-FRET analysis. 

The H27 RNA was annealed by heating at 70 ºC for two minutes and cooling to room 

temperature over ten minutes. The sample was then incubated at 25 ºC for ≥ 5 min in 50 

mM Tris-HCl, pH 7.5, 50 mM NH4Cl with an appropriate MgCl2 concentration, prior to 

collection of time-resolved emission profiles of the donor fluorescein using time-

correlated single-photon counting similar to previously described procedures (23, 29). To 
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measure donor-acceptor distance distributions, two time-resolved fluorescence decays 

were collected, with and without the acceptor fluorophore. The fluorescein emission 

decay in the donor-only complex was used to extract three intrinsic donor lifetimes with 

their fractional contributions by a sum-of exponentials fit. The data from the doubly 

labeled complex were then fit with the Förster model for distance distributions, as 

described (165). The full width at half maximum (FWHM) of the derived distance 

distributions did not increase by more than 10% over the whole range of Mg2+ 

concentrations. An additional adjustable fitting parameter that corrects for singly labeled 

(fluorescein only) RNA was included in these analyses; incomplete acceptor labeling and 

separation of doubly from singly labeled material combined to give a singly labeled 

fraction of up to 30%. A control was performed in which the fraction of singly labeled 

material was intentionally increased by 20%; the singly labeled fraction found in the 

resulting fit increased accordingly by 20%, as expected. The fits and inter-fluorophore 

distances at higher Mg2+ concentrations were not substantially different when the fraction 

of singly labeled material was fixed to the value found at zero Mg2+ or, alternatively, 

freely varied.  

Mg2+ was titrated by incremental addition of 0.5 µL aliquots of appropriate MgCl2 

stock solutions, taking into account the volume change; the volume at the end of any 

given titration increased by not more than 8%. Single distance distributions fit well, as 

judged by the low reduced χ2 values (<1.3) and by evenly distributed residuals. To extract 

absolute distances, a value of 55 Å was used for the Förster distance, R0, of fluorescein 

and tetramethylrhodamine (165), based on a value of 2/3 for an isotropic orientation 

factor, which was supported by the high mobility of the fluorophores as evident from 

their relatively low fluorescence anisotropies (~0.12 for fluorescein and ~0.26 for 

tetramethylrhodamine) observed in the F885T FRET construct. Mean fluorophore 

distances were fit with a modified Hill equation as follows: 
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where Mg1/2 is the magnesium half-titration point, n is the Hill coefficient (which was 

close to unity in both fits indicating lack of cooperativity in metal ion binding), R0 is the 

initial FRET distance at 0 mM Mg2+, and Rmax is the FRET distance at saturating 

magnesium ion concentrations. A similar titration was also performed in an NMR-like 

phosphate buffer (10 mM NaPi, pH 7.0, 50 mM NaCl, 0.1 mM EDTA) . The pH had to 

be raised from 6.4 to 7.0 since fluorescein emission is pH dependent and the detected 

signal diminishes as the pH drops below neutral. Nonetheless, FRET data collected in 

phosphate buffer gave the same absolute distance changes as data collected in Tris buffer, 

although the values were offset by approximately 0.5 Å. Extracted Mg1/2 values for the 

two data sets were within error of each other. 

 

Establishment of the base-pairing pattern of the 885 conformation 

Previous studies by our group have indicated that an isolated H27 exists in a rapid 

dynamic equilibrium between the 885 and 888 conformations, suggesting a low energy 

barrier to conformational switching (55). To stabilize a single conformation and suppress 

any conformational switching, we here have designed an NMR construct with three G-C 

(C-G) pairs added to the helix terminus that “lock” it into the 885 conformation (Fig. 3-

1b). To verify the predicted base-pairing pattern of the 885 conformation, NOESY 

spectra of exchangeable protons were collected and imino proton resonances assigned by 

standard strategies. In particular, we used imino-imino and imino-amino NOEs to 

identify sequential residues, and 1H-15N HSQC cross peaks to unambiguously distinguish 

G from U imino proton resonances (166, 167). Figure 3-2 shows relevant regions of 

exchangeable NOESY and 1H-15N HSQC spectra of 885 with sequential connectivities 

drawn and resonance assignments labeled. Assignments were initially made in 10 mM 

NaiPO4, pH 6.4, 0.1 mM EDTA, 50 mM NaCl, in the absence of Mg2+, so that the effect 

of metal ions on specific resonances could subsequently be assessed.  

3.3 Results 
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Figure 3-2. Two-dimensional NMR spectra used to assign imino proton resonances 

in the 885 construct. Imino-amino and imino-imino regions of 150-ms mixing time 

NOESY spectra of 885, center two panels. Connectivities are drawn with solid lines 

between nucleotides demonstrating imino-imino NOEs, and nucleotide assignments for 

imino protons are labeled along the diagonal. Dashed lines connect imino-amino NOEs 

with the diagonal. Bottom panel depicts portions of a 1H-15N HSQC spectrum that 

unambiguously distinguishes imino nitrogen resonances of U’s (downfield, 156-162 

ppm) from those of G’s (upfield, 146-149 ppm). Top panel is a portion of a 350 ms 

mixing time NOESY spectrum acquired with the addition of 2 mM cobalt(III) hexamine. 

Strong cross peaks are observed between individual imino proton resonances and the 

averaged Co(NH3)6
3+ hexammine resonance at ~3.7 ppm. NMR data was processed with 

NMRPipe and spectra were visualized using NMRDraw software (111).   
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NMR spectra of the 885 construct do not show any U NH3 imino proton 

resonances within the 12-15 ppm Watson-Crick region (Fig. 3-2), consistent with the 

base-pairing pattern in crystal structures that is devoid of canonical A-U base pairs (Fig. 

3-1b) (44-46, 156, 157). Instead, the imino proton NMR spectrum of our 885 construct 

displays all of the characteristics of the loop E motif, as first documented by Szewczak 

and Moore in the ribosomal sarcin-ricin loop (117). This includes a far upfield shifted 

NH1 imino proton resonance belonging to the looped-out G890 (Fig. 3-2). In addition, 

the spectrum shows a sharply upfield shifted G NH1 resonance at 10.6 ppm, a GNRA 

tetraloop hallmark, which we were able to assign to G898 (Fig. 3-2). Two upfield U 

imino proton resonances were also observed between 11.5 and 12.0 ppm that display 

strong NOEs to upfield G NH1 resonances, indicative of G-U pairing. These resonances 

were assigned to the U NH3 resonances within the G895-U904 and G886-U911 wobble 

pairs (Figs. 3-1b and 3-2). The line widths of a number of resonances throughout the 

molecule are broadened slightly, including G886 NH1, U911 NH3, U904 NH3, and G890 

NH1, providing evidence for molecular motion near the G-U wobble pairs and the looped 

out base. Nevertheless, the assignable number of imino proton resonances in Figure 3-2, 

together with the high resolution of the spectrum, indicates that the 885 construct forms a 

single, well-defined hairpin. This hairpin contains key features of the loop E motif, 

namely a non Watson-Crick paired G within the helix and at least two G-U pairs as 

evidenced by NOESY spectra of exchangeable protons. Therefore, it most likely assumes 

the conformation observed for H27 in crystal structures of the 30S subunit and the intact 

ribosome, as expected (44-46, 156, 157).  

 

NMR based detection of cobalt(III) hexammine and Mg2+ binding  

To begin to pinpoint binding sites of multivalent metal ions in solution, we 

utilized cobalt(III) hexammine (Co(NH3)6
3+) as a probe for outer-sphere Mg2+ 

coordination in the 885 construct. Co(NH3)6
3+ has traditionally been employed as a fully 

coordinated magnesium hexahydrate mimic because it is strongly positively charged, and 

its octahedral geometry and the hydrogen-bonding capabilities of its exchange-inert 

ammonium ligands resemble those of the primary-shell water molecules of Mg(H2O)6
2+ 
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(158, 168, 169). Co(NH3)6
3+ amino protons give rise to an averaged 1H-NMR signal at 

~3.7 ppm, and NOEs to this distinctive resonance accurately identify metal ion binding 

sites within an RNA (158, 168, 169). Therefore, we collected NOESY spectra of 

exchangeable protons for the 885 construct upon addition of hexamminecobalt(III) 

chloride to a final concentration of 2 mM. Most of the imino proton resonances in the 

H27 construct exhibit weak cross peaks to the hexammine resonance and thus association 

with the metal-ion complex, indicative of diffuse ion binding within the helix grooves. 

Only a select few resonances display stronger NOEs with the hexammine resonance, 

suggestive of more specific binding of Co(NH3)6
3+ (Fig. 3-2, top panel). Significantly, 

relevant crystal structures of the 30S ribosomal subunit depict a Mg2+ ion binding in the 

major groove of H27 near the G886-U911 pair (45, 156), consistent with the NOEs we 

observe from the G887 NH1 and U911 NH3 resonances to the averaged resonance of the 

ammonium ligands of the Co(NH3)6
3+ complex (Fig. 3-2). Observation of such NOEs 

may be expected, since Co(NH3)6
3+ was previously demonstrated to specifically bind to 

the unusual major groove geometry created by a tandem G-U wobble pair (168). In 

contrast, we do not observe a cross peak between the ammonium ligands of Co(NH3)6
3+ 

and the tetraloop G898 NH1 resonance. 

Next, magnesium chloride titrations were performed to detect potential Mg2+ 

binding sites by chemical shift analysis for comparison with those from our Co(NH3)6
3+ 

experiments and those found in relevant 30S ribosomal subunit crystal structures (44-46, 

156, 157) . Figure 3-3a shows one-dimensional 1H-NMR spectra of the 885 construct 

acquired in the presence of increasing molar equivalents of Mg2+ (at an RNA 

concentration of 0.35 mM in 10 mM NaiPO4, pH 6.4, 50 mM NaCl). Almost every imino 

proton resonance in the molecule shifts slightly (typically < 0.05 ppm) in position (Fig. 3-

3b), indicating that Mg2+ binds diffusely throughout the molecule, and/or metal binding 

induces structural changes that result in a slight shifting of imino proton resonances. As is 

typical in NMR spectra of RNA, imino resonances broaden with the addition of high 

concentrations of Mg2+ ions; however, addition of low (millimolar) concentrations of 

Mg2+ first results in the narrowing of several resonances in the molecule, including those 

belonging to G886 NH1, G895 NH1, G898 NH1, G903 NH1, and U904 NH3, consistent  
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Figure 3-3. NMR-detected magnesium titrations of the H27 885 construct. a) Stacked 

885 imino proton spectra acquired with increasing Mg2+ concentration, as indicated by 

added molar equivalents. Imino proton resonance assignments are labeled, and those 

belonging to G887, G898, U911, are marked with asterisks in red, and those belonging to 

U904, G903, G902 and G895 are labeled in blue. b) Plot of chemical shift changes for 

imino resonances of the 885 construct in dependence of the Mg2+ molar equivalents. 

Curves are shown for those resonances that fit to binding isotherms describing a one 

metal per site model (161, 162). Individual resonance positions were found at each metal 

ion concentration using the peak finder utility in nmrDraw and defining parameters for 

both a reasonable threshold for positive peak detection and a χ2 probability threshold for 

noise peak rejection by χ2 test. 
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with Mg2+-induced stabilization of local and/or global architecture within the molecule 

(Fig. 3-3a).  

Specific resonances show relatively significant chemical shift changes with 

increasing metal ion concentration, suggesting possible specific association with Mg2+ 

(Fig. 3-3 a and b), and/or more substantial rearrangements of local architecture upon 

metal binding. For these resonances, chemical shift changes as a function of Mg2+ 

concentration were fit well with binding isotherms based on stoichiometric, fast exchange 

binding between the RNA site and a Mg2+ ion (161, 162). The resulting relative Mg2+ 

half-titration points (Mg1/2) are shown in Table 3-1. The tetraloop G898 NH1 resonance 

demonstrates a particularly large (0.13 ppm) downfield shift with a corresponding Mg1/2 

of 1.5 ± 0.3 mM. This observation is consistent with previous studies that have shown 

that GNRA tetraloops bind Mg2+ tightly (154, 158-160). Other resonances that display 

significant downfield shifts were those of U904 NH3 (0.16 ppm) and G887 NH1 (0.12 

ppm), with relative Mg2+ half-titration points of Mg1/2 = 2.0 ± 0.6 mM and Mg1/2 = 6.1 ± 

1.1 mM, respectively (Fig. 3-3b, Table 3-1). The resonance shift of U911 NH3 was less 

significant (0.05 ppm), but fit a binding isotherm, yielding Mg1/2 = 5.4 ± 1.2 mM (Fig. 3-

3b, Table 3-1). Other imino resonances display slight upfield shifts with increasing Mg2+ 

concentration that fit our stoichiometric binding model, namely those belonging to G895 

(-0.06 ppm), G902 (-0.02 ppm), and G903 (-0.06 ppm); extracted relative Mg2+ half-

titration points were Mg1/2 = 6.5 ± 2.3 mM, Mg1/2 = 0.7 ± 0.6 mM, and Mg1/2 = 5.4 ± 0.9 

mM, respectively (Fig. 3-3b, Table 3-1). Among the latter six nucleotides, G902 

participates in the closing base pair of the GCAA tetraloop, while G895, U904, and U911 

participate in G-U wobble pairs, and G887 and G903 are adjacent to G-U wobble pairs. 

Such chemical shift changes are consistent with metal ion binding near these locations, as 

reported in other RNAs featuring G-U pairs (158, 168, 169) and GNRA tetraloops (154, 

158-160). These data, however, cannot distinguish between the possibilities that the 

chemical shifts are due to either a direct impact of the cation or structural rearrangements 

affected by nearby metal ion binding. The fact that G887 and U911 imino proton 

resonances display strong NOESY crosspeaks to the ammonium ligands of Co(NH3)6
3+ 

(Fig. 3-2) does provide such a distinction and supports the existence of a metal ion 

binding site in this region, next to the G886-U911 wobble pair. By contrast, we found no  
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Nucleotide  Mg1/2 
(mM)* 

Δmax
 (ppm)† Strong NOE to 

Co(NH3)6
3+ 

amino protons? 

Relative fraction cleaved 
in Tb3+ footprinting 
experiments (Normalized 
Π) 

 G887 6.1 ± 1.1 0.117 ± 0.004  Yes 0.19 

 G895 6.5 ± 2.3  -0.057 ± 0.004  No 0.42 

 G898 1.5 ± 0.3 0.132 ± 0.004  No 0.61 

 G902 0.7 ± 0.6  -0.020 ± 0.004  No 0.38 

 G903 5.4 ± 0.9 -0.064 ± 0.004  No 0.30 

 U904 2.0 ± 0.6  0.157 ± 0.004  No 0.41 

 U911 4.2 ± 2.4 0.048 ± 0.004  Yes 0.16 

 
 
 

Table 3-1. Comparison of solution NMR spectroscopy and terbium footprinting 

data for potential metal ion binding sites within H27. * Mg1/2 values were determined 

from the one metal per site model described in Materials and Methods, where the total 

Mg2+ ion concentration is used as input (161, 162). This concentration necessarily does 

not reflect the (unknown) free metal ion concentration so that the derived relative half-

titration points Mg1/2 should only be compared amongst the resonance shifts observed 

here (163). 

† Reported Δmaxvalues are accurate within the digital resolution of the spectrum, which is 

0.004 ppm. 
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evidence for a strong NOE between the tetraloop G898 NH1 resonance and the 

Co(NH3)6
3+ amino proton, nor was there evidence for such an NOE involving the U904 

NH3 resonance, although these two resonances display the most significant shifts upon 

addition of Mg2+; a possibility is that Mg2+ and Co(NH3)6
3+ may bind to (slightly) 

different sites within H27.  

 

Terbium(III) footprinting confirms secondary structure and metal binding  

The lanthanide metal ion terbium(III) has been used to footprint the secondary 

and tertiary structure of various RNAs and to identify potential regions of enhanced 

structural dynamics and Mg2+ binding (112, 164, 170-172). Tb3+ facilitates RNA 

backbone scission by first binding near the negatively charged backbone phosphate 

groups, and then abstracting the proton from a nearby 2’ hydroxyl group. The resulting 2’ 

oxyanion attacks the adjacent phosphodiester linkage, which results in scission of the 

nucleotide chain at that location (170, 173). Specific metal binding sites, single-stranded 

tracts, and non-Watson-Crick base-paired regions are particularly vulnerable to Tb3+-

induced hydrolysis (174-176). However, slow scission at all nucleotides will eventually 

occur at sufficiently high terbium(III) concentrations.  

Here we have utilized Tb3+-mediated footprinting as a complementary 

biochemical technique to map the secondary structure and Mg2+ binding sites in the 885 

conformation of H27. Trace amounts (< 4 nmol) of 32P radiolabeled footprinting 

construct Tb885 (with a further extended terminal helix) were incubated with 2 mM Tb3+ 

in 50 mM Tris pH 7.5, 20 mM MgCl2, 50 mM NH4Cl at 25 ºC for two hours and 

subsequently analyzed on a denaturing polyacrylamide sequencing gel. Normalized 

fractions of terbium(III)-mediated scission (expressed as ratio Π, see Materials and 

Methods), obtained from the quantified gel bands, are shown in Figure 3-4a. A schematic 

of the Tb885 secondary structure with quantified Tb3+ hits (occurring between the 

indicated nucleotides) is shown in Figure 3-4b. It reveals that, in general, nucleotides 

G888 through A907 of Tb885 are cut with significantly (up to 2-fold) greater probability 

than regions G881 through G887 and A908 through C912. These more labile backbone 

regions are components of the loop E motif, adjacent G-U tandem wobble pairs, and 
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Figure 3-4.  Terbium footprinting of the helix 27 Tb885 construct. a) Bar graph 

representing relative extents of scission 3’ of each nucleotide, Π, as defined in Materials 

and Methods. Data was normalized relative to ΠC899. b) Secondary structure for the 

Tb885 construct used for terbium(III) footprinting studies. The relative strength of the 

Tb3+ hit 3’ of each nucleotide is shown mapped onto the secondary structure.   
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GNRA tetraloop (Fig. 3-4). The loop E motif is characterized by an unusual, S-shaped 

backbone conformation (98). We find that this backbone geometry and perhaps its 

dynamics make the phosphodiester bonds in this region comparatively vulnerable to 

scission (Fig. 3-4), similar to observations for the related loop E motif of the hairpin 

ribozyme (171). Other strong Tb3+ hits within Tb885 are clustered towards the side of the 

loop E motif closed by the (weak) G894-U905 pair, consistent with metal ion binding in 

the vicinity of the G894-U905/G895-U904 tandem wobble pairs, in accord with our 

NMR data. Particularly intense Tb3+ hits are observed in the tetraloop region, a 

documented lanthanide metal binding site (160), in good agreement with our NMR data 

that suggest metal ion binding in the loop. Table 3-1 compares our terbium(III)-mediated 

footprinting data for nucleotides where NMR provides independent evidence of nearby 

metal ion binding.  

In summary, our Tb3+ data support several conclusions from our NMR studies. In 

particular, scission patterns of the Tb885 construct are consistent with the proposed 

secondary structure, with weak cuts in the predicted helical regions and stronger cuts in 

the non-canonical loop E motif, tandem G894-U905 wobble pair, and tetraloop. These 

observations support the notion that Mg2+ binding sites reside within the non-Watson-

Crick base paired regions of H27.  

 

FRET reveals differences in distance upon Mg2+ binding  

We find NMR to be a reliable reporter of local structure and metal binding in the 

H27 conformers, but the observed short-range (< 5 Å) NOE interactions are poor 

indicators of global conformation. To aid in assessment of more generalized Mg2+-

induced changes in H27 architecture, time-resolved (tr-)FRET was employed. tr-FRET is 

an established tool to determine, at angstrom resolution, long-range distances between 

donor and acceptor fluorophores attached to specific sites in an RNA (165, 177). A 

conformationally locked 885 construct was synthesized and labeled with donor 

fluorescein attached to nucleotide 899 in the tetraloop and acceptor tetramethylrhodamine 

conjugated to a linker on nucleotide 911 in the terminal helix, generating tr-FRET 

construct F885T. In the absence of Mg2+ (in 50 mM Tris-HCl, pH 7.5, 50 mM NH4Cl; we 
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Figure 3-5.  Time-resolved FRET monitored magnesium titrations of the helix 27 

F885T construct demonstrates global structural changes upon Mg2+ binding. The 

mean distances between donor and acceptor fluorophore are shown as a function of Mg2+ 

concentration, and the curve has been fit to a modified Hill equation, yielding the 

apparent Mg2+ half-titration value, Mg1/2, as indicated (Hill coefficient (n) = 1.3 for 885, 

which is close to unity, indicating a lack of metal binding cooperativity). Fluorophores 

are attached to the F885T construct at the dT nucleotides, positions 899 and 911, as 

indicated. 
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also repeated these experiments, with similar results, in 10 mM NaPi, pH 7.0, 50 mM 

NaCl, 0.1 mM EDTA, close to our NMR buffer except for a higher pH to enhance the 

fluorescein fluorescence, see Materials and Methods), the mean of the tr-FRET derived 

donor-acceptor fluorophore distance distribution is 51.6 ± 0.2 Å. Upon Mg2+ addition, 

this mean distance increases to a maximum of 53.1 ± 0.2 Å with a Mg2+ half-titration 

point of Mg1/2 = 0.44 ± 0.06 mM, as extracted from a modified Hill fit of the distance 

profile (see Materials and Methods) (Fig. 3-5). The full width at half maximum (FWHM) 

of the distance distribution also slightly increases (by less than 10%). The overall 

lengthening observed for F885T at high Mg2+ concentrations is consistent with our NMR 

data, which suggest that the 885 conformation is stabilized by the uptake of Mg2+.  

 

We here have characterized, by several solution probing techniques, Mg2+-RNA 

interactions within a conformationally locked construct representing the 885 

conformation of H27 from E. coli 16S rRNA. Our model construct appears to diffusely 

bind magnesium hexahydrate throughout its full length, as evidenced by the slight 

shifting of nearly every imino proton resonance upon Mg2+ addition, and undergoes 

small-scale global conformational rearrangements and/or stabilization upon Mg2+ 

titration, as suggested by an increase in tr-FRET detected end-to-end distance. NMR 

NOESY spectra provide evidence for site-specific association of Co(NH3)6
3+ with the 

widened major groove of the G886-U911 pair, as is seen for other RNAs containing G-U 

wobbles (158, 168, 169). NMR chemical shift analyses support Mg2+ binding adjacent to 

tandem G894-U905/G895-U904 wobble pairs, while Tb3+ footprinting indicates 

enhanced susceptibility to metal induced cleavage in this region. NMR chemical shift 

data and Tb3+ footprinting also support the notion of a Mg2+ binding site within the 

GCAA tetraloop of the molecule. Neither of the latter two sites detectably accommodates 

Co(NH3)6
3+. 

Helix 27 in the context of the ribosome.  In phylogenetic comparisons of 16S 

rRNAs, H27 shows very little variation among species (178). In all ribosomal crystal 

3.4 Discussion 
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structures to date the loop E motif of the 885 conformation is observed (44-46, 156, 157); 

the H27 GCAA tetraloop forms tertiary hydrogen bonds with a tetraloop receptor in helix 

24 of 16S rRNA (179) and is involved in an inter-subunit bridge; the bulged C893 is 

involved in a cis-Watson-Crick pair with U244; and A909 forms a cis sugar edge/sugar 

edge interaction with A1413 (46). The alternate 888 conformation, first proposed in 1995 

based on comparative analysis of 16S rRNA sequences (53), was later demonstrated not 

to be a requisite for protein synthesis in E. coli (54). However, an isolated H27 adopts a 

dynamic equilibrium between the 885 and 888 conformations (55). It is therefore possible 

that the structural and electrostatic environment surrounding H27 within the ribosome 

may slightly alter its structural and metal binding properties from those observed in our 

solution studies. 

Our NMR and terbium footprinting data indicate that the loop E motif of the 885 

conformation of H27 is an example of an RNA segment that exhibits small-scale 

motions. Terbium footprinting reveals that a large portion of the RNA has a relatively 

susceptible backbone that is prone to Tb3+-induced scission, indicative of sufficient 

flexibility to accommodate attack of the deprotonated 2’ hydroxyl on the adjacent 

phosphodiester bond. In addition, low concentrations of Mg2+ result in the sharpening of 

several imino proton resonances, consistent with structural stabilization upon addition of 

metal. Finally, tr-FRET analyses demonstrate a lengthening of our H27 construct with 

increasing Mg2+, consistent with metal ion-induced stabilization of the helix. 

Some, but not all Mg2+ interactions in the 885 conformation are depicted in the 

relevant 30S ribosomal subunit crystal structures.  Crystal structures of the 30S 

ribosomal subunit that describe coordinates for site-bound Mg2+ ions do not depict any 

direct contacts between helix 27 and the small ribosomal subunit proteins (44-46, 156, 

157) , making it one of the few small subunit helices that do not directly interact with 

protein. Its only near-contact is with the relatively unstructured cationic N-terminal tail of 

S12 that extends into a pocket adjacent to H27, where lysine 21 lies within 3.7 Å of each 

one non-bridging phosphate oxygen of A908 and A909 (156). The associated long-range 

electrostatic interaction may stabilize the 885 over the 888 conformation in the context of 

the ribosome, while they are close to isoenergetic in isolation (55). Recent studies on the 

50S subunit have revealed that metal ions are particularly concentrated in conserved  
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Figure 3-6.  Map of protons in the 885 conformation of helix 27 that demonstrate 

either NOEs with cobalt(III) hexammine and/or significant spectral shifts upon 

addition of Mg2+. a) Crystal structure of helix 27 (nucleotides G885-C912) from 16S 

rRNA in the 30S ribosomal subunit of Thermus thermophilus (PDB ID 1FJG, (156)). 

There are two site-bound Mg2+ ions assigned in the crystal structure, Mg73 and Mg126, 

shown in magenta. Nucleotides that are shown to bind the metal ions in crystal structures 

are colored aqua, and protons that NMR data suggest may be interacting with metal ions 

(U911 NH3, G887 NH1, U904 NH3, G895 NH1, G903 NH1, G902 NH1, and G898 

NH1) are depicted as green spheres. b) Close-up view of the Mg73 binding pocket. c) 

Enlarged view of the tetraloop binding pocket occupied by Mg126. d) Electrostatic 

surface potential map of H27 from the 30S subunit crystal structure, shown in the same 

orientation as panel a. The S-turn in the backbone creates an unusually deep and narrow 

major groove that is dense with negative charge, and is likely to be a strong cation 

binding sink. The U904 NH3 and G895 NH1 protons within this groove (indicated in (a) 

by green spheres), shift considerably in resonance upon addition of Mg2+. This figure was 

generated using pyMOL software (180).    
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regions of an RNA where proteins are absent (181), suggesting that H27 may represent a 

strong metal ion binding region. In addition, thermal denaturation studies of loop E 

motifs revealed a particularly strong Mg2+ ion dependence for the melting profiles of 

these RNA constructs, implying that loop E motifs bind Mg2+ ions specifically (182). 

Relevant crystal structures of the 30S ribosomal subunit indeed depict two Mg2+ ions 

bound to H27 (44-46, 156, 157) ; one (Mg73) in the major groove adjacent to the G886-

U911 wobble pair, and one (Mg126) nestled in the GCAA tetraloop (Figs. 3-6a-c).  

How do solution probing data compare with these crystallographically resolved 

Mg2+ ions? Crystallographic conditions have typically employed 10 to 15 mM Mg2+, 

introduced as magnesium acetate and/or magnesium chloride salts (183). These 

concentrations are comparable to the concentrations of free Mg2+ used in our solutions 

studies (0-20 mM MgCl2). Table 3-1 and Figure 3-6 summarize nucleotides where we 

observe strong NOEs upon the addition of cobalt(III) hexammine as a fully hydrated 

(outer-sphere coordinated) Mg2+ mimic and/or significant chemical shifts in NMR spectra 

upon addition of Mg2+. We find three different scenarios when comparing solution with 

crystallographic data. First, the imino protons G887 NH1 and U911 NH3 show cobalt(III) 

hexammine NOEs as well as Mg2+ induced downfield chemical shifts (of 0.12 ppm and 

0.05 ppm, respectively) in solution (Table 3-1). Both protons are proximal to Mg73 of the 

ribosomal crystal structures (Figs. 3-6 a and b), which has its closest contacts with G886 

O6, G886 N7, and U911 O4 at 2.82 Å, 4.09 Å, and 3.14 Å, respectively (Fig. 3-6b). A 

subset of 30S subunit crystal structures, such as PDB ID 1IBM (16), assign an additional 

Mg2+ ion, Mg406, coordinated to G887 N7 at a distance of 3.26 Ǻ. Both the NMR and 

crystallographic data are therefore consistent with outer-sphere coordination of a Mg2+ 

ion in the major grove of this region, next to the G886-U911 wobble pair. 

Second, G898 NH1 in the GCAA tetraloop does not detectably coordinate with 

cobalt(III) hexammine in solution, but shows one of the most pronounced downfield 

chemical shifts (0.13 ppm) upon titration with Mg2+. In the crystal structures, Mg126 is 

coordinated to G898 O6 and G898 N7 at distances of 3.28 Å and 3.77 Å, respectively 

(Fig. 3-6c). Again, the NMR chemical shift and crystallography data are both consistent 

with outer-sphere coordination of a Mg2+ ion in the major grove of the GNRA tetraloop, 

in agreement with previous observations in other RNAs (154, 158-160). The fact that no 
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NOE to the cobalt(III) hexammine ligands is observed suggests that the high-charge-

density, exchange-inert cobalt(III) complex may bind at a (slightly) different location or 

with lower affinity than Mg2+. 

