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Abstract
 

Immunological signaling pathways between and within cells are central 

determinants of the success of immune responses. One major characteristic of immune 

signaling is a balance that is struck between pro-inflammatory responses to pathogens 

and anti-inflammatory regulation that stabilizes and modulates immunity. Mycobacterium 

tuberculosis is a successful human pathogen that preferentially survives within host 

macrophages, the very immune cells that act to eliminate it. Exploitation of the balance 

between pro- and anti-inflammatory mechanisms may be a strategy for M. tuberculosis 

survival within macrophages. This work first explores the evolved design principles of 

intracellular macrophage activation pathways relevant to countering M. tuberculosis 

infection. I used a mathematical model of the macrophage intracellular signaling network 

to predict that multiple synergistic activation signals are balanced by negative (anti-

inflammatory) feedback from a single output, the killing effector nitric oxide. Without the 

presence of two activation signals, the feedback is antagonistic toward high levels of 

activation. I next implemented a representation of a growing intracellular population of 

M. tuberculosis in the macrophage signaling model. This shows that negative feedback of 

nitric oxide to activation signaling may not optimally kill bacteria compared to a possible 

positive feedback design. However, the model predicts that negative feedback imparts a 

kinetic advantage to elevating nitric oxide levels. The kinetics of nitric oxide induction 

offset the disadvantage of negative feedback if the timing of activating cytokine delivery 

occurs near the time of macrophage infection. On a different biological scale, I explored 



 xi 

the roles of activation signals in M. tuberculosis infection with a computational agent-

based model of granuloma formation. Model results suggest that multiple effects of the 

pleiotropic cytokine tumor necrosis factor-α (TNF) are an essential feature of TNF 

function: loss of single TNF activities did not result in granuloma structures comparable 

to deletion of all TNF activity. Perturbation of multiple TNF activities simultaneously 

showed synergistic and competitive effects of individual TNF activities in granuloma 

formation. Finally, I explored possible ways to integrate a single-cell stochastic model of 

macrophage gene regulation into an agent-based model to simulate the roles of 

intracellular signaling in the context of the granuloma environment. 
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Chapter 1 

Introduction 

 
 Mycobacterium tuberculosis (Mtb) is among the most successful pathogens in the 

world, with approximately one third of the human population (two billion people) 

currently infected. Mtb is a slow-growing bacillus spread by small aerosol doses that 

survive in host lung macrophages. Infection induces an adaptive immune response that is 

usually successful at containing infection, but frequently fails to clear it, instead forming 

stable aggregates of immune cells called granulomas leading to a long-term latent state 

(reviewed in 20). 

During any infection, immunological signaling events between and within cells 

are central determinants of the success of immune responses. Immune responses must 

effectively enable clearance of a constant onslaught of insults, including pathogens, non-

pathogenic organisms and other foreign bodies. However, bactericidal effectors and pro-

inflammatory signals are costly to host health. Thus, signaling must strike a balance 

between pro-inflammatory effects and anti-inflammatory regulation. The success of Mtb 

as a human pathogen may have arisen from exploiting this balance: if immune signals do 

not permit sufficient inflammation for bacterial clearance, the infection can indefinitely 

persist in a latent state. This represents a potential survival strategy for Mtb. 

 Clearly, the role of signaling– activation, de-activation, and coordination of 

immune responses– is an important element of host-pathogen interactions with Mtb. 
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Ongoing experimental work continually reveals increasing complexity, apparent 

redundancy, and counterintuitive effects for pro- and anti-inflammatory signals in 

immune responses to Mtb. This invites the application of mathematical and 

computational analysis that can explain subtle roles of immune signaling in Mtb infection 

that are currently inaccessible with other approaches. 

 

1.1 Immunological events and infection with M. tuberculosis 

1.1.1 Innate and adaptive immunity 

Typical Mtb infection begins with inhalation of a small number of bacilli (on the 

order of 10) into the lung. Alveolar macrophages engulf the bacteria and possibly seed 

infection in lung parenchymal tissue, the highly vascularized environment of oxygen 

exchange comprised of at least 10% blood vessels and alveolar septa (29). During the 

initial stages of Mtb infection, infected neutrophils and macrophages produce the pro-

inflammatory cytokine tumor necrosis factor-α (TNF) (12, 16, 36) and chemokines that 

recruit immune cells to the site of infection (30, 31, 49, 58). Macrophages infected with 

Mtb produce the cytokine IL-12 (34), which induces a cell-mediated Type-1 adaptive 

immune response. 

Type-1 adaptive immunity is required to control infection in humans and in 

mouse models (11). In this type of response, activated CD4+ T cells from the draining 

lymph nodes migrate to the site of infection in the lung to provide the macrophage-

activating cytokine interferon (IFN)-γ and contribute to production of TNF (67) in 

response to phagosome-derived antigen presented by macrophages. CD8+ T cells are 

recruited to the lungs  from the draining lymph nodes of Mtb infected mice with similar 
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kinetics to CD4+ T cells (17, 60). These cells respond to cytoplasmic antigen presented 

by macrophages, producing pro-inflammatory cytokines (including IFN-γ) and lysing 

infected macrophages (reviewed in 20). 

A third subset of T cells known as regulatory T cells (Treg) have a modulatory role 

in adaptive immune responses (53). Tregs are CD4+/Foxp3+ and comprise approximately 

5-10% of all CD4+ T cells (3, 53). They suppress the action of pro-inflammatory T cells 

(63), possibly through cell-contact-mediated or immunosuppressive cytokine mechanisms 

(4). Treg cells are present in mouse (40) and human (23) Mtb infections, and lower the 

effectiveness of the immune response at eliminating bacteria (46, 50). 

 

1.1.2 Granuloma formation 

The classic feature of pulmonary Mtb infection is the formation of granulomas in 

the lung. In humans and non-human primates with latent pulmonary infection, 

granulomas form as well-circumscribed masses in the lung parenchyma comprised of 

resting, infected and activated macrophages with a characteristic cuff of activated CD4+ 

and CD8+ T cells on the periphery (15, 48). At the level of a single granuloma, 

macrophages may fail to control infection, leading to caseous or necrotic granulomas 

harboring large numbers of bacteria within macrophages (15). TNF gene-disrupted mice 

have disorganized, dissolved granulomas in Mtb infections (5), underscoring the link 

between granuloma structure and effective containment of infection. However, the 

relationship between bacterial control in a single granuloma and the outcome of infection 

at the level of the entire host is not well established. 
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1.1.3 Molecular signals that activate macrophage responses to M. tuberculosis 

Communication between immune cells depends on molecular-scale signals that 

coordinate immune cell responses. Pro-inflammatory cytokines TNF and IFN-γ are one 

facet of this communication network. TNF and IFN-γ activate macrophages in a 

complementary manner, promoting anti-microbial genetic programs (18, 19, 51) through 

separate intracellular signaling pathways that form a central component of host defense 

against Mtb infection (these are discussed in detail below). Differences in the functional 

roles of IFN-γ and TNF extend beyond macrophage activation. Unlike IFN-γ, TNF has 

several distinct functional activities: it also induces apoptotic cell death in macrophages 

(35) and has a direct role in cell recruitment via up-regulation of endothelial adhesion 

molecules (71), facilitating trans-endothelial migration of immune cells to the site of 

infection. 

The spatial distribution of TNF and IFN-γ may also differ. IFN-γ is secreted by 

activated T cells directly to the immunological synapse (27), which forms at the interface 

with antigen presenting cells such as macrophages. In contrast, TNF was shown to be 

secreted multi-directionally from T cells (27) in addition to being produced by activated 

macrophages (12). 

 

1.1.4 Molecular signals that coordinate immune cell recruitment 

Chemokines, which direct immune cells to sites of infection, are a second facet of 

molecular scale immune signaling that induce trans-endothelial migration (reviewed in 

65) and coordinate recruitment of immune cells to the site of infection by establishing a 

chemotactic gradient (reviewed in 61). 
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We constructed a simplified model of chemokines with three classes that affect 

recruitment of macrophages and T cells to the granuloma via binding of appropriate 

chemokine receptors on the cell surface. The α-chemoattractant class (CXCL9,10, and 

11; formerly Mig, IP-10 and I-TAC, respectively) binds chemokine receptor CXCR3 on 

pro-inflammatory CD4+ and CD8+ T cells (42), but not regulatory T cells (33). CCL2 

(formerly MCP-1) binds CCR2 on macrophages (64) and proportions of pro-

inflammatory T cell populations (47). CCL5 (formerly RANTES) binds CCR5 on 

macrophages and T cells, and is necessary for migration of regulatory T cells to the site 

of Mtb infection (70). 

 

1.2 Mechanisms, strategies and effects of macrophage activation 

 Typically, resident tissue macrophages readily clear foreign bodies by 

phagocytosis. Mtb is resistant to innate clearance mechanisms, requiring macrophages to 

receive T cell-derived signals to become activated sufficiently to kill intracellular bacteria 

(22). The adaptive immune response controls infection by inducing a genetic program in 

macrophages that produces toxic anti-microbial effectors in quantities that are potentially 

detrimental to long-term health of the host. Given the costs to the host associated with 

this , we reason that macrophage activation lies behind a threshold that makes it a 

relatively rare occurrence. This threshold is of interest when considering Mtb infections, 

since it provides an evolutionary goal for Mtb survival in the host (namely, to exploit 

mechanisms that maintain the quiescent or near-quiescent macrophage state). We now 

examine mechanisms by which macrophages may balance the requirement of its typical 
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goal to maintain a stable quiescent state with the potential for reaching highly activated 

states. 

 

1.2.1 NF-κB and JAK/STAT intracellular signaling pathways 

 Activation signals, including TNF, IFN-γ and bacterial products, induce 

intracellular second messengers that lead to transcriptional reprogramming of 

macrophages receiving these signals. In Mtb infection, two signaling pathways stand out 

as central to bacterial control: NF-κB and JAK/STAT. 

The NF-κB signaling pathway (59) is pro-inflammatory and general, operating in 

most cell types (21). Signals that are transduced from toll-like receptor (TLR)-antigen 

binding (reviewed in 8) or TNF-TNFR1 binding (reviewed in 67) on the macrophage cell 

surface result in ubiquitin-mediated degradation of inhibitor of NF-κB (IκB). This leads 

to the release of formerly captive NF-κB into a transcriptionally active form capable of 

translocating into the nucleus (21, 59). NF-κB may be activated by products from Mtb, 

including lipoarabinomannan (LAM) (9). 

 The Janus kinase (JAK)/signal transducer and activator of transcription (STAT) 

pathway depends on auto-phosphorylation of JAK due (in the relevant pathway here) to 

dimerization of IFNR1 (1). This results in phosphorylation and homodimerization of 

Stat1-α into a transcriptionally active form that binds the γ-Activating Sequence motif of 

gene promoters. 

 

1.2.2 Transcriptionally regulated nitric oxide production 
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NF-κB and Stat1 regulate a number of genes, but one stands out as especially 

important for responses to Mtb: inducible nitric oxide synthase (iNOS), the enzymatic 

producer of nitric oxide (NO) (reviewed in 44). (69). Binding sequences for NF-κB and 

Stat1 homodimer appear in the mouse and human promoter regions of the iNOS gene, 

and the NF-κB pathway is complementary to and synergistic with Stat1 in iNOS 

transcriptional activation in mouse macrophage cultures (38). 

Of the known mechanisms of pathogen killing by macrophages, NO and other 

reactive nitrogen intermediates (RNIs) appear to be the sole effective mechanisms in 

vitro. NO is a free radical that interacts promiscuously with other molecules, lending 

generality to its anti-microbial effects, and making it a regulator of multiple intracellular 

mechanisms. In particular, it feeds back to NF-κB in either an inhibitory, stimulatory, or 

bi-modal manner (i.e. inhibitory in some circumstances, stimulatory in others; (10)). Like 

NF-κB, Stat1 appears to be regulated by RNIs as well, apparently in an anti-

inflammatory manner (37). The resulting picture of macrophage activation affecting 

iNOS transcription is of multiple, synergistic signals regulated in a feedback manner by 

RNIs. 

 

1.2.3 Nitric oxide interaction with iron regulation 

 Another complexity arising from the reactivity of RNIs is that free intracellular 

iron in the labile iron pool (LIP) readily interacts with it, and the two are co-regulated 

(32). In addition to this, iron is the growth-limiting nutrient for nearly all intracellular 

pathogens, including Mtb (56). In both ways iron regulation is an important consequence 

of infection and macrophage activation. 
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 As extracellular iron from blood or surrounding tissue circulates, it is chelated 

into transferrin or lactoferrin, and resident tissue macrophages clear it by internalization 

via the transferrin receptor (TfR) or phagocytotic ingestion (43). A homeostatic 

intracellular apparatus regulates the levels of intracellular iron by directly sensing iron 

concentrations in the cytoplasm: Free iron binds to iron regulatory proteins (IRPs) with 

high affinity, freeing IRPs from causing translational arrest of the production of ferritin, a 

large shell-like chelator of intracellular iron (62). Therefore, the resulting increase in 

cytoplasmic iron levels permits ferritin-mediated iron chelation. Several studies point to 

nitric oxide/RNI-mediated regulation of IRP1 and IRP2, sometimes with conflicting 

results: RNIs may differentially regulate the IRPs (7, 68). The link between iNOS 

regulation and iron homeostasis involves feedback as well: elevated cytoplasmic iron is 

associated with inhibition of iNOS transcription through C/EBP-β (formerly NF-

IL6)(14). This factor is necessary but not sufficient for iNOS transcription (24), allowing 

suppression, but not activation, of iNOS transcription by changes in intracellular iron 

levels. 

 

1.3 Design principles of integrated macrophage function 

 The macrophage subsystems presented in the previous sections form a 

biochemical network responsible for regulating activation in response to extracellular 

signals (Figure 1.1). The entire network is comprised of three primary functions, referred  
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Figure 1.1 Pathways of macrophage activation relevant to infection with Mycobacterium 
tuberculosis. These include NF-κB- and Stat1-induced transcriptional upregulation of 
inducible nitric oxide synthase, producer of the free radical nitric oxide (NO) that 
regulates many components of the macrophage and acts as an anti-microbial effector 
against intracellular mycobacteria. Relevant macrophage components can be split into 
three individual functions that are co-regulated, referred to as functional modules: 
Activation, Killing, and Iron Regulation. 
 

to herein as functional modules: Activation, Killing, and Iron Regulation. The 

components in each module interact reciprocally with one or more neighboring modules, 

forming an integrated system whose response to macrophage activation is affected by 

intermodule interactions. 

In some cases (e.g. RNI feedback to NF-κB), these interactions are poorly 

understood from experimental work. That is, the magnitude of the interaction (strong 

versus weak) may be unknown and the sign of the interaction (i.e. whether it is 

stimulatory or inhibitory) is ambiguous or unknown. Even where it is known what type of 

interaction occurs, the consequences of this to the integrated system calls for further 

elucidation. 
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We reason that the intermodule interactions of the macrophage network have 

undergone evolutionary selection, which has gradually optimized the process of 

macrophage activation to meet the functional needs of macrophages, including a balance 

between a quiescent state and the rare need for high activation levels. Therefore, based on 

possible selective advantages of certain types of intermodule interactions, we hypothesize 

that the system has evolved according to underlying design principles. One major goal of 

this work is to determine the design principles of macrophage activation based on the 

types of intermodule interactions that optimize macrophage function. 

 

1.4 Dynamic interactions of macrophage components with intracellular 
M. tuberculosis 

 A successful intracellular parasite exploits host cell machinery for survival, 

forming a micro-environment favorable to growth. In the case of Mtb infection, this 

appears to start with the inhibition of phagosome-lysosome fusion in macrophages (2, 

13). Once inside a mycobacterial phagosome, Mtb bacilli depend on intracellular iron for 

continued growth (45). 

 Mtb within host macrophages survive if bactericidal levels of macrophage 

activation have not been reached (c.f. Section 1.2), and during an ongoing adaptive 

immune response, the location and timing of TNF and IFN-γ signals may differ (c.f. 

Section 1.1.3), affecting activation kinetics. For instance, if one or both of TNF and IFN-

γ signals precede infection, so that macrophages are to some degree already activated 

before infection, is this favorable to the host? 

Alternative macrophage network designs may also affect the kinetics of response; 

for instance, in other systems negative feedback has been shown to speed response times 
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in some inducible circuits (52). We therefore extend the concept of design principles to 

interactions with intracellular Mtb by asking what effects different possible macrophage 

network designs have on effective killing of Mtb. If an optimal activation strategy exists, 

this in turn may be subject to exploitation by a specialized pathogen. Therefore, 

understanding the kinetic roles of activation timing during infection may also suggest 

mycobacterial strategies to prevent bactericidal immune responses. 

 

1.5 A mathematical formalism for studying macrophage design principles 

1.5.1 Biochemical Systems Theory 

 Biochemical Systems Theory (BST) is a mathematical formalism developed for 

studying the integrative behavior of complex biochemical networks encompassing a 

number of tools developed to address the question of network design principles. This 

makes it a natural choice for studying the behavior of macrophage activation signals at 

the scale of interest here. 

 The basic concept underlying BST models is linearization of biochemical fluxes 

using logarithms (55). In logarithmic space, many functions are accurately approximated 

with a piecewise linear model, including non-linear sigmoidal and saturating functions 

appropriate for representing biochemical processes. This allows the estimation of a 

biochemical flux (dependent on n regulators Xi) in logarithmic coordinates using a first-

order (i.e. linear) Taylor approximation that is local to a nominal set-point. For a flux V 

dependent on n regulators (Xi), the Taylor polynomial is of the form 

2

1 1

log log O( [log ] )
n n

i i i
i i

V a g X X
= =

= + +∑ ∑ . 
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Near the set point, the higher order terms are small; discarding them for this 

approximation and transforming back to linear coordinates gives an approximate 

quantitation of the flux as a product of power laws: 

1 2 1 2
1 2 1 2

n ng gg g g ga
n nV e X X X X X Xα= ⋅⋅⋅ = ⋅⋅⋅ . 

 The BST formalism provides a canonical mathematical form (66). That is, the 

underlying mathematical structure is uniform with differences between models 

completely specified by the topology of the network under study. Therefore, analytical 

results from these models are very general, and applicable to any network with the same 

characteristics. The model can be further generalized with the use of piecewise power law 

approximations that allow the modeler to set a threshold where the parameter values are 

changed to improve the accuracy of the model far from the set-point (54). 

We represent the network describing macrophage activation pathways shown in 

Figure 1.1 with an S-system type of BST model. In an S-system model, each variable, Xi, 

is dynamic, with single aggregate terms representing production or consumption flux, so 

that the model is specified by a system of ODEs of the form: 

1 1

ij ij

n m n m
g hi

i j i j
j j

dX
X X

dt
α β

+ +

= =

= −∏ ∏  with n dependent and m independent variables. 

 

1.5.2 Mathematically controlled comparison 

 One of the primary advantages of mathematical models is the ability to easily 

manipulate components of the model. However, determining the effects of these changes 

in a model is not necessarily a trivial task. Studying design principles of the network calls 

for a rigorous method for determining the performance of alternative design possibilities. 
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We argue that high-performing designs have selective advantages over inferior designs 

(e.g. stimulatory versus inhibitory regulation of one component by another improves 

overall system performance by some criteria). The method of mathematically controlled 

comparisons (28) was developed for rigorous comparisons of alternative design 

possibilities for individual regulatory pathways of interest (local analysis). For global 

analysis of parameter space, we use statistical sensitivity and uncertainty methods 

(Section 1.7 below). 

One requirement for local analysis is that we determine functional criteria by 

which to judge the effectiveness of alternative designs. The specific choice of criteria 

depends on the functional goal of the system. For the macrophage model, we use three 

criteria previously shown to predict design principles in other inducible gene circuits 

(25): stability, robustness, and dynamic responsiveness. Stability refers to the ability of 

the system to return to steady state after a small change in component levels, determined 

in this system with the Routh-Hurwitz method. Robustness means the relative 

insensitivity of model variables and production/consumption rates to perturbations in 

parameters and other external components, measured by logarithmic gains of each 

dependent variable (Xi) and flux (Vi) in response to independent variable and parameter 

perturbations. (Logarithmic gains are mathematically defined as ˆlog / logX p∂ ∂ , 

intuitively meaning a quantitation of the level of perturbation of molecule X by changes 

in parameter p when the system is in steady state.) Finally, responsiveness represents a 

fast temporal change in NO levels after activation signals, reaching the activated steady 

state as quickly as possible after induction. Stability and robustness are, in principle, 

determined analytically from the model; this lends the analysis a level of independence 
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from choices of parameter values. Responsiveness requires choosing realistic parameter 

values for numerical simulations. 

 With these criteria defined, we alter regulatory interactions of interest in a manner 

constrained to ensure that the systems under comparison are as nearly identical as 

possible, the only remaining changes therefore confidently attributable to the parameter 

under study. Two parameter constraints are introduced to achieve this: internal and 

external equivalence. Internal equivalence requires all parameters not part of the 

regulatory flux of interest (e.g. iV +  for parameter gij under study) to be equal. The second 

requirement, external equivalence, introduces corrections for parameters in the regulatory 

flux of interest based on holding constant an external, observable behavior of the model: 

in the case of the macrophage model, gain of iNOS protein from activation signals. This 

is necessary since non-linearities in the model may introduce irrelevant differences from 

varying the regulatory parameter under study.  

 

1.6 Multi-scale computational model of signaling in a mycobacterial granuloma 
 
 The ordinary differential equation modeling framework has historically been the 

most fruitful route for building predictive models of any kind of physical system. 

However, its limitations, particularly in a biological context, become obvious when 

seeking an integrated understanding of very complex systems. In the dynamics of 

immune responses to Mtb, individual macrophages and T cells interact with each other 

and with molecular scale signals. A realistic model of this system should integrate all 

relevant spatio-temporal scales. Spatially, this ranges from the molecular to the tissue to 

organismal scales with temporal events occurring on the order of second to years. One 
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promising method for capturing all the relevant scales and interactions is an agent-based 

model (ABM). An ABM is a computer algorithm that encompasses any interactions 

capable of being programmed. Therefore, continuous and discrete spatiotemporal effects 

may be represented in any level of detail within the constraints of computational power. 

 ABMs are developed based on four considerations: agents, the rules that describe 

the agents and their interactions, the environment on which the agents reside and the 

timescales on which events are defined. Molecular scale events may be represented 

continuously with either discretized ordinary or partial differential equations while each 

immune cell is a discrete entity with a location and conserved properties over time. 

Algorithms in the model represent genetic and biochemical programs in cells that allow 

each cell to respond, deterministically or probabilistically (as appropriate) to stimuli. The 

details of the algorithms are determined from experimental data. The passage of time is 

discretized into the smallest appropriate step, set by the fastest process in the model. Cell 

movements and interactions are updated at appropriate intervals based on model 

algorithms. A remarkable outcome of this type of model is emergent behavior: that is, 

simulations show system-wide behaviors that are the result of agents interacting locally. 

Previously, Segovia-Juarez et al (57) developed a simple ABM of granuloma 

formation during infection with Mtb using two cell types and a non-specific chemokine 

for cell recruitment. This model was able to reproduce different types of granulomas (that 

both contain infection and fail to do so), but it lacks sufficient mechanisms to study the 

specific roles of cytokines, chemokines and specific cell types in granuloma formation 

and function. We have extended this previous model to study the role of pro-

inflammatory cytokines and multiple T cell subtypes in determining resulting granuloma 
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formation. We distinguishing between three possible outcomes at the level of a single 

granuloma: elimination of bacteria, controlled growth (i.e. a latent state), and 

uncontrolled bacterial growth. 

