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Abstract

Immunological signaling pathways between and wittels are central
determinants of the success of immune responsesni@jor characteristic of immune
signaling is a balance that is struck between pflafnmatory responses to pathogens
and anti-inflammatory regulation that stabilizesl amodulates immunityMycobacterium
tuberculosisis a successful human pathogen that preferensaltyives within host
macrophages, the very immune cells that act toiedita it. Exploitation of the balance
between pro- and anti-inflammatory mechanisms neag btrategy fol. tuberculosis
survival within macrophages. This work first ex@sithe evolved design principles of
intracellular macrophage activation pathways rat¢va counteringM. tuberculosis
infection. | used a mathematical model of the mploage intracellular signaling network
to predict that multiple synergistic activationrsads are balanced by negative (anti-
inflammatory) feedback from a single output, thiérkg effector nitric oxide. Without the
presence of two activation signals, the feedbaekitagonistic toward high levels of
activation. | next implemented a representatioa gfowing intracellular population of
M. tuberculosis in the macrophage signaling model. This showsrkgative feedback of
nitric oxide to activation signaling may not optilhgill bacteria compared to a possible
positive feedback design. However, the model ptedi@at negative feedback imparts a
kinetic advantage to elevating nitric oxide levdlee kinetics of nitric oxide induction
offset the disadvantage of negative feedback ititheng of activating cytokine delivery

occurs near the time of macrophage infection. @iffarent biological scale, | explored



the roles of activation signals M. tuberculosis infection with a computational agent-
based model of granuloma formation. Model resulggest that multiple effects of the
pleiotropic cytokine tumor necrosis factorfTNF) are an essential feature of TNF
function: loss of single TNF activities did not uésn granuloma structures comparable
to deletion of all TNF activity. Perturbation of ftiple TNF activities simultaneously
showed synergistic and competitive effects of irdiial TNF activities in granuloma
formation. Finally, | explored possible ways toeigtate a single-cell stochastic model of
macrophage gene regulation into an agent-basedIrmosienulate the roles of

intracellular signaling in the context of the grloma environment.
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Chapter 1

Introduction

Mycobacterium tuberculosis (Mtb) is among the most successful pathogensean th
world, with approximately one third of the humarpptation (two billion people)
currently infected. Mtb is a slow-growing bacillsigread by small aerosol doses that
survive in host lung macrophages. Infection indwreadaptive immune response that is
usually successful at containing infection, bugtrently fails to clear it, instead forming
stable aggregates of immune cells called granuldezang to a long-term latent state
(reviewed in 20).

During any infection, immunological signaling evehietween and within cells
are central determinants of the success of immesgonses. Immune responses must
effectively enable clearance of a constant onslaofjimsults, including pathogens, non-
pathogenic organisms and other foreign bodies. Wewdactericidal effectors and pro-
inflammatory signals are costly to host health. §hsignaling must strike a balance
between pro-inflammatory effects and anti-inflamomatregulation. The success of Mtb
as a human pathogen may have arisen from expldhiagalance: if immune signals do
not permit sufficient inflammation for bacteriakarance, the infection can indefinitely
persist in a latent state. This represents a patenutrvival strategy for Mtb.

Clearly, the role of signaling— activation, defaation, and coordination of

immune responses— is an important element of hatkisgen interactions with Mtb.



Ongoing experimental work continually reveals imsieag complexity, apparent
redundancy, and counterintuitive effects for pnod anti-inflammatory signals in
immune responses to Mtb. This invites the applicatf mathematical and
computational analysis that can explain subtlesrolemmune signaling in Mtb infection

that are currently inaccessible with other appreach

1.1 Immunological events and infection withM. tuberculosis

1.1.1 _Innate and adaptive immunity

Typical Mtb infection begins with inhalation of enall number of bacilli (on the
order of 10) into the lung. Alveolar macrophagegufithe bacteria and possibly seed
infection in lung parenchymal tissue, the highlgaaarized environment of oxygen
exchange comprised of at least 10% blood vessdlslarolar septa (29). During the
initial stages of Mtb infection, infected neutrolsrend macrophages produce the pro-
inflammatory cytokine tumor necrosis facmitTNF) (12, 16, 36) and chemokines that
recruit immune cells to the site of infection (3Q, 49, 58). Macrophages infected with
Mtb produce the cytokine IL-12 (34), which indu@esell-mediated Type-1 adaptive
immune response.

Type-1 adaptive immunity is required to controkeiction in humans and in
mouse models (11). In this type of response, aeiv&€D4 T cells from the draining
lymph nodes migrate to the site of infection in lilneg to provide the macrophage-
activating cytokine interferon (IFNy-and contribute to production of TNF (67) in
response to phagosome-derived antigen presentedbpphages. COS cells are

recruited to the lungs from the draining lymph esaf Mtb infected mice with similar



kinetics to CDA T cells (17, 60). These cells respond to cytopiasmtigen presented
by macrophages, producing pro-inflammatory cytogitiecluding IFNy) and lysing
infected macrophages (reviewed in 20).

A third subset of T cells known as regulatory TI<é€T .9 have a modulatory role
in adaptive immune responses (53)¢Jare CD#/Foxp3 and comprise approximately
5-10% of all CD4 T cells (3, 53). They suppress the action of pftainmatory T cells
(63), possibly through cell-contact-mediated or mmosuppressive cytokine mechanisms
(4). Tieg cells are present in mouse (40) and human (23)iMéations, and lower the

effectiveness of the immune response at elimindiagieria (46, 50).

1.1.2 Granuloma formation

The classic feature of pulmonary Mtb infectionhie formation of granulomas in
the lung. In humans and non-human primates widntgtulmonary infection,
granulomas form as well-circumscribed masses iruihg parenchyma comprised of
resting, infected and activated macrophages withaaacteristic cuff of activated CD4
and CD8 T cells on the periphery (15, 48). At the levehdingle granuloma,
macrophages may fail to control infection, leadiongaseous or necrotic granulomas
harboring large numbers of bacteria within macrggsa(15). TNF gene-disrupted mice
have disorganized, dissolved granulomas in Mthctidas (5), underscoring the link
between granuloma structure and effective contammiinfection. However, the
relationship between bacterial control in a sirggignuloma and the outcome of infection

at the level of the entire host is not well eststidid.



1.1.3 Molecular signals that activate macrophagparnses td. tuberculosis

Communication between immune cells depends on mlalescale signals that
coordinate immune cell responses. Pro-inflammatgtgkines TNF and IFN-are one
facet of this communication network. TNF and Ildetivate macrophages in a
complementary manner, promoting anti-microbial gergograms (18, 19, 51) through
separate intracellular signaling pathways that faraentral component of host defense
against Mtb infection (these are discussed in be&ow). Differences in the functional
roles of IFNy and TNF extend beyond macrophage activation. @rifiiN-y, TNF has
several distinct functional activities: it also uwbs apoptotic cell death in macrophages
(35) and has a direct role in cell recruitmentwparegulation of endothelial adhesion
molecules (71), facilitating trans-endothelial naigon of immune cells to the site of
infection.

The spatial distribution of TNF and IFjNmay also differ. IFNyis secreted by
activated T cells directly to the immunological apse (27), which forms at the interface
with antigen presenting cells such as macrophdgesntrast, TNF was shown to be
secreted multi-directionally from T cells (27) iddition to being produced by activated

macrophages (12).

1.1.4 Molecular signals that coordinate immune igtuitment

Chemokines, which direct immune cells to sitesnéégtion, are a second facet of
molecular scale immune signaling that induce tremdothelial migration (reviewed in
65) and coordinate recruitment of immune cell4gite of infection by establishing a

chemotactic gradient (reviewed in 61).



We constructed a simplified model of chemokinediliree classes that affect
recruitment of macrophages and T cells to the doana via binding of appropriate
chemokine receptors on the cell surface. drehemoattractant class (CXCL9,10, and
11; formerly Mig, IP-10 and I-TAC, respectively)ois chemokine receptor CXCR3 on
pro-inflammatory CD4 and CDS8 T cells (42), but not regulatory T cells (33). CCL
(formerly MCP-1) binds CCR2 on macrophages (64) @oghortions of pro-
inflammatory T cell populations (47). CCL5 (formeRANTES) binds CCR5 on
macrophages and T cells, and is necessary for timgraf regulatory T cells to the site

of Mtb infection (70).

1.2 Mechanisms, strategies and effects of macropleagctivation

Typically, resident tissue macrophages readilgrcfereign bodies by
phagocytosis. Mtb is resistant to innate clearaneehanisms, requiring macrophages to
receive T cell-derived signals to become activaigticiently to kill intracellular bacteria
(22). The adaptive immune response controls irdadby inducing a genetic program in
macrophages that produces toxic anti-microbialcédies in quantities that are potentially
detrimental to long-term health of the host. Gitles costs to the host associated with
this , we reason that macrophage activation liésnolea threshold that makes it a
relatively rare occurrence. This threshold is e¢tiast when considering Mtb infections,
since it provides an evolutionary goal for Mtb sual in the host (namely, to exploit
mechanisms that maintain the quiescent or neasgeint macrophage state). We now

examine mechanisms by which macrophages may batlhecequirement of its typical



goal to maintain a stable quiescent state withptitential for reaching highly activated

states.

1.2.1 NFkB and JAK/STAT intracellular signaling pathways

Activation signals, including TNF, IFN-and bacterial products, induce
intracellular second messengers that lead to trgmi®mal reprogramming of
macrophages receiving these signals. In Mtb irdectiwo signaling pathways stand out
as central to bacterial control: NdB and JAK/STAT.

The NFkB signaling pathway (59) is pro-inflammatory ancheeal, operating in
most cell types (21). Signals that are transduomd toll-like receptor (TLR)-antigen
binding (reviewed in 8) or TNF-TNFR1 binding (rewied in 67) on the macrophage cell
surface result in ubiquitin-mediated degradatiombfbitor of NFxB (IkB). This leads
to the release of formerly captive NiB- into a transcriptionally active form capable of
translocating into the nucleus (21, 59). KBB-may be activated by products from Mtb,
including lipoarabinomannan (LAM) (9).

The Janus kinase (JAK)/signal transducer and atctivof transcription (STAT)
pathway depends on auto-phosphorylation of JAK(duthe relevant pathway here) to
dimerization of IFNR1 (1). This results in phospylation and homodimerization of
Statla into a transcriptionally active form that bind® thActivating Sequence motif of

gene promoters.

1.2.2 Transcriptionally requlated nitric oxide puation




NF-kB and Statl regulate a number of genes, but ondstaut as especially
important for responses to Mtb: inducible nitriadexsynthase (iNOS), the enzymatic
producer of nitric oxide (NO) (reviewed in 44). §68inding sequences for NkB and
Statl homodimer appear in the mouse and human peomegions of the INOS gene,
and the NF«B pathway is complementary to and synergistic \8itht1 in INOS
transcriptional activation in mouse macrophageucat (38).

Of the known mechanisms of pathogen killing by ropbages, NO and other
reactive nitrogen intermediates (RNIs) appear tthkesole effective mechanisiims
vitro. NO is a free radical that interacts promiscuouati other molecules, lending
generality to its anti-microbial effects, and makiha regulator of multiple intracellular
mechanisms. In particular, it feeds back to dB-in either an inhibitory, stimulatory, or
bi-modal manner (i.e. inhibitory in some circumstas, stimulatory in others; (10)). Like
NF-kB, Statl appears to be regulated by RNIs as wablaently in an anti-
inflammatory manner (37). The resulting pictureracrophage activation affecting
INOS transcription is of multiple, synergistic sas regulated in a feedback manner by

RNIs.

1.2.3 Nitric oxide interaction with iron regulation

Another complexity arising from the reactivity RNIs is that free intracellular
iron in the labile iron pool (LIP) readily interacivith it, and the two are co-regulated
(32). In addition to this, iron is the growth-linmigy nutrient for nearly all intracellular
pathogens, including Mtb (56). In both ways irogukation is an important consequence

of infection and macrophage activation.



As extracellular iron from blood or surroundingstile circulates, it is chelated
into transferrin or lactoferrin, and resident tsgnacrophages clear it by internalization
via the transferrin receptor (TfR) or phagocytatigestion (43). A homeostatic
intracellular apparatus regulates the levels aaodllular iron by directly sensing iron
concentrations in the cytoplasm: Free iron bindsao regulatory proteins (IRPs) with
high affinity, freeing IRPs from causing translai# arrest of the production of ferritin, a
large shell-like chelator of intracellular iron (62 herefore, the resulting increase in
cytoplasmic iron levels permits ferritin-mediatedn chelation. Several studies point to
nitric oxide/RNI-mediated regulation of IRP1 andPlR sometimes with conflicting
results: RNIs may differentially regulate the IRPPs68). The link between INOS
regulation and iron homeostasis involves feedbackell: elevated cytoplasmic iron is
associated with inhibition of INOS transcriptiomabgh C/EBPB (formerly NF-

IL6)(14). This factor is necessary but not suffitiéor INOS transcription (24), allowing
suppression, but not activation, of INOS trans@ipby changes in intracellular iron

levels.

1.3 Design principles of integrated macrophage furion
The macrophage subsystems presented in the psesgations form a
biochemical network responsible for regulating\ation in response to extracellular

signals (Figure 1.1). The entire network is congaisf three primary functions, referred
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Figure 1.1 Pathways of macrophage activation relevant tactida with Mycobacterium
tuberculosis. These include NIikB- and Statl-induced transcriptional upregulatibn o
inducible nitric oxide synthase, producer of theeefradical nitric oxide (NO) that
regulates many components of the macrophage as@saein anti-microbial effector
against intracellular mycobacteria. Relevant malcagge components can be split into
three individual functions that are co-regulatederred to as functional modules:
Activation, Killing, and Iron Regulation.

to herein as functional modules: Activation, Kitliirand Iron Regulation. The
components in each module interact reciprocallywite or more neighboring modules,
forming an integrated system whose response toaphage activation is affected by
intermodule interactions.

In some cases (e.g. RNI feedback to hB); these interactions are poorly
understood from experimental work. That is, the nit@gle of the interaction (strong
versus weak) may be unknown and the sign of tlegantion (i.e. whether it is
stimulatory or inhibitory) is ambiguous or unknovitven where it is known what type of

interaction occurs, the consequences of this tantiegrated system calls for further

elucidation.



We reason that the intermodule interactions ohtlaerophage network have
undergone evolutionary selection, which has grdgdwaitimized the process of
macrophage activation to meet the functional ne¢édsacrophages, including a balance
between a quiescent state and the rare need forlitg/ation levels. Therefore, based on
possible selective advantages of certain typestefmodule interactions, we hypothesize
that the system has evolved according to underlgesign principles. One major goal of
this work is to determine the design principlesnaicrophage activation based on the

types of intermodule interactions that optimize ropbage function.

1.4 Dynamic interactions of macrophage componentsith intracellular
M. tuberculosis

A successful intracellular parasite exploits raet machinery for survival,
forming a micro-environment favorable to growthtite case of Mtb infection, this
appears to start with the inhibition of phagosogss$ome fusion in macrophages (2,
13). Once inside a mycobacterial phagosome, Mtblibdepend on intracellular iron for
continued growth (45).

Mtb within host macrophages survive if bacteritidaels of macrophage
activation have not been reached (c.f. Section &r) during an ongoing adaptive
immune response, the location and timing of TNF l&Mty signals may differ (c.f.
Section 1.1.3), affecting activation kinetics. Hwstance, if one or both of TNF and IFN-
y signals precede infection, so that macrophagewa®eme degree already activated
before infection, is this favorable to the host?

Alternative macrophage network designs may alsecathe kinetics of response;

for instance, in other systems negative feedbaskkan shown to speed response times

10



in some inducible circuits (52). We therefore extéime concept of design principles to
interactions with intracellular Mtb by asking wledtects different possible macrophage
network designs have on effective killing of Mtbah optimal activation strategy exists,
this in turn may be subject to exploitation by adplized pathogen. Therefore,
understanding the kinetic roles of activation tighduring infection may also suggest

mycobacterial strategies to prevent bactericidahime responses.

1.5 A mathematical formalism for studying macrophag design principles

1.5.1 Biochemical Systems Theory

Biochemical Systems Theory (BST) is a mathematarahalism developed for
studying the integrative behavior of complex biauleal networks encompassing a
number of tools developed to address the questiaetavork design principles. This
makes it a natural choice for studying the behasfonacrophage activation signals at
the scale of interest here.

The basic concept underlying BST models is liresion of biochemical fluxes
using logarithms (55). In logarithmic space, mamyctions are accurately approximated
with a piecewise linear model, including non-lineamoidal and saturating functions
appropriate for representing biochemical procesBais. allows the estimation of a
biochemical flux (dependent anregulatorsX;) in logarithmic coordinates using a first-
order (i.e. linear) Taylor approximation that isdbto a nominal set-point. For a flik

dependent on regulators X), the Taylor polynomial is of the form

logV =a+> g logX, +OQ_ [logX; F).
i=1 i=1

11



Near the set point, the higher order terms arelsdiatarding them for this
approximation and transforming back to linear cawatks gives an approximate
guantitation of the flux as a product of power laws

V= X2XE DX =aXPX 3 DX,

The BST formalism providesanonical mathematical form (66). That is, the
underlying mathematical structure is uniform witffetences between models
completely specified by the topology of the networlder study. Therefore, analytical
results from these models are very general, anticapfe to any network with the same
characteristics. The model can be further genem@hgith the use of piecewise power law
approximations that allow the modeler to set asthoéd where the parameter values are
changed to improve the accuracy of the model tanfthe set-point (54).

We represent the network describing macrophageadictn pathways shown in
Figure 1.1 with an S-system type of BST model.nrSasystem model, each variabtg,
is dynamic, with single aggregate terms represgrirnduction or consumption flux, so

that the model is specified by a system of ODEhefform:

n+m n+m

—' =q l_l X7 =B l_l th,- with n dependent anch independent variables.
j:

1.5.2 Mathematically controlled comparison

One of the primary advantages of mathematical hsadehe ability to easily
manipulate components of the model. However, detengnthe effects of these changes
in a model is not necessarily a trivial task. Stagydesign principles of the network calls

for a rigorous method for determining the perforecenf alternative design possibilities.

12



We argue that high-performing designs have seleetdvantages over inferior designs
(e.g. stimulatory versus inhibitory regulation efeocomponent by another improves
overall system performance by some criteria). Tle¢hiwmd of mathematically controlled
comparisons (28) was developed for rigorous corspas of alternative design
possibilities for individual regulatory pathwaysioterest (local analysis). For global
analysis of parameter space, we use statisticaltsaty and uncertainty methods
(Section 1.7 below).

One requirement for local analysis is that we detee functional criteria by
which to judge the effectiveness of alternativeigles The specific choice of criteria
depends on the functional goal of the system. k®@ntacrophage model, we use three
criteria previously shown to predict design prinegin other inducible gene circuits
(25): stability, robustness, and dynamic respom&sgs. Stability refers to the ability of
the system to return to steady state after a sshalige in component levels, determined
in this system with the Routh-Hurwitz method. Rdbess means the relative
insensitivity of model variables and production/semption rates to perturbations in
parameters and other external components, mealyledarithmic gains of each
dependent variable&{() and flux {/;) in response to independent variable and parameter
perturbations. (Logarithmic gains are mathemataaddifined asd log X 19 logp,
intuitively meaning a quantitation of the levelpsrturbation of molecul® by changes
in parametep when the system is in steady state.) Finally,aesjveness represents a
fast temporal change in NO levels after activasmmals, reaching the activated steady
state as quickly as possible after induction. Stgland robustness are, in principle,

determined analytically from the model; this letigks analysis a level of independence

13



from choices of parameter values. Responsivengsies choosing realistic parameter
values for numerical simulations.

With these criteria defined, we alter regulatarteractions of interest in a manner
constrained to ensure that the systems under casopare as nearly identical as
possible, the only remaining changes thereforeidently attributable to the parameter
under study. Two parameter constraints are intreduc achieve this: internal and

external equivalence. Internal equivalence requaligsarameters not part of the
regulatory flux of interest (e.§/" for parameteg; under study) to be equal. The second

requirement, external equivalence, introduces ctiomes for parameters in the regulatory
flux of interest based on holding constant an extebservable behavior of the model:
in the case of the macrophage model, gain of iIN@&m from activation signals. This

is necessary since non-linearities in the model mimgduce irrelevant differences from

varying the regulatory parameter under study.

1.6 Multi-scale computational model of signaling ira mycobacterial granuloma
The ordinary differential equation modeling franwelvhas historically been the
most fruitful route for building predictive moded$ any kind of physical system.
However, its limitations, particularly in a biolagil context, become obvious when
seeking an integrated understanding of very comgystems. In the dynamics of
immune responses to Mtb, individual macrophagesTacells interact with each other
and with molecular scale signals. A realistic maafethis system should integrate all
relevant spatio-temporal scales. Spatially, thigyes from the molecular to the tissue to

organismal scales with temporal events occurrintherorder of second to years. One

14



promising method for capturing all the relevantiesand interactions is an agent-based
model (ABM). An ABM is a computer algorithm thateampasses any interactions
capable of being programmed. Therefore, continamaisdiscrete spatiotemporal effects
may be represented in any level of detail withie ¢bnstraints of computational power.

ABMs are developed based on four consideratiagents, therules that describe
the agents and their interactions, éheironment on which the agents reside and the
timescales on which events are defined. Molecular scale everaig be represented
continuously with either discretized ordinary ortf differential equations while each
immune cell is a discrete entity with a locatiom @onserved properties over time.
Algorithms in the model represent genetic and leocical programs in cells that allow
each cell to respond, deterministically or probabdally (as appropriate) to stimuli. The
details of the algorithms are determined from expental data. The passage of time is
discretized into the smallest appropriate stepbgéhe fastest process in the model. Cell
movements and interactions are updated at apptepnizrvals based on model
algorithms. A remarkable outcome of this type ofd@las emergent behavior: that is,
simulations show system-wide behaviors that aredhelt of agents interacting locally.

Previously, Segovia-Juaretzal (57) developed a simple ABM of granuloma
formation during infection with Mtb using two c#yipes and a non-specific chemokine
for cell recruitment. This model was able to rejel different types of granulomas (that
both contain infection and fail to do so), butaitks sufficient mechanisms to study the
specific roles of cytokines, chemokines and speciil types in granuloma formation
and function. We have extended this previous mtmstudy the role of pro-

inflammatory cytokines and multiple T cell subtypesletermining resulting granuloma
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formation. We distinguishing between three possihbiicomes at the level of a single
granuloma: elimination of bacteria, controlled gtb\i.e. a latent state), and

uncontrolled bacterial growth.

1.7 Statistical methods for parameter space samplinand sensitivity analysis

Mathematical and computational models that remtedetailed mechanisms
involved in biological processes inherently contaiany parameters, and in most cases
realistic values are difficult or impossible to el@hine. Thus, sophisticated methods are
necessary for determining how parameters, whictesgmt specific mechanisms in the
system, affect model outcomes. In a statisticat@gugh to this problem, each parameter
is given a plausible interval and values in thieival are selected in a Monte Carlo
sampling scheme; randomly combined values from pachmeter givél sets that
represent a statistical sample of the entire ptdeigarameter space. Here we use Latin
hypercube sampling (41), a stratification methaat #nsures high-efficiency sampling of
the parameter space. ldeally, the choice of pammndettributions and intervals in this
method should represent both an unbiased samdlipgrameter space and physically or
biologically plausible ranges for each parameteprhctice, the best choice of
distributions and intervals is a trade-off betwésgse two goals.

With a statistical sample of the parameter spaasdial rank correlations (PRCs)
qguantify the effect of each parameter on a chosesetroutput. PRCs vary between -1
and 1, respectively representing inverse and da@ctelations. PRCs permit the output to
be non-linear due to the ranking, but the relatiqm&etween the output and each

parameter should be monotonic. In the case of sdtlat have aleatory uncertainty (i.e.



uncertainty arising from random processes in thdef)pthe monotonicity requirement
may not be met. This situation occurs in ABMs. Heere parameters with a particular
effect on an output variable will continue to halkis effect on average during
simulations. Therefore, repeated simulations fehesampled parameter set will allow
the average output of the model to be monotonliewaig the use of uncertainty and
sensitivity analysis with ABMs.

Significance tests have been developed to deteriine PRC is different from
zero (6) and to determine of two PRCs differ frone @nother (26). This allows
discrimination between strong and weak parametectsf and allows the determination

of relative effects of different parameters onitinedel output (39).

1.8 Understanding roles of immunological signalingh macrophage activation
and infection with Mycobacterium tuberculosis

During infections with Mtb, immunological signadjiis central in determining the
success of host defenses. Massive experimentatseéinod increasingly sophisticated
experimental methods have resulted in a large@lisomponents involved in
immunological signaling and its role in mycobadénnfections. However, deeper
understanding of the principles of immune signaliangd an integrated view of its role in
larger-scale effects of infection, require systariented approaches.

The aim of this work is to construct and analyzghematical and computational
models that capture several facets of immunologiicadaling involved with
Mycobacterium tuberculosis infection. First, we analyze the role of the iogbular
regulatory network involved with macrophage aciwvaif nitric oxide production with a

mathematical model. Second, we extend this modehterstand the role of activation
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signal timing during intracellulayl. tuberculosis infection. Finally, we analyze the roles
of signaling using an agent-based model in theslasgale setting of pulmonary

granuloma formation.
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Chapter 2
Requirement for Multiple Activation Signals
by Anti-Inflammatory Feedback in Macrophages

2.1  Introduction

One of the primary roles of macrophages in the imeme@sponse is killing of
internalized pathogens. Macrophages attain strotigagion states for killing based on
external signals received but must balance capabiliactivation with the need to stay
quiescent in the absence of decisive stimuli. Alltesy question is how the macrophage
biochemical network balances alternate demandsgfefeht activation states. Our focus
is the macrophage killing mechanism where exogengtakine and pathogen-derived
endotoxin signals induce a genetic program regultirthe production of nitric oxide
(NO) and NO-derived reactive nitrogen intermedidfds 69), (based primarily on the
well-studied mouse macrophage model). These NQ@eckkpecies have the ability to
directly kill internalized pathogens (8) while alacting as intracellular signals (25) in
feedback that regulates activation pathways (39432and iron homeostasis regulation
(32). The link between NO and iron homeostasisatan NO production (67) and the
availability of iron as a nutrient for pathogengy(és9). The resulting picture is of an
interconnected network with systemic consequentescrophage activation depending
on the presence of activating signals and exogemongFigure 2.1).