In the third case, strong evidence for metal ion binding within the major groove of 

the helix between the loop E motif and the GCAA tetraloop was observed in our solution 

studies, while such a metal ion binding site was not detected in ribosomal 30S subunit 

crystal structures that describe magnesium ion binding (16, 44-46, 91, 156, 157). More 

specifically, Tb3+ footprinting studies revealed that nucleotides G888 through A907 of 

Tb885 are cut with significantly (up to 2-fold) greater probability than regions G881 

through G887 and A908 through C912, consistent with metal ion association with the 

GCAA tetraloop, as well as the loop E motif and tandem G-U pairs (Figs. 3-4 a and b). 

NMR data are also suggestive of metal ion binding in the vicinity of the tandem G-U 

pairs, as the G895 NH1, G902 NH1, G903 NH1, and U904 NH3 imino proton resonances 

all display significant titratable shifts upon addition of Mg2+ (Fig. 3-3, Table 3-1). In 

particular, the U904 NH3 resonance shifts downfield more than any other resonance in 

the molecule (0.16 ppm), while the other three resonances shift upfield. While there are 

no metal ions resolved crystallographically around G895 NH1, G902 NH1, G903 NH1, 

and U904 NH3, these protons are positioned deeply within the highly negatively charged 

major (deep) groove adjacent to the loop E motif, which is expected to be a particularly 

strong metal ion binding site (Figs. 3-6 a and d) (138, 141, 184). We therefore propose 

that Mg2+ either binds near the tandem G894-U905/G895-U904 wobble pairs in solution 

and not in the crystal or, alternatively, that binding is transient under both sets of 

conditions (possibly explaining why no NOE with Co(NH3)6
3+ hexammine protons was 

observed) so that the metal ion occupancy at this site is too low to produce an assignable 

signal in crystallographic electron density maps. Additionally, if we consider the slightly 

higher monovalent cation concentration used in crystallization (50 mM – 200 mM) than 

utilized in our solution studies (50 mM – 100 mM), we cannot rule out the possibility that 

this particular site is occupied by (undetected) monovalents in the 30S crystal structures. 

In summary, we have gathered experimental evidence for metal-ion interactions 

within the distorted major groove near tandem G-U wobble pairs of an isolated helix 27 

from E. coli 16S rRNA, which are not depicted in any 30S ribosomal subunit crystal 
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structures. In addition, we find that even in a conformationally stabilized 885 structure 

small-scale dynamics occur, and that millimolar Mg2+ concentrations attenuate these 

motions. We propose that the interplay of local H27 base and backbone dynamics, as 

detected here by NMR and terbium footprinting studies, respectively, may contribute to 

differences in detectable metal ion interactions between dynamic solution structures and 

relatively static crystal structures. Our studies thus highlight the necessity to continue to 

complement crystallographic with solution phase detection of metal ion binding in RNA. 
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CHAPTER 4:  
 

siRNA-LIKE 21 AND 24-NUCLEOTIDE DOUBLE-STRANDED RNAs ARE 

SPECIFICALLY PROTECTED IN CELL EXTRACT3 

 

RNA interference (RNAi), first described in the nematode C. elegans (57), is a 

conserved post-transcriptional gene-silencing pathway present in higher eukaryotes.  

Following the first demonstration that RNAi is functional in human cells and receptive to 

synthetic small interfering (si)RNA effector molecules (59), significant progress has been 

made in harnessing the RNAi pathway for functional genomics studies and therapies 

targeting previously “undruggable” genetic targets.  Inside the cell, siRNAs specifically 

interact with a number of proteins including Dicer, R2D2, and Argonaute, and are 

ultimately incorporated into a multiprotein complex referred to as the RNA-induced 

silencing complex (RISC).  A single strand of the siRNA is retained in RISC and acts as a 

template for the sequence-specific identification and site-specific cleavage of messenger 

(m)RNAs and concomitant reduction in gene expression.  The inherent lability of RNA 

molecules due to the presence of ribonuclease enzymes both in and outside the cell forced 

an immediate focus on development of chemically modified siRNAs that can withstand 

nucleolytic extracellular environments and reach the cellular milieu intact. It has been 

                                                 
3 John Hoerter conducted all assays with the exception of several serum and HeLa cell extract FRET assays 
carried out by Troy Lionberger. 

4.1 Introduction 
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Figure 4-1. Design, secondary structure, sequence, and modifications of the RNAs 

used in this study. The sequence for the RNAs are derived from the firefly luciferase 

gene and the siRNA previously reported(185).  The double stranded RNAs consist of an 

identical core sequence and internal fluorescein and tetramethylrhodamine modifications, 

and the flanking sequence is derived from the luciferase gene.  All double stranded RNAs 

contain the two nucleotide 3’ overhangs characteristic of siRNAs. 
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established that chemical modifications are absolutely necessary for systemic delivery of 

siRNA, both to mediate binding to serum proteins to increase circulating half-life as well 

as to block sites vulnerable to nuclease cleavage (82, 83).  

In order to understand the determinants of siRNA stability, research has focused 

in on the following areas: extracellular stability; intracellular stability; and potency of the 

silencing effect.  To mimic the extracellular environment, several groups have used blood 

serum and purified nucleases to determine the reactivity of siRNAs and probed the 

stabilizing effect of chemical modifications.  Research has now shown that chemical 

modifications can impose a considerable degree of nuclease resistance on siRNAs while 

retaining the ability to induce silencing through the RNAi pathway (69, 71, 72, 74, 77, 

82, 83, 186, 187).  

By monitoring the expression of a target gene, several groups have been able to 

assess the potency and duration of siRNA effects, including a number of studies that have 

focused on determining if chemically modified siRNAs are more potent than unmodified 

siRNAs (69, 71, 72, 74, 77, 186).  After administration of an siRNA drug, there are at 

least two environments to which the siRNA is exposed, extracellular and intracellular.  

Although extracellular fluids vary in nuclease content, it is clear that siRNAs introduced 

into the blood and most other regions of the body will require chemical modifications.  

One exception to this trend of RNA-hostile extracellular environments is found in the 

lungs where the environment requires minimal or no chemical modification to the siRNA 

(81).  Another exception is siRNAs encapsulated in liposomes which have a protective 

effect on the siRNA (81).  The intracellular milieu, the functional environment of the 

siRNA, is the second environment to which the siRNA is exposed.  Potential benefits to 

siRNA stability and potency by chemical modifications in this environment are less clear.  

Position-specific 2’-O-Me modification has been shown to reduce off target effects, 

ameliorating a negative consequence of siRNA adminstration (66), but this is not a 

nuclease sensitivity issue. A recent study has shown that enhanced intracellular 

nucleolytic stability is not necessarily correlated with increased duration of the silencing 

effect (69). In fact, silencing in non-dividing cells can persist for up to one month from a 

single dose of unmodified siRNA.  This is an exciting result and suggests that siRNAs are 

quite stable inside the cell.  However, broad generalizations based on this result are 
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unfounded as the modified siRNA used in this study contained proprietary modifications 

(69).   

By introducing fluorophore and/or FRET modified siRNAs into the cell, several 

groups have directly addressed the questions of siRNA stability and localization using 

various microscopy techniques.  It has been reported that siRNAs are actively exported 

from the nucleus (188), except in cases where the RNA target is actually located in the 

nucleus (80).  Fluorescence fluctuation spectroscopy has been utilized in a separate study 

to assess the integrity of labeled intracellular RNA, revealing that FRET labeled single 

stranded RNA is unstable compared to the same labeled RNA strand incorporated into an 

siRNA duplex (189).   In addition, FRET labeled RNAs have been used to address RNA 

reactivity as a function of RNA secondary structure, degradation by cell extract, or 

purified nuclease (190). 

The precise origin of the intracellular protection of siRNAs is unclear.  Long 

duration of silencing in non-dividing cells may be indicative of stable single-stranded 

guide strand incorporated into the RISC complex.  Prior to RISC maturation, it is known 

that some stability is simply derived from the decreased nuclease sensitivity of double-

stranded RNA compared to single stranded RNA (189, 190).  However, it is unknown if 

the siRNA is protected by some mechanism upon entry into the cell before advancement 

into holo-RISC.  The observation that the RNAi pathway utilizes double-stranded RNAs 

larger than ~21 nucleotides (191) suggests a basis for intracellular discrimination 

between double-stranded RNAs based on size.   

Characterization of the real-time kinetics of degradation under these conditions is 

necessary, and should include rapid and precise assessment of RNA stability as a function 

of bodily fluid, base paring partner, and RNA size.  In order to address these issues, we 

developed a series of RNAs modified for fluorescence resonance energy transfer (FRET) 

measurements, where two uridines in positions 7 and 16 of the 21-nucleotide guide strand 

were replaced with amino-modified deoxythymidines to introduce two fluorophores, see 

Figure 4-1.  We varied the size of the labeled strand to generate double-stranded RNAs 

ranging in size from 18-24 nucleotides.  We found that our double-labeled RNAs interact 

with relevant cellular enzymes, including RNase H1 (21-nucleotide DNA/RNA hybrid) 

and the Dicer enzyme (24-nucleotide dsRNA).  The DNA/RNA hybrid degradation by 
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RNase H1 wsa quite efficient, with observed rate constants exceeding even those for the 

single stranded RNA.  Furthermore, our experimental design allowed us to correlate the 

previously studied potency/size relationships for siRNAs (185, 191) with a real-time 

readout of RNA stability. Our results demonstrated that 21 and 24-nucleotide dsRNAs 

are specifically protected in cell extract when compared to the 18-nucleotide dsRNA and 

when compared to degradation profiles in blood serum. 

 

Nucleic Acid Synthesis and Labeling.  All RNAs were synthesized by the HHMI 

Biopolymer/Keck Foundation Biotechnology Resource Laboratory at the Yale University 

School of Medicine, deprotected,  tetramethylrhodamine labeled (as necessary), and 

purified as previously reported (55). Sequences are derived from the firefly luciferase 

gene (185) and are shown in Figure 4-1. All RNAs were purchased with a 5’ PO4 group, 

except that a second fluorophore-labeled 21-nucleotide RNA was purchased with a 5’OH. 

The DNA oligos used in these studies (Sequence = V-2, VI-2, and S1-DNA) were 

synthesized by Invitrogen, were used as received, and had the following sequence: S1-

DNA, CGTACGCGGAATACTTTGAAA; VI-2, 

CGGTCGCTCCGTGTGGCTTGGGTTGGGTGTGGCAGTGAC; V-2, 

GCTGGTCTCTGCGGGTTGTTGCGCCGCGGCACCCTTGGCA. 

Fluorometer Assays of RNA degradation.  FRET labeled RNAs were annealed 

either alone (single stranded RNA) or with an appropriate DNA or RNA complement by 

heating to 70º C for 2 minutes and cooling to room temperature over 10 minutes at a final 

concentration of 50 nM labeled strand and 100 nM complement in a close-to physiologic 

standard buffer of 50 mM Tris-HOAc, pH 7.4, 80 mM KCl, 20 mM NaCl, and 1 mM 

MgCl2.  After the 10 minute cooling period at room temperature, RNA solutions were 

incubated in a circulating water bath at 37º C for 5 minutes before the samples were 

added to the fluorometer cuvette, also controlled at 37º C.  After the initiation of data 

collection which was conducted as described previously (55), a baseline measurement 

was recorded for approximately 50-100 seconds before a fraction of either HeLa S100 

4.2 Materials and Methods 
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cytoplasmic cell extract (a gift from Danny Reinberg, Department of Biochemistry, 

Rutgers University, prepared following published protocols (192)), fetal bovine serum 

(Gibco), or purified Dicer (Stratagene, 2 Units) was added and the resulting FRET 

profiles recorded.   The FRET ratio Q (F585/(F585+F520)) was plotted and fit where 

appropriate to either the single or double exponential form of the expression below to 

extract the observed rate constants. 
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These assays were carried out over a range of HeLa and serum concentrations, 

ranging from 0-2.5 mg/ml HeLa total protein (concentration measured by Bradford assay) 

and 0-11.1 mg/ml total serum protein (concentration provided by Gibco).  The observed 

rate constants were plotted as a function of total protein content and fit to a modified 

form of the hyperbolic binding equation below where no cooperativity was assumed. 
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RNase H1 Inhibition Assays.  Fluorometer assays for RNase H1 inhibition by 

DNA aptamers VI-2 and V-2 (193) were conducted identically to the fluorometer assay 

described above with the following exceptions.  The HeLa cell extract used in these 

assays was pre-incubated with a defined concentration of the pre-annealed DNA aptamer 

or a negative control DNA for 30 minutes at 37º C before addition to the DNA/RNA 

hybrid in the fluorometer.  In addition, the DNA/RNA hybrid was prepared with the 

aptamer at a concentration equal to that in the HeLa cell extract.  Again, the FRET Ratio 

Q for each trace was extracted and fit to a single exponential expression (above) and the 

observed rate constants were plotted as a function of aptamer concentration and fit to the 

hyperbolic binding equation below where no cooperativity was assumed. 
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 Equation 4-3 

 

FRET Gel Electrophoresis.  Denaturing gel electrophoresis was paired with 

fluorescence detection of the RNA to gain qualitative insight into the interaction of the 

labeled RNAs with Dicer, cell extract, and serum.  The labeled RNA strand was prepared 

at 500 nM final concentration, and as necessary, the complementary RNA or DNA was 

added to 1 µM concentration in the standard buffer listed above and annealed as 

described above.  After cooling, Dicer, cell extract, or serum was added and the samples 

were incubated at 37° C until the reactions were stopped by mixing with a final 

concentration of 10% (v/v) Contrad 70 at pH 9.3 (Decon Labs) (190).  For the FRET gel 

in Figure 4-2A, serum was added to a final concentration of 11.1 mg/ml for the 

DNA/RNA hybrid and the double-stranded RNA, and 0.93 mg/ml for the single stranded 

RNA.  Time points for these reactions were as follows: single stranded RNA, 1, 5, and 10 

minutes; DNA/RNA hybrid and double-stranded RNA, 0.5, 1 and 2.5 hours.  For the 

FRET gel in Figure 4-2C, HeLa cell extract was added to a final concentration of 2.49 

mg/ml and time points were taken at 5, 10, and 20 minutes for the single stranded RNA 

and the DNA/RNA hybrid, while time points of 5, 20, and 60 minutes were taken for the 

double-stranded RNA.  The FRET gel in Figure 4-4B was prepared by exposing each of 

the 18, 21, and 24-nucleotide double-stranded RNAs to Dicer enzyme (1 unit), HeLa cell 

extract (2.49 mg/ml), or buffer alone for 3.3 hours.  The buffer for the HeLa and buffer 

only reactions were composed of the standard buffer listed above plus 10 mM DTT, and 

the Dicer reactions contained the buffer supplied and recommended by the manufacturer 

whose final composition was 20 mM Tris-HCl pH 8.0, 150 mM NaCl, and 2.5 mM 

MgCl2. T1 and OH- reference ladders were prepared according to (187) except that no 

tRNA was added to the T1 digest.  For all reactions, 10 pmol/lane of labeled RNA was 

mixed with loading buffer, added to a final concentration of 1×TBE, 0.025% 

bromophenol blue, and 40% formamide, and the products separated on a denaturing, 8 M 

urea, 20% (w/v) polyacrylamide gel.  Fluorescence detection of the RNA was 

accomplished as previously reported (23, 194).   
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Radiolabeling and Cleavage Assays.  The 21-nucleotide fluorophore-labeled 

RNA was 5’-32P labeled with T4 polynucleotide kinase (PNK) and γ-32P-ATP, mixed 

with loading buffer to a final concentration of 1×TBE, 0.025% bromophenol blue, and 

40% formamide, and gel purified on a denaturing, 8 M urea, 20% (w/v) polyacrylamide 

gel.  The labeled RNA was excised from the gel, diffusion eluted into 1 mM EDTA 

overnight, and ethanol precipitated.  The dried RNA was dissolved in water.    

5’-32P labeled RNA was mixed with 50 nM non-5’32P labeled fluorophore 

containing strand and 100 nM of the complementary 21-nucleotide RNA, annealed as 

described above in a close-to physiologic standard buffer of 50 mM Tris-HOAc, pH 7.4, 

80 mM KCl, 20 mM NaCl, and 1 mM MgCl2. Degradation was initiated by the addition 

of 11.1 mg/ml serum or  2.49 mg/ml cell extract at 37°C. Time points were taken after 5, 

10, 20, 40 , 80, 120, and 180 min for the serum assay and 2, 5, 10, 20, 40, and 80 minutes 

for cell extract.  All time points were quenched by mixing with a final concentration of 

10% (v/v) Contrad 70 at pH 9.3 (Decon Labs) (190). Loading buffer was added to a final 

concentration of 1×TBE, 0.025% bromophenol blue, 0.025% xylene cyanol, and 40% 

formamide, and the degradation products (50,000 cpm per lane) separated on a 

denaturing, 8 M urea, 20% (w/v) polyacrylamide gel. Individual bands were identified by 

comparison with sequencing ladders from partial digestion with G-specific RNase T1 and 

alkali as described (164), quantified and normalized to the sum of all bands in a lane 

using a PhosphorImager Storm 840 with Image Quant software (Molecular Dynamics). 

 

 We developed a series of FRET modified fluorescein (FL) and 

tetramethylrhodamine (TMR) modified RNAs (Figure 4-1) for use in studies of 

intracellular and extracellular RNA stability.  We first sought to establish the relative 

reactivities of single stranded RNA compared to constructs where the relatively 

unstructured single stranded RNA (Figure 4-1) is protected by base pairing to fully 

complementary strands composed of either RNA or DNA.  In addition, we constructed a 

series of double-stranded RNAs, ranging in size from 18 to 24 nucleotides (Figure 4-1),  

4.3 Results 
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Figure 4-2.  Degradation profiles of the labeled 21 nucleotide RNA when studied as 

a ssRNA, dsRNA, and a DNA/RNA hybrid in both HeLa cell extract and blood 

serum. A) FRET gel revealing the serum degradation pattern of the RNA species listed 

above as a function of time (details listed in the Materials and Methods section). This gel 

describes the rapid degradation of single stranded RNA in serum, the protective effect of 

secondary structure, and support the relative trends described in B).  B) Graph of 

observed degradation rate constant as a function of serum protein concentration.  These 

data clearly show the rapid degradation of the single stranded RNA and the relative 

inhibition of degradation for the dsRNA and the DNA/RNA hybrid.  C) FRET gel 

revealing the HeLa cell extract degradation pattern of the RNA species listed above as a 

function of time (details listed in the Materials and Methods section).  This gel 

qualitatively supports the data in D) where the DNA/RNA hybrid is found to be more 

efficiently degraded than the single stranded RNA of the dsRNA.  Solid lines denote fits 

to a modified form of the Hill equation where no cooperativity is assumed.  In both A) 

and C), T1 and OH- denote marker ladders, and the arrows to the left of the gel denote 

the nucleotide and position of the band in the T1 ladder.  The * denotes a double hit at 

both G13 and G3.
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derived from the 21-nucleotide luciferase siRNA validated in earlier studies of RNAi 

(185, 187), to determine the relative stabilities of these double-stranded RNAs.  All 

constructs were examined in both S100 HeLa cytoplasmic cell extract (HeLa) and fetal 

bovine serum.   

 

Formation of secondary structure stabilizes RNA 

To establish the relative reactivities of a 21-nucleotide dsRNA compared to a 

DNA/RNA hybrid and single stranded RNA, we applied our FRET assay to monitor the 

degradation of these complexes upon the addition of either HeLa S100 cell extract or 

fetal bovine serum.  Cell extract contains the protein components of the RNAi pathway, 

whereas the bovine blood serum is primarily nucleolytic, containing a significant fraction 

of RNase A.  

 Applying the fluorometer based real-time FRET degradation assay to these 

constructs over a range of concentrations of serum and cell extract, we accumulate the 

curves of observed rate versus protein concentration of either serum or HeLa (Figure 4-2 

B or D, respectively).  The fastest observed rates are found with the decay of single 

stranded RNA in serum (Vmax= 2.7 min-1, FBS1/2= 0.14 mg/ml). The traces of the dsRNA 

degradation in serum exhibit a profound increase in the FRET ratio followed by a 

decrease.  The rising phase of these data were fit to a double exponential function to 

extract the rate constants.  The rate constant describing the fast phase was found to be 

reflective of RNA degradation, as determined in the subsequent section (Figure 4-5a).  

Observed serum rates decrease significantly with the formation of secondary structure, 

where the dsRNA (Vmax= 0.47 min-1, FBS1/2= 7.7 mg/ml) and the DNA/RNA hybrid 

(Vmax= 0.03 min-1, FBS1/2= 0.46 mg/ml) are relatively stable.   

 The observed kinetics in S100 cytosolic HeLa extract in Figure 4-2D are 

significantly different from those in serum.  The DNA/RNA hybrid is most efficiently 

degraded (Vmax= 7.4 min-1, HeLa1/2= 7.6 mg/ml) and the single stranded RNA is still 

quite efficiently degraded (Vmax= 0.60 min-1, HeLa1/2= 1.9 mg/ml). The traces of the 

dsRNA degradation exhibit a slight increase in the FRET ratio followed by a decrease.  

These data were fit to a double exponential function to extract the rate constants.  The 
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rate constant describing the decreasing phase was found to be reflective of RNA 

degradation, as determined in the subsequent section (Figure 4-5b).  After this analysis, 

we found that the dsRNA was protected by secondary structure making it the most stable 

of the constructs in HeLa (Vmax= 0.02 min-1, HeLa1/2= 0.18 mg/ml).  

We showed by FRET gel analysis that serum (Figure 4-2A) manifested more 

efficient cleavage of the ssRNA compared to either the dsRNA or the DNA/RNA hybrid.  

While the cleavage patterns of the DNA/RNA hybrid and the dsRNA are quite similar, 

the cleavage pattern of the ssRNA is notably different.  These differences include 

accumulation of a slight TMR only band (note the reference TMR only control lane), 

which indicates selective removal of the donor FL fluorophore.  There is significant 

accumulation of intermediate size (5-13 nucleotides) products that are either singly TMR 

or FL labeled.  The absence of donor only products smaller than 5 nucleotides in the 

ssRNA lanes indicate minimal 5’ exonuclease activity.  Some accumulation of these short 

donor-only products is also seen in degradation of the dsRNA and DNA/RNA hybrid, 

suggesting limited 5’ exonuclease activity. 

By contrast, the degradation patterns in HeLa cell extract are notably different 

(Figure 4-2C). For example, the DNA/RNA hybrid is more completely degraded in HeLa 

cell extract, whereas the single stranded RNA was more completely degraded in serum. 

Another difference between serum and HeLa is the significant accumulation of short (<5 

nucleotide) products in the HeLa gels, indicating that there is terminal 5’ and 3’ 

exonucleolytic degradation at work in these samples. The gels also show that single 

stranded RNA in HeLa cell extract generates long (15-20 nucleotide) exonucleolytic 

products that are not present in either of the base-paired constructs.  There is also a 

donor-only labeled band present in all HeLa samples that co-migrates with an ~13–

nucleotide RNA fragment, which may be evidence of an artificial interaction of the 

fluorophores with a component of the cell extract. 
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Figure 4-3.  Inhibition of RNase H1 degradation of a fluorophore labeled DNA/RNA 

hybrid by DNA aptamers. A)  Specific inhibition of RNase H1, as detected in FRET 

degradation assays, by the DNA aptamers VI-2 (red) and V-2 (green) at 500 nM 

concentration compared to a degradation assay in the absence of inhibitor (orange) or an 

assay with a negative control DNA primer (blue).  Solid black lines represent a single 

exponential fit to the data.  B)  Dose dependent suppression of the observed rate constant 

of DNA/RNA hybrid degradation by RNase H1 as a function of VI-2 or V-2 aptamer 

concentration.  The solid lines are fits to a modified form of the Hill equation where no 

cooperativity is assumed, and reveal nanomolar binding constants for the DNA aptamers.   
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DNA/RNA hybrid is cleaved by RNase H1 in HeLa cell extract 

We hypothesized that the efficient degradation of the DNA/RNA hybrid in HeLa 

cell extract resulted from the action of the human RNase H enzymes.  RNase H enzymes 

degrade the RNA in a DNA/RNA hybrid and are important in nucleic acid processing in 

the cell, including in DNA replication.  Two DNA aptamers have been in vitro selected 

against human RNase H1 (193), and were used in the current study to probe possible 

RNase H1 degradation of the fluorophore-labeled DNA/RNA hybrid.  Figure 4-3A shows 

the time evolution of the FRET ratio of several DNA/RNA hybrid degradation assays.  In 

the absence of any added DNA or a negative control DNA, the degradation is the same.  

When the RNase H1 aptamers VI-2 and V-2 were added, we observed a reduction in the 

observed rate of decay of the FRET ratio, indicating specific inhibition of RNase H1 in 

the degradation of the fluorophore-labeled DNA/RNA hybrid.  These experiments were 

repeated over a range of aptamer concentrations, and a dose dependent decrease in 

observed rate was observed for both aptamers (Figure 4-3B: VI-2, V0= 1.35 min-1, Vmin= 

0.75 min-1, VI-21/2= 40 nM; V-2, V0= 1.34 min-1, Vmin= 0.4 min-1, VI-21/2= 90 nM).   

 

Dicer cleaves FRET labeled 24-nucleotide dsRNA 

To address specific questions of how double-stranded RNAs may be 

discriminated between in the cell, we developed three dsRNAs (Figure 4-1) spanning the 

useful region of siRNA lengths.  These dsRNAs are derived from the luciferase siRNA 

developed, validated, and used in the literature (185).  Interaction with the Dicer enzyme 

is one of the earliest steps in the RNAi pathway, where larger dsRNAs are cleaved into 

21-nucleotide fragments that then go on to be incorporated into the holo-RISC complex 

(62, 195).  Clearly Dicer is intimately involved and interacts with siRNAs from the initial 

cleavage, to guide strand selection, on to RISC assembly.   

 The 24-nucleotide dsRNA is expected to be a substrate for Dicer, and we tested 

this hypothesis by both FRET assays and gel based analysis.  Interaction of FRET labeled 

dsRNA with Dicer is important to establish in order to validate our use of these substrates 

as probes of siRNA stability in cell extract, as the Dicer enzyme is one of the initial 
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Figure 4-4.  Dicer cleavage of the fluorophore labeled 24 nucleotide dsRNA. A)  

FRET traces of 18, 21, and 24 nucleotide dsRNAs  (red, green, and blue respectively) 

upon Dicer addition, where the there is a small increase in the FRET ratio of the 24 

nucleotide dsRNA indicative of RNA cleavage by Dicer.  B)  A FRET gel comparing the 

interaction of 18, 21, and 24 nucleotide dsRNAs with Dicer and HeLa cell extract.  T1 

and OH- denote marker ladders, “-“ indicates incubation in buffer only, while the last two 

panels are incubation in HeLa cell extract and purified Dicer enzyme, respectively.  The 

black arrows to the left of the gel mark the bands in the T1 ladder.  The white arrows on 

the right of the gel mark 15 and 7 nucleotide bands in the HeLa reactions. The 24 

nucleotide dsRNA is clearly cleaved to a 21 nucleotide RNA upon incubation with Dicer.  

In HeLa cell extract, the dsRNAs are all relatively stable, with the exception of the 18 

nucleotide dsRNA that shows enhanced accumulation of short (<9 nucleotide) donor only 

products. 
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components of the RNAi pathway. Using purified Dicer enzyme, we conducted 

fluorometer assays with all the dsRNAs and the results are shown in Figure 4-4A.  Only 

with the 24-nucleotide dsRNA did we see evidence for an interaction.  This result is not 

unexpected as the 24-nucleotide dsRNA is the only dsRNA in this study which is a 

substrate for Dicer cleavage.   These results do not rule out interaction of Dicer with the 

shorter dsRNAs, as the fluorometer assay may not be sensitive to binding of Dicer alone. 

 To further test the nature of this interaction, we incubated purified Dicer enzyme 

and HeLa cell extract with the three dsRNAs and analyzed the results using a FRET gel 

(Figure 4-4A).  As expected, the 24-nucleotide dsRNA is cleaved by Dicer to 21 

nucleotides.  In HeLa cell extract, the 18-nucleotide dsRNA exhibits a slightly stronger 

cleavage band at approximately 7 nucleotides than either the 21 or 24-nucleotide 

dsRNAs, but with that exception, the lanes are quite similar. We did not observe a 

discrete 21-nucleotide Dicer-cleaved band in the 24-nucleotide dsRNA lane, but this does 

not mean that cleavage is absent, as downstream processing maybe rapid and prevent 

observation of this intermediate.  This downstream processing seems to be common to all 

the dsRNAs in HeLa cell extract as we see a common strong donor only band that runs at 

approximately 15 nucleotides.  