 

1.7 Statistical methods for parameter space sampling and sensitivity analysis 

 Mathematical and computational models that represent detailed mechanisms 

involved in biological processes inherently contain many parameters, and in most cases 

realistic values are difficult or impossible to determine. Thus, sophisticated methods are 

necessary for determining how parameters, which represent specific mechanisms in the 

system, affect model outcomes. In a statistical approach to this problem, each parameter 

is given a plausible interval and values in this interval are selected in a Monte Carlo 

sampling scheme; randomly combined values from each parameter give N sets that 

represent a statistical sample of the entire plausible parameter space. Here we use Latin 

hypercube sampling (41), a stratification method that ensures high-efficiency sampling of 

the parameter space. Ideally, the choice of parameter distributions and intervals in this 

method should represent both an unbiased sampling of parameter space and physically or 

biologically plausible ranges for each parameter. In practice, the best choice of 

distributions and intervals is a trade-off between these two goals. 

 With a statistical sample of the parameter space, partial rank correlations (PRCs) 

quantify the effect of each parameter on a chosen model output. PRCs vary between –1 

and 1, respectively representing inverse and direct correlations. PRCs permit the output to 

be non-linear due to the ranking, but the relationship between the output and each 

parameter should be monotonic. In the case of models that have aleatory uncertainty (i.e. 
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uncertainty arising from random processes in the model), the monotonicity requirement 

may not be met. This situation occurs in ABMs. However, parameters with a particular 

effect on an output variable will continue to have this effect on average during 

simulations. Therefore, repeated simulations for each sampled parameter set will allow 

the average output of the model to be monotonic, allowing the use of uncertainty and 

sensitivity analysis with ABMs. 

Significance tests have been developed to determine if the PRC is different from 

zero (6) and to determine of two PRCs differ from one another (26). This allows 

discrimination between strong and weak parameter effects, and allows the determination 

of relative effects of different parameters on the model output (39). 

 

1.8 Understanding roles of immunological signaling in macrophage activation 
and infection with Mycobacterium tuberculosis 

 
 During infections with Mtb, immunological signaling is central in determining the 

success of host defenses. Massive experimental efforts and increasingly sophisticated 

experimental methods have resulted in a large list of components involved in 

immunological signaling and its role in mycobacterial infections. However, deeper 

understanding of the principles of immune signaling, and an integrated view of its role in 

larger-scale effects of infection, require systems-oriented approaches. 

 The aim of this work is to construct and analyze mathematical and computational 

models that capture several facets of immunological signaling involved with 

Mycobacterium tuberculosis infection. First, we analyze the role of the intracellular 

regulatory network involved with macrophage activation of nitric oxide production with a 

mathematical model. Second, we extend this model to understand the role of activation 
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signal timing during intracellular M. tuberculosis infection. Finally, we analyze the roles 

of signaling using an agent-based model in the larger-scale setting of pulmonary 

granuloma formation. 
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Chapter 2 

Requirement for Multiple Activation Signals 
by Anti-Inflammatory Feedback in Macrophages 

 

2.1 Introduction 

One of the primary roles of macrophages in the immune response is killing of 

internalized pathogens. Macrophages attain strong activation states for killing based on 

external signals received but must balance capability of activation with the need to stay 

quiescent in the absence of decisive stimuli. A resulting question is how the macrophage 

biochemical network balances alternate demands of different activation states. Our focus 

is the macrophage killing mechanism where exogenous cytokine and pathogen-derived 

endotoxin signals induce a genetic program resulting in the production of nitric oxide 

(NO) and NO-derived reactive nitrogen intermediates (51, 69), (based primarily on the 

well-studied mouse macrophage model). These NO-related species have the ability to 

directly kill internalized pathogens (8) while also acting as intracellular signals (25) in 

feedback that regulates activation pathways (39, 42, 43) and iron homeostasis regulation 

(32). The link between NO and iron homeostasis can alter NO production (67) and the 

availability of iron as a nutrient for pathogens (e.g. 59). The resulting picture is of an 

interconnected network with systemic consequences of macrophage activation depending 

on the presence of activating signals and exogenous iron (Figure 2.1). 

Due to the energetic demands of macrophage activation coupled with the toxic 

and perturbative nature of nitric oxide to surrounding tissues, macrophages must remain 
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quiescent in the absence of a decisive need for activation. When and only when the 

macrophage biochemical network receives a definite signal for activation, it must supply 

a sufficiently strong response: an integrated change in cellular state that induces 

conditions leading to growth inhibition and killing of internalized pathogens. This system 

has a modular organizational scheme; the integrated behavior of macrophages during 

activation is determined by factors within and between these modules. One possibility for 

controlling the trade-off between quiescense and activation is based on how the 

functional modules interact. To address the trade-off between quiescent and activated 

states we have developed a mathematical model of the biochemical network operating in 

macrophages that reflects this organizational scheme. 

Analysis of this model allows us to assess the influence of every interaction under 

both quiescent and activated macrophage conditions. We apply two levels of analysis 

here. A global statistical analysis allows us to determine the relative importance of each 

model parameter on macrophage activation outcomes. Local analyses of specific 

interactions yield network motifs that best meet evolutionary criteria for effective 

macrophage function. Together these analyses have revealed what network motifs allow 

the conflicting demands of macrophage quiescence and activation to be met. We define 

three functional modules of the macrophage biochemical network assessed with this 

approach: activation, killing and iron regulation (Figure 2.1). 

The activation module (AM) represents receipt of external stimuli that signal 

parallel second messengers: LPS-inducible NF-κB and IFN-γ-inducible Stat1. These 

signals transcriptionally induce production of inducible nitric oxide synthase (iNOS) (1) 

in a synergistic manner (40). The killing module (KM) represents the iNOS 
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transcriptional program, a cascade resulting in production of NO, which serves as a 

signaling molecule whose products in turn regulate NF-κB (10, 43) and Stat1 (39) in the 

AM. For simplicity we emphasize NO and its effects over other killing mechanisms such 

as superoxide (O2
− ). 

NO levels regulate amounts of iron in the labile iron pool (LIP) (32), an 

intracellular quantity of elemental iron that is either free or loosely bound to 

miscellaneous weak chelators (53) and available for metabolic use by many processes 

(30). LIP regulation is the primary goal of the iron regulation module (IRM), comprising 

cellular mechanisms of iron internalization and sequestration. LIP levels are increased by 

intake from extracellular transferrin-bound sources, and decreased by sequestration into a 

complex with ferritin. The IRM is coregulated with the KM via NO regulation of iron 

response proteins (IRPs) 1 and 2 (23, 31, 65) with indirect transcriptional regulation of 

iNOS by the LIP (67). Thus levels of KM and IRM components are interdependent. 

Our global and local analyses of the macrophage model suggest that anti-

inflammatory (negative) feedback by NO from the KM to the AM allows maintenance of 

a system that is robust to perturbations and generally more functionally effective than the 

equivalent system with no or positive feedback. This negative feedback scheme allows 

macrophages to stay quiescent or relatively minimally activated in the absence of 

decisive immune activation or under a single activation signal. However, it also allows 

for strong activation, but only in the presence of both endotoxin and cytokine activation 

signals. Only under sufficiently strong, multiple-signal activation conditions is the 

interaction between iNOS transcriptional regulators synergistic, a requirement for strong 

activation in this model. This effect partially results from NO-induced crosstalk between 
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activation signals that supresses one signal when the other is active. We also demonstrate 

that the co-regulation of NO and iron regulation in the presence of normal iron loads is 

asymmetric: elevated iron levels slightly suppress NO synthesis but cytokine and 

endotoxin signaling more dramatically upregulates the intake and sequestration of iron. 

Under partial activation conditions and high iron loads the influence of these two 

modules on each other reaches parity; the asymmetric relationship is mostly restored 

under complete activation. 

 

2.2 Methods 

We have developed a mathematical model describing macrophage biochemical 

processes based on three functional modules: activation, killing and iron regulation. The 

model is built on published experimental data primarily from mouse macrophage and 

human cell systems. We first describe the model and then discuss the methods for how 

the model is analyzed. The model equations and a discussion of parameter estimation are 

presented in the Appendix. 

 

2.2.1 Mathematical model representation 

We require a representation of the macrophage biochemical network that is 

dynamic, accurate over a wide range of molecular concentrations and allows analytical 

study. The local S-system representation of the power-law formalism (58) usually meets 

these requirements, sometimes requiring a piecewise representation for large deviations 

in concentrations (56). We choose this formalism over other model types due to the 

straightforward canonical representation of network motifs and previously developed 



 30 

analytical methods allowing conclusions to be drawn about the evolution of intermodule 

interactions. 

In an S-system setting, each molecular component in the macrophage is 

represented by one variable described by an ordinary differential equation (ODE). An n -

variable S-system is of the form d /d =i i iX t V V+ −−  where each 
=1

=
gn ij

i i jj
V Xα+ ∏  and 

=1
=

hn ij
i i jj

V Xβ− ∏  is an aggregate power law flux describing the production and 

consumption of molecule iX . Parameters iα  and iβ  are rate constants for production and 

consumption reactions, respectively. Parameters ijg  and ijh  are generalized kinetic orders 

that describe the influence of the variable jX  on the rate of iX  production or 

consumption (57). If a variable does not influence a given flux, the kinetic order is zero. 

If the influence is stimulatory, the kinetic order is positive; if it is inhibitory, the kinetic 

order is negative. The logarithmic gain ( , ) = ( ln / lnL x z x z∂ ∂ ) 0  and sensitivity 

0 0 0( , ) = ( ln / ln ) = ( / )( / )S x p x p p x x p∂ ∂ ∂ ∂  are useful steady state measures of the model's 

response where x  is any dependent variable or flux, z  is an independent variable, p  is a 

kinetic order or rate constant parameter and the subscript 0 indicates values determined at 

steady state. Despite the formally identical definitions of gains and sensitivities, we 

distinguish between them because logarithmic gains represent the system's response to 

external signals and precursors while sensitivity refers to the consequence of small 

perturbations in parameters. 

Our macrophage model consists of a 9-variable S-system whose mathematical 

specification is derived from a schematic representation of the system topology (Figure 

2.1). The complete set of equations is presented in the Appendix. We now highlight the 
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representation of some key interactions; for other interactions that are relatively 

straightforward, we leave the details to the Appendix. 

 

2.2.2 Activation Module 

We include only those variables necessary to reflect activation signaling in the 

context of the full model. We represent these pathways as concentrations of activated 

nuclear NF-κB and Stat1. Due to the relative speed of their activation upon signaling (on 

the order of minutes (21, 52) in a model that operates on the order of hours), we assume 

an instantaneous effect of cytokines and LPS on NF-κB and Stat1 nuclear translocation. 

This is an idealized model with mechanisms of feed-forward and feedback within the AM 

omitted. For NF-κB, we define the terms representing activation and feedback as 

16111
1 1 11 6=

gg
V X Xα+  and for Stat1, 26212

2 2 12 6=
gg

V X Xα+  where 1α  and 2α  are rate constants, 

11X  and 12X  are independent variables representing respective level of pathway 

activation from exogenous LPS and IFN-γ , and 6X  is the dependent variable [NO]. The 

kinetic orders 111g  and 212g  (both positive) scale the level of activation from respective 

LPS or IFN-γ  signal while 16g  and 26g  scale NO feedback respectively (see Table 2.1 

for specific definitions of parameters in the model). Both feedback interactions are 

predominantly considered negative (39, 42, 43), but not in every case for the feedback to 

NF-κB, where low [NO] may have a stimulatory effect (10). Loss of NF-κB (52) and 

Stat1 (20) activity from the nucleus due to inactivation and export are constitutive 

processes dependent on [NF-κB] and [Stat1], respectively. The NF-κB and Stat1 

pathways represent parallel signals with a symmetric relationship in the model structure 
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(Figure 2.1, Activation Module). This symmetry is quantitatively divided by parameter 

values specific to the signaling cascade. 

A partial activation state is defined by receiving only one of the two activation 

signals. Under the partial activation state induced by treatment with LPS alone, the 

resultant slightly elevated [NO] may have a negative feedback effect that suppresses 

Stat1 activation (2V + ) below the quiescent steady state as long as 26 < 0g . Whether or not 

this is plausible, or if the quiescent level of Stat1 activity cannot be further suppressed is 

unknown. Similarly, under activation by IFN-γ  alone elevated [NO] may have a 

feedback effect suppressing NF-κB activation ( 1V + ) below the quiescent steady state if 

16 < 0g  in the model. We use a piecewise power law representation (56) to prevent this 

suppression in a few instances to determine the effect of these assumptions (outlined in 

the Appendix). 

 

2.2.3 Killing Module 

We represent iNOS transcriptional regulation with an mRNA production rate law: 

31 32 37
3 3 1 2 7= .

g g g
V X X Xα+  NF-κB and Stat1 regulate transcriptional initiation (12, 13) 

according to the kinetic orders 31g  and 32g , respectively. We assume the mechanism of 

synergism between the activation signals here to be at the transcriptional level (37) but it 

may exist earlier in the signaling cascade; see e.g. (28). The LIP ( 7X ) regulates 

transcription indirectly via C/EBP-β (NF-IL6), a transcription factor required for 

initiation (11, 17, 23). Substituting LIP concentration into the flux term eliminates the 

need for representing C/EBP-β in the model. Parameter 37g  scales the quantitative 
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influence of the LIP on the rate of iNOS transcription initiation. We omit post-

translational modification of iNOS and assume that concentrations of L-Arginine, 

NADPH + H+, and O2 precursors to NO in iNOS catalysis are not rate-limiting (49). At 

the scale of interest here, iNOS catalyzes NO + Citrullene production via the intermediate 

Nω-hydroxyarginine (NHA) (16). The resulting simplified pathway tracks production of 

NHA and NO catalyzed by iNOS (Figure 2.1, KM). 

 

2.2.4 Iron Regulation Module 

The IRM tracks iron response protein (IRP) regulation with a resultant influence 

on LIP and apoferritin levels (Figure 2.1, IRM). The link between the KM and the IRM 

occurs through IRP regulation by NO with a resulting feedback on iNOS transcription 

(above). We base the network topology on the interaction between IRP2 and the cationic 

nitrosonium ion NO+ (a product that forms as a result of nitric oxide production), which 

presents an interaction with sufficient data for estimation of some parameters (9β  and 

89g  from (31)). This gives the NO control point of the IRM as the rate of IRP degradation 

96 97 99
9 9 6 7 9=

h h h
V X X Xβ− . The majority of IRP in the cell is IRP1, which has qualitatively 

identical iron regulatory properties as IRP2 but possibly an opposite response to NO 

(Wang (65)and references therein). To implement the assumption that either IRP1 or 

IRP2 is the predominant mechanism we set 96 < 0h  (IRP1 or possibly IRP2) or 96 > 0h  

(IRP2). We assume IRP-regulated transcript stabilization of the transferrin receptor 

(reviewed in Thomson et al. (63)) is directly controlled by IRPs. This is included in the 

iron influx term 7V + . Lastly, IRPs translationally control apoferritin production (63). 

Apoferritin subunits form a shell structure that holds the sequestered iron atoms within. 
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The ratio of iron atoms to ferritin protein complexes is about 4000:1 in the iron-rich 

ferritin complex (see Theil (61) for a short review). Iron accumulates in the ferritin 

complex relatively slowly, continuing for up to 24 hours after initial iron loading (24). 

Based on the rate of this process, we assume that the variable 8X  represents the molarity 

of binding capacity held by ferritin rather than the raw number of molecules. The iron-

rich ferritin complex is stored by macrophages for use by other cells, maturing into 

hemosiderin under conditions of iron overload (19). The primary source of LIP is 

presumably transferrin-bound extracellular iron. Low extracellular iron results in 

degradation of the ferritin complex to replenish the LIP in red blood cells (34). Since we 

do not simulate low iron conditions, and since the iron-rich ferritin complex is stored for 

long periods by macrophages, the fate of this complex is beyond the scope of the model. 

 

2.2.5 Parameter estimates 

Our goal is to derive order-of-magnitude estimates for model parameters resulting 

in behavior that reflects the known data for the physical macrophage system. Uncertainty 

and sensitivity analyses can then be used to explore the parameter space and determine 

variations in system outcome. The macrophage model contains 44 parameters whose 

values require estimation before numerical model simulations can be performed. 

Complete details of this process are given in the Appendix and summarized in Table 2.1. 

Here we outline some key steps. 

First, we reduce the number of estimates needed using non-dimensionalization. 

The non-dimensionalized model is used for numerical simulations, but we use the 

dimensionalized model for calculation of stability and robustness, which do not require 
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numerical simulations (see Local Analysis, below). Non-dimensionalization of the model 

gives a normalized form with concentrations relative to the quiescent steady state; the 

effect of kinetic orders across the two model forms is the same. 

Substituting levels of each variable iX  relative to quiescent steady state ˆ
iX  gives 

the nondimensional value ˆ= /i i ix X X  (we use the ̂y  notation to distinguish the particular 

quiescent steady state of y  from the generic steady state denoted by 0y ). In this type of 

model, a unique steady state always exists as long as the determinant of the matrix A  of 

kinetic order differences is non-zero (i.e. det = det [ ] 0ij ijg h− ≠A ; see (64) p. 200-201). 

At the steady state, 0 0=1 =1
= =ij ijg hn m n mij ij

i j i j ij j
X X a

δ δ
α β

− −+ +∏ ∏  where 
1, =

=
0,ij

i j

i j
δ 

 ≠
 and m  is 

the number of independent variables (six here). Then ˆ =1ix  for = 1,...,9i  represents the 

quiescent steady state in the nondimensionalized model. Table 2.1 gives estimated values 

for turnover rates and kinetic orders for most of the parameters. Several kinetic order 

parameters are omitted from Table 2.1 as they are set to the value 1 (see Appendix for 

details). 

 

2.2.6 Software and simulations 

We used two platforms to perform simulations to ensure that convergence to the 

same solutions occurs in different settings. Mathematica (Wolfram Research) was used 

for most calculations. The results were confirmed with a second program written by our 

group in C++ incorporating standard ODE solvers. An algorithm for uncertainty and 

sensitivity analysis was implemented in both and the results compared for accuracy. 

Steady state analysis, including dose-response and calculation of logarithmic gains and 
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sensitivities were done using Mathematica's algebraic Solve function. 

 

2.2.7 Global statistical analysis 

Estimating parameters for any mathematical model is complicated by lack of or 

variability in experimental data. This leads to uncertainty in the quantities used for 

parameters. We have implemented statistical uncertainty and sensitivity analyses (22) 

that allow simultaneous exploration of the entire biologically plausible parameter space. 

We used a type of stratified Monte Carlo sampling known as Latin Hypercube 

Sampling (LHS) to partition wide parameter ranges into a number, N , of equiprobable 

subintervals for high efficiency sampling (3, 45). This method prescribes sampling once 

per subinterval. Therefore, the greater the partition number N , the more accurate the 

estimates of sensitivity will be. We chose a partition number of = 1000N  and randomly 

combined the sampled numerical values, one value per parameter. In the absence of 

further data on their actual distributions, each parameter interval was sampled assuming a 

uniform distribution for the ranges specified in Table 2.1. The intervals chosen for the 

kinetic order parameters represent a sampling of the parameter within a region 

corresponding to one type of regulation; i.e. always positive or negative. Distinguishing 

between the qualitative differences in regulatory motifs (positive, negative or no 

regulation) is left to the local analysis discussed below. Note that the intervals for two 

parameters (89g  and 97h ) were slightly reduced to avoid numerical stiffness resulting 

from 8x  ([apoferritin]/[apoferritin]0 ) becoming too small during simulation. 

We perform simulations of the system for a 100-hour time frame after simulating 

a constant stimulus of LPS, IFN-γ , and/or exogenous iron starting from quiescent steady 
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state conditions. This analysis uses the non-dimensionalized model for numerical 

simulations. Due to the non-dimensionalization, the quiescent steady state concentration 

of each molecule in the model is 1. Statistical measures describe the output with a 

lognormal distribution when the system is near steady state. Here, the output is the 

distribution of values for the dependent variable 6x  representing [NO]/[NO]0 . Our goal 

in choosing the treatment levels (which are arbitrary) is to induce distinct activation 

states above this steady state given by particular levels of exogenous LPS, IFN-γ  and 

iron ( 11x , 12x  and 17x , respectively). 

Activation of the AM from LPS or IFN-γ  is set to 100-fold induction of NF-κB 

or Stat1, respectively. This quantity is chosen to represent a level of activation that is 

definite and distinguishable from an insignificant stimulus but well below high activation 

levels that cause signal saturation. Therefore, 11 = 100x  and 12 =100x  under conditions of 

complete activation. Under partial activation conditions, either NF-κB or Stat1 is subject 

to 100-fold activation, but not both. The quiescent level of activation is given by 

11 12=1, =1x x . 

Under iron-rich conditions, the intake of exogenous iron into the LIP is increased 

10-fold (over low iron conditions of 17 =1x ); that is, 17 =10x . This simulates conditions 

of high iron levels and their effects on overall macrophage activation. There is a constant 

background level of the LIP that is measurable under homeostatic conditions (see for 

example Petrat et al (53)). Therefore, in contrast to the second messengers in the model, a 

relatively small fold-change in iron intake will simulate iron-rich conditions. 

When performing the LHS analysis described above, we are able to measure 



 38 

uncertainty in the outcome variable (6x : [NO]/[NO] 0 ) due to changes in the parameter 

values. What remains to do is to correlate the observed variations to specific parameters. 

This can be accomplished using a partial rank correlation (PRC; see (3)) as a statistical 

sensitivity. The resulting correlation coefficients, iyγ , have a magnitude between 0 and 1, 

and a sign (+/−) describing the relationship of the i th input parameter to the y th 

variable. The PRC may be calculated at any time point during the simulation; many of the 

correlations are dynamic. A significance test has been determined for iyγ  (versus iyγ  = 0) 

that approximates a Student's T (3). The PRC is valid when considering solutions with a 

monotonic relationship with respect to the input parameter (22) as is the case here. We 

have also implemented a Z test for comparisons of PRC coefficients against one another 

to determine the relative statistical sensitivity of variables to different parameters in a 

particular activation state (27 p. 240-241). We refer to the magnitude of the PRC without 

regard to sign as the absolute PRC. 

 

2.2.8 Local detailed analysis 

To evaluate the role of specific parameters within the macrophage biochemical 

model, we apply a local detailed analysis. We view the macrophage as a modular system 

where signals from a given module co-regulate other modules resulting in a new cellular 

state. Thus, parameters governing the interaction of the three functional modules are of 

particular interest toward understanding the trade-off between macrophage quiescence 

and activation. 

In this setting we apply mathematically controlled comparisons (MCCs) that 

allow evaluation of the intermodule parameters and their influence on model outcomes 
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according to a set of Criteria for Functional Effectiveness (CFE) (29). This method is 

analogous to a gene knockout experiment where part or all of a specific pathway is 

deleted from a system. In our case, a component of the pathway (e.g. gene product) is not 

deleted but one effect of the component on another member of the pathway is neutralized, 

increased, decreased or reversed. We refer to the interaction under study this way as a 

“knockout” parameter. The knockout system is compared to the wild-type (control using 

the default parameter values in Table 2.1, column 3) based on their conformity to the 

CFE. The CFE used to assess changes in functional effectiveness as a parameter varies 

are three well-defined criteria that have been applied to study other inducible systems 

(26). The first, stability, is the ability of the system to return to steady state after a 

transient perturbation as evaluated by the last Routh-Hurwitz criterion (outlined in (64) 

pp. 208−213; for this model given in Table 2.3). Second, robustness, is insensitivity of 

dependent variables and fluxes to perturbation by independent variables and parameters; 

this is measured by steady state logarithmic gains and sensitivities. Lastly, responsiveness 

is the minimal time for 0[NO]/[NO]  ( 6x ) to reach a new steady state from the quiescent 

steady state after a stimulus. Induction of NO under a decisive signal is also a 

requirement for a functionally effective system, but this will be indirectly required for all 

parameter values tested to meet an equivalence requirement as part of the MCC (below) 

and thus need not be an explicit criterion. Each of the six knockout parameters that we 

explored in local analysis are listed in Table 2.2 columns 1−2. 

Mathematically, stability and robustness can be determined from the system at 

steady state making no specific choices for parameter values (using the dimensionalized 

model). This lends generality to the results. For the stability and robustness criteria, we 
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were able to perform the analysis in the most general setting, making no assumptions on 

the numerical values for the parameters. The results are often shown with default 

parameter values (Table 2.1) substituted for simplicity of presentation. Unlike stability 

and robustness, the responsiveness criterion requires numerical simulations with specific 

values for each parameter using the non-dimensional model. 