Due to the energetic demands of macrophage activatupled with the toxic

and perturbative nature of nitric oxide to surrangdissues, macrophages must remain
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quiescent in the absence of a decisive need faadion. When and only when the
macrophage biochemical network receives a defgigeal for activation, it must supply
a sufficiently strong response: an integrated changellular state that induces
conditions leading to growth inhibition and killired internalized pathogens. This system
has a modular organizational scheme; the integizbdvior of macrophages during
activation is determined by factors within and begw these modules. One possibility for
controlling the trade-off between quiescense atidaon is based on how the
functional modules interact. To address the tradtieeiween quiescent and activated
states we have developed a mathematical modeedfidtthemical network operating in
macrophages that reflects this organizational sehem

Analysis of this model allows us to assess theigrfte of every interaction under
both quiescent and activated macrophage conditiéesapply two levels of analysis
here. A global statistical analysis allows us ttedaine the relative importance of each
model parameter on macrophage activation outcobhoesl analyses of specific
interactions yield network motifs that best meeatlationary criteria for effective
macrophage function. Together these analyses learealed what network motifs allow
the conflicting demands of macrophage quiescendaativation to be met. We define
three functional modules of the macrophage biocbhahmetwork assessed with this
approachactivation, killing andiron regulation (Figure 2.1).

Theactivation module (AM) represents receipt of external stimuli thigihsi
parallel second messengers: LPS-induciblekiBFand IFNy-inducible Statl. These
signals transcriptionally induce production of isthle nitric oxide synthase (iNOS) (1)

in a synergistic manner (40). Tkiéling module (KM) represents the iINOS
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transcriptional program, a cascade resulting impection of NO, which serves as a
signaling molecule whose products in turn reguNftexB (10, 43) and Statl (39) in the
AM. For simplicity we emphasize NO and its effegt®r other killing mechanisms such
as superoxide (Q).

NO levels regulate amounts of iron in the labitnipool (LIP) (32), an
intracellular quantity of elemental iron that isheir free or loosely bound to
miscellaneous weak chelators (53) and availablenietabolic use by many processes
(30). LIP regulation is the primary goal of tiren regulation module (IRM), comprising
cellular mechanisms of iron internalization andussgration. LIP levels are increased by
intake from extracellular transferrin-bound sour@esl decreased by sequestration into a
complex with ferritin. The IRM is coregulated witthe KM via NO regulation of iron
response proteins (IRPs) 1 and 2 (23, 31, 65) wdhect transcriptional regulation of
INOS by the LIP (67). Thus levels of KM and IRM cpaments are interdependent.

Our global and local analyses of the macrophageehsgygest that anti-
inflammatory (negative) feedback by NO from the kKdthe AM allows maintenance of
a system that is robust to perturbations and génenare functionally effective than the
equivalent system with no or positive feedbacksTiagative feedback scheme allows
macrophages to stay quiescent or relatively mirlynvaadtivated in the absence of
decisive immune activation or under a single attivasignal. However, it also allows
for strong activation, but only in the presencdaoth endotoxin and cytokine activation
signals. Only under sufficiently strong, multiplegsal activation conditions is the
interaction between iINOS transcriptional regulasynsergistic, a requirement for strong

activation in this model. This effect partially udts from NO-induced crosstalk between
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activation signals that supresses one signal wieenther is active. We also demonstrate
that the co-regulation of NO and iron regulatiorthia presence of normal iron loads is
asymmetric: elevated iron levels slightly suppme&ssynthesis but cytokine and
endotoxin signaling more dramatically upregulatesihtake and sequestration of iron.
Under partial activation conditions and high iroads the influence of these two
modules on each other reaches parity; the asynuwetationship is mostly restored

under complete activation.

2.2 Methods

We have developed a mathematical model describayaphage biochemical
processes based on three functional modatgszation, killing andiron regulation. The
model is built on published experimental data prilmdrom mouse macrophage and
human cell systems. We first describe the modelthed discuss the methods for how
the model is analyzed. The model equations andauskion of parameter estimation are

presented in the Appendix.

2.2.1 Mathematical model representation

We require a representation of the macrophage braaal network that is
dynamic, accurate over a wide range of moleculacentrations and allows analytical
study. The local S-system representation of thegpdawv formalism (58) usually meets
these requirements, sometimes requiring a piecaepesentation for large deviations
in concentrations (56). We choose this formalisraramther model types due to the

straightforward canonical representation of netwuorkifs and previously developed
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analytical methods allowing conclusions to be dralvaut the evolution of intermodule
interactions.
In an S-system setting, each molecular componehkeimacrophage is

represented by one variable described by an ondutiferential equation (ODE). Am-

variable S-system is of the fordX. /dt =V,* —V,” where eaclV" =g, ?zlxjg” and

Vi'=4 |_| ?zlx;‘i is an aggregate power law flux describing the potidn and
consumption of molecul&; . Parametersr, and 4 are rate constants for production and
consumption reactions, respectively. Paramegerand by, are generalized kinetic orders
that describe the influence of the variaide on the rate ofX; production or

consumption (57). If a variable does not influeaagiven flux, the kinetic order is zero.

If the influence is stimulatory, the kinetic ordsmositive; if it is inhibitory, the kinetic

order is negative. The logarithmic gdlirfx, z) = (0 Inx/0 In z) , and sensitivity
S(x, p) = (@ Inx/d In p), = (p/x,)(@x/dp), are useful steady state measures of the model's

response whera is any dependent variable or flux,is an independent variablg, is a

kinetic order or rate constant parameter and theaipt O indicates values determined at
steady state. Despite the formally identical débnis of gains and sensitivities, we
distinguish between them because logarithmic g&psesent the system's response to
external signals and precursors while sensitiafgns to the consequence of small
perturbations in parameters.

Our macrophage model consists of a 9-variable &syshose mathematical
specification is derived from a schematic represt@m of the system topology (Figure

2.1). The complete set of equations is presentéoeirppendix. We now highlight the
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representation of some key interactions; for othiractions that are relatively

straightforward, we leave the details to the Append

2.2.2 Activation Module

We include only those variables necessary to refletivation signaling in the
context of the full model. We represent these pagfsras concentrations of activated
nuclear NFkB and Statl. Due to the relative speed of theivaibn upon signaling (on
the order of minutes (21, 52) in a model that ofgsran the order of hours), we assume
an instantaneous effect of cytokines and LPS orkBlIlend Statl nuclear translocation.
This is an idealized model with mechanisms of feedrard and feedback within the AM

omitted. For NF«B, we define the terms representing activationfaedback as

V)" = a X11X 26 and for Statly, = a,X;22X 26 wherea, anda, are rate constants,
X, and X, are independent variables representing respdetre¢ of pathway
activation from exogenous LPS and IFN-and X, is the dependent variable [NO]. The
kinetic ordersg,,, and g,,, (both positive) scale the level of activation froespective
LPS or IFN-y signal whileg,; and g, scale NO feedback respectively (see Table 2.1

for specific definitions of parameters in the mgdBbth feedback interactions are
predominantly considered negative (39, 42, 43) nowtin every case for the feedback to
NF-kB, where low [NO] may have a stimulatory effect \1l0oss of NFkB (52) and

Statl (20) activity from the nucleus due to inaatiion and export are constitutive
processes dependent on [MB} and [Statl], respectively. The NéB and Statl

pathways represent parallel signals with a symmedtationship in the model structure
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(Figure 2.1, Activation Module). This symmetry igamtitatively divided by parameter
values specific to the signaling cascade.

A partial activation state is defined by receivorgy one of the two activation
signals. Under the partial activation state induogdreatment with LPS alone, the

resultant slightly elevated [NO] may have a negafeedback effect that suppresses
Statl activation\, ) below the quiescent steady state as long,as 0. Whether or not

this is plausible, or if the quiescent level oft$tactivity cannot be further suppressed is

unknown. Similarly, under activation by IFNM-alone elevated [NO] may have a
feedback effect suppressing B-activation ;") below the quiescent steady state if
0,6 <0 in the model. We use a piecewise power law reptaten (56) to prevent this

suppression in a few instances to determine tleeedf these assumptions (outlined in

the Appendix).

2.2.3 Killing Module

We represent iNOS transcriptional regulation withnaRNA production rate law:
V) = a,XB1X 332X 3% NF-kB and Statl regulate transcriptional initiation,(12)
according to the kinetic ordeisg,, and g.,, respectively. We assume the mechanism of
synergism between the activation signals here tat bfee transcriptional level (37) but it
may exist earlier in the signaling cascade; see(28). The LIP (X,) regulates

transcription indirectly via C/EBB-(NF-IL6), a transcription factor required for
initiation (11, 17, 23). Substituting LIP concerima into the flux term eliminates the

need for representing C/EBPin the model. Parametey,, scales the quantitative
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influence of the LIP on the rate of INOS transaaptinitiation. We omit post-
translational modification of INOS and assume tlaatcentrations af-Arginine,

NADPH + H', and Q precursors to NO in iNOS catalysis are not ratgting (49). At

the scale of interest here, INOS catalyzes NO tulldhe production via the intermediate
N®-hydroxyarginine (NHA) (16). The resulting simpéifi pathway tracks production of

NHA and NO catalyzed by iNOS (Figure 2.1, KM).

2.2.4 Iron Requlation Module

The IRM tracks iron response protein (IRP) regolatvith a resultant influence
on LIP and apoferritin levels (Figure 2.1, IRM).€llink between the KM and the IRM
occurs through IRP regulation by NO with a resgjtieedback on iINOS transcription
(above). We base the network topology on the iotema between IRP2 and the cationic
nitrosonium ion NO (a product that forms as a result of nitric oxleduction), which

presents an interaction with sufficient data fdmeation of some parametergy and

0ge from (31)). This gives the NO control point of tfM as the rate of IRP degradation

V, = ,BQX?GX';WXZ%. The majority of IRP in the cell is IRP1, whichshgualitatively

identical iron regulatory properties as IRP2 buggibly an opposite response to NO
(Wang (65)and references therein). To implementatsaimption that either IRP1 or

IRP2 is the predominant mechanism welggk O (IRP1 or possibly IRP2) an,, >0

(IRP2). We assume IRP-regulated transcript stattibn of the transferrin receptor

(reviewed in Thomson et al. (63)) is directly catizd by IRPs. This is included in the
iron influx termV;". Lastly, IRPs translationally control apoferriproduction (63).

Apoferritin subunits form a shell structure thatdsthe sequestered iron atoms within.
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The ratio of iron atoms to ferritin protein compé=xs about 4000:1 in the iron-rich
ferritin complex (see Theil (61) for a short revjewon accumulates in the ferritin
complex relatively slowly, continuing for up to Béurs after initial iron loading (24).

Based on the rate of this process, we assumehihagtriableX, represents the molarity

of binding capacity held by ferritin rather thame ttaw number of molecules. The iron-
rich ferritin complex is stored by macrophagesuse by other cells, maturing into
hemosiderin under conditions of iron overload (I9e primary source of LIP is
presumably transferrin-bound extracellular ironwLextracellular iron results in
degradation of the ferritin complex to replenisa thP in red blood cells (34). Since we
do not simulate low iron conditions, and sinceitba-rich ferritin complex is stored for

long periods by macrophages, the fate of this cemd beyond the scope of the model.

2.2.5 Parameter estimates

Our goal is to derive order-of-magnitude estim&esnodel parameters resulting
in behavior that reflects the known data for thggtal macrophage system. Uncertainty
and sensitivity analyses can then be used to expihar parameter space and determine
variations in system outcome. The macrophage numighins 44 parameters whose
values require estimation before numerical modrelsations can be performed.
Complete details of this process are given in thpekdix and summarized in Table 2.1.
Here we outline some key steps.

First, we reduce the number of estimates needed usin-dimensionalization.
The non-dimensionalized model is used for numestaullations, but we use the

dimensionalized model for calculation of stabiliyd robustness, which do not require
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numerical simulations (see Local Analysis, belaMgn-dimensionalization of the model
gives a normalized form with concentrations relativ the quiescent steady state; the

effect of kinetic orders across the two model forathe same.

Substituting levels of each variab} relative to quiescent steady staﬁe gives

the nondimensional valug = Xi/>2i (we use they notation to distinguish the particular
quiescent steady state gffrom the generic steady state denotedyp)y In this type of

model, a unique steady state always exists asdsrtige determinant of the matix of

kinetic order differences is non-zero (idetA =detp; —h; ]# C see (64) p. 200-201).

n+m gij _5|j — n+m m —dj — - 1,' :J .
At the steady statey, |_| i1 Ko B |_| i %50 a whereJd; {O,i £ andm is

the number of independent variables (six here)nThe=1 for i =1,...,9 represents the

guiescent steady state in the nondimensionalizedkim®@able 2.1 gives estimated values
for turnover rates and kinetic orders for mosthef parameters. Several kinetic order
parameters are omitted from Table 2.1 as theyetr®oghe value 1 (see Appendix for

details).

2.2.6 Software and simulations

We used two platforms to perform simulations toueeghat convergence to the
same solutions occurs in different settings. Mathigea (Wolfram Research) was used
for most calculations. The results were confirmetth\& second program written by our
group in C++ incorporating standard ODE solvers.afgorithm for uncertainty and
sensitivity analysis was implemented in both aredrésults compared for accuracy.

Steady state analysis, including dose-responsealndlation of logarithmic gains and
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sensitivities were done using Mathematica's algel3alve function.

2.2.7 Global statistical analysis

Estimating parameters for any mathematical modedmsplicated by lack of or
variability in experimental data. This leads to ertainty in the quantities used for
parameters. We have implemented statistical unogrtand sensitivity analyses (22)
that allow simultaneous exploration of the entii@dygically plausible parameter space.

We used a type of stratified Monte Carlo samplingwn as Latin Hypercube
Sampling (LHS) to partition wide parameter rangge a numberN , of equiprobable
subintervals for high efficiency sampling (3, 4bhis method prescribes sampling once
per subinterval. Therefore, the greater the partiitumberN , the more accurate the
estimates of sensitivity will be. We chose a pianithumber ofN =1000 and randomly
combined the sampled numerical values, one valupgrameter. In the absence of
further data on their actual distributions, eactap®eter interval was sampled assuming a
uniform distribution for the ranges specified inbl@2.1. The intervals chosen for the
kinetic order parameters represent a samplingeoptirameter within a region
corresponding to one type of regulation; i.e. alsvpgsitive or negative. Distinguishing
between the qualitative differences in regulatoptifa (positive, negative or no
regulation) is left to the local analysis discusbetbw. Note that the intervals for two

parameters @,, and h,,) were slightly reduced to avoid numerical stiffaessulting
from x; ([apoferritin)/[apoferritin],) becoming too small during simulation.

We perform simulations of the system for a 100-houe frame after simulating

a constant stimulus of LPS, IFN; and/or exogenous iron starting from quiesceradste
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state conditions. This analysis uses the non-dimeakzed model for numerical
simulations. Due to the non-dimensionalization,dbescent steady state concentration
of each molecule in the model is 1. Statistical sneas describe the output with a
lognormal distribution when the system is neardtesdate. Here, the output is the
distribution of values for the dependent variakjerepresenting [NO]/[NOJ. Our goal

in choosing the treatment levels (which are arbjjres to induce distincactivation

states above this steady state given by particular lesEbsxogenous LPS, IFN- and
iron (X, %, and x;,, respectively).

Activation of the AM from LPS or IFNy is set to 100-fold induction of NkB
or Statl, respectively. This quantity is choserefresent a level of activation that is
definite and distinguishable from an insignificatimulus but well below high activation
levels that cause signal saturation. Therefayes 100 and x,, =100 under conditions of
complete activation. Under partial activation cdiwhs, either NF«<B or Statl is subject
to 100-fold activation, but not both. The quiesdentl of activation is given by
X, =1,x,=1.

Under iron-rich conditions, the intake of exogenwoos into the LIP is increased
10-fold (over low iron conditions ok, =1); that is, X, =10. This simulates conditions
of high iron levels and their effects on overallamgphage activation. There is a constant
background level of the LIP that is measurable uhdeneostatic conditions (see for
example Petrat et al (53)). Therefore, in conti@$ihe second messengers in the model, a

relatively small fold-change in iron intake willhsulate iron-rich conditions.

When performing the LHS analysis described aboeeake able to measure
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uncertainty in the outcome variablg,( [NO]/[NO] ,) due to changes in the parameter
values. What remains to do is to correlate the mieskevariations to specific parameters.
This can be accomplished using a partial rank trom (PRC; see (3)) asstatistical

sensitivity. The resulting correlation coefficientg, , have a magnitude between 0 and 1,

and a sign (+/-) describing the relationship of itbeinput parameter to thgth
variable. The PRC may be calculated at any timatghiring the simulation; many of the

correlations are dynamic. A significance test heenbdetermined foy,, (versusy;, =0)

that approximates a Student's T (3). The PRC id vdien considering solutions with a
monotonic relationship with respect to the inputapaeter (22) as is the case here. We
have also implemented a Z test for comparisondRff Poefficients against one another
to determine the relative statistical sensitivityariables to different parameters in a
particular activation state (27 p. 240-241). Wered the magnitude of the PRC without

regard to sign as trabsolute PRC.

2.2.8 Local detailed analysis

To evaluate the role of specific parameters withemacrophage biochemical
model, we apply a local detailed analysis. We vie&macrophage as a modular system
where signals from a given module co-regulate othedules resulting in a new cellular
state. Thus, parameters governing the interacfidimecthree functional modules are of
particular interest toward understanding the trafidoetween macrophage quiescence
and activation.

In this setting we apply mathematically controltminparisons (MCCs) that

allow evaluation of the intermodule parameters thed influence on model outcomes



according to a set @riteria for Functional Effectiveness (CFE) (29). This method is
analogous to a gene knockout experiment whereopaitt of a specific pathway is
deleted from a system. In our case, a compondiiegbathway (e.g. gene product) is not
deleted but one effect of the component on anatiember of the pathway is neutralized,
increased, decreased or reversed. We refer totéeaction under study this way as a
“knockout” parameter. The knockout system is cora@do the wild-type (control using
the default parameter values in Table 2.1, colujipa3ed on their conformity to the
CFE. The CFE used to assess changes in functiieatieeness as a parameter varies
are three well-defined criteria that have beeniadb study other inducible systems
(26). The firststability, is the ability of the system to return to steathte after a
transient perturbation as evaluated by the lastiRblurwitz criterion (outlined in (64)

pp. 208-213; for this model given in Table 2.3)c&@wl,robustness, is insensitivity of
dependent variables and fluxes to perturbatiombgpendent variables and parameters;
this is measured by steady state logarithmic gamussensitivities. Lastlyesponsiveness

is the minimal time fofNO]/[NO], (x) to reach a new steady state from the quiescent

steady state after a stimulus. Induction of NO uraddecisive signal is also a
requirement for a functionally effective systemt thus will be indirectly required for all
parameter values tested to meet an equivalenceeetgnt as part of the MCC (below)
and thus need not be an explicit criterion. Eacthefsix knockout parameters that we
explored in local analysis are listed in Table @Rimns 1-2.

Mathematically, stability and robustness can berte@ined from the system at
steady state making no specific choices for parametiues (using the dimensionalized

model). This lends generality to the results. ergtability and robustness criteria, we
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were able to perform the analysis in the most gdrsstting, making no assumptions on
the numerical values for the parameters. The eanét often shown with default
parameter values (Table 2.1) substituted for sititglof presentation. Unlike stability
and robustness, the responsiveness criterion esgnumerical simulations with specific
values for each parameter using the non-dimensiopdkl.

As part of the MCC, we force the value of a knodkmarameter to change. To
control for changes as this parameter is variedregaire the model to maintain
equivalence with the wild-type (default parametaiue) case over the parameter range in
two ways: internally and externally (5Thternal equivalence requires that the
parameters not associated with the flux contaitiiegknockout parameter under study
remain the saméxternal equivalence requires the external behavior of the model to
remain the same as the parameter under studyielyé#mis then requires correction of
other parameter values in the same flux as thekautgarameter. In each case we use
INOS induction to measure external behavior. IN&&Is are a direct readout of gene
expression, reflecting equivalence in the macroplgEme expression program across
values of the knockout parameter. (We could adyease NO as the external measure of
behavior, with the process almost identical andctiveclusions unchanged.) At wild-type
INOS levels for a given activation stimulus, we tadjust the other parameters in the
flux containing the knockout parameter under stddyo requirements for iNOS levels

must be met: as the knockout parameter is vatiedimodel must have an identical
quiescent steady staté(() and identical total logarithmic gain
(L, = L(X,, Xy,)+L(X,,X,,)+L(X ,X,,) with respect to exogenous signals that

influence the macrophage activation state (LPS; JENand extracellular iron levels).
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Table 2.2, column 3, shows which parameters reqdpestment to meet the external
equivalence requirement. The number of paramegepgning correction in the flux
determine the degrees of freedom for the interaatidnterest. The corrected parameters
are both kinetic orders and rate constants. Imtdmelimensionalized system (used for
numerical simulations) finding the equivalencerate constants is unnecessary because
the normalized quiescent steady state is the samanf chosen value of the parameter
of interest. Thus we only correct the kinetic osldierthis case, and findlane of

equivalent gain (LEG) over the range of the parameter under sthdtygives the
parameter corrections for external equivalenceeNwdt the computation of stability is
also independent of rate constants (Table 2.3,lByalriterion) leaving only the
robustness criterion requiring correction of radastants during the comparison.

In the examination of the robustness criterionvianious g,,, 9,, and g,,, we
also require correction a,,, by holding L(X,, X,;) constant, allowing the unbiased

determination of systemic sensitivities. This cotien is not required for the other

criteria: stability is independent af,,; and the non-dimensional model is identical for

changes in this parameter because levels of p@suase assumed not to be perturbed

during the calculation of responsiveness.

As an example of the MCC method, we outline theedore forg,s, which
represents the feedback of nitric oxidé,() in the KM to the activating second
messenger NKB ( X,) in the AM (Figure 2.1). We require
L, = L(X,, X))+ L(X,, X,)+L(X X, for everyg,s quantity investigated. From this

relationship we find the correction factor for paegers in the same flux term as the
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knockout parameter examined, in this casg. This correctsgy,,, so that:

0. = ~P,(P7Ng; = Pe) +L (PP 7 =(P5+P4=PI(P NP )
o 931943h2;] ae(p h o7 P Q

(Table 2.3). This is the LEG for the NO feedbaekgmeterg,,, ensuring

external equivalence in the model for the MCC.

Clearly, alteration ofL, can change the slope of the LEG, and possiblyg#an
results for very large changes in. Here we restrict to approximate what is
experimentally found in mouse macrophage cell cel{fsee Parameter Estimation
above). In principle, representation of this netwiorother cell types or species with
much lower or highet, may require adjustment of the slope of the LEG.

We visualize three possible regions in a paransgace with the knockout
parameter of interest on the-axis and the parameter corrected to ensure externa

equivalence on theg -axis (for example, Figure 2.6A fay,,). Each point on the LEG

represents one set of parameters for model evaiuaticording to the CFE. Notice that

0,, has one degree of freedom, giving a 2-dimensipagimeter space. The distarcte

on the LEG represents the distance between a gialdeneter value choice and the line
generated from the stability criterion, allowing ttletermination of stability byl .
Robustness and responsiveness of the system refge@ds a given point on the LEG
are determined with the calculations or simulatigpescified by the definition of the CFE
above.

We have found the LEG for parameigg as an example of applying MCC to

one of the six interactions between the functionaflules. Certain considerations are

necessary to generalize the process to the otheekfiockout parameters (Table 2.2).
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Applying MCC for the KM feedback to Stathy;) follows directly from the above

process. However, an additional degree of freedofound for the other MCCs due to
the higher number of components regulating thegeees. For instance, parameters

0., 95, and g,, each require correction of either of the other paoameters for

equivalence (Table 2.2), leading to a plane ofvejant iINOS logarithmic gain in 3-
dimensional parameter space. For simplicity we sbhdo reduce the degrees of freedom
in these cases by holding one parameter constdnhapting the equivalent gain
requirement by correcting the other (Table 2.2 Ppharameter held constant is given the
default wild-type value in Table 2.1. In this wdlat the MCCs are performed in the
constrained parameter space given in Table 2.2.

For each of the six parameters we evaluated usen@FE (Table 2.2), we assign
ascore for each criterion of + (stimulation of a process)inhibition of a process) or 0
(no regulation of a given process). Then the oVerare is calculated based on the
individual score for each criterion. The overalbiserepresents the type of regulation that
is assigned agptimally functionally effective for a given interaction. Recall each
knockout parameter represents the regulation afeaaf production or consumption of a
molecular component of the model. Thus the ov&RE score for a parameter predicts

the type of regulation that optimizes the overadcnophage performance.
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2.3 Results

Macrophages require maintenance of a quiesceset tet@bnserve energy and
minimize host damage while oppositely needing tsuféciently activated under
appropriate conditions to best control or kill pagkns. Our aim is to understand and
predict necessary requirements for the trade-dff/éen these macrophage states. To this
end, we have developed a mathematical model regnegehe biochemical network
operating within macrophages that is based onmaeweork of functional modules. Here
we present results from our analyses of the madilree parts: validation simulations,
global uncertainty and statistical sensitivity aiséd, and a local analysis of functional

effectiveness based on three specified criteria.

2.3.1 Conditional synerqistic activation by tworsits

To validate the model system, we compared the neopeddicted steady state

dose-response [NO] with simulated LPS and IFFNioses to data from macrophage cell

culture (Figure 2.2). With only quiescent leveld &S-induced NFB stimulation even

a significant increase in IFN~induced Statl levels leads to very low NO induttio
above[NO],. Results with increasing amounts of LPS and IfFS$timulation show a

capacity for synergistic induction of INOS and fésnt NO production (Figure 2.2A).
This has been previously observed in experimentgstib-saturation levels of LPS and

IFN- y measuring nitrite output of J774.1 macrophageaétures (Figure 2.2B). In the
model, the mechanism behind this phenomenon drissthe flux termV," (iINOS

transcriptional regulation) from the interactiorid\é--kB and Stat1.