 

21 and 24-nucleotide dsRNAs are protected in cell extract  

When we applied the real-time fluorometer assay to explore the degradation 

kinetics of the 18, 21, and 24-nucleotie FRET labeled RNAs, we again utilized both 

serum and HeLa cell extract.  In general, a decrease in FRET ratio should be indicative of 

degradation of the labeled strand, as cleavage between the fluorophore labels leads to a 

decrease in FRET.  Unexpectedly, when the dsRNAs are incubated in serum, we 

observed a large phase representing an increase in FRET ratio.  Assays using purified 

RNase A (the major nuclease enzyme present in serum) also qualitatively reproduced an 

increase in FRET ratio similar to the serum trace.  In cell extract, the dominant phase 

decreased, although there was a small fast rising phase in the degradation traces for the 

18 and 21-nucleotide dsRNA.  To determine precisely which phase and corresponding 

rate constants from the  
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Figure 4-5.  Determination of the rate constants representative of RNA degradation 

in the serum and HeLa FRET traces. The multiplicity of rate constants in the FRET 

traces required a control degradation assay of the 21 nucleotide dsRNA using 32P to 

determine which are the relevant rate constants, where T1 and OH ladders were run in 

denaturing gels alongside time points of RNA cleavage in serum (A) and HeLa cell 

extract (B).  Arrows to the right of the gels denote bands corresponding to position 1, 2, 

and PO4
3-. A)  The serum traces reveal that the rate constants associated with the rising 

phase of the FRET trace characterize the degradation of the RNA.  The solid lines 

represents double exponential fits to the degradation data. B) Determination of the 

degradation rate constants in HeLa cell extract using a 32P degradation assay of the 21 

nucleotide dsRNA.  The decreasing phase in the FRET traces corresponds to the 

degradation rate in HeLa cell extract.  For the 32P data, the solid black line represents a 

single exponential fit to the data, where as the solid black line in the FRET data 

represents a double exponential fit.
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FRET traces correspond to RNA degradation, we used radiolabeling and denaturing gel 

analysis to determine the degradation rate-constants from the real-time output of our 

FRET traces (Figure 4-5).  We 5’-32P labeled the 21-nucleotide fluorophore-modified 

antisense strand and followed the degradation as a function of time using denaturing gel 

analysis (187).  Gels were quantified for the fraction of the antisense strand that was 

intact, therefore quantifying only primary hits.  These data were plotted and fit to 

exponential decrease functions (double exponential for serum, Figure 4-5A, and a single 

exponential for HeLa cell extract, Figure 4-5B.).  These data unambiguously identified 

the relevant degradation rate constants from the FRET traces as the rising phase in serum 

and the decreasing phase in HeLa cell extract.  In serum degradation of the 5-32P-labeled 

21-nucleotide dsRNA followed a double exponential function, where the increasing 

portion of the 21-nucleotide dsRNA FRET trace was also a double exponential (Figure 4-

5B).  The rising phases of the 18 and 24-nucleotide dsRNAs were characterized by single 

exponentials.  In the HeLa cell extract traces, there is a rising phase seen in the 18 and 

21-nucleotide dsRNAs, but not the 24-nucleotide dsRNA.   

 The rate constants from the FRET traces that were identified above and in Figure 

4-5 as being reflective of the RNA degradation kinetics were plotted to give the graphs in 

Figure 4-6 A and B, describing the degradation rate behavior of each of the 3 double-

stranded RNAs as a function of concentration of either serum or HeLa cell extract.  The 

results from serum show that the rate of degradation of the RNA decreases with length 

(Serum: 18 nt dsRNA, Vmax= 1.2 min-1, Serum1/2= 4.5 mg/ml; 21 nt dsRNA, Vmax= 0.47 

min-1, Serum1/2= 7.7 mg/ml, 24 nt dsRNA, Vmax= 0.09 min-1, Serum1/2= 1.7 mg/ml).   

 The rates in cell extract were significantly different from the trend in serum.  In 

general, the rates observed in cell extract were slower.  The 18-nucleotide dsRNA was 

the most rapidly degraded of the three constructs (HeLa: 18 nt dsRNA, Vmax= 0.11 min-1, 

HeLa1/2= 1.1 mg/ml).  In contrast to the serum result, the 21 and 24-nucleotide dsRNAs 

exhibited the same Vmax values, signifying that they were degraded at the same rate in 

cell extract (Hill coefficients HeLa: 21 nt dsRNA, Vmax= 0.02 min-1, HeLa1/2= 0.14 

mg/ml; 24 nt dsRNA, Vmax= 0.02 min-1, HeLa1/2= 0.04 mg/ml).   
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Figure 4-6.  Degradation rates of 18, 21, and 24 nucleotide dsRNAs as a function of 

protein concentration in both serum and HeLa cell extract. A)  The rate constants 

describing the degradation of the 18, 21, and 24 nucleotide dsRNAs (red, green, and blue 

respectively) in serum plotted as a function of serum protein concentration. B) The rate 

constants describing the degradation of the 18, 21, and 24 nucleotide dsRNAs (red, green, 

and blue respectively) in HeLa cell extract plotted as a function of cell extract protein 

concentration.  Solid lines indicate fits to hyperbolic binding equations (Materials and 

Methods).  
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Potent and specific induction of mRNA degradation is a key determinant for 

harnessing RNAi for future reverse genetic studies and therapeutic applications.  A 

number of chemical modifications of RNA have been shown to increase siRNA stability 

both in vitro and in vivo (69, 71, 72, 74, 77, 186), while chemical modifications at certain 

positions have proven valuable to bringing specificity to the intracellular recognition of 

mRNA in RNAi (66).  It remains unclear precisely how stable siRNAs are inside the cell, 

or if there is a benefit to intracellular stability from chemically modified siRNA. Our 

group and others have established the decreased nuclease sensitivity of double-stranded 

RNAs compared to single stranded RNA, including recent work that has employed FRET 

fluctuation spectroscopy to further demonstrate this trend in cells (189, 190).  It has been 

reported that potency of antisense oligonucleotides correlates with chemical modification 

and a resulting increase in intracellular stability (196), however,  recent work in the RNAi 

field suggests that no such trend exits for siRNAs.  Utilizing mathematical modeling 

studies to understand the impact of siRNA modifications on RNAi performance, it has 

been suggested that the duration of silencing is the same for modified and unmodified 

siRNA (69). Further study is required, however, to generalize this effect as the chemical 

modifications used in this study are proprietary (69).  This apparent contrast concerning 

the benefit of chemical modifications on antisense versus siRNA therapeutics may arise 

from the fact that antisense oligonucleotides do not harness an endogenous pathway in a 

manner similar to siRNA therapeutics. We hypothesized that there is a degree of 

protection afforded to RNAi effector molecules that does not extend to molecules too 

short to be assembled into a RISC particle. To address this hypothesis, establish stability 

profiles, and measure kinetics of degradation of small RNAs in relevant biological fluids, 

we developed a modified guide strand based on the pp-luc siRNA validated in earlier 

studies (185, 187).  By creating such a reporter system, we have been able to show that 

our fluorophore-labeled dsRNAs interact with relevant cellular enzymes including RNase 

H1 and Dicer, and that 21 and 24-nucleotide double-stranded RNAs are specifically 

protected in HeLa cell extract. 

4.4 Discussion 
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In both HeLa cell extract and blood serum, we found that the siRNA was more 

stable that the single stranded RNA.  These results are consistent with earlier reports, and 

highlight the differences in reactivity of single stranded and double-stranded RNA.  We 

further extended earlier studies and assess the impact of secondary structure formation on 

RNA stability by using a DNA strand as the base-pairing partner.  In blood serum, this 

pairing further stabilized the RNA, perhaps because of the perturbation to the A-form 

helical structure, or perhaps because the lack of 2’-OH functionality on an entire strand of 

the duplex rendered RNase A activity to a minimum.  The DNA/RNA hybrid in cell 

extract revealed the reactivity of RNase H1.  In humans, there are two known enzymes, 

RNase H1 and RNase HII, that specifically process DNA/RNA hybrids.  This reactivity 

is conserved across all three kingdoms of life, and is a particularly interesting drug target 

because of the importance of the RNase H domain of HIV reverse transcriptase.  The 

endogenous human enzymes are distinguished based on differential reactivity derived 

from substrate length and sequence, as well as sub-cellular localization where RNase HII 

is primarily nuclear, and RNase H1 is more widely distributed in the cell (193).  Given 

the observed efficient degradation of our fluorophore-labeled DNA/RNA hybrid in cell 

extract, the obvious candidate in this case is RNase H1.  Two DNA aptamers have been 

raised as inhibitors of RNase H1 (193), and we applied both to establish inhibition of the 

degradation of the DNA/RNA hybrid and implicate RNase H1.  We observed dose 

dependent inhibition of degradation for both the V-2 and VI-2 aptamers with Aptamer1/2 

values of tens of nanomolar, in reasonable agreement with the published development of 

these aptamers(193). 

We developed 18, 21, and 24-nucleotide fluorophore-labeled dsRNAs and 

recorded the degradation of these complexes in cell extract and blood serum.  The size 

range of the RNAs was chosen to bridge the well characterized ~21-nucleotide cutoff that 

is observed for siRNAs in the induction of the RNAi response.  The 21-nucleotide siRNA 

is bound directly to the RLC, a heterodimeric protein complex composed of Dicer and 

R2D2, and incorporated into RISC (195), whereas double-stranded RNA substrates larger 

than ~21 nucleotides are cleaved by Dicer into siRNAs with characteristic two-nucleotide 

3’ overhangs during the initial processing of the substrate.  In concert with Dicer, R2D2 

binds the more strongly base paired end of the siRNA helix termini, strongly associating 
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with the 5’ phosphate of the passenger strand and priming the RLC for interaction with 

the catalytic protein component of the RISC complex, Argonaute (62).  As Dicer is one 

of the first proteins of the RNAi pathway to interact with double-stranded RNA 

substrates, we tested to see if our fluorophore-labeled RNAs interact with purified Dicer 

enzyme in both a fluorometer assay and the related FRET gel.  In both cases, we find 

evidence for the interaction of Dicer with the 24-nucleotide double-stranded RNA.  The 

fluorometer assay reveals a slight increase in the FRET ratio upon Dicer addition (Figure 

4-4), which is revealed to be cleavage of the 24-nucleotide substrate to a 21-nucleotide 

siRNA in the FRET gel.  These results also demonstrate that the fluorophore-labeled 

antisense strand does not prevent these RNAs from interacting with Dicer, the gatekeeper 

to the RNAi response.   

By examining the degradation rates as a function of protein concentration in 

serum, we found that the efficiency of degradation of the RNAs in serum decreases with 

size and overall thermodynamic stability of the duplex.  The 18-nucleotide dsRNA was 

the most rapidly degraded whereas the 24-nucleotide dsRNA exhibits the slowest 

degradation rates.  These results are easily explained based on knowledge of RNase A 

function, were the limiting steps of enzyme action on double-stranded substrates is 

oligomerization, destabilization,  and invasion of duplex RNA to access the in-line attack 

conformation and cleave the RNA backbone (197).  The analogous experiment was 

performed in HeLa cell extract, where Vmax values from the fits of the data describe the 

efficiency of degradation of each duplex.  In this case, the 18-nucleotide dsRNA was the 

most rapidly degraded, and the 21 and 24-nucleotide dsRNAs exhibited a common upper 

limit to the degradation rate, characterized in our system by a Vmax of 0.02 min-1.  These 

results suggest that the 21 and 24-nucleotide dsRNAs are processed in a similar way, 

which, based on our finding that Dicer does interact with the fluorophore-labeled RNAs, 

suggests that these constructs are specifically protected in cell extract. 

 Our results are consistent with a recent report demonstrating that siRNA 

substrates remained intact and were not processed into active RISC in the absence of 

target RNA (80).  This suggests that siRNAs may be bound by the RLC awaiting 

processing into RISC on the appearance of target RNA.  The molecular basis for this 

finding is not known, but the phenomenon is interesting, in that it suggests a basis for 
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interpreting our findings of a specific mechanism for protection of appropriately sized 

double-stranded RNAs.    

 



 

 90 

CHAPTER 5:  
 

CHEMICAL MODIFICATIONS RESOLVE THE ASYMMETRY OF siRNA 

STRAND DEGRADATION IN HUMAN BLOOD SERUM4 

 

Originally described in C. elegans (57), RNA interference (RNAi) is a conserved 

set of pathways in eukaryotes that mediates potent gene silencing triggered by the 

interaction of small interfering (si) and related RNA effector molecules with the RNA 

induced silencing complex (RISC) (for a recent review see (67)). RNAi holds promise for 

treatment of human disease because it is broadly and specifically applicable to any 

undesired gene whose sequence is known. While recent studies have successfully utilized 

systemically administered siRNAs in nonhuman primates via intravenous injection (83), 

at least two major obstacles remain before the therapeutic promise of RNAi can be fully 

realized. First, the guide strand that, together with the passenger strand, makes up an 

siRNA duplex must be stabilized against the ubiquitous exo- and endonucleases found in 

blood serum and elsewhere in the body (68). Second, adverse off-target activity due to 

cross-reactivity between RNAi pathways must be suppressed (198, 199). We demonstrate 

here that the same modest chemical double modification found to decrease off-target 

                                                 
4 Adapted with permission from Hoerter, J.A., and Walter, N.G., RNA 13, 1887-93.  Copyright 2007 Cold 
Spring Harbor Press. 

5.1 Introduction 
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Figure 5-1.  siRNAs used in this study as derived from reference (Martinez et al., 

2002), with guide and passenger strands indicated. All three constructs carry 5’-

phosphates as well as two deoxythymidines on the 3’-end of each strand. In the C-G 

siRNA a C-G base pair replaces the closing U-A base pair at the 5’-guide strand 

terminus. The 2’-OMe siRNA harbors two 2’-OMe modifications at positions 1 and 2 of 

the guide strand (depicted in lower case letters). A red nucleotide indicates a nucleolytic 

hit 3’ to that position and represents ≥5% of the total lane intensity, while a green 

nucleotide indicates a hit 3’ to that position that is >10-fold of background, but <5% of 

the total lane intensity.  
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toxicity (66) also substantially stabilizes the siRNA guide strand against exonucleolytic 

attack.  

A number of studies have previously examined the stability of siRNAs in blood 

serum (70-75, 77-79). Most of this work relied on assays that could not identify the 

strand and/or specific site of cleavage, which is a prerequisite for designing chemical 

modifications to specifically protect vulnerable sites. Such information in principle is 

accessible through cleavage product analysis by either mass spectroscopy (78) or 

radioactive labeling combined with denaturing polyacrylamide gel electrophoresis 

(PAGE) (79). A robust kinetic analysis of nucleolytic cleavage products of both the guide 

and passenger strands at nucleotide resolution has, however, not yet been reported. We 

here have developed such an assay, which allows us to show that specific chemical 2’-O-

methylation, already known to reduce off-target activity of siRNAs, selectively protects 

the vulnerable 5’-end of the guide strand against exonucleolytic degradation in human 

blood serum. A simple chemical modification of the guide strand thus serves dual 

functions essential for the efficient application of siRNA therapeutics. 

 

RNA synthesis.  All RNAs were synthesized by the HHMI Biopolymer/Keck 

Foundation Biotechnology Resource Laboratory at the Yale University School of 

Medicine, were deprotected and purified as previously reported (55). Sequences are 

derived from the firefly luciferase gene (185) and are shown in Figure 5-1.  

RNA labeling.  RNAs were first treated with calf intestine alkaline phosphatase to 

remove the synthetic 5’-PO4
2-and prepare the 5’-OH necessary for labeling. Strands were 

5’-32P labeled with T4 polynucleotide kinase (PNK) and γ-32P-ATP at an RNA 

concentration of ~800 nM. PNK was inactivated by heating to 90 °C for 10 min. The 

appropriate complementary RNA strand was then added to the reaction at a final 

concentration of 2 µM and annealed by heating to 70 °C for 2 min, followed by cooling 

to room temperature over 10 min. Cold non-denaturing loading buffer was added to a 

final concentration of 1×TBE , 0.025% bromophenol blue, and 10% glycerol and the 

5.2 Materials and Methods 
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annealed, labeled siRNA purified at 4°C by electrophoresis on a non-denaturing, 1×TBE, 

12% (w/v) polyacrylamide gel run at ~20 V/cm, excision of the radiolabeled duplex 

band, diffusion elution into 1 mM EDTA overnight at 4°C and ethanol precipitation. The 

purified siRNA was dissolved in 25 mM Tris-HCl, pH 7.5, 25 mM NaCl. Single-stranded 

5’-32P labeled RNA for the T1 and alkali ladders was prepared similarly and dissolved in 

water. 

siRNA degradation assays.  5’-32P labeled, purified siRNA duplex was prepared 

in a close-to physiologic standard buffer of 50 mM Tris-HOAc, pH 7.4, 80 mM KCl, 20 

mM NaCl, and 1 mM MgCl2. Degradation was initiated by the addition of 3% (v/v) 

human blood serum (Innovative Research, single healthy donor) at 37°C. RNase induced 

siRNA degradation assays were identical to the serum assays except that purified RNase 

A was added to a final concentration of 290 nM. Time points were taken after 5, 10, 20, 

40 , 80, 120, and 180 min and quenched by mixing with a final concentration of 10% 

(v/v) Contrad 70 at pH 9.3 (Decon Labs) (190). Loading buffer was added to a final 

concentration of 1×TBE, 0.025% bromophenol blue, 0.025% xylene cyanol, and 40% 

formamide, and the degradation products (50,000 cpm per lane) separated on a 

denaturing, 8 M urea, 20% (w/v) polyacrylamide gel. Individual bands were identified by 

comparison with sequencing ladders from partial digestion with G-specific RNase T1 and 

alkali as described (164), quantified and normalized to the sum of all bands in a lane 

using a PhosphorImager Storm 840 with Image Quant software (Molecular Dynamics). 

Error bars are derived from at least two independent determinations. Time traces of the 

loss of the full-length RNA were fit with the double-exponential first-order rate equation 

y = y0 + A1e-tk1 + A2e-tk2, employing Marquardt-Levenberg nonlinear least-squares 

regression (Igor Pro 5.03), where A1 and A2 are the fractions cleaved and ln2/k1,2 are the 

reported half-lives t1/2 of the fast and slow phases, respectively.  The t1/2 value for the fast 

phase of the reaction is estimated to be faster than 3 minutes based on an interpolated 

lower estimate of cleavage at a hypothetical 2.5 minute time point. The 2’-O-Me guide 

strand data were fit with the above equation with only a single exponential. 

RNase induced siRNA degradation assays were identical to the serum assays 

except that purified RNase A was added to a final concentration of 290 nM, yielding the 

data shown in Table 5-1. 
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Thermal denaturation.  siRNA duplexes at a concentration of 1 µM per strand 

were annealed in standard buffer (50 mM Tris-OAc pH 7.4, 80 mM KCl, 20 mM NaCl, 

and 1 mM MgCl2) by heating to 70 °C for 2 min and cooled at room temperature over 10 

min. Solutions were filtered through a 0.45 µM centrifugal filter device (Millipore 

Ultrafree-MC) and degassed by spinning under vacuum in an Eppendorf Vacufuge for 5 

min. Samples were placed in the Micro Auto 6 Tm cell holder of a Beckman DU640B 

UV-Vis spectrophotometer. Samples were equilibrated at 30 °C for 15 min, and then 

heated to 95 °C at a rate of 0.5oC/min while taking 1-s absorbance readings at 260 nm 

every min, which were corrected against a 320 nm background measured in standard 

buffer at the corresponding temperature. Each melting curve was measured in duplicate 

and independently analyzed to extract the melting temperature (Tm) and thermodynamic 

parameters(200). Reported values are the average ± error from the two melting curves 

except Tm values where only the average value is reported, as the error in all cases was 

less than 0.1°C.  

Target Cleavage.  RISC-mediated, siRNA-induced target cleavage of cap labeled 

pp-luc RNA was examined essentially as described (185). Purified Pp-luciferase RNA 

was 5’-cap 32P labeled using α-32P-GTP and guanylyltransferase enzyme (Ambion) as 

recommended by the supplier. Cap labeled RNA was purified on a denaturing, 8 M urea, 

6% (w/v) polyacrylamide gel run at 27V/cm. The RNA was excised, eluted into 1 mM 

EDTA at 4°C overnight, ethanol precipitated, and dissolved in water. 

We used each of our three siRNAs (Unmodified, C-G, 2’-O-Me) as well as an 

siRNA that was 2’-O-Me modified at positions 1 and 2 of both the guide and passenger 

strands (termed OMe(2) for distinction from the guide strand only modified OMe(1)). 

siRNA strands were annealed at 1:1 ratio such that the final concentration of RNA was 

100 nM in the target cleavage reaction and the final MgCl2 concentration was 1.1 mM. 

After annealing, GTP, ATP, RNasin, creatine phosphate, creatine kinase, and HeLa S100 

cytoplasmic extract (Jena Bioscience) were added as specified previously(185), and 

incubated at 37°C for 15 min, at which point 100,000 cpm of cap-32P labeled pp-luc 

target RNA was added. Incubation was continued at 37 °C for 2.5 h, when proteinase K 

and the corresponding buffer were added(185). The solution was incubated at 65 °C for 

15 min, phenol/chloroform extracted, chloroform extracted, ethanol precipitate
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Guide Passenger Degradation 

experiment t1/2, fast (min) [%] t1/2, slow (min) [%] t1/2, fast (min) [%] t1/2, slow (min) [%] 

Unmod < 3 [56 ± 6] 15 ± 9 [43 ± 7] < 3  [36 ± 1] 57 ± 23 [12 ± 1] 

Unmod + RNase A < 3 [77 ± 3] 17 ± 4 [21 ± 3] < 3  [58 ± 5] 31 ± 14 [24 ± 4] 

C-G < 3 [41 ± 4] 60 ± 4 [20 ± 2] < 3  [42 ± 1] 35 ± 4 [6 ± 2] 

2’-OMe < 3 [53 ± 1] - < 3  [39 ± 2] 101 ± 100 [10 ± 1] 

Table 5-1.  Half-lives (t1/2) describing the observed biphasic siRNA degradation kinetics in 3% (v/v) human blood 

serum and purified RNase A under standard conditions. 
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overnight, and the RNA dissolved in formamide loading buffer, and loaded onto a 37 cm 

denaturing, 8 M urea, 10% (w/v) polyacrylamide gel run at 25 W/cm. The gel was 

wrapped in plastic foil and exposed to a phosphor screen, which was recorded on a Storm 

PhosphorImager Storm 840, quantified using Image Quant software (Molecular 

Dynamics), and analyzed in IgorPro. Data reported results from 2-3 independent 

experiments. 

 

Guide strand degraded more efficiently than passenger strand 

We selectively labeled each strand of a canonical siRNA against firefly luciferase 

(Figure 5-1) (185) and followed cleavage of the full-length RNA into specific shorter 

products over time by gel electrophoretic separation (Figure 5-2). Dephosphorylation and 

cleavage of both the guide and passenger strands of our siRNA is substantial after only 5 

min incubation with 3% (v/v) human blood serum in a close-to physiologic buffer (50 

mM Tris-HOAc, pH 7.4, 80 mM KCl, 20 mM NaCl, and 1 mM MgCl2, at 37oC) and 

increases over 3 h (Figure 5-2). (As expected, the degradation kinetics accelerate with the 

volume fraction of serum; 3% (v/v) serum was chosen as optimal for resolving the 

cleavage products by gel electrophoresis.) Strong cleavage at the 5’-terminus of the guide 

strand, 3’ to positions 1 and 2, causes markedly lower stability of the guide strand 

compared to the passenger strand (Figures 5-2 B and C). The kinetics are strongly 

biphasic so that 56% of the guide strand degrades with a half-life < 3 min, while the 

remaining 43% degrade with a half-life of 15 min (Table 5-1). Thus, the guide strand is 

completely degraded over the course of 2-3 h while 50% of the passenger strand persists 

after an initial, rapid, biphasic decay (Figure 5-2 and Table 5-1). Given the strict length 

requirement in RNA interference (201), the observed loss of even a single nucleotide on 

the 5’-end of the guide strand is expected to be functionally detrimental. The distribution 

of the remaining cleavage sites on the individual strands is generally not predictable 

(Figures 5-1 and 5-2), except that at least one cleavage site is observed in all clusters of  

5.3 Results and Discussion 
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Figure 5-2.  Comparison of the degradation of guide and passenger strands of the 

unmodified siRNA in the presence of  human blood serum. A) Gel electrophoretic 

analysis of the time courses of serum induced cleavage of both the guide and passenger 

strands alongside RNase T1 and alkali (OH) sequencing ladders. Significant cleavage at 

positions 1 and 2 of the guide strand leads to a marked instability of the guide strand 

compared to the passenger strand. B) and C) Quantification of the gels in panel A where 

the fraction of intact siRNA, position 1, position 2, and PO4
3- band intensity are plotted as 

a function of time. The guide strand is completely degraded over the course of three 

hours, whereas the passenger strand persists at ~50% over the full course of the assay.
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A-U base pairs. A significant fraction of cleavage events may be secondary hits on 

partially degraded strands, although the time dependent decrease in full-length RNA as 

measured here quantifies only primary hits. The observed preference for cleavage 3’ to 

pyrimidines is consistent with earlier studies suggesting that siRNA degradation in serum 

is at least in part due to RNase A-type enzymes (75). Human pancreatic ribonuclease 

(hpRNase) is the likely candidate as it is the most competent tetrapod RNase A-type 

enzyme to target dsRNA substrates and accounts for 70-80% of total ribonuclease 

activity in blood serum (202-204). Despite the biphasic nature of the observed 

degradation kinetics, the results are consistent with the action of a single enzyme, as we 

do not observe any clearly distinct products at early and late stages of the time course 

(Figure 5-2) and controls utilizing purified RNase A also manifest biphasic kinetics 

(Table 5-1); still, we cannot rule out the combined action of (groups of) faster and slower 

nucleases. Similar biphasic degradation kinetics were observed in earlier work 

monitoring the amount of intact siRNA duplex upon exposure to mouse plasma, 

suggesting that both strands survive together (70). 

 

Asymmetry defined by weaker terminal U-A base-pairing 

The activity of RNase A-type nucleases on double-stranded RNAs depends on the 

ability of the enzyme to invade the duplex and thus access the in-line attack conformation 

required for RNA cleavage (197, 203) . Our observation of a cleavage preference 3’ to U 

over C is consistent with this requirement for strand invasion, as the weaker base pairing 

of U-A compared to C-G would overcome the reported preference of RNase A type 

enzymes for poly-C over poly-U (204). We therefore hypothesized that the same 

thermodynamic asymmetry that leads to the siRNA end fraying used by RISC to select a 

5’-phosphate and thus define the guide strand (62) predisposes this strand to ribonuclease 

exposure.  

To test this hypothesis, we mutated the 5’-terminal U-A base pair of our guide 

strand to the more stable C-G. This U-to-C transversion may be expected to enhance 

reactivity towards hpRNase due to the enzyme’s C-over-U preference (204). In contrast, 

yet consistent with our hypothesis, we observe protection of the guide strand 5’-terminus  
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Figure 5-3.  Stabilization of the guide strand by mutation and chemical modification 

in the presence of human blood serum under standard conditions. A) Gel 

electrophoretic analysis of the time course of serum induced cleavage of the guide strand 

of our three different siRNA constructs, as indicated, alongside RNase T1 and alkali 

(OH) sequencing ladders. Both terminal C-G mutation and 2’-OMe modification 

substantially stabilize the guide strand. B) Quantification of the gels in panel A where the 

fraction of intact guide strand is plotted as a function of time. C) Thermal denaturation of 

our three siRNA constructs as monitored by UV melting. Derived melting temperatures 

(Tm) and ∆Gº37C are indicated on the plot. 
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of the C-G modified compared to the unmodified siRNA (Figures 5-3 A and B, Table 5-

1).  A control experiment using a mismatch duplex with the U-to-C modified guide strand 

and the unmodified passenger strand exhibits degradation profiles essentially the same as 

the unmodified duplex. Passenger strand cleavage in the C-G modified siRNA remains 

essentially unchanged (Table 5-1). Given the increased stability of the C-G modified 

siRNA (∆Gº37C=-29.0 ± 1.5 kcal/mol, Figure 5-3C) relative to the unmodified siRNA 

(∆Gº37C=-25.7 ± 0.6 kcal/mol, Figure 5-3C), we therefore suggest that thermodynamic 

stabilization of the duplex terminus protects it from RNase degradation.  