As part of the MCC, we force the value of a knockout parameter to change. To 

control for changes as this parameter is varied, we require the model to maintain 

equivalence with the wild-type (default parameter value) case over the parameter range in 

two ways: internally and externally (57). Internal equivalence requires that the 

parameters not associated with the flux containing the knockout parameter under study 

remain the same. External equivalence requires the external behavior of the model to 

remain the same as the parameter under study is varied; this then requires correction of 

other parameter values in the same flux as the knockout parameter. In each case we use 

iNOS induction to measure external behavior. iNOS levels are a direct readout of gene 

expression, reflecting equivalence in the macrophage gene expression program across 

values of the knockout parameter. (We could as easily use NO as the external measure of 

behavior, with the process almost identical and the conclusions unchanged.) At wild-type 

iNOS levels for a given activation stimulus, we must adjust the other parameters in the 

flux containing the knockout parameter under study. Two requirements for iNOS levels 

must be met: as the knockout parameter is varied, the model must have an identical 

quiescent steady state (4X̂ ) and identical total logarithmic gain 

( 4 11 4 12 4 17= ( , ) ( , ) ( , )sL L X X L X X L X X+ + ) with respect to exogenous signals that 

influence the macrophage activation state (LPS, IFN-γ , and extracellular iron levels). 
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Table 2.2, column 3, shows which parameters require adjustment to meet the external 

equivalence requirement. The number of parameters requiring correction in the flux 

determine the degrees of freedom for the interaction of interest. The corrected parameters 

are both kinetic orders and rate constants. In the nondimensionalized system (used for 

numerical simulations) finding the equivalence for rate constants is unnecessary because 

the normalized quiescent steady state is the same for any chosen value of the parameter 

of interest. Thus we only correct the kinetic orders in this case, and find a line of 

equivalent gain (LEG) over the range of the parameter under study that gives the 

parameter corrections for external equivalence. Note that the computation of stability is 

also independent of rate constants (Table 2.3, Stability Criterion) leaving only the 

robustness criterion requiring correction of rate constants during the comparison. 

In the examination of the robustness criterion for various 31 32,g g  and 37g , we 

also require correction of 313g  by holding 4 13( , )L X X  constant, allowing the unbiased 

determination of systemic sensitivities. This correction is not required for the other 

criteria: stability is independent of 313g  and the non-dimensional model is identical for 

changes in this parameter because levels of precursors are assumed not to be perturbed 

during the calculation of responsiveness. 

As an example of the MCC method, we outline the procedure for 16g , which 

represents the feedback of nitric oxide (6X ) in the KM to the activating second 

messenger NF-κB ( 1X ) in the AM (Figure 2.1). We require 

4 11 4 12 4 17= ( , ) ( , ) ( , )sL L X X L X X L X X+ +  for every 16g  quantity investigated. From this 

relationship we find the correction factor for parameters in the same flux term as the 
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knockout parameter examined, in this case 111g . This corrects 111g  so that:  

 2 7 97 8 6 7 3 4 5 7 97 8
111

31 43 22 66 7 97 8

( ) ( ( )( ))
=

( )
sp p h p L p p p p p p h p

g
g g h h p h p

− − + − + − −
−

 

 (Table 2.3). This is the LEG for the NO feedback parameter 16g , ensuring 

external equivalence in the model for the MCC. 

Clearly, alteration of sL  can change the slope of the LEG, and possibly change 

results for very large changes in sL . Here we restrict sL  to approximate what is 

experimentally found in mouse macrophage cell culture (see Parameter Estimation 

above). In principle, representation of this network in other cell types or species with 

much lower or higher sL  may require adjustment of the slope of the LEG. 

We visualize three possible regions in a parameter space with the knockout 

parameter of interest on the x -axis and the parameter corrected to ensure external 

equivalence on the y -axis (for example, Figure 2.6A for 16g ). Each point on the LEG 

represents one set of parameters for model evaluation according to the CFE. Notice that 

16g  has one degree of freedom, giving a 2-dimensional parameter space. The distance d  

on the LEG represents the distance between a stable parameter value choice and the line 

generated from the stability criterion, allowing the determination of stability by d . 

Robustness and responsiveness of the system represented by a given point on the LEG 

are determined with the calculations or simulations specified by the definition of the CFE 

above. 

We have found the LEG for parameter 16g  as an example of applying MCC to 

one of the six interactions between the functional modules. Certain considerations are 

necessary to generalize the process to the other five knockout parameters (Table 2.2). 
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Applying MCC for the KM feedback to Stat1 (26g ) follows directly from the above 

process. However, an additional degree of freedom is found for the other MCCs due to 

the higher number of components regulating the processes. For instance, parameters 

31 32,g g  and 37g  each require correction of either of the other two parameters for 

equivalence (Table 2.2), leading to a plane of equivalent iNOS logarithmic gain in 3-

dimensional parameter space. For simplicity we choose to reduce the degrees of freedom 

in these cases by holding one parameter constant and meeting the equivalent gain 

requirement by correcting the other (Table 2.2). The parameter held constant is given the 

default wild-type value in Table 2.1. In this way all of the MCCs are performed in the 

constrained parameter space given in Table 2.2. 

For each of the six parameters we evaluated using the CFE (Table 2.2), we assign 

a score for each criterion of + (stimulation of a process), − (inhibition of a process) or 0 

(no regulation of a given process). Then the overall score is calculated based on the 

individual score for each criterion. The overall score represents the type of regulation that 

is assigned as optimally functionally effective for a given interaction. Recall each 

knockout parameter represents the regulation of a rate of production or consumption of a 

molecular component of the model. Thus the overall CFE score for a parameter predicts 

the type of regulation that optimizes the overall macrophage performance. 
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2.3 Results 

Macrophages require maintenance of a quiescent state to conserve energy and 

minimize host damage while oppositely needing to be sufficiently activated under 

appropriate conditions to best control or kill pathogens. Our aim is to understand and 

predict necessary requirements for the trade-off between these macrophage states. To this 

end, we have developed a mathematical model representing the biochemical network 

operating within macrophages that is based on a framework of functional modules. Here 

we present results from our analyses of the model in three parts: validation simulations, 

global uncertainty and statistical sensitivity analysis, and a local analysis of functional 

effectiveness based on three specified criteria. 

 

2.3.1 Conditional synergistic activation by two signals 

To validate the model system, we compared the model's predicted steady state 

dose-response [NO] with simulated LPS and IFN-γ  doses to data from macrophage cell 

culture (Figure 2.2). With only quiescent levels of LPS-induced NF-κB stimulation even 

a significant increase in IFN-γ -induced Stat1 levels leads to very low NO induction 

above 0[NO] . Results with increasing amounts of LPS and IFN-γ  stimulation show a 

capacity for synergistic induction of iNOS and resultant NO production (Figure 2.2A). 

This has been previously observed in experiments using sub-saturation levels of LPS and 

IFN-γ  measuring nitrite output of J774.1 macrophage cell cultures (Figure 2.2B). In the 

model, the mechanism behind this phenomenon arises from the flux term 3V +  (iNOS 

transcriptional regulation) from the interactions of NF-κB and Stat1. 

The model predicts a dual role for transcriptional activation parameters, 
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exhibiting either a synergistic or non-synergistic influence on transcriptional activation 

(Figure 2.3, 16 26, < 0g g ). Under dosing of only one activator (for example, LPS) low-

dose levels of IFN-γ  (less than ‡  in Figure 2.3B) do not allow a synergistic influence of 

NF-κB and Stat1 interactions on transcription, while higher levels of IFN-γ  alter the 

sensitivity of NO to transcriptional activation such that the interaction of NF-κB and 

Stat1 is synergistic. The model mechanism causing this phenomenon is negative feedback 

on Stat1 by NO, induced from the LPS/NF-κB-activation pathway. This feedback 

induces the IFN-γ /Stat1 pathway to be at or below its quiescent steady state level. 

This crosstalk is confirmed by comparing the sensitivity 6 32( , )S x g  when varying 

the feedback parameter 26g  (Figure 2.3A). The non-synergistic activation state is 

abolished in the absence of this feedback (26 = 0g ) or when it is positive (26 > 0g ). We 

thus find that negative feedback crosstalk (that is, feedback on Stat1 under primarily LPS 

signaling or feedback on NF-κB under primarily IFN-γ  signaling) contributes to 

maintenance of a quiescent macrophage state in the absence of multiple decisive 

activation signals. The possibility of low [NO] having a positive feedback effect for NF-

κB (10) brings this effect into question under conditions of partial activation with high 

IFN-γ  signaling but low LPS signal (Figure 2.3A). If the level of NO induced by IFN-γ  

alone is high enough to surpass this proposed low-level positive feedback threshold then 

the effect can occur (and indeed is predicted by the model). Note that for optimal 

maintenance of quiescence we predict negative feedback ( 16 < 0g ) for this low-level 

activation (discussed below). 
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2.3.2 Global analysis: statistical sensitivities of parameters under different activation 

stimuli and exogenous iron treatments 

To determine global statistical sensitivity of chosen model outputs with respect to 

changes in parameter values from Table 2.1, we applied uncertainty and statistical 

sensitivity analyses using LHS and PRC, respectively, with a sampling partition of 

= 1000N  as described in Methods. With the non-dimensionalized model form used for 

this part of the analysis, references to concentrations of components (e.g. [NO]) refer to 

the normalized concentration. This analysis was performed under six different activation 

signaling states: LPS alone, IFN-γ  alone, LPS + IFN-γ  and each of the above together 

with exogenous iron. We find PRCs for [NO] (6x ) at a time point of = 100t  hrs after 

initial stimulation, which is at (or near) the steady state for the 1000 simulations. The 

results are summarized in Figures 2.4−2.5. In Figure 2.4, Panel A indicates sensitivities 

of [NO] to parameters on the interface of the AM and KM, while Panel B indicates 

sensitivites of LIP level to these parameters. In Figure 2.5, Panel A indicates PRC 

coefficients in the absence of exogenous iron and Panel B indicates PRC coefficients in 

the presence of exogenous iron for parameters in the IRM, including those on the 

interface of the KM and IRM. 

Because we performed the analysis with [NO] near steady state, we find that 

turnover rates (ia ) do not have a significant influence on outcome variable (NO / 6x  or 

LIP / 7x ) levels. Carrying out a statistical sensitivity analysis under pre-steady state 

conditions revealed that some turnover rates have significant but minor PRCs: 

< 0.25,ai ixγ ± . This is almost always the case for iNOS mRNA and protein turnover rates 

3a  and 4a  and in some cases NO and LIP turnover rates 6a  and 7a  as well. As 
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component levels change over time after stimulation, the kinetic order PRCs ( ,gij ixγ  and 

,hij ixγ ) change in a predictable manner: those related to the AM and KM generally follow 

[NO] while those related to the IRM generally follow [LIP]. These transient PRCs are in 

line with intuition, but in this work we emphasize steady state correlations due to our 

focus on distinct activation states. 

Under the various stimuli, one obvious result is that kinetic order parameters have 

a much stronger PRC with [NO] when their corresponding pathway is activated than 

when it is not activated. For example, 111g , the kinetic order characterizing the change of 

NF-κB activation levels with LPS treatment (Figure 2.4) has a high PRC under stimuli 

that include LPS but not during treatment with IFN-γ  alone, with or without exogenous 

iron. As we would expect, most parameters involved in either the AM or KM (Figure 2.4) 

have stronger absolute PRCs with [NO] than those of the IRM (Figure 2.5). 

 

2.3.3 Interactions between the Activation and Killing Modules 

The interaction between the AM and KM is determined by parameters 

representing transcriptional activation (31 32,g g ) and feedback by NO (16 26,g g ). We find 

the PRCs to be primarily dependent on the activation state with regard to LPS and IFN-γ  

but only slightly on the level of exogenous iron (Figure 2.4). For each activation state we 

assume that NF-κB and Stat1 can be regulated both up and slightly down. If we assume 

that the AM cannot be downregulated below the quiescent state (see the piecewise model 

variant in Methods and Appendix) we find some PRCs that are non-significant (Figure 

2.4 †). 
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Under both model variants NO crosstalk contributes to maintenance of 

quiescence. Under signaling conditions biased strongly to one signal or the other (i.e. 

LPS or IFN-γ  alone) we find the PRCs for the two transcriptional activation parameters 

( 31g  and 32g ) to have opposite signs (+ in one, − in the other) while the statistical 

sensitivity of [NO] to KM feedback to the AM is negative. Recall that 16g , 26 < 0g  here; 

thus, a positive PRC means a negative correlation between strength of feedback and [NO] 

(Figure 2.4). This effect is abolished under full activation: both transcriptional activation 

parameters have positive correlations with [NO], resulting in the synergistic interaction of 

the two signals in iNOS/NO production (as in Figure 2.3). As the loss of statistical 

sensitivity of [NO] to some parameters in the piecewise model variant shows (Figure 2.4, 

Panel A †), the crosstalk effect raises the threshold for decisive positive iNOS/NO 

regulation without the small antagonistic effect seen in the model variant that allows AM 

suppression. In either case, the PRCs of the transcriptional activation parameters shows 

cooperativity in the two signaling pathways only under full activation signaling. 

The statistical sensitivity profile of [LIP] is almost the same as for [NO] for the 

AM/KM interface parameters due to increased iron uptake under cytokine and endotoxin-

induced activation conditions, with significant differences only in 111g  and 31g  (Figure 

2.4; compare PRCs marked *  for [NO] (Panel A) with the PRC for the same parameter 

snd activation state for [LIP] in Panel B). Under exogenous iron treatment there are more 

parameters with significant differences between the sensitivities of [NO] and [LIP] to 

them (Figure 2.4, compare both *  and **  in Panel A to the PRC with the same parameter 

and activation state in Panel B). Furthermore, under exogenous iron treatment the PRC of 

[LIP] with some interactions is significantly lowered compared to no iron treatment 
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(Figure 2.4 Panel B, ‡). 

 

2.3.4 Interactions between the Killing and Iron Regulation Modules 

We find the statistical sensitivity of [NO] (6x ) to variations in the parameters in 

the IRM including those between the KM and IRM to be lower than those parameters 

between the AM and KM (compare Figure 2.5 top panels to Figure 2.4 Panel A). 

However, exogenous iron treatment induces a significant change in the PRCs of [NO] for 

most IRM parameters (Figure 2.5 Panel B, top; significance test not shown). The 

exception is 96h , NO-induced regulation of the IRM, in the fully activated state. 

Statistical sensitivity of [LIP] (7x ) to IRM parameters is predictably much higher, 

and generally opposite to [NO] sensitivities (Figure 2.5, top *  versus bottom). Recall that 

[LIP] sensitivities to AM/KM parameters mirrored those of [NO]. The best explanation 

for the reversal in PRCs to IRM parameters between [NO] and [LIP] is that, while an 

increase in NO production tends to increase iron intake into the LIP, an increase in 

exogenous iron and resultant [LIP] increase tends to inhibit iNOS transcription and result 

in a lowering of [NO]. 

We are therefore interested in which module dominates the immune response 

under high iron conditions, as [NO] is sensitive to the IRM parameters, and [LIP] is less 

sensitive to AM/KM parameters under treatment with exogenous iron. By comparing the 

statistical sensitivity of [NO] to 37g  (the parameter representing the regulation of iNOS 

transcription by the LIP), 
37 6,g xγ , to the statistical sensitivity of [LIP] to 96h  (the 

parameter representing the regulation of the IRM by NO), 
96 7,h xγ , we can determine 



 50 

which module is dominant under different conditions. For cases without exogenous iron 

(Figure 2.5 Panel A, †) the statistical sensitivity of [LIP] to 96h  (bottom) is significantly 

higher than the statistical sensitivity of [NO] to 37g  (top) in every activation state. This 

changes during elevated exogenous iron conditions (Figure 2.5 Panel B, † and ‡), when 

the absolute PRC of [LIP] with 96h  is either not significantly different, or slightly 

significantly smaller than the absolute PRC of [NO] to 37g  in partial activation states. 

However, under complete activation, we find the absolute PRC of [LIP] with 96h  to be 

elevated, restoring the relationship seen under no iron treatment above. 

We conclude that with complete activation, the synergistic interaction of LPS and 

IFN-γ  activation pathways overcome the KM inhibition by the IRM even in conditions 

of elevated iron, leaving only incremental differences in parameter statistical sensitivity. 

However, under partial activation conditions, the statistical sensitivity of the KM to the 

IRM is approximately in parity with that of the IRM to the KM. 

 

2.3.5 Local analysis: evolutionary requirements for inter-module interactions 

Each interaction coupling the functional modules may be stimulatory or 

inhibitory. The types of interactions present determine the functional effectiveness of the 

macrophage and ensure that the parameter values giving the trade-off between quiescence 

and strong activation in this model are biologically plausible. For each interaction 

between the functional modules (Table 2.2) we have evaluated the model according to 

three CFE (see Methods), scoring each parameter as stimulatory (+), inhibitory (−) or 

zero (0) according to the type of interaction that meets the requirements of each criterion 
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(Table 2.4). We illustrate the evaluation of two parameters, NF-κB transcription ( 31g ) 

and NO feedback to NF-κB ( 16g ) (Figures 2.6−2.8), according to the CFE. 

As discussed in Methods, several interactions in the model are idealized and may 

be stimulatory or inhibitory depending on the predominant mechanism assumed in the 

model. We consider this plausible for the interactions of nitric oxide with other system 

components (16 26,g g  and 96h ). The transcriptional regulation parameters (31 32,g g  and 

37g ) have known or postulated mechanisms of either stimulation or inhibition, though 

they may differ based on cell type (12). Regardless, we examine these three parameters 

assuming any type of interaction is possible. This allows us to see (i) confirmation that 

this model predicts the correct interaction type, (ii) how the evolution of positive 

transcriptional regulation may be favored even in a system with many possible negative 

side effects (i.e. nitric oxide production), and (iii) how the coupling of iron regulation to 

NO production affects macrophage activation and iron regulation. 

For each criterion, we consider the parameter under investigation to be wild-type 

if it is at its baseline estimated value (Table 2.1). We vary the parameter along the line of 

equivalent gain (LEG; Table 2.3) and determine which parameter value score, +, −, or 0, 

best fits the criterion. 

 

2.3.6 Stability: return to steady state after a small transient perturbation 

The first criterion we explore is stability, or the ability of a system to return to 

steady state after a transient perturbation. The local stability analysis of this system is a 

function of several parameters defined by the appropriate Routh-Hurwitz criterion (see 

Methods). The stability criterion is represented graphically as dashed lines in Figure 2.6. 
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Notice that as different parameter values from equivalent systems are chosen along the 

lines of equivalent gain, the margin of stability, defined as d , correspondingly changes. 

This distance is independent of the macrophage activation state. The score for this 

criterion for each parameter is given by the type of interaction giving the largest d . Thus, 

for the parameter 31g  (Figure 2.6A) we have ( ) < (0) < ( )d d d− + , giving a score of + for 

31g  in terms of stability. Similarly, for the parameter 16g  (Figure 2.6B) d  is maximized 

for 16 < 0g , giving a score of − (see Table 2.4, Stability column for the scores of all the 

tested parameters). 

 

2.3.7 Robustness: minimal sensitivity of component levels to perturbation 

The most functionally effective macrophage is insensitive to small perturbations, 

or robust. That is, in the absence of decisive activation signals, the macrophage must stay 

as close to quiescence as possible. We tested system robustness for each parameter of 

interest by computing the steady state logarithmic gains ( , )i jL x x  and ( , )i jL v x  of the 

dependent variables x  and fluxes v  for each independent variable, and the sensitivities 

( , )iS x p  and ( , )iS v p  for each kinetic order p  (Figure 2.7; see Figure 2.1 for the role of 

each precursor/independent variable in the model). In some situations a gain may 

preferentially be large, such as the gain of [NO] in the presence of cytokine. However, 

each gain calculated here is from a single signal at a time, not the multiple-signal 

situation required for complete activation as in Figure 2.2. We therefore assume that 

gains to individual signals are preferentially low. 

For transcriptional regulation parameters 31g , 32g  and 37g , a clear plurality or 
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majority of the gains and sensitivities do not support a single score (Figure 2.7A shows 

the profile for 31g ). For transcriptional activation by second messengers ( 31g  and 32g ) we 

find 32.12% support +, 32.82% support 0 and 35.05% support −. Here perturbation of 

AM and KM parameters predominantly supports + and perturbation of IRM parameters 

supports −. For iron regulation of transcription (37g ) we find 21.27% support +, 37.37% 

support 0 and 41.36% support −. In this case perturbation of AM and KM parameters 

predominantly supports − while perturbation of IRM parameters predominantly supports 

0. We do not consider one score to be definitively supported by the robustness criterion in 

these cases, and rely on the other criteria for the overall score (Table 2.4). 

The interactions of NO with other model components (represented by parameters 

16 26,g g  and 96h ) show clear pluralities or majorities of one score over the others. In each 

of the cases a negative value is most robust (48.79% of the gains and sensitivities for 16g  

and 26g  and 52.47% for 96h ). The remaining gains and sensitivities are split between a 

score of 0 (31.88% for 16g  and 26g ; 32.58% for 96h ) and + (19.33% for 16g  and 26g ; 

14.94% for 96h ), leaving − as the favored score. This is shown for 16g  in Figure 2.7B. 

 

2.3.8 Responsiveness: fast NO elevation after stimulus 

A functionally effective system minimizes the time to steady state after stimulus. 

We explore the response time under which levels of NO ( 6x ) come within 5 percent of 

the activated steady state or above (i.e. we do not penalize the system for overshoot 

because the goal for killing pathogen should be to get nitric oxide levels up to at least a 

certain level or above). We examine responsiveness for each of the three activation states 
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with LPS/IFN-γ  (Figure 2.8). Results with exogenous iron treatment are similar (not 

shown). As expected, each activation state shows a distinct pattern of response times, but 

in every case examined, they yield the same score (summarized in Table 2.4). 

The dynamic and specific nature of the numerical simulations leave open several 

possible situations deserving consideration. If the system starts from a partially activated 

steady state (i.e. constant stimulus from one signal, say LPS), response times after 

stimulation from the other signal (here, IFN-γ ) are the same as if the system had started 

in the quiescent steady state. We have also investigated cases with initiation of the two 

stimulation signals staggered over various short intervals, before the system has reached 

steady state from the first signal (not shown). The exact profiles differ slightly but in each 

case the results support the same hypothesis as for other cases. We conclude that 

examination of the three activation states shown suffice to draw conclusions regarding 

the responsiveness criterion. 

It is possible to achieve a minimal response time representing baseline [NO] that 

is undisturbed by the activation signal. This is observed for 31g  († and ‡  in Figure 

2.8A), as well as 32 26,g g  and 37g  for reasonable parameter ranges. We consider these 

“non-response” cases to be trivial. Slightly different activation states can change the 

exact parameter value where this phenomenon occurs. Thus, achieving an artificial 

minimal response time is likely not relevant since multiple activation signals and the 

possibility of strong activation are necessary for proper macrophage function. Parameter 

values less than this no-response point in Figure 2.8A represent repressible systems, 

causing NO levels to decrease in response to stimulus. Determining the response time for 

16g  (Figure 2.8B) and 96h  is more straightforward than the previous cases as levels of NO 
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are induced to a steady state level above that of the quiescent state for biologically 

reasonable parameter choices. 

With the above considerations in mind we conclude that a single score emerges 

for each parameter examined (Table 2.4). Therefore 31g  (Figure 2.8A) scores + for 

responsiveness and 16g  scores −. 