The model predicts a dual role for transcripticmivation parameters,
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exhibiting either a synergistic or non-synergigtituence on transcriptional activation
(Figure 2.3,0,, 9, < 0). Under dosing of only one activator (for exampleS) low-

dose levels of IFNy (less thant in Figure 2.3B) do not allow a synergistic infleernof
NF-kB and Statl interactions on transcription, whilgh@r levels of IFNy alter the
sensitivity of NO to transcriptional activation suihat the interaction of NkKB and

Statl is synergistic. The model mechanism causiisgohenomenon is negative feedback
on Statl by NO, induced from the LPS/MB-activation pathway. This feedback

induces the IFNy/Statl pathway to be at or below its quiescentiststate level.

This crosstalk is confirmed by comparing the sénsit S(x, g;,) when varying
the feedback parametey, (Figure 2.3A). The non-synergistic activation stist
abolished in the absence of this feedbagk € 0) or when it is positive §,, > 0). We

thus find that negative feedback crosstalk (thdesdback on Statl under primarily LPS
signaling or feedback on N&B under primarily IFN4 signaling) contributes to
maintenance of a quiescent macrophage state ebence of multiple decisive
activation signals. The possibility of low [NO] hiag a positive feedback effect for NF-
KB (10) brings this effect into question under caiodis of partial activation with high
IFN- y signaling but low LPS signal (Figure 2.3A). If tlewel of NO induced by IFN¥
alone is high enough to surpass this proposed émetlpositive feedback threshold then
the effect can occur (and indeed is predicted byntlodel). Note that for optimal

maintenance of quiescence we predict negative textdfw,, < 0) for this low-level

activation (discussed below).
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2.3.2 Global analysis: statistical sensitivitieppafameters under different activation

stimuli and exogenous iron treatments

To determine global statistical sensitivity of censnodel outputs with respect to
changes in parameter values from Table 2.1, waeapphcertainty and statistical
sensitivity analyses using LHS and PRC, respegtiveth a sampling partition of
N =1000 as described in Methods. With the non-dimensiaedlimodel form used for
this part of the analysis, references to conceotratof components (e.g. [NO]) refer to
the normalized concentration. This analysis wasopeied under six different activation
signaling states: LPS alone, IFX-alone, LPS + IFNy and each of the above together
with exogenous iron. We find PRCs for [NO§ at a time point of =100 hrs after
initial stimulation, which is at (or near) the dgastate for the 1000 simulations. The
results are summarized in Figures 2.4-2.5. In Edu4, Panel A indicates sensitivities
of [NO] to parameters on the interface of the AMi &M, while Panel B indicates
sensitivites of LIP level to these parameters.igufe 2.5, Panel A indicates PRC
coefficients in the absence of exogenous iron arkePB indicates PRC coefficients in
the presence of exogenous iron for parametersitRM, including those on the
interface of the KM and IRM.

Because we performed the analysis with [NO] nesadyt state, we find that

turnover rates 4 ) do not have a significant influence on outcomealde (NO /x, or
LIP / x,) levels. Carrying out a statistical sensitivityabysis under pre-steady state
conditions revealed that some turnover rates higwvefisant but minor PRCs:

Vo, x <*0.25. This is almost always the case for INOS mRNA pratein turnover rates

a, anda, and in some cases NO and LIP turnover rafeand a, as well. As
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component levels change over time after stimulatioa kinetic order PRCg/( x and
ij?
VHM ) change in a predictable manner: those relatéigeté\M and KM generally follow

[NO] while those related to the IRM generally fallgLIP]. These transient PRCs are in
line with intuition, but in this work we emphasigeeady state correlations due to our
focus on distinct activation states.

Under the various stimuli, one obvious result &t thkinetic order parameters have
a much stronger PRC with [NO] when their correspoggathway is activated than
when it is not activated. For examplg,,, the kinetic order characterizing the change of
NF-kB activation levels with LPS treatment (Figure Zhds a high PRC under stimuli
that include LPS but not during treatment with IpNalone, with or without exogenous

iron. As we would expect, most parameters involveeither the AM or KM (Figure 2.4)

have stronger absolute PRCs with [NO] than thosee®fRM (Figure 2.5).

2.3.3 Interactions between the Activation and KdliModules

The interaction between the AM and KM is determibggarameters

representing transcriptional activatiog,(, g,,) and feedback by NOg(,, 9.¢). We find

the PRCs to be primarily dependent on the actiuagtate with regard to LPS and IFX-
but only slightly on the level of exogenous iromg{fre 2.4). For each activation state we
assume that NkB and Statl can be regulated both up and sliglyd If we assume
that the AM cannot be downregulated below the guaiesstate (see the piecewise model
variant in Methods and Appendix) we find some PR@s are non-significant (Figure

2.41).
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Under both model variants NO crosstalk contribtivesmaintenance of
quiescence. Under signaling conditions biased gtyao one signal or the other (i.e.

LPS or IFN-y alone) we find the PRCs for the two transcripti@aaivation parameters
(9, and g,) to have opposite signs (+ in one, — in the othér)e the statistical
sensitivity of [NO] to KM feedback to the AM is native. Recall thag,,, 9,5 <0 here;

thus, a positive PRC means a negative correlagbnden strength of feedback and [NO]
(Figure 2.4). This effect is abolished under falligation: both transcriptional activation
parameters have positive correlations with [NO3uteng in the synergistic interaction of
the two signals in INOS/NO production (as in Fig@r8). As the loss of statistical
sensitivity of [NO] to some parameters in the pweise model variant shows (Figure 2.4,

Panel At), the crosstalk effect raises the threshold faisiee positive INOS/NO

regulation without the small antagonistic effearsen the model variant that allows AM
suppression. In either case, the PRCs of the trigtisnal activation parameters shows
cooperativity in the two signaling pathways onlydenfull activation signaling.

The statistical sensitivity profile of [LIP] is alvst the same as for [NO] for the
AM/KM interface parameters due to increased irotake under cytokine and endotoxin-

induced activation conditions, with significantfdifences only ing,,, and g, (Figure

2.4; compare PRCs marke&dfor [NO] (Panel A) with the PRC for the same paeden

snd activation state for [LIP] in Panel B). Undgpgenous iron treatment there are more
parameters with significant differences betweenstigsitivities of [NO] and [LIP] to

them (Figure 2.4, compare bothand** in Panel A to the PRC with the same parameter
and activation state in Panel B). Furthermore, uegegenous iron treatment the PRC of

[LIP] with some interactions is significantly lovwest compared to no iron treatment



(Figure 2.4 Panel BY}).

2.3.4 Interactions between the Killing and Iron Ratjon Modules

We find the statistical sensitivity of [NOJx() to variations in the parameters in

the IRM including those between the KM and IRM &lbwer than those parameters
between the AM and KM (compare Figure 2.5 top pateFigure 2.4 Panel A).
However, exogenous iron treatment induces a sagmfichange in the PRCs of [NO] for
most IRM parameters (Figure 2.5 Panel B, top; §icance test not shown). The

exception ishy;, NO-induced regulation of the IRM, in the fullytaated state.
Statistical sensitivity of [LIP] &) to IRM parameters is predictably much higher,

and generally opposite to [NO] sensitivities (Fig@r5, top* versus bottom). Recall that
[LIP] sensitivities to AM/KM parameters mirroredae of [NO]. The best explanation
for the reversal in PRCs to IRM parameters betwBé&] and [LIP] is that, while an
increase in NO production tends to increase irtakminto the LIP, an increase in
exogenous iron and resultant [LIP] increase teadshHibit INOS transcription and result
in a lowering of [NO].

We are therefore interested in which module dorem#te immune response
under high iron conditions, as [NO] is sensitiveite IRM parameters, and [LIP] is less
sensitive to AM/KM parameters under treatment witlhgenous iron. By comparing the

statistical sensitivity of [NO] tay,, (the parameter representing the regulation of INOS

transcription by the L|P)Vg37,x6, to the statistical sensitivity of [LIP] th,, (the

parameter representing the regulation of the IRNNK)), Vige, X, » WE can determine

49



which module is dominant under different conditioRsr cases without exogenous iron
(Figure 2.5 Panel AY) the statistical sensitivity of [LIP] thy,, (bottom) is significantly
higher than the statistical sensitivity of [NO] ¢, (top) in every activation state. This
changes during elevated exogenous iron conditiBigaife 2.5 Panel Bt and 1), when
the absolute PRC of [LIP] withy is either not significantly different, or slightly
significantly smaller than the absolute PRC of [N®,, in partial activation states.
However, under complete activation, we find thechlite PRC of [LIP] withh,, to be

elevated, restoring the relationship seen undeéramotreatment above.

We conclude that with complete activation, the sgistic interaction of LPS and
IFN- y activation pathways overcome the KM inhibitionthg IRM even in conditions
of elevated iron, leaving only incremental diffeces in parameter statistical sensitivity.
However, under partial activation conditions, thagistical sensitivity of the KM to the

IRM is approximately in parity with that of the IRM the KM.

2.3.5 Local analysis: evolutionary requirementsificer-module interactions

Each interaction coupling the functional modules/fna stimulatory or
inhibitory. The types of interactions present detliee the functional effectiveness of the
macrophage and ensure that the parameter valueg g¢ine trade-off between quiescence
and strong activation in this model are biologiggllausible. For each interaction
between the functional modules (Table 2.2) we lesasduated the model according to
three CFE (see Methods), scoring each parametgimaslatory (+), inhibitory (=) or

zero (0) according to the type of interaction tinaets the requirements of each criterion



(Table 2.4). We illustrate the evaluation of twagraeters, NB transcription Q,,)

and NO feedback to NkB (g,,) (Figures 2.6-2.8), according to the CFE.

As discussed in Methods, several interactionsemtiodel are idealized and may
be stimulatory or inhibitory depending on the pnailtant mechanism assumed in the
model. We consider this plausible for the intex@wsi of nitric oxide with other system

components §,,, 9,, and h,;). The transcriptional regulation parametegs, {(g,, and
05,) have known or postulated mechanisms of eitheruétion or inhibition, though

they may differ based on cell type (12). Regardlessexamine these three parameters
assuming any type of interaction is possible. HBiisws us to sea)(confirmation that
this model predicts the correct interaction typig,how the evolution of positive
transcriptional regulation may be favored even system with many possible negative
side effects (i.e. nitric oxide production), amid) (how the coupling of iron regulation to
NO production affects macrophage activation and regulation.

For each criterion, we consider the parameter umdesstigation to be wild-type
if it is at its baseline estimated value (Table)2We vary the parameter along the line of
equivalent gain (LEG; Table 2.3) and determine Wigarameter value score, +, —, or 0,

best fits the criterion.

2.3.6 Stability: return to steady state after alstrensient perturbation

The first criterion we explore is stability, or thbility of a system to return to
steady state after a transient perturbation. Toal lstability analysis of this system is a
function of several parameters defined by the gmaite Routh-Hurwitz criterion (see

Methods). The stability criterion is representedpinically as dashed lines in Figure 2.6.
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Notice that as different parameter values fromegjent systems are chosen along the
lines of equivalent gain, the margin of stabiligfined asd , correspondingly changes.
This distance is independent of the macrophageaditin state. The score for this
criterion for each parameter is given by the typmtraction giving the largest . Thus,

for the parameteg,, (Figure 2.6A) we havel(-) <d(0) <d(+), giving a score of + for
05, in terms of stability. Similarly, for the parametg, (Figure 2.6B)d is maximized
for g,, <0, giving a score of — (see Table 2.4, Stabilityuooh for the scores of all the

tested parameters).

2.3.7 Robustness: minimal sensitivity of comporengls to perturbation

The most functionally effective macrophage is irssve to small perturbations,
or robust. That is, in the absence of decisiveratiin signals, the macrophage must stay
as close to quiescence as possible. We testedrsysheistness for each parameter of

interest by computing the steady state logarithgaios L(x,X;) and L(v;,x;) of the

dependent variables and fluxesv for each independent variable, and the sensé#viti

S(x, p) and S(v;, p) for each kinetic ordep (Figure 2.7; see Figure 2.1 for the role of

each precursor/independent variable in the motie§ome situations a gain may
preferentially be large, such as the gain of [N©fhe presence of cytokine. However,
each gain calculated here is from a single sighaltane, not the multiple-signal
situation required for complete activation as igufe 2.2. We therefore assume that
gains to individual signals are preferentially low.

For transcriptional regulation paramete&ys, d,, and g,,, a clear plurality or
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majority of the gains and sensitivities do not supp single score (Figure 2.7A shows
the profile for g,,). For transcriptional activation by second messes(g,, and g,,) we
find 32.12% support +, 32.82% support 0 and 35.85fport —. Here perturbation of
AM and KM parameters predominantly supports + agdypbation of IRM parameters
supports —. For iron regulation of transcriptiap ) we find 21.27% support +, 37.37%
support 0 and 41.36% support —. In this case geation of AM and KM parameters
predominantly supports — while perturbation of IRrameters predominantly supports
0. We do not consider one score to be definitigelgported by the robustness criterion in
these cases, and rely on the other criteria footleeall score (Table 2.4).

The interactions of NO with other model compondrepresented by parameters

0., 9,5 and h,) show clear pluralities or majorities of one scover the others. In each
of the cases a negative value is most robust (48 dfxhe gains and sensitivities fgy;
and g,, and 52.47% foih,;). The remaining gains and sensitivities are g@ttiveen a
score of 0 (31.88% fog,, and g,; 32.58% forh,s) and + (19.33% foiy,; and g.;

14.94% forhy), leaving — as the favored score. This is showngig in Figure 2.7B.

2.3.8 Responsiveness: fast NO elevation after $tisnu

A functionally effective system minimizes the tintesteady state after stimulus.
We explore the response time under which leveS®f(x,) come within 5 percent of
the activated steady state or above (i.e. we dp@adlize the system for overshoot

because the goal for killing pathogen should bgetonitric oxide levels up to at least a

certain level or above). We examine responsivefugssach of the three activation states
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with LPS/IFN-y (Figure 2.8). Results with exogenous iron treatnaea similar (not

shown). As expected, each activation state shaivstiaact pattern of response times, but
in every case examined, they yield the same ssorarfarized in Table 2.4).

The dynamic and specific nature of the numericalutations leave open several
possible situations deserving consideration. Ifsystem starts from a partially activated
steady state (i.e. constant stimulus from one sigag LPS), response times after

stimulation from the other signal (here, IFN-are the same as if the system had started

in the quiescent steady state. We have also imasti cases with initiation of the two
stimulation signals staggered over various shoervals, before the system has reached
steady state from the first signal (not shown). €kact profiles differ slightly but in each
case the results support the same hypothesis athiar cases. We conclude that
examination of the three activation states showficeuo draw conclusions regarding
the responsiveness criterion.

It is possible to achieve a minimal response tiepFesenting baseline [NO] that

is undisturbed by the activation signal. This iseftved forg,, (t andt in Figure
2.8A), as well agy,,, g,, and g,, for reasonable parameter ranges. We consider these

“non-response” cases to be trivial. Slightly diéfiet activation states can change the
exact parameter value where this phenomenon octhws, achieving an artificial
minimal response time is likely not relevant sinzeltiple activation signals and the
possibility of strong activation are necessarypi@per macrophage function. Parameter
values less than this no-response point in Figu8A Bepresent repressible systems,
causing NO levels to decrease in response to sitsnbDletermining the response time for

0,s (Figure 2.8B) andh,, is more straightforward than the previous casdewads of NO
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are induced to a steady state level above thdteofjiiescent state for biologically
reasonable parameter choices.
With the above considerations in mind we conclumdg & single score emerges

for each parameter examined (Table 2.4). Therefpr€Figure 2.8A) scores + for

responsiveness angl, scores -.

2.4  Discussion

The process of macrophage activation for killingndérnalized pathogens has
evolved a trade-off between a robustly quiescatesind decisive activation under a
definitive signal. Experimental study of this syaten mouse and human cells has
characterized components of what are apparentlynthst important aspects of
macrophage activation and killing. This has allowedo construct a mathematical
model for system-level investigation, with a vieawtrd the interaction of functional
modules that determine the outcome of activatignaing. Using this model, we have
shown that the configuration of intermodule regugtinteractions can permit a near-
guiescent state in the presence of partial actimatvhile allowing complete activation
upon receipt of multiple activation stimuli. Our ded suggests that there must exist a
synergistic response to multiple signals in ordestercome stabilizing interactions for
complete macrophage activation. The role of irgulation in the activation of INOS
and NO production appears to be an asymmetriaoekdtip: iron levels respond to
activation as part of the overall response in gepatconsistent with sequestration of iron
from extracellular space under normal iron condgidMechanisms of killing become

sensitive to iron regulation parameters under exoge iron treatment, but this is most
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apparent only under partial activation conditiamscler complete activation killing
mechanisms again predominate.

Each member of an intermodule pair of regulatotgrimctions (i.e.
0:,/96 95/9 . and h,¢/g,,) has a dependence on the other in the pair fopribdicted
interaction score based on the CFE. Thus, as we kimat g, is positive (shown
experimentally) therg,, is predicted to be negative by the CFE. We also finat anti-

inflammatory feedback allows and enforces a systéim positive transcriptional

regulation as compared to lack of feedback or pasfeedback (Figures 2.6, 2.7 and 2.8

B). We therefore see with these interactions h@yséem that must remain quiescent
most of the time can maintain quiescence robustlys reasoning applies to each of the

other pairs of interactions as well. With the KMMRnteractions {y4/9,,) the resultant

pair of scores is —/— (Table 2.4).

AM signaling induces anti-inflammatory feedbackotith NFkB and Statl in
this model. The overall effect is to increase tnectional effectiveness of the
macrophage system (Table 2.4) by preventing achivan the absence of multiple
activating signals. Crosstalk feedback by NO orlStacreases the threshold for
activation under LPS signaling alone (Figures 2@ 2.4). Crosstalk to NKB by IFN-
y signaling also shows this effect to a lesser @xi&ie explain these results as follows:
For transcriptional activation of INOS, activate&-KB, Statl and other transcription
factors must occupy their promoter regions fordgaauption initiation and resultant
INOS/NO production. In the absence of an activasiggal, the probability of these
being together on the promoter is low. When a siagtivation signal is present (e.g.

LPS), the level of NFB increases, raising the probability of transcaptinitiation.
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However, the slight increase of NO and resultagatiee feedback to Statl lowers the
probability of Statl presence for initiation, orsgbly keeps it at a quiescent level, due to
a crosstalk anti-inflammatory feedback effect (FegR.3). We have shown that this
crosstalk-inhibition effect is caused by the negateeback of NO to the unstimulated
activator (Figure 2.3). The transcriptional sigreais only working in concert under
conditions in which both of the signals are suéfidly active. When this is the case the
two signals act synergistically to induce NO pradgare (Figure 2.2). The activation of
multiple signals thus allows the macrophage systeavercome anti-inflammatory
feedback for complete activation.

The interactions between the KM and IRM help deteenthe outcome of LIP
levels during activation and the outcome of macegghactivation under iron-rich
conditions. The exact effect of macrophage activatin LIP levels may depend on
different interactions (32, 65). We find that thestfunctionally effective motif results

in NO production inducing the influx of iron intbe LIP via IRPs (i.eh,, < 0),

increasing LIP levels on the path to sequestraifaron from plasma, consistent with
hypoferremia (66). Note that one need not arguea fiirect benefit of hypoferremia
against extracellular pathogens for this interactebe functionally effective.

This result shows an indirect negative feedbadkl@S/NO production via the
IRM during activation. Under iron-rich conditiontsig result implies a direct signaling
effect of iron influx on INOS transcription, leadjms to question which functional
module is dominant. Under a definitive activatiagnsl, the macrophage must show high
induction of INOS and NO in the KM, but this coudd inhibited, with potentially

impairing results on the immune response, undeditions of high iron in the IRM. We



have addressed this with global statistical angsJyshich shows a generally higher
statistical sensitivity of [LIP] to AM and KM paraeters than [NO] shows to IRM
parameters under lower level iron conditions. Under-rich conditions these statistical
sensitivities are brought into near-parity undatipbactivation conditions (comparing

the sensitivity of [NO] tog,, to the sensitivity of [LIP] tdh; Figure 2.5), but become

asymmetric again under complete activation. ThugeRrous iron appears to play an
incremental role in suppressing macrophage actinaparticularly important under
partial activation conditions. However, this candwvercome so that activation of the KM
predominates under complete activation conditigvisile the effect of [LIP] on NO
production is clear (11, 18, 67), the possible dilthis interaction in exacerbating
disease processes deserves more study; this maggdss a role for iron in suppressing
NO expression by macrophages that depends on tb®pfeage activation state. This
implies that mechanisms required for robust macagphresponse may also worsen
response to infection under pathological iron ctods.

Since macrophage activation involves many mechanisyond cytokine and
endotoxin-induced nitric oxide production, the seamd applicability of our current
work is an important part of thinking about theteys. Depending on the mix of
cytokines present, macrophages may become activatedlassical or alternative
manner (e.g. 15). We have included a subset of amsims for classical activation here.
Our focus is on quantitative regulation of the m@adsomponents; spatial considerations,
especially mechanisms of phagocytosis, comprigenportant facet of macrophage
function that may alter the capability of nitricid& to access internalized pathogen (e.g.

48, 50). Finally, de-activation is a naturally innf@mt step in the cycle of macrophage
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immunological function (reviewed in (15)) that hessown set of regulatory apparatus
beyond the scope of this model, which is concemi¢iul the process of moving from a
guiescent state to activation.

We propose several possible avenues of extenssmadlan our results for the
mechanisms of macrophage function presented hezendié first the importance of
nitric oxide signaling to transcription factors tihegulate iNOS transcription. This may
be examined in macrophage culture by detectiontafgylation crosstalk between

signaling pathways. For instance, detecting nitedgyn of Statl and other IFN-

inducible signals under LPS stimulation (and of RB-and other LPS-inducible signals
under IFN- stimulation) may further elucidate the roll of Ni©activation. Further, the

effect of the NO feedback effect may be assesst#tdownsideration for more complex
AM interactions not captured here, such as trapsonally controlled feedback
mechanisms. The usefulness of this model may lendgt by studying macrophage
interactions with a growing population of intracédir bacteria, particularly the
superoxide-resistamfycobacterium tuberculosis. Implementation of this extension into
the model allows another criterion for macrophagefional effectiveness, namely
clearance of bacteria (c.f. Chapter 3).

Our results show the usefulness of approachingtipmssregarding the immune
response with a view toward the integrated functibthe system. We propose that
known mechanisms for macrophage activation allomtrealictory demands of different
contexts to be met with a strong activation sigmdy in the presence of synergistic
activation of multiple signals stabilized by antffammatory feedback from a common

output of the signaling cascade. With this in matigder immune signaling cascades may



show similar topology and behavior, explaining artghe evolutionary need for multiple

signals and complex cytokine networks to overcoobeistness to perturbations.
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Figures
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Figure 2.1: Schematic of the macrophage biochemical networ&lved in activation of
nitric oxide production. EaclX; represents one model variable. Arrows pointingrto
from variables represent synthetic, degradatoigyoling processes while those pointing
to other arrows represent regulatory interacti®aameters are labeled with their
putative regulatory phenotype, stimulatory (+)mmibitory (-). Three functional

modules (Activation, Killing, Iron Regulation) anearked. Bold parameters are subject
to local detailed analysis (Methods). NX(), pool of nucleic acid precursors to mMRNA;

AA ( X,,), pool of amino acid precursors to protein. Noik&t the parametdr,,

represents the weighted average of the kineticreriem both depicted labile iron pool
consumption processes.
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A Model Dose Response of NO
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LPS activity 100-fold
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Figure 2.2.Response of nitric oxide to doses of LPS and {F[) Steady state dose
response of NOX;) in the macrophage model for various levels ofdBand Statl
induction by LPS &,) and IFN-y (x,,), respectively, shows synergistic activation by

multiple activation signals. (B) Dose responseitita to various concentrations of LPS
and IFN-y in J774A.1 mouse macrophages shows a similar gigtieractivation. Data

are from(9); we selected a subset of the dataaitealbelow saturation.
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Figure 2.3.Crosstalk of activation pathways induced by comre&uback. (A) The
sensitivity of [NO] to alterations in Statl trangtion effect (g,,) under constant LPS
activity (x, =100) shows a dependence on IFNactivity (x,). During activation from
LPS but low IFNy signaling, the negative feedback by NO to Statlczuse it to have

a non-cooperative influence on iINOS transcriptiaaivation (gray shaded region).
Above a certain threshold of IFI¥-induced Statl activation (marked the interaction

is cooperative, or synergistiS(x,, d;,) > 0). (B) Sensitivity of [NO] to alterations in
NF-kB transcription effect @,,) under constant IFN# activity (x, =100) shows a
parallel effect. This effect in both cases is &teunder cases lacking feedback

(9,6, 9,6 = 0, respectively) or with positive feedbacg,f, g, > 0, respectively) where
the sensitivity measure does not reach zero alblmvguiescent steady state (marked
The dashed lines (betwednand ¥ on the x-axis) represen§ for negative feedback
when a piecewise model is used to prevent suppressithe activation module below
the quiescent steady state (see text for explarjalMalues ofg,, and g, are chosen
with the constraints of lines of equivalent gailsctéed in Methods.
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Statistical Sensitivity Profile of Activation and Killing Module Interactions

Panel A NO (x¢) Panel B LIP (x7)
1 &111 &r12 816 876 g3 837 1 Iglll gflz 816 &2 831 &3
* *% :t :I:

05 0.5 SIS

. S
0.5 TFN-y A 0.5
LPS + IFN-y

Figure 2.4.Significant partial rank correlations (statistisahsitivities) of parameters in
Activation and Killing Module interactions to nitroxide and labile iron pool levels.
Each parameter is shown for three activation s{@fes, IFN-y and LPS + IFNy) at

t =100 hrs. NS: the PRC is not significantly differerarin zero (p > 0.01). Correlations
markedi are significantly reduced in absolute value uridsatment with exogenous
iron (X, = 10, p<0.01). Correlations marked are not significantly different from zero
when a piecewise model is used to prevent suppressithe activation module below
the quiescent steady state during partial actingisee text for explanatior),**:
Correlations for the same parameter in the sameation state significantly differ
betweenx, and x, under both treatment and lack of treatment withgexous iron¥)

or under treatment with exogenous iron orfy Y. The interaction represented by each
parameter is shown in Figure 2.1.
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Panel A - Fe Panel B + Fe
Statistical Sensitivity Profile of NO (x¢)
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Statistical Sensitivity Profile of LIP (x7)
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Figure 2.5.Significant partial rank correlations (statistisahsitivities) of parameters in
the Iron Regulation Module to nitric oxide and lakiron pool levels. Each parameter is
shown for three activation states (LPS, IpNand LPS + IFNy) with or without

supplemental ironX, = 10) att =100 hrs. NS: the PRC is not significantly different
from zero (p > 0.01). *: Correlations for the same parameter in the sanination state
significantly differ betweeng andx;. T: the absolute PRC is significantly greater than
|V, x | In the same activation state; F: the absolute BR@nificantly less thary}_, |

in the same activation state. The interaction &gmeed by each parameter is shown in
Figure 2.1.
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Figure 2.6.Example parameter spaces for mathematically clbedroomparisons. A
single point represents a set of parameter valrethé mathematical model. On tie
axis is the knockout parameter (see text). Mode&sting the equivalence requirements
(Methods; Table 2.2) are compared along the swigldf equivalence (given in Table
2.3). This line specifies a value of the parametethe y -axis that must be chosen to
ensure equivalence between versions of the modapaced while varying the -axis
parameter. The dashed line represents the Routhitdwariterion that determines model
stability (see Methods). The boundary line represplausible limits of biological
relevance for parameter values. The exact val@ach boundary is unknown, but need
not be specified for this analysis. The margintabgity d is a measure of distance from
a point on the line of equivalent gain to the catistability line, so that the region with
the highestd gives the score for the stability criterion. (AgrBmeter space for the
transcriptional activation parametgyg,. (B) Parameter space for the feedback parameter

0,c- Points on the line of equivalent gain to the righthe y -axis give a model with a

stimulatory interaction represented by the paranwdtmterest; to the left, the interaction
is inhibitory and on they -axis it is nullified.
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Figure 2.7.Parameter scores maximizing robustness of macgegpt@mponents to
perturbations. Scores fay,, (panel A) andg,, (panel B) that maximize robustness of

each dependent flux and variable to perturbationdgpendent variableg = log X;
and parameterp during quiescence. Each logarithmic gaifX;, X;) or sensitivity

S(X;, p) is minimal at the approximate value indicated Iy $hade of gray, giving a

score of —, 0 or +. White boxes containing 0 intBcascore of O while those with no
marking indicate no scoring preference for robussn&lote that the parameter of interest
is varied on its line of equivalent gain (Table)23ee Methods for definitions of

L(X;, X;) and S(X;, p) .
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Figure 2.8 Response time of nitric oxidey) from quiescent levels to within 5 % of the
steady state or above. We varied levels of (A)dRranscriptional regulationd;,) and

(B) NO feedback to N&B (g,.). The knockout parameter of interest is variesh@libs

line of equivalent gain (Table 2.3). The minimadpense time indicates a score of (A) +
and (B) —. Depending on the activation state, tiodilp differs slightly, but a common
minimum response parameter value is shared by@ation states in every case. In (A),
two of the cases show a trivial minimal responseetfor g,, =0 (markedt) or g,, <0
(marked?). These cases are irrelevant as the system repeedasy those parameter
values is completely non-responsive to the simdlatgivation stimuli. No such non-
responsive state exists for treatment by IFNdone because of the equivalence
requirements imposed on the system (Table 2.2).
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Tables

Table 2.1.Definition and estimates of important parameterhémacrophage model.