 

2’-O-Me modification of positions 1 and 2 stabilizes the guide strand 

Selection rules for effective siRNA design dictate full complementarity to the 

target sequence and asymmetric melting of the termini for proper selection of the guide 

strand by RISC (62, 205-207), typically ruling out a terminal U-A to C-G mutation as 

employed above. We therefore sought to introduce protective chemical modifications into 

the ribonucleolytically most vulnerable positions 1 and 2 at the 5’-end of the guide 

strand. A number of modifications, especially of the RNA backbone, have been 

previously explored for broadly stabilizing siRNAs in gene therapy applications (67, 208-

212). In addition, recent studies have found that 2’-O-methyl (2’-O-Me) modification of 

positions 1 and 2 at the 5’-ends reduces the widespread problem of off-target silencing 

effects induced by siRNAs (66, 213). We thus set out to test whether this same double 

modification may serve the added purpose of extending the lifetime of an siRNA in 

human blood serum by applying our quantitative degradation assay. We find that this 

modest chemical double modification completely suppresses ribonucleolytic cleavage 3’ 

to position 1. It also significantly reduces, but does not completely block cleavage 3’ to 

position 2 (Figure 5-3A). The residual cleavage upon 2’-O-Me modification of position 2 

suggests either that hpRNase uses an alternate cleavage mechanism not requiring the 2’-

OH moiety or that less abundant nucleases partake in degradation (also not requiring the 

2’-OH). The latter possibility is supported by the unusual cleavage sites 3’ to purine 

residues that are induced upon 2’-O-Me modification of the guide strand (Figure 5-3A). It 

is possible that interference with preferred cleavage sites by chemical modification  
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Figure 5-4.  RISC-mediated, siRNA-induced cleavage of pp-luc target RNA by the 

siRNAs examined in this study. A) Gel electrophoretic analysis of a representative 

target cleavage assay, where the “-“ lane is target RNA incubated with cell extract in the 

absence of siRNA, “Unmod” is incubated in the presence of our unmodified siRNA, “C-

G” is incubated in the presence of the C-G modified siRNA, “OMe(1)” is incubated in 

the presence of the siRNA with guide strand only double 2’-OMe modification, and 

“OMe(2)” is incubated in the presence of the siRNA with symmetric 2’-OMe double 

modification (in positions 1 and 2 from the 5’-end) of both the guide and passenger 

strands. “T1” and “OH” indicate RNase T1 and alkali sequencing ladders, respectively. 

The arrow indicates the siRNA induced cleavage site on the target RNA. B) 

Quantification of the target band intensity from panel A. 
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enhances slower, less optimal ribonucleolytic activity at purine residues. The overall 

degradation kinetics of the doubly 2’-O-Me protected guide strand in human blood serum 

is monophasic (with the time resolution of the data) such that 52% of the RNA is still 

rapidly degraded with a half-life of 0.8 min, but the remaining RNA persists for long 

periods of time (Figure 5-3B and Table 5-1). Serving as a control, passenger strand 

degradation is again largely unaffected by modification of the guide strand (Table 5-1). 

Thermal denaturation experiments indicate only a slight increase in stability of the 2’-O-

Me modified siRNA duplex relative to the unmodified duplex (∆Gº37C= -26.8 ± 0.2 

kcal/mol versus ∆Gº37C= -25.7 ± 0.6 kcal/mol, Figure 5-3C), which is a lesser increase in 

stability than afforded by the terminal U-A to C-G mutation (∆Gº37C=-29.0 ± 1.5 

kcal/mol). These observations suggest that both thermodynamic and chemical 

stabilization likely contribute to the observed prolonged half-life of our 2’-O-Me 

modified siRNA duplex.  

Interestingly, we observed reduced target RNA cleavage by RISC (185) upon 

introduction of our 2’-O-Me modifications into the siRNA guide strand, as we do for the 

C-G mutant (Figure 5-4). We investigated the possibility that the guide strand only 2’-O-

Me modifications perturbed RISC function by conducting target cleavage assays with an 

siRNA carrying 1 and 2 position 2’-O-Me modifications on both the guide and passenger 

strands (denoted OMe(2) in the Figure 5-4), better reflecting the experiments described in 

the study identifying the off-target amelioration of 1 and 2 position 2’-O-methylation 

(66).  Interestingly, this symmetrically modified siRNA did not rescue activity, at least in 

our target cleavage assay.  Since the mechanism by which 2’-O-Me modification reduces 

off-target activity is not well understood (and target RNA cleavage was not described in 

the earlier study (66)), our finding raises the intriguing possibility that RNAi mechanisms 

not involving target RNA cleavage, including target sequestration, may be involved in 

enhancing siRNA specificity. 
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In this report we have found that a relatively modest double 2’-O-Me 

modification at the 5’-end significantly prolongs the half-life of a large fraction of the 

siRNA guide strand when exposed to human blood serum. The promise of siRNA drugs 

that can be specifically tailored to downregulate previously “undruggable” gene products 

via the RNAi pathway may usher in a new era of pharmaceuticals. There are still several 

problems such as targeted delivery and cellular uptake of the siRNA drug in addition to 

the issues of off-target effects and nucleolytic degradation to be overcome before these 

therapies are widely applicable. Showing here that a simple double 2’-O-Me 

modification, which previously has been shown to enhance siRNA specificity, selectively 

protects the vulnerable 5’-end of the guide strand against exonucleolytic degradation in 

human blood serum may help simultaneously address two of the barriers to successful 

implementation of siRNA therapeutics for human disease. 

 

 

 

 

 

5.4 Conclusions 
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CHAPTER 6:  
 

SUMMARY AND FUTURE DIRECTIONS 

 

ncRNAs play a number of important roles in biological systems, metaphorically 

and literally bridging the divide between DNA information storage and the functional 

repertoire of proteins.  RNA carries the genetic message and, at the same time, provides 

for recognition elements, structural scaffolds, and catalysis.  Biophysical studies of RNA 

highlight a number of general attributes of RNA, including its ability to fold into complex 

and dynamic three-dimensional structures that enable function (24, 33).  Even in cases of 

functional RNAs like siRNAs, a duplex composed of two perfectly base-paired strands, 

the dynamics of the helix termini plays a role in which strand progresses as the guide 

strand in RNAi (62).  The two core systems investigated in the preceding chapters, H27 

from 16S rRNA and siRNAs, are examples of the diverse array of structural and 

functional cellular RNAs.   

 

The three prokaryotic rRNAs, 16S, 23S, and 5S, are classified as primarily 

structural RNAs (4).  They serve as scaffolds for binding and positioning the ribosomal 

proteins, tRNAs, and translation factors required for the translational cycle.  These 

ancient RNA structures also enable a number of other functions.  Peptidyl-transferase 

activity is harbored in 23S rRNA, where the peptidyl and aminoacyl tRNAs are ideally 

6.1 H27 Dynamics and Translation 
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juxtaposed, which catalyzes the formation of the new peptide bond (18, 43).  The 

decoding process is carried out in the 30S subunit primarily by 16S rRNA and involves 

the interaction of two highly conserved adenosines and a guanosine with the three 

codon:anticodon base pairs (16).  The absence of these interactions inhibits progress on 

the decoding pathway.  The wide variety of conformations of rRNAs, from ribosomal 

assembly to translation, illustrates the dynamic nature of  RNA structures (30-32).  An 

intriguing region of 16S rRNA, H27, was thought to be particularly important in this 

respect.   Several lines of evidence suggest that H27 is an important player in ribosome 

function.  H27 is highly conserved across all kingdoms of life, forms an important 

intersubunit bridge, and harbors sites that when mutated influence susceptibility to 

antibiotics (46, 51). In addition, it was noted that H27 harbored a sequence at the helix 

termini that could allow for at least two different base-pairing patterns, either the 885 or 

888 conformations (53, 93). The original evidence of a functionally dynamic H27 

provided an exciting hypothesis, suggesting that the structural variation available to a 

small RNA helix could profoundly influence the accuracy of the decoding process (52). 

The H27 “switch helix hypothesis” was based on a series of mutant ribosomes that 

exhibited biases in decoding fidelity.  Ribosomes stabilized in the 885 conformation were 

error-prone, while 888 ribosomes were hyperaccurate.  These differences led to the 

assertion that there was an active conformational switch in H27 of 16S rRNA, suggesting 

that H27 cycled between the 885 and 888 conformations during each round of amino acid 

incorporation, impacting the decoding process (52).  The work with models of H27 

described in Chapter 2 of this thesis establishes the co-existence of the 885 and 888 

conformations and provides a kinetic and thermodynamic framework that describes their 

interconversion (55).  We further showed that the antibiotic tetracycline impacts that 

switching process.  Our H27 models also provided data for an interesting comparison of 

metal ion binding in crystal structures and solution phase, described in Chapter 3 (214).   

As our results were being finalized, a new study was published that provided 

strong evidence against the “switch helix hypothesis”, citing that a “synergistic effect” 

between marker mutations and the H27 mutations that led to effects not seen in the 

absence of the marker mutations (54).  A “pQuad” mutant, where it is impossible for H27 

to assume the 888 conformation, afforded an E. coli strain the same doubling time as did 
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the WT ribosome, suggesting that the 888 conformation is not an obligatory functional 

structure in translation (54).    

A number of possible explanations exist that may enable the reconciliation of the 

data from our H27 models showing a very dynamic isolated H27 and conclusions that the 

888 conformation is not functionally relevant during translation.  It is possible that H27 

dynamics are an evolutionary relic from a proto-ribosome that required a dynamic H27 

for translation.  This possibility implies that the H27 dynamics inherent to the sequence 

are suppressed in modern, actively translating ribosomes.  Another possibility is that H27 

dynamics are important during assembly of the 30S particle, facilitating structural 

changes to 16S rRNA that allow for the elaborate and sequential progression of steps that 

enable the ribosomal proteins to bind correctly.   

Another possibility for H27 function is in the process of translocation.  Cryo-EM 

reconstructions of the ribosome have at least “circumstantially” implicated H27 in 

translocation, demonstrating that H27 lies on the axis that defines the ratchet-like 

reorganization of the 30S subunit with respect to the 50S subunit (48, 49). There is also 

additional evidence in the literature that suggests that H27 may be involved in large-scale 

conformational changes that could resemble the observed subunit dynamics from cryo-

EM reconstructions.   

The antibiotic streptomycin (Sm) binds in the 30S subunit in the region of protein 

S12 (143, 156, 215).  In addition to its involvement in decoding, S12 is known to play an 

important structural role by binding together disparate regions of the 30S subunit, 

including the 530 loop, H44, and H27 (88).  Crystallographic studies show that Sm 

disrupts a number of S12-rRNA contacts including H27 contacts (156).  DMS 

footprinting data essentially agree with the crystallographic findings regarding Sm, in that 

there are a number of perturbations in the footprinting pattern of the 30S subunit centered 

around nucleotides 910-915 (143, 215).  Another region of 16S rRNA that shows 

protections to DMS after Sm addition are nucleotides 1468-1469 in H44, which are ~60 

Å away from the Sm binding site in the crystal structure (156, 215).  A number of rRNA 

mutations have been reported that attenuate the effect of Sm.  The first to note is that the 

mutation C912U in H27 confers Sm resistance (51).  Furthermore, Allen and Noller 

reported that the mutation C1469U in E.coli 16S rRNA H44 suppresses Sm dependence 
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(216).  Given that crystallography identifies a single Sm binding site, the 1469 mutation 

and the DMS protections suggest that there is some communication between the Sm 

binding region of the 30S subunit and a region along H44 that is ~60 Å away.  Additional 

evidence links H27 to the distant 1468-1469 region of H44.  Wollenzien and co-workers 

found a number of UV-induced crosslinks between 16S rRNA bases in the 30S subunit in 

the absence of Sm.  G894, a base in H27, is observed to make two such crosslinks (120, 

121).  The first crosslink is to U244, which is consistent with their proximity in the 

crystal structures.  However, G894 also crosslinks to A1468.  This evidence is consistent 

with the notion that H27 is involved in a large (> 35 Å) conformational change that 

brings it in contact with the 1468-1469 region of H44.  (This crosslink has been noted to 

depend on the ribosome preparation method used (217).) 

Analysis of the conservation of the nucleotide identity at selected positions in 

these regions provides further evidence for a potential interaction.  The base pairs 894-

905 and 1432-1468 are highly conserved across all kingdoms of life, with the exception 

of mitochondrial small subunit RNA (218).  In mitochondria, H44 is dramatically 

shortened.  Only in this case, when position 1468 is deleted, do we find any significant 

variability in the nucleotide identity at positions 894-905.  

All these data taken together suggest that there is a large conformational change 

in the 30S subunit involving H27.  If H27 were the “axis” of this conformational change, 

then the movement of H44 would have to be in the direction of the P/E site, which is in 

fact what has been reported (86).   In addition, independent data show that proteins S12 

and S13 regulate translocation (219). These findings are consistent with the role of S12 

proposed here, as well as the idea that translocation is inherent to the RNA.  It is still 

difficult to determine any role that 885-888 H27 conformational rearrangement would 

have in this hypothetical large-scale motion associated with translocation.  Given that 

translocation is catalyzed by the translation factor EF-G, it is conceivable that the 

inhibitory effects of the “pQuad” mutant are masked by the action of EF-G.  Furthermore, 

perhaps only a disruption of the base pairing pattern in H27 is required, and that a formal 

establishment of an alternate arrangement is not necessary. 

Future experiments to test this hypothesis should focus on defining compensatory 

mutations between the H27 894 site and the H44 1468-1469 region, examining Sm 
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sensitivity and EF-G independent translocation in these mutant ribosomes.  An ideal 

system with which to test these mutant ribosomes has been developed by our collaborator 

at Wayne State, Prof. Phil Cunningham.  The system employs ribosomes with a modified 

Shine-Dalgarno sequence that enables ribosomes to translate specific reporter messages, 

separating out the mutant ribosomes from the background of WT ribosomes present in 

the cell (220).  In fact, this system has already been utilized to study mutations in H27 

(179, 221, 222).  Strategies could include creating deleterious mutations at either the 894 

position of H27 or the 1468-9 position in H44 followed by PCR mutagenesis of 16S 

rRNA to find compensatory mutants that rescue ribosome function.  If any mutants were 

found, they could be assayed for translocation using a toeprinting assay (223).  A number 

of other potential experiments exist for this hypothesis, but the in vivo reporter system 

from the Cunningham lab is a facile and high throughput method for testing a functional 

interaction between H27 and H44.  

 

 As effector molecules of the RNAi pathway, enormous effort has focused on 

modifying the pharmacokinetic properties of siRNAs to enhance their utility as 

therapeutics (67, 68).  The great promise of siRNA therapeutics has yet to be fulfilled, 

and challenges include stability, tissue specific delivery, and specificity of the siRNA 

drug (81).  A primary problem with siRNA therapeutics is the inherent nuclease 

sensitivity of RNA.  Regardless of the techniques of delivery, siRNA drugs are exposed 

to the extracellular environment, a region that is rich in nuclease enzymes that can 

quickly degrade RNA.  Chemical modifications have provided excellent stability to 

siRNAs in the extracellular environment, as demonstrated in Chapter 5 of this thesis and 

elsewhere (67, 76).  Important questions persist regarding the utility of chemical 

modifications in the intracellular environment.  A recent study has shown the importance 

of 2’-O-Me chemical modifications in the 1 and 2 positions of the siRNA for reducing 

“off-target” effects of siRNAs, and we have further demonstrated in Chapter 5 that this 

same pattern of modification greatly enhances siRNA stability in the extracellular 

6.2 Stability of siRNAs and Their Utility as Therapeutics 
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environment (66, 76).  Work in Chapter 4 shows that RNAi active dsRNA substrates are 

specifically protected in cell extract, consistent with independent fluorescence and 

modeling studies of intracellular siRNAs (69, 80).  The precise mechanism of this 

protection is unknown.  Future studies should focus on which components of the cell or 

of the RNAi machinery are responsible for this specific protection of siRNA-like 

duplexes.  An obvious hypothesis is that the RISC loading complex (RLC) is responsible 

for binding siRNAs immediately on entry into the cell and thereby affording protection 

from degradation. 

 The studies in Chapter 5 have found a discrepancy between the action of siRNAs 

that are 2’-O-Me modified at the 1 and 2 positions (66, 76).  Our data show reduced 

target cleavage efficiency, whereas a previous study did not note any reduction in gene 

silencing activity of the modified siRNAs as evaluated by microarray assay (66). The 

differences in the target cleavage assay and the microarray analysis are consistent with a 

mechanism whereby 2’-O-Me modification of the 1 and 2 positions influences whether 

the target is directly cleaved or sequestered in a manner similar to the miRNA pathway.   

 The first step in resolving this discrepancy would be to utilize the same siRNA 

between the two studies, that is, conduct microarray analysis and target cleavage assays 

utilizing the same siRNA sequence.  In the event that a discrepancy still exists, the 1 and 

2 position 2’-O-Me modified siRNA and a control without the modifications would have 

to be assayed for translational repression, an effect resembling miRNA repression.  It is 

also necessary to determine if the chemically modified guide strand sill targets the same 

region of the mRNA, or perhaps the siRNA becomes less specific and also targets other 

regions.  Another possibility includes inhibition of RISC catalytic efficiency by the 

chemical modifications, which could be determined by binding assays paired with target 

cleavage assays.  It is clear that the RNAi pathway is still being characterized, and future 

efforts to understand the crossover between siRNA cleavage mechanisms and miRNA 

repression will significantly advance the field.  
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APPENDIX 1  
 

DEVELOPMENT OF A PARTICLE TRACKING ASSAY FOR PROKARYOTIC 

TRANSLATION5 

 

Introduction 

 There has been enormous progress recently in understanding the structure and 

dynamics of the ribosome.  Recent crystal structures of the ribosome have illuminated a 

number of questions concerning ribosome function, including how the ribosome selects 

for the correct codon:anticodon pairing (96) and how peptidyl transfer works (44).  Cryo-

EM studies of ribosomes have provided additional insight into structure and dynamics, 

particularly into the dramatic changes associated with translocation (30).   However, 

these studies have centered on local ribosome-mRNA interactions.  A translating 

ribosome interacts with many more codons of mRNA than those pictured in the snapshots 

of x-ray or cryo-EM structures, leaving a gap in our understanding of how the translating 

ribosome moves over and interacts with mRNA.  It is well known that structural features 

of mRNAs can induce frameshifts, changes in the mRNA-ribosome register, and thereby 

profoundly impact the nature of the translated protein.  Additionally, recent studies have 

demonstrated that the ribosome harbors helicase activity, allowing the ribosome to unfold 

structures in mRNA encountered during the course of translation (224).  To address 

                                                 
5 This work is a collaboration between the following individuals: John Hoerter, Dr. Anthony Manzo, Ryan 
Murphy (rotation student), Prof. Nils Walter, Prof. Michael Morris, Prof. Mark Burns, Dr. Peizhi Zhu, Prof. 
Phil Cunningham, and Tek Lamichhane.  Rotation students Annette Casiano, Blake Erickson, and Dan 
Wahl have also contributed during the early stages of this work. 
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processes of this nature, we are developing materials and methods that will allow for 

particle tracking of single translating ribosomes and mRNAs. 

 Particle tracking methods (225) have been successfully developed for use in 

tracking biological complexes both in vitro and in vivo (226, 227).  To date, particle 

tracking efforts have focused primarily on the use of organic dyes as fluorescent probes, 

with notable success in application to the molecular motors kinesin and myosin.  

Quantum dots (QDots) are semiconductor nanocrystals whose unique luminescent 

properties including high photostability and broad excitation but narrow emission spectra 

make them ideal for particle tracking applications where long observation windows and 

multiple different probes are required.  QDots have already been applied as particle 

tracking probes (228), and we seek to extend the utility of QDots to assays of prokaryotic 

translation. We have developed a protocol (based on an existing Invitrogen protocol) for 

derivatizing carboxylate coated QDots with DNA primers.   With these materials, we 

have established specific binding of QDots to surface tethered nucleic acids and finally 

used QDot probes targeted to different regions of an mRNA to study diffusive motion.  

We also discuss initial in vitro translation assays and control experiments exploring the 

binding of 30S subunits to QDot-DNA conjugates.   

 

Materials and Methods 

Conjugation of Amine Coated QDots and SH-modified DNA 

Our initial strategy for generating QDot-DNA conjugates relied on a protocol 

from Evident Technology that utilized the company’s amino modified QDots and 5’ SH-

modified DNA oligonucleotides from Keck. We performed the coupling reaction several 

times, noting that during the ultracentrifugation purification process the QDots tended to 

form aggregates.  We did use the material from these coupling reactions and found 

evidence for mRNA binding, including good correspondence between the 565 and 705 

QDots hybridized to the same mRNA.  Upon storage of several months, we noted that the 

QDots lost their fluorescence properties.  This finding, combined with the fact that the 

QDots are cationic and the mRNA target to which they bind is anionic, led us to 

investigate other QDot conjugation strategies and suppliers. 
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Conjugation of Carboxylate QDots and NH2-modified DNA 

 

5’ amino modified DNA primers were purchased from Invitrogen Corp. and used 

as received from the supplier.  The sequences are as follows: 32-5’DNA,  

CAGTTGGTGCTATGACACTTTACC; 32-3’DNA, TCAAAAGGTCATCCAGGTCC; 

60-5’DNA, TTTCATCAGGAATCCAACCG; 60-3’DNA, 

GCTCATCCATTCTTTACGAAGG; hp5 DNA, GGGAGATCAGGATA. The 

conjugation protocol is based on an Invitrogen Corp. protocol.  Briefly, 5 µl of 565 nm or 

705 nm carboxylate modified QDots (Invitrogen Corp.) were mixed with a 0.8 µl solution 

of EDC (1-ethyl-3-[3-dimethylaminopropyl]carbodiimide hydrochloride,  Pierce) (1 

mg/ml EDC concentration for 565 nm QDots and 10mg/ml EDC concentration for 705 

nm QDots) and incubated at room temperature for 5 min protected from light.  The QDot 

EDC solution was then mixed with 35 µl of the appropriate DNA primer that had 

previously been dissolved in 10 mM sodium borate pH 7.4 at final concentration of 200 

µM.  The QDot/EDC/DNA solution was mixed and incubated overnight at room 

temperature while protected from light.  The solutions were then loaded into a 50,000 

molecular weight cut-off (MWCO) VivaSpin (VWR) centrifugal filter and spun at 10,000 

RPM for 5 minutes.  The retained QDot-DNA conjugate was then washed four times with 

400 µl of 50 mM sodium borate pH 8.3.  The concentration of the QDot-DNA conjugates 

was then measured by UV absorbance using the QDot extinction coefficients supplied by 

Invitrogen (for 705 QDots, ε350= 12.9x106 M-1cm-1, ε405= 8.3x106 M-1cm-1, ε488= 3.0x106 

M-1cm-1, chosen such that the absorbance at the wavelength specified by the extinction 

coefficient was less than 1 AU) and diluted out to a standard working concentration of 1 

µM. 

 

Purification of T4 bacteriophage genomic DNA 

To approximately 2 mg of whole T4 bacteriophage (ACTC, lyophilized powder), 

150 µl of 100 mM Tris-HOAc, pH 7.4, 160 mM KCl, 40 mM NaCl, and 2 mM MgCl2  

(other buffers can be and were also used here), 2 ml water, and 5 ml of 1:1 

phenol:chloroform were added and the resulting suspension was vortexed and then 

centrifuged at 9,000 RPM.  The resulting top aqueous phase was separated and mixed 



 

 113 

with 0.1 volumes of 3 M NaOAc pH 5.2 and 3 volumes of ethanol and allowed to 

precipitate overnight at -20ºC.  The precipitated DNA was recovered by centrifugation at 

9,000 RPM for 30 minutes, decanted, washed with 80% ethanol, dried, and dissolved in 

water.  This stock solution served as the template for PCR reactions generating the gene 

60 and gene 32 mRNAs and plasmids.  

 

Initial cloning of gene 60 and gene 32 mRNAs  

The initial cloning strategy for gene 32 (229) and gene 60 (230) consisted of a 

single round of Taq PCR were a T7 promoter was added upstream of the gene of interest, 

followed by digestion by Sph I and Kpn I, and ligation into the pUC19 plasmid.  The 

primers are as follows:  32-left, 

CGATACTAGATAGCATGCTAATACGACTCACTATAGGGCTATGAGGTAAAGT

GTCATAGCACCAACTGTT; 32-right, 

CCTTAGAACATGGGTACCGGGGGACCTCTAGGGTCCCCAATTAA; 60-left, 

CGATACTAGATAGCATGCTAATACGACTCACTATAGGGCGGTTGGATTCCTG

ATGAAAAGTTCTAT; 60-right,  

CCTTAGAACATGGGTACCGAAATTCTTCGGCTTCTCCCATATCGAAAAAGC.   

Transformation and sequencing of these ligation reactions yielded no gene 32 clones and 

a number of multiply mutated gene 60 clones.  These results suggested that the phage 

mRNAs may have a detrimental effect on E.coli growth, and therefore our strategy may 

not be fruitful.  Consequently, we utilized the above primers to generate large amounts of 

the PCR product to use as a template for T7 transcription reactions to generate the mRNA 

for particle tracking experiments.  This is the sequence depicted in Appendix Figure 1.   

 

Design and Development of mRNAs compatible with Cunningham Lab Ribosomes 

The mutant 30S ribosomal subunits utilized in the Cunningham lab contain a 

mutated Shine-Dalgarno sequence at the 3’-end of 16S rRNA (220).  In order to utilize 

this system in our in vitro translation assay, we developed new gene 32 and gene 60 

mRNAs with two modifications including an altered ribosome binding site in the 5’ UTR 

of each mRNA.  The Cunningham lab uses genes that have been further modified to have 

the same nucleotide sequence in the 5’-UTR to normalize the frequency of translation  
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Appendix Figure 1.  Sequence and primer binding sites for PCR transcribed gene 60 

mRNA.  The start codon and stop codons are underlined, and the 5’-UTR primer binding 

site is highlighted in red, and the 3’ binding site is highlighted in blue. 
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initiation.  For this reason, the gene 32 mRNA was redesigned to carry the gene 60 5’ and 

3’ UTRs.  The PCR strategy required 3 rounds, and the primers are as follows: gene 60 

left-1, 

TGATGAAAAGTTCTATCCCGTGTATAATGAAATTTGTAAAAATTGATTCTTCT

AG; gene 60 right-1, 

TAATTATACCACATCCTTGTGGTAAAGTAAACTACTGGCTCATCCATTCTTTA

CG; gene 32 left-1, 

TGATGAAAAGTTCTATCCCGTGTATAATGTTTAAACGTAAATCTACTGCTGAA

C; gene 32 right-1, 

TAATTATACCACATCCTTGTGGTAAAGTAAATTAAAGGTCATTCAAAAGGTC

ATCC; common left-2, 

ATTTAATGAATTTAAACGCGGTTGGATTCCTGATGAAAAGTTCTATCCCGTG; 

common right-2, 

GCTACTAAGCTTTTGCCCAATTAATTATACCACATCCTTGTGGTAAAG; 

common left-3, 

CGTAGTTCTAGATAATACGACTCACTATAGGAGCATTTAATGAATTTAAACGC

GGTTG.  The restriction enzymes used for successful cloning were HindIII and XbaI.   

 Clones of both gene 32 and gene 60 were isolated using this strategy, but each 

isolate had a number of mutations.  The Quick Change Multi Mutagenesis kit 

(Stratagene) was used to correct these mutations.  The clones utilized were 864419 and 

864420 (UofM Sequencing Core ID numbers) for gene 32 and gene 60, respectively.  The 

primers utilized for the Quick Change mutagenesis are listed as follows: Q32-1, 

GAAGGTAAAGTATTTAAATACCGCTTTGGTAAGAAAATCTGGG; Q32-2, 

GGATTTAGTAACTACGATGAATCTAAATTCCTGAATCAATCTGC; Q32-3, 

TTCTGAAATGACTTCTAAAGATAAATTCAAATCGTTTGAAGAAC; Q32-4, 

GCTAAGAAAGCTGATAAAGTGGCTGATGATTTGGATGCATTC; Q32-5, 

ATTTACTTTACCACAAGGATGTGGTATAATTAATTGGGCAAAAG; Q60-1, 

GAAAAAATATAAATTGCAGAACAATGTTCGTCGTTCTATTAAATC; Q60-2, 

CCTTCGGGCTATCTATAGAAATACCTCATAATTAAGAGATTATTG; Q60-3/4, 

TCTATTTATCCTTCTCTGCTCGGATTTTTTAGTAATTGGCCAGAATTGTTTGAG

C.   
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Appendix Figure 2.  Cunningham lab-compatible mRNA design.  These new gene 60 

and gene 32 mRNAs incorporate the modified ribosome binding site required my the 

Cunningham lab mutant ribosomes.  In addition, the gene 60 5’ and 3’ UTRs were 

grafted onto the gene 32 coding sequence so that both mRNA should share similar 

sequence in the region of the initiating ribosome as well as sharing common UTR binding 

sites for DNA primers.  
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Finally, these clones were HindIII digested for run-off transcription for use in both in 

vitro transcription reactions as well as in vitro translation reactions.  The final sequences 

after the Quick Change mutagenesis were the exact constructs outlined in Appendix 

Figure 2. 

 
PCR for Generation of Complementary RNAs for gene 60 and gene 32 

 The purified round 1 PCR product taken from the cloning process that generated 

the of the Cunningham compatible mRNAs was used as template to generate PCR 

products for transcription of RNAs that are complementary to gene 32 and gene 60.  The 

primers used are as follows: c32 left, TACTGCTGAACTCGCTGCAC; c32 right, 

GCATGCTAATACGACTCACTATAGGCTTGAGCTCATAAAATCATCTTC; c60 

left, AATTGATTCTTCTAGCGTTGATATG; c60 right, 

GCATGCTAATACGACTCACTATAGAAAAAGCTCTTTCCAGTTCTCAGG. The 

underlined regions of the primers denote the T7 promoter region including the G+1. 