 

2.4 Discussion 

The process of macrophage activation for killing of internalized pathogens has 

evolved a trade-off between a robustly quiescent state and decisive activation under a 

definitive signal. Experimental study of this system in mouse and human cells has 

characterized components of what are apparently the most important aspects of 

macrophage activation and killing. This has allowed us to construct a mathematical 

model for system-level investigation, with a view toward the interaction of functional 

modules that determine the outcome of activation signaling. Using this model, we have 

shown that the configuration of intermodule regulatory interactions can permit a near-

quiescent state in the presence of partial activation, while allowing complete activation 

upon receipt of multiple activation stimuli. Our model suggests that there must exist a 

synergistic response to multiple signals in order to overcome stabilizing interactions for 

complete macrophage activation. The role of iron regulation in the activation of iNOS 

and NO production appears to be an asymmetric relationship: iron levels respond to 

activation as part of the overall response in a pattern consistent with sequestration of iron 

from extracellular space under normal iron conditions. Mechanisms of killing become 

sensitive to iron regulation parameters under exogenous iron treatment, but this is most 



 56 

apparent only under partial activation conditions; under complete activation killing 

mechanisms again predominate. 

Each member of an intermodule pair of regulatory interactions (i.e. 

31 16 32 26/ , /g g g g  and 96 37/h g ) has a dependence on the other in the pair for the predicted 

interaction score based on the CFE. Thus, as we know that 31g  is positive (shown 

experimentally) then 16g  is predicted to be negative by the CFE. We also find that anti-

inflammatory feedback allows and enforces a system with positive transcriptional 

regulation as compared to lack of feedback or positive feedback (Figures 2.6, 2.7 and 2.8 

B). We therefore see with these interactions how a system that must remain quiescent 

most of the time can maintain quiescence robustly. This reasoning applies to each of the 

other pairs of interactions as well. With the KM/IRM interactions ( 96 37/h g ) the resultant 

pair of scores is −/− (Table 2.4). 

AM signaling induces anti-inflammatory feedback to both NF-κB and Stat1 in 

this model. The overall effect is to increase the functional effectiveness of the 

macrophage system (Table 2.4) by preventing activation in the absence of multiple 

activating signals. Crosstalk feedback by NO on Stat1 increases the threshold for 

activation under LPS signaling alone (Figures 2.3 and 2.4). Crosstalk to NF-κB by IFN-

γ  signaling also shows this effect to a lesser extent. We explain these results as follows: 

For transcriptional activation of iNOS, activated NF-κB, Stat1 and other transcription 

factors must occupy their promoter regions for transcription initiation and resultant 

iNOS/NO production. In the absence of an activating signal, the probability of these 

being together on the promoter is low. When a single activation signal is present (e.g. 

LPS), the level of NF-κB increases, raising the probability of transcription initiation. 
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However, the slight increase of NO and resultant negative feedback to Stat1 lowers the 

probability of Stat1 presence for initiation, or possibly keeps it at a quiescent level, due to 

a crosstalk anti-inflammatory feedback effect (Figure 2.3). We have shown that this 

crosstalk-inhibition effect is caused by the negative feeback of NO to the unstimulated 

activator (Figure 2.3). The transcriptional signals are only working in concert under 

conditions in which both of the signals are sufficiently active. When this is the case the 

two signals act synergistically to induce NO production (Figure 2.2). The activation of 

multiple signals thus allows the macrophage system to overcome anti-inflammatory 

feedback for complete activation. 

The interactions between the KM and IRM help determine the outcome of LIP 

levels during activation and the outcome of macrophage activation under iron-rich 

conditions. The exact effect of macrophage activation on LIP levels may depend on 

different interactions (32, 65). We find that the most functionally effective motif results 

in NO production inducing the influx of iron into the LIP via IRPs (i.e. 96 < 0h ), 

increasing LIP levels on the path to sequestration of iron from plasma, consistent with 

hypoferremia (66). Note that one need not argue for a direct benefit of hypoferremia 

against extracellular pathogens for this interaction to be functionally effective. 

This result shows an indirect negative feedback to iNOS/NO production via the 

IRM during activation. Under iron-rich conditions this result implies a direct signaling 

effect of iron influx on iNOS transcription, leading us to question which functional 

module is dominant. Under a definitive activation signal, the macrophage must show high 

induction of iNOS and NO in the KM, but this could be inhibited, with potentially 

impairing results on the immune response, under conditions of high iron in the IRM. We 
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have addressed this with global statistical analysis, which shows a generally higher 

statistical sensitivity of [LIP] to AM and KM parameters than [NO] shows to IRM 

parameters under lower level iron conditions. Under iron-rich conditions these statistical 

sensitivities are brought into near-parity under partial activation conditions (comparing 

the sensitivity of [NO] to 37g  to the sensitivity of [LIP] to 96h ; Figure 2.5), but become 

asymmetric again under complete activation. Thus exogenous iron appears to play an 

incremental role in suppressing macrophage activation, particularly important under 

partial activation conditions. However, this can be overcome so that activation of the KM 

predominates under complete activation conditions. While the effect of [LIP] on NO 

production is clear (11, 18, 67), the possible role of this interaction in exacerbating 

disease processes deserves more study; this model suggests a role for iron in suppressing 

NO expression by macrophages that depends on the macrophage activation state. This 

implies that mechanisms required for robust macrophage response may also worsen 

response to infection under pathological iron conditions. 

Since macrophage activation involves many mechanisms beyond cytokine and 

endotoxin-induced nitric oxide production, the scope and applicability of our current 

work is an important part of thinking about the system. Depending on the mix of 

cytokines present, macrophages may become activated in a classical or alternative 

manner (e.g. 15). We have included a subset of mechanisms for classical activation here. 

Our focus is on quantitative regulation of the model's components; spatial considerations, 

especially mechanisms of phagocytosis, comprise an important facet of macrophage 

function that may alter the capability of nitric oxide to access internalized pathogen (e.g. 

48, 50). Finally, de-activation is a naturally important step in the cycle of macrophage 
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immunological function (reviewed in (15)) that has its own set of regulatory apparatus 

beyond the scope of this model, which is concerned with the process of moving from a 

quiescent state to activation. 

We propose several possible avenues of extension based on our results for the 

mechanisms of macrophage function presented here. We note first the importance of 

nitric oxide signaling to transcription factors that regulate iNOS transcription. This may 

be examined in macrophage culture by detection of nitrosylation crosstalk between 

signaling pathways. For instance, detecting nitrosylation of Stat1 and other IFN-γ -

inducible signals under LPS stimulation (and of NF-κB and other LPS-inducible signals 

under IFN-γ  stimulation) may further elucidate the roll of NO in activation. Further, the 

effect of the NO feedback effect may be assessed with consideration for more complex 

AM interactions not captured here, such as transcriptionally controlled feedback 

mechanisms. The usefulness of this model may be extended by studying macrophage 

interactions with a growing population of intracellular bacteria, particularly the 

superoxide-resistant Mycobacterium tuberculosis. Implementation of this extension into 

the model allows another criterion for macrophage functional effectiveness, namely 

clearance of bacteria (c.f. Chapter 3). 

Our results show the usefulness of approaching questions regarding the immune 

response with a view toward the integrated function of the system. We propose that 

known mechanisms for macrophage activation allow contradictory demands of different 

contexts to be met with a strong activation signal only in the presence of synergistic 

activation of multiple signals stabilized by anti-inflammatory feedback from a common 

output of the signaling cascade. With this in mind other immune signaling cascades may 
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show similar topology and behavior, explaining in part the evolutionary need for multiple 

signals and complex cytokine networks to overcome robustness to perturbations. 
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Figures 

 

Figure 2.1: Schematic of the macrophage biochemical network involved in activation of 
nitric oxide production. Each iX  represents one model variable. Arrows pointing to or 

from variables represent synthetic, degradatory or cycling processes while those pointing 
to other arrows represent regulatory interactions. Parameters are labeled with their 
putative regulatory phenotype, stimulatory (+) or inhibitory (−). Three functional 
modules (Activation, Killing, Iron Regulation) are marked. Bold parameters are subject 
to local detailed analysis (Methods). NA (13X ), pool of nucleic acid precursors to mRNA; 

AA ( 14X ), pool of amino acid precursors to protein. Note that the parameter 77h  

represents the weighted average of the kinetic orders from both depicted labile iron pool 
consumption processes. 
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Figure 2.2. Response of nitric oxide to doses of LPS and IFN-γ. (A) Steady state dose 
response of NO (6x ) in the macrophage model for various levels of NF-κB and Stat1 

induction by LPS (11x ) and IFN-γ  ( 12x ), respectively, shows synergistic activation by 
multiple activation signals. (B) Dose response of nitrite to various concentrations of LPS 
and IFN-γ  in J774A.1 mouse macrophages shows a similar synergistic activation. Data 
are from(9); we selected a subset of the data that are below saturation. 
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Figure 2.3. Crosstalk of activation pathways induced by common feedback. (A) The 
sensitivity of [NO] to alterations in Stat1 transcription effect ( 32g ) under constant LPS 

activity ( 11 = 100x ) shows a dependence on IFN-γ  activity ( 12x ). During activation from 
LPS but low IFN-γ  signaling, the negative feedback by NO to Stat1 can cause it to have 
a non-cooperative influence on iNOS transcriptional activation (gray shaded region). 
Above a certain threshold of IFN-γ -induced Stat1 activation (marked ‡) the interaction 

is cooperative, or synergistic ( 6 32( , ) > 0S x g ). (B) Sensitivity of [NO] to alterations in 

NF-κB transcription effect (31g ) under constant IFN-γ  activity ( 12 =100x ) shows a 

parallel effect. This effect in both cases is altered under cases lacking feedback 
( 26 16, = 0g g , respectively) or with positive feedback (26 16, > 0g g , respectively) where 

the sensitivity measure does not reach zero above the quiescent steady state (marked †). 
The dashed lines (between † and ‡ on the x -axis) represent S  for negative feedback 
when a piecewise model is used to prevent suppression of the activation module below 
the quiescent steady state (see text for explanation). Values of 16g  and 26g  are chosen 

with the constraints of lines of equivalent gain described in Methods. 
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Figure 2.4. Significant partial rank correlations (statistical sensitivities) of parameters in 
Activation and Killing Module interactions to nitric oxide and labile iron pool levels. 
Each parameter is shown for three activation states (LPS, IFN-γ  and LPS + IFN-γ ) at 

= 100t  hrs. NS: the PRC is not significantly different from zero ( > 0.01p ). Correlations 
marked ‡ are significantly reduced in absolute value under treatment with exogenous 

iron ( 17x  = 10, < 0.01p ). Correlations marked † are not significantly different from zero 

when a piecewise model is used to prevent suppression of the activation module below 
the quiescent steady state during partial activation (see text for explanation). *,**:  
Correlations for the same parameter in the same activation state significantly differ 
between 6x  and 7x  under both treatment and lack of treatment with exogenous iron (* ) 

or under treatment with exogenous iron only (** ). The interaction represented by each 
parameter is shown in Figure 2.1. 
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Figure 2.5. Significant partial rank correlations (statistical sensitivities) of parameters in 
the Iron Regulation Module to nitric oxide and labile iron pool levels. Each parameter is 
shown for three activation states (LPS, IFN-γ  and LPS + IFN-γ ) with or without 

supplemental iron (17x  = 10) at = 100t  hrs. NS: the PRC is not significantly different 

from zero ( > 0.01p ). *:  Correlations for the same parameter in the same activation state 
significantly differ between x6 and x7. †: the absolute PRC is significantly greater than 
|

37 6,g xγ | in the same activation state; ‡: the absolute PRC is significantly less than |
37 6,g xγ | 

in the same activation state. The interaction represented by each parameter is shown in 
Figure 2.1. 
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Figure 2.6. Example parameter spaces for mathematically controlled comparisons. A 
single point represents a set of parameter values for the mathematical model. On the x -
axis is the knockout parameter (see text). Models meeting the equivalence requirements 
(Methods; Table 2.2) are compared along the solid line of equivalence (given in Table 
2.3). This line specifies a value of the parameter on the y -axis that must be chosen to 
ensure equivalence between versions of the model compared while varying the x -axis 
parameter. The dashed line represents the Routh-Hurwitz criterion that determines model 
stability (see Methods). The boundary line represents plausible limits of biological 
relevance for parameter values. The exact value of each boundary is unknown, but need 
not be specified for this analysis. The margin of stability d  is a measure of distance from 
a point on the line of equivalent gain to the critical stability line, so that the region with 
the highest d  gives the score for the stability criterion. (A) Parameter space for the 
transcriptional activation parameter 31g . (B) Parameter space for the feedback parameter 

16g . Points on the line of equivalent gain to the right of the y -axis give a model with a 

stimulatory interaction represented by the parameter of interest; to the left, the interaction 
is inhibitory and on the y -axis it is nullified. 

 



 67 

 

Figure 2.7. Parameter scores maximizing robustness of macrophage components to 
perturbations. Scores for 31g  (panel A) and 16g  (panel B) that maximize robustness of 

each dependent flux and variable to perturbation of independent variables = logj jY X  

and parameters p  during quiescence. Each logarithmic gain ( , )i jL X X  or sensitivity 

( , )iS X p  is minimal at the approximate value indicated by the shade of gray, giving a 

score of −, 0 or +. White boxes containing 0 indicate a score of 0 while those with no 
marking indicate no scoring preference for robustness. Note that the parameter of interest 
is varied on its line of equivalent gain (Table 2.3). See Methods for definitions of 

( , )i jL X X  and ( , )iS X p . 
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Figure 2.8. Response time of nitric oxide (6x ) from quiescent levels to within 5 % of the 

steady state or above. We varied levels of (A) NF-κB transcriptional regulation (31g ) and 

(B) NO feedback to NF-κB ( 16g ). The knockout parameter of interest is varied along its 

line of equivalent gain (Table 2.3). The minimal response time indicates a score of (A) + 
and (B) −. Depending on the activation state, the profile differs slightly, but a common 
minimum response parameter value is shared by all activation states in every case. In (A), 
two of the cases show a trivial minimal response time for 31 = 0g  (marked †) or 31 < 0g  

(marked ‡). These cases are irrelevant as the system represented by those parameter 
values is completely non-responsive to the simulated activation stimuli. No such non-
responsive state exists for treatment by IFN-γ  alone because of the equivalence 
requirements imposed on the system (Table 2.2). 
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Tables 

Table 2.1. Definition and estimates of important parameters in the macrophage model. 

Parametera  Definition 
Estimated 

Value 
Sampling 
Intervalb  

1a  NF-κB turnover rate (nondim) 1.73 hr 1−  [0.885, 41.6] 

2a  Stat1 turnover rate (nondim) 8.32 hr 1−  [4.62, 41.6] 

3a  iNOS mRNA turnover 
rate (nondim) 0.173 hr 1−  [0.116, 0.347] 

4a  iNOS turnover rate (nondim) 0.0693 hr1−  [0.0365, 0.693] 

5a  NHA turnover rate (nondim) 5.55 µ mol/hr [0.0277, 166] 

6a  NO turnover rate (nondim) 2.77 hr 1−  [0.0277, 166] 

7a  LIP turnover rate (nondim) 32.20 µ mol/hr [2.58, 61.8] 

8a  apoFt turnover rate (nondim) 40 µ mol/hr [3.72, 89.2] 

9a  IRP turnover rate (nondim) 
36.7 

µ mol 1− hr 1−  
[29.2, 44.1] 

111g  
LPS-induced 

activation of NF-κB 
1 [0.1, 2] 

212g  
IFN-γ -induced 

activation of Stat1 
1 [0.1, 2] 

g 31  NF-κB transcriptional 
regulation of iNOS 

1.19 [0.1, 2] 

g 16  NO feedback to NF-κB -0.5 [-2, -0.1] 

g 32  Stat1 transcriptional 
regulation of iNOS 

0.48 [0.1, 2] 

g 26  NO feedback to Stat1 -0.5 [-2, -0.1] 

g 37  iron transcriptional 
regulation of iNOS 

-0.177 [-2, -0.1] 

h 96  NO-induced alteration of IRP -0.5 [-2, -0.1] 

79g  indirect IRP-induced 
gain of iron influx 

0.5 [0.1, 2] 

89g  IRP-induced translational 
control of ferritin 

-0.645 [-1.7, -0.1] 

97h  iron-induced loss of IRP 0.5 [0.3, 2] 
a Boldface parameters are examined further in the local detailed analysis. 
b Reduced interval sizes in 89g  and 97h  prevent parameter combinations that result in 

pathological results from the numerical solver due to stiffness in the system (see text). 
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Table 2.2. Parameters examined in the local detailed analysis. 
 

Parametera  Function Corrected Pars 
Constrained Par 

Space 

31g  NF-κB 
transcription 32 37 313 3; ; ;g g g α  31 37g g×  

32g  Stat1 transcription 31 37 313 3; ; ;g g g α  32 37g g×  

16g  NO feedback to 
NF-κB 111 1;g α  16 111g g×  

26g  NO feedback to 
Stat1 212 2;g α  26 212g g×  

37g  Iron control of 
transcription 31 32 313 3; ; ;g g g α  37 31g g×  

96h  NO control of iron 
regulation 97 99 9; ;h h β  96 97h h×  

 
a Shown for each parameter is its definition, a set of other parameters in the same flux 
term corrected to ensure external equivalence requirements in each case, and a 
constrained parameter space used for its line of equivalent gain that ensures a controlled 
comparison (see Methods). 
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Table 2.3. Lines of equivalent gain and the stability criterion used for local detailed 
analysis. 
 

Parameter(s) Line of Equivalent Gain 

31 32,g g  1 2 3 4 5 7 97 8
37

43 54 11 22 96 7

( ( ))( )
= s

s

p p L p p p p h p
g

g g h h h L p

+ + + − −
 

37g  2 7 97 8 6 7 4 5 7 97 8
31

43 22 111 66 16 54 7 97 8

( ) ( ( )( ))
=

( )( )
s

s

p p h p L p p p p p h p
g

g h g h g g L p h p

− − + + − + −
+ −

 

16g  2 7 97 8 6 7 3 4 5 7 97 8
111

31 43 22 66 7 97 8

( ) ( ( )( ))
=

( )
sp p h p L p p p p p p h p

g
g g h h p h p

− − + − + − −
−

 

26g  1 7 97 8 6 7 3 4 5 7 97 8
212

32 43 11 66 7 97 8

( ) ( ( )( ))
=

( )
sp p h p L p p p p p p h p

g
g g h h p h p

− − + − + − −
−

 

96h  1 8 2 8 6 7 3 4 5 8
97

1 2 3 4 5 7

( ( ) )
=

( ( ))
s

s

p p p p L p p p p p p
h

p p L p p p p

+ + + + −
+ + + −

 

Stability Criterion 

6 7 3 4 5 97 7 8( )( ) > 0p p p p p h p p− + − −  

Abbreviation Value Abbreviation Value 

1p  111 31 43 22 66g g g h h  5p  11 22 33 44 66h h h h h  

2p  212 32 43 11 66g g g h h  6p  37 43 54 11 22 96g g g h h h  

3p  16 31 43 54 22g g g g h  7p  89 78 79 88g h g h−  

4p  26 32 43 54 11g g g g h  8p  78 87 77 88 99( )h h h h h− +  



 72 

Table 2.4. Predicted parameter regions that best meet each criterion denoted by a score of 
−, 0 or +. 

 

Parameter Stability Responsiveness Robustnessa  
Overall 
Score 

31g  + + ≈  Positive 

32g  + + ≈  Positive 

16g  − − − Negative 

26g  − − − Negative 

37g  − − ≈  Negative 

96h  − − − Negative 
 
a In some cases for robustness criterion, there was not a clear score derived from gains 
and sensitivies (see Figure 2.7); however, taken together, the other two criteria suggest a 
clear overall score. See text for details. 
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2.5 Appendix 

2.5.1 Model equations 

We represent the macrophage network S-system shown in Figure 2.1 as a series of 

differential equations: 

61 16 54 55 66111 11
1 11 6 1 1 5 4 5 6 6

72 26 717 79 77 78212 22
2 12 6 2 2 7 17 9 7 7 8

3 8313 31 32 37 33 818 89 87 88
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In practice we reduce the number of parameters with basic assumptions about the 

kinetics as well as non-dimensionalization (see Parameter Estimation below). This makes 

numerical simulations possible and gives the following system: 

61 16111
1 11 6 1 5 4 5 6

72 26 79212
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2.5.2 Alternate representation of Activation Module 

Under partial activation conditions the model predicts a level of transcription 

factor activity below the quiescent steady state. To address differences between this 

model and a model where this is not possible we represent the fluxes 1v+  and 2v+  in a 
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piecewise manner (56)in some instances: 

16 16111 111
1 11 6 11 6

1
16111

1 11 6

, 1
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We avoided the need for identifying an upper limit by simulating LPS and IFN-γ  

doses low enough to be below signal saturation. 

 

2.5.3 Parameter estimation 

2.5.3.1 Rate constants 

We have estimated the turnover rates ia  for equations 1, 2, 3, 4 and 6 from half 

life data (2, 6, 35, 39, 52, 67, 70). 

5 6 60 50 6 60 50= ( / ) = ( / )a X X a X Xβ  at some operating point. Estimation of the 

NO:NHA ratio is difficult because actual NO levels are rarely measured in experiments. 

However, at most levels there is more nitrite than NHA, suggesting that there is more NO 

than NHA (7, 47). We assume this ratio to be 2, giving 5 6= 2a a . 

7 7 80=a Xβ . In erythrocytes the turnover half-life of the LIP is about 1 hour (5). 

Estimates for ferritin mass in macrophages range from 43.55 10−×  to 38.5 10−×  ng/cell 

(44, 60, 68). Given an approximate macrophage cell volume of 4990 µ m3  (36) and 

average apoferritin subunit size of 19.1 kDa (19) we estimate 6 5
80 [3.7 10 , 8.5 10 ]X − −∈ × ×  

m, giving 7 [2.58,61.8]a µ∈ mol/hr. We take the mean as the default value. This 

overestimates the levels of apoferritin, because the variable 8X  is for unbound only. It 
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also underestimates it, because it counts molarity of subunits, not molarity of binding 

capacity. Nevertheless the sensitivity analysis shows that this will suffice for our analysis. 

8 8 70=a Xβ . Assuming an approximately 2-hour half life of ferritin (31) and 1 

µ m LIP level (30) gives an estimate of 40 µ mol/hr. The LIP level is probably an 

overestimate but we sufficiently vary the parameter during the uncertainty analysis to 

account for this. 

9 9 90= /a Xα . Assuming a 1.8 hour half-saturation time for IRP2 during return to 

steady state after depletion (31), and total IRP2 levels in the cell of 0.00874 to 0.0132 

µ m (derived from IRP1 numbers (23)and estimated IRP1/IRP2 ratios (54)) we estimate 

9 [29.2, 44.1]a ∈  hr 1µ− m 1− . We take the mean 36.7 as the default value. 

 

2.5.3.2 Kinetic orders 

General methods for estimation of kinetic orders are found in(64). Several kinetic 

order parameters correspond to simple first order processes. When this occurs, the kinetic 

order is 1. This has been shown experimentally for the following parameters: 11h  (52), 

22h  (20), 33h  (6), 44h  (55), 66h  (62) (see below) and 99h  (33). The process of translation is 

1-to-1 from mRNA to protein subunit so 43 = 1g . The kinetic orders of iNOS substrate 

catalysis ( 54g  and 54h ) are 1 because of the proportionality of iNOS to NO production 

(41). 

We set 55 = 1h , accurate for low levels of NHA. Under high activation conditions, 

this parameter may be lower (e.g. 0.5 near the = 15mK µ M (14)). However, this only 

affects the steady state of NHA, not any other model components. This would require 
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greater consideration if we were concerned with NHA regulation of arginase (4), but for 

the aims of this study it suffices to set 55 = 1h . 

The kinetic order of NO loss in the intact cellular system 66 = 1h  in hepatocytes 

(62); the second-order loss often observed in reaction with O2  is predominant in cell-free 

systems or extracellular space (e.g. 38), not relevant here. 

Parameters 31g , 32g , and 37g  represent transcriptional regulation of the iNOS 

gene. Based on (46) we estimate 31 =1.19g  and 32 = 0.47g  using linear regression of 

sub-saturation dose response of NO2
−  to LPS and IFN-γ . 37g  can be estimated to a 

certain extent by a study showing a 50 percent decrease in macrophage iNOS mRNA 

with approximately a 50-fold increase in iron (67) (assuming a 1 µ M LIP steady state 

(30); the estimate does not change significantly even for a substantially lower LIP steady 

state). Assuming that mRNA stability and other significant components are not altered by 

the change in iron levels, 37

log 0.5
= 0.177

log50
g ≈ − . 