L Estimated Sampling
Parametet Definition Value Interval®
a NF-kB turnover rate (nondim) 1.73 hrt [0.885, 41.6]
a, Statl turnover rate (nondim) 8.32 hrt [4.62, 41.6]
INOS mRNA turnover 1
a, rate (nondim) 0.173 hr [0.116, 0.347]
a, INOS turnover rate (nondim) 0.0693 hr* [0.0365, 0.693]
a NHA turnover rate (nondim) | 5.55 g mol/hr [0.0277, 166]
a3y NO turnover rate (nondim) 2.77 hrt [0.0277, 166]
a, LIP turnover rate (nondim) | 32.20 ¢ mol/hr [2.58, 61.8]
3 apoFt turnover rate (nondim)| 40 x mol/hr [3.72, 89.2]
. 36.7
3y IRP turnover rate (nondim) gmolhr [29.2, 44.1]
LPS-induced
Gia activation of NFKB 1 [0.1,2]
IFN- y-induced
G212 activation of Statl 1 [0.1,2]
NF-kB transcriptional
O3 regulation of INOS 1.19 [0.1,2]
O16 NO feedback to NkB -0.5 [-2, -0.1]
Statl transcriptional
Os regulation of INOS 0.48 [0.1,2]
O NO feedback to Statl -0.5 [-2, -0.1]
iron transcriptional
9ar regulation of INOS 0.177 [-2.-0.1]
hge NO-induced alteration of IRP -0.5 [-2, -0.1]
indirect IRP-induced
Ors gain of iron influx 0-5 [0.1,2]
IRP-induced translational
Oso control of ferritin -0.645 [-1.7,-0.1]
hy, iron-induced loss of IRP 0.5 [0.3, 2]

®Boldface parameters are examined further in thel Idetailed analysis.

*Reduced interval sizes ig,, and h,, prevent parameter combinations that result in
pathological results from the numerical solver tlustiffness in the system (see text).



Table 2.2.Parameters examined in the local detailed analysis

Parametet Function Corrected Pars Con%;a;rggd Paf
a1 tra’r\llgc-ﬁgtion oz Jar Ja1 ' 9o ™ Or
O3, Statl transcription Oa1; 957 9315 0 ¢ O3 % O3
Oue NO EgibBack to Gt 0, Oee X Guss
Oe NO feS?SELaCk to ol @ Goe X Uiy
R R DT

#Shown for each parameter is its definition, a $eitloer parameters in the same flux
term corrected to ensure external equivalence reapgnts in each case, and a
constrained parameter space used for its line wivatgnt gain that ensures a controlled
comparison (see Methods).



Table 2.3.Lines of equivalent gain and the stability criberiused for local detailed
analysis.

Parameter(s) Line of Equivalent Gain
Ua1 O3 g, = (Pt P, +Li(Ps + Py —PI))(Phe,—P )
g43954hlj124'1 Qé‘sp 7
Os7 Oy = _pz(p7h97_ pa) +Ls(p6p7+(_p4+p5)(p h 97 P 3)
913(91: N6t 918 sk )(P R g P )

16 Oy, = —P, (PN, = Pg) +L (PP, ~(Ps+P,=PI(P N o, =P )
931943}12;166(ph97_ pg

U26 0,0, = —P.(P;he; — Pe) +L(PP; ~(Ps+P,—PIP NP Y
932943hlp%(ph97_ pg

hye h, = PLPs + PP + L (PP, +(P3+P,—PJIP )

(P + P, +L(Ps+ P, —Ps)) P

Stability Criterion

p6p7_(p3+p4_p5)(h97p7_p9>0

Abbreviation| Value Abbreviation| Value
P 911959 N D o Ps hyy Ny, hggh g
P, 9512939 DD o Ps 57 943 954 N1sh 50N o
Ps Oi6 931943950 2 p; s N7g =970 Nge
p4 gZG gBZ g 43 g 54h 1 p8 (_h78h87 + h7h89h 9¢
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Table 2.4.Predicted parameter regions that best meet edeham denoted by a score of
-, 0or+.

Parameter Stability Responsivene$dobustness Osvceorzl
Oa1 + + = Positive
Oa» + + = Positive
Ois - - - Negative
006 - - - Negative
Os; - - = Negative
hye - - - Negative

%In some cases for robustness criterion, there wha nlear score derived from gains
and sensitivies (see Figure 2.7); however, takgeatteer, the other two criteria suggest a
clear overall score. See text for details.



2.5  Appendix

2.5.1 Model equations

We represent the macrophage network S-system simokigure 2.1 as a series of

differential equations:

B = X - p X e = XX - p X
D= a,xizex - p X' L= XX XX
P = g xgximxsaxs-p s Koo a e g XK
B = X3 = X Do = a,x 0 - px X ox
B = apxizx - px e

In practice we reduce the number of parameters bathic assumptions about the
kinetics as well as non-dimensionalization (se@aater Estimation below). This makes

numerical simulations possible and gives the foilmisystem:
d
G I S

%o, -x) S ma i -xx)

dt

AT ) = aP )
t dt
%

dx

d_t4 =a, (X3 - X4) ot = ag(l_ XZ‘?GX:Q?XZQQ)
d

d_)is = 85(X4 - X4X5)

2.5.2 Alternate representation of Activation Module

Under partial activation conditions the model pegsla level of transcription

factor activity below the quiescent steady stateaddress differences between this

model and a model where this is not possible weessmt the fluxes, andv, in a
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piecewise manner (56)in some instances:

%11y,%6 9111y,916
v :{ai 1 Xy X1 Xg 21

tp 9111y,%6
a, X Xg 0 <1

Vv, =

9212,926 9212926
{azxu Xgo, X3zl 21
2p

T
We avoided the need for identifying an upper libyitsimulating LPS and IFN+

doses low enough to be below signal saturation.

2.5.3 Parameter estimation

2.5.3.1 Rate constants

We have estimated the turnover raggedor equations 1, 2, 3, 4 and 6 from half
life data (2, 6, 35, 39, 52, 67, 70).

a; = s (XX 50 =a4(X ¢fX ) at some operating point. Estimation of the

NO:NHA ratio is difficult because actual NO levels rarely measured in experiments.
However, at most levels there is more nitrite thikhA, suggesting that there is more NO

than NHA (7, 47). We assume this ratio to be 2ingj\a, = 2a.

a, = B, Xq,- In erythrocytes the turnover half-life of the Lil*about 1 hour (5).
Estimates for ferritin mass in macrophages range f8.55x 10* to 8.5x 10° ng/cell
(44, 60, 68). Given an approximate macrophagevodlime of 4990 m® (36) and
average apoferritin subunit size of 19.1 kDa (18)estimateX,,J[3.% 10°,8% 10
m, giving a, [1[2.58, 61.8]x mol/hr. We take the mean as the default value. This

overestimates the levels of apoferritin, becausevttriable X, is for unbound only. It
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also underestimates it, because it counts molafisgbunits, not molarity of binding

capacity. Nevertheless the sensitivity analysiswshihat this will suffice for our analysis.
ag = 3 X,,- Assuming an approximately 2-hour half life ofrfen (31) and 1

4 m LIP level (30) gives an estimate of 40mol/hr. The LIP level is probably an

overestimate but we sufficiently vary the parametaing the uncertainty analysis to

account for this.

a, = a,/X4,. Assuming a 1.8 hour half-saturation time for IRR2ing return to

steady state after depletion (31), and total IR®2Ik in the cell of 0.00874 to 0.0132

um (derived from IRP1 numbers (23)and estimated IR ratios (54)) we estimate

a,[[29.2,44.1 hr*um™. We take the mean 36.7 as the default value.

2.5.3.2 Kinetic orders
General methods for estimation of kinetic ordeesfaund in(64). Several kinetic
order parameters correspond to simple first ordecgsses. When this occurs, the kinetic

order is 1. This has been shown experimentallytferfollowing parametersy, (52),
h,, (20), hy; (6), h,, (55), hys (62) (see below) antl,, (33). The process of translation is
1-to-1 from mRNA to protein subunit s, = 1. The kinetic orders of INOS substrate
catalysis @, andh,,) are 1 because of the proportionality of INOS © production
(41).

We seth,. =1, accurate for low levels of NHA. Under high actiea conditions,
this parameter may be lower (e.g. 0.5 nearkhe= 15¢/M (14)). However, this only

affects the steady state of NHA, not any other rhodsponents. This would require
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greater consideration if we were concerned with Niddulation of arginase (4), but for

the aims of this study it suffices to dgt = 1.
The kinetic order of NO loss in the intact celludgstemh,, =1 in hepatocytes

(62); the second-order loss often observed in i@agtith O, is predominant in cell-free
systems or extracellular space (e.g. 38), not agiekiere.
Parametersy,,, 0,,, and g,, represent transcriptional regulation of the INOS

gene. Based on (46) we estimafg =1.19 and g,, = 0.47 using linear regression of

sub-saturation dose response of Nt0 LPS and IFNy. g,, can be estimated to a

certain extent by a study showing a 50 percentedeserin macrophage iINOS mRNA
with approximately a 50-fold increase in iron (§&¥suming a Ju M LIP steady state
(30); the estimate does not change significantgnefor a substantially lower LIP steady
state). Assuming that mRNA stability and other gigant components are not altered by

log0.5
log50

the change in iron levelg,, = =-0.177.

The parameters,,, h,g,hy,, and h,, represent the relationship between iron and

ferritin and metabolic consumption of the LIP. Asalissed in Methods, we represent the
ferritin binding capacity instead of the raw numbé&subunits or complexes. Then one
mole of iron takes one mole of ferritin binding eapy and the parameters of this

process [,4, hy;, and hy,) equal 1. SinceX, (apoferritin) is an intermediate, its loss due
to degradation is negligibldy,, represents the weighted average of kinetic orideness

due to metabolic consumption and chelation by aptife In aggregate, the loss is first

order soh,, =1 (5).
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The parametep,, represents the influence of IRK{) on ferritin (X;)

translation. When IRP2 levels are decreased bgddéion of NO', ferritin levels
increase linearly over time (31). Assuming thisagssetected all forms of ferritin,
Ogo = —0.645.

We set all kinetic orders of independent varialbbe. This has no effect on the
model in most cases because the levels of indepemdegables are arbitrary and usually
non-rate limiting. During the course of analysis et®ose a value other than 1 gy,
and g,,, for controlled comparisons in some cases (seell@etiled Analysis in
Methods).

The remaining unestimated parametéys, hy,, 94, 9, and g,,, represent

regulatory interactions for which there exist n@auitative data to our knowledge that
would allow us to estimate them. In the defaulechey aret0.5, equivalent to a

Michaelis-Menten process working at the operatiomgi(64).
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Chapter 3

The Timing of TNF and IFN-y Signaling Affects Macrophage
Activation Strategies During Mycobacterium tuberculosis Infection

3.1 Introduction

During most bacterial infections, the populatiorhokt immune cells known as
macrophages (k) internalize and kill bacteria as an integral pathe innate immune
response. However, during infection whttycobacterium tuberculosis (Mtb), Mgs are
both the preferred environment for growth (11) #m&lprimary immune cell responsible
for its control (reviewed in 9). Killing of Mtb byl gs is impaired except under conditions
of appropriate activation that occurs during adegptmmunity. In previous work we
predicted that the evolution ofdvactivation has favored a robust quiescent state to

prevent excessive activation in most situationg;(ddwever, this design may benefit

Mtb infection.

In mouse models of Mtb infection, ¢d require at least two complementary
activation signals to become effective at killingd12, 24). One of the signals,
interferon (IFN)y, is secreted by activated T cells directly toithenunological synapse
(28), which forms at the interface with antigenganeting cells such as¢d. In contrast,
tumor necrosis facton-(TNF), a complementary signal to IFNer effective Mtb killing
by Mgs, was shown to be secreted multi-directionallynfrd cells (28), and is also

produced by activated ¢ (17). Concentrations and distributions of cytekiat the site
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of Mtb infection in the lungs are difficult or impsible to determine. Due to possible
different spatial distributions of TNF and IRNarising from their production pathways,
timing of different activation signals received ttne Mg may alter the kinetics of il
activation and the success of responses to Mtb.

To test this hypothesis, we examined differencéwdsen three relevant ¢l
activation scenarios based on timing of receighefactivating cytokine signals TNF and
IFN-y (Figure 3.1). The scenarios each posit a dispossibility for when Mps
encounter these two cytokine signals in the coafsa ongoing infection with adaptive
immunity relative to when infection occurs. In Saga 1, IFNy and TNF signals both
precede infection of kg (i.e. when Ms internalize Mtb). This case may occur during
very strong immune responses with high systemickige levels. In Scenario 2, ¢d
receive a TNF signal before infection while targetecretion of IFNtoccurs concurrent
with Mtb infection. This case represents activafimm Mg-derived TNF flanking the
infection site and/or targeted secretion preveniirae IFNy distribution. Mps may also
receive both TNF and IFN-at the time of infection (i.e. at the time of Miptake;
Scenario 3). This represents recruitment of morescgavhich become i) directly to
the site of infection without prior cytokine exposuA fourthscenario, where IFN4s
received before TNF, is omitted since targeted {écretion combined with TNF
derived from Mps make this scenario unlikely. These scenarios eoayr
simultaneously in the same infection, but prefaedigtallowing favorable scenarios may
represent an activation strategy for the host.énado without TNF and IFN-serves as

a negative control (labeled Control in Figure 3Wg use a simple mathematical model
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describing Mp-Mtb interactions at the cellular level that is lxg@us to a M cell-culture
system. Each scenario is determined by experimeotdrolled variables in the model.
We measure the effectiveness of the scenarioséogumber of Mtb within Ms 100
hours post-infection in the model.

In mouse models, TNF and IFNinduce production of nitric oxide (NO), which
is necessary for killing of Mtb (35). NO and sorneactive nitrogen intermediates (RNIS)
derived from it are effective at killing Mtim vitro (55), but other anti-microbial
molecules are not (7, 16, 35, 43, 52). NO or RN&y milso induce a latent phase of the
Mtb growth cycle (13, 37). As previously descril{dd), nitric oxide production
primarily involves three main functional activitissMgs: activation signaling,
transcriptional regulation of killing, and intraleéér iron regulation. These §activities
are connected by regulatory interactions that tesudéedback (Figure 3.2).

Two intracellular signaling mechanisms are prinyanlolved in activation of
NO production in Mps: NFkB and Statl. The NKkB pathway is induced by bacterial
antigens (such as LPS or LAM"; 20, such as LPSAWML; 24, 33) or TNF (15, 36, 44)
while Statl is activated by IFM{1, 12, 18, 42). These two signal pathways
synergistically activate inducible nitric oxide siyase (iINOS) (31), the enzymatic
producer of NO.

Intracellular iron homeostasis is co-regulated Wth production (30, 54). This
allows internalization of extracellular (transfertbound) iron into the intracellular labile
iron pool (LIP), where it ultimately becomes chethinto ferritin (22). The LIP regulates

C/EBP{$ (NF-IL6), which is necessary, but not sufficiefio, INOS transcription (25).
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Iron is also a limiting nutrient for growth of M#nd other intracellular pathogens (48)
and intracellular mycobacteria remove iron from [t (38).

Clearly, NO regulates many components of thgrdtwork. However, it is not
clear from the literature whether regulation by Bt RNIs is inherently stimulatory or
inhibitory (e.g.23). Previous analysis by our grauggests that feedback regulation of
INOS transcription by NO is primarily negative, aacgng via three pathways: NiB,
Statl, and iron regulation. One effect of the psgubnegative feedback is optimization
of several system properties when compared toipesaedback in the same pathway
(41). Since the timing of kactivation reflects possible host activation styés, the
kinetic effects of NO feedback may be importaniiti infection.

The model we develop here expands our previous Wdrk In that model we
assumed general endotoxin (LPS) stimulation oNRexB pathway. Here, we focus on
Mtb-specific factors to study the parameters tledeanine clearance versus persistence
in the interaction between macrophages and MtkhiBoend, we introduce a dynamic
intracellular population of Mtb into the existingoatel (Figure 3.2). The ability of i to
kill Mtb via NO-mediated mechanisms may dependimning of TNF and IFNy
signaling. In addition to TNF and IF{-Mtb-derived signals also contribute tapM
activation. We assume this to occur due to ManLAMopmplex glycolipid of Mtb,
including the virulent H37Rv strain (6, 8). Lackapiantitative data for responses to
ManLAM prompted dose-response experiments perforneedin for calibration of the

model to Mp activation kinetics.

3.2 Materials and Methods

87



3.2.1 Dose-response experiments

In the mathematical model we assume that Mtb-ddrsignals contribute to
activation via ManLAM-mediated NKB induction (6, 8). In order to calibrate thepV
model response to ManLAM of virulent Mtb straingldan establish a cooperative NO
response with IFNs we performed dose-response experiments with7#hé.16 Mp cell
line (ATCC,; Figures 3.2 and 3.A1). Doses of 0, Q@1, 1, 10, and 100g/ml ManLAM
(Colorado State University, Fort Collins, CO) wéamrated along with 0, 0.01, 0.1, 1, 10,

and 100 U/ml IFNy (Sigma) in triplicate for 96 hours in 96-well pat(Becton

Dickinson) seeded with.5x 1G Ms/well. At appropriate times we used the Griess

reagent assay to measure nitrite output as a gasXyO production (10).

3.2.2 A macrophage network model with mycobacténifction

We previously developed a mathematical model oMigeresponse to activation
signals (IFNy and the general endotoxin LPS) inducing killingcmanisms (iNOS/NO
in the model) co-regulated with iron homeostasaaatus (41). This model did not
include a representation of infection. Here weadtrce a population of Mtb that interacts
with the existing Mp model framework to study how effectively this gystkills Mtb
under different signaling conditions, with ManLAMXF replacing LPS as the
complementary signal to IFM-

We represent each component of the model as anconis entity in an ordinary
differential equation. It is useful to think of shmodel as being analogous to @ t&ll
culture system, with the results averaged overgelpopulation of Ms. The model is

built with a non-dimensionalized form of the loeald piecewise S-system
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representations of the power law formalism (45, &&ch ofn molecular components of

the system is described by a differential equation

d)g n+m n+m

a=al]e A o

vi" andv;” are aggregate power law fluxes describing theymtion and consumption of

moleculex; that may be affected by anymfindependent variables. Parametes a
turnover rate, always positive, that sets the spé@doduction and consumption.
Parameterg; andh; are kinetic orders (regulatory parameters) qugintifthe effect of
the variable on the rate o production and consumption, respectively. How aeho
component (variable) regulates a given flux is aeteed by the kinetic order: g > 0,
X has a stimulatory effect on the fluX; if g; < 0 the effect is inhibitory; ij; = 0 therx;
does not regulatg”. Figure 3.2 illustrates the biochemical networkhwiumerical
indices for each variable and important parameWis present the complete set of
eguations and parameter values in the Appendixh Y& model in non-dimensional
form, we report [NO], [LIP] and other molecular sjes as fold-induction above the
basal steady statg:= X/X;o (WhereX; is the absolute concentration agd is the
guiescent steady state level).

Some terms in the model (i.e. production rateskB, Statl and INOS mMRNA)
require a piecewise representation due to a bipmasponse in the data (c.f. two
response phases in Figure 3.3), where we quahtfeffects of LAM and IFNfon
activation signaling over the entire range of expentally determined nitrite outputs. In

this case the rate terms have the same mathemfaticebut the parameters depend on
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which IFN-+y dose range is used (Figure 3.3 shows the phasiesnodel fit; Table 3.A2

gives parameter estimates of the fit).

3.2.3 Simulated\V. tuberculosis infection

We represent Mtb infection as a single variableinamacellular bacterial
population subject to the effects of NO and irorels in the Mp network. The equation

representing bacterial kinetics has growth andhdesies parameterized as power laws:

db _ abbxgbm X?bup (1_%%“) _ﬁbbxe L, X2 kbLIP

— NV
dt
abbxngO (l_%maxj _'Bbbxﬁ " X7 < kbLIP

This representation is mathematically equivalera ppecewise Generalized Mass Action
representation of the power law formalism (46).Mtb load is sensitive to NO levels
due to growth rate inhibition (represented by taeameteg,no) and enhancement of the
rate of death (represented lfayo; Figure 3.2). This model phenomenologically cagsur
several effects of NO/RNIs; for exampigno captures a possible dormancy program in
Mtb induced by NO (37, 53). The relative insendiyiwf Mtb to superoxide and other
non-RNI killing mechanisms (7, 16, 35, 43, 52) a#ous to omit these effectors, which
are more important against other pathogens (34 .€fiect of elevated intracellular iron
(represented bgyp) is stimulatory, capturing the effects of iron{gaing siderophores
produced by Mtb (14). This effect saturates when is no longer the rate-limiting
nutrient (40) at a level given tkyp.

The variables representing N&@)(and the LIP X;) are scaled to accurately

represent how these quantities affect Mtb growtn.dimplicity, mycobacteria are
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presumed to grow best in the absence of NO and sebsitive to relatively small levels
of it. Thenxs = 1 (non-dimensional [NO] at the quiescent stestdye) is the threshold for
sensitivity of Mtb growth and death rates to NOeTHP concentration giving the fastest
growth defines the LIP saturation threshidgp. The parametey, p scales the effect of

the iron pool (in the sub-saturation range) onrétte of bacterial growth. The logistic

term (1—% ) ensures that the population does not exceed aipblaiMOI, above a

maximal population we set at 50 bacteria per &8l| 66).

Iron is removed from the cellular LIP at a rategmdional to the number of
bacteria. When bacterial levels drop below detdetlvels (set b pp), this effect is
absent. Sensitivity of iron pool levels to bacteniamber is scaled by p,. We expect
this parameter to be small (estimated at 0.05ppwaimate the level of iron loss from
Mgs (approximately 30%; 38). The resulting iron lest® in the Mp network is:

V—={a7x2”x2w(kupbb)“m b>1/kp, o

a .
a, X xpre b<1/K,p,

3.2.4 Activation Signals

We introduce exogenous concentrations of TNF ahdyiinto the model as
independent variableg,q andx;», respectively). Each independent variable is schiea
parameted to interface with the non-dimensional network motdracellular Mtb also
contributes to M activation, assumed to be from stimulation by glead ManLAM.
Since it is derived from the intracellular Mtb pdgaion, it is a function of the number of

bacteria presentrscales the Mtb population to capture the effedflahLAM for



compatibility with the Mp model. The resulting terms for production of aetivFxB
(vi") and Stat1\,"), which go into equations fox andx,, are

! =8,(00)% (e )

t = 9212 v926 (4)

2 _az(leN-yxiz) Xg -

3.2.5 Parameter estimation

Specific choices of parameter values give the syspeantitative characteristics
and are required to solve the system on a compliddrie 3.A1). To calibrate the model
and estimate unknown parameters, we modified tipan&twork model (without Mtb) to
include a variable representing nitrite accumurafrom NO production, a modification
to capture experiments performed herein. We alsowatt for degradation of ManLAM
and IFNy in cell culture. This allowed us to directly finsulated nitrite dynamics to our
dose-response experiments (Figure 3.A1). We acdouttie biphasic response in the
model using a piecewise function for Statl andk¥Factivation rate laws (described
above). The fitted parameters (listed in Table 3 W&re assigned an initial value based
on previous work (41) and systematically adjustgtidnd to achieve the fi(Figure

3.3).