 

Transcription of RNAs 

Transcription reactions of RNAs were carried out using the PCR DNA as 

template in all cases, including gene 60 and gene 32 mRNAs and the gene 60 and gene 32 

complementary (c)RNAs.  Template concentration ranged from 80-100 nM with 120 mM 

HEPES-KOH pH 7.5, 30 mM MgCl2, 2 mM spermidine, 0.01% Triton X-100, 4 mM 

each NTP, 40 mM DTT and, in select cases where generation of a 5’ biotin was required, 

0.4 mM of biotin-GG (Dharmacon).  The reactions were run at sufficiently small volumes 

(20-100 µl) so they were loaded directly on the gel.  Reactions were mixed with loading 

buffer, added to a final concentration of 1×TBE, 0.025% bromophenol blue, and 40% 

formamide, and the products separated on a denaturing, 8 M urea, 4% (w/v) 

polyacrylamide gel (6% gel for cRNAs), visualized using UV shadowing, excised, eluted 

in 1 mM EDTA, and ethanol precipitated.   

 

Ribosome Design, Development, and Purification 

Puglisi and co-workers have developed a strategy for site-specific fluorophore 

labeling of the E. coli ribosome (231).  The basic idea is a genetic swap of a surface 



 

 118 

exposed, isolated rRNA loop with an elongated meta-stable helix that enables binding of 

a fluorophore-labeled DNA primer.  The authors initially designed two hairpin sequences 

and introduced those sequences into the 30S subunit in a number of places.  They 

observed that several of these mutants encoded functional ribosomes.  However, these 

original hairpin designs did not have high affinity for the complementary DNA primer.  

The authors then designed three new hairpin sequences (hairpins 3, 4, and 5), but only 

introduced these sequences into a single site (helix 33a).  The new hairpin designs 

displayed a much higher affinity for the complementary DNA.  The authors conducted 

single molecule studies on the helix 33a hairpin 5 mutant.   

 In collaboration with the Cunningham lab, we worked towards using this scheme 

to introduce specific fluorophore or QDot labels (via complementary DNA probes) to the 

E. coli ribosome.  We have selected two candidate-labeling positions, helix 33a and helix 

6 of the 30S subunit (both were viable mutants in the Puglisi study).  

 A technician in the Cunningham lab made a total of 4 mutants: hairpin 5 mutant 

of helix 33a and hairpin 3, 4, and 5 mutants of helix 6.  This strategy exploits two 

different positions on the ribosome, both of which were shown by Puglisi and co-workers 

to tolerate these hairpin-type modifications.  Helix 33a-hairpin 5 is well characterized, 

but the helix 6 mutation was not explored with the high affinity hairpins (not hairpins 3, 

4, and 5).  Because helix 6 is not as well studied as helix 33a, we introduced all 3 of the 

high affinity mutant hairpins.  This strategy is spelled out below on a secondary structure 

depiction of E. coli 16S rRNA (Appendix Figure 3). 

 A technician in the Cunningham lab assayed each of these mutants for 

translational efficiency in an in vivo assay.  The results are in the following table  

 

 

30S subunit mutation % GFP production 
relative to wild-type 

Helix 6, hairpin 3 34 
Helix 6, hairpin 4 46 
Helix 6, hairpin 5 10 
Helix 33a, hairpin 5 65 

Appendix Table 1.  Activities of mutant ribosomes. 
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Appendix Figure 3.  Location and sequence of mutated 16S rRNA constructs 

developed in the Cunningham lab.  Of each of these constructs, helix 33a hairpin 5 

mutant was the most active.  The secondary structure diagram is adapted from reference 

(90). 
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Based on these results we chose the most active ribosome helix 33a hairpin 5 mutant for 

our studies.  Briefly, E. coli containing the mutant 30S subunits were grown up, pelleted, 

resuspended in Buffer A (50 mM Tris-HCl pH 7.6, 10 mM MgCl2, 100 mM NH4Cl, and 

0.5 mM EDTA) lysed using a French Press, subjected to a DNase I (final concentration 

of 5 µg/ml) digestion step on ice for 5 minutes, and the cell debris was pelleted in a 

centrifuge for 15 minutes at 15,000 rpm.  The supernatant was adjusted to 0.5 M NH4Cl, 

and the ribosomes were pelleted by ultracentrifugation through a 10% sucrose cushion.  

The pellet was collected and resuspended in Buffer B (50 mM Tris-HCl pH 7.6, 10 mM 

MgCl2, and 100 mM NH4Cl) overnight at 4 ºC.  The ribosomes were then passed through 

a sucrose gradient to separate the large and small subunits and separated using a fraction 

collector and UV detector.  Fractions were pooled, yielding 50S subunits, 30S subunits 

with mutant Shine-Dalgarno sequences, and 30S subunits with both mutant Shine-

Dalgarno sequences and the helix 33a hairpin 5 mutation.  The 30S subunit pools were 

further treated to remove wild-type 30S subunits by incubation with a biotinylated DNA 

oligo (FISH primer, 5`biotin- ATC(ATC)14ATCTAAGGAGGTGAT) designed to bind 

the wild-type Shine-Dalgarno sequence and be irreversibly trapped on Tetravidin beads 

(Promega).  This yielded the final stocks of 30S ribosomal subunits. Detailed versions of 

these protocols are available from the Cunningham lab at Wayne State University. 

 

PEGylation of microscope slides 

 The fused silica microscope slides used for imaging experiments were covalently 

modified with poly(ethyleneglycol) (PEG) to minimize non-specific binding of both 

QDots and proteins.  This was accomplished according to protocols modified from 

previous publications (232-234).   Briefly, the slides were thoroughly cleaned and flamed 

off, reacted with aminopropyltriethoxysilane (APTES) in acetone, rinsed, dried, allowed 

to react overnight with OMe-PEG-OSu and biotin-PEG-OSu (the PEG reagent suppliers 

are currently in flux, but the MW used ranged from 3.000 to 5,000 MW), rinsed, dried, 

and allowed to react with sulfo-disuccinimidyltartarate (sulfo-DST, Soltec Ventures) for 

30 minutes.  The slides were finally rinsed, dried, and assembled into flow channels. 

 

Annealing of mRNA and QDot-Conjugates 
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 QDot-DNA conjugates were annealed with target (mRNAs or cDNA) at a 

concentration of 20 nM each in T50 buffer (50 mM Tris-HCl pH 7.5, 50 mM NaCl) and 

100 mM DTT.  Additionally, complementary (c)RNA for gene 60 or gene 32 (prepared 

above) can be added at the desired concentration to hybridize to the mRNA and create a 

region of long dsRNA.  The resulting solution is heated at 70 ºC for 2 minutes followed 

by cooling to room temperature over 10 minutes.  Samples are then diluted out to a 

working concentration of ~50 pM in T50 buffer (50 mM Tris-HCl pH 7.5, 50 mM NaCl) 

plus 100 mM DTT before loading on the microscope slide. 

 

Loading of microscope slide for imaging 

 Microscope slides were prepared by first adding a stock solution of 0.2 mg/ml 

streptavidin in T50 buffer to the slide followed by an incubation of 10 min at room 

temperature.  The slide is then rinsed with 80 µl of T50 + DTT buffer followed by 

application of a blocking buffer (1 mg/ml BSA, 1 mg/ml sheared salmon sperm DNA in 

T50 + DTT buffer) with an incubation time of 10 min.  The slide is again rinsed with 80 

µl of T50 + DTT buffer followed by application of the QDot containing sample and 

incubation for 10 min.  The slide is finally rinsed with 160 µl of T50 + DTT buffer.  The 

external regions of the slide are wiped clean using water and allowed to dry.   

 

Fluorescence Microscopy and Data Analysis 

 Data were collected on a prism-based total internal reflection fluorescence (TIRF) 

microscope constructed as described in (24).  For our experiments, the filter wheel on the 

532 nm laser was set at 0.04, the MCP on the I-Pentamax CCD camera was set at 60%, 

and the integration time was ~0.1 s.  For the data sets examining the specificity of QDot 

binding, only the first frame of each movie was analyzed, and the number of spots from 

2-3 different fields of view under each condition was reported.  For data sets where 

samples were tracked as a function of time, 2-3 movies (different fields of view) each 

totaling of 600 frames (60 s) were analyzed.  The data analysis was carried out either in 

Diatrack (Semasopht) or Matlab.   

 

In Vitro Translation 
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 The Ambion Active-Pro In Vitro translation kit was used for in vitro translation 

assays.  Lab made recombinant T7 RNA polymerase was exchanged with the T7 

polymerase supplied in the kit without problems.  The kit was used as described by the 

manufacturer, except that the final reaction volume was 25 µl instead of 50 µl.  Initially, 

SDS PAGE gel analysis (4-20% Tris-glycine and 4-12% bis-tris gels (Invitrogen) and 

corresponding buffers were used interchangeably) was conducted using Coomassie 

Brilliant Blue G250 staining to visualize proteins.  However, only the positive control 

was visible, so 35S-methionine was used and the gels were visualized 

autoradiographically.  The 35S assays were identical to the assay above except for the 

addition of 35S-methionine and the fact that the gel was not stained at all after 

electrophresis.   

 The templates for the reaction were the chloramphenicol acetyltransferase 

plasmid (pCAT) supplied by Ambion, the gene 60 and gene 32 PCR DNA templates 

(PCR templates are valid templates according to Ambion) and the HindIII digested 

Cunningham lab compatible gene 32 and gene 60 plasmids.  In experiments where the 

Cunningham lab plasmids were used, purified 30S ribosomal subunits with the modified 

Shine-Dalgarno sequence were added to the reaction. 

 

QDot binding to the 30S particle and construction of a composite gel 

 Gel based assays were used to asses the nature of the binding interaction between 

the QDot-DNA conjugate of the hp5 DNA to the helix 33a hairpin 5 (hp5) mutant or to a 

wild-type (WT) ribosome that does not carry the complementary binding site for the 

DNA oligonucleotide.  Initial assays were run on a 0.5 X TBE, 0.8% (w/v) agarose gels, 

but a composite gel (see below) turned out to be more appropriate.  30S particles and 

QDot-DNA conjugates were incubated at 32 nM, while the 30S particles were at a 

concentration of 271 nM in RPE buffer (10 mM Tris-HCl pH 7.6, 10 mM MgCl2, 60 mM 

NH4Cl) at 37 ºC for variable periods of time.  The results of these assays revealed binding 

of the QDot-DNA conjugate to both the mutant and, unexpectedly, WT 30S ribosomal 

particles. 

 A composite gel (231, 235) contains the following components: 0.5% (w/v) 

agarose, 2.75% (w/v) acrylamide, 1% sucrose, 25 mM Tris-OAc pH 7.5, 6 mM KOAc, 2 
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mM Mg(OAc)2, 1 mM DTT.  Briefly, the agarose was mixed with 100 ml water, heated 

in the microwave to dissolve the agarose, and set to cool in a 37 ºC water bath.  The other 

components were mixed together in a separate container and heated in the 37 ºC water 

bath.  The agarose and acrylamide solutions were combined (take care not to make the 

agarose solution gel prematurely), 200 µl each of 50% APS and TEMED were added 

under stirring, and the solution was poured into a horizontal agarose gel cast and allowed 

to polymerize.  The running buffer consisted of 25 mM Tris-OAc pH 7.5, 6 mM KOAc, 

and 2 mM Mg(OAc)2.   A non-denaturing loading buffer that does not contain loading 

dyes should be used, especially for assays which will be imaged on the Trio Imager. 

 

Results 

Particle Tracking 

 We sought to validate our QDot-DNA conjugates by establishing a pattern of 

specific binding of these materials using fluorescence microscopy.  We first minimized 

surface non-specific binding by covalently modifying our microscope slides with 

polyethylenglycol (PEG, see materials and methods).  Further reduction in surface 

binding was accomplished by incubation of the slide with a blocking buffer prior to 

introduction of the QDots to the slide.  The combined action of the surface PEG and the 

blocking buffer serves to virtually eliminate non-specific binding to the surface (7 ± 5 

spots/field of view), as seen in the QDot only panel of Appendix Figure 4.  We also 

found that the QDot-DNA conjugates become more prone to non-specific surface binding 

as they age.  We therefore only used freshly derivatized (< 1 month old) QDot-DNA 

conjugates in our assays. Appendix Figure 4 also shows the result of another negative 

control where we incubated 5’-biotinylated gene 60 mRNA with a mismatched QDot-

DNA conjugate (32-3’ 705) and again found minimized surface binding (8 ± 4 spots/field 

of view).  To the contrary, when we combined QDot-DNA conjugates with either a small 

biotinylated cDNA or a matched 5’-biotinylated mRNA, we found an enrichment in 

surface binding (30 ± 4 spots/field of view for the cDNA and 85 ± 23 spots/field of view 

for the matched mRNA).  These results demonstrate that QDot-DNA conjugates targeted 

our mRNA or cDNA constructs quite specifically. 
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Appendix Figure 4.  Imaging controls demonstrating specific QDot binding.   smTIR 

images of QDot-DNA conjugates demonstrating that the presence of  sequence matched, 

biotinylated binding partner is required for surface QDot binding.   Negative controls are 

on the left column, and positive controls are on the right column.   
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We then conducted experiments designed to compare the observed mobilities of QDot 

probes tethered to the short cDNA, the 5’ end of gene 60 mRNA, or the 3’ end of Gene 

60 mRNA.  We collected two or three 60-s movies of different fields of view for each 

sample set.  Initial data analysis was made with the commercial Diatrack program 

(Semasopht) followed by the calculation of the standard deviation (SD) value for each 

trajectory; all SD values were plotted as a histogram, and a representative value for each 

histogram was determined by fitting the distribution to a Gaussian function.  These data 

were further analyzed by sorting the traces, where the only trajectories utilized originated 

from particles that were present in the first frame of the data set.  These analyses yielded 

the histograms in Appendix Figure 4A.  

 Because of the fact that Diatrack’s algorithm does not deal well with pixel 

boundaries (makes discrete jumps at pixel boundaries), we applied a Matlab routine to the 

Gaussian fitting and trajectory generation steps of the data analysis.  The data were also 

smoothed using a rolling average and output was reported as root mean square (RMS) 

deviation rather than a raw SD value for each X and Y coordinate.  The trajectories in the 

Matlab analysis were also joined together based on positional identity time linking to join 

the many short trajectories generated because of QDot blinking.  The RMS values were 

plotted as histograms and fit to a Gaussian as described for the Diatrack data sets 

(Appendix Figure 4B). 

 These two different analysis methods (Diatrack and Matlab) yield very different 

results when comparing the different experimental constructs.  The Diatrack results 

reveal a general trend where the cDNA has restricted mobility (~7 nm) when compared to 

either the gene 60 5’ or 3’ end (13-17 nm).  This result is consistent with our initial 

hypothesis, in that we expect that the length of the designed tether would correlate with 

the observed motion.  However, in the case of the Matlab analysis, this trend is no longer 

observed and the cDNA, gene 60 5’ and 3’ appear virtually identical with RMS values 

centered around ~18 nm.  Further analysis is necessary to determine the source of these 

discrepancies, but possibilities include weaknesses in the Diatrack output due to discrete 

jumps at pixel boundaries or an influence from the rolling-average in the Matlab data set. 

 One possible explanation for the similarity of the gene 60 5’ and 3’ end mobility 

data is the influence of secondary structure on the effective tether length of these regions 
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Appendix Figure 5.  A comparison of observed QDot mobilities as a function of 

construct and analysis method. A) The cDNA, gene 60 5’, and gene 60 3’ data sets 

were analyzed using Diatrack and a basic SD based assessment of mobility which yielded  

representative mobilities for each sample that suggested the mRNA samples exhibited 

larger motions.  B) The same data sets were analyzed using a lab-written Matlab routine 

that also performed sorting and smoothing of the trajectories.  These data manifest no 

difference between the cDNA, gene 60 5’, and gene 60 3’ data sets. 
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of the mRNA.  To test this hypothesis, we synthesized a complementary (c)RNA to the 

region of gene 60 between the regions of the 5’ and 3’ labels, with the expectation that 

this cRNA would  base pair to the gene 60 mRNA, disrupt secondary structure present in 

the mRNA, and greatly increase the effective tether length of the 3’ region of the mRNA.  

We conducted this experiment and found precisely the opposite result.  For the 5’ end of 

the gene 60/cRNA complex, we again found a similar mobility as in earlier experiments 

with an RMS value centered around 18 nm.  For the 3’ end however, we find much more 

restricted motion, manifested in RMS values centered around 7 nm (Appendix Figure 

5A).  We have not yet determined the source of this unexpected result.  It should be noted 

that the gene 60/cRNA 3’ data are characterized by a considerably higher average 

intensity than the corresponding 5’ data set (Appendix Figure 5B).  It is possible that 

these differences in intensity arise from differential interactions with the surface of the 

microscope slide, as the gene 60 3’ cRNA construct should have a much larger separation 

from the surface.  Another possibility is a simple difference between the quality of the 60 

5’ DNA-QDot conjugate and the 60 3’ DNA-QDot conjugate.  Controls using the same 

preparation of the 60 3’ DNA-QDot conjugate should be conducted, comparing two gene 

60 samples with and without the gene 60 cRNA. 

 

In Vitro Translation 

 Initial in vitro translation assays utilized only Coomassie stains to detect the 

translation products.  It proved impossible to detect gene 32 or gene 60 translation 

products with the Coomassie stain, as the background of proteins from the extract was 

too great.  The control experiment on the left in Appendix Figure 6 shows a Coomassie 

stained gel where the pCAT (25 kDa) positive control and the gene 60 PCR product DNA 

template are shown independently, and then as a mixture.  The lack of inhibition of 

pCAT protein expression by the gene 60 PCR product indicates that the gene 60 PCR 

product does not contain inhibitors.  It suggests, rather, that the problem with gene 60 lies 

inherently in the sequence of the DNA template.  

 The gel on the right in Appendix Figure 6 shows in vitro translation assays run 

using 35S-methionine labeling for the purposes of detection.  This assay reveals that gene 

32 (34 kDa) and gene 60 (18 kDa) are both expressed at low levels from the PCR  
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Appendix Figure 6.  Mobilities and intensities of gene 60-cRNA 5' and 3' ends.  A) 

Hybridization of cRNA to gene 60 yields a gene 60 5’ mobility that is indistinguishable 

from gene 60 with out the cRNA.   The gene 60/cRNA 3’ mobility is drastically 

restricted, contrary to our hypothesis.  B)  Another discrepancy between the samples in 

(A) is the very different intensity values found for the 5’ and 3’ end samples.   
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templates in this system.  No evidence is seen for expression from the Cunningham lab 

compatible gene 32 and gene 60 plasmids (N.B. assays were conducted in the presence of 

the Cunningham lab compatible 30S subunits). 

 Future directions in these studies should focus on using a positive control for the 

expression of the Cunningham lab compatible translation system to determine if the 

problem rests with the gene 60 and gene 32 plasmids or with the translation system itself. 

 

 

Appendix Figure 7.  In vitro translation with gene 32 and gene 60 samples.  The left 

panel is a Coomassie stained gel that addresses the possibility of translational inhibition 

by some contaminant in the gene 60 PCR DNA template.  No inhibition of pCAT 

translation is seen.  Note the high background in the Coomassie stain, originating from 

the in vitro translation components.  The panel on the right is a similar in vitro assay, 

except using 35S-methionine to detect the translation products.  The assay reveals that 

both the gene 32 and gene 60 PCR templates are translated, but at a level much lower 

than the pCAT positive control.  The gene 32 and gene 60 plasmid DNA coding for the 

Cunningham lab compatible mRNAs are not translated under these conditions in the 

presence of the Cunningham lab mutant 30S subunits.   
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APPENDIX 2  
 

INVESTIGATING THE MECHANISM OF TRANSCRIPTIONAL REGULATION 

IN THE MINOR E. COLI tRNA ARGU6 

 

 The recent discovery that non-coding genome regions in bacteria can regulate 

gene expression by presenting RNA motifs that are sensitive to metabolites (20, 236) 

represents a true paradigm shift in how we think about the roles RNA can play in the cell.  

These “riboswitches” are found at the untranslated 5’ ends of mRNAs and act by 

modulating either transcription or translation (237).  The 5’ leader of ArgU, the minor 

E.coli tRNAUCU is intriguing in this respect, as it has been implicated in reducing the 

level of the mature transcript by approximately 100-fold (238).  ArgU is in a region of the 

genome derived from a defective lambdoid phage, where the phage integrase gene 

overlaps ArgU and the attachment site is located within the mature tRNA (238).  Other 

distinguishing features of ArgU include its transcription as a discrete unit, and the fact 

that it is often the limiting factor in expression of proteins using the AGA codon (239).  

There are several mechanisms by which the ArgU 5’ leader may potentially reduce levels 

of the mature transcript.  These include ρ-independent transcription termination, a 

riboswitch like mechanism, and an HIV-Tar like mechanism.   

 Analysis of the E. coli K12 genome for the frequency of the AGA codon reveals 

that this codon is most widely found in prophages, transposons, and integrases (Appendix 

Figure 8A).  We have also classified these data by % AGA codon usage and a similar 

                                                 
6 This work has been a collaboration with Prof. Orkun Soyer (University of Trento, Italy) and Prof. Nils G. 
Walter.  Prof. Soyer conducted bioinformatic analyses of  UCU codon usage in E. coli and T4 
bacteriophage. 
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trend emerges. The viral origin of the ArgU gene and the high frequency of the AGA 

codon in proteins associated with lysogeny and DNA mobility are intriguing.  In addition, 

the potential for an HIV-Tar like mechanism in transcriptional control raises interesting 

evolutionary issues (240) concerning common structures and mechanisms involved in 

transcriptional control of a prophage and a human retrovirus. 

Our initial investigations of ArgU have been with double-stranded synthetic DNA 

templates and T7 RNA polymerase.  Transcription of the WT 5’ leader ArgU sequence 

yields full length (33-nucleotide) product as well as a significant amount of an 

approximately 22-nucleotide abortive product.  In an initial experiment depicted in 

Appendix Figure 8B, we investigated the possibility that the 5’ leader binds the amino 

acid arginine leading to increased production of full length transcript.  This appears not to 

be the case. 

One possibility for formation of the 22-nucleotide transcription product is 

degradation of the full length transcript.  To address this possibility, we conducted 

transcriptions using [α-32P] GTP to “body label” the RNA and took time points to study 

the role of degradation in formation of the shorter transcript.  There is a small amount of 

background degradation, but this is not sufficient to account for all abortive transcript 

formed.  

Among the explanations for our observation of an abortive transcript is ρ-

independent transcription termination, characterized by formation of a hairpin in the 

nascent transcript and destabilization of the DNA-RNA hybrid, leading to transcription 

termination.  If this were the case, deletion of the putative internal loop in the Arg U 5’ 

leader would stabilize the hairpin and lead to an increase in the relative amount of the 

abortive transcript.  The results in Appendix Figure 8C show that deletion of the three-

nucleotide internal loop actually leads to an increase in the amount of the full length 

transcript, which is the opposite result predicted if ρ-independent transcription 

termination were operative. 

To investigate the possibility of specific binding of an arginine residue by ArgU, 

we used the arginine analogue argininamide and an in-line probing assay (236). 

Incubating 5’-32P-labeled ArgU RNA with 10 mM argininamide in 30 mM MgCl2 at 37° 

C for 48 h yields a cleavage pattern that, on comparison, yields information on changes in 
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Appendix Figure 8.  Studies on the minor E. coli tRNA argU.  A)  Genes with the 

highest utilization of the UCU codon in E. coli.  B) T7 transcriptions of the argU leader 

as a function of added amino acid.  No effect is seen in the ratio of ~22 to ~33 nucleotide 

product.  C)  Deletion of the putative internal loop in the argU leader leads to greater 

accumulation of full-length transcript.  D)  A single inline probing assay of the argU 

leader with argininamide reveals differences in the region of the putative internal loop. 
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RNA structure. In very preliminary results, comparison of reactions containing no amino 

acid, 10 mM lysine, and 10 mM argininamide suggests there may be a change in the 

cleavage pattern of ArgU RNA on argininamide addition in the region of the internal loop 

that in HIV1-TAR is essential to specific arginine binding and in ArgU is responsible for 

decreasing production of full length transcript (Appendix Figure 8D).  This result has not 

been reproduced. 

These results are not conclusive regarding the nature of transcriptional control in 

ArgU.  Future experiments should include in vitro transcription assays using E. coli RNA 

polymerase rather than T7 polymerase, in-line probing assays that utilize 3’ radiolabeling 

as well as an ArgU mutant as a negative control, and in vivo assays of ArgU abundance 

as a function of mutation in the 5’ leader as probed by Northern blot analysis. 

 

 

 



 

 134 

APPENDIX 3  
 

RACEMIZATION OF AN AMINO ACID: HYPOTHETICAL CHIRAL 

INDUCTION BY DNA 

 

 The origin of homochirality in biological systems continues to challenge 

scientists.  The essentially exclusive use of levorotary (L) amino acids and dextrorotary 

(D) sugars in the construction of proteins, DNA, and RNA poses interesting questions 

regarding the origin, propagation, and purpose for the phenomenon. The RNA world 

hypothesis implies that existing homochiral nucleic acids may have influenced the 

establishment of an L-amino acid protein world.  A potential mechanism for the selection 

of L-amino acids may be chiral induction of amino acid racemization by nucleic acids.  I 

have not found an example of this phenomenon in the literature.  Reports of chiral 

separations of phenylalanine by DNA (241) may provide evidence to support a 

hypothesis of non-specific chiral induction in the racemization of an amino acid by 

nucleic acid.  To test this hypothesis, I selected L-phenylglycine amide (H-Phg-NH2) as 

the amino acid derivative to racemize.  The amide functionality and the phenyl group 

directly attached to the α-carbon will serve to stabilize the carbanion generated on 

deprotonation and therefore accelerate the racemization reaction. GITC (2,3,4,6-tetra-O-

acetyl-β -D-glucopyranosyl isothiocyanate) was selected to derivatize the H-Phg-NH2 to 

diasteriomers that can be separated and quantified by reversed phase (RP)-HPLC (242).    

An ~ 60-nucleotide synthetic DNA duplex was used as the DNA in the racemization 

reactions.  The buffer was 250 mM KiPO4 pH 8, the H-Phg-NH2 concentration was 50 

mM, the duplex DNA concentration was ~ 12 µM.  Samples were incubated for 42 °C  
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Appendix Figure 9.  Racemization of H-Phg-NH2.  A)  The reaction between GITC 

and D and L H-Phg-NH2.  B)  Chromatograms of the (L)-H-Phg-NH2 racemization 

reaction as a function of time.  C) Chromatograms of the (L)-H-Phg-NH2 racemization 

reaction plus or minus DNA. 
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and time points were sampled, derivatized with GITC (Appendix Figure 9A), and frozen 

until analysis on the HPLC. Appendix Figure 9B shows that the GITC method works for 

the H-Phg-NH2 system and that the progress of the racemization reaction is monitored 

and approaches completion after approximately 25 days. Appendix Figure 9C compares 

the samples with and without DNA.  The DNA containing sample is suspect because 

there is relatively little signal for the sample compared to the sample without DNA.  The 

data were analyzed and revealed that for this particular data set there is a slightly higher 

percentage of the L amino acid in the DNA containing sample.  While this is the result 

that the hypothesis would predict, no conclusions can be made because there is certainly 

large error due to the incomplete resolution of the two diasteriomer peaks and potential 

uncertainties regarding the completion of the racemization reaction.  Future experiments 

would need to address why the DNA containing sample does not exhibit a strong signal 

when compared to the other sample.  An internal standard should also be used to decrease 

error in the calculation of the relative peak areas, and a different HPLC system that does 

not use dedicated independent pumps for each solvent should be employed so the 

gradient and flow could be smoother and perhaps allow for better resolution of the two 

diasteriomer peaks.    
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APPENDIX 4  
 

PHOTOCROSSLINKING AN siRNA TO A COMPONENT OF BLOOD SERUM 

 

 Data from siRNA degradation experiments indicated that there is nuclease activity 

in serum that is not consistent with the pyrimidine preference of the known human 

pancreatic type nucleases (Appendix Figure 10A).  Based on these data, an siRNA was 

designed that incorporated a photoactived nucleotide analog, 5-iodo uracil.  Early assays 

showed the presence of a UV crosslink between the siRNA and a component of human 

serum (Appendix Figure 10B).  Affinity purification of the crosslinked species was 

undertaken, but no component above the background of the negative control was 

detected.  More stringent wash steps are required to reduce the non-specific protein 

background for detection of potential crosslinked species.  
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Appendix Figure 10.  siRNA degradation by and crosslinking to a component of 

blood serum.  A)  Degradation assays showing the 3’ end of the passenger strand 

degraded by purified RNase A and human blood serum.  The serum gel reveals cleavage 

after purine residues, reactivity that is not seen in the purified RNase A.  B)  The 

crosslinking strategy and an early gel showing evidence for siRNA crosslinking to a 

component of blood serum 
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APPENDIX 5  
 

MATLAB COMPUTER CODE FOR THE ANALYSIS OF THE PARTICLE 

TRACKING DATA IN APENDIX A7 

 

Program “Tony_simpleGfit_tif_070503_findpeaks_v1p3.m” 

 
% 070517 -- This version (v1p3) thresholds the peaks, selects peaks that are within 
% the fitting box, slects peaks that are more than N pixels away from each 
% other and displays the the peaks for visual inspection. 
 