The parameters 77 78 87, , ,h h h  and 88h  represent the relationship between iron and 

ferritin and metabolic consumption of the LIP. As discussed in Methods, we represent the 

ferritin binding capacity instead of the raw number of subunits or complexes. Then one 

mole of iron takes one mole of ferritin binding capacity and the parameters of this 

process (78 87, ,h h  and 88h ) equal 1. Since 8X  (apoferritin) is an intermediate, its loss due 

to degradation is negligible. 77h  represents the weighted average of kinetic orders for loss 

due to metabolic consumption and chelation by apoferritin. In aggregate, the loss is first 

order so 77 =1h  (5). 
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The parameter 89g  represents the influence of IRP (9X ) on ferritin ( 8X ) 

translation. When IRP2 levels are decreased by the addition of NO+ , ferritin levels 

increase linearly over time (31). Assuming this assay detected all forms of ferritin, 

89 0.645.g ≈ −  

We set all kinetic orders of independent variables to 1. This has no effect on the 

model in most cases because the levels of independent variables are arbitrary and usually 

non-rate limiting. During the course of analysis we choose a value other than 1 for 111g  

and 212g  for controlled comparisons in some cases (see Local Detailed Analysis in 

Methods). 

The remaining unestimated parameters, 96 97 79 16, , ,h h g g  and 26g , represent 

regulatory interactions for which there exist no quantitative data to our knowledge that 

would allow us to estimate them. In the default case they are 0.5± , equivalent to a 

Michaelis-Menten process working at the operating point (64). 
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Chapter 3 

The Timing of TNF and IFN-γγγγ Signaling Affects Macrophage 
Activation Strategies During Mycobacterium tuberculosis Infection

 

3.1 Introduction 

During most bacterial infections, the population of host immune cells known as 

macrophages (Mφs) internalize and kill bacteria as an integral part of the innate immune 

response. However, during infection with Mycobacterium tuberculosis (Mtb), Mφs are 

both the preferred environment for growth (11) and the primary immune cell responsible 

for its control (reviewed in 9). Killing of Mtb by Mφs is impaired except under conditions 

of appropriate activation that occurs during adaptive immunity. In previous work we 

predicted that the evolution of Mφ activation has favored a robust quiescent state to 

prevent excessive activation in most situations (41); however, this design may benefit 

Mtb infection. 

In mouse models of Mtb infection, Mφs require at least two complementary 

activation signals to become effective at killing Mtb (12, 24). One of the signals, 

interferon (IFN)-γ, is secreted by activated T cells directly to the immunological synapse 

(28), which forms at the interface with antigen presenting cells such as Mφs. In contrast, 

tumor necrosis factor-α (TNF), a complementary signal to IFN-γ for effective Mtb killing 

by Mφs, was shown to be secreted multi-directionally from T cells (28), and is also 

produced by activated Mφs (17). Concentrations and distributions of cytokines at the site 
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of Mtb infection in the lungs are difficult or impossible to determine. Due to possible 

different spatial distributions of TNF and IFN-γ arising from their production pathways, 

timing of different activation signals received by the Mφ may alter the kinetics of Mφ 

activation and the success of responses to Mtb. 

To test this hypothesis, we examined differences between three relevant Mφ 

activation scenarios based on timing of receipt of the activating cytokine signals TNF and 

IFN-γ (Figure 3.1). The scenarios each posit a distinct possibility for when Mφs 

encounter these two cytokine signals in the course of an ongoing infection with adaptive 

immunity relative to when infection occurs. In Scenario 1, IFN-γ and TNF signals both 

precede infection of Mφs (i.e. when Mφs internalize Mtb). This case may occur during 

very strong immune responses with high systemic cytokine levels. In Scenario 2, Mφs 

receive a TNF signal before infection while targeted secretion of IFN-γ occurs concurrent 

with Mtb infection. This case represents activation from Mφ-derived TNF flanking the 

infection site and/or targeted secretion preventing wide IFN-γ distribution. Mφs may also 

receive both TNF and IFN-γ at the time of infection (i.e. at the time of Mtb uptake; 

Scenario 3). This represents recruitment of monocytes (which become Mφs) directly to 

the site of infection without prior cytokine exposure. A fourth scenario, where IFN-γ is 

received before TNF, is omitted since targeted IFN-γ secretion combined with TNF 

derived from Mφs make this scenario unlikely. These scenarios may occur 

simultaneously in the same infection, but preferentially allowing favorable scenarios may 

represent an activation strategy for the host. A scenario without TNF and IFN-γ serves as 

a negative control (labeled Control in Figure 3.1). We use a simple mathematical model 
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describing Mφ-Mtb interactions at the cellular level that is analogous to a Mφ cell-culture 

system. Each scenario is determined by experimenter-controlled variables in the model. 

We measure the effectiveness of the scenarios by the number of Mtb within Mφs 100 

hours post-infection in the model. 

In mouse models, TNF and IFN-γ induce production of nitric oxide (NO), which 

is necessary for killing of Mtb (35). NO and some reactive nitrogen intermediates (RNIs) 

derived from it are effective at killing Mtb in vitro (55), but other anti-microbial 

molecules are not (7, 16, 35, 43, 52). NO or RNIs may also induce a latent phase of the 

Mtb growth cycle (13, 37). As previously described (41), nitric oxide production 

primarily involves three main functional activities in Mφs: activation signaling, 

transcriptional regulation of killing, and intracellular iron regulation. These Mφ activities 

are connected by regulatory interactions that result in feedback (Figure 3.2). 

Two intracellular signaling mechanisms are primarily involved in activation of 

NO production in Mφs: NF-κB and Stat1. The NF-κB pathway is induced by bacterial 

antigens (such as LPS or LAM`; 20, such as LPS or LAM`; 24, 33) or TNF (15, 36, 44) 

while Stat1 is activated by IFN-γ (1, 12, 18, 42). These two signal pathways 

synergistically activate inducible nitric oxide synthase (iNOS) (31), the enzymatic 

producer of NO. 

Intracellular iron homeostasis is co-regulated with NO production (30, 54). This 

allows internalization of extracellular (transferrin-bound) iron into the intracellular labile 

iron pool (LIP), where it ultimately becomes chelated into ferritin (22). The LIP regulates 

C/EBP-β (NF-IL6), which is necessary, but not sufficient, for iNOS transcription (25). 
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Iron is also a limiting nutrient for growth of Mtb and other intracellular pathogens (48) 

and intracellular mycobacteria remove iron from the LIP (38). 

Clearly, NO regulates many components of the Mφ network. However, it is not 

clear from the literature whether regulation by NO and RNIs is inherently stimulatory or 

inhibitory (e.g.23). Previous analysis by our group suggests that feedback regulation of 

iNOS transcription by NO is primarily negative, occurring via three pathways: NF-κB, 

Stat1, and iron regulation. One effect of the proposed negative feedback is optimization 

of several system properties when compared to positive feedback in the same pathway 

(41). Since the timing of Mφ activation reflects possible host activation strategies, the 

kinetic effects of NO feedback may be important in Mtb infection. 

The model we develop here expands our previous work (41). In that model we 

assumed general endotoxin (LPS) stimulation of the NF-κB pathway. Here, we focus on 

Mtb-specific factors to study the parameters that determine clearance versus persistence 

in the interaction between macrophages and Mtb. To this end, we introduce a dynamic 

intracellular population of Mtb into the existing model (Figure 3.2). The ability of Mφs to 

kill Mtb via NO-mediated mechanisms may depend on timing of TNF and IFN-γ 

signaling. In addition to TNF and IFN-γ, Mtb-derived signals also contribute to Mφ 

activation. We assume this to occur due to ManLAM, a complex glycolipid of Mtb, 

including the virulent H37Rv strain (6, 8). Lack of quantitative data for Mφ responses to 

ManLAM prompted dose-response experiments performed herein for calibration of the 

model to Mφ activation kinetics. 

 

3.2 Materials and Methods 
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3.2.1 Dose-response experiments 

In the mathematical model we assume that Mtb-derived signals contribute to 

activation via ManLAM-mediated NF-κB induction (6, 8). In order to calibrate the Mφ 

model response to ManLAM of virulent Mtb strains and to establish a cooperative NO 

response with IFN-γ, we performed dose-response experiments with the J774.16 Mφ cell 

line (ATCC; Figures 3.2 and 3.A1). Doses of 0, 0.01, 0.1, 1, 10, and 100 µg/ml ManLAM 

(Colorado State University, Fort Collins, CO) were treated along with 0, 0.01, 0.1, 1, 10, 

and 100 U/ml IFN-γ (Sigma) in triplicate for 96 hours in 96-well plates (Becton 

Dickinson) seeded with 51.5 10×  Mφs/well. At appropriate times we used the Griess 

reagent assay to measure nitrite output as a proxy for NO production (10).  

 

3.2.2 A macrophage network model with mycobacterial infection 

We previously developed a mathematical model of the Mφ response to activation 

signals (IFN-γ and the general endotoxin LPS) inducing killing mechanisms (iNOS/NO 

in the model) co-regulated with iron homeostasis apparatus (41). This model did not 

include a representation of infection. Here we introduce a population of Mtb that interacts 

with the existing Mφ model framework to study how effectively this system kills Mtb 

under different signaling conditions, with ManLAM/TNF replacing LPS as the 

complementary signal to IFN-γ. 

We represent each component of the model as a continuous entity in an ordinary 

differential equation. It is useful to think of this model as being analogous to a Mφ cell 

culture system, with the results averaged over a large population of Mφs. The model is 

built with a non-dimensionalized form of the local and piecewise S-system 
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representations of the power law formalism (45, 47). Each of n molecular components of 

the system is described by a differential equation 

1 1

ij ij

i i

n m n m
g hi

i j i j
j j

v v

dx
a x a x

dt
+ −

+ +

= =

= −∏ ∏
������� ������

. (1) 

vi
+ and vi

- are aggregate power law fluxes describing the production and consumption of 

molecule xi that may be affected by any of m independent variables. Parameter ai is a 

turnover rate, always positive, that sets the speed of production and consumption. 

Parameters gij and hij are kinetic orders (regulatory parameters) quantifying the effect of 

the variable xj on the rate of xi production and consumption, respectively. How a model 

component (variable) regulates a given flux is determined by the kinetic order: if gij > 0, 

xj has a stimulatory effect on the flux vi
+; if gij < 0 the effect is inhibitory; if gij = 0 then xj 

does not regulate vi
+. Figure 3.2 illustrates the biochemical network with numerical 

indices for each variable and important parameters. We present the complete set of 

equations and parameter values in the Appendix. With the model in non-dimensional 

form, we report [NO], [LIP] and other molecular species as fold-induction above the 

basal steady state: xj = Xj/Xj,0 (where Xj is the absolute concentration and Xj,0 is the 

quiescent steady state level).  

Some terms in the model (i.e. production rates of NF-κB, Stat1 and iNOS mRNA) 

require a piecewise representation due to a biphasic response in the data (c.f. two 

response phases in Figure 3.3), where we quantify the effects of LAM and IFN-γ on 

activation signaling over the entire range of experimentally determined nitrite outputs. In 

this case the rate terms have the same mathematical form but the parameters depend on 
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which IFN-γ dose range is used (Figure 3.3 shows the phases with model fit; Table 3.A2 

gives parameter estimates of the fit). 

 

3.2.3 Simulated M. tuberculosis infection 

We represent Mtb infection as a single variable: an intracellular bacterial 

population subject to the effects of NO and iron levels in the Mφ network. The equation 

representing bacterial kinetics has growth and death rates parameterized as power laws: 
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.      (2) 

This representation is mathematically equivalent to a piecewise Generalized Mass Action 

representation of the power law formalism (46).The Mtb load is sensitive to NO levels 

due to growth rate inhibition (represented by the parameter gbNO) and enhancement of the 

rate of death (represented by hbNO; Figure 3.2). This model phenomenologically captures 

several effects of NO/RNIs; for example, gbNO captures a possible dormancy program in 

Mtb induced by NO (37, 53). The relative insensitivity of Mtb to superoxide and other 

non-RNI killing mechanisms (7, 16, 35, 43, 52) allows us to omit these effectors, which 

are more important against other pathogens (34). The effect of elevated intracellular iron 

(represented by gbLIP) is stimulatory, capturing the effects of iron-gathering siderophores 

produced by Mtb (14). This effect saturates when iron is no longer the rate-limiting 

nutrient (40) at a level given by kbLIP. 

The variables representing NO (x6) and the LIP (x7) are scaled to accurately 

represent how these quantities affect Mtb growth. For simplicity, mycobacteria are 
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presumed to grow best in the absence of NO and to be sensitive to relatively small levels 

of it. Then x6 = 1 (non-dimensional [NO] at the quiescent steady state) is the threshold for 

sensitivity of Mtb growth and death rates to NO. The LIP concentration giving the fastest 

growth defines the LIP saturation threshold, kbLIP. The parameter gbLIP scales the effect of 

the iron pool (in the sub-saturation range) on the rate of bacterial growth. The logistic 

term 
max

1 b
b

 − 
 

 ensures that the population does not exceed a plausible MOI, above a 

maximal population we set at 50 bacteria per cell (39, 56). 

Iron is removed from the cellular LIP at a rate proportional to the number of 

bacteria. When bacterial levels drop below detectable levels (set by kLIPb), this effect is 

absent. Sensitivity of iron pool levels to bacterial number is scaled by hLIPb. We expect 

this parameter to be small (estimated at 0.05) to approximate the level of iron loss from 

Mφs (approximately 30%`; 38). The resulting iron loss rate in the Mφ network is: 
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3.2.4 Activation Signals 

We introduce exogenous concentrations of TNF and IFN-γ into the model as 

independent variables (x11 and x12, respectively). Each independent variable is scaled by a 

parameter d to interface with the non-dimensional network model. Intracellular Mtb also 

contributes to Mφ activation, assumed to be from stimulation by sloughed ManLAM. 

Since it is derived from the intracellular Mtb population, it is a function of the number of 

bacteria present. σ scales the Mtb population to capture the effect of ManLAM for 
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compatibility with the Mφ model. The resulting terms for production of active NF-κB 

(v1
+) and Stat1 (v2

+), which go into equations for x1 and x2, are 

16111

1

26212

2
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2 IFN- 12 6
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3.2.5 Parameter estimation 

Specific choices of parameter values give the system quantitative characteristics 

and are required to solve the system on a computer (Table 3.A1). To calibrate the model 

and estimate unknown parameters, we modified the Mφ network model (without Mtb) to 

include a variable representing nitrite accumulation from NO production, a modification 

to capture experiments performed herein. We also account for degradation of ManLAM 

and IFN-γ in cell culture. This allowed us to directly fit simulated nitrite dynamics to our 

dose-response experiments (Figure 3.A1). We account for the biphasic response in the 

model using a piecewise function for Stat1 and NF-κB activation rate laws (described 

above). The fitted parameters (listed in Table 3.A2) were assigned an initial value based 

on previous work (41) and systematically adjusted by hand to achieve the fit1 (Figure 

3.3). 

 

                                                 
1Two of the dose combinations (1 U/ml IFN-γ with 10 or 100 µg/ml ManLAM) give 
model predictions lower than the experimental data. These data appear to be anomalously 
high in comparison to nitrite output at other doses (Figures 2 and A1 starred), and we 
attribute the discrepancy to experimental error. 
 



   

 93 

3.2.6 Simulated infection and treatment protocols 

Simulations employed a protocol where Mφs were treated with constant 

concentrations of TNF and/or IFN-γ as described in the 3 scenarios with infection of 

51.5 10×  bacteria at t = 0 hrs, (i.e. MOI = 1, or one bacillus per Mφ, in analogy to a cell 

culture system; Figure 3.1). As a reference threshold of activation, TNF concentrations of 

22 ng/ml and IFN-γ concentrations of 1 U/ml were simulated. We increased IFN-γ to 100 

U/ml and/or TNF to 220 ng/ml in some simulations to determine the effects of variable 

cytokine doses. The concentrations of IFN-γ were chosen to represent a range from phase 

2 of the dose response studies (Figure 3.3), where activation levels are likely bactericidal. 

TNF concentrations are known to be in the ng/ml range in tuberculosis patients (21). We 

chose the reference TNF dose to represent a high level of activation without dominating 

the response to IFN-γ. 

For scenarios with TNF and/or IFN-γ stimuli preceding infection (c.f. Figure 3.1), 

the Mφ system was brought to steady state before infection. We use the intracellular 

population of Mtb at t = 100 hrs post-infection as a measure of the effectiveness of Mφs 

at killing Mtb (i.e. the infection outcome). This time frame is similar to longer co-culture 

experiments here and elsewhere (5, 44). 

 

3.2.7 Numerical simulations 

After deriving the model, we solved the nonlinear ordinary differential equation 

S-system to obtain temporal dynamics for each element of the model. We used 

Mathematica (Wolfram Research) for most calculations, including an algorithm for 

uncertainty and sensitivity analysis and mathematically controlled comparisons (both 
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described below). Results derived with these algorithms were confirmed with a second 

differential equation solver in C++ implementing Runga-Kutta adaptive step-size solvers 

and appropriate finite difference methods. A Systems Biology Markup Language file of 

the model is available at http://malthus.micro.med.umich.edu/lab/sbml.html. 

 

3.2.8 Uncertainty and sensitivity analysis 

Parameters measured from experimental studies likely vary by experiment due to 

intrinsic errors of measurement and differences in experimental protocol. To explore the 

effects of uncertainty in the model, we evaluated it with a range of specific parameter 

values using Latin hypercube sampling (32). For this scheme, each parameter range was 

divided into 1000 equiprobable subintervals of a uniform distribution, randomly 

combined from each parameter to give 1000 parameter sets. Parameters g111, g212, bTNF 

and bIFN-γ were held constant during this analysis to preserve relative levels of activation 

of Stat1 and NF-κB pathways. Computing the numerical solution to these 1000 specific 

cases gives a statistical description of each model component at any time point, here 

using Mtb population at t = 100 hrs post-infection as the outcome measure. We determine 

statistical sensitivity by computing partial rank correlations (PRCs) between the outcome 

Mtb population and each varied parameter (4). These correlations vary between -1 and 1, 

with a significance test approximating a Student’s T (4) to determine if the PRC is 

significantly different from zero. Each sampled parameter has its own correlation that we 

interpret to represent the sensitivity of the Mtb population to that parameter. A separate Z 

test (27) compares the relative correlations between different parameters and between the 

same parameter examined under different experimental conditions. To account for the 
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large number of varied parameters we corrected significance levels using the Bonferroni 

method (50). 

 

3.2.9 Macrophage network characteristics and effective reduction of Mtb numbers 

We previously used mathematically controlled comparisons (29) to predict the 

type of regulation (i.e. positive or negative) between important Mφ network interactions 

(represented by the boldfaced regulatory parameters in Table 3.A1; see Figure 3.2). 

These are based on evolutionary pressures represented by criteria for functional 

effectiveness (described below). This approach has been applied before with statistical 

techniques to study S-system behavior (3, 49). 

With this method we compare the effect of positive regulation (+) versus no 

regulation (0) versus negative regulation (-) for each interaction in the Mφ model to meet 

criteria for how the system best operates. It also allows comparisons for quantitative 

changes in each interaction constrained to one type of regulation (i.e. +/0/-). We 

previously analyzed the model without Mtb (41) using three criteria established for other 

inducible genetic circuits (26): stability, robustness and responsiveness. Stability refers to 

the ability of a system to return to steady state after a small change in component levels. 

Robustness means a relative insensitivity of model variables and production/consumption 

rates to perturbations in parameters and other external components. Finally, 

responsiveness in this case represents a fast temporal change in NO levels after activation 

signals, reaching an activated steady state as quickly as possible after induction. 

 For this study we define response time as the time for NO concentrations to reach 

half way to the activated steady state level (approximated by the level of NO 100 hours 
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post-infection). This definition captures the speed of response without penalizing for 

overshoot (of NO). 

Mathematically controlled comparisons require internal and external equivalence 

of the system across changes in the parameter of interest (Schwacke & Voit, 2004 discuss 

these equivalence requirements in more detail). Internal equivalence is ensured by 

requiring that all terms in the mathematical model that are not involved in the interaction 

under study must have identical values. Meeting external equivalence requires correction 

of parameters in the rate term (V) containing the parameter of interest (p) as p is altered to 

ensure some equivalent external behavior of the system. To meet this requirement, the 

gain of iNOS from changes in TNF, IFN-γ and exogenous iron are held constant as the 

strength of the interaction changes. That is, the sum Ls = L(X4, X11) + L(X4, X12) + L(X4, 

X17) must be constant, where 
ˆln

( , )
ˆln

i
i j

j

X
L X X

X

∂=
∂

 (the mathematical definition of gain in 

this type of system, which may be positive or negative; ˆ
iX  denotes a quiescent or 

activated steady state level of Xi). For each interaction, we deduce a constrained, two-

dimensional parameter space (41) with the interaction parameter under study and one 

other parameter in the same rate term V corrected for external equivalence. There is a line 

of equivalent gain in this parameter space found from Ls along which the parameters are 

varied for the comparison. 

We now extend the analysis described above to include one further functional 

criterion, bacterial control: optimizing the reduction or killing of Mtb. We calculated 

bacterial load in the system at t = 100 hrs after infection for two kinds of changes in the 

parameters of interest. In some cases, we changed the interaction type (–/0/+) while for 
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others we changed the intensity of regulation for a specific interaction type. The type or 

level of regulation for each interaction that resulted in the lowest bacterial numbers 

represents the parameter value that optimally leads to a reduction in bacterial loads for 

that parameter. 

 

3.3 Results 

While macrophages are capable of effectively killing most pathogens, Mtb 

preferentially survives within them under certain conditions. Our goal is to determine 

why Mφs are poor at killing Mtb, and to predict conditions that optimize killing/reducing 

Mtb levels. Here we use a mathematical model to determine the effects of timing of the 

activation signals TNF and IFN-γ in achieving this goal. 

 

3.3.1 Macrophage network characteristics that prevent effective Mtb killing 

While negative regulation by NO optimizes stability, robustness and 

responsiveness of the Mφ network, it does so by down-regulating iNOS transcription 

(41). To determine the effects of negative feedback on Mtb killing, we computed the 

predicted infection outcome (Mtb numbers 100 hours post-infection) under different 

feedback conditions. Parameters representing regulation of NF-κB, Stat1 and iron 

regulatory apparatus were varied between positive, negative and lack of feedback using 

mathematically controlled comparisons. We then simulated each scenario (Figure 3.1) at 

the reference cytokine dosage (22 ng/ml TNF and 1 U/ml IFN-γ) for each type of 

regulation. We also performed this analysis for transcriptional signals to confirm that this 

method gives results in agreement with known types of iNOS regulation. We present one 



   

 98 

interaction in detail (NO feedback to NF-κB: g16; Figure 3.4) to show our methodology 

and summarize the other results in Table 3.1. 

Table 3.1 shows that the predicted type of regulation that minimizes Mtb numbers 

for NO feedback to NF-κB is positive, which suggests that positive feedback optimizes 

Mtb killing. This is also true for another case regarding NO regulation of iron regulatory 

apparatus (parameter h96), while NO feedback to Stat1 (g26) is neutral to infection 

outcome (Table 3.1). These results contradict our previous predictions that negative 

feedback is optimal in each case for the other criteria for Mφ function in the uninfected 

form of the model (c.f. Table 3.1 and Ray & Kirschner (41)). Therefore, the type of 

regulation by NO in the Mφ network that optimizes other functional criteria does not 

improve bacterial control (Mtb killing) in comparison to other types of regulation, and in 

some cases is antagonistic toward killing. We now show how the timing of activation, 

signals relative to when infection occurs, can compensate for this effect. 