Two of the dose combinations (1 U/ml IFNwith 10 or 10Qug/ml ManLAM) give

model predictions lower than the experimental datese data appear to be anomalously
high in comparison to nitrite output at other dogagures 2 and Al starred), and we
attribute the discrepancy to experimental error.

92



3.2.6 Simulated infection and treatment protocols

Simulations employed a protocol wherepdAvere treated with constant
concentrations of TNF and/or IFNas described in the 3 scenarios with infection of

1.5x 10 bacteria at = 0 hrs, (i.e. MOI = 1, or one bacillus peyMn analogy to a cell
culture system; Figure 3.1). As a reference thresbbactivation, TNF concentrations of
22 ng/ml and IFN¢ concentrations of 1 U/ml were simulated. We inseshlFNy to 100
U/ml and/or TNF to 220 ng/ml in some simulationglagermine the effects of variable
cytokine doses. The concentrations of lifWere chosen to represent a range from phase
2 of the dose response studies (Figure 3.3), wdnetreation levels are likely bactericidal.
TNF concentrations are known to be in the ng/mgjeaim tuberculosis patients (21). We
chose the reference TNF dose to represent a highdéactivation without dominating

the response to IFM-

For scenarios with TNF and/or IFjstimuli preceding infection (c.f. Figure 3.1),
the Mg system was brought to steady state before infectMe use the intracellular
population of Mtb at = 100 hrs post-infection as a measure of the &ffEress of Ms
at killing Mtb (i.e. theinfection outcome). This time frame is similar to longer co-culture

experiments here and elsewhere (5, 44).

3.2.7 Numerical simulations

After deriving the model, we solved the nonlineetioary differential equation
S-system to obtain temporal dynamics for each aitwiethe model. We used
Mathematica (Wolfram Research) for most calculajoncluding an algorithm for

uncertainty and sensitivity analysis and matheralfiyicontrolled comparisons (both
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described below). Results derived with these allgors were confirmed with a second
differential equation solver in C++ implementingriga-Kutta adaptive step-size solvers
and appropriate finite difference methods. A Syst&iwlogy Markup Language file of

the model is available at http://malthus.micro.medch.edu/lab/sbml.html.

3.2.8 Uncertainty and sensitivity analysis

Parameters measured from experimental studiey Megly by experiment due to
intrinsic errors of measurement and differencesxiperimental protocol. To explore the
effects of uncertainty in the model, we evaluateslith a range of specific parameter
values using.atin hypercube sampling (32). For this scheme, each parameter range was
divided into 1000 equiprobable subintervals of darm distribution, randomly
combined from each parameter to give 1000 pararsetsr Parametegs:1, 9212, brnre
andben.yWere held constant during this analysis to presezlative levels of activation
of Statl and NB pathways. Computing the numerical solution ts&h&000 specific
cases gives a statistical description of each moal@ponent at any time point, here
using Mtb population at= 100 hrs post-infection as the outcome measurdgfermine
statistical sensitivity by computing partial rardki@lations (PRCs) between the outcome
Mtb population and each varied parameter (4). Tleeselations vary between -1 and 1,
with a significance test approximating a Studemt{@) to determine if the PRC is
significantly different from zero. Each sampledgraeter has its own correlation that we
interpret to represent the sensitivity of the Mdpplation to that parameter. A separate Z
test (27) compares the relative correlations betveiierent parameters and between the

same parameter examined under different experirheoaitions. To account for the
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large number of varied parameters we correctedfggnce levels using the Bonferroni

method (50).

3.2.9 Macrophage network characteristics and éffeceduction of Mtb numbers

We previously usedathematically controlled comparisons (29) to predict the
type of regulation (i.e. positive or negative) beém important M network interactions
(represented by the boldfaced regulatory paramatérable 3.A1; see Figure 3.2).
These are based on evolutionary pressures repeeseytriteria for functional
effectiveness (described below). This approachbleas applied before with statistical
techniques to study S-system behavior (3, 49).

With this method we compare the effect of positiegulation (+) versus no
regulation (0) versus negative regulation (-) fackeinteraction in the Mmodel to meet
criteria for how the system best operates. It alkws comparisons for quantitative
changes in each interaction constrained to onedf/pegulation (i.e. +/0/-). We
previously analyzed the model without Mtb (41) gsihree criteria established for other
inducible genetic circuits (263tability, robustness and responsiveness. Stability refers to
the ability of a system to return to steady stétier @ small change in component levels.
Robustness means a relative insensitivity of medeables and production/consumption
rates to perturbations in parameters and otherreaiteomponents. Finally,
responsiveness in this case represents a fast tehgbange in NO levels after activation
signals, reaching an activated steady state aklguis possible after induction.

For this study we defineesponse time as the time for NO concentrations to reach

half way to the activated steady state level (axprated by the level of NO 100 hours



post-infection). This definition captures the speédesponse without penalizing for
overshoot (of NO).

Mathematically controlled comparisons requimernal andexternal equivalence
of the system across changes in the parametetesést (Schwacke & Voit, 2004 discuss
these equivalence requirements in more detailriial equivalence is ensured by
requiring that all terms in the mathematical mddat are not involved in the interaction
under study must have identical values. Meetingrex equivalence requires correction
of parameters in the rate terij) Containing the parameter of intergst &sp is altered to
ensure some equivalent external behavior of theesysTo meet this requirement, the
gain of INOS from changes in TNF, IFNand exogenous iron are held constant as the

strength of the interaction changes. That is, theIss = L(Xs, X11) + L(X4, X12) + L(Xa,

oln >§‘ (the mathematical definition of gain in
dIn X,

X17) must be constant, whetg(X;, X;) =

this type of system, which may be positive or n'rz\’/gat)zi denotes a quiescent or

activated steady state levelX)j. For each interaction, we deduce a constraineat, t
dimensional parameter space (41) with the intevagtearameter under study and one
other parameter in the same rate t&gorrected for external equivalence. There is@ lin
of equivalent gain in this parameter space founthfcs along which the parameters are
varied for the comparison.

We now extend the analysis described above todectune further functional
criterion,bacterial control: optimizing the reduction or killing of Mtb. We Icalated
bacterial load in the systemtat 100 hrs after infection for two kinds of changeshe

parameters of interest. In some cases, we chahgadteraction type (—/0/+) while for
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others we changed the intensity of regulation fepecific interaction type. The type or
level of regulation for each interaction that résdlin the lowest bacterial numbers
represents the parameter value that optimally l&@adseduction in bacterial loads for

that parameter.

3.3 Results

While macrophages are capable of effectively kgllmost pathogens, Mtb
preferentially survives within them under certaamditions. Our goal is to determine
why Mgs are poor at killing Mtb, and to predict condiahat optimize killing/reducing
Mtb levels. Here we use a mathematical model terdehe the effects of timing of the

activation signals TNF and IFNin achieving this goal.

3.3.1 Macrophage network characteristics that prieetective Mtb killing

While negative regulation by NO optimizes stabjlitybustness and
responsiveness of the@vhetwork, it does so by down-regulating INOS traiupion
(41). To determine the effects of negative feedacktb killing, we computed the
predicted infection outcome (Mtb numbers 100 hgast-infection) under different
feedback conditions. Parameters representing regulaf NFkB, Statl and iron
regulatory apparatus were varied between posmiegative and lack of feedback using
mathematically controlled comparisons. We then #ted each scenario (Figure 3.1) at
the reference cytokine dosage (22 ng/ml TNF andml UFN-y) for each type of
regulation. We also performed this analysis fongaiptional signals to confirm that this

method gives results in agreement with known tydeslOS regulation. We present one



interaction in detail (NO feedback to NdB: g6, Figure 3.4) to show our methodology
and summarize the other results in Table 3.1.

Table 3.1 shows that the predicted type of regutatthat minimizes Mtb numbers
for NO feedback to NkB is positive, which suggests that positive feedlbaatimizes
Mtb killing. This is also true for another caseastjng NO regulation of iron regulatory
apparatus (paramethgs), while NO feedback to Statfy) is neutral to infection
outcome (Table 3.1). These results contradict oevipus predictions that negative
feedback is optimal in each case for the otheewmatfor Mg function in the uninfected
form of the model (c.f. Table 3.1 and Ray & Kirsehi41)). Therefore, the type of
regulation by NO in the kdnetwork that optimizes other functional criteri@ed not
improve bacterial control (Mtb killing) in compaais to other types of regulation, and in
some cases is antagonistic toward killing. We nbamshow the timing of activation,

signals relative to when infection occurs, can cengate for this effect.

3.3.2 Activation signals concurrent with infectioounteract the antagonistic
effects of neqgative feedback

While the previous results suggest that negatigdldack regulation by NO in
Mgs reduces the effectiveness of killing, the sevigjtof Mtb to this effect may depend
on the timing of activation signals. Since feedbhiaily affects kinetics of activation, we
hypothesized that the timing of activation sigmabsy benefit from the kinetic advantages
of negative feedback. To test this, we performewsisigity analysis that correlates the
number of Mtb 100 hours post-infection (the infentoutcome) with changes in the
strength of each parameter in the model, presethiagjualitative type of regulation (+

or -) for all parameters. The resulting correlasiamdicate the sensitivity of Mtb to each
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varied interaction (see Section 3.2.8 for detalég. calculated these correlations
separately for each activation scenario (Figurg 3.1

The total number of parameters that significantigrelate with the infection
outcome is reduced from 9 for Scenario 1 (i.e. EXB IFNy introduction preceding
infection; the significant parameters #g 016, U26, U31, 932, 937, Nos, he7 andhyno as
defined in Table 3.Al) to 6 of these 9 for Scena@ri@e. TNF introduction preceding
infection; the significant parameters &g gz, Js1, 932, hes, andhyno) and 4 of the 9 for
Scenario 3 (i.e. TNF and IFintroduction concurrent with infection; the sigo#nt
parameters ar8,, gs1, 932, andhyno). Since the only difference between these scen@io
the timing of TNF and IFNt competing effects may ‘cancel out’ the sensijiat some
parameters in Scenario 2 and 3 due to activatioetiis. To test this, we examined the
effect of each scenario on sensitivities to NO bestk parameters.

Table 3.2 shows statistical sensitivities of Mibection outcome to each NO
feedback parameter. Each non-zero sensitivitygainee. Since the parameters are
negative (representing negative feedback), a negaéinsitivity here represents an effect
that reduces the effectiveness of Mtb killing. Eatlthe sensitivities is significantly
smaller than zero in Scenario 1. Scenario 2 showedwaced effect for two of the
parameters (feedback to Statl and IRR;0.01 in a Z test versus Scenario 1
sensitivities) and no sensitivity to feedback to-R&: In Scenario 3, none of the three
sensitivities is significantly different from zerbhese changes in sensitivity between the
three scenarios suggest that the timing of actimagignals has an effect on the role of
NO regulatory effects in Mtb killing, where actii@t concurrent with infection relaxes

the undermining effects of these signals.
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3.3.3 Dynamics that benefit cytokine signals corenirwith infection

While negative feedback speeds response timdktheaested scenarios, NO
production by M is initially lower in Scenarios 2 and 3 as coneplailo Scenario 1.
Therefore the effects of NO in thegMystem do not consistently favor Mtb killing. This
may create a dependency on fast response timeftoas strong negative feedback. We
hypothesized that the dynamics ofpMctivation in the initial hours post-infection may
neutralize the effects of negative feedback thdtices the effectiveness of Mtb killing.

To test this hypothesis, we investigate the effetthe parameter representing
NO feedback to NkB (gi6) using mathematically controlled comparisons. lbr@vity
we explore only this parameter, but the effectsl laplalitatively for NO feedback to
Statl @.6) and iron regulationhge) as well. To determine the specific effect of feack
to NF«kB in each scenario, we variggs using mathematically controlled comparisons as
described in Methods (Figure 3.5). As the feedl@omes more strongly negative (i.e.
016 from —0.5 to —2.0), the response time of NO leyelsasured here as the time, in
hours, required to reach half [NO]tat 100) is unchanged for the scenario with no
exogenous cytokine signals (Control). Scenario rawes on this response time only for
very strong negative feedback (Figure 3.5A), whilgponse times readily improve for
Scenarios 2 and 3 (Figures 3.5B and 3.5C, resmgfivThis result suggests that strong
negative feedback preferentially benefitg Bttivation in scenarios with delayed

activation signals (Scenario 3).

2 We also found response times to be improved fonger negative feedback in
parameter sets not exhibiting the overshoot effeen in Figure 3.5 (not shown).
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3.3.4 Strong neqative feedback improves relatividsel killing with activation
concurrent with Mtb infection compared to otherrso®os

Due to the combination of costs and benefits ofitieg feedback, we
hypothesized that higher cytokine concentratioseiv@d concurrent with infection can
compensate for antagonistic effects of feedbackitinkilling by Mgs.

To test this hypothesis, we examined Mtb numbet®@thours post-infection for
each activation scenario as we varied levels afdaek to NFkB using mathematically
controlled comparisons (Figure 3.6). This was daingvo simulated cytokine
concentrations, representative of the reference deed throughout (1 U/ml IFiNand
22 ng/ml TNF; Figure 3.6A) and a case with IffMencentration elevated to 100 U/mi
(Figure 3.6B). We repeated this analysis for eledd@iNF concentrations with each IFN-
y concentration with similar results (not shown).

For a given level of feedback, Mtb killing is nagaidentical between all three
activation scenarios at the lower cytokine dosgyfé 3.6A). For elevated IFMeosing
and strongly negative feedback (Figure 3.6B), Nrdbncurrent with infection (Scenario
2) shows somewhat enhanced killing over Npreceding infection (Scenario 1).
Scenario 3 shows a much larger improvement imigllwith higher levels of negative
feedback becoming beneficial to killing beyond gaie level (Figure 3.6B). This
coincides with high levels of NO overshoot beyonel &ctivated steady state level for
this activation scenario (e.g. Figure 3.5C), sugggs mechanism for this effect.

Therefore, in scenarios with cytokine signaling tisadimed to coincide with
infection, Mgs perform at least as well at Mtb killing as sceswith signaling

preceding infection at equal concentrations. Higiokine doses can improve killing in
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Scenarios 2 and 3 under strong negative feedbatik sufficient overshoot of NO

reversing the antagonistic effects of NO on Mtlirkgj.

3.4  Discussion

M@s require complementary activation signals (TNBacterial antigens and
IFN-y) to achieve a bactericidal state during infectiotin Mtb. Different sources for
TNF (produced by Ms and T cells) and IFN{which undergoes targeted secretion by T
cells) may reflect a host strategy to prevent diymmrs perturbation of surrounding
tissues. However, the timing of these activatigmals may affect the outcome of Mtb
infection.

We simplified a range of possible activation kingtinto three scenarios based on
timing of TNF and IFNy signals that Ms receive relative to when they become infected
(i.e. take up Mtb; Figure 3.1). The effects of #thesenarios were tested with a
mathematical model representing importang &ttivities known to interact with
intracellular Mtb in mouse models (Figure 3.2).gmodel was calibrated to extensive
dose-response experiments (Figures 3.3 and 3.Adstablish a reasonable kinetic
response for production of NO, a major anti-mycodaal effector molecule.

To prevent excessive activation while still allogriinigh NO levels when
necessary, the pinetwork must balance a quiescent state with tteerreed to reach
high levels of activation. To this end a series@efative feedback loops modulate NO
production (Figure 3.2). However, one possibleatftd negative feedback is that
effective Mtb killing by Mgps is reduced when compared to positive feedbadkl¢Tal

and Figure 3.4).

102



The mathematical model predicts a reduced effeneghtive feedback by NO in
scenarios where TNF and/or IFNsignals are introduced concurrent with Mtb infewti
(Table 3.2). Strengthening the feedback (i.e. @K@ regulation of NA<B more
negative by making the parametgg more negative) also speedspkésponses after
infection in scenarios where receipt of TNF andlFdd-y signals coincides with infection
(Figure 3.5). This suggests the importance of impdoresponse times allowed by
negative feedback in Scenarios 2 and 3.

This result depends on the interpretation of respdimes as rise times of NO,
which permits the system to be capable of highshaots that may be detrimental to
overall system function. Our previous results sgggeat this system allows high NO
production if the appropriate signals are preséh}.(Based on this activation model, we
suggest that overproduction of NO is acceptab@roumstances with multiple
activation signals.

We also find a possible advantage of this overshdder conditions of
strengthened feedback to MB-(i.e. parameteg;s < -1.25), the model predicts enhanced
killing of Mtb by Mgs at high cytokine concentrations for Scenarioa®&compared to
Scenario 1. This effect is particularly apparemtSoenario 3, where TNF and IFN-
signals occur concurrent with infection ofgsl(Figure 3.6), and coincides with the
predicted overshoot of NO production. This indisad@ advantage of the initial burst of
NO levels permitted by negative feedback afteratibe.

During the course of pulmonary infection with Mthultiple signals from cell-
mediated adaptive immunity induce migration ofdvalong with T cells to the lung

leading to the formation of immune structures chlieanulomas (2). ks that have
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ingested Mtb at the site of infection can presatigan to T cells,which, upon activation
constitute a rich source of TNF and Ifreviewed in 19). The most frequent clinical
outcome of pulmonary Mtb infection is a latent ittfen that represents a stable co-
existence of host and pathogen. We have emphatsieddnctional consequences of host
M activation strategies from the perspective ofrajing Mtb killing, but our results
also suggest a mechanism for establishing latéettions. The most effective host
activation strategy may be recruitment opd/Mirectly into the granuloma (with cytokine
signaling as in Scenario 3 in Figure 3.1), and enéion of this strategy may favor Mtb
growth (for instance, via loss of vascular poirt8/ap entry in regions of Mtb-induced
necrosis). An ongoing immune response at the penypdf a granuloma prevents
bacterial dissemination in most cases. Howevegs Migrating to the site of infection
from flanking lung tissues (possibly encounterigtp&ines as in Scenarios 1 and 2 in
Figure 3.1) are more likely to permit some Mtb gtilovthus striking a balance favorable
to a latent infection state (Figure 3.7).

A role for the timing of events from lactivation has been proposed to tip the
balance between host-pathogen interactions inrdiftecontexts (e.g. 51). In the case of

Mtb infection, our model suggests that late aciorats an optimal pathogen killing

strategy. Experimental Mtb infection of@d with cytokine signals timed as in each of the

scenarios here can test our predictions. Thesésedso call for the integration of
theoretical and experimental approaches to undetstee temporal and spatial roles of

signaling and macrophage migration in Mtb granuldameation.
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Figures

M. tuberculosis Infection

Infection Qutcome
Control |} I/’ !/=t
TNF + M. tuberculosis Infection
IFN-y infection Outcome
Scenario 1 | l/ l/’ l/=t
IFN-y +
M. tuberculosis Infection
TNF Infection Outcome
Scenario 2 } I/ l/, l/=t
IFN-y + TNF +
M. tuberculosis Infection
Infection Outcome
Scenario 3 } l/’ I/=t
0 hrs 100 hrs

Figure 3.1.Simulated experimental scenarios for macrophatieaéion that depend on
the timing of IFNy and TNF signaling relative to infection. “Infeati@®@utcome” refers

to the success or failure of macrophage responsessured by the number of
intracellular bacteria. In Scenario 1, TNF and lBignaling precedes infection.
Scenario 2 represents targeted secretion ofylieNthe time of infection with TNF
stimulation preceding. Scenario 3 represents TNFIBN-y signaling both concurrent
with infection. The control scenario representcytokines present as is the case during
an innate response. In this case the only activaignal is derived from mycobacteria
during infection. After macrophages initially reeeia given signal, we assume that
signal is persistent.
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Figure 3.2.Macrophage network schematic including interactiotith an intracellular
population ofMycobacterium tuberculosis (b) with parameter names and variable

numbers depicted. Numbers in parentheses reféetedriable number of the component

(e.g. (1) refers tay, (11) refers togs, etc). Paramete andh; quantify network
interaction types (stimulation or inhibition of eopess by a cellular component) and

interactions with the bacterial population. Seel@&@A1l for parameter definitions and

values. The model is analogous to a cell cultupegrment, with these interactions
averaged over a large population of macrophages bidthemical model (Activation,

Killing and Iron Regulation) was previously analgagithout a representation of bacteria

in (41).
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Figure 3.3.Calibration of the model to dose-response of MakiLand IFNy. A.
Cumulative nitrite output of J774.16 macrophage3tah after treatment with a wide
range of ManLAM and IFNtdoses. Note two distinct response phases bastt: @lose
of IFN-y, marked 1 and 2. B. Simulated cumulative nitritedorction at 96 h after
treatment reproduces experimental trends. A versidhe mathematical model without
M. tuberculosis infection simulated the cell culture experimer@: limit of detection

for nitrite. The two asterisks denote dose levetdueled from the fitting (see Footnote 1
in the text).
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Figure 3.4.Greater survival oM. tuberculosis in macrophages with negative feedback to
NF-kB by NO compared to positive feedback. The feedlpackmeterd;s) was changed
between negative (-0.75) and positive (0.75) usiaghematically controlled
comparisonsM. tuberculosis numbers represent the population of Mtld.i&x 15 Mgs

at 100 hours post-infection. Control: no cell-méelieimmunity. In Scenario 1, TNF and
IFN-y signaling precedes infection. Scenario 2 represangeted secretion of IFNat

the time of infection with TNF stimulation precedirScenario 3 represents TNF and

IFN-y signaling both concurrent with infection. See Feg8.1 for details of the
scenarios.
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Figure 3.5.Stronger negative feedback improves macrophageation time during
infection withM. tuberculosis. Graphs depict the first 30 hours post-infectioshow
initial kinetics. The level of negative feedbackNB-kB by nitric oxide (represented in
the model by parametgie) was varied using mathematically controlled congmans. A.
TNF and IFNy signals preceding infection (Scenario 1). B. Tedesecretion of IFN-
restricting it to the site of infection (Scenarip €. Initial cytokine stimulus concurrent
with infection time (Scenario 3). We found the agohscenario (without cell-mediated
immunity; dashed line in A, B and C) to be constargr variations in the level of
feedback; we therefore use it as a reference peinteen scenarios. Rectangles depict
the response time (number of hours for nitric oxdidecentration to reach half the level
at 100 hours post-infection) for each case. Naxile levels are normalized in each
scenario by the level at 100 hours post-infect®ee Figure 3.1 for scenarios.
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Figure 3.6.High cytokine concentrations that do not precedecition enhance killing
under strong negative feedback. A. Level of Mtliirkg for three macrophage activation
scenarios with cytokine concentrations of 22 ngfidF and 1 U/ml IFNy. B. Mtb

killing for three activation scenarios with 22 ng/fNF and 100 U/ml IFNy. Scenario 1:
TNF and IFNy signaling precedes infection. Scenario 2: targetsmetion of IFNy at

the time of infection with TNF stimulation precedirScenario 3: TNF and IFM-
signaling both concurrent with infection. See Fey@rl for details of the scenarios.
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Figure 3.7.Recruitment scenarios that tip the balance betwaeterial killing and
persistence based on timing of activation sigral&ecruitment of blood monocytes
(that become macrophages) directly to a granulgora focalized vascular sources may
favor effective bacterial killing. B. Recruitmentmacrophages from surrounding lung
tissue may result in some level of activation pdéog infection, favoring latent infection.
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Tables

Table 3.1.Macrophage regulatory interactions optimizingikdl of M. tuberculosis and
temporal responsiveness

Transcriptional regulation Nitric oxide
of INOS by: feedback to:
NF-kB | Statl LIP' | NF-kB Statl IRP?
(9s1) (932) (9s7) (916) (926) (hoe)
Optimal 4
Killing® * * - * ~ *
Optimal
Response + + - - - -
Time®

! Regulation occurs indirectly via C/EBPin vivo.

% IRP: Iron response protein. See Figure 3.2.

% In all scenarios with cell-mediated immunity.

* All Mtb numbers within 5% for positive (+), nuld) and negative () feedback.
® Other criteria for macrophage function also comfao this result (48)
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Table 3.2.Sensitivity ofM. tuberculosis numbers (100 hours post-infection) to
guantitative variations in regulatory interactions

(P;art'al et NO regulation of:"

orrelations

with Mtb # NF-«B Stat1 IRP?
Control -0.214 -0.146 ]* -0.330
Scenario 1 -0.236]* . -O.BOO]* -0.347]* I
Scenario 2 NS :|* -0.134 :|* -0.154 :|*
Scenario 3 NS NS NS

*p<0.01. The far right bracket for each parameteotEnsignificant differences between
Control and each numbered scenario. The remainiadtackets denote significant
changes between the three numbered scenarios.aiSignificantly different from zero
(p>0.01).

'Due tonegative regulation by these interactions, correlationswi¢gative signs are
interpreted to mean that stronger negative reguiatduces the effectiveness\bf
tuberculosis killing.

?IRP: Iron response protein. See Figure 3.2.
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3.5  Appendix
Complete specification of the mathematical modak definition of each
variable and parameter can be found in SectionR3g2ires 2 and Al, and Tables Al and

A2. The effects of some precursors (e.g. aminoa@ce omitted for clarity.

d
= alo) () X -]
dx, _ 9212 4 Gz

dt _aZ[(dIFN-ryX'lz) Xs _X2]

d
d_)% = ag[Xf3ng32Xg37 — X:;I

dX4 g
—=3,[X3* =X

m L[5 =%,

d

_d>:5 = a[X§* — X[#*x]

d
Al

%: X191717X979_ a7)(7x278(kupbb)hupb b>1/kL|Pb
dt e 3-7)(7)(278 b<1/K q

d
dx,
dt = 89[1 - nge ngxg]

db B abbxngo X7gbLIP (1_%max) _ﬂbbxﬁ " ! X7 2 kbLIP

E =
abbxgwo (1_%maxj _'Bbbxﬁ s X7 < kbLIP
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Figure 3.Al. Simulations and experimental data shown as timessever 96 hours. The
mathematical model reproduces experimental tremdstbe entire 96 hour time frame.
Dashed lines represent simulated nitrite outpuvésious LAM doses, while solid lines
with data squares represent experimental datatwWineotted lines represent dose levels
excluded from the fitting (see Footnote 1 in thamext).
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Table 3.A1. Definitions and estimates of model parameters. Aokl parameters are
the focus of the analysis.