%pbfitframe centroid-determination algorithm.  No distribution without 
%permission from Prof. Sunney Xie, Harvard University.  Contact: 
%xie@chemistry.harvard.edu.  Technical inquiries to Paul Blainey, 
%blainey@fas.harvard.edu.  February 28, 2005 
 
%sample command line: pbfitframe('sampleim.txt',200,3,1400) 
 
    %g = filename (including extension),  
    %c = pixel size (in nm),  
    %number_iterations = number of fitting cycles,  
    %fb_dim = fit box dimension (nm) 
 
%This function fits a signal in an image with a 2-dimensional gaussian, 
%reporting the fit parameters to the file xy.txt (description of output 
%data below) 
 
%function asdf = pbopen(g,c,number_iterations,fb_dim) 
 
%Modified by AJM, 060223 
 
clear 
 
%Input data file 
%g = 'C:\Documents and Settings\jhoerter\Desktop\work\oligodt705_2_16bit.TIF' 

                                                 
7 This code was written in Matlab by Dr. Anthony Manzo, a postdoctoral researcher in the Walter lab. 



 

 140 

%g = 'C:\Documents and Settings\amanzo\Desktop\Work\060308_beads_10s_16bit.TIF' 
%g = 'W:\Tony\060317\060317_spider_withZinc_mcp75_1.6x_5sec_15sec_1hour.TIF' 
%g = 
'X:\amanzo\060416\060416_spiders+705qd_nozinc_2si_0w_2.5x_box_gain1_mcp75_600frames.TIF' 
%g = 'X:\amanzo\Kurt\060626\qdot1s235g-int20s-60f.tif' 
%g = 'D:\Ribosome Project\pz\Matlab_test_file\streptavidin705dot100ms1000f.tif'; 
g = 'E:\Ryan\primary\cDNA705_MCP60_1pt6x_PEG+BB_2.TIF'; 
%g = 'E:\Tony\070215\video1.TIF'; 
%g = 
'X:\amanzo\060317Walter\060317\060317_spider_withZinc_mcp75_1.6x_5sec_15sec_1hour_16bit.TIF'; 
%g = 
'E:\Tony\070519\070519_60x_mcp70_spiderDNA_705spider2w4mMZn_1mg1_1p6x_1si_4sd_360frames
_position2.TIF'; 
  
thresh = 125; 
c=132; % pixel length (nm) 
number_iterations=25; %number of iterations for search routine 
fb_dim=2112; %fit box dimension (nm) 
fb_dim_pix = round(fb_dim/c); 
hold off; format short; 
 
%Set inital parameter values here 
guessintensity = 2000; 
guesswidth = 160/c; 
guessoffset = 500; 
 
nametoopen = g; 
 
% Read first three frames and average them 
[A1]=imread(nametoopen, 1); %read data file, 1st image (Reads 16 bit .tif) 
[A2]=imread(nametoopen, 2); %read data file, 2nd image (Reads 16 bit .tif) 
[A3]=imread(nametoopen, 3); %read data file, 3rd image (Reads 16 bit .tif) 
 
A = (A1+A2+A3)/3; 
 
% mirror image across x-axis 
Anew = zeros(512,512); 
for ii = 1:512; 
    for jj = 1:512; 
        Anew(ii,jj) = A(513-ii,jj); 
    end; 
end; 
A = Anew; 
 
%[A]=imread(nametoopen, 1); %read data file, 1st image (Reads 16 bit .tif) 
 
imnum=1; %reference for current image number  
info = imfinfo(nametoopen); %Get file information 
d = size(info); 
 
%xsize = info.Width; 
%ysize = info.Height; 
Axy=size(A); 
xsize = Axy(2); 
ysize = Axy(1); 
%xsize = info(1,1).Width; 
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%ysize = info(1,1).Height; 
xdim = xsize; 
ydim = ysize; 
 
amax=max(A); 
amin=min(A); 
disp(amax); 
disp(amin); 
 
imindexval= d(1,2); %Number of images (frames) 
%imindexval = 10; 
 
disp('Number of frmaes is: '); 
disp(imindexval); 
disp('The x and y length in pixels is:'); 
disp(xsize); 
disp(ysize); 
 
NTOT=zeros(1,imindexval); 
 
%load -ascii nametoopen; 
 
        hold off; 
        contour (A(:,:,1),20); axis equal; % Show image of 1st frame 
        %Adjust the last number to show more or less detail in contour map. 
         
hold on; 
%pause;   %070507 
 
idata = A;       
        
%BW1 = edge(A,'sobel'); 
%BW2 = edge(A,'canny'); 
%imshow(BW1) 
%figure, imshow(BW2) 
 
%idata = BW1; 
 
 
% Blob analysis routine 
 
% variables 
%dfm = 1;  % deviations from mean used in thereshold determination 
%mf = 2; % multiplicative factor of mean used in threshold determination 
min_bs = 1; % minimum bead size 
max_bs = 20; % maximum bead size 
%thresh = 400; 
peaks = []; 
 
%determine threshold 
s = size(idata); 
border = [idata(1:s(1),1)' idata(1:s(1),s(2))' idata(1,2:(s(2)-1)) idata(s(1),2:(s(2)-1))]; 
%bavg = 100; %mean(border) 
%bavg = mean(border); 
bavg = mean(mean(idata(257:512,1:512))); 
bstd = std(std(idata(257:512,1:512))); 
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%bstd = std(border); 
%thresh = mf*bavg + dfm*bstd; 
%thresh = bavg; 
thresh = bavg+3*bstd; 
%threshold image 
tdata = (idata > thresh); % This places a 1 in all locations that have values > thresh. 
 
%disp('check tdata'); pause; 
 
b = 0; 
while any (tdata(:)) % Do while any tdata value is > 0. 
    x = find (tdata > 0);  % This makes a single row of index values for tdata = 1. 
    %disp('check x'); pause; 
    [bead,IDX] = BWSELECT(tdata,ceil(x(1)/s(1)),mod(x(1)-1,s(1))+1,4); 
    %disp('check bead'); pause; 
        %The awkward expression for the row is necessary to because 
        %indexing is for 1 to s(1), not 0 to s(1)-1 
    tdata(IDX) = 0; % Set tdata corresponding to IDX locations = 0. 
    %disp(idata(IDX)); 
    %disp('check idata(IDX) output'); pause; 
    %if (length (IDX) >= min_bs) 
    if ((length (IDX) >= min_bs) && (length(IDX) <= max_bs)) 
        b = b + 1; 
        avgx = sum([1:s(2)].*sum(bead))/sum(sum(bead)); 
        avgy = sum([1:s(1)]'.*sum(bead,2))/sum(sum(bead)); 
        %sdx = sqrt(sum(vx.*(abs(x-cx).^2))/sum(sum(bead))); 
        peaks(b,1) = round (avgx); 
        peaks(b,2) = round (avgy); 
        peaks(b,3) = length(IDX); 
         
        %[sizey sizex] = size(m); 
        %vx = sum(m); %Note that m is a matrix and vx will be vector 
        %vx = vx.*(vx>0); % .* is element by element multiplication 
        %x = [1:sizex]; 
        %cx = sum(vx.*x)/sum(vx); 
        %sx = sqrt(sum(vx.*(abs(x-cx).^2))/sum(vx)); 
         
    end 
end 
 
npeaks = b; 
 
%scatter(X,Y,S,C) 
for ii = 1:npeaks 
    scatter(peaks(ii,1),peaks(ii,2),10,'sr'); 
end 
 
disp('done with blob analysis'); 
 
%pause;     %070507 
         
% Sort peaks and delete those with a fitting box extending betond the CCD image. 
halfbox = round(fb_dim_pix/2); 
newpeaks = [0 0 0]; 
for ii = 1:npeaks 
    if (peaks(ii,1) > (halfbox) && peaks(ii,1) < 512-halfbox) 
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        if (peaks(ii,2) > (halfbox) && peaks(ii,2) < 512-halfbox) 
            %if (peaks(ii,3) >= 10)   % This if statement checks how big the blob is and makes a selection.    
                newpeaks = [newpeaks;peaks(ii,:)]; 
            %end 
        end 
    end 
end 
 
newpeaks(1,:) = []; % Delete first row of zeros 
peaks = newpeaks; 
[px,py] = size(peaks); 
 
npeaks = px; 
 
%Here I plot another scatter plot with the peaks selected for the proper fit box.  
%scatter(X,Y,S,C) 
for ii = 1:npeaks 
    scatter(peaks(ii,1),peaks(ii,2),10,'sg'); 
end 
 
 
%pause;  %070509 
   
 
% List all the peak positions and sort them 
% Discard any peaks that are within N pixels of each other. 
 
peaktest = peaks; 
 
peakcheck(1:npeaks)=1; 
kk = npeaks; 
for ii = 1:npeaks 
    testpeak1 = peaks(ii,:); 
    for jj = 1 :npeaks 
        if (jj == ii) 
            % Do nothing 
        else 
             
                %testpeak2 = peaktest(jj,:); 
                testpeak2 = peaks(jj,:); 
                %if (testpeak2 == [0,0]) 
                    % Do nothing 
                %else 
                peakdist = sqrt((testpeak2(1,1)-testpeak1(1,1))^2+(testpeak2(1,2)-testpeak1(1,2))^2); 
                disp(peakdist); 
                if (peakdist < 14) 
                    peakcheck(ii)=0; 
                     
                    %peaktest(jj,:)=[0,0]; 
                     peaks(ii,:) = [0,0,0]; 
                     peaks(jj,:) = [0,0,0];   % Both peaks of the comparison should be marked and deleted. 
                     
                end 
                 
                 
                %end     % End for the testpeak2 = [0,0] if statement. 
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        end 
         
    end 
end 
 
peaks3 = peaks; 
 
peaks2 = [0,0,0]; 
         
 
 
% Get rid of all peaks that fail test. 
 
jj = 0; 
for ii = 1:npeaks 
     
if (peaks3(ii,:) ~= [0,0,0])     
    peaks2 = [peaks2;peaks3(ii,:)]; 
    jj = jj + 1; 
end 
 
end 
 
 
peaks2(1,:)=[]; % delete first row of zeros; 
 
 
peaks = peaks2; 
npeaks = jj; 
 
 
% Check the std of peaks 
L=19; 
Lm=L-1; 
BW = zeros(npeaks,L,L); 
for ii = 1:npeaks 
 
BW(ii,:,:) = idata( peaks(ii,2)-Lm/2 : peaks(ii,2)+Lm/2, peaks(ii,1)-Lm/2:peaks(ii,1)+Lm/2 );  
     
%BW2 = bwselect(BW,6,6,4); 
%[sigm,sIDX] = BWSELECT( idata(peaks(ii,1)-5,peaks(ii,1)+5) ); 
 
%disp('check BW2'); pause; 
 
bwc(:,:)=BW(ii,:,:); 
 
m = bwc; 
%[sizey sizex] = size(bwc); 
sizex = L; 
sizey = L; 
vx = sum(m); 
vy = sum(m'); 
 
vx = vx.*(vx>0); 
vy = vy.*(vy>0); 
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%rx=round((sizex/2)-1);%% 
%ry=round((sizey/2)-1);%% 
 
x = [1:sizex]; 
y = [1:sizey]; 
 
%x = [-rx:rx]; 
%y = [-ry:ry]; 
 
cx = sum(vx.*x)/sum(vx); 
cy = sum(vy.*y)/sum(vy); 
 
%cx = 7; 
%cy = 7; 
 
sx = sqrt(sum(vx.*(abs(x-cx).^2))/sum(vx)); 
sy = sqrt(sum(vy.*(abs(y-cy).^2))/sum(vy)); 
 
%disp(cx); 
%disp(cy); 
%disp(sx); 
%disp(sy); 
 
 
%sparam = (sy/sx); 
 
sparam = sx/sy; 
 
disp('sparam 1 and 2 are'); 
disp(sparam); 
 
 
vvx=0; 
vvy=0; 
ccx=0; 
ccy=0; 
 
%for ll = 1:13 
    for mm = 1:L 
        vvx = vvx + m(mm,mm); 
        vvy = vvy + m(mm,L-mm+1); 
    end 
%end 
 
%for ll = 1:13 
    for mm = 1:L 
        ccx = ccx + mm*m(mm,mm); 
        ccy = ccy + (L-mm+1)*m(mm,L-mm+1); 
    end 
%end 
 
ccx = ccx / vvx; 
ccy = ccy/ vvy; 
 
%disp(ccx); 
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%disp(ccy); 
 
%sp2 = ccx-ccy; 
sp3=ccx/ccy; 
 
%disp(sp2); 
disp(sp3); 
 
surf(m); 
view(-15,40) 
disp('check'); 
 
if(abs(sp3-1) > 0.04) 
    peaks(ii,:)= [0,0,0]; 
end 
 
if(abs(sparam-1) > 0.04) 
    peaks(ii,:) = [0,0,0]; 
end 
 
end 
 
 
%Get rid of selected peaks 
peaks3 = peaks; 
peaks2 = [0,0,0]; 
         
% Get rid of all peaks that fail test. 
 
jj = 0; 
for ii = 1:npeaks 
     
if (peaks3(ii,:) ~= [0,0,0])     
    peaks2 = [peaks2;peaks3(ii,:)]; 
    jj = jj + 1; 
end 
 
end 
 
peaks2(1,:)=[]; % delete first row of zeros; 
 
peaks = peaks2; 
npeaks = jj; 
 
 
figure(1); 
contour (A(:,:,1),20); axis equal; % Show image of 1st frame 
hold on; 
%scatter(X,Y,S,C) 
for ii = 1:npeaks 
    scatter(peaks(ii,1),peaks(ii,2),20,'sm'); 
end 
 
hold off; 
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% Now show 3D image of locations (except if it is too close to boundary of 
% CCD (the fitting box will go over boundary and there will be an error). 
 
 
%fb_dim = 2000; 
%c = 132; 
for peaknum = 1:npeaks 
 
% get X and Y from peaks array 
        X = peaks(peaknum,1); 
        Y = peaks(peaknum,2); 
        %XY = peaks(peaknum,3); % = length(IDX); 
 
         
                 
        xx = round(X); 
  yy = round(Y); 
        %xx=350; 
        %yy=300; 
         
  fitboxdimension = fb_dim/c; 
        fb_dim_pix = round(fb_dim/c); 
  R = fitboxdimension/2; 
  r = round(R); 
   
         
%         
        % Sort peaks and delete those with a fitting box extending betond the CCD image. 
halfbox = round(fb_dim_pix/2); 
%newpeaks = [0 0 0]; 
%for ii = 1:npeaks 
    if (peaks(peaknum,1) > (halfbox) && peaks(peaknum,1) < 512-halfbox) 
        if (peaks(peaknum,2) > (halfbox) && peaks(peaknum,2) < 512-halfbox) 
            %if (peaks(ii,3) >= 10)   % This if statement checks how big the blob is and makes a selection.    
                %newpeaks = [newpeaks;peaks(ii,:)]; 
            %end 
         
         
  %bestcoeffs = zeros(1,5); 
            
        %B = A((yy-r):(yy+r),(xx-r):(xx+r)); 
        B = double(A((yy-r):(yy+r),(xx-r):(xx+r))); %Forced double to satisfy fitting functions 
        %contour (B); axis equal;  
         
        [x,y] = meshgrid(-r:r,-r:r); 
        figure(2); 
        hold off; 
        surf(x,y,B(:,:)); 
        %contour (B); axis equal;  
 
 
[cx,cy,sx,sy] = centerofmass(B); 
disp(peaknum); 
disp(xx); disp(yy); 
disp('sx and sy are '); disp(sx); disp(sy); 
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pause; 
        end 
 
    end 
     
end 
 
 
disp('Done displaying 3D images.'); 
pause; 
  
  %disp('--->  select x0, y0') 
             
        %[X,Y] = ginput (1); %Get coordinates selected by mouse 
         
         
        % Here I will select the peak.  The ROI is determined by peak and 
        % fit_dim (fit box dimension set above). 
 
for peaknum = 1:npeaks 
%for peaknum = 4:4 
     
    disp('Initiating peak '); disp(peaknum); 
    %pause;     %070507 
     
  hold off; 
        %contour (A(:,:,1),10); axis equal; % Show image of 1st frame. 
         
  %disp('--->  select x0, y0') 
             
        %[X,Y] = ginput (1); %Get coordinates selected by mouse 
                 
% get X and Y from peaks array 
        X = peaks(peaknum,1); 
        Y = peaks(peaknum,2); 
        XY = peaks(peaknum,3); % = length(IDX); 
 
                       
        xx = round(X); 
  yy = round(Y); 
        %xx=350; 
        %yy=300; 
         
  fitboxdimension = fb_dim/c; 
  R = fitboxdimension/2; 
  r = round(R); 
   
  %bestcoeffs = zeros(1,5); 
            
        %B = A((yy-r):(yy+r),(xx-r):(xx+r)); 
        B = double(A((yy-r):(yy+r),(xx-r):(xx+r))); %Forced double to satisfy fitting functions 
        %contour (B); axis equal;  
         
        [x,y] = meshgrid(-r:r,-r:r);   
        surf(x,y,B(:,:)); 
        %contour (B); axis equal;     
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% Comment out all input queries 
%{       
         
        [X,Y,button] = ginput(1); 
        disp([button]); 
 while ([button] ~= 115); 
        disp('In loop'); 
        [X,Y,button] = ginput(1);     
        method = [button]; 
 
switch lower(method); 
     case {30}; % up arrow key 
      disp('up'); 
      yy=yy-1; 
      if ((yy-r) < 1) %Check to see if outside image dimensions. 
          yy=yy+1; 
      end 
      B = double(A((yy-r):(yy+r),(xx-r):(xx+r))); 
      surf(x,y,B(:,:)); 
   case {114}; % r key 
      disp('up'); 
      yy=yy+1; 
      B = double(A((yy-r):(yy+r),(xx-r):(xx+r))); 
      surf(x,y,B(:,:)); 
   case {29}; % right arrow key 
      disp('right'); 
      xx=xx-1; 
      if ((xx-r) < 1) %Check to see if outside image dimensions. 
          xx=xx+1; 
      end 
      B = double(A((yy-r):(yy+r),(xx-r):(xx+r))); 
      surf(x,y,B(:,:)); 
   case {100}; % d key 
      disp('right'); 
      xx=xx-1; 
      B = double(A((yy-r):(yy+r),(xx-r):(xx+r))); 
      surf(x,y,B(:,:)); 
   case {28}; % left arrow key 
      disp('left'); 
      xx=xx+1; 
      if ((xx+r) > xdim) %Check to see if outside image dimensions. 
          xx=xx-1; 
      end 
      B = double(A((yy-r):(yy+r),(xx-r):(xx+r))); 
      surf(x,y,B(:,:)); 
   case {102}; % f key 
      disp('left'); 
      xx=xx+1; 
      B = double(A((yy-r):(yy+r),(xx-r):(xx+r))); 
      surf(x,y,B(:,:));    
   case  {31}; % down arrow key 
      disp('down'); 
      yy=yy+1; 
      if ((yy+r) > ydim) %Check to see if outside image dimensions. 
          yy=yy-1; 
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      end 
      B = double(A((yy-r):(yy+r),(xx-r):(xx+r))); 
      surf(x,y,B(:,:)); 
   case  {99}; % c key 
      disp('down'); 
      yy=yy-1; 
      B = double(A((yy-r):(yy+r),(xx-r):(xx+r))); 
      surf(x,y,B(:,:)); 
       
      case {105}; % i key 
      disp('up 10'); 
      yy=yy+10; 
      if ((yy-r) < 1) %Check to see if outside image dimensions. 
          yy=yy-10; 
      end 
      B = double(A((yy-r):(yy+r),(xx-r):(xx+r))); 
      surf(x,y,B(:,:)); 
   case {106}; % j key 
      disp('left 10'); 
      xx=xx-10; 
      if ((xx+r) > xdim) %Check to see if outside image dimensions. 
          xx=xx+10; 
      end 
      B = double(A((yy-r):(yy+r),(xx-r):(xx+r))); 
      surf(x,y,B(:,:)); 
   case {107}; % k key 
      disp('right 10'); 
      xx=xx+10; 
      B = double(A((yy-r):(yy+r),(xx-r):(xx+r))); 
      surf(x,y,B(:,:)); 
   case  {109}; % m key 
      disp('down 10'); 
      yy=yy-10; 
      if ((yy+r) > ydim) %Check to see if outside image dimensions. 
          yy=yy+10; 
      end 
      B = double(A((yy-r):(yy+r),(xx-r):(xx+r))); 
      surf(x,y,B(:,:)); 
       
  case  {43}; % - key 
    disp([button]); 
    fitboxdimension = fitboxdimension-2; 
    if(fitboxdimension <= 2) 
        fitboxdimension=2; 
    end 
    R = fitboxdimension/2; 
    r = round(R); 
    [x,y] = meshgrid(-r:r,-r:r); 
    B = double(A((yy-r):(yy+r),(xx-r):(xx+r))); 
    surf(x,y,B(:,:)); 
  case  {45}; % + key 
    disp([button]); 
    fitboxdimension = fitboxdimension+2;  
    R = fitboxdimension/2; 
    r = round(R); 
    [x,y] = meshgrid(-r:r,-r:r); 
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    B = double(A((yy-r):(yy+r),(xx-r):(xx+r))); 
    surf(x,y,B(:,:)); 
     
  case (46); % right mouse button 
       
      disp([button]); 
      disp([X,Y]); 
            
      oldfitboxdimension=fitboxdimension; 
       
      fitboxdimension = fitboxdimension+4; 
      
     if (fitboxdimension >= 44) 
         fitboxdimension = 8; 
     end 
      
      R = fitboxdimension/2; 
      r = round(R); 
           
        if(yy-r < 0) 
           fitboxdimension=oldfitboxdimension; 
        elseif(yy+r > 512) 
           fitboxdimension=oldfitboxdimension; 
        elseif(xx-r < 0) 
           fitboxdimension=oldfitboxdimension; 
        elseif(xx+r > 512) 
           fitboxdimension=oldfitboxdimension; 
        end 
      R = fitboxdimension/2; 
      r = round(R); 
       
       disp(r); 
    [x,y] = meshgrid(-r:r,-r:r); 
    disp([xx,yy]); 
    disp([x,y]); 
    B = double(A((yy-r):(yy+r),(xx-r):(xx+r))); 
    surf(x,y,B(:,:)); 
 
    case{1}; % left mouse button 
        disp([button]); 
        xold = xx; 
        yold = yy; 
         
        if (round(X) < 0) 
        xx = xx - 4; 
        end 
        if( round(X) > 0) 
        xx = xx + 4; 
        end 
        if(round(Y) < 0) 
        yy = yy - 4; 
        end 
        if(round(Y) > 0) 
  yy = yy + 4; 
        end 
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        if(yy-r < 0) 
            yy=yold; 
        elseif(yy+r > 512) 
            yy=yold; 
        elseif(xx-r < 0) 
            xx=xold; 
        elseif(xx+r > 512) 
            xx=xold; 
        end 
      B = double(A((yy-r):(yy+r),(xx-r):(xx+r))); 
    surf(x,y,B(:,:));    
     
     
      case  {110}; % n key 
     
          imnum=imnum+1; 
        if(imnum > imindexval) 
            imnum=imnum-1; 
        end 
        [A]=imread(nametoopen, imnum) 
        R = fitboxdimension/2; 
        r = round(R); 
        [x,y] = meshgrid(-r:r,-r:r); 
        B = double(A((yy-r):(yy+r),(xx-r):(xx+r))); 
        surf(x,y,B(:,:)); 
     
    case  {112}; % p key 
         
          imnum=imnum-1; 
        if(imnum == 0) 
            imnum=imnum+1; 
        end 
        [A]=imread(nametoopen, imnum) 
        R = fitboxdimension/2; 
        r = round(R); 
        [x,y] = meshgrid(-r:r,-r:r); 
        B = double(A((yy-r):(yy+r),(xx-r):(xx+r))); 
        surf(x,y,B(:,:)); 
     
   otherwise; 
      disp('Unknown key.'); 
      disp([button]); 
   end;    %End of switch 
 
 
    %   B = double(A((yy-r):(yy+r),(xx-r):(xx+r))); 
    %   surf(x,y,B(:,:)); 
      %contour (B); axis equal;  
       disp([xx,yy]);       
       
             
        end;  %End of while 
 
%} 
% End of input selection code 
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        %R = fitboxdimension/2; 
        %r = round(R); 
        %[x,y] = meshgrid(-r:r,-r:r); 
        %B = double(A((yy-r):(yy+r),(xx-r):(xx+r))); 
         
        %C=cool(2000); 
        surfc(x,y,B(:,:)); 
        %surfc(x,y,B); 
        %colormap cool; 
        %axis([-x x -y y -1000 4000]) 
         
        %surf(x,y,B(:,:),'FaceColor','yellow','EdgeColor','none'); 
  %camlight left; lighting gouraud  
  %view(-15,40) 
         
         
      
        %contour(B);  
        %contour (A(:,:,1),4); axis equal; % Show image of 1st frame 
        %pause;     %070507 
         
        for imindex = 1:imindexval; 
        [A]=imread(nametoopen, imindex); 
         
        % mirror image across x-axis 
        Anew = zeros(512,512); 
        for ii = 1:512; 
            for jj = 1:512; 
                Anew(ii,jj) = A(513-ii,jj); 
            end; 
        end; 
        A = Anew; 
         
        %close; 
         
        hold off;    %put back on later 
  %xx = round(X); 
  %yy = round(Y); 
  %xx = 61; 
  %yy = 276; 
         
          
  %fitboxdimension = fb_dim/c; 
  %R = fitboxdimension/2; 
  %r = round(R); 
         
        %xx=xx+r; 
        %yy=yy+r; 
   
  bestcoeffs = zeros(1,5); 
            
            %B = A((yy-r):(yy+r),(xx-r):(xx+r)); 
            B = double(A((yy-r):(yy+r),(xx-r):(xx+r))); %Forced double to satisfy fitting functions 
            contour (B); axis equal;  
        
        %This sets initial guess to the previous frames fitted values   
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        if (imindex == 1);   
            guessx = 0; 
            guessy = 0; 
        else 
        guessx = xyval(imindex-1,1); 
        guessy = xyval(imindex-1,2); 
        end; 
 
   [x,y] = meshgrid(-r:r,-r:r);   
   coeffs = zeros(number_iterations,5);   
  
   for iteration_number = 1:number_iterations;  
    
    best_offstht = fminsearch('pbgaussoffstht',[guessintensity 
guessoffset],[],x,y,B(:,:),guessx,guessy,guesswidth); 
    coeffA = zeros(1,2); coeffA(1,1) = best_offstht(1,1); coeffA(1,2) = 
best_offstht(1,2); 
    guessintensity = coeffA(1,1); guessoffset = coeffA(1,2); 
     
    best_xy = fminsearch('pbgaussxy',[guessx 
guessy],[],x,y,B(:,:),guessintensity,guesswidth,guessoffset); 
    coeffB = zeros(1,2); coeffB(1,1) = best_xy(1,1); coeffB(1,2) = 
best_xy(1,2); 
    guessx = coeffB(1,1); guessy = coeffB(1,2); 
     
    best_width = 
fminsearch('pbgausswidth',[guesswidth],[],x,y,B(:,:),guessintensity,guessx,guessy,guessoffset); 
    coeffC = zeros(1,1); coeffC(1,1) = best_width(1,1); guesswidth = 
coeffC(1,1); 
     
    coeffs(iteration_number,1) = guessintensity; 
    coeffs(iteration_number,2) = guessx;  
    coeffs(iteration_number,3) = guessy;  
    coeffs(iteration_number,4) = guesswidth;  
    coeffs(iteration_number,5) = guessoffset; 
     
    coeffs(iteration_number,1) = 0.001*coeffs(iteration_number,1); 
    coeffs(iteration_number,2) = c*coeffs(iteration_number,2);  
    coeffs(iteration_number,3) = c*coeffs(iteration_number,3); 
    coeffs(iteration_number,4) = c*coeffs(iteration_number,4); 
    coeffs(iteration_number,5) = 0.001*coeffs(iteration_number,5); 
   end 
 
   bestcoeffs = coeffs(number_iterations,:); 
            origbestcoeffs=bestcoeffs; 
   bestcoeffs(1,1) = 1000 * bestcoeffs(1,1); 
   bestcoeffs(1,2) = (1/c) * bestcoeffs(1,2); 
   bestcoeffs(1,3) = (1/c) * bestcoeffs(1,3); 
   bestcoeffs(1,4) = (1/c) * bestcoeffs(1,4); 
   bestcoeffs(1,5) = 1000 * bestcoeffs(1,5); 
 
             
            xyval(imindex,1) = guessx; 
            xyval(imindex,2) = guessy; 
            Ival(imindex,3)  = guessintensity; 
            width(imindex,4) = guesswidth; 
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            %Blocked out all intermediate graphing 060218  
   surf(x,y,B(:,:)); 
            axis equal; 
   [z1,z2] = meshgrid(-r:r,-r:r); 
   B_fit = bestcoeffs(1)*exp(-0.5*(((z1-bestcoeffs(2)).^2  + (z2-
bestcoeffs(3)).^2)/(bestcoeffs(4).^2)  )   ) + bestcoeffs(5) ; 
   hold off; 
   surf(x,y,B(:,:)); 
            %axis equal; 
   camlight left; lighting gouraud  
   hidden off; 
   hold on; 
   surf(z1,z2,B_fit,'FaceColor','yellow','EdgeColor','none'); 
            %axis equal; 
   camlight left; lighting gouraud  
   view(-15,40) 
   pause(0.005); 
             