 

3.3.2 Activation signals concurrent with infection counteract the antagonistic 
effects of negative feedback 

While the previous results suggest that negative feedback regulation by NO in 

Mφs reduces the effectiveness of killing, the sensitivity of Mtb to this effect may depend 

on the timing of activation signals. Since feedback likely affects kinetics of activation, we 

hypothesized that the timing of activation signals may benefit from the kinetic advantages 

of negative feedback. To test this, we performed sensitivity analysis that correlates the 

number of Mtb 100 hours post-infection (the infection outcome) with changes in the 

strength of each parameter in the model, preserving the qualitative type of regulation (+ 

or -) for all parameters. The resulting correlations indicate the sensitivity of Mtb to each 
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varied interaction (see Section 3.2.8 for details). We calculated these correlations 

separately for each activation scenario (Figure 3.1). 

The total number of parameters that significantly correlate with the infection 

outcome is reduced from 9 for Scenario 1 (i.e. TNF and IFN-γ introduction preceding 

infection; the significant parameters are βb, g16, g26, g31, g32, g37, h96, h97 and hbNO as 

defined in Table 3.A1) to 6 of these 9 for Scenario 2 (i.e. TNF introduction preceding 

infection; the significant parameters are βb, g26, g31, g32, h96, and hbNO) and 4 of the 9 for 

Scenario 3 (i.e. TNF and IFN-γ introduction concurrent with infection; the significant 

parameters are βb, g31, g32, and hbNO). Since the only difference between these scenarios is 

the timing of TNF and IFN-γ, competing effects may ‘cancel out’ the sensitivity of some 

parameters in Scenario 2 and 3 due to activation kinetics. To test this, we examined the 

effect of each scenario on sensitivities to NO feedback parameters. 

 Table 3.2 shows statistical sensitivities of Mtb infection outcome to each NO 

feedback parameter. Each non-zero sensitivity is negative. Since the parameters are 

negative (representing negative feedback), a negative sensitivity here represents an effect 

that reduces the effectiveness of Mtb killing. Each of the sensitivities is significantly 

smaller than zero in Scenario 1. Scenario 2 shows a reduced effect for two of the 

parameters (feedback to Stat1 and IRP; p < 0.01 in a Z test versus Scenario 1 

sensitivities) and no sensitivity to feedback to NF-κB. In Scenario 3, none of the three 

sensitivities is significantly different from zero. These changes in sensitivity between the 

three scenarios suggest that the timing of activation signals has an effect on the role of 

NO regulatory effects in Mtb killing, where activation concurrent with infection relaxes 

the undermining effects of these signals. 
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3.3.3 Dynamics that benefit cytokine signals concurrent with infection 

 While negative feedback speeds response times in all the tested scenarios, NO 

production by Mφs is initially lower in Scenarios 2 and 3 as compared to Scenario 1. 

Therefore the effects of NO in the Mφ system do not consistently favor Mtb killing. This 

may create a dependency on fast response times that favors strong negative feedback. We 

hypothesized that the dynamics of Mφ activation in the initial hours post-infection may 

neutralize the effects of negative feedback that reduces the effectiveness of Mtb killing. 

To test this hypothesis, we investigate the effects of the parameter representing 

NO feedback to NF-κB (g16) using mathematically controlled comparisons. For brevity 

we explore only this parameter, but the effects hold qualitatively for NO feedback to 

Stat1 (g26) and iron regulation (h96) as well. To determine the specific effect of feedback 

to NF-κB in each scenario, we varied g16 using mathematically controlled comparisons as 

described in Methods (Figure 3.5). As the feedback becomes more strongly negative (i.e. 

g16 from –0.5 to –2.0), the response time of NO levels (measured here as the time, in 

hours, required to reach half [NO] at t = 100) is unchanged for the scenario with no 

exogenous cytokine signals (Control). Scenario 1 improves on this response time only for 

very strong negative feedback (Figure 3.5A), while response times readily improve for 

Scenarios 2 and 3 (Figures 3.5B and 3.5C, respectively)2. This result suggests that strong 

negative feedback preferentially benefits Mφ activation in scenarios with delayed 

activation signals (Scenario 3). 

 
                                                 
2 We also found response times to be improved for stronger negative feedback in 
parameter sets not exhibiting the overshoot effect seen in Figure 3.5 (not shown). 
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3.3.4 Strong negative feedback improves relative bacterial killing with activation 
concurrent with Mtb infection compared to other scenarios 

Due to the combination of costs and benefits of negative feedback, we 

hypothesized that higher cytokine concentrations received concurrent with infection can 

compensate for antagonistic effects of feedback on Mtb killing by Mφs. 

To test this hypothesis, we examined Mtb numbers at 100 hours post-infection for 

each activation scenario as we varied levels of feedback to NF-κB using mathematically 

controlled comparisons (Figure 3.6). This was done at two simulated cytokine 

concentrations, representative of the reference dose used throughout (1 U/ml IFN-γ and 

22 ng/ml TNF; Figure 3.6A) and a case with IFN-γ concentration elevated to 100 U/ml 

(Figure 3.6B). We repeated this analysis for elevated TNF concentrations with each IFN-

γ concentration with similar results (not shown). 

For a given level of feedback, Mtb killing is nearly identical between all three 

activation scenarios at the lower cytokine dose (Figure 3.6A). For elevated IFN-γ dosing 

and strongly negative feedback (Figure 3.6B), IFN-γ concurrent with infection (Scenario 

2) shows somewhat enhanced killing over IFN-γ preceding infection (Scenario 1). 

Scenario 3 shows a much larger improvement in killing, with higher levels of negative 

feedback becoming beneficial to killing beyond a certain level (Figure 3.6B). This 

coincides with high levels of NO overshoot beyond the activated steady state level for 

this activation scenario (e.g. Figure 3.5C), suggesting a mechanism for this effect. 

Therefore, in scenarios with cytokine signaling that is timed to coincide with 

infection, Mφs perform at least as well at Mtb killing as scenarios with signaling 

preceding infection at equal concentrations. High cytokine doses can improve killing in 
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Scenarios 2 and 3 under strong negative feedback, with sufficient overshoot of NO 

reversing the antagonistic effects of NO on Mtb killing. 

 

3.4 Discussion 

Mφs require complementary activation signals (TNF or bacterial antigens and 

IFN-γ) to achieve a bactericidal state during infection with Mtb. Different sources for 

TNF (produced by Mφs and T cells) and IFN-γ (which undergoes targeted secretion by T 

cells) may reflect a host strategy to prevent superfluous perturbation of surrounding 

tissues. However, the timing of these activation signals may affect the outcome of Mtb 

infection. 

We simplified a range of possible activation kinetics into three scenarios based on 

timing of TNF and IFN-γ signals that Mφs receive relative to when they become infected 

(i.e. take up Mtb; Figure 3.1). The effects of these scenarios were tested with a 

mathematical model representing important Mφ activities known to interact with 

intracellular Mtb in mouse models (Figure 3.2). This model was calibrated to extensive 

dose-response experiments (Figures 3.3 and 3.A1) to establish a reasonable kinetic 

response for production of NO, a major anti-mycobacterial effector molecule. 

To prevent excessive activation while still allowing high NO levels when 

necessary, the Mφ network must balance a quiescent state with the rare need to reach 

high levels of activation. To this end a series of negative feedback loops modulate NO 

production (Figure 3.2). However, one possible effect of negative feedback is that 

effective Mtb killing by Mφs is reduced when compared to positive feedback (Table 3.1 

and Figure 3.4). 
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The mathematical model predicts a reduced effect of negative feedback by NO in 

scenarios where TNF and/or IFN-γ signals are introduced concurrent with Mtb infection 

(Table 3.2). Strengthening the feedback (i.e. making NO regulation of NF-κB more 

negative by making the parameter g16 more negative) also speeds Mφ responses after 

infection in scenarios where receipt of TNF and/or IFN-γ signals coincides with infection 

(Figure 3.5). This suggests the importance of improved response times allowed by 

negative feedback in Scenarios 2 and 3. 

This result depends on the interpretation of response times as rise times of NO, 

which permits the system to be capable of high overshoots that may be detrimental to 

overall system function. Our previous results suggest that this system allows high NO 

production if the appropriate signals are present (41). Based on this activation model, we 

suggest that overproduction of NO is acceptable in circumstances with multiple 

activation signals. 

We also find a possible advantage of this overshoot. Under conditions of 

strengthened feedback to NF-κB (i.e. parameter g16 < -1.25), the model predicts enhanced 

killing of Mtb by Mφs at high cytokine concentrations for Scenarios 2 and 3 compared to 

Scenario 1. This effect is particularly apparent for Scenario 3, where TNF and IFN-γ 

signals occur concurrent with infection of Mφs (Figure 3.6), and coincides with the 

predicted overshoot of NO production. This indicates an advantage of the initial burst of 

NO levels permitted by negative feedback after infection. 

During the course of pulmonary infection with Mtb, multiple signals from cell-

mediated adaptive immunity induce migration of Mφs along with T cells to the lung 

leading to the formation of immune structures called granulomas (2). Mφs that have 
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ingested Mtb at the site of infection can present antigen to T cells,which, upon activation 

constitute a rich source of TNF and IFN-γ (reviewed in 19). The most frequent clinical 

outcome of pulmonary Mtb infection is a latent infection that represents a stable co-

existence of host and pathogen. We have emphasized the functional consequences of host 

Mφ activation strategies from the perspective of optimizing Mtb killing, but our results 

also suggest a mechanism for establishing latent infections. The most effective host 

activation strategy may be recruitment of Mφs directly into the granuloma (with cytokine 

signaling as in Scenario 3 in Figure 3.1), and prevention of this strategy may favor Mtb 

growth (for instance, via loss of vascular points of Mφ entry in regions of Mtb-induced 

necrosis). An ongoing immune response at the periphery of a granuloma prevents 

bacterial dissemination in most cases. However, Mφs migrating to the site of infection 

from flanking lung tissues (possibly encountering cytokines as in Scenarios 1 and 2 in 

Figure 3.1) are more likely to permit some Mtb growth, thus striking a balance favorable 

to a latent infection state (Figure 3.7). 

 A role for the timing of events from Mφ activation has been proposed to tip the 

balance between host-pathogen interactions in different contexts (e.g. 51). In the case of 

Mtb infection, our model suggests that late activation is an optimal pathogen killing 

strategy. Experimental Mtb infection of Mφs with cytokine signals timed as in each of the 

scenarios here can test our predictions. These results also call for the integration of 

theoretical and experimental approaches to understand the temporal and spatial roles of 

signaling and macrophage migration in Mtb granuloma formation. 
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Figures 

 

 
Figure 3.1. Simulated experimental scenarios for macrophage activation that depend on 
the timing of IFN-γ and TNF signaling relative to infection. “Infection Outcome” refers 
to the success or failure of macrophage responses, measured by the number of 
intracellular bacteria. In Scenario 1, TNF and IFN-γ signaling precedes infection. 
Scenario 2 represents targeted secretion of IFN-γ at the time of infection with TNF 
stimulation preceding. Scenario 3 represents TNF and IFN-γ signaling both concurrent 
with infection. The control scenario represents no cytokines present as is the case during 
an innate response. In this case the only activation signal is derived from mycobacteria 
during infection. After macrophages initially receive a given signal, we assume that 
signal is persistent. 
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Figure 3.2. Macrophage network schematic including interactions with an intracellular 
population of Mycobacterium tuberculosis (b) with parameter names and variable 
numbers depicted. Numbers in parentheses refer to the variable number of the component 
(e.g. (1) refers to x1, (11) refers to x11, etc). Parameters gij and hij quantify network 
interaction types (stimulation or inhibition of a process by a cellular component) and 
interactions with the bacterial population. See Table 3.A1 for parameter definitions and 
values. The model is analogous to a cell culture experiment, with these interactions 
averaged over a large population of macrophages. The biochemical model (Activation, 
Killing and Iron Regulation) was previously analyzed without a representation of bacteria 
in (41). 
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Figure 3.3. Calibration of the model to dose-response of ManLAM and IFN-γ. A. 
Cumulative nitrite output of J774.16 macrophages at 96 h after treatment with a wide 
range of ManLAM and IFN-γ doses. Note two distinct response phases based on the dose 
of IFN-γ, marked 1 and 2. B. Simulated cumulative nitrite production at 96 h after 
treatment reproduces experimental trends. A version of the mathematical model without 
M. tuberculosis infection simulated the cell culture experiment. LOD: limit of detection 
for nitrite. The two asterisks denote dose levels excluded from the fitting (see Footnote 1 
in the text). 



   

 108 

 
 
Figure 3.4. Greater survival of M. tuberculosis in macrophages with negative feedback to 
NF-κB by NO compared to positive feedback. The feedback parameter (g16) was changed 
between negative (-0.75) and positive (0.75) using mathematically controlled 
comparisons. M. tuberculosis numbers represent the population of Mtb in 51.5 10×  Mφs 
at 100 hours post-infection. Control: no cell-mediated immunity. In Scenario 1, TNF and 
IFN-γ signaling precedes infection. Scenario 2 represents targeted secretion of IFN-γ at 
the time of infection with TNF stimulation preceding. Scenario 3 represents TNF and 
IFN-γ signaling both concurrent with infection. See Figure 3.1 for details of the 
scenarios. 
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Figure 3.5. Stronger negative feedback improves macrophage activation time during 
infection with M. tuberculosis. Graphs depict the first 30 hours post-infection to show 
initial kinetics. The level of negative feedback to NF-κB by nitric oxide (represented in 
the model by parameter g16) was varied using mathematically controlled comparisons. A. 
TNF and IFN-γ signals preceding infection (Scenario 1). B. Targeted secretion of IFN-γ 
restricting it to the site of infection (Scenario 2). C. Initial cytokine stimulus concurrent 
with infection time (Scenario 3). We found the control scenario (without cell-mediated 
immunity; dashed line in A, B and C) to be constant over variations in the level of 
feedback; we therefore use it as a reference point between scenarios. Rectangles depict 
the response time (number of hours for nitric oxide concentration to reach half the level 
at 100 hours post-infection) for each case. Nitric oxide levels are normalized in each 
scenario by the level at 100 hours post-infection. See Figure 3.1 for scenarios. 
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Figure 3.6. High cytokine concentrations that do not precede infection enhance killing 
under strong negative feedback. A. Level of Mtb killing for three macrophage activation 
scenarios with cytokine concentrations of 22 ng/ml TNF and 1 U/ml IFN-γ. B. Mtb 
killing for three activation scenarios with 22 ng/ml TNF and 100 U/ml IFN-γ. Scenario 1: 
TNF and IFN-γ signaling precedes infection. Scenario 2: targeted secretion of IFN-γ at 
the time of infection with TNF stimulation preceding. Scenario 3: TNF and IFN-γ 
signaling both concurrent with infection. See Figure 3.1 for details of the scenarios. 
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Figure 3.7. Recruitment scenarios that tip the balance between bacterial killing and 
persistence based on timing of activation signals. A. Recruitment of blood monocytes 
(that become macrophages) directly to a granuloma from localized vascular sources may 
favor effective bacterial killing. B. Recruitment of macrophages from surrounding lung 
tissue may result in some level of activation preceding infection, favoring latent infection. 
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Tables 

Table 3.1. Macrophage regulatory interactions optimizing killing of M. tuberculosis and 
temporal responsiveness 
 

Transcriptional regulation 
of iNOS by: 

Nitric oxide 
feedback to: 

 
NF-κB 
(g31) 

Stat1 
(g32) 

LIP1 
(g37) 

NF-κB 
(g16) 

Stat1 
(g26) 

IRP2 
(h96) 

Optimal 
Killing3 + + – + ≈

4 + 

Optimal 
Response 

Time5 
+ + – – – – 

 

1 Regulation occurs indirectly via C/EBP-β in vivo. 
2 IRP: Iron response protein. See Figure 3.2. 
3 In all scenarios with cell-mediated immunity. 
4 All Mtb numbers within 5% for positive (+), null (0) and negative (–) feedback. 
5 Other criteria for macrophage function also conform to this result (48). 
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Table 3.2. Sensitivity of M. tuberculosis numbers (100 hours post-infection) to 
quantitative variations in regulatory interactions 
 

 
 

*p<0.01. The far right bracket for each parameter denotes significant differences between 
Control and each numbered scenario. The remaining two brackets denote significant 
changes between the three numbered scenarios. NS: not significantly different from zero 
(p > 0.01). 
 

1Due to negative regulation by these interactions, correlations with negative signs are 
interpreted to mean that stronger negative regulation reduces the effectiveness of M. 
tuberculosis killing. 
 

2IRP: Iron response protein. See Figure 3.2. 
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3.5 Appendix 

Complete specification of the mathematical model. The definition of each 

variable and parameter can be found in Section 3.2, Figures 2 and A1, and Tables A1 and 

A2. The effects of some precursors (e.g. amino acids) are omitted for clarity. 
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Figure 3.A1. Simulations and experimental data shown as time series over 96 hours. The 
mathematical model reproduces experimental trends over the entire 96 hour time frame. 
Dashed lines represent simulated nitrite output for various LAM doses, while solid lines 
with data squares represent experimental data. The two dotted lines represent dose levels 
excluded from the fitting (see Footnote 1 in the main text). 
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Table 3.A1. Definitions and estimates of model parameters. Boldfaced parameters are 
the focus of the analysis. 
 

Effect Parameter Est’d Value LHS Rangea References 
NF-κB turnover a1 2.4 h-1 [0.01, 50] (30) 
Stat1 turnover a2 2.77 h-1 [0.01, 50] (25) 

iNOS mRNA turnover a3 0.173 h-1 [0.116, 0.347] (48) 
iNOS turnover a4 0.0693 h-1 [0.0365, 0.693] (48) 
NHA turnover a5 5.545 µmol/h [5.454, 332.711] (48) 
NO turnover a6 2.773 h-1 [2.727, 166.355] (48) 
LIP turnover a7 32.201 µmol/h [2.565, 61.820] (48) 

Ferritin turnover a8 40.0 µmol/h [4, 89] (48) 
IRP turnover a9 35.0 µmol-1 h-1 [29.17, 44.06] (48) 

NF-κB reg. by TNF g111 1.18 Not Varied (23) 
TNF conc. scaling bTNF 117.4 Not Varied (23) 
Stat1 reg. by IFN-γ g212 cf. Table 3.2 Not Varied cf. Table 3.2 
IFN-γ conc. scaling bIFN-γ 20 Not Varied cf. Table 3.2 

NF-κκκκB txn reg. g31 1.46 [0.1, 1.5] cf. Table 3.2 
Stat1 txn reg. g32 0.26 [0.1, 1] cf. Table 3.2 
LIP txn reg. g37 -0.177 [-0.1, -2] (48) 

NO feedback to NF-κκκκB g16 -0.672 [-0.3, -1.5] 
(26); 

cf. Table 3.2 
NO feedback to Stat1 g26 -0.5 [-0.3, -1.5] (48) 

Translation g43 1 Not Varied (48) 
Arg→NHA reg. g54 1 Not Varied (48) 
NHA→NO reg. h54 1 Not Varied (48) 

reg. of iron influx g79 0.5 [0.1, 1.5] (48) 
LIP sequestration h78 0.74 Not Varied (34) 
IRP reg. of ferritin g89 -0.645 [-0.1, -2] (48) 

LIP → Ferritin h87 1 Not Varied (48) 
NO reg. of IRP h96 -0.5 [-0.1, -1] (48) 
LIP reg. of IRP h97 0.5 [0.4, 2] (48) 

Mtb growth rate αb 0.0250 Mtb/h 
[0.0191, 
0.0385] 

Avg. of 
(21, 37, 59, 

64) 
NO reg. of Mtb growth gbNO -0.5 [-0.3, -1.5] Initial guess 

Iron enhancement 
of Mtb growth 

gbLIP 1 [0.3, 1.0] Initial guess 

Iron effect saturation kbLIP 1 [0.1, 2] Initial guess 

Intrinsic Mtb death rate βb 
42.5 10−×  

Mtb/h 

[ 52.5 10−× , 
42.5 10−× ] 

1 % of αb 

Killing by NO hbNO 0.75 [0.1, 2] Initial guessb 
NF-κB reg. by LAM gκL cf. Table 3.2 Not Varied cf. Table 3.2 

Sloughed LAM σ 120 Mtb-1 [10, 10000] (43) 
Scaling of Mtb on LIP kLIPb 106 Mtb-1 Not Varied Initial guess 
Effect of Mtb on LIP hLIPb 0.05 [0.1, 0.001] Initial guess 

Maximum Mtb per Mφ bmax 50 Mtb/Mφ Not Varied 
Guess from 

(46, 64) 
aLHS: Latin hypercube sampling. 
bCalibrated to achieve approximately 50% killing at the default cytokine dose for default 
parameter values. 



Table 3.A2. Parameter estimates from dose response experiments 

Phase IFN-γ dose 
NF-κB 

activation by 
LAM ( gκL) 

Stat1 
activation by 
IFN-γ (g212) 

iNOS 
activation by 
NF-κB (g31) 

iNOS 
activation by 
Stat1 (g32) 

NO feedback 
to NF-κB (g16) 

A ≤ 0.1 U/ml 0.2 1.0 1.46 0.26 -0.672 
B > 0.1 U/ml 0.2 2.5 0.5 0.26 -1.5 

Phase IFN-γ dose 
LAM half-life in 
culture (kLAM )1 

IFN-γ half-life in 
culture (kIFN-γ)

1 
Scaling constant 
for LAM (dLAM ) 1 

Scaling constant 
for IFN-γ (dIFN-γ) 

A ≤ 0.1 U/ml 0.025 0.035 500 20 
B > 1 U/ml 0.025 0.035 500 20 

 

1Parameter required to accurately fit the model to the data, but not needed for simulations in the main text. 
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Chapter 4 

Roles of Tumor Necrosis Factor Signaling in Granuloma 
Formation During Mycobacterium tuberculosis Infection 

 
 

4.1 Introduction 

Tuberculosis (TB) kills more people per year than any other infectious disease. 

Infection by its causative agent, Mycobacterium tuberculosis (Mtb), results in active 

disease in only a minority of cases (~10%) –the majority of cases result in control of 

infection, where the host remains infected indefinitely, but clinically silent (reviewed in 

10). Latently infected hosts are a reservoir of Mtb, sustaining epidemics through 

reactivation of latent infection that results in active and contagious TB. 

The classic feature of pulmonary Mtb infection arises during the immune 

response where aggregates of immune cells and bacteria, called granulomas, form in the 

lungs. In humans and non-human primates with latent pulmonary infection, granulomas 

form as well-circumscribed masses in the lung parenchyma comprised of resting, infected 

and activated macrophages with a characteristic cuff of T cells on the periphery (e.g. 6, 

35) and a caseous necrotic center (25). Macrophages within a granuloma have dual roles 

in Mtb infection: they are the primary mechanism for Mtb containment and the preferred 

location for bacterial growth. At the level of a single granuloma, macrophages may fail to 

control infection, leading to necrotic granulomas harboring large numbers of bacteria 

within macrophages (7). However, the relationship between bacterial control in a single 
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granuloma and the outcome of infection at the level of the entire host is not well 

established (7). 

Type-1 adaptive immunity is required to control infection at the host level. In this 

type of response, activated T cells migrate to the site of infection and act as immune 

effectors. We distinguish three primary T cell types based on their effector function (c.f. 

17). Pro-inflammatory T cells (which may be CD4+ or CD8+) provide macrophage-

activating cytokines (e.g. IFN-γ) while cytotoxic T cells (predominantly CD8+) provide 

cytolytic functions to control infection (reviewed in 10). A third T cell class, regulatory T 

cells (Treg), are also present in mouse (28) and human (14) Mtb infections, and may 

prevent efficient Mtb clearance by immune responses (31, 38). Treg are CD4+Foxp3+ cells 

that comprise approximately 5-10% of all CD4+ T cells (2, 40). They suppress the action 

of pro-inflammatory T cells (45) through poorly understood mechanisms that may occur 

by cell-contact, secretion of immunosuppressive cytokines (3), or both. 