Effect Parameter Est'd Value LHS Rafge References
NF-kB turnover a 241 [0.01, 50] (30)
Statl turnover a 277 R [0.01, 50] (25)
iNOS mRNA turnover as 0.173 R [0.116, 0.347] (48)
iNOS turnover ay 0.0693 H [0.0365, 0.693] (48)
NHA turnover as 5.545umol/h | [5.454, 332.711] (48)
NO turnover as 2773 i [2.727, 166.355] (48)
LIP turnover ay 32.201umol/h | [2.565, 61.820] (48)
Ferritin turnover ag 40.0pumol/h [4, 89] (48)

IRP turnover ag 35.0umol* h* | [29.17, 44.06] (48)
NF-kB reg. by TNF G111 1.18 Not Varied (23)
TNF conc. scaling brne 117.4 Not Varied (23)
Statl reg. by IFN¢ 9212 cf. Table 3.2 Not Varied cf. Table 3.
IFN-y conc. scaling biENy 20 Not Varied cf. Table 3.7

NF-KB txn reg. Oa1 1.46 [0.1,1.5] cf. Table 3.2
Statl txn reg. Os2 0.26 [0.1,1] cf. Table 3.2
LIP txn reg. Oa7 -0.177 [-0.1, -2] (48)
NO feedback to NFKB O16 -0.672 [-0.3,-1.5] of. 'I%gl)e 39
NO feedback to Statl O26 -0.5 [-0.3, -1.5] (48)
Translation Oa3 1 Not Varied (48)
Arg—NHA reg. Os4 1 Not Varied (48)
NHA—NO reg. hs, 1 Not Varied (48)
reg. of iron influx O79 0.5 [0.1, 1.5] (48)
LIP sequestration h7g 0.74 Not Varied (34)
IRP reg. of ferritin Oso -0.645 [-0.1, -2] (48)
LIP — Ferritin hg; 1 Not Varied (48)
NO reg. of IRP hge -0.5 [-0.1, -1] (48)
LIP reg. of IRP ho7 0.5 [0.4, 2] (48)
Avg. of
Mtb growth rate ay 0.0250 Mtb/h [0.0191, (21, %7, 59,
0.0385] 64)
NO reg. of Mtb growth Gono -0.5 [-0.3, -1.5] Initial guesg
ron enh 3?§§,$m G 1 [0.3, 1.0] Initial guess
Iron effect saturation KoLip 1 [0.1, 2] Initial guess
5
Intrinsic Mtb death rate 5 2.5x10" [2.5%10°, 1 % ofay,
Mtb/h 2.5x 10"]
Killing by NO hono 0.75 [0.1, 2] Initial gueSs
NF-kB reg. by LAM OkL cf. Table 3.2 Not Varied cf. Table 3.
Sloughed LAM g 120 Mtb* [10, 10000] (43)
Scaling of Mtb on LIP K_ipb 10° Mtb™! Not Varied Initial guess
Effect of Mtb on LIP hieb 0.05 [0.1, 0.001] Initial guess
Maximum Mtb per Mp Brmax 50 Mtb/Meg Not Varied G&e(ss Sef;())m

8LHS: Latin hypercube sampling.

PCalibrated to achieve approximately 50% killingta default cytokine dose for default

parameter values.
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Table 3.A2. Parameter estimates from dose response experiments

NF-kB Statl iINOS iINOS
Phase| IFN-ydose | activation by | activation by | activation by | activation by toNﬁli?KeLg t()ac;<
LAM (ga) | IFN-y (g2 | NFKB(ge) | Statl ) Yo
A < 0.1 U/ml 0.2 1.0 1.46 0.26 -0.672
B > 0.1 U/ml 0.2 2.5 0.5 0.26 -1.5
LAM half-life in IFN-y half-life in Scaling constant | Scaling constant
Phase) IFN-ydose culture gam)* culture kieny)' for LAM (diaw)* | for IFN-y (dien-y)
A < 0.1 U/ml 0.025 0.035 500 20
B > 1 U/ml 0.025 0.035 500 20

Yparameter required to accurately fit the modeheodata, but not needed for simulations in the rtein

LTT
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Chapter 4
Roles of Tumor Necrosis Factor Signaling in Granulma
Formation During Mycobacterium tuberculosis Infection
4.1 Introduction

Tuberculosis (TB) kills more people per year thag ather infectious disease.
Infection by its causative agemycobacterium tuberculosis (Mtb), results in active
disease in only a minority of cases (~10%) —the nitgjof cases result in control of
infection, where the host remains infected indé#lgi but clinically silent (reviewed in
10). Latently infected hosts are a reservoir of Milstaining epidemics through
reactivation of latent infection that results iriae and contagious TB.

The classic feature of pulmonary Mtb infection esisluring the immune
response where aggregates of immune cells andrizactalled granulomas, form in the
lungs. In humans and non-human primates with lgtalmonary infection, granulomas
form as well-circumscribed masses in the lung pargma comprised of resting, infected
and activated macrophages with a characteristicouf cells on the periphery (e.g. 6,
35) and a caseous necrotic center (25). Macrophaigfeis a granuloma have dual roles
in Mtb infection: they are the primary mechanismittb containment and the preferred
location for bacterial growth. At the level of agle granuloma, macrophages may fail to
control infection, leading to necrotic granulomastoring large numbers of bacteria

within macrophages (7). However, the relationstaween bacterial control in a single
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granuloma and the outcome of infection at the lef¢he entire host is not well
established (7).

Type-1 adaptive immunity is required to controlection at the host level. In this
type of response, activated T cells migrate tosttesof infection and act as immune
effectors. We distinguish three primary T cell tyfmsed on their effector function (c.f.
17). Pro-inflammatory T cells (which may be CDt CD8) provide macrophage-
activating cytokines (e.g. IFM-while cytotoxic T cells (predominantly CDSprovide
cytolytic functions to control infection (reviewaad 10). A third T cell class, regulatory T
cells (Treg), are also present in mouse (28) and human (18)itiections, and may
prevent efficient Mtb clearance by immune respoi3&s38). Toq are CD4Foxp3 cells
that comprise approximately 5-10% of all CDRcells (2, 40). They suppress the action
of pro-inflammatory T cells (45) through poorly werdtood mechanisms that may occur
by cell-contact, secretion of immunosuppressivekiyies (3), or both.

The pro-inflammatory cytokine tumor necrosis faatofTNF) is a central, multi-
faceted contributor to the immune response in Mtedtion (4, 5, 11, 27, 30) that is
produced by activated macrophages and pro-inflammyat cells. The role of TNF is of
great clinical interest due to the associationni-eflammatory TNF-blocking drugs
with reactivation of latent TB in humans (19, 50INF is also necessary for Mtb
containment in mouse models (11). TNF gene-distuptiee have disorganized
granulomas in Mtb infections (4), underscoringlihk between granuloma structure and
effective containment of infection.

TNF has multiple known immunological functions dwgiinfection with Mtb

(Figure 4.1A). First, TNF has a direct role in aelcruitment via up-regulation of
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endothelial adhesion molecules (54), facilitatiraps-endothelial migration of immune
cells to the site of infection. Second, TNF alsoegpilates production of chemokines by
macrophages (1, 37) that further induce trans-dwdiat migration (reviewed in 47) and
coordinate recruitment (reviewed in 42) of immue#ésc Third, TNF activates
macrophages in a manner complementary to the typgekine IFNy (8, 9, 39); such
activated macrophages can kill intracellular myaddaa. Fourth, TNF induces necrotic
and apoptotic cell death in macrophages (24) thatomoted by Mtb infection (18).
Figure 4.1A summarizes these effects.

The effects of TNF in Mtb granuloma formation tHere are likely intimately
related to the chemokine network induced duringatibn. We have identified a
simplified model of chemokines based on three ela#isat affect recruitment of
macrophages and T cells to the granuloma via bgnofrappropriate chemokine
receptors on the cell surface (Figure 4.1B). @ikehemoattractant class (CXCL9,10, and
11; formerly Mig, IP-10 and I-TAC, respectively)lois chemokine receptor CXCR3 on
pro-inflammatory CD4and CD8 T cells (29), but not regulatory T cells (22). CCL
(formerly MCP-1) binds CCR2 on macrophages (46) @agortions of pro-
inflammatory T cell populations (34). CCL5 (formeRANTES) binds CCR5 on
macrophages and T cells, and is necessary for tiugraf regulatory T cells to the site
of other infections (52), although this has notrbdemonstrated for Mtb.

The multiple roles of the pro-inflammatory cytokimBlF in granuloma formation
raises the question of how competing factors aefftect control of infection. Each of the
four roles of TNF (cellular migration, induction cfiemokine/TNF secretion,

macrophage activation and apoptosis) may contribeparately to establishing and
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maintaining control of Mtb infection at the levdlasingle granuloma. Currently, it is
impossible to experimentally study these separbltie flinctions at this level of detail.

Here we use a specific type of computer model knasvan agent-based model
(ABM) to study the contributions of these immungeefors on granuloma formation.
The model used here is based on one developedpstyiby Segovia-Juarez et al (41),
which we have extended to include relevant effeEtENF, different T cell classes and a
simple chemokine network. The usefulness of a cdatjmnal approach for this type of
system lies in its ability to capture multiple sphaind temporal scales of dynamics, with
appropriate representations of immune cells (disaatities), bacteria and molecules
(continuous entities) in a spatial coordinate systeigure 4.2). This allows us to
manipulate and study specific factors in a way thaiot currently attainable with
experiments.

We used the model to assess the specific effectglvidual TNF activities on
Mtb infection at the level of a single granulomastiethguishing which mechanisms in the
system lead to control of Mtb growth versus uncalied bacterial growth within a
granuloma. We also attempt to distinguish the roféeBNF in the initial granuloma

formation versus maintenance (i.e. long-term cdptbestablished granulomas.

126



4.2 Methods

4.2.1 Hybrid agent-based model

The model presented here is an extension of aque¥BM simulating cellular
interactions leading to granuloma formation duiimigction with Mtb (41). The model is
considered hybrid since it utilizes both discratates (cells) and continuous entities
(chemokines, TNF and Mtb) simultaneously. ABMs @egeloped based on four
considerations: an environment, agents that reébile, the rules that describe the agents
and their interactions, and the timescales on wiwents are defined. We give an
overview of these areas below with the completeolisules in Appendix 4.5.

As in the previous model (41), tleavironment represents a 2 mm x 2 mm slice of
lung parenchyma as a 100 x 100 square 2-dimendettiak with individual micro-
compartments scaled to the approximate size afgiesmacrophage: 20m in diameter
(23). Discrete agents move on the lattice and me$po their environment based on rules
representing their individual biological activitid®acteria and effector molecules can
reside anywhere on the lattice and undergo diffugiben appropriate.

We include two types of discredgents in the model: macrophages and T cells.
As previously (41), macrophage agents assume diffestates as follows: resting (M
infected (M; have taken up bacteria), chronically infected;{lre unable to clear their
intracellular bacterial load), and activated,(/an effectively kill bacteria). In contrast to
our previous study (41), where a single T cell €lplsenomenologically captured all cell
behaviors, here we represent three distinct Tscadpopulations as defined in the
introduction: the Jclass captures CD4nd CD8 pro-inflammatory T cells; Jrepresent

cytotoxic T cells; and [ represent regulatory T cells.
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In addition to movement and placement of cellshengrid, each micro-
compartment also contains environmental varialtflasdre affected by local conditions.
These include the number of extracellular bactésigels of diffusing effector molecules
(CCL2, CCL5, CXCL9/10/11 and TNF), the number di\eted or infected macrophage
deaths that occur in a micro-compartment, if tipaice is designated a vascular source,
and whether or not the micro-compartment has beaaseous.

Caseation represents inflammation of, and damaghadung parenchyma from
macrophage cell death. We note a change of teroggdb “caseation” from “necrosis”
in previous work (41), as strict necrosis withie giranuloma is now believed to be
caused by substantial neutrophil infiltration ama@tth while caseation is likely initiated
by macrophage death (unpublished data, JoAnneyhnkyl

Cells respond to local conditions accordinguies that represent known
activitiesin vivo. During simulations, each agent responds deperuadints state.
Examples of rules include uptake of bacteria, maltage activation by T cells, secretion

of cytokines and chemokines, etc. For a full listudes, see Appendix 4.5.

4.2.2 Initial conditions and timescales

At the beginning of a simulation, the grid has 1@domly placed resident
resting macrophages ¢Mmoving randomly with no chemokine or cytokine gmet.
Infection is initiated with one infected macrophdlyk), containing 15 bacteria, placed at
the center. Every 10 minutes of simulation timesipons and interactions between T
cells and macrophages are updated, including teeeai from vascular sources and

secretion of TNF and chemokines if appropriate. f@seilting landscape of molecular
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concentrations serves as the initial conditioncfumputing cytokine and chemokine
diffusion for 10 minutes of simulation time. Cefates and interactions are then updated
again, in the beginning of the next 10-minute titepsn an asynchronous fashion, and

continues in this way for 200 days (2,880,000 Besteps) of simulation time.

4.2.3 Uncertainty and sensitivity analyses

The lung environment presents a difficult systemafccurate estimation of rate
and probability parameters, leading to a high l@fepistemic uncertainty; that is, the
relevant probabilities and rates are not well-dsthbd. Simultaneously, randomness
from probabilities in the model results in unceartgiin the outcome for a given
parameter setleatory uncertainty). Due to the high number of model paeters (rates
and probabilities) and uncertainty with the mod@ehaustive exploration of parameter
space is impractical. However, the technique oinLlaypercube sampling (LHS) allows
high-efficiency variation of all relevant parametewhich allows model outputs (such as
immune cell and bacterial numbers, granuloma sitzg,to be described statistically.

Statistical sensitivity analysis allows the quaaéfion of each uncertain
parameter by correlating several outcome variafgésTables 4.A1-4.A2) with
variations in each parameter, to compute a pagr# correlation (PRC). One PRC
exists for each parameter-variable pair, variesdeh —1 and 1, and represents the
strength of relationship between the parametercamcbme variable of interest. Details

of these methods are outlined in Appendix 4.6.
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4.2.4 Simulated deletion and depletion of TNF aiés

In order to examine the effect of individual TNRiaities on granuloma
formation and maintenance, we performed deletiowisdepletions of relevant
parameters using a baseline parameter set that feadntrol of infection (Tables 4.1-
4.3).Deletion refers to loss of the activity from the beginnthg simulation at the onset
of infection.Depletion refers to the loss of the activity after the ekshinent of a stable
granuloma, 100 days post-infection. The timinghaf depletion was determined by
examining the results of sensitivity analysis amellbaseline control scenario. Parameter
sensitivities in the model stabilize by day 50.(Résults), suggesting that 100 days post-
infection represents a reasonable time for an ksigol, stable granuloma. Significant
differences between outcome variables were detexanmth a mean difference test
(Welch'’s approximate t test) for 15 repeated sirtmaites of each single deletion or
depletion, and for 10 repeated simulations in d@ledr depletion of two or more TNF

activities simultaneously. We present more detalshis procedure in Appendix 4.6.

4.2.5 Programming and simulations

The model was written in C++, with the code based4d) and (36). Simulations
were run on a computer with dual Intel Xeon quack@rocessors, each 200 day
simulation taking about one hour, with simulatieesninated iffwhen complete bacterial
elimination was reached. Sensitivity analysis sluteng simulations was performed
using Matlab (The MathWorks, Inc). Time-lapse mewad data visualizations were

programmed in Java or created using Mathematicdf(&vio Research).
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4.3 Results

4.3.1 Simulated infections and granuloma formation

The agent-based model presented here predictyitiaenics of Mtb infection on
the level of a single granuloma. To establish hasddehavior of the model, we
identified a reference parameter set (Tables 81sée Methods) that leads to a
controlled bacterial population (Figure 4.3A, wHitgrs). This scenario results in a
granuloma that has a tightly packed mass of galesjominantly resting macrophages
(green agents in Figure 4.3B), with T cell locdiiaa at the periphery of the granuloma
(pink, purple, and light blue agents in Figure 4.3Bhe model is robust in that for 15
repeated runs of the ABM using the reference patemset, each individual simulation
led to controlled infection, with none of the simtibns predicting uncontrolled bacterial
growth.

A simulated infection with all parameters set te tdontrol scenario but lacking
TNF (i.e. a TNF deletion; see Methods) shows tliecebf TNF on granuloma formation
in the model and serves as an example of a gramulbat is unable to contain bacterial
growth. Numbers of extracellular Mtb in this sceaare significantly higher than the
bacterial control scenario 20 days post-infectipr 0.01) and all time points thereafter
(Figure 4.3A, gray bars). Simulations result inra@gular, larger granuloma with wide-
spread caseation (Figure 4.3C). Numbers of all apage and T cell populations in the
model are significantly elevated in comparisonhi® ¢ontrol scenario within the first 20
days after infection as well (not shown). Thereftoes of TNF may impair early control

of infection, resulting in more extensive immunéd ogdiltration; this matches data from
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murine models of Mtb infection (1), and providegasitive control for the model with

respect to the requirement for TNF to control itifeT

4.3.2 Attainable granuloma outcomes in the ageséthanodel

To determine the attainable types of granulomaaués in the model, we used
uncertainty analysis to explore different parametanbinations. A sampling of 250
parameter sets from Table 4.1 (each replicateshdstifor 1000 total simulations; see
Methods) yielded a distribution of extracellularbvitumbers at day 200 as shown in
Figure 4.4. Approximately half the parameter se¢sligt complete elimination of
bacteria. This outcome is intuitive: most (~70%) lamsexposed to Mtb do not become

infected (43). The remaining simulation outcomesdistributed across nearly the entire

range of attainable bacterial populations, which &xaupper limit oR.2x 10 if every
micro-compartment in the simulation carries the imaxn number of bacteria. This
range of extracellular Mtb numbers suggests astainpling of attainable simulation
outcomes from the uncertainty analysis. Spatially,observe a wide range of granuloma

structures attainable for different bacterial lev@igure 4.A1).

4.3.3 Timing of bacterial elimination is concurrevith changes in parameter
sensitivity

The model predicts that two waves of bacterial Elation can occur (i.e. both
B.= 0 andB = 0; Figure 4.5B), one after the start of infectand the other immediately

following the onset of T cell recruitment (afteryd20). Elimination of bacteria occurred
before day 100 for 97 percent of parameter setdehd to elimination, with 87 percent

of parameter sets leading to elimination before ®layThis supports the hypothesis that
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early host-pathogen events can determine long ¢emmcomes of infection. Further, in
many cases, early elimination occurs due to thatsanmmune response before adaptive
immunity is established (i.e. before T cells ard\a the infection site on day 20),
suggesting that bacterial elimination by innatédegis attainable at the level of a single
granuloman vivo.

To explore the role of T cell arrival times in &sed wave of bacterial
elimination, we repeated the global uncertaintyysig with initial T cell recruitment
occurring on day 10 and day 30 to compare withréiselts obtained with arrival on day
20 (Figure 4.5). When adaptive immunity begins ay 110, the second peak of bacterial
elimination occurs before 20 days post-infectiolgFe 4.5A), while delaying adaptive
immunity to 30 days delays the second eliminatiealp(Figure 4.5C), strongly

suggesting that initial T cell recruitment induties second wave of elimination.

4.3.4 T cell, bacterial growth and TNF parametergiol| granuloma formation

Using the outcomes of the global uncertainty anglyge performed a sensitivity
analysis to determine which factors control gramddormation and bacterial growth.
Dominant sensitivities in the analysis relate teéareas: bacterial growth rates, T cell

movement, and TNF levels.

4.3.4.1 Intracellular and extracellular bacteriawih rates drive infection

Statistical sensitivity analysis indicates thatvwgito rates of intracellular and
extracellular Mtb ég; andage, respectively) have dominant effects on the nunober

bacteria, showing a significantly positive corridatwith bacterial numbers throughout
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simulations (Figure 4.6A; Table 4.4). This result suggests tha growth rate of
mycobacteria serves as a virulence factor thatleéermine the success or failure of host
responses, consistent with the fact that viruléntaal strains of Mtb grow more quickly
in macrophages (e.g. 44). The intracellular grorate also strongly affects other
measured outcome variables in the model, promdtiogll recruitment and
chemokine/TNF productiorog; in Table 4.4).

The significant role of both intracellular and extellular growth rates in
determining the number of bacteria suggests arugwohry advantage for successful
growth of both intracellular and extracellular Mibpulations. We therefore performed
additional simulations to examine the effect oftbaa losing the ability to grow either
intracellularly or extracellularly using the baseliparameter set for all other parameters
(Tables 4.1-4.3). For the loss of intracellularwgtio (i.e. agi = 0) all simulations resulted
in bacterial elimination as soon as T cells arriaéidr day 20. Loss of extracellular

bacterial growth (achieved by setting. = 0) resulted in significantly lower but robust
extracellular Mtb populationsB, (200)= 163.3! versus 578.54 for the baseline control

scenariof < 0.01). Therefore, while intracellular growtheissential for establishing a
stable infection, our model predicts that extradatl growth acts to augment bacterial

numbers.

4.3.4.2Crowding of T cells has global effects on granuldoranation

! This result differs slightly from our previous ués in Segovia-Juarez et al (42), which
predicted that intracellular growth rates are ti@mtty negatively correlated with
extracellular Mtb numbers between days 30 and D8f-ipfection. This discrepancy is
due to a peak in chronically infected macrophagstimg in that model that is not
reproduced here since we hold the initial numbenatrophages constant. This allows
uncertainty analysisto have identical initial ctiwths between different parameter sets.
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The probability of the three T cell classes, (T and Teg moving to a location
where a cell already resid€Bqve) is significantly negatively correlated with batid
levels starting shortly after T cells infiltratestBite of infection Tnove in Figure 4.6A),
and has significant effects on nearly all measorgdome variables (Table 4.Al).
Therefore, if T cells are more likely to penetrtite crowded group of macrophages in
the granuloma, bactericidal macrophage activataanmore effectively reduce bacterial
numbers. This follows from the cell contact-mediatecell hypothesis (16) used here. If
this assumption is approximately correct, this ftesuggests an important role for cell
crowding toward T cell-mediated immune functioraigranuloma, and is consistent with

our previous results (41).

4.3.4.3 Multifaceted TNF effects on granuloma ouaies

Statistical sensitivity analysis confirms the cahtole of TNF in granuloma
formation: For most of the simulated infection tinfesster TNF production is correlated
with lower bacterial numbers{r in Figure 4.6A). The effects of TNF on many other
outcome variables (Tables 4.4, 4.A1 and 4.A2) ssigpat the rate of TNF secretion
from macrophages and, Tells &mr) has a global regulatory role in the system, gfiyn
determining immune cell and bacterial populationsvall as molecular secretion.

The secretion rate of TNB{r) maintains a strong and consistent effect on
bacterial and immune cell numbers throughout indectut no parameters reflecting
specific TNF effector mechanisms show significamtelations after the first day of
infection. One explanation for this is that the tredgnificant parameters may have

drowned out effects of TNF-specific parameters whemying many parameters using
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global statistical sensitivity analysis. To furtlexplore the specific roles of TNF leading
to different infection outcomes, we performed aufed sensitivity analysis, examining
only the effect of TNF-related parameters on medraeellular Mtb numbersg,). The
rest of the parameters were set equal to the refengarameter set that leads to a
scenario with controlled bacterial numbers (Taldlds 4.2 and 4.3).

This analysis (Figure 4.6B) reveals steady, sn@ltjve correlations between
extracellular Mtb numbers and four TNF-related pagters:rrnract (threshold for TNF-
induced activation by macrophagesyrapopt(threshold for TNF-induced apoptosis by
macrophages)rnr (rate of TNF degradation); amgine (effect of TNF on trans-
endothelial migration). Therefore, multiple spexcifiNF mechanisms appear to
contribute to the overall effect of TNF after Tldefiltration with no one mechanism

dominant.

4.3.5 Distinct effects of individual TNF mechanisorsgranuloma structure

To directly explore the roles of TNF effector megisans in granuloma formation
versus maintenance (i.e. long-term control), welube reference parameter set (Tables
4.1-4.3) to perform deletions and depletions offthe individual TNF activities (Figure
4.1A). Deletion refers to loss of a TNF activitgiin day O, to reveal the role of TNF
activities from the onset of infection. Depletiafers to loss of a TNF activity only after
the establishment of controlled infection (herd) #iays post-infection; see Methods),
which shows the role of TNF activities in maintaigiinfection control and granuloma
formation. Data are presented as significant cheumgeach outcome variable (cell and

molecule numbers, granuloma sizes, etc) from tisellvee control scenario.
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4.3.5.1 Effects of TNF-induced apoptosis activity

One trend that is evident from these simulatigrthat TNF has a role in
sustaining infection. Deletion or depletion of TiNfBuced apoptosis activity
(“Apoptosis” in Table 4.5) results in complete elmation of bacteria in nearly all
replicates (all deletions and 14 of 15 depletions).

There are two possible mechanisms for the effefictdNF losing the ability to
induce apoptosis in macrophages. One is that glttéar bacteria surviving the
apoptosis event play a central role in sustainifgction. Another possibility is that
apoptosis regulates inflammation by preferentithgeting cells that are producing
chemokines and TNF, and thereby contributes t@tbpagation of infection by lowering
the number of immune cells during the host respohseest the first hypothesis, we
simulated infections with the baseline parametensaying the survival rate of bacteria
within a macrophage undergoing apoptosis from r@d®00 percent; the results show no
significant change in bacterial numbers or othéc@me measures (not shown).