             
            %keyboard; 
            %[X,Y,button] = ginput(1); 
             
            partsum=sum(sum(B_fit-bestcoeffs(5))); 
            NTOT(imindex)=partsum; 
             
            chi=0; 
            for cx=1:(2*r+1); 
                for cy=1:(2*r+1); 
            chi=chi+((B(cx,cy)-B_fit(cx,cy))^2)/(B_fit(cx,cy)); 
                end; 
            end; 
            chi=chi/((2*r+1)*(2*r+1)-5); 
            %chi=chi/5.0; 
             
            disp(chi); 
            %pause; 
    
   absolute_bestcoeffs = zeros(1,7); 
   absolute_bestcoeffs(1,1:5) = bestcoeffs; 
   absolute_bestcoeffs(1,2) = (coeffs(1,2) + (c * xx)); 
   absolute_bestcoeffs(1,3) = (coeffs(1,3) + (c * yy)); 
   absolute_bestcoeffs(1,4) = coeffs(1,4); 
   absolute_bestcoeffs(1,6) = (c * xx); 
   absolute_bestcoeffs(1,7) = (c * yy); 
    
            %Blocking all intermediate disp commands 060218 
   %display_coeffs = zeros(1,7); 
   %display_coeffs(1,1:5) = coeffs(number_iterations,1:5); 
   %display_coeffs(1,6:7) = (absolute_bestcoeffs(1,6:7)/1000); 
 
             
            if (imindex == 1); 
            %xpixel = round(absolute_bestcoeffs(1,2)/c); 
            %ypixel = round(absolute_bestcoeffs(1,3)/c); 
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            xpixel = round(xx+origbestcoeffs(1,2)/c); 
   %ypixel = 512-round(yy+origbestcoeffs(1,3)/c); 
            ypixel = round(yy+origbestcoeffs(1,3)/c); 
            end; 
             
             
             
            xy = absolute_bestcoeffs(1,1:5); 
            %xywindex = absolut_bestcoeffs(1,number_iterations,1:5); 
             
            %disp(' intensity      x        y         FWHM     offset  ') 
   %disp('   (cts)      (nm)      (nm)       (nm)      (cts)') 
   %disp('                                                ') 
   %disp(xy) 
             
            %sdata(imindex)=xy; 
            totxy(imindex,1:5)=xy; 
             
            %totxyout=[xval;totxy]; 
%save('xy.txt','xy','-ascii'); disp('output saved to current directory as xy.txt'), save; 
%save('xy.txt', disp(xy(1,1), xy(1,2), xy(1,2), xy(1,3), xy(1,4), xy(1,5)),'-ascii'); 
 
 
end 
%load -ascii xyfile.txt 
%save('C:\Tony\060212\spider1_mcp70_.5s_4.5s_matlab_qd2.dat','totxy','-ascii'); 
%save('C:\Tony\060212\spider1_mcp70_.5s_4.5s_matlab_qd1.dat','totxy','-ascii'); 
%Previously used the save command to write data.  Switched to fprintf 
%command. 
 
xval = 0:1:imindexval; 
 
%outfilename = strcat('D:\Ribosome 
Project\pz\Matlab_test_file\out_x',num2str(xpixel),'_y',num2str(ypixel),'.dat'); 
outfilename = 
strcat('E:\Ryan\cDNA705_MCP60_1pt6x_PEG+BB_2.dat',num2str(peaknum),'_',num2str(xpixel),'_',num2
str(ypixel),'.dat'); 
%outfilename = strcat('E:\Tony\070210\video4_out1.dat'); 
fid = fopen(outfilename, 'wt'); 
%fid = fopen('C:\Documents and Settings\amanzo\Desktop\Work\060308_beads_10s_16bit_p1.dat', 'wt'); 
 
for iterationnum = 1:imindexval; 
fprintf(fid, '%6.2f %12.8f %12.8f %12.8f %12.8f %12.8f %12.8f\n', xval(iterationnum), 
NTOT(iterationnum), totxy(iterationnum,1:5)); 
end 
fclose(fid) 
% The data is saved with collumns as follows: 
% frame#    Total counts    intensity max      x        y         FWHM     offset    
%    #          (cts)           (cts)         (nm)     (nm)       (nm)      (cts) 
 
end % End for the peaknum for statement (number of peaks). 
 
%save; 
%close;  %Use this to close figure windows after fitting is done. 
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Program “Read_traj_and_link_070517_v6_indexf.m” 
 
% Reads data files from Gauss fitting program. 
 
% This version (070717 v6) is a beta version of the trajectory analysis 
% program that analyzes intensities also. 
% 
% This v3 also incorporates a rolling average calculation and substracts 
% this from the raw data. 
 
% This v4 will ask for the trajectories to be checked for pixel jumoing 
% before any rolling average is done.  In v3, the rolling average was done 
% before screening for pixel jumping, but the averaging made it harder to 
% distinguish which were bad trajectories undergoing severe pixel jumping. 
 
clear  %clear memory 
clear all; 
close all; 
 
dist1 = 1.1;     % Parameters that determine the maximum distance between points for the purpose of 
ordering  
dist2 = dist1; 
dist3 = 1.1; 
 
trajlen = 50; 
 
% The following code blocked out 070717--used by Diatrack version 
 
%{ 
 
% Open coordinate file 
 
%xyname = 'traj_gene32_705-32-5pDNA_MCP60_BB+PEG_10'; 
%iname = 'intensity_gene32_705-32-5pDNA_MCP60_BB+PEG_10'; 
%path1 = ('E:\John\070406\TIFFS\'); 
 
%path1 = ('E:\John\070418\Trajectory Intensity Sorting\-Mg\'); 
%xyname = 'traj_gene60_5-705_MCP60_1pt6x_PEG+BB_4'; 
%iname = 'inten_gene60_5-705_MCP60_1pt6x_PEG+BB_4'; 
 
xyname = 'traj_gene60_3-705_MCP60_1pt6x_PEG+BB_2'; 
iname = 'inten_gene60_3-705_MCP60_1pt6x_PEG+BB_2'; 
path1 = ('E:\John\070418\Trajectory Intensity Sorting\-Mg\'); 
 
extension = '.txt'; 
xycoordfilename = strcat(path1,xyname,extension); 
icoordfilename = strcat(path1,iname,extension); 
 
%AA = importdata(coordfilename,'\t'); %For tab deliminated files 
%AA = importdata(xycoordfilename); 
AA = importdata(xycoordfilename,' '); 
BB = importdata(icoordfilename); 
 
xyDATA = AA.data; %put xy data into xyDATA 
iDATA = BB.data;  %put intensity data into iDATA 
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%[dummy,totalcolumns] = size(xyDATA); % Want to only get the total number of columns here.  
 
%Clear these arrays to free memory 
clear AA; 
clear BB; 
 
 
%} 
% End of code block 
 
 
% This program reads the data files from the Gauss fitting program and 
% displays them. 
 
clear  all; %clear memory 
 
close all; % Close all non-hidden figures 
close all hidden; 
 
%Define Path to OnOff data File 
%path1 = ('E:\Tony\test\spider\'); 
%path1 = ('X:\amanzo\070519\spider2w4mMZnposition2\'); 
%path1 = ('X:\amanzo\070519\705spidernoZn\'); 
%path1 = ('X:\amanzo\070622\070622\'); 
path1 = ('D:\Ribosome Project\files\gene60_3-705_MCP60_1pt6x_PEG+BB_2\'); 
%path1 = ('X:\amanzo\070519\spider2wZn\'); 
%path1 = ('X:\amanzo\070519\spider2wZnposition2\'); 
%filename = 'QDS2_271_onoffB_p2cutoff.dat'; 
%file = strcat(path1,filename); 
%extension = '.dat'; 
cd(path1); 
%files = dir('docktime1*.dat'); 
%files = dir('060317_spider_withZinc_mcp75_1.6x_5sec_15sec_1hour_16bit_*.dat'); 
%files = 
dir('070519_60x_mcp70_spiderDNA_705spider2w4mMZn_1mg1_1p6x_1si_4sd_360frames_position2_*.
dat'); 
%files = 
dir('070519_5mg3_60x_mcp70_spiderDNA_705spider_1mg1_1p6x_1si_4sd_360frames_run070531_*.dat
'); 
%files = 
dir('070622_slide2_6leg_wOSS_BSA_wZn_pos2_MCP70_1mg1_1si_4sd_360frames_f0p4_peak*.dat'); 
 
files = dir('gene60_3-705_MCP60_1pt6x_PEG+BB_2_*.dat'); 
 
%files = dir('070519_60x_mcp70_spiderDNA_705spider2wZn_1mg1_1p6x_1si_4sd_360frames_*.dat'); 
%files = 
dir('070519_60x_mcp70_spiderDNA_705spider2wZn_1mg1_1p6x_1si_4sd_360frames_position2_*.dat'); 
 
g = 'D:\Ribosome Project\files\gene60_3-705_MCP60_1pt6x_PEG+BB_2\gene60_3-
705_MCP60_1pt6x_PEG+BB_2.TIF'; 
 
 
nf = length(files); % lf stores the number of data files (traces). 
 
BigCell = cell(size(files));  % Creates a cell structure to store the data from traces 
%Bigoodm = cell(size(files));  % Creates a cell structure to store the on/off resutls for the segments 
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%Bigavg = cell(size(lf)); %Stores the overall average on/off times for the 
%traces (which are recorded for a particular buffer). 
%DockCell = cell(size(files),numints); %A cell for the dock times of each trace. 
 
 
for i = 1:nf; 
 
           %filename = [rootname,num2str(data), extension]; 
           filename = [files(i).name]; 
           variable = load(filename); % Reads the data file and places data into variable array 
           [AAy,AAx] = size(variable); %get size (AAy is number of rows, AAx is number of columns) 
           %var(data) = variable; 
           %n = int2str(i); 
           disp(i); %Displays the current filenumber 
           %CellArray = cell(variable); 
           %BigCell(i,1) = variable; 
           BigCell(i,1) = mat2cell(variable,AAy,AAx);  %Place data and size into one cell of BigCell 
end ;   
 
%This code averages the datapoints 
 
frames2avg = 20; 
 
for ii = 1:nf 
    datatemp  = cell2mat(BigCell(ii)); 
    [sx,sy]=size(datatemp); 
    datatemp2 = zeros(sx-frames2avg,2); 
    for jj = 1:sx-frames2avg 
        adatatempx = 0; 
        adatatempy = 0; 
        for kk = jj:jj+frames2avg 
            adatatempx=adatatempx+datatemp(kk,4); 
            adatatempy=adatatempy+datatemp(kk,5); 
        end 
        adatatempx = adatatempx/frames2avg; 
        adatatempy = adatatempy/frames2avg; 
        datatemp2(jj,1) = adatatempx; 
        datatemp2(jj,2) = adatatempy; 
    end 
    datatempnew = [datatemp2(:,1),datatemp2(:,2)]; 
     
    BigCell2(ii,1)= mat2cell(datatempnew); 
     
end 
 
%{ 
 
% Now plot and select the trajectories you want 
 
kk = 0; 
 
for ii = 1:nf; 
datatemp = cell2mat(BigCell2(ii)); 
 
datatemp2 = datatemp; 
datatemp2(:,1) = datatemp2(:,1)-datatemp(1,1); 
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datatemp2(:,2) = datatemp2(:,2)-datatemp(1,2); 
 
figure(1); 
hold on; 
plot(datatemp2(:,1),datatemp2(:,2)); 
axis equal; 
 
axis([-300 300 -300 300]); 
 
pause; 
 
end 
 
 
pause; 
 
%} 
 
 
% Now plot and select the trajectories you want 
 
selectpeaks = [0 0]; 
kk = 0; 
 
for ii = 1:nf; 
datatemp = cell2mat(BigCell(ii)); 
 
datatemp2 = datatemp; 
datatemp2(:,4) = datatemp2(:,4)-datatemp(1,4); 
datatemp2(:,5) = datatemp2(:,5)-datatemp(1,5); 
 
figure(1); 
hold off; 
plot(datatemp2(:,4),datatemp2(:,5),'r'); 
axis equal; 
 
 
answer1 = input('Do you want to keep this trace?'); 
 
    if (answer1 == 0) 
     
    else 
        kk = kk + 1; 
        currentxyCell(kk)=mat2cell(datatemp); 
        %idatatemp = cell2mat((newiCell2(ii))); 
        %currentiCell(kk) = mat2cell(idatatemp); 
         
        %selectpeaks = [selectpeaks;[peaks(ii,1),peaks(ii,2)]]; 
        selectpeaks = [selectpeaks;[round(datatemp(1,4)),round(datatemp(1,5))]]; 
         
    end 
           
    %pause; 
end 
 
selectpeaks(1,:) = []; 
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peaks = selectpeaks; 
traj = kk; 
xyCell = currentxyCell; 
%iCell = currentiCell; 
 
 
%pause; 
 
 
%{ 
% Write peaks file  
 
path1 = 'E:\Tony\test\'; 
%xyname = 'peakoutput'; 
 
path2 = strcat(path1,xyname,'\'); 
mkdir(path2); 
 
     %filenum = num2str(1); 
     outfile = strcat(path2,xyname,'.txt'); 
     disp(outfile); 
     fid = fopen(outfile,'wt'); 
    for jj = 1:traj; 
        fprintf(fid, '%12.8f %12.8f %12.8f\n', j, peaks(jj,1), peaks(jj,2) ); 
    end 
    fclose(fid); 
 
   
end 
 
%} 
 
 
%{ 
 
%This code averages the datapoints 
% Now we do it here with revised Cell and subtract the drift 
 
frames2avg = 20; 
 
for ii = 1:traj 
    datatemp  = cell2mat(xyCell(ii)); 
    [sx,sy]=size(datatemp); 
    datatemp2 = zeros(sx-frames2avg,2); 
    for jj = 1:sx-frames2avg 
        adatatempx = 0; 
        adatatempy = 0; 
        for kk = jj:jj+frames2avg 
            adatatempx=adatatempx+datatemp(kk,4); 
            adatatempy=adatatempy+datatemp(kk,5); 
        end 
        adatatempx = adatatempx/frames2avg; 
        adatatempy = adatatempy/frames2avg; 
        datatemp2(jj,1) = adatatempx; 
        datatemp2(jj,2) = adatatempy; 
    end 
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    datatempnew = [datatemp2(:,1),datatemp2(:,2)]; 
     
    xyCellavg(ii,1)= mat2cell(datatempnew); 
     
    beforeaveragex = datatemp(:,4); 
    beforeaveragey = datatemp(:,5); 
    beforeaverage = [beforeaveragex beforeaveragey]; 
     
    %for jj = frames2avg/2:sx-frames2avg/2 
         
        averagecorrected = zeros(sx-frames2avg,2); 
        initv = frames2avg/2; 
        finalv = sx-frames2avg/2; 
        for jj = 1:sx-frames2avg 
        averagecorrected(jj,:) = beforeaveragex(initv-1+jj,:) - datatempnew(jj,:); 
        end 
     
end 
 
%} 
 
disp('We are done with displaying all the data'); 
 
%pause; 
 
%xyDATA = [4 5 6]; %This is a dummy xyDATA 
 
% Get all data and just work with all data. 
 
 
 
%pause; 
 
%For Diatrack 
%[sx,sy] = size(xyDATA); 
%traj = sy/3; 
 
%For Gauss fit 
 
% traj is defined earlier 
% sx and sy are also defined already earlier 
 
% Not needed for Gauss fit 
%{ 
% intensity data 
[ix,iy] = size(iDATA); 
% iy should be equal to traj. 
%} 
 
%The following was used to determine the number of frames in each 
%trajectory for the Diatrack data 
%{ 
framecount=zeros(9,traj); 
% row 1 = cell # 
% row 2 = frame start 
% row 3 = frame end 
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% row 4 = number of frames 
% row 5 = x start value 
% row 6 = x end value 
% row 7 = y start 
% row 8 = y end 
% row 9  = d1 = sqrt(x1^2 + y1^2) 
% row 10 = d2 = sqrt(x2^2 + y2^2) 
for ii = 1:traj 
    framecount(1,ii)=ii; 
    framecount(2,ii)=xyDATA(1,ii*3); 
end 
     
pause; 
 
%} 
 
% Separate columns and get rid of all the zeros in columns (used for 
% Diatrack) 
%{ 
% Delete first row of xyDATA 
xyDATA(1,:) = []; 
[sx,sy]=size(xyDATA); 
 
for ii = 1:traj %(columns) 
    datatemp = [0,0]; 
    for jj=1:sx; %(rows) 
        if xyDATA(jj,ii*3-2) ~= 0  %Check x value  
            datatemp = [datatemp;[xyDATA(jj,ii*3-2),xyDATA(jj,ii*3-1)]]; 
            %disp('in while'); 
        end 
    end 
    datatemp(1,:) = []; %delete first row 
    xyCell(ii) = {datatemp}; 
end 
 
% For Intensity data: 
% Separate columns and get rid of all the zeros in columns 
 
% Delete first row of iDATA 
iDATA(1,:) = []; 
[ix,iy]=size(iDATA); 
 
for ii = 1:iy %(columns) 
    datatemp = [0]; 
    for jj=1:ix; %(rows) 
        if iDATA(jj,ii) ~= 0  %Check x value  
            datatemp = [datatemp;iDATA(jj,ii)]; 
            %disp('in while'); 
        end 
    end 
    datatemp(1,:) = []; %delete first row 
    iCell(ii) = {datatemp}; 
end 
 
disp('Done with intensity sorting'); 
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pause; 
 
 
for ii = 1:traj %(columns) 
    datatemp = cell2mat(xyCell(ii)); 
    [xycx,xycy] = size(datatemp);      
    framecount(3,ii) = framecount(2,ii)+xycx-1; 
    framecount(4,ii) = xycx; 
    framecount(5,ii) = datatemp(1,1);       %x1 
    framecount(6,ii) = datatemp(xycx,1);    %x2 
    framecount(7,ii) = datatemp(1,2);       %y1 
    framecount(8,ii) = datatemp(xycx,2);    %y2 
    framecount(9,ii)  = sqrt(framecount(5,ii)^2+framecount(7,ii)^2); %d1 
    framecount(10,ii) = sqrt(framecount(6,ii)^2+framecount(8,ii)^2); %d1     
end 
 
disp('Finished framecount'); 
 
pause; 
 
%} 
 
% Do I still need this turned off for Gauss fit? 
%warning off MATLAB:divideByZero 
warning off all 
 
% The following code is used to place xy and intensity data together for the Diatrack data.  
%{ 
for ii = 1:traj 
    test1 = framecount(10,ii); 
    for jj = ii+1:traj 
        test2 = framecount(9,jj); 
         
        cc1 = cell2mat(xyCell(ii)); 
        cc2 = cell2mat(xyCell(jj)); 
        if ( cc1(1,1) == 0 || cc2(1,1)==0)  %If the cell (array) is a zero cell, then do nothing. 
         
        else 
             
            if (abs(test2 - test1) <=1 )    % Check the last row with the first row. 
                if (ii ~= jj) 
                    datatemp1 = cell2mat(xyCell(ii)); 
                    datatemp2 = cell2mat(xyCell(jj)); 
                    % Check if x and y values agree 
                    if (framecount(6,ii)-framecount(5,jj)<=1) 
                        if (framecount(8,ii)-framecount(7,jj)<=1) 
                            datanew = [datatemp1;datatemp2]; 
                            xyCell(ii) = mat2cell(datanew); % Place the two matching data sets in the same cell.  
                            xyCell(jj) = mat2cell([0,0]);   % Place a zero value in the cell that was moved. 
                            %TEMP = cellfun(@timeszero, xyCell(jj));  % Place zero by using cellfun instead. 
 
                             
                            % Do the same for the intensity 
                            idatatemp1 = cell2mat(iCell(ii)); 
                            idatatemp2 = cell2mat(iCell(jj)); 
                            idatanew   = [idatatemp1;idatatemp2]; 



 

 165 

                            iCell(ii)  = mat2cell(idatanew); 
                            iCell(jj)  = mat2cell([0,0]); 
                             
                            disp(ii); disp('  '); disp(jj); 
                        end 
                    end 
                end 
            end 
        end 
    end 
end 
 
disp('Finished xyCell and iCell link'); 
pause; 
 
% Get rid of all zero value cells in xyCell and iCell 
%newxyCell(1) = {[0 0]}; 
jj = 0; 
kk = 0; 
for ii = 1:traj 
    datatemp = cell2mat(xyCell(ii)); 
    if(datatemp(1,1) ~= 0 && datatemp(1,2) ~= 0) 
        jj = jj + 1; 
        newxyCell(jj) = {datatemp}; 
      %  jj = jj + 1; 
    end 
     
    idatatemp = cell2mat(iCell(ii)); 
    if(idatatemp(1) ~= 0) 
        kk = kk + 1; 
        newiCell(kk) = {idatatemp}; 
      %  jj = jj + 1; 
    end 
     
end 
 
newtraj = jj; 
 
disp('End of newxyCell and newiCellmake'); 
pause; 
%} 
 
 
% This calculation was done by Gauss fit program already 
%{ 
% List all the peak positions and sort them 
% Discard any peaks that are within N pixels of each other. 
peaks = zeros(newtraj,2); 
 
for ii = 1:newtraj 
    datatemp = cell2mat(newxyCell(ii)); 
    peaks(ii,:) = datatemp(1,:); 
end 
 
peaktest = peaks; 
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peakcheck(1:newtraj)=1; 
kk = newtraj; 
for ii = 1:newtraj 
    testpeak1 = peaks(ii,:); 
    for jj = 1 :newtraj 
        if (jj == ii) 
            % Do nothing 
        else 
             
                %testpeak2 = peaktest(jj,:); 
                testpeak2 = peaks(jj,:); 
                %if (testpeak2 == [0,0]) 
                    % Do nothing 
                %else 
                peakdist = sqrt((testpeak2(1,1)-testpeak1(1,1))^2+(testpeak2(1,2)-testpeak1(1,2))^2); 
                disp(peakdist); 
                if (peakdist < 14) 
                    peakcheck(ii)=0; 
                     
                    %peaktest(jj,:)=[0,0]; 
                     peaks(ii,:) = [0,0]; 
                     peaks(jj,:) = [0,0];   % Both peaks of the comparison should be marked and deleted. 
                     
                end 
                 
                 
                %end     % End for the testpeak2 = [0,0] if statement. 
                 
        end 
         
    end 
end 
 
peaks3 = peaks; 
 
peaks2 = [0,0]; 
         
% Get rid of all peaks that fail test (in xyCell and iCell) 
%newxyCell(1) = {[0 0]}; 
 
jj = 0; 
for ii = 1:newtraj 
     
if (peaks3(ii,:) ~= [0,0]) 
     
    datatemp = cell2mat(newxyCell(ii)); 
    idatatemp = cell2mat(newiCell(ii)); 
     
    jj = jj + 1; 
    newxyCell2(jj) = {datatemp}; 
    newiCell2(jj) = {idatatemp}; 
    peaks2 = [peaks2;peaks3(ii,:)]; 
end 
 
end 
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%} 
 
%{ 
% Get rid of all peaks that fail test (in xyCell and iCell) 
%newxyCell(1) = {[0 0]}; 
jj = 0; 
kk = 0; 
for ii = 1:newtraj 
    datatemp = cell2mat(newxyCell(ii)); 
    if(peakcheck(ii)==1) 
        jj = jj + 1; 
        newxyCell2(jj) = {datatemp}; 
        peaks2 = [peaks2;peaks(jj,:)]; 
      %  jj = jj + 1; 
    end 
     
    idatatemp = cell2mat(newiCell(ii)); 
    if(peakcheck(ii)==1) 
        kk = kk + 1; 
        newiCell2(kk) = {idatatemp}; 
      %  jj = jj + 1; 
    end 
     
end 
 
peaks2(1,:)=[]; % delete first row of zeros; 
 
newtraj2 = jj; 
 
disp('End of newxyCell2 and newiCell2'); 
pause; 
 
peaks = peaks2; 
traj = newtraj2; 
 
%} 
 
%g = 'E:\John\070418\gene60_3-705_MCP60_1pt6x_PEG+BB_2.TIF'; 
%g = 'D:\Ribosome Project\files\gene60_3-705_MCP60_1pt6x_PEG+BB_2\gene60_3-
705_MCP60_1pt6x_PEG+BB_2.TIF'; 
nametoopen = g; 
[A1]=imread(nametoopen, 1); %read data file, 1st image (Reads 16 bit .tif) 
[A2]=imread(nametoopen, 2); %read data file, 2nd image (Reads 16 bit .tif) 
[A3]=imread(nametoopen, 3); %read data file, 3rd image (Reads 16 bit .tif) 
 
A = (A1+A2+A3)/3; 
 
% mirror image across x-axis 
Anew = zeros(512,512); 
for ii = 1:512; 
    for jj = 1:512; 
        Anew(ii,jj) = A(513-ii,jj); 
    end; 
end; 
A = Anew; 
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imnum=1; %reference for current image number  
info = imfinfo(nametoopen); %Get file information 
d = size(info); 
 
%xsize = info.Width; 
%ysize = info.Height; 
Axy=size(A); 
xsize = Axy(2); 
ysize = Axy(1); 
%xsize = info(1,1).Width; 
%ysize = info(1,1).Height; 
xdim = xsize; 
ydim = ysize; 
 
amax=max(A); 
amin=min(A); 
disp(amax); 
disp(amin); 
 
imindexval= d(1,2); %Number of images (frames) 
%imindexval = 10; 
 
disp('Number of frmaes is: '); 
disp(imindexval); 
disp('The x and y length in pixels is:'); 
disp(xsize); 
disp(ysize); 
 
%NTOT=zeros(1,imindexval); 
 
%%load -ascii nametoopen; 
 
 %      hold off; 
 %      contour (A(:,:,1),10); axis equal; % Show image of 1st frame 
 %      %Adjust the last number to show more or less detail in contour map. 
          
%hold on; 
 
figure(1); 
%contour(A); 
contour (A(:,:,1),20); axis equal; % Show image of 1st frame 
hold on; 
%scatter(X,Y,S,C) 
for ii = 1:traj 
    scatter(peaks(ii,1),peaks(ii,2),20,'sr'); 
end 
 
hold off; 
%pause;   
 
% Now show 3D image of locations (except if it is too close to boundary of 
% CCD (the fitting box will go over boundary and there will be an error). 
 
fb_dim = 2000; 
c = 132; 
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ppeaks = peaks/c; 
 
for peaknum = 1:traj 
 
% get X and Y from peaks array 
        X = ppeaks(peaknum,1); %Divide by c to get pixel value 
        Y = ppeaks(peaknum,2); 
        %XY = peaks(peaknum,3); % = length(IDX); 
 
        xx = round(X); 
  yy = round(Y); 
        %xx=350; 
        %yy=300; 
         
  fitboxdimension = fb_dim/c; 
        fb_dim_pix = round(fb_dim/c); 
  R = fitboxdimension/2; 
  r = round(R); 
   
% The following routine is performed in Gauss fit already and is probably redundant 
% here. 
 