The pro-inflammatory cytokine tumor necrosis factor-α (TNF) is a central, multi-

faceted contributor to the immune response in Mtb infection (4, 5, 11, 27, 30) that is 

produced by activated macrophages and pro-inflammatory T cells. The role of TNF is of 

great clinical interest due to the association of anti-inflammatory TNF-blocking drugs 

with reactivation of latent TB in humans (19, 50). TNF is also necessary for Mtb 

containment in mouse models (11). TNF gene-disrupted mice have disorganized 

granulomas in Mtb infections (4), underscoring the link between granuloma structure and 

effective containment of infection. 

TNF has multiple known immunological functions during infection with Mtb 

(Figure 4.1A). First, TNF has a direct role in cell recruitment via up-regulation of 
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endothelial adhesion molecules (54), facilitating trans-endothelial migration of immune 

cells to the site of infection. Second, TNF also upregulates production of chemokines by 

macrophages (1, 37) that further induce trans-endothelial migration (reviewed in 47) and 

coordinate recruitment (reviewed in 42) of immune cells. Third, TNF activates 

macrophages in a manner complementary to the type-1 cytokine IFN-γ (8, 9, 39); such 

activated macrophages can kill intracellular mycobacteria. Fourth, TNF induces necrotic 

and apoptotic cell death in macrophages (24) that is promoted by Mtb infection (18). 

Figure 4.1A summarizes these effects. 

The effects of TNF in Mtb granuloma formation therefore are likely intimately 

related to the chemokine network induced during infection. We have identified a 

simplified model of chemokines based on three classes that affect recruitment of 

macrophages and T cells to the granuloma via binding of appropriate chemokine 

receptors on the cell surface (Figure 4.1B). The α-chemoattractant class (CXCL9,10, and 

11; formerly Mig, IP-10 and I-TAC, respectively) binds chemokine receptor CXCR3 on 

pro-inflammatory CD4+ and CD8+ T cells (29), but not regulatory T cells (22). CCL2 

(formerly MCP-1) binds CCR2 on macrophages (46) and proportions of pro-

inflammatory T cell populations (34). CCL5 (formerly RANTES) binds CCR5 on 

macrophages and T cells, and is necessary for migration of regulatory T cells to the site 

of other infections (52), although this has not been demonstrated for Mtb. 

The multiple roles of the pro-inflammatory cytokine TNF in granuloma formation 

raises the question of how competing factors act to affect control of infection. Each of the 

four roles of TNF (cellular migration, induction of chemokine/TNF secretion, 

macrophage activation and apoptosis) may contribute separately to establishing and 



 

 126 

maintaining control of Mtb infection at the level of a single granuloma. Currently, it is 

impossible to experimentally study these separate TNF functions at this level of detail. 

Here we use a specific type of computer model known as an agent-based model 

(ABM) to study the contributions of these immune effectors on granuloma formation. 

The model used here is based on one developed previously by Segovia-Juarez et al (41), 

which we have extended to include relevant effects of TNF, different T cell classes and a 

simple chemokine network. The usefulness of a computational approach for this type of 

system lies in its ability to capture multiple spatial and temporal scales of dynamics, with 

appropriate representations of immune cells (discrete entities), bacteria and molecules 

(continuous entities) in a spatial coordinate system (Figure 4.2). This allows us to 

manipulate and study specific factors in a way that is not currently attainable with 

experiments. 

We used the model to assess the specific effects of individual TNF activities on 

Mtb infection at the level of a single granuloma, distinguishing which mechanisms in the 

system lead to control of Mtb growth versus uncontrolled bacterial growth within a 

granuloma. We also attempt to distinguish the roles of TNF in the initial granuloma 

formation versus maintenance (i.e. long-term control) of established granulomas. 
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4.2 Methods 

4.2.1 Hybrid agent-based model 

 The model presented here is an extension of a previous ABM simulating cellular 

interactions leading to granuloma formation during infection with Mtb (41). The model is 

considered hybrid since it utilizes both discrete entities (cells) and continuous entities 

(chemokines, TNF and Mtb) simultaneously. ABMs are developed based on four 

considerations: an environment, agents that reside there, the rules that describe the agents 

and their interactions, and the timescales on which events are defined. We give an 

overview of these areas below with the complete list of rules in Appendix 4.5. 

As in the previous model (41), the environment represents a 2 mm x 2 mm slice of 

lung parenchyma as a 100 x 100 square 2-dimensional lattice with individual micro-

compartments scaled to the approximate size of a single macrophage: 20 µm in diameter 

(23). Discrete agents move on the lattice and respond to their environment based on rules 

representing their individual biological activities. Bacteria and effector molecules can 

reside anywhere on the lattice and undergo diffusion when appropriate. 

 We include two types of discrete agents in the model: macrophages and T cells. 

As previously (41), macrophage agents assume different states as follows: resting (Mr), 

infected (Mi; have taken up bacteria), chronically infected (Mci; are unable to clear their 

intracellular bacterial load), and activated (Ma; can effectively kill bacteria). In contrast to 

our previous study (41), where a single T cell class phenomenologically captured all cell 

behaviors, here we represent three distinct T cell subpopulations as defined in the 

introduction: the Tγ class captures CD4+ and CD8+ pro-inflammatory T cells; Tc represent 

cytotoxic T cells; and Treg represent regulatory T cells. 
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 In addition to movement and placement of cells on the grid, each micro-

compartment also contains environmental variables that are affected by local conditions. 

These include the number of extracellular bacteria, levels of diffusing effector molecules 

(CCL2, CCL5, CXCL9/10/11 and TNF), the number of activated or infected macrophage 

deaths that occur in a micro-compartment, if that space is designated a vascular source, 

and whether or not the micro-compartment has become caseous. 

Caseation represents inflammation of, and damage to, the lung parenchyma from 

macrophage cell death. We note a change of terminology to “caseation” from “necrosis” 

in previous work (41), as strict necrosis within the granuloma is now believed to be 

caused by substantial neutrophil infiltration and death while caseation is likely initiated 

by macrophage death (unpublished data, JoAnne L. Flynn). 

 Cells respond to local conditions according to rules that represent known 

activities in vivo. During simulations, each agent responds depending on its state. 

Examples of rules include uptake of bacteria, macrophage activation by T cells, secretion 

of cytokines and chemokines, etc. For a full list of rules, see Appendix 4.5. 

 

4.2.2 Initial conditions and timescales 

At the beginning of a simulation, the grid has 105 randomly placed resident 

resting macrophages (Mr) moving randomly with no chemokine or cytokine present. 

Infection is initiated with one infected macrophage (Mi), containing 15 bacteria, placed at 

the center. Every 10 minutes of simulation time, positions and interactions between T 

cells and macrophages are updated, including recruitment from vascular sources and 

secretion of TNF and chemokines if appropriate. The resulting landscape of molecular 
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concentrations serves as the initial condition for computing cytokine and chemokine 

diffusion for 10 minutes of simulation time. Cell states and interactions are then updated 

again, in the beginning of the next 10-minute timestep in an asynchronous fashion, and 

continues in this way for 200 days (2,880,000 6s timesteps) of simulation time. 

 

4.2.3 Uncertainty and sensitivity analyses 

 The lung environment presents a difficult system for accurate estimation of rate 

and probability parameters, leading to a high level of epistemic uncertainty; that is, the 

relevant probabilities and rates are not well-established. Simultaneously, randomness 

from probabilities in the model results in uncertainty in the outcome for a given 

parameter set (aleatory uncertainty). Due to the high number of model parameters (rates 

and probabilities) and uncertainty with the model, exhaustive exploration of parameter 

space is impractical. However, the technique of Latin hypercube sampling (LHS) allows 

high-efficiency variation of all relevant parameters, which allows model outputs (such as 

immune cell and bacterial numbers, granuloma size, etc) to be described statistically. 

Statistical sensitivity analysis allows the quantification of each uncertain 

parameter by correlating several outcome variables (c.f. Tables 4.A1-4.A2) with 

variations in each parameter, to compute a partial rank correlation (PRC). One PRC 

exists for each parameter-variable pair, varies between –1 and 1, and represents the 

strength of relationship between the parameter and outcome variable of interest. Details 

of these methods are outlined in Appendix 4.6. 
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4.2.4 Simulated deletion and depletion of TNF activities 

In order to examine the effect of individual TNF activities on granuloma 

formation and maintenance, we performed deletions and depletions of relevant 

parameters using a baseline parameter set that leads to control of infection (Tables 4.1-

4.3). Deletion refers to loss of the activity from the beginning the simulation at the onset 

of infection. Depletion refers to the loss of the activity after the establishment of a stable 

granuloma, 100 days post-infection. The timing of the depletion was determined by 

examining the results of sensitivity analysis and the baseline control scenario. Parameter 

sensitivities in the model stabilize by day 50 (c.f. Results), suggesting that 100 days post-

infection represents a reasonable time for an established, stable granuloma. Significant 

differences between outcome variables were determined with a mean difference test 

(Welch’s approximate t test) for 15 repeated simulations of each single deletion or 

depletion, and for 10 repeated simulations in deletion or depletion of two or more TNF 

activities simultaneously. We present more details on this procedure in Appendix 4.6. 

 

4.2.5 Programming and simulations 

The model was written in C++, with the code based on (41) and (36). Simulations 

were run on a computer with dual Intel Xeon quad-core processors, each 200 day 

simulation taking about one hour, with simulations terminated if/when complete bacterial 

elimination was reached. Sensitivity analysis of resulting simulations was performed 

using Matlab (The MathWorks, Inc). Time-lapse movies and data visualizations were 

programmed in Java or created using Mathematica (Wolfram Research). 
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4.3 Results 

4.3.1 Simulated infections and granuloma formation 

The agent-based model presented here predicts the dynamics of Mtb infection on 

the level of a single granuloma. To establish baseline behavior of the model, we 

identified a reference parameter set (Tables 4.1-4.3; see Methods) that leads to a 

controlled bacterial population (Figure 4.3A, white bars). This scenario results in a 

granuloma that has a tightly packed mass of cells, predominantly resting macrophages 

(green agents in Figure 4.3B), with T cell localization at the periphery of the granuloma 

(pink, purple, and light blue agents in Figure 4.3B). The model is robust in that for 15 

repeated runs of the ABM using the reference parameter set, each individual simulation 

led to controlled infection, with none of the simulations predicting uncontrolled bacterial 

growth. 

A simulated infection with all parameters set to the control scenario but lacking 

TNF (i.e. a TNF deletion; see Methods) shows the effect of TNF on granuloma formation 

in the model and serves as an example of a granuloma that is unable to contain bacterial 

growth. Numbers of extracellular Mtb in this scenario are significantly higher than the 

bacterial control scenario 20 days post-infection (p < 0.01) and all time points thereafter 

(Figure 4.3A, gray bars). Simulations result in an irregular, larger granuloma with wide-

spread caseation (Figure 4.3C). Numbers of all macrophage and T cell populations in the 

model are significantly elevated in comparison to the control scenario within the first 20 

days after infection as well (not shown). Therefore, loss of TNF may impair early control 

of infection, resulting in more extensive immune cell infiltration; this matches data from 



 

 132 

murine models of Mtb infection (1), and provides a positive control for the model with 

respect to the requirement for TNF to control infection. 

 

4.3.2 Attainable granuloma outcomes in the agent-based model 

To determine the attainable types of granuloma outcomes in the model, we used 

uncertainty analysis to explore different parameter combinations. A sampling of 250 

parameter sets from Table 4.1 (each replicated 4 times for 1000 total simulations; see 

Methods) yielded a distribution of extracellular Mtb numbers at day 200 as shown in 

Figure 4.4. Approximately half the parameter sets predict complete elimination of 

bacteria. This outcome is intuitive: most (~70%) humans exposed to Mtb do not become 

infected (43). The remaining simulation outcomes are distributed across nearly the entire 

range of attainable bacterial populations, which has an upper limit of 62.2 10×  if every 

micro-compartment in the simulation carries the maximum number of bacteria. This 

range of extracellular Mtb numbers suggests a fair sampling of attainable simulation 

outcomes from the uncertainty analysis. Spatially, we observe a wide range of granuloma 

structures attainable for different bacterial levels (Figure 4.A1). 

 

4.3.3 Timing of bacterial elimination is concurrent with changes in parameter 
sensitivity 

The model predicts that two waves of bacterial elimination can occur (i.e. both 

eB = 0 and iB = 0; Figure 4.5B), one after the start of infection and the other immediately 

following the onset of T cell recruitment (after day 20). Elimination of bacteria occurred 

before day 100 for 97 percent of parameter sets that lead to elimination, with 87 percent 

of parameter sets leading to elimination before day 50. This supports the hypothesis that 
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early host-pathogen events can determine long term outcomes of infection. Further, in 

many cases, early elimination occurs due to the innate immune response before adaptive 

immunity is established (i.e. before T cells arrived at the infection site on day 20), 

suggesting that bacterial elimination by innate factors is attainable at the level of a single 

granuloma in vivo. 

To explore the role of T cell arrival times in a second wave of bacterial 

elimination, we repeated the global uncertainty analysis with initial T cell recruitment 

occurring on day 10 and day 30 to compare with the results obtained with arrival on day 

20 (Figure 4.5). When adaptive immunity begins on day 10, the second peak of bacterial 

elimination occurs before 20 days post-infection (Figure 4.5A), while delaying adaptive 

immunity to 30 days delays the second elimination peak (Figure 4.5C), strongly 

suggesting that initial T cell recruitment induces the second wave of elimination. 

 

4.3.4 T cell, bacterial growth and TNF parameters control granuloma formation 

Using the outcomes of the global uncertainty analysis, we performed a sensitivity 

analysis to determine which factors control granuloma formation and bacterial growth. 

Dominant sensitivities in the analysis relate to three areas: bacterial growth rates, T cell 

movement, and TNF levels. 

 

4.3.4.1 Intracellular and extracellular bacterial growth rates drive infection 

Statistical sensitivity analysis indicates that growth rates of intracellular and 

extracellular Mtb (αBi and αBe, respectively) have dominant effects on the number of 

bacteria, showing a significantly positive correlation with bacterial numbers throughout 
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simulations1 (Figure 4.6A; Table 4.4). This result suggests that the growth rate of 

mycobacteria serves as a virulence factor that can determine the success or failure of host 

responses, consistent with the fact that virulent clinical strains of Mtb grow more quickly 

in macrophages (e.g. 44). The intracellular growth rate also strongly affects other 

measured outcome variables in the model, promoting T cell recruitment and 

chemokine/TNF production (αBi in Table 4.4). 

The significant role of both intracellular and extracellular growth rates in 

determining the number of bacteria suggests an evolutionary advantage for successful 

growth of both intracellular and extracellular Mtb populations. We therefore performed 

additional simulations to examine the effect of bacteria losing the ability to grow either 

intracellularly or extracellularly using the baseline parameter set for all other parameters 

(Tables 4.1-4.3). For the loss of intracellular growth (i.e. αBi = 0) all simulations resulted 

in bacterial elimination as soon as T cells arrived after day 20. Loss of extracellular 

bacterial growth (achieved by setting αBe = 0) resulted in significantly lower but robust 

extracellular Mtb populations: (200) 163.35eB =  versus 578.54 for the baseline control 

scenario (p < 0.01). Therefore, while intracellular growth is essential for establishing a 

stable infection, our model predicts that extracellular growth acts to augment bacterial 

numbers. 

 

4.3.4.2 Crowding of T cells has global effects on granuloma formation 
                                                 
1 This result differs slightly from our previous results in Segovia-Juarez et al (42), which 
predicted that intracellular growth rates are transiently negatively correlated with 
extracellular Mtb numbers between days 30 and 150 post-infection. This discrepancy is 
due to a peak in chronically infected macrophage bursting in that model that is not 
reproduced here since we hold the initial number of macrophages constant. This allows 
uncertainty analysisto have  identical initial conditions between different parameter sets. 



 

 135 

The probability of the three T cell classes (Tγ, Tc and Treg) moving to a location 

where a cell already resides (Tmove) is significantly negatively correlated with bacterial 

levels starting shortly after T cells infiltrate the site of infection (Tmove in Figure 4.6A), 

and has significant effects on nearly all measured outcome variables (Table 4.A1). 

Therefore, if T cells are more likely to penetrate the crowded group of macrophages in 

the granuloma, bactericidal macrophage activation can more effectively reduce bacterial 

numbers. This follows from the cell contact-mediated T cell hypothesis (16) used here. If 

this assumption is approximately correct, this result suggests an important role for cell 

crowding toward T cell-mediated immune function in a granuloma, and is consistent with 

our previous results (41). 

 

4.3.4.3 Multifaceted TNF effects on granuloma outcomes 

Statistical sensitivity analysis confirms the central role of TNF in granuloma 

formation: For most of the simulated infection time, faster TNF production is correlated 

with lower bacterial numbers (sTNF in Figure 4.6A). The effects of TNF on many other 

outcome variables (Tables 4.4, 4.A1 and 4.A2) suggest that the rate of TNF secretion 

from macrophages and Tγ cells (sTNF) has a global regulatory role in the system, strongly 

determining immune cell and bacterial populations as well as molecular secretion. 

The secretion rate of TNF (sTNF) maintains a strong and consistent effect on 

bacterial and immune cell numbers throughout infection, but no parameters reflecting 

specific TNF effector mechanisms show significant correlations after the first day of 

infection. One explanation for this is that the most significant parameters may have 

drowned out effects of TNF-specific parameters when varying many parameters using 
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global statistical sensitivity analysis. To further explore the specific roles of TNF leading 

to different infection outcomes, we performed a focused sensitivity analysis, examining 

only the effect of TNF-related parameters on mean extracellular Mtb numbers (eB ). The 

rest of the parameters were set equal to the reference parameter set that leads to a 

scenario with controlled bacterial numbers (Tables 4.1, 4.2 and 4.3). 

This analysis (Figure 4.6B) reveals steady, small positive correlations between 

extracellular Mtb numbers and four TNF-related parameters: τTNFact (threshold for TNF-

induced activation by macrophages); τTNFapopt (threshold for TNF-induced apoptosis by 

macrophages); δTNF (rate of TNF degradation); and rMTNF (effect of TNF on trans-

endothelial migration). Therefore, multiple specific TNF mechanisms appear to 

contribute to the overall effect of TNF after T cell infiltration with no one mechanism 

dominant. 

 

4.3.5 Distinct effects of individual TNF mechanisms on granuloma structure 

To directly explore the roles of TNF effector mechanisms in granuloma formation 

versus maintenance (i.e. long-term control), we used the reference parameter set (Tables 

4.1-4.3) to perform deletions and depletions of the four individual TNF activities (Figure 

4.1A). Deletion refers to loss of a TNF activity from day 0, to reveal the role of TNF 

activities from the onset of infection. Depletion refers to loss of a TNF activity only after 

the establishment of controlled infection (here, 100 days post-infection; see Methods), 

which shows the role of TNF activities in maintaining infection control and granuloma 

formation. Data are presented as significant changes in each outcome variable (cell and 

molecule numbers, granuloma sizes, etc) from the baseline control scenario. 
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4.3.5.1 Effects of TNF-induced apoptosis activity 

 One trend that is evident from these simulations is that TNF has a role in 

sustaining infection. Deletion or depletion of TNF-induced apoptosis activity 

(“Apoptosis” in Table 4.5) results in complete elimination of bacteria in nearly all 

replicates (all deletions and 14 of 15 depletions). 

 There are two possible mechanisms for the effects of TNF losing the ability to 

induce apoptosis in macrophages. One is that intracellular bacteria surviving the 

apoptosis event play a central role in sustaining infection. Another possibility is that 

apoptosis regulates inflammation by preferentially targeting cells that are producing 

chemokines and TNF, and thereby contributes to the propagation of infection by lowering 

the number of immune cells during the host response. To test the first hypothesis, we 

simulated infections with the baseline parameter set, varying the survival rate of bacteria 

within a macrophage undergoing apoptosis from zero to 100 percent; the results show no 

significant change in bacterial numbers or other outcome measures (not shown). 

To test the other possibility, we examined the transient kinetics of bacteria, 

immune cells, TNF, and chemokines that occur during the apoptosis activity depletion 

(representative graphs are shown in Figure 4.7). Immediately after depletion, T cell and 

effector molecule levels permanently increase and numbers of activated macrophages 

transiently increase. The single sustained infection that occurred during the simulated 

depletion of apoptosis activity shows extensive macrophage infiltration, with no 

discernable granuloma structure (Table 4.5F). Taken together, this strongly supports the 

explanation that TNF-induced apoptosis modulates production of effector molecules and 

recruitment of immune cells in this model. 
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In contrast to the results presented here, some virulent strains of M. tuberculosis 

promote bacterial growth via inhibition of TNF-induced apoptosis of infected 

macrophages (12, 20, 48). To further explore this issue, we performed depletions of TNF-

induced apoptosis effects on infected versus uninfected macrophages separately. 

Depletion of TNF-induced apoptosis of uninfected macrophages resulted in clearance and 

high immune cell infiltration, while the effect targeting infected macrophages was more 

subtle (Figure 4.8). Therefore, the effects of losing TNF-induced apoptosis in the model 

are likely driven by secretion of chemokines and TNF by uninfected macrophages.  

Gradual reduction of the probability that TNF induces apoptosis (papopt) in all 

macrophage types predicts lower bacterial loads, but with granuloma structures largely 

unchanged (Figure 4.9). This is consistent with a scenario where loss of TNF-induced 

apoptosis results in “runaway” recruitment of immune cells. It may also point to an 

important role for anti-inflammatory cytokines such as IL-10 (10) that were omitted from 

this model but may buffer this effect in vivo. 

 

4.3.5.2 Effects of TNF-induced activation, effector molecule production and recruitment 

 Deletion and depletion of TNF-related macrophage activation shows significantly 

higher levels of caseation and extracellular bacteria, with lower overall macrophage 

numbers and unchanged granuloma size (Table 4.5). The granuloma structures resemble 

an intermediate between the solid form of the baseline scenario and the caseous core 

observed with complete TNF deletion or depletion (c.f. Figure 4.A2F-G). Therefore, the 

efficacy of TNF as part of the macrophage activation pathway may partially determine 

levels of caseation at the core without affecting overall granuloma integrity. 
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 Deletion and depletion of TNF-induced recruitment and secretion activities (Table 

4.6) suggests different roles for TNF before and after T cell infiltration. In both cases, the 

effects are more pronounced in deletion. Loss of secretion activity (that is, the activity of 

TNF inducing TNF and chemokine production from macrophages) has particularly 

divergent effects between deletion and depletion, with larger granuloma size and higher 

levels of caseation, bacteria, and most cell types in the deletion but no significant effects 

in the depletion (compare Table 4.6E and F). This suggests that this role of TNF is key to 

formation of granulomas but not involved in maintenance. 

 

4.3.6 Synergism and competition between TNF activities 

 In order to determine the effects of interactions between specific TNF activities 

on granuloma structure, we repeated deletions and depletions of pairs and triplets of 

individual activities. Figure 4.10 depicts representative granulomas for some deletions 

(Figure 4.A3 shows all simulated granulomas still containing infection at day 200 for all 

combinations of deletions and depletions). The structures reveal that TNF-induced 

apoptosis, activation, and TNF/chemokine secretion each make distinct contributions to 

granuloma structure. 

Deletion of both TNF-induced apoptosis activity and TNF-mediated activation 

activity results in high immune cell infiltration, but no effective control of infection 

(Figure 4.10A). However, loss of TNF-induced TNF/chemokine secretion activity and 

apoptosis activity results in a small, well-controlled granuloma (Figure 4.10B). This 

confirms that TNF/chemokine secretion activity from macrophages drives the hyper-

inflammatory state observed with loss of TNF-induced apoptosis. 
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Simultaneous deletion of both TNF-mediated TNF/chemokine secretion activity 

and activation activity results in a granuloma structure reminiscent of deletion or 

depletion of all TNF activity (compare Figure 4.10C with 4.3C). Granuloma structures in 

a 3-way deletion (loss of TNF-induced apoptosis, activation and effector molecule 

secretion activities) are similar as well, but with higher levels of macrophages, TNF and 

chemokines (Tables 4.A3-4.A4). This confirms a distinct role for each TNF-mediated 

activity contributing to the granuloma structure. 