To test the other possibility, we examined thedramt kinetics of bacteria,
immune cells, TNF, and chemokines that occur duttiegapoptosis activity depletion
(representative graphs are shown in Figure 4.7Andohately after depletion, T cell and
effector molecule levels permanently increase amdlrers of activated macrophages
transiently increase. The single sustained infadiiat occurred during the simulated
depletion of apoptosis activity shows extensive noleage infiltration, with no
discernable granuloma structure (Table 4.5F). Ta&gather, this strongly supports the
explanation that TNF-induced apoptosis modulatedymtion of effector molecules and

recruitment of immune cells in this model.
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In contrast to the results presented here, soméenir strains oM. tuberculosis
promote bacterial growth via inhibition of TNF-inckd apoptosis of infected
macrophages (12, 20, 48). To further explore #8ae, we performed depletions of TNF-
induced apoptosis effects on infected versus uaiefemacrophages separately.
Depletion of TNF-induced apoptosis of uninfecteccrophages resulted in clearance and
high immune cell infiltration, while the effect tgting infected macrophages was more
subtle (Figure 4.8). Therefore, the effects ofdgsINF-induced apoptosis in the model
are likely driven by secretion of chemokines and=Tdy uninfected macrophages.

Gradual reduction of the probability that TNF inda@poptosighpe) in all
macrophage types predicts lower bacterial loadswiih granuloma structures largely
unchanged (Figure 4.9). This is consistent witbhemario where loss of TNF-induced
apoptosis results in “runaway” recruitment of imrawells. It may also point to an
important role for anti-inflammatory cytokines swerh IL-10 (10) that were omitted from

this model but may buffer this effeictvivo.

4.3.5.2 Effects of TNF-induced activation, effeatoolecule production and recruitment

Deletion and depletion of TNF-related macrophag#ation shows significantly
higher levels of caseation and extracellular bétevrith lower overall macrophage
numbers and unchanged granuloma size (Table 4.B)ginuloma structures resemble
an intermediate between the solid form of the Imaselcenario and the caseous core
observed with complete TNF deletion or depletiah ¢gure 4.A2F-G). Therefore, the
efficacy of TNF as part of the macrophage activapathway may partially determine

levels of caseation at the core without affectimgrall granuloma integrity.
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Deletion and depletion of TNF-induced recruitmeand secretion activities (Table
4.6) suggests different roles for TNF before andrar cell infiltration. In both cases, the
effects are more pronounced in deletion. Loss ofes®n activity (that is, the activity of
TNF inducing TNF and chemokine production from nogtrages) has particularly
divergent effects between deletion and depletiath larger granuloma size and higher
levels of caseation, bacteria, and most cell typéise deletion but no significant effects
in the depletion (compare Table 4.6E and F). Thggssts that this role of TNF is key to

formation of granulomas but not involved in mairgece.

4.3.6 Synergism and competition between TNF aativit

In order to determine the effects of interactibatveen specific TNF activities
on granuloma structure, we repeated deletions apbktions of pairs and triplets of
individual activities. Figure 4.10 depicts represg¢ine granulomas for some deletions
(Figure 4.A3 shows all simulated granulomas stihtaining infection at day 200 for all
combinations of deletions and depletions). Thecstings reveal that TNF-induced
apoptosis, activation, and TNF/chemokine secregarh make distinct contributions to
granuloma structure.

Deletion of both TNF-induced apoptosis activity amdF-mediated activation
activity results in high immune cell infiltratiobut no effective control of infection
(Figure 4.10A). However, loss of TNF-induced TNFofokine secretion activity and
apoptosis activity results in a small, well-conedlgranuloma (Figure 4.10B). This
confirms that TNF/chemokine secretion activity framcrophages drives the hyper-

inflammatory state observed with loss of TNF-indihepoptosis.
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Simultaneous deletion of both TNF-mediated TNF/chleme secretion activity
and activation activity results in a granuloma stinee reminiscent of deletion or
depletion of all TNF activity (compare Figure 4.104th 4.3C). Granuloma structures in
a 3-way deletion (loss of TNF-induced apoptosisivation and effector molecule
secretion activities) are similar as well, but whilgher levels of macrophages, TNF and
chemokines (Tables 4.A3-4.A4). This confirms aidctrole for each TNF-mediated

activity contributing to the granuloma structure.

4.4  Discussion

Granuloma formation in Mtb infection is complemyolving multiple scales of
interactions including molecular, cellular, andtis-scale processes. Our agent-based
model of granuloma formation reproduces major fegtwf infection by representing
interactions of individual cell agents and molec@fiectors with a representation of a
growing mycobacterial population. This work wasdzhen a previous model (41) with
major extensions that include representations d¥, Td\simple chemokine network, and
distinct T cell sub-populations (Figure 4.1). A élase parameter set demonstrates
bacterial control (Figures 4.3A and B), which isrdpted by simulated deletion of TNF
(Figure 4.3C).

Granulomas in human TB are highly variable, andréhative effectiveness of
each type of granuloma in containing infectionas known. Global uncertainty analysis
revealed a wide range of possible granuloma typesife 4.A1) representing a range of

associated bacterial loads from controlled to utrotled growth (Figure 4.4).
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4.4.1 Onset of adaptive immunity

Global uncertainty analysis predicts that ther@nismportant role for both innate
and adaptive immunity in granuloma formation: baateslimination occurs in two
waves, one during innate immunity and the secoloviing soon after the first T cells
arrive at day 20 post-infection (Figure 4.5A and ®/jjth initial T cell entry set to day 10
post-infection, an immediate wave of eliminatiofides before day 20 (Figure 4.5C).
This suggests the importance of adaptive immunityjounting responses that may
prevent bacteria gaining a foothold in the lungventing latent or active disease. This
conclusion is reinforced by simulations with T catitry delayed to day 30, which
predicts a delayed second wave of bacterial clearéifigure 4.5D). A long period of
time before the onset of adaptive immunity allowtablishment of persistent infection.
This can be prevented by earlier T cell arrivathat site of infection. One possible
implication of this result is that a vaccine to Mfenerating a fast T cell response at the

infection site can favor complete elimination ottaaia.

4.4.2 Effects of TNF pleiotropy

TNF is clearly a central factor in granuloma forrmatand maintenance as
observed in experiments (4) as well as in this rhslg- in Figure 4.6). However, the
relative importance of its primary activities (Figu4.1A) has not been elucidated.

Our model can shed light on this issue and ptedat loss of any one individual
TNF activity is not sufficient to account for thge of granulomas observed under total
loss of TNF activity with quantitative or qualiteéi measures (Tables 4.5, 4.6). Hence,

each activity has a role that synergizes to accmpihe overall function of TNF.
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Focused sensitivity analysis predicts similar effexf several TNF activities on
extracellular Mtb numbers (Figure 4.6), but delesi@nd depletions of specific TNF
activities show the overall effect of each actiitybe distinct.

First, deletion and depletion of TNF-induced aps@mearly always results in
effective clearance of bacteria (“Apoptosis” in T&@a#.5). Out of 15 deletion and 15
depletion replicates, one depletion simulation futed bacterial persistence to day 200
with disrupted granuloma structure and a heavyese of cell infiltration and
TNF/chemokine production after depletion comparcedreceding depletion (Figure
4.10). Separate depletion of TNF-induced apop@asisity from infected and uninfected
macrophages shows that this phenomenon is pringilgn by uninfected macrophages
(Figure 4.8). Therefore, TNF-induced apoptosis mlay a role in maintaining
granuloma integrity by preventing excessive inflaation, promoting sustained Mtb
infection as an unfortunate side-effect. This reslslo points to an important role for
anti-inflammatory cytokines such as IL-10, whicle amitted from the model but may
modulate the effects of TNF in the face of natwaaiation in apoptosis rates.

This result also appears in contrast to two lifesxperimental evidence. First,
virulent Mtb strains prevent apoptosis of infectedcrophages in order to promote
infection (12, 20, 48), while strains that promap®ptosis may enhance the immune
response (15). One mechanism accounting for thestahay be enhancement of antigen
presentation as a result of apoptosis (13, 15eehamism absent from the agent based
model. However, the result of TNF-induced apoptdsigtion and depletion is clearly
being driven by resting macrophages in the granalorot infected macrophages (Figure

4.8). Therefore, our result is not directly contcéaty of this work.
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A second line of evidence lies in tk&#1 mutant mouse (21), which does not
undergo apoptosis of infected macrophages andisaaumpairment of innate immune
responses, leading to uncontrolled Mtb infectiod, &L). Macrophages carrying this
mutation also show higher rates of intracellulastbaal growth rate, and production of
necrotic foci may allow enhanced extracellular igtbwth (51). In an interesting
parallel, our model predicts uncontrolled bactegrawth in simulations lacking both
TNF-induced apoptosis and activation activities.id/the factors affected by tlsstl
mutation are not fully understood, our model predthat impairment of TNF-mediated
macrophage activation would contribute to the phgmobserved in thestl mutant.

Deletion and depletion of TNF-induced macrophadeaiton has the effect of
significantly enhancing extracellular Mtb populatsowhile reducing macrophage
numbers compared to baseline (“Activation” in Tadlg). A caseous core is visible in
sample granulomas that lack TNF-induced activafi@ble 4.5 C-D), suggesting that
lowered macrophage activation is a mechanism fertyipe of granuloma. Deletion of
other TNF-mediated activities in addition to activa results in more irregular
granulomas with more extracellular bacteria (Fighid®), suggesting that several
individual TNF activities (particularly regulatiaf activation, apoptosis, and effector
molecule secretion) contribute to the type of strirecobserved. Finally, the effects of
deletion of TNF-induced chemokine/TNF secretionvagton several variables are
strong, but not so for depletions (“Secretion” imble 4.6). This result suggests that the
positive feedback effect of TNF inducing itseliis important mechanism for

establishment of a granuloma.
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4.4.3 Conclusions

The model presented here raises several posgbifir future work. Since the
probabilities of cell-cell interactions are of highportance, a three-dimensional spatial
representation may be an important step to cagfuin@se interactions more naturally.
Consideration of anti-inflammatory cytokines argcahecessary. Linked to a
sophisticated model for antigen presentation inyhgh node (36), adaptive immunity
may be represented in a mechanistic manner, cagtarsimplified multi-tissue system.
This approach represents a step toward determithexgonsequences of Mtb infection on
a larger scale, with the goal of predicting baeletissemination or containment on the

organism level.
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Figure 4.1.Models of molecular signaling networks that affgiinuloma formation
during infection withMycobacterium tuberculosis. A. TNF (blue gradient) is an
immunological effector with multiple roles. (1) TNFependent enhancement of
transendothelial migration of monocytes and T dellhe lung parenchyma occurs via
upregulation of endothelial adhesion moleculesT{®lF-dependent activation of
macrophages in concert with IFNstimulates chemokine production and bacterial
killing. (3) TNF-dependent apoptosis, a secondwathfor mycobacterial killing. B.
Model of the chemokine network induced during itifeT with Mycobacterium
tuberculosis. CXCL9/10/11 arex-chemoattractants that bind the same chemokine
receptor (CXCR3); CCL2 binds CCR2; CCL5 binds CCRfare pro-inflammatory Thl
cells. T are cytotoxic T cells. &g are regulatory T cells.
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macrophages and T cells. TNF, chemokines and etiwéar M. tuberculosis are
represented as continuous entities. Each micro-aamgents can contain either one
macrophage or up to two T cells along with extriata bacteria, TNF and chemokines.

A percentage of randomly chosen micro-compartmargslesignated as vascular sources
that allow new macrophages and T cells to be resztuo the grid by chemokines and
TNF.
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Figure 4.3.Simulated kinetics of extracelluld. tuberculosis and typical granuloma
structures at 200 days post-infection in baselordrol and TNF deletion scenarios. A.
Box-whisker plots represent minimum, median, maxmand interquartile range of
bacterial numbers for 15 simulations each for th@@nment scenario (white bars) and
lacking TNF (gray bars). B. Containment granuloraeng the baseline set of parameters
(Tables 4.1-4.3). C. Irregular granuloma with urtcolfed bacterial growth resulting

from lack of TNF in the simulation. MM;, M,, and M; are resting, infected, activated
and chronically infected macrophages, respectiglys extracellular mycobacteriay, T
T, and Teg are pro-inflammatory, cytotoxic and regulatory€lls, respectively.
Parameters are as in Table 4.1-3 except for TN&tidal (where parametsfye = 0).
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Figure 4.4.Distribution of average extracellull&t. tuberculosis numbers at 200 days
post-infection using parameter ranges in Table2b0.parameter sets were selected with
Latin hypercube sampling (global uncertainty anajyssimulations with each parameter
set were replicated four times and averaged.
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Figure 4.5.Time of bacterial clearance for simulations tha&idict complete elimination
of bacteria depends on timing of innate and adepthmune response. Shown are the
number of simulations that clear all bactegaaxis) by day post-infectiorx{axis). Two
waves of elimination occur, the first with the ibm@ammune response and the second
following the onset of T cell arrival. A. Early et peak in bacterial elimination when
T cell recruitment begins 10 days post-infectionT@o waves of elimination with the
default day 20 arrival time. D. The second peakatfterial elimination is delayed and
less pronounced when T cell recruitment beginsayn3d post-infection. Histograms
depict averages of 3 (A and C) or 4 (B) simulatieplicates for 250 separate parameter
sets. Dashed lines depict the initiation of T cedruitment.
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Figure 4.6.Sensitivity analysis of granuloma simulations. @rsdepict significant
partial rank correlations (p < 0.01) between exlatar M. tuberculosis numbers and
parameters that affect their levels in the agesetlanodel. A. Global sensitivity analysis
reveals four dominant parameters. B. TNF-focusediseity analysis predicts the
contribution of individual TNF-related mechanism&ptime. Non-TNF parameters are
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apoptosis in one ten-minute intervlove: probability of T cell movement onto an
occupied locationsmye: rate of TNF secretion by macrophagesiaq: threshold for
TNF-induced activation by macrophagegine: effect of TNF on trans-endothelial
migration; omvr: rate of TNF degradatiomineapopt: threshold for TNF-induced apoptosis
by macrophages.
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Figure 4.7.Depletion of TNF-induced apoptosis activi@ranuloma kinetics suggest a
hyper-inflammatory state upon targeted depletiomMF-induced apoptosis activity.
Plots depict tracings of ten individual simulatiomsh targeted depletion of TNF-
induced apoptosis activity at day 100. A. Extradall bacterial numbers decrease after
depletion, leading to complete elimination for Qloé 10 simulations. B, C. Total T cell
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Activated macrophage levels transiently increater aepletion.
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Figure 4.9.Effects of changing the probability of TNF-inducagoptosis activity on
extracellulamM. tuberculosis numbers and granuloma structures in the agentdbase
model. A. Reductions in the probability of apopsosctivity (parametgapo) lower

mean bacterial loads. In the baseline control sognthe probability of apoptosis is set to
4 percent (N = 15 replicates). Tested reductioriteeérnprobability were performed with 5
replicates each. B-G. Typical granulomas for p&aisinfection the agent-based model
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Figure 4.1Q Double and triple deletions of TNF-activities.Resentative granuloma
structures for deletions of different TNF activdgmbinations. Structures for multiple
replicates of each simulation, and for depletiohgach combination at 100 days post-

infection, are given in Figure 4.A2.
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Table 4.1. Parameters varied for Latin hypercube sampling
- e Varied in focused
Parameter Description Default Range Distribution analysis?
Intracellular Mtb growth rate .
Qg (per 10 minutes) 0.002 [0.0002, 0.002] Uniform No
Extracellular Mtb growth rate .
Qe (per 10 minutes) 0.001 [0.00015, 0.015] Log-Uniform No
P« Probability of M killing bacteria 0.015 [0.01, 0.1] Uniform No
Tactm Probability of M activation by T 0.05 [0.0001, 0.1] Log-Uniform No
Mrecr Probability of macrophage recruitment 0.075 [0@1] Uniform No
Trecr Probability of T cell recruitment 0.075 [0.01, 0.1] Uniform No
Toowe Prob of a T cell moving onto 0.01 [0.00001, 0.1] Log-Uniform No
an occupied micro-compartment
Proportion of T4 cells .
Trree out of all T cells recruited 0.1 [0.01,02] Uniform No
Chemokine diffusion rate .
Ac (per 0.1 minutes) 0.3734 [0.1, 0.7] Uniform No
a Chemokine degradationrate | 55193 | [0.0005, 0.0015 Uniform No
(per 0.1 minutes)
Combined TNF/chemokine threshold
rr for T cell recruitment at a vascular 1,000 [0.1,10]x 10 Log-Uniform No
sourcé
fu Comblned_TNF/chemoklne threshold 1,000 [0.1,10} 10 Log-Uniform No
for M, recruitment at a vascular soufce
CCL5 production rate ;
S5 (molecules per 10 minutés) 7.5¢10 11,1010 Uniform No
Macrophage CCL5 saturation threshald :
Ssm (molecules) 1.413x 16 [1,100]x 1G Log-Uniform No
Macrophage CCLS5 threshold i
Tsm (molecules) 2x10¢ [1,100]x 10 Log-Uniform No




IGT

Table 4.1.(continued) Parameters varied for Latin hypercubeing

Parameter Description Default Range Distribution Varied in fc_)cused
analysis?
TNF diffusion rate .
Ane (per 0.1 minutes) 0.7 [0.1, 0.7] Uniform Yes
O T'\é';e‘ieg&afn"’i‘gﬁt”eg‘te 0.0006 [0.0001, 0.001] Uniform Yes
TNF production rate .

STNF (moleculpes per 10 minutes) 2.25¢10 [1,100]x 10 Log-Uniform ves
Probability of TNF-induced .

Pepont apopt perylo minute interval 0.1 [0.001, 0.2] Uniform Yes

-~ Macrophag?r;]r(;\llgcﬂcleéi;:tlon threshald 7x1G [1,15]x 10 Uniform ves

I MTNE Effect of TNF on M recruitment 150 [10,1000] Log-Uniform Yes

LAll probabilities are per 10 minute interval.
“Non-dimensional; c.f. 11.3.iv-v. of the Agent-Basktbdel Rules (Appendix)




Table 4.2.  Parameter relationships constrained for analyses
Paramete Description Value
CCL2 production rate
2 (molecules per 10 minutes) s
CXCL9/10/11 production rate

%0 (molecules per 10 minutes) 27%s
Sm Macrophage CCL2 saturation (molecules) $Q*
Tom Macrophage CCL2 threshold (molecules) 0.100gq,
Sty Ty CCL2 saturation (molecules) 10*ssm,
Lty Ty CCL2 threshold (molecules) 0.100sm
SsTy Ty CCLS5 saturation (molecules) S5m
5Ty Ty CCL5 threshold (molecules) Tsm
Soty Ty CXCL9 saturation (molecules) 10*ssm
Tty T, CXCL9 threshold (molecules) T5m
S57c T. CCL5 saturation (molecules) Ssm
T5Tc T¢ CCL5 threshold (molecules) T5m
SoTc T. CXCL9 saturation (molecules) 185
ToTc T, CXCL9 threshold (molecules) T5m
S51r Treg CCL5 saturation (molecules) Ssm
5T Treg CCL5 threshold (molecules) 0.100sm
vz Effect of CCL2 on Mrecr? FMTNE
M5 Effect of CCL5 on Mrecr™? 0.1*rmmne
FTTNE Effect of TNF on T cell recr FMTNE
o Effect of CXCL9 on T, T, cell rect? 0.1*mrne
I Effect of CCL2 on Jcell rect? [MTNE
rs Effect of CCL5 on T, T, cell rect? 0.1*mrne
s Effect of CCL5 on Teq cell rect? [ MTNF
Tyrecr Proportion of T cells recruited 0.6*(1 —Trrecr)
Tereer Proportion of T cells recruited 0.4*(1 Frreer)

!Non-dimensional; c.f. I1.3.iv-v. of the Agent-Basktbdel Rules (Appendix).

*These parameters were held constant in the foceseitivity analysis at the default

value ofryrne given in Table 4.1.
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Table 4.3 Parameters not varied in uncertainty analysis

Parameter Description Valug Reasoning
Minit Number of resident macrophages 105% 1
Ke, Carrying capacity of micro- 990 2 3

compartment for extracellular Mtb
Nrk Number of Mtb engulfed/killed by M 2 3
Nphag Number of Mtb killed by M every 10 minutes 10 3
Niagt Maximum T, number in 4 3
Moore of M having effect
Ncaseum Number of M, M; and M, deaths for caseation 6 3
tregTy Ty inactivity time after o interactions (min) 110 3
N Number of Mtb for M — Mg transition 10 3,4
Kpi Number of bacteria causing bursting 20 3,4
Mais Lifespan of M, in days 10 5
Tis Lifespan of T cells in days 3 5
Mris Lifespan of M in days 100 5
Tdelay T cell recruitment delay in days 20 6
Pl Fraction Mtb killed by Fas/FasL apoptosis 0.5 7
Prob of Fas/FasL (TNF-independent)
P , 0.006 7
apoptosis by Tells
Tekmtb Probability of T killing Mtb in M; death 0.75 7
T ki Probability of T killing M; 0.95 7

=

. Set to the reference number for containmenati@ identical initial conditions.
. Set ~10-fold larger than the amount causing npdage bursting. There is physical

space for approximately 450 bacilli in one microngartment (tightly packed),
but lack of nutrients for growth limits this.

. These parameters have integer values that chermintinuously varied over at least

250 different values.

. The same effect as varying this is capturednianging intracellular growth rate: the

faster Mtb grow, the sooner the transition to cioanfection. IfNc is varied in
say [5, 25] we should s&k,; = 2*N..

. Relative lifespans are well known. Vary cell &géween 0 and the maximum age, so

changing these would have questionable relevance.

: Many parameter sensitivities change before ded this time, so it was held constant

but multiple uncertainty analyses were performeshtow the effect of this
parameter.

. Preliminary analysis revealed little effect feasonable ranges. Thus, this was not

varied to reduce the number of parameters varied.
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Table 4.4.

Yparameter definitions are given in Tables 4.1-8ignificant positive correlations: +++
(p < 0.0001); ++ (p < 0.001); + (p < 0.01). Sigeéint negative correlations: --- (p <

Significant partial rank correlations between pagtars and different
granuloma outcome measures 20 and 200 days pestionf for
several different outcome variables (columrt $ee Tables 4.A1 and

4 A2 for additional correlations.

Parameter Qi Qe STNF
Outcome Day
Measure 20 | 200| 20 | 200| 20 200
Be 4+ | A+ | |+
B, +++ | ++ --- ---
Total T cells +
Ty +
“Secretor” T ++
Te +
Treg -
Total Macs
M,
M; +++ | ++
M +++ | ++ --- ---
Ma
TNF +++
Chemokines ++4 --
Caseation ++1
Be growth rate ++| ++ +
Granuloma Sizd Nb| + | ND? ND® | -

0.0001); -- (p < 0.001); - (p < 0.01).

’Number of T cells actively secreting IFN-

3ND: Not done due to relative lack of granuloma fation by day 20.
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Table 4.5.  Significant changes in granuloma variables at 28 gost-infection for deletion and depletion ¢fT&NF activity
(“Positive Control”), TNF-induced activation actiyi(“Activation”), and TNF-induced apoptosis activi
(“Apoptosis”) versus the baseline control scenaBample granuloma structures for each deletiordaptetion are

shown.
TNF-Induced TNF-Induced
All TNF Production Activation Apoptosis
Positive Control| Activation Apoptosis |[AT 7 - ning C o, v v @ [Enim., "
Del | Depl | Del | Depl | Del | Depl ||+ % % wi b Tttt PR, 72 MR
(A) | B) | (C) | O) | (E) | (F) |l .
Be +++ | | | | — -— Deletion
B; +++ ++ -— -—
Total T cells ++ +++
T, - ++ | +++
“Secretor’ T, | ++ -
Te - ++ | +++
Treg + +++
Depletion
Total ) . _ Tt
Macrophages
M, - - — +++ £
M; +++ + + — = e
Mg +++ | +++
M., + -— —
TNF_ - - oM Be o Caseation
Chemokines | +++ + ° M : T,
Caseation +++ ++ +++ | +++ :ma ic \Slzzcr:iar
ci ® lreg
Gran_uloma U
Size

L+ denotes a higher variable value for the deletiodepletion than the control scenario; - denotiesvar value.

+++ (p < 0.0001); ++ (p < 0.001); + (p < 0.01). @fgcant negative correlations: --- (p < 0.000%)(p < 0.001); - (p < 0.01).
’Number of T cells actively secreting IFN-

3Nearly complete bacterial elimination preventedines
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Table 4.6.  Significant changes in granuloma variables at 28 gost-infection for deletion and depletion ¢fT&NF activity
activity (“Positive Control”), TNF effects on celar transendothelial migration activity (“Recruitnt®, and TNF-
induced secretion of chemokines/TNF activity (“®tiem”) versus the baseline control scenar@ample granuloma
structures for each deletion and depletion are show

TNF-Induced TNF-Induced
All TNF Production Recruitment Secretion
Positive Controll Recruitment | Secretion | [A: % -0
Del | Depl | Del | Depl | Del | Depl ||~ .~
(A) | B) ] (C) | O | (E) | (F) .
B. e P + Deletion
B; +++ ++ +++
Total T cells -— - +++
T, - == = +++
“Secretor” T2 | ++ B-.. %
T. = = +++ I
Treg s
Depletion
Total ) . ) -
Macrophages
M. -- -— - +
M; +++ + - +++
Mi +++ | +++ ++
M, + +
TNF - — - +++ ¢ mT _?e ® Caseation
Chemokines | +++ + - +++ oM. *T. . vVascul
. ascular
Caseation +++ ++ +++ ° M:i o T:eg Source
Granuloma | . | ., -+ L s
Size DML

L+ denotes a higher variable value for the deletiodepletion than the control scenario; - denotiesvar value.
+++ (p < 0.0001); ++ (p < 0.001); + (p < 0.01). @fgcant negative correlations: --- (p < 0.000%)(p < 0.001); - (p < 0.01).
’Number of T cells actively secreting IFN-



4.5  Appendix: Agent-Based Model Rules

45.1 Details of Agent-Based Model Rules

4.5.1.1 Bacteria and effector molecules in the rhode

Chemokines and TNF are modeled by partial diffeaéequations (PDES)
representing diffusion on the grid. Each moleceféctor type (CCL2, CCL5,
CXCL9/10/11 and TNF) is defined separately. We asssimple first-order diffusion
with a term for signal degradation. Due to the schiference between diffusing
molecular signals and cells, we assume that ddfus unaffected by the presence of
cells, and concentrations of different types of@cales may be overlapping. Diffusion is
solved inAt = 6 second timesteps.