        % Sort peaks and delete those with a fitting box extending betond the CCD image. 
halfbox = round(fb_dim_pix/2); 
%newpeaks = [0 0 0]; 
%for ii = 1:npeaks 
    if (ppeaks(peaknum,1) > (halfbox) && ppeaks(peaknum,1) < 512-halfbox) 
        if (ppeaks(peaknum,2) > (halfbox) && ppeaks(peaknum,2) < 512-halfbox) 
            %if (peaks(ii,3) >= 10)   % This if statement checks how big the blob is and makes a selection.    
                %newpeaks = [newpeaks;peaks(ii,:)]; 
            %end 
         
         
  %bestcoeffs = zeros(1,5); 
            
        %B = A((yy-r):(yy+r),(xx-r):(xx+r)); 
        B = double(A((yy-r):(yy+r),(xx-r):(xx+r))); %Forced double to satisfy fitting functions 
        %contour (B); axis equal;  
         
        [x,y] = meshgrid(-r:r,-r:r); 
        figure(2); 
        hold off; 
        surf(x,y,B(:,:)); 
        %contour (B); axis equal;  
%pause; 
 
[cx,cy,ssx,ssy] = centerofmass(B); 
 
disp('ssx and ssy are '); 
disp(ssx); 
disp(ssy); 
 
        end 
 
    end 
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end 
 
disp('Done displaying 3D images.'); 
pause; 
 
%The following code is for screening for pixel jumping  
%and is only needed in Diatrack (as far as I know now). 
%{ 
% Here the trajectories are plotted in x-y coordinates and the user may 
% select which ones to keep and which ones to discard. 
kk = 0; 
selectpeaks = [0,0]; 
for ii = 1:traj; 
datatemp = cell2mat(newxyCell2(ii)); 
figure(1); 
hold off; 
plot(datatemp(:,1),datatemp(:,2)); 
axis equal; 
 
%answer1 = input('Do you want to keep this trace?'); 
answer1 = 1;    % Set to 1 or 0 for auto response. 
 
    if (answer1 == 0) 
     
    else 
        kk = kk + 1; 
        currentxyCell(kk)=mat2cell(datatemp); 
        idatatemp = cell2mat((newiCell2(ii))); 
        currentiCell(kk) = mat2cell(idatatemp); 
         
        selectpeaks = [selectpeaks;[peaks(ii,1),peaks(ii,2)]]; 
         
    end 
           
%pause; 
end 
 
selectpeaks(1,:) = []; 
peaks = selectpeaks; 
traj = kk; 
xyCell = currentxyCell; 
iCell = currentiCell; 
 
%{ 
% Write peaks file  
 
path1 = 'E:\Tony\test\'; 
%xyname = 'peakoutput'; 
 
path2 = strcat(path1,xyname,'\'); 
mkdir(path2); 
 
     %filenum = num2str(1); 
     outfile = strcat(path2,xyname,'.txt'); 
     disp(outfile); 
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     fid = fopen(outfile,'wt'); 
    for jj = 1:traj; 
        fprintf(fid, '%12.8f %12.8f %12.8f\n', j, peaks(jj,1), peaks(jj,2) ); 
    end 
    fclose(fid); 
 
   
end 
 
%} 
 
disp('Done with pixel jumping screening.'); 
 
pause; 
 
%} 
 
% Now plot and select the intensity trajectories you want 
 
%{ 
for ii = 1:jj; 
datatemp = cell2mat(newiCell(ii)); 
[tx,ty] = size(datatemp); 
figure(1); 
hold off; 
plot(1:tx,datatemp); 
%axis equal; 
pause; 
end 
%} 
 
% Now plot and select the trajectories you want 
%{ 
check = 0; 
 
if (check == 1) 
     
    % Read peaks files 
 
    path1 = 'E:\Tony\test\'; 
    xyname = 'peakoutput'; 
    path2 = strcat(path1,xyname,'\'); 
    PA = importdata(path2,' '); 
     
    [pax,pay]=size(PA); 
 
    traj = pax; 
     
else 
%} 
 
%Remarked out on 070718 
%traj = kk; 
%newxyCell2 = currentxyCell; 
%newiCell2 = currentiCell; 
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% Get reducedxyCell 
 
[numberofpeaks,dummyvar1] = size(peaks); 
np=numberofpeaks; 
 
datatemp4 = zeros(sx,2); 
 
for ii = 1:np; 
datatemp3 = cell2mat(xyCell(ii)); 
 
%datatemp4 = datatemp3; 
datatemp4(:,1) = datatemp3(:,4); 
datatemp4(:,2) = datatemp3(:,5); 
 
redxyCell(ii)=mat2cell(datatemp4); 
 
end 
 
avgamt = 20; 
halfavgamt = avgamt/2; 
 
subtractarray = 1:traj; 
cellcount = 0; 
 
testrow = ones(1,20)/20; 
 
for ii = 1:traj 
    datatemp  = cell2mat(redxyCell(ii)); 
    [sx,sy]=size(datatemp); 
    %datatemp2 = zeros(sx-avgamt,2); 
 
cellcount=cellcount+1; 
 
%data = [1:0.2:4]'; 
dataa = datatemp(:,1); 
datab = datatemp(:,2); 
windowSize = 20; 
datatemp2a=filter(ones(1,windowSize)/windowSize,1,dataa); 
datatemp2b=filter(ones(1,windowSize)/windowSize,1,datab); 
 
datatempnew = [datatemp2a,datatemp2b]; 
redxyCellavg(cellcount,1)= mat2cell(datatempnew); 
 
end 
 
disp('done with filter'); 
pause; 
 
% Here I use the averaging routine to get a rolling average of the 
% trajectories and plot them: 
% Right now it is set to ake a 20 frame average. 
 
avgamt = 20; 
halfavgamt = avgamt/2; 
 
subtractarray = 1:traj; 
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cellcount = 0; 
for ii = 1:traj 
    %datatemp  = cell2mat(newxyCell2(ii)); 
    datatemp  = cell2mat(redxyCell(ii)); 
    [sx,sy]=size(datatemp); 
    datatemp2 = zeros(sx-avgamt,2); 
    if (sx > avgamt)    %Check if trajectory can be averaged for the specified number of points. 
        cellcount = cellcount + 1;  % Used to keep track of number of valid trajectories (with valid lengths). 
        subtractarray(ii) = 1;  %Use this as a marker to determine which cells past test. 
    for jj = 1+avgamt:sx 
        adatatempx = 0; 
        adatatempy = 0; 
        for kk = jj-avgamt:jj-1    % This is the points for averaging over. 
            adatatempx=adatatempx+datatemp(kk,1); 
            adatatempy=adatatempy+datatemp(kk,2); 
        end 
        adatatempx = adatatempx/avgamt; 
        adatatempy = adatatempy/avgamt; 
        datatemp2(jj,1) = adatatempx; 
        datatemp2(jj,2) = adatatempy; 
    end 
    datatempnew = [datatemp2(:,1),datatemp2(:,2)]; 
     
    %for kk = 1:avgamt %Delete blank rows 
        datatempnew(1:avgamt,:)=[]; 
    %end 
     
    %newxyCell2avg(ii,1)= mat2cell(datatempnew); 
    %newxyCell2avg(cellcount,1)= mat2cell(datatempnew); 
    redxyCellavg(cellcount,1)= mat2cell(datatempnew); 
    else 
        % Do nothing if the trajectory isn't the required length for 
        % meaningful averaging to be applied. 
        subtractarray(ii) = 0; 
    end 
end 
 
 
disp('Check datatemp and newxyCell2avg please...'); 
pause; 
 
% Now plot the averaged trajectories  
 
for ii = 1:cellcount; 
datatemp = cell2mat(redxyCellavg(ii)); 
 
xdatatempavg = mean(datatemp(:,1)); 
ydatatempavg = mean(datatemp(:,2)); 
 
datatemp2 = datatemp; 
%datatemp2(:,1) = datatemp2(:,1)-datatemp(1,1); 
%datatemp2(:,2) = datatemp2(:,2)-datatemp(1,2); 
datatemp2(:,1) = datatemp2(:,1)-xdatatempavg; 
datatemp2(:,2) = datatemp2(:,2)-ydatatempavg; 
 
disp('Check array'); 
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%pause; 
 
figure(3); 
hold on; 
plot(datatemp2(:,1),datatemp2(:,2)); 
axis equal; 
 
%axis([-1.5 1.5 -1.5 1.5]); 
 
pause; 
 
end 
 
%pause; 
 
% Now subtract the averages from the true trajectories, neglecting the 
% trajectories that didn't qualify for averaging.  Also do the intensities. 
 
ccount = 0; 
for ii = 1:traj 
    
    if (subtractarray(ii) == 1) 
        ccount = ccount + 1; 
        %datatrue = cell2mat(newxyCell2(ii)); 
        %dataavg = cell2mat(newxyCell2avg(ccount)); 
        datatrue = cell2mat(redxyCell(ii)); 
        %datatrue(1:20,:)=[]; %Delete the corresponding avg count data 
        dataavg = cell2mat(redxyCellavg(ccount)); 
        
        [sx,sy] = size(datatrue); 
        [sxa,sya] = size(dataavg); 
         
        datadiff = datatrue(avgamt+1:sx,:)-dataavg(:,:); 
        newxyCelldiff(ccount) = mat2cell(datadiff); 
         
        %idatatemp = cell2mat((newiCell2(ii))); 
        %newiCell3(ccount) = mat2cell(idatatemp(11:sx-halfavgamt)); 
         
         
         
        disp('ok'); 
    else 
         
    end 
end 
 
disp('Check newxyCelldiff'); 
pause; 
 
% Now plot the trajectories 
 
kk = 0; 
 
for ii = 1:ccount; 
datatemp = cell2mat(newxyCelldiff(ii)); 
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%datatemp2 = datatemp; 
%datatemp2(:,1) = datatemp2(:,1)-datatemp(1,1); 
%datatemp2(:,2) = datatemp2(:,2)-datatemp(1,2); 
 
disp('Check array'); 
%pause; 
 
figure(4); 
hold on; 
%plot(datatemp2(:,1),datatemp2(:,2)); 
plot(datatemp(:,1),datatemp(:,2)); 
axis equal; 
 
%axis([-1.5 1.5 -1.5 1.5]); 
 
%pause; 
 
end 
 
disp('Done with plotting corrected data'); 
pause; 
 
% Now use symmetry check to eliminate assymetric data sets: 
% And plot data 
 
symcount = 0; 
 
for ii = 1:ccount; 
     
%        datatrue = cell2mat(newxyCell2(ii));  
%        [sx,sy] = size(datatrue);   
%        datatemp2 = datatrue; 
       
datatemp = cell2mat(newxyCelldiff(ii)); % Retrieve the data set. 
origdatatemp = cell2mat(redxyCell(ii)); 
 
%datatemp2 = datatemp; 
%datatemp2(:,1) = datatemp2(:,1)-datatemp(1,1); 
%datatemp2(:,2) = datatemp2(:,2)-datatemp(1,2); 
 
%%datatemp2(:,1) = datatemp2(:,1)+1000; 
%%datatemp2(:,2) = datatemp2(:,2)+1000; 
 
disp('In symmetry routine.'); 
 
[N,c] = size(datatemp(:,1)); 
m = 20; 
disp('ii, N is:'); 
disp(ii); 
disp(N); 
 
sumx = 0; 
sumy = 0; 
sumxy = 0; 
sumxx = 0; 
sumyy = 0; 
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for kk = 1:N 
    sumx = sumx + datatemp(kk,1);  
    sumy = sumy + datatemp(kk,2); 
    sumxy = sumxy + datatemp(kk,1)*datatemp(kk,2); 
    sumxx = sumxx + datatemp(kk,1)*datatemp(kk,1); 
    sumyy = sumyy + datatemp(kk,2)*datatemp(kk,2); 
end 
 
sigma11 = (1/N)*sumxx-(1/(N*N))*sumx*sumx; 
sigma22 = (1/N)*sumyy-(1/(N*N))*sumy*sumy; 
sigma12 = (1/N)*sumxy-(1/(N*N))*sumx*sumy; 
sigma21 = (1/N)*sumxy-(1/(N*N))*sumx*sumy; 
 
symA = zeros(2); 
symA(1,1) = sigma11; 
symA(1,2) = sigma12; 
symA(2,1) = sigma21; 
symA(2,2) = sigma22; 
 
d = eig(symA); 
 
disp('Eigenvalues are'); 
disp(d); 
 
dmin = min(d); 
dmax = max(d); 
sparam = sqrt(dmax/dmin); 
 
disp('sparam is'); 
disp(sparam); 
 
paramtest = abs(sparam-1); 
 
if (paramtest < 0.2)  
 
    symcount = symcount + 1; 
    symxyCelldiff(symcount) = mat2cell(datatemp); 
    symorigdata(symcount) = mat2cell(origdatatemp); 
     
    figure(5); 
    hold on; 
    plot(datatemp(:,1),datatemp(:,2)); 
    axis equal; 
    %axis([-1.5 1.5 -1.5 1.5]); 
     
end 
 
pause; 
 
end 
 
disp('done with symmetry analysis'); 
pause; 
 
% Adding autocorrelation analysis here: 
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for ii = 1:ccount; 
for ii = 1:symcount; 
     
%        datatrue = cell2mat(newxyCell2(ii));  
%        [sx,sy] = size(datatrue);   
%        datatemp2 = datatrue; 
     
     
%datatemp = cell2mat(newxyCelldiff(ii)); % Retrieve the data set. 
datatemp = cell2mat(symxyCelldiff(ii)); 
%datatemp = cell2mat(symorigdata(ii)); 
 
%datatemp2 = datatemp; 
%datatemp2(:,1) = datatemp2(:,1)-datatemp(1,1); 
%datatemp2(:,2) = datatemp2(:,2)-datatemp(1,2); 
 
%%datatemp2(:,1) = datatemp2(:,1)+1000; 
%%datatemp2(:,2) = datatemp2(:,2)+1000; 
 
disp('In autocorrelation routine.'); 
 
[N,c] = size(datatemp(:,1)); 
m = 20; 
disp('ii, N is:'); 
disp(ii); 
disp(N); 
 
sum1 = 0; 
for n = 1:N 
    sum1 = sum1 + datatemp(n,1); 
end 
sum1 = (sum1/N)^2; 
disp('sum1 is:'); 
disp(sum1); 
 
ac = zeros(1,m); 
g = zeros(1,m); 
 
for jj = 1:m; 
    g(jj) = 0; 
    sum2 = 0; 
    for nn = 1:N-jj 
        sum2 = sum2 + datatemp(nn,1)*datatemp(nn+jj,1); 
    end 
    g(jj) = sum2/(N-jj) - sum1; 
end 
 
gCell(ii) = mat2cell(g); 
 
%g(:) = 1000000*g(:); 
%gmax = max(g(:)); 
%g(:) = g(:)/gmax; 
 
figure(6); 
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%hold on; 
plot(1:m,g(:)); 
%axis equal; 
%axis([-1.5 1.5 -1.5 1.5]); 
 
pause; 
 
end 
 
disp('Done with autocorrelation routine.'); 
pause; 
 
% Here we will calculate the MSD 
 
totRMS = 0; 
 
for ii = 1:symcount;     
     
datatemp = cell2mat(symxyCelldiff(ii)); % Retrieve the data set. 
%datatemp = cell2mat(symorigdata(ii)); 
 
%datatemp2 = datatemp; 
%datatemp2(:,1) = datatemp2(:,1)-datatemp(1,1); 
%datatemp2(:,2) = datatemp2(:,2)-datatemp(1,2); 
 
%%datatemp2(:,1) = datatemp2(:,1)+1000; 
%%datatemp2(:,2) = datatemp2(:,2)+1000; 
 
disp('In MSD routine.'); 
 
[N,c] = size(datatemp); 
m = 20; 
disp('ii, N is:'); 
disp(ii); 
disp(N); 
 
tempxy = datatemp; 
[xyrows,xycolumns] = size(tempxy); % Get dimensions of temp array (columns should = 2 all the time). 
 
difftotal = 0; 
diff = 1:N-1; 
for kk = 2:N 
diff(kk-1) = (datatemp(kk,1)-datatemp(kk-1,1))^2 + (datatemp(kk,2)-datatemp(kk-1,2))^2 ; 
difftotal = difftotal + diff(kk-1); 
end    
     
difftotal = difftotal/(N-1); 
RMS = sqrt(difftotal);     
 
totRMS = [totRMS;RMS]; 
 
disp('RMS is'); 
disp(RMS); 
 
end 
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totRMS(1)=[]; 
 
disp('done with RMS analysis'); 
pause; 
 
 
 
 
 
 
 
 
%Prep for sending to ReadTrajWork 
%selectpeaks(1,:) = []; 
%peaks = selectpeaks; 
traj = ccount; 
xyCell = newxyCelldiff; 
iCell = newiCell3; 
 
%{ 
% Write peaks file  
 
path1 = 'E:\Tony\test\'; 
%xyname = 'peakoutput'; 
 
path2 = strcat(path1,xyname,'\'); 
mkdir(path2); 
 
     %filenum = num2str(1); 
     outfile = strcat(path2,xyname,'.txt'); 
     disp(outfile); 
     fid = fopen(outfile,'wt'); 
    for jj = 1:traj; 
        fprintf(fid, '%12.8f %12.8f %12.8f\n', j, peaks(jj,1), peaks(jj,2) ); 
    end 
    fclose(fid); 
 
   
end 
 
%} 
 
disp('We are done with displaying all the data'); 
 
pause; 
 
% The following was all code in the Read_traj_v7p2 program.  I placed the 
% code above it it and will use the resutls to call ReadTrajWork 
 
%{ 
 
% Use first row of data set to get the number of columns of data for the 
% first frame. 
 
index = 1; 
test = xyDATA(1,3*index); 
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while (test < 1.1) 
    disp(test); 
    disp(index); 
    index = index + 1; 
    test = xyDATA(1,3*index); 
end 
index = index - 1; 
 
% Get and store all fame results except the first, without deleting frame 
% reference numbers (top row). 
restofdata = xyDATA(:,(3*(index+1)-2):totalcolumns); 
irestofdata = iDATA(:,index+1:(totalcolumns/3)); 
totiDATA = iDATA; 
 
% Store first frame data in xyDATA (deleting all other contents of xyDATA) 
origxyDATA = xyDATA(:,1:3*index); 
xyDATA = origxyDATA; 
 
origiDATA = iDATA(:,1:index); 
iDATA = origiDATA; 
 
%Comment (Uncomment) this line to leave (clear) this data when needed (not 
%needed) 
clear origxyDATA; 
clear origiDATA; 
 
xyDATA(1,:)=[]; %delete first row of data (set equal to empty array) 
iDATA(1,:)=[]; %delete first row of data (set equal to empty array) 
totiDATA(1,:) = []; 
 
[AAx,AAy] = size(xyDATA); %get size 
[BBx,BBy] = size(iDATA);  %get size 
 
% Use the columns from the first fram data only, so set AAx accordingly 
% Added (070509) 
%AAx = index*3; 
 
trajs = AAy/3; 
tottrajs = totalcolumns/3; 
 
row = AAx; 
column = trajs; 
 
textout = strcat('There are  ',' ',num2str(trajs),' trajectories and ',... 
    ' ',num2str(AAx), ' frames in this file (before eliminating any zero values.'); 
disp(textout); 
 
% No sorting of the data has been done yet.  This program does not link the 
% trajectories.  This program calls the ReadTrajWork routine, which will 
% sort the trajectories according to the following scheme: All trajs that 
% occur int the first frame are separated into 1) those that last the full 
% number of frames in the video, and 2) those that are shorter than the full number of frames. 
% Then the rest of the traces that are initiated after the first frame are 
% all bunched together. 
 
% If we want to sort good and bad trajectories, then maybe we should place this 
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% here, then the trajs can be sorted by and selected for intensity. 
% However, the number of trajectories to sort through will be huge if we 
% include all the rest.  So maybe we should just limit ourselves to the 
% first fram data. 
 
% No, the ReadTrajWork program also selects for trajs that have aminimum 
% number of frames.  So this can make thisngs easier.  THen it would be 
% better to move the "quality check of traj" in to the ReadTrajWork 
% routine. 
 
% The following was added on recently and isn't part of the main program. 
% 070509 
 
 
% Now plot and select the trajectories you want 
 
%{ 
for ii = 1:ii; 
datatempx = cell2mat(xycCellx(ii)); 
datatempy = cell2mat(xycCelly(ii)); 
figure(1); 
hold off; 
plot(datatempx,datatempy); 
axis equal; 
pause; 
end 
%} 
 
disp('Where are we?'); 
 
% For Intensity data: 
% Separate columns and get rid of all the zeros in columns 
 
% Delete first row of iDATA 
 
[ix,iy]=size(iDATA); 
 
for ii = 1:iy %(columns) 
    datatemp = [0]; 
    for jj=1:ix; %(rows) 
        if iDATA(jj,ii) ~= 0  %Check x value  
            datatemp = [datatemp;iDATA(jj,ii)]; 
            %disp('in while'); 
        end 
    end 
    datatemp(1,:) = []; %delete first row 
    iCell(ii) = {datatemp}; 
end 
 
% PLace this here temporarily to check the intensities and compare with the 
% linked intensities (070513) 
 
% Get rid of all zero value cells in xyCell and iCell 
%newxyCell(1) = {[0 0]}; 
jj = 0; 
kk = 0; 
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for ii = 1:iy 
%    datatemp = cell2mat(xyCell(ii)); 
%    if(datatemp(1,1) ~= 0 && datatemp(1,2) ~= 0) 
%        jj = jj + 1; 
%        newxyCell(jj) = {datatemp}; 
%    end 
     
    idatatemp = cell2mat(iCell(ii)); 
    if(idatatemp(1) ~= 0) 
        kk = kk + 1; 
        newiCell(kk) = {idatatemp}; 
    end 
     
end 
 
disp('End of newxyCell and newiCellmake'); 
pause; 
 
% Now plot and select the intensity trajectories you want 
 
for ii = 1:kk; 
datatemp = cell2mat(newiCell(ii)); 
[tx,ty] = size(datatemp); 
figure(1); 
hold off; 
plot(1:tx,datatemp); 
%axis equal; 
pause; 
end 
 
 
disp('Did we plot?'); 
 
pause; 
 
 
%} 
 
AAx = 600; % Total number of frames in video 
trajs = traj; 
 
% Call ReadTrajWork but not using the intensity threshold yet. 
inttrial = 0;  %Tells ReadTrajWork that we are not worrying about intensities yet. 
ReadTrajWork_for_ReadTrajLink_v2(AAx, trajs, xyCell, trajlen, inttrial, path1, xyname); 
 
% AAx is the maximum number of frames in the data (not needed in function 
% call?). 
% trajlen is the minumum trajectroy length specified 
% trajs is the number of trajectories. 
 
%{ 
 
% The following code sorts the intensities for all trajectories and 
% histograms them. 
 
% Separate columns and get rid of all the zeros in columns 
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kk = 1; 
%while (ii < xynctraj); 
for ii = 1:tottrajs %(columns) 
    datatemp = [0]; 
    for jj=1:BBx; %(rows) 
        %if iDATA(jj,ii) ~= 0  %Check x value 
        if totiDATA(jj,ii) ~= 0  %Check x value 
            %datatemp = [datatemp ; iDATA(jj,ii)]; 
            datatemp = [datatemp ; totiDATA(jj,ii)]; 
            %disp('in while'); 
        end 
    end 
    datatemp(1) = []; %delete first row 
    [isx,isy]=size(datatemp); 
    % The following if-else statement checks if the length of the 
    % trajectory is long enough for my specifications ( determined by 
    % trajlen ).  If long enough, then it puts it into xyncCell array. 
    % This is giving me an error right now (April 29, 2007) because none of 
    % the xync trajectories are my cpecified length.  This means that 
    % xyncCell is not created and does not exist. 
%    if (isx < trajlen)      %!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
    if (isx < 1)      %!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
    
        %xynctraj = xynctraj - 1; 
    else 
    IntensityCell(kk) = {datatemp}; 
    kk = kk + 1; 
    end 
     
end 
 
%if ( xyncCellstat == 1 )    % Check if xyncCell exists. 
 
% Get each trace out of the xyncCell and calculate the mean and std for 
% each, and then store it in an array. 
iave = 1:tottrajs; % used to be BBy 
istd = 1:tottrajs; 
 
for ii = 1:tottrajs 
    tempi = cell2mat(IntensityCell(ii)); 
    [irows,icolumns] = size(tempi); % Get dimensions of temp array (columns should = 2 all the time).  
        iave(ii)=mean(tempi(:,1)); 
        istd(ii)=std(tempi(:,1)); 
         
end 
 
%end   % End of xyncCellstat check 
 
bins = 40; 
%bins = size(xystdtotx1)/20 
 
[n,xout] = hist(iave,bins); 
figure(2); 
bar(xout,n); 
xlabel('iave, DN'); 
ylabel('Distribution'); 
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title('Histogram plot of iave'); 
%hmean = mean(xx); 
%hstd = std(xx); 
%text( 5, 100, ['mean is: ',num2str(hmean)]); 
%text( 5, 50,['std is: ',num2str(hstd)]); 
 
pause; 
 
%} 
 
% Now we are using an intensity threshold to select trajectorys. 
 
% Separate columns and get rid of all the zeros in columns 
kk = 1; 
%while (ii < xynctraj); 
for ii = 1:BBy %(columns) 
    datatemp = [0]; 
    for jj=1:BBx; %(rows) 
        if iDATA(jj,ii) ~= 0  %Check x value 
        %if origiDATA(jj,ii) ~= 0  %Check x value 
            datatemp = [datatemp ; iDATA(jj,ii)]; 
            %datatemp = [datatemp ; origiDATA(jj,ii)]; 
            %disp('in while'); 
        end 
    end 
    datatemp(1) = []; %delete first row 
    [isx,isy]=size(datatemp); 
    % The following if-else statement checks if the length of the 
    % trajectory is long enough for my specifications ( determined by 
    % trajlen ).  If long enough, then it puts it into xyncCell array. 
    % This is giving me an error right now (April 29, 2007) because none of 
    % the xync trajectories are my cpecified length.  This means that 
    % xyncCell is not created and does not exist. 
%    if (isx < trajlen)      %!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
    if (isx < 1)      %!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
    
        %xynctraj = xynctraj - 1; 
    else 
    IntensityCell(kk) = {datatemp}; 
    kk = kk + 1; 
    end 
     
end 
 
%if ( xyncCellstat == 1 )    % Check if xyncCell exists. 
 
% Get each trace out of the xyncCell and calculate the mean and std for 
% each, and then store it in an array. 
iave = 1:BBy; % 
istd = 1:BBy; 
 
for ii = 1:BBy 
    tempi = cell2mat(IntensityCell(ii)); 
    [irows,icolumns] = size(tempi); % Get dimensions of temp array (columns should = 2 all the time).  
        iave(ii)=mean(tempi(:,1)); 
        istd(ii)=std(tempi(:,1));        
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end 
 
%end   % End of xyncCellstat check 
 
bins = 40; 
%bins = size(xystdtotx1)/20 
 
[n,xout] = hist(iave,bins); 
figure(2); 
bar(xout,n); 
xlabel('iave, DN'); 
ylabel('Distribution'); 
title('Histogram plot of iave'); 
%hmean = mean(xx); 
%hstd = std(xx); 
%text( 5, 100, ['mean is: ',num2str(hmean)]); 
%text( 5, 50,['std is: ',num2str(hstd)]); 
 
%lowint = input('Enter the low intensity value: '); 
%highint = input('Enter the high intensity value: '); 
intthresh = input('Enter the upper value for the intensity threshold: '); 
 
% Create an array with the same length as the number of trajectories 
% (and/or intensities) and then use a 1 or 0 value to denote if the trace 
% satisfies the intensity threshold criteria. 
 
goodtraj = 1:BBy; % BBy here is the number of intensity traces and should be  
              % equal to the number of trajectories (all found in the first frame). 
              % Here I just set up an array with the trajectory column 
              % numbers in it, but these will be replaced by 1 and 0 
              % values. 
 
for ii = 1:BBy 
    if (iave(ii) <= intthresh) 
        goodtraj(ii) = 1; 
    else 
        goodtraj(ii) = 0; 
        %xyDATA(:,ii) = []; 
    end 
end 
 
pause; 
 
 
% Here we need to determine which trajectorys to keep in the restofdata 
% array. 
 
[rdx,rdy] = size(irestofdata); 
 
% Separate columns and get rid of all the zeros in columns 
kk = 1; 
for ii = 1:rdy %(columns) 
    datatemp = [0]; 
    for jj=1:rdx; %(rows) 
        if irestofdata(jj,ii) ~= 0  %Check x value 
            datatemp = [datatemp ; irestofdata(jj,ii)]; 
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        end 
    end 
    datatemp(1) = []; %delete first row 
    [isx,isy]=size(datatemp); 
    % The following if-else statement checks if the length of the 
    % trajectory is long enough for my specifications ( determined by 
    % trajlen ).  If long enough, then it puts it into xyncCell array. 
    % This is giving me an error right now (April 29, 2007) because none of 
    % the xync trajectories are my cpecified length.  This means that 
    % xyncCell is not created and does not exist. 
%    if (isx < trajlen)      %!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
    if (isx < 1)      %!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!! 
    
    else 
    IrodCell(kk) = {datatemp}; 
    kk = kk + 1; 
    end 
     
end 
 
irodave = 1:rdy; 
irodstd = 1:rdy; 
 
for ii = 1:rdy 
    tempi = cell2mat(IrodCell(ii)); 
    [irodrows,irodcolumns] = size(tempi); % Get dimensions of temp array (columns should = 2 all the 
time).  
        irodave(ii) = mean(tempi(:,1)); 
        irodstd(ii) = std(tempi(:,1)); 
         
end 
goodrodtraj = 1:rdy; % BBy here is the number of intensity traces and should be  
              % equal to the number of trajectories (all found in the first frame). 
              % Here I just set up an array with the trajectory column 
              % numbers in it, but these will be replaced by 1 and 0 
              % values. 
 
for ii = 1:rdy 
    if (irodave(ii) <= intthresh) 
        goodrodtraj(ii) = 1; 
    else 
        goodrodtraj(ii) = 0; 
    end 
end 
 
% Now start eliminating the unwanted trajectories from the arrays (xtDATA 
% and restofdata). 
 
 
 
 
for ii = 1:BBy 
    if (goodtraj(ii) == 0) 
        % Delete all three columns 
        xyDATA(:,ii)=[]; 
        xyDATA(:,ii)=[]; 
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        xyDATA(:,ii)=[]; 
    else 
         
    end 
end 
 
for ii = 1:rdy 
    if (goodrodtraj(ii) == 0) 
        restofdata(:,ii) = []; 
        restofdata(:,ii) = []; 
        restofdata(:,ii) = []; 
    else 
         
    end 
end 
 
 
 
[AAx,AAy] = size(xyDATA); %get size 
 
trajs = AAy/3; 
 
 
textout = strcat('There are  ',' ',num2str(trajs),' trajectories and ',... 
    ' ',num2str(AAx), ' frames in this file (before eliminating any zero values.'); 
disp(textout); 
 
 
% Call ReadTrajWork using the intensity selected data. 
inttrial = 1; 
ReadTrajWork_v2(AAx, trajs, xyDATA, trajlen, restofdata, inttrial, path1, xyname); 
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