Numbers of Mtb are continuously represented ak ®&ice Mtb is a non-motile
bacterium, we assume that bacteria do not diffsseye capture their numbers with
discretized ordinary differential equations. Inieeg 20pum? micro-compartment,
bacteria grow according to a logistic growth lavwhna population capacity éf,e = 220:
B,(t+1) =B,(t) +a,.B.(t)(1-B, ) /K,.). The population limit of bacteria per micro-
compartment is 10 times the number of Mtb contawmidin a macrophage before
bursting. While the geometry of the micro-compartitrediows up to approximately 450
individual bacilli in a single compartment due be tsize of Mtb (a rod shape that is 2-5
pum long and 0.2-0.8m thick), we assume that there is a growth linotatiue to
competition for nutrient resources, preventing eaat numbers from growing to this

density.

4.5.1.2 Environment
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The 2-dimensional grid representation of lungugss a major simplification that
makes spatial considerations computationally ttdetaHowever, the representation
requires some considerations to permit a realmtidel of cellular crowding. Due to the
size difference between macrophages and T cellg/low up to two T cells to enter the

same micro-compartment (with probability<® ), but only if no macrophage is

present. A T cell may also move into the same micnmpartment as a macrophage
(with probability Trove). This model of cell spacing is a compromise beiwa realistic
spatial representation and computational tractgtsince we capture crowding effects
while saving the computational cost of a continuspetial representation. A three-
dimensional approach has been developed (49) dnditrmed results obtained with our
previous two-dimensional model (41), suggesting éhavo-dimensional approach is
sufficient to capture first order effects.

In addition to movement and placement of cellshengrid, each micro-

compartment also contains environmental varialflasdre affected by local conditions.

These include the number of extracellular bactén@number of activated or infected
macrophage deaths that occur in a micro-compartmdrgther or not the micro-
compartment has become caseous, and if that spadesignated a vascular source.
We assume that a set numhlégm = 6) of deaths of activated or infected
macrophages occurring in a micro-compartment cailigesnset of caseation (this
number can be varied in the analysis). When thehasrophage death leading to

caseation is reached (iM:aseum deaths have occurred), any T cell present in ticeom

compartment is killed and no further cells are paed entry to the micro-compartment.
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If TNF and/or chemokine concentrations exceed #hseshold, then micro-
compartments defined to be vascular sources hakiarece of recruiting a macrophage or

T cell at each timestep. The thresholds are spabgmeters labeladin Tables 4.1-4.2

(rmTnE, v, etc.).

4.5.1.3 Rules for immune cells

Cells respond to local conditions according t@siuthat represent known
activitiesin vivo. During simulations, each agent responds deperatirits state. Several
internal macrophage variables are set or altereslbpunding conditions:
chemokine/TNF secretion (on/off), IFNsignal received (on/off), TNF or bacterial
signal received (on/off), cell age, activation timell state (resting, activated, infected or
chronically infected), and number of intracellutercteria. Resting (Nland activated
(Mgy) macrophages can take up bacteria that are isame micro-compartment. Resting
macrophages may kill a small number of Mtb or beeamfiected if the number of
internalized bacteria exceeds 2. Production of dk@mes and TNF by macrophages
depends on activation by bacterial antigens and; TWRherefore include a switch for
chemokine secretion that is independent of the opdarge state (resting, infected, etc).
If the macrophage detects sufficient TNF (abovethinesholdrg), it becomes capable
of secreting TNF and chemokines, with a small pbdlig of undergoing TNF-induced
apoptosisiiapopr). TNF and chemokine secretion is also induceduffyceent
extracellular bacterial numbers in the same miamqartment B,y = 100). Infected
macrophages secrete chemokines and TNF at halhtdén the absence of activation

signals.
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During each update interval, infected macrophagag be activated by pro-
inflammatory T cells () in theirMoore neighborhood, the 9-micro-compartment area
around the cell location. Each pro-inflammatoryell m the Moore neighborhood has a
chance Taam) Of activating an infected macrophage. For macagels to reach
bactericidal levels of macrophage activation, Nrhwust work in concert with one other
activation signal (either TNF or bacterial prodyi¢®y. Mtb-derived products only
effectively complement IFN-in the model if extracellular bacterial levelgtzdt location
exceed a threshol®4w = 100). The contribution of T cell-derived IFN© macrophage
activation is represented with cell-cell interan8oThis is an acceptable model since
IFN-y signaling requires close proximity of macrophagd tcell, as it is known to be
secreted from T cells in a directed manner to tim@unological synapse (16). Activated
macrophages (M effectively Kill all their intracellular bacteri& pro-inflammatory T
cell (Ty) that has successfully activated a macrophagesberetes TNF in a non-directed
fashion (16) and becomes an Ifyidecretor, so that the cell is able to activatdfey
pathway in macrophages encountered thereafter.

If a macrophage is infected (Mintracellular Mtb divide at a rate set by
parametems;. In the absence of activation, the intracellulamber of Mtb may exceed a
threshold K¢, set to 10, half the carrying capacity of a mabege, given below) where
the cell becomes chronically infected {Mafter which it is incapable of being activated.
Beyond a further threshold for intracellular bastenumbers per macrophad€,, set to
20 based on (33, 53)) the chronically infected mploage bursts, releasing bacteria
uniformly into the Moore neighborhood. This burgti@long with death of activated

macrophages (M), contributes to caseation.
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Cytotoxic T cells (T) randomly check one space in their Moore neighbodh
each 10-minute time interval for the presence fefated macrophages. If an infected
macrophage is present, the cytotoxic T cell hasagdrobability of killing that
macrophage, along with all its intracellular baietdfrit was not chronically infected
(reviewed in (10)). When chronically infected maulages are killed, there is a 75%
chance of all intracellular Mtb being killed, a 2@¥ance of dispersal to the Moore
neighborhood, and a 5% chance of nothing occurflingell interactions with infected
macrophages can also result in TNF-independenE&slsfinduced apoptosis (reviewed
in (10)), resulting in 50% killing of intracelluldtb and dispersal of the rest to the
Moore neighborhood.

The mechanism of regulatory T celldg function in Mtb infection is not well
established, but may involve cell-contact mediateshmunosuppressive cytokine
mechanisms (3). We adopt a cell-contact-mediatedietaf Teq cell activity. Teqcells
check one space in the Moore neighborhood for teegmce of a pro-inflammatory T
(Ty) cell. If it is present, cell-cell interaction ags and the Jcell becomes incapable of
activating infected macrophages for a set timenatieds {egr)s 110 minutes by default).
Since this time frame is not well established, stneate it based on an approximate time

to change the genetic program of the regulatednd@le regaining activity.
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45.2 OQutline of Rules

l. Initialization: conditions at the start of a simiuba
a. 100 x 100 2-dimensional grid (representing 2 square
i. Cellular boundary conditions:
periodic (toroidal)
il. Molecular (chemokine and TNF) boundary conditions:
zero outside grid perimeter
b. 50 vascular source locations randomly distributed partitions of grid
space
c. Microcompartment caseation counters set to O
d. Distribute 105 resting macrophages randomly on grid
e. No chemokine or TNF present
f. 1 infected macrophage with 15 intracellular Mtlhegt center of the grid
Il. Overview: Timing and Order of Events

a. Diffusion/degradation of chemokine and TNF (if gef according to

u, = A[0%UF du for moleculeu in At = 6 second increments (smallest

timestep in modef)
b. Move macrophages based on CCL2/CCLS5 (c.f. lll.a.)
i. Move M, on a 20-minute interval
ii. Move Myon a~13 hour interval

iii. Move M; on a 24 hour interval

“Diffusion is solved im\t = 6 second timesteps based on finding diffusiceffadents A
andArne from A = 49At / Ax , wheredis the molecular diffusion rate in%e andAx =
10° m?is the grid size (41).
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c. Events on 10-minute intervals
i. Move T, based on CCL2, CCL5, and CXCL9/10/11 (c.f. lll.b.)
ii. Move T; based on CCL5, CXCL9/10/11 (c.f. lll.b.)
ii. Move Tegbased on CCL5 (c.f. lll.b.)
iv. Determine macrophage (Mecruitment from each sourge:
if rmmne* TNF(X,Y) + rm2*CCL2(X,Y) + rus* CCL5(X,Y) > rw,
there is a probabilitivl,er Of M, recruitment
v. Determine T cell (}, Tc and Teg) recruitment:
1. Proportions ar@; T yrecr + 0T crecr + 0T rrecr
2. Pro-inflammatory T cell (J) recruitment: if
rrne* TNF(XY) + rr2*CCL2(X,y) + rrs*CCLS(xy) +
rte*CXCL9/10/11y) > rry py= 1, otherwisgp,= 0
3. Cytotoxic T cell (F) recruitment: ifrrerne* TNF(XY) +
rtes*CCL5(X,Y) + r1co*CXCL9/10/11,y) > r1c, o = 1,
otherwiseo. =0
4. Regulatory T cell (&g recruitment: ifrrine* TNF(X,Y) +
rms*CCL5(Xy) > rr, o = 1, otherwisgg =0
vi. Determine cell-cell interactions, activation, chésne production
1. M, M, M¢j, Mg (c.f. IV below)

2. Ty, Te, Treg(c.f. V below)

% For the source at the microcompartment denotezbbydinatesx,y), TNF(x,y)
represents the amount of TNF at that point; likeviee chemokines.
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vii. Compute contribution of Mtb to chemotactic effe@dtet-Leu-Phe,
lipid antigens, etc.): modeled as contribution ©LG level
viii. Remove dead cells from the grid
ix. Calculate growth of extracellular Mtb according to
B,(t+1) =B, (t) +a,.B, (1)1-B, t)/(1.1K,, ))
d. Increment counter by 6 seconds, return to Il.a.
1. Movement Rules
a. Each cell type has thresholg @nd saturations| parameters for each
chemokine it responds to.
b. Movement is random if all chemokines are belowshotd or above
saturation.
c. Macrophage chemotaxis:
i. Levels of CCL2 and CCLS5 in surrounding microcompeants
determine a probability distribution for movement
1. CCL2 affects movement by, < [CCL2] <Spm
2. CCL5 affects movement iy, < [CCL5] <S5
ii. Highest probability direction has further doubledigability
lii. Movement is blocked by
1. Caseous microcompartment
2. Macrophage presence
d. T cell chemotaxis:
I. Pro-inflammatory T cells () depend on CCL2, CCL5 and

CXCL9/10/11 (with saturation and detection thregkas above)
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il. Cytotoxic T cells (T) depend on CCL5 and CXCL9/10/11 (with
saturation and detection thresholds as above)
iii. Regulatory T cells (g depend on CCL5 (with saturation and
detection thresholds as above)
iv. Movement is blocked/reduced by
1. Caseation (blocked)
2. Macrophage presence (probability of movemBgtev)
3. T cell presence (probability of moveméityer)
Rules for macrophages in each 10 minute interval
a. Resting (M):
I. Response to TNF: If local [TNF] exceeds a detectimashold
(7rNF),
1. the cell becomes capable of secreting TNF and ckier@®
(CCL2, CCL5 and CCLO9).
2. there is a chanc@4yop) that TNF induces apoptosis of M
cells.
ii. Phagocytosis of Mtb may result in infection:
1. If extracellular Mtb Be) < Nr, the M kills them.
2. If be >Ny
a. the M Kills them with probabilitypg
b. the M becomes infected (Motherwise
iii. Death due to age at a time uniformly distributetiieen 0 and 100

days after arrival on the grid.
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b.

Infected (M):

Vi.

Vil.

TNF and chemokine secretion.

There is a chanc@4y.p) that TNF induces apoptosis.

1. If this occurs, half of the intracellular bactesiarvive and
are distributed to the surrounding environment.

2. Death contributes to the caseation counter ataitetion of
the cell (microcompartment becomes caseous ifdhater
exceedNcasaum)-

Intracellular Mtb replicate according to

b(t) =h(t-1) +ayh  -D).

If intracellular Mtb number exceeds a threshd@d>N.), the M
becomes chronically infected (¥

Chance of activation by IFMfrom pro-inflammatory Y cells not
currently regulated by dy

1. With probabilityT,m, any of the T cells may activate the
macrophage; intracellular bacteria are killed dreldell
becomes activated (M

2. The probability of activation saturates if the niembf
surrounding T cells is above a certain numbak.g).

If the M; dies due to age, disperse intracellular Mtb iheoNMoore
neighborhood surrounding the cell.
If the M; dies due to age, increment the local caseationteo(the

compartment becomes caseous if the counter extegds,).
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c. Chronically Infected (M):

i. The cell undergoes the same secretion, apoptatidacterial
growth events as infected macrophageg,(but is incapable of
becoming activated.

ii. If the number of intracellular Mtb exceeds a thodhKy),
1. The macrophage bursts
2. Intracellular bacteria are evenly distributed te Moore
neighborhood surrounding the;M
3. Caseation counter is incremented
lii. The nominal lifespan is inherited from; lgredecessor
d. Activated (My:
i. Macrophages secrete chemokines and TNF
ii. Probabilitypapep Of TNF-dependent apoptosis
iii. Actively take up and kill extracellular bacteriasatate 0fNghag
bacteria per ten minute interval.
iv. Mjhave a shortened lifespanMfjs (= 10 days) after activation
V. Rules for T cells in each 10 minute interval
a. Check for death due to age (uniformly distributetiveen 0 and 3 days
after emergence from vascular source)

b. Pro-inflammatory T:

i. Chance of activating infected macrophageg (N& IFN-y —
detailed in section lll.b.v.

ii. TNF secretion results from activation interaction
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lii. Probability of TNF-independent induction of apopsas infected
or chronically infected macrophages in surroundiognpartments
a. Kill half of intracellular Mtb
b. Remaining Mtb uniformly distributed in Moore
neighborhood
c. Increments local caseation counter
c. Cytotoxic T
i. Chance of perforin/granulysin-mediated killing of &hd M;
1. If M;is found, chance of Mand Mtb death, CCLS5 release
2. If Mg is found,
a. 75% chance of Mand Mtb death, CCLS5 release
b. 20% chance of M death, Mtb dispersal, CCL5
release
c. 5% chance nothing happens
3. Probability of TNF-independent apoptosis inductiiom;
or Mg
a. Kill half of intracellular Mtb
b. Remaining Mtb uniformly distributed in Moore
neighborhood
c. Increment local caseation counter
d. Regulatory Teq

I. Chance of inactivating pro-inflammatory T cells)(T

1. Inactive T, state lasts foter, timesteps.
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4.6  Appendix: Detailed methods

4.6.1 Uncertainty and sensitivity analyses

With the Latin hypercube method we determine reievanges for each
parameter (Tables 4.1 and 4.2), partition this eangpM (= 250) intervals, and sample
each interval once. We sample parameters from umitw log-uniform distributions,
depending on the size of the sampled parameteer@raple 4.1). These samples for
each parameter are combined to fdvntotal parameter sets.

Statistical sensitivity analysis allows the quaaétfion of each uncertain
parameter by correlating several outcome variataésTables 4.A1-4.A4) with
variations in each parameter, to compute a padrdt correlation (PRC). One PRC
exists for each parameter-variable pair, varyinlgvben —1 and 1, and representing the
strength of relationship between the parametewvandble. We use a T test to determine
if the correlations are significantly greater ttzmo, and a Z test to determine if two
correlations significantly differ from each othBrue to the number of comparisons
made, we use a false-detection correction methD&R}Fo prevent spurious indications
of significance. For a review of uncertainty andsgvity analysis methods in systems
biology, see (26).

One requirement of statistical sensitivity anayssed here is monotonicity
between each parameter-variable relationship. Aigatncertainty may cause the model
to violate this requirement. Based on recent worédr group (26), we use a modified
methodology where each sampled parameter set X tinmes, with the average of the

outcomes used for the sensitivity analysis. Bére chosen to be 4, which is sufficient to
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reduce the level of uncertainty for this analy$isus the total number of simulation runs

for each sensitivity analysis i$¥= 1000.

4.6.2 Measurement of granuloma size

One benefit of an ABM is that it has a spatiakesgntation. To take advantage of
this, we developed an algorithm to determine gramal size for use as an outcome
variable in sensitivity analysis. The process waslenas simple as possible, with the goal
being a quantitative measure of a spatial chaiattefor sensitivity analysis. First, a
graph of each granuloma at 200 days post-infe¢adnFigure 4.A1) was manually
scored for a granuloma-like structure. Cases lachidistinct mass or ring of
macrophages were assigned a size of 0. For thameigawe determined the granuloma
size based on the median distance from the grittcéroordinate (50, 50)) of all
macrophage types defined to be a part of the goamaul To define the edge of a
granuloma, a macrophage was counted as being grainelloma if more than 6 other

macrophages were in its Moore neighborhood.

4.6.3 Simulated deletion and depletion of TNF aigs

Five separate parameters were changed to tesdtaites in specific TNF
activities. In a total TNF deletion/depletion, tof&F secretion (parametsfyr) was set
to 0. We removed the effect of TNF-induced trande¢helial migration by setting TNF-
related recruitment parametergq{r andrrne) to 0, and the effect of TNF-induced
apoptosis activity was removed by setting the plodity of TNF-induced apoptosis

(Papopt) to 0. We removed macrophage sensitivity to TNES&Ying the sensitivity
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threshold @) to an unattainable level ()0 To remove specific TNF-induced effects
on macrophages, we introduced auxiliary parametgisrrepresenting the threshold for
TNF-induced activationzenr, representing the threshold for TNF-induced

cytokine/chemokine secretion, angosne, representing the threshold for TNF-induced

apoptosis. We then set each threshold to an unattai level (1).
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4.7  Appendix: Granuloma Structures

SR e R AT | i,
Figure 4.Al.(This figure is 3 pages long.) Attainable granudostructures 200 days
post-infection from one run of global uncertaintyabysis. Slides are sorted by number of
extracellular bacteria from left to right and ta@pbiottom. 120 total simulations that did
not predict complete bacterial elimination are shoWumbers indicate lqg
extracellulamM. tuberculosis number. Cells are colored as in Figure 4.3. Gpks are
colored as follows: green, orange, red and blueesting, infected, chronically infected
and activated macrophages, respectively; yellowaegllular bacteria; brown, caseation;
prink, purple and light blue, pro-inflammatory, cigxic, and regulatory T cells,
respectively.
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Figure 4.A1B. (continued from previous page)
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Figure 4.A1C. (continued from previous page)
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4.7.2 Granuloma structures in targeted deletiondampdetion of TNF activities

Figure 4.A2.(This figure is 5 pages long.) Granuloma structyme=dicted for deletion
and depletion of each specific TNF activity. Repies of structures containing infection
at day 200 are shown. A. Baseline case with all BNfifvities present. B-1. Deletion and
depletion, respectively, of: all TNF activity (B);a' NF-induced recruitment activity (D,
E); TNF effects on macrophage activation activity G); and TNF-induced chemokine
and TNF secretion from macrophages activities JHnID and F, less than 15 are shown
due to complete bacterial elimination occurringdoefday 200 in some instances.
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Figure 4.A2 D-E. Deletion (D) and depletion (E) of TNF-induced rgtment.
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4.7.3 Granuloma structures in targeted deletiondmmletion of TNF activities

Figure 4.A3.(This figure is 9 pages long.) Granuloma structymeedicted for ten
replicates of deletion and depletion of specificFTattivity combinations. Replicates of
structures containing infection at day 200 are shoAvR. Deletion and depletion,
respectively, of: apoptosis + activation (A, B)pafosis + secretion activities (C, D);
activation + recruitment activities (E, F); actiet + secretion activities (G, H);
recruitment + secretion activities (I, J); recrusmh + activation + apoptosis activities (K,
L), recruitment + activation + secretion activiti@®s, N); recruitment + apoptosis +
secretion activities (O, P); activation + apoptasigecretion activities (Q, R). Each
activity refers to specific TNF-induced activitidsistrated in Figure 4.1A. In some, less
than 10 are shown due to complete bacterial eliiwinaccurring before day 200 in
those instances. The combination of apoptosis ruitetent deletion and depletion is
omitted due to complete bacterial elimination pecestl for all simulations.
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Figure 4.A3 C-D. Deletion (C) and depletion (D) of TNF-induced ajusis and

chemokine/TNF secretion from macrophages.
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Figure 4.A3 E-F.Deletion (E) and depletion (F) of TNF-induced nugatrage activation
activity and recruitment of immune cells.

187



duced nudrage

(H) of TNF-in

from macagas.

(G) and depletion

-H. Deletion

igure 4.A3 G
activation and chemok

F

ion

/TNF secret

ine

188



Figure 4.A3 I-J. Deletion (I) and depletion (J) of TNF-induced inmewcell recruitment
and chemokine/TNF secretion from macrophages.
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Figure 4.A3 K-L. Deletion (K) and depletion (L) of TNF-induced imnaucell
recruitment, apoptosis and chemokine/TNF secrdtmn macrophages.
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Figure 4.A3 M-N. Deletion (M) and depletion (N) of TNF-induced imnaucell
recruitment, macrophage activation, and chemokiNE/$ecretion from macrophages.
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Figure 4.A3 O-P.Deletion (O) and depletion (P) of TNF-induced immatcell
recruitment, apoptosis and chemokine/TNF secrdtmm macrophages.
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Figure 4.A3 Q-R. Deletion (Q) and depletion (R) of TNF-induced nugtrage
activation, apoptosis and chemokine/TNF secretiomfmacrophages.
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4.8  Appendix: Global sensitivity analysis and mulple TNF deletions/depletions

Table 4.A1. Significant partial rank correlations between pagters and granuloma
variables 200 days post-infectibn.

aBi e Tactm Mrecr Thove STNF TTNFsec
Be +++ | + - —
Bi ++ — —
Total T cells + -
Ty + - --
“Secretor” T ++ 4+
Te + - —
Treg - -
Total Macrophages +
M; 4+ | - —
M; ++
Mqi ++ - -
Ma -
TNF - -
Chemokines - -
Caseation +++4
Be growth rate ++ - .
Granuloma Size + + +

Yparameter definitions are given in Tables 4.1-8ignificant positive correlations: +++
(p < 0.0001); ++ (p < 0.001); + (p < 0.01). Sigednt negative correlations: --- (p <
0.0001); -- (p < 0.001); - (p < 0.01).

’Number of T cells actively secreting IFN-
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Table 4.A2. Significant partial rank correlations between paggers and granuloma

variables 20 days post-infection (immediately pdacg adaptive

immunity) !
2] Oge | Mreer | Omne SINF | TinFsec | FrnFapopt | Papopt
Be + +++
B; +++ ++ -
Total it
Macrophages
M, +++ - - --
M + + -
Mg +++ —
TNF - + —
Chemokines + + - - +
Be growth t N
rate

'Parameter definitions are given in Tables 4.1-8ignificant positive correlations: +++

(p <0.0001); ++ (p < 0.001); + (p <0.01). Sigcant negative correlations: --- (p <
0.0001); -- (p < 0.001); - (p < 0.01).
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Table 4.A3. Significant changes in granuloma variables at @& post-infection for deletion and depletion ainbinations of two
individual TNF activities versus the baseline cohscenarid. Sample granuloma structures for each deletion and
depletion are shown in Figures 4.9 and 4.A2. AgdFdnduced apoptosis; Rec: TNF-mediated recruitiné&at TNF-
mediated activation; Sec: TNF-induced chemokine/BNéretion.

Apo + Rec| Apo+ Act| Apo + Seq Act + Reg Act + Sec Rec + Sec
Del | Depl| Del | Depl| Del | Depl| Del | Depl| Del | Depl| Del | Depl
Be --- -—- +++ | +++ ++ | | |
Bi — | A | - +++| |
Total T cells + +++| A - -- ++ -
Ty + +++ | | - -- ++ -
“Secretor” T2 + - - - + ++ |+t
Te + ++ | +++ |+ - - + -
Treg + ++ | | -
Total Macrophages +++ - -
M, +++ | +++ | --- -
M; --- — | | | - -- +++| +++ ++
M --- +++ | +++ ++ +
Mg ++ + --- --- --- --- ---
TNF + +++ |+ | ++
Chemokines + ++4H 4+ +4
Caseation - + ++ +4H + +Ht +
Granuloma Size Nb| ND* | ND® | ND* | - +++

+ denotes a higher variable value for the deletiodepletion than the control scenario; - denotiesvar value.

+++ (p < 0.0001); ++ (p < 0.001); + (p < 0.01). @fgcant negative correlations: --- (p < 0.000%)(p < 0.001); - (p < 0.01).
’Number of T cells actively secreting IFN-

3Granuloma structures lack distinct bounds for qifiaation in these cases.
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Table 4.A4. Significant changes in granuloma variables at @@ post-infection for deletion and depletion ainbinations of
three individual TNF activities versus the baselinatrol scenarib Sample granuloma structures for each deletion and
depletion are shown in Figures 4.9 and 4.A2. AggEdinduced apoptosis; Rec: TNF-mediated recruitmnéott TNF-
mediated activation; Sec: TNF-induced chemokine/BRé&retion.

Rec + Act + Apo| Rec + Act+ Sef Rec+ Apo + Jec tAApo + Sec
Del Depl Del Depl Del Depl Del Depl

Be +++ +++ +++ +++ +++ +++
B; +++ +++ +++ +++ +++ +++
Total T cells +++ +++ - - — +++ +
Ty +++ +++ - - - +++
“Secretor” T - + - - +4+ +
Te +++ +++ - +++ +
Treg +++ +++ +++ +
Total Macrophages +++ +++ -- - +++ +
M, +++ +++ - - +++
M; +++ +++ +++ +++ - - +++ +++
Mei +++ +++ ++ ++ +++ +++
Ma -- +
TNF +++ +++ ++ +++ +++ +++
Chemokines +++ +++ ++ +++ +++ +++
Caseation +++ +++ +++ +++ + +++ +++H
Granuloma Size ND | ND® ++ +H+ +++

+ denotes a higher variable value for the deletiodepletion than the control scenario; - denotiesvar value.

+++ (p < 0.0001); ++ (p < 0.001); + (p < 0.01). @igant negative correlations: --- (p < 0.0001)(p < 0.001); - (p < 0.01).
“Number of T, cells actively secreting IFN-

3Granuloma structures lack distinct bounds for djfiaation in these cases.
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