 

4.4 Discussion 

 Granuloma formation in Mtb infection is complex, involving multiple scales of 

interactions including molecular, cellular, and tissue-scale processes. Our agent-based 

model of granuloma formation reproduces major features of infection by representing 

interactions of individual cell agents and molecular effectors with a representation of a 

growing mycobacterial population. This work was based on a previous model (41) with 

major extensions that include representations of TNF, a simple chemokine network, and 

distinct T cell sub-populations (Figure 4.1). A baseline parameter set demonstrates 

bacterial control (Figures 4.3A and B), which is disrupted by simulated deletion of TNF 

(Figure 4.3C). 

Granulomas in human TB are highly variable, and the relative effectiveness of 

each type of granuloma in containing infection is not known. Global uncertainty analysis 

revealed a wide range of possible granuloma types (Figure 4.A1) representing a range of 

associated bacterial loads from controlled to uncontrolled growth (Figure 4.4). 
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4.4.1 Onset of adaptive immunity 

Global uncertainty analysis predicts that there is an important role for both innate 

and adaptive immunity in granuloma formation: bacterial elimination occurs in two 

waves, one during innate immunity and the second following soon after the first T cells 

arrive at day 20 post-infection (Figure 4.5A and B). With initial T cell entry set to day 10 

post-infection, an immediate wave of elimination follows before day 20 (Figure 4.5C). 

This suggests the importance of adaptive immunity in mounting responses that may 

prevent bacteria gaining a foothold in the lung, preventing latent or active disease. This 

conclusion is reinforced by simulations with T cell entry delayed to day 30, which 

predicts a delayed second wave of bacterial clearance (Figure 4.5D). A long period of 

time before the onset of adaptive immunity allows establishment of persistent infection. 

This can be prevented by earlier T cell arrival at the site of infection. One possible 

implication of this result is that a vaccine to Mtb generating a fast T cell response at the 

infection site can favor complete elimination of bacteria. 

 

4.4.2 Effects of TNF pleiotropy 

TNF is clearly a central factor in granuloma formation and maintenance as 

observed in experiments (4) as well as in this model (sTNF in Figure 4.6). However, the 

relative importance of its primary activities (Figure 4.1A) has not been elucidated. 

 Our  model can shed light on this issue and predicts that loss of any one individual 

TNF activity is not sufficient to account for the type of granulomas observed under total 

loss of TNF activity with quantitative or qualitative measures (Tables 4.5, 4.6). Hence, 

each activity has a role that synergizes to accomplish the overall function of TNF. 



 

 142 

Focused sensitivity analysis predicts similar effects of several TNF activities on 

extracellular Mtb numbers (Figure 4.6), but deletions and depletions of specific TNF 

activities show the overall effect of each activity to be distinct. 

First, deletion and depletion of TNF-induced apoptosis nearly always results in 

effective clearance of bacteria (“Apoptosis” in Table 4.5). Out of 15 deletion and 15 

depletion replicates, one depletion simulation predicted bacterial persistence to day 200 

with disrupted granuloma structure and a heavy increase of cell infiltration and 

TNF/chemokine production after depletion compared to preceding depletion (Figure 

4.10). Separate depletion of TNF-induced apoptosis activity from infected and uninfected 

macrophages shows that this phenomenon is primarily driven by uninfected macrophages 

(Figure 4.8). Therefore, TNF-induced apoptosis may play a role in maintaining 

granuloma integrity by preventing excessive inflammation, promoting sustained Mtb 

infection as an unfortunate side-effect. This result also points to an important role for 

anti-inflammatory cytokines such as IL-10, which are omitted from the model but may 

modulate the effects of TNF in the face of natural variation in apoptosis rates. 

This result also appears in contrast to two lines of experimental evidence. First, 

virulent Mtb strains prevent apoptosis of infected macrophages in order to promote 

infection (12, 20, 48), while strains that promote apoptosis may enhance the immune 

response (15). One mechanism accounting for this effect may be enhancement of antigen 

presentation as a result of apoptosis (13, 15), a mechanism absent from the agent based 

model. However, the result of TNF-induced apoptosis deletion and depletion is clearly 

being driven by resting macrophages in the granuloma, not infected macrophages (Figure 

4.8). Therefore, our result is not directly contradictory of this work. 
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A second line of evidence lies in the sst1 mutant mouse (21), which does not 

undergo apoptosis of infected macrophages and results in impairment of innate immune 

responses, leading to uncontrolled Mtb infection (32, 51). Macrophages carrying this 

mutation also show higher rates of intracellular bacterial growth rate, and production of 

necrotic foci may allow enhanced extracellular Mtb growth (51). In an interesting 

parallel, our model predicts uncontrolled bacterial growth in simulations lacking both 

TNF-induced apoptosis and activation activities. While the factors affected by the sst1 

mutation are not fully understood, our model predicts that impairment of TNF-mediated 

macrophage activation would contribute to the phenotype observed in the sst1 mutant.  

Deletion and depletion of TNF-induced macrophage activation has the effect of 

significantly enhancing extracellular Mtb populations while reducing macrophage 

numbers compared to baseline (“Activation” in Table 4.5). A caseous core is visible in 

sample granulomas that lack TNF-induced activation (Table 4.5 C-D), suggesting that 

lowered macrophage activation is a mechanism for this type of granuloma. Deletion of 

other TNF-mediated activities in addition to activation results in more irregular 

granulomas with more extracellular bacteria (Figure 4.10), suggesting that several 

individual TNF activities (particularly regulation of activation, apoptosis, and effector 

molecule secretion) contribute to the type of structure observed. Finally, the effects of 

deletion of TNF-induced chemokine/TNF secretion activity on several variables are 

strong, but not so for depletions (“Secretion” in Table 4.6). This result suggests that the 

positive feedback effect of TNF inducing itself is an important mechanism for 

establishment of a granuloma. 
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4.4.3 Conclusions 

The model presented here raises several possibilities for future work. Since the 

probabilities of cell-cell interactions are of high importance, a three-dimensional spatial 

representation may be an important step to capturing these interactions more naturally. 

Consideration of anti-inflammatory cytokines are also necessary. Linked to a 

sophisticated model for antigen presentation in the lymph node (36), adaptive immunity 

may be represented in a mechanistic manner, capturing a simplified multi-tissue system. 

This approach represents a step toward determining the consequences of Mtb infection on 

a larger scale, with the goal of predicting bacterial dissemination or containment on the 

organism level. 
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Figures 

 

Figure 4.1. Models of molecular signaling networks that affect granuloma formation 
during infection with Mycobacterium tuberculosis. A. TNF (blue gradient) is an 
immunological effector with multiple roles. (1) TNF-dependent enhancement of 
transendothelial migration of monocytes and T cells to the lung parenchyma occurs via 
upregulation of endothelial adhesion molecules. (2) TNF-dependent activation of 
macrophages in concert with IFN-γ stimulates chemokine production and bacterial 
killing. (3) TNF-dependent apoptosis, a second pathway for mycobacterial killing. B. 
Model of the chemokine network induced during infection with Mycobacterium 
tuberculosis. CXCL9/10/11 are α-chemoattractants that bind the same chemokine 
receptor (CXCR3); CCL2 binds CCR2; CCL5 binds CCR5. Tγ are pro-inflammatory Th1 
cells. Tc are cytotoxic T cells. Treg are regulatory T cells. 
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Figure 4.2. Structure of the agent-based model environment. A 100 x 100 grid of micro-
compartments represents a 2 mm x 2 mm section of lung tissue. Discrete entities include 
macrophages and T cells. TNF, chemokines and extracellular M. tuberculosis are 
represented as continuous entities. Each micro-compartments can contain either one 
macrophage or up to two T cells along with extracellular bacteria, TNF and chemokines. 
A percentage of randomly chosen micro-compartments are designated as vascular sources 
that allow new macrophages and T cells to be recruited to the grid by chemokines and 
TNF. 
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Figure 4.3. Simulated kinetics of extracellular M. tuberculosis and typical granuloma 
structures at 200 days post-infection in baseline control and TNF deletion scenarios. A. 
Box-whisker plots represent minimum, median, maximum and interquartile range of 
bacterial numbers for 15 simulations each for the containment scenario (white bars) and 
lacking TNF (gray bars). B. Containment granuloma using the baseline set of parameters 
(Tables 4.1-4.3). C. Irregular granuloma with uncontrolled bacterial growth resulting 
from lack of TNF in the simulation. Mr, Mi, Ma, and Mci are resting, infected, activated 
and chronically infected macrophages, respectively. Be is extracellular mycobacteria. Tγ, 
Tc, and Treg are pro-inflammatory, cytotoxic and regulatory T cells, respectively. 
Parameters are as in Table 4.1-3 except for TNF deletion (where parameter sTNF = 0). 
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Figure 4.4. Distribution of average extracellular M. tuberculosis numbers at 200 days 
post-infection using parameter ranges in Table 4.1. 250 parameter sets were selected with 
Latin hypercube sampling (global uncertainty analysis). Simulations with each parameter 
set were replicated four times and averaged. 
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Figure 4.5. Time of bacterial clearance for simulations that predict complete elimination 
of bacteria depends on timing of innate and adaptive immune response. Shown are the 
number of simulations that clear all bacteria (y-axis) by day post-infection (x-axis). Two 
waves of elimination occur, the first with the innate immune response and the second 
following the onset of T cell arrival. A. Early second peak in bacterial elimination when 
T cell recruitment begins 10 days post-infection. C. Two waves of elimination with the 
default day 20 arrival time. D. The second peak of bacterial elimination is delayed and 
less pronounced when T cell recruitment begins on day 30 post-infection. Histograms 
depict averages of 3 (A and C) or 4 (B) simulation replicates for 250 separate parameter 
sets. Dashed lines depict the initiation of T cell recruitment. 
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Figure 4.6. Sensitivity analysis of granuloma simulations. Graphs depict significant 
partial rank correlations (p < 0.01) between extracellular M. tuberculosis numbers and 
parameters that affect their levels in the agent-based model. A. Global sensitivity analysis 
reveals four dominant parameters. B. TNF-focused sensitivity analysis predicts the 
contribution of individual TNF-related mechanisms over time. Non-TNF parameters are 
set equal to the baseline control scenario (Tables 4.1-4.3) in panel B. αBe: extracellular 
Mtb growth rate; αBi: intracellular Mtb growth rate; papopt: probability of TNF-induced 
apoptosis in one ten-minute interval; Tmove: probability of T cell movement onto an 
occupied location; sTNF: rate of TNF secretion by macrophages; τTNFact: threshold for 
TNF-induced activation by macrophages; rMTNF: effect of TNF on trans-endothelial 
migration; δTNF: rate of TNF degradation; τTNFapopt: threshold for TNF-induced apoptosis 
by macrophages. 
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Figure 4.7. Depletion of TNF-induced apoptosis activity. Granuloma kinetics suggest a 
hyper-inflammatory state upon targeted depletion of TNF-induced apoptosis activity. 
Plots depict tracings of ten individual simulations with targeted depletion of TNF-
induced apoptosis activity at day 100. A. Extracellular bacterial numbers decrease after 
depletion, leading to complete elimination for 9 of the 10 simulations. B, C. Total T cell 
numbers and TNF concentrations rapidly and permanently increase after depletion. D. 
Activated macrophage levels transiently increase after depletion. 
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Figure 4.8. T cell kinetics for depletion of TNF-induced apoptosis activity in subsets of 
the macrophage population. A. Depletion of apoptosis activity from resting and activated, 
but not infected, macrophages. B. Depletion of apoptosis activity from infected 
macrophages only. Each plot depicts individual tracings of 5 replicates. Note difference 
of scale on y-axis. 
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Figure 4.9. Effects of changing the probability of TNF-induced apoptosis activity on 
extracellular M. tuberculosis numbers and granuloma structures in the agent-based 
model. A. Reductions in the probability of apoptosis activity (parameter papopt) lower 
mean bacterial loads. In the baseline control scenario, the probability of apoptosis is set to 
4 percent (N = 15 replicates). Tested reductions in the probability were performed with 5 
replicates each. B-G. Typical granulomas for persistent infection the agent-based model 
with reduced chance of TNF-induced apoptosis activity. 
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Figure 4.10. Double and triple deletions of TNF-activities. Representative granuloma 
structures for deletions of different TNF activity combinations. Structures for multiple 
replicates of each simulation, and for depletions of each combination at 100 days post-
infection, are given in Figure 4.A2. 
 



 

 

Table 4.1. Parameters varied for Latin hypercube sampling 
 

Parameter Description1 Default Range Distribution 
Varied in focused 

analysis? 

αBi 
Intracellular Mtb growth rate 

(per 10 minutes) 
0.002 [0.0002, 0.002] Uniform No 

αBe 
Extracellular Mtb growth rate 

(per 10 minutes) 
0.001 [0.00015, 0.015] Log-Uniform No 

pk Probability of Mr killing bacteria 0.015 [0.01, 0.1] Uniform No 
Tactm Probability of Mi activation by Tγ 0.05 [0.0001, 0.1] Log-Uniform No 
Mrecr Probability of macrophage recruitment 0.075 [0.01, 0.1] Uniform No 
Trecr Probability of T cell recruitment 0.075 [0.01, 0.1] Uniform No 

Tmove 
Prob of a T cell moving onto 

an occupied micro-compartment 
0.01 [0.00001, 0.1] Log-Uniform No 

Trrecr 
Proportion of Treg cells 

out of all T cells recruited 
0.1 [0.01, 0.2] Uniform No 

λc 
Chemokine diffusion rate 

(per 0.1 minutes) 
0.3734 [0.1, 0.7] Uniform No 

δc 
Chemokine degradation rate 

(per 0.1 minutes) 
0.00123 [0.0005, 0.0015] Uniform No 

rT 
Combined TNF/chemokine threshold 
for T cell recruitment at a vascular 

source2 
1,000 4[0.1,10] 10×  Log-Uniform No 

rM 
Combined TNF/chemokine threshold 

for Mr recruitment at a vascular source2 
1,000 4[0.1,10] 10×  Log-Uniform No 

sc5 
CCL5 production rate 

(molecules per 10 minutes)+ 
67.5 10×  

6[1,10] 10×  Uniform No 

s5m 
Macrophage CCL5 saturation threshold 

(molecules) 
61.413 10×  

6[1,100] 10×  Log-Uniform No 

τ5m 
Macrophage CCL5 threshold 

(molecules) 
42 10×  

4[1,100] 10×  Log-Uniform No 
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Table 4.1. (continued) Parameters varied for Latin hypercube sampling 
 

Parameter Description1 Default Range Distribution 
Varied in focused 

analysis? 

λTNF 
TNF diffusion rate 
(per 0.1 minutes) 

0.7 [0.1, 0.7] Uniform Yes 

δTNF 
TNF degradation rate 

 (per 0.1 minutes) 
0.0006 [0.0001, 0.001] Uniform Yes 

sTNF 
TNF production rate 

(molecules per 10 minutes) 
52.25 10×  

4[1,100] 10×  Log-Uniform Yes 

papopt 
Probability of TNF-induced 
apopt per 10 minute interval 

0.1 [0.001, 0.2] Uniform Yes 

τTNF 
Macrophage TNF detection threshold 

(molecules) 
57 10×  

5[1,15] 10×  Uniform Yes 

rMTNF Effect of TNF on Mr recruitment2 150 [10,1000] Log-Uniform Yes 
 
1All probabilities are per 10 minute interval. 
2Non-dimensional; c.f. II.3.iv-v. of the Agent-Based Model Rules (Appendix) 
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Table 4.2. Parameter relationships constrained for analyses 
 

Parameter Description Value 

sc2 
CCL2 production rate 

(molecules per 10 minutes) 
sc5 

sc9 
CXCL9/10/11 production rate 

(molecules per 10 minutes) 
2*sc5 

s2m Macrophage CCL2 saturation (molecules) 10*s5m 

τ2m Macrophage CCL2 threshold (molecules) 0.1∗ τ5m 

s2Tγ Tγ CCL2 saturation (molecules) 10*s5m 

τ2Tγ Tγ CCL2 threshold (molecules) 0.1∗ τ5m 

s5Tγ Tγ CCL5 saturation (molecules) s5m 

τ5Tγ Tγ CCL5 threshold (molecules) τ5m 

s9Tγ Tγ CXCL9 saturation (molecules) 10*s5m 

τ9Tγ Tγ CXCL9 threshold (molecules) τ5m 

s5Tc Tc CCL5 saturation (molecules) s5m 

τ5Tc Tc CCL5 threshold (molecules) τ5m 

s9Tc Tc CXCL9 saturation (molecules) 10*s5m 

τ9Tc Tc CXCL9 threshold (molecules) τ5m 

s5Tr Treg CCL5 saturation (molecules) s5m 

τ5Tr Treg CCL5 threshold (molecules) 0.1∗ τ5m 

rM2 Effect of CCL2 on Mr recr1,2 rMTNF 

rM5 Effect of CCL5 on Mr recr1,2 0.1*rMTNF 

rTTNF Effect of TNF on T cell recr1 rMTNF 

rT9 Effect of CXCL9 on Tγ, Tc cell recr1,2 0.1*rMTNF 

rTγ2 Effect of CCL2 on Tγ cell recr1,2 rMTNF 

rT5 Effect of CCL5 on Tγ, Tc cell recr1,2 0.1*rMTNF 

rTr5 Effect of CCL5 on Treg cell recr1,2 rMTNF 

Tγrecr Proportion of Tγ cells recruited 0.6*(1 – Trrecr) 

Tcrecr Proportion of Tc cells recruited 0.4*(1 – Trrecr) 
 

1Non-dimensional; c.f. II.3.iv-v. of the Agent-Based Model Rules (Appendix). 
2These parameters were held constant in the focused sensitivity analysis at the default 
value of rMTNF given in Table 4.1. 



 

 158 

Table 4.3. Parameters not varied in uncertainty analysis 
 

Parameter Description Value Reasoning 
Minit Number of resident macrophages 105 1 

Kbe 
Carrying capacity of micro- 

compartment for extracellular Mtb 
220 2, 3 

Nrk Number of Mtb engulfed/killed by Mr 2 3 

Nphag Number of Mtb killed by Ma every 10 minutes 10 3 

Ntact 
Maximum Tγ number in 

Moore of Mi having effect 
4 3 

Ncaseum Number of Ma, Mi and Mci deaths for caseation 6 3 

tregTγ Tγ inactivity time after Treg interactions (min) 110 3 

Nc Number of Mtb for Mi → Mci transition 10 3, 4 

Kbi Number of bacteria causing bursting 20 3, 4 

Mals Lifespan of Ma in days 10 5 

Tls Lifespan of T cells in days 3 5 

Mrls Lifespan of Mr in days 100 5 

Tdelay T cell recruitment delay in days 20 6 

Pkill Fraction Mtb killed by Fas/FasL apoptosis 0.5 7 

pTk 
Prob of Fas/FasL (TNF-independent) 

apoptosis by T cells 
0.006 7 

Tckmtb Probability of Tc killing Mtb in Mci death 0.75 7 

Tckmci Probability of Tc killing M ci 0.95 7 

1. Set to the reference number for containment to have identical initial conditions. 
2. Set ~10-fold larger than the amount causing macrophage bursting. There is physical 

space for approximately 450 bacilli in one micro-compartment (tightly packed), 
but lack of nutrients for growth limits this. 

3. These parameters have integer values that cannot be continuously varied over at least 
250 different values. 

4. The same effect as varying this is captured by changing intracellular growth rate: the 
faster Mtb grow, the sooner the transition to chronic infection. If Nc is varied in 
say [5, 25] we should set Kbi = 2*Nc. 

5. Relative lifespans are well known. Vary cell age between 0 and the maximum age, so 
changing these would have questionable relevance. 

6: Many parameter sensitivities change before and after this time, so it was held constant  
but multiple uncertainty analyses were performed to show the effect of this 
parameter. 

7. Preliminary analysis revealed little effect for reasonable ranges. Thus, this was not 
varied to reduce the number of parameters varied. 
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Table 4.4. Significant partial rank correlations between parameters and different 
granuloma outcome measures 20 and 200 days post-infection for 
several different outcome variables (column 1).1 See Tables 4.A1 and 
4.A2 for additional correlations. 

 
Parameter αBi αBe sTNF 

Outcome     Day 
Measure  20 200 20 200 20 200 

Be +++ +++ +++ + --- --- 
Bi +++ ++   --- --- 

Total T cells  +    --- 
Tγ  +    --- 

“Secretor” Tγ
2  ++    --- 

Tc  +    --- 
Treg      --- 

Total Macs     --- --- 
Mr     --- --- 
M i +++ ++   --- --- 
Mci +++ ++   --- --- 
Ma      --- 

TNF +++      
Chemokines +++    -- --- 
Caseation  +++    --- 

Be growth rate ++ ++ +  --- --- 
Granuloma Size ND3 + ND3  ND3 --- 

 

1Parameter definitions are given in Tables 4.1-4.3. Significant positive correlations: +++ 
(p < 0.0001); ++ (p < 0.001); + (p < 0.01). Significant negative correlations: --- (p < 
0.0001); -- (p < 0.001); - (p < 0.01). 
 
2Number of Tγ cells actively secreting IFN-γ. 

3ND: Not done due to relative lack of granuloma formation by day 20. 



 

 

Table 4.5.  Significant changes in granuloma variables at 200 days post-infection for deletion and depletion of all TNF activity 
(“Positive Control”), TNF-induced activation activity (“Activation”), and TNF-induced apoptosis activity 
(“Apoptosis”) versus the baseline control scenario1. Sample granuloma structures for each deletion and depletion are 
shown. 

 
1+ denotes a higher variable value for the deletion or depletion than the control scenario; - denotes a lower value. 
+++ (p < 0.0001); ++ (p < 0.001); + (p < 0.01). Significant negative correlations: --- (p < 0.0001); -- (p < 0.001); - (p < 0.01).  

2Number of Tγ cells actively secreting IFN-γ. 
3Nearly complete bacterial elimination prevented testing.
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Table 4.6. Significant changes in granuloma variables at 200 days post-infection for deletion and depletion of all TNF activity 
activity (“Positive Control”), TNF effects on cellular transendothelial migration activity (“Recruitment”), and TNF-
induced secretion of chemokines/TNF activity (“Secretion”) versus the baseline control scenario1. Sample granuloma 
structures for each deletion and depletion are shown. 

 
1+ denotes a higher variable value for the deletion or depletion than the control scenario; - denotes a lower value. 
+++ (p < 0.0001); ++ (p < 0.001); + (p < 0.01). Significant negative correlations: --- (p < 0.0001); -- (p < 0.001); - (p < 0.01).  

2Number of Tγ cells actively secreting IFN-γ. 
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4.5 Appendix: Agent-Based Model Rules 

4.5.1 Details of Agent-Based Model Rules 

4.5.1.1 Bacteria and effector molecules in the model 

 Chemokines and TNF are modeled by partial differential equations (PDEs) 

representing diffusion on the grid. Each molecular effector type (CCL2, CCL5, 

CXCL9/10/11 and TNF) is defined separately. We assume simple first-order diffusion 

with a term for signal degradation. Due to the scale difference between diffusing 

molecular signals and cells, we assume that diffusion is unaffected by the presence of 

cells, and concentrations of different types of molecules may be overlapping. Diffusion is 

solved in ∆t = 6 second timesteps. 

 Numbers of Mtb are continuously represented as well. Since Mtb is a non-motile 

bacterium, we assume that bacteria do not diffuse, so we capture their numbers with 

discretized ordinary differential equations. In a given 20 µm2 micro-compartment, 

bacteria grow according to a logistic growth law with a population capacity of Kbe = 220: 

( 1) ( ) ( )(1 ( ) / )e e be e e beB t B t B t B t Kα+ = + − . The population limit of bacteria per micro-

compartment is 10 times the number of Mtb contained within a macrophage before 

bursting. While the geometry of the micro-compartment allows up to approximately 450 

individual bacilli in a single compartment due to the size of Mtb (a rod shape that is 2-5 

µm long and 0.2-0.3 µm thick), we assume that there is a growth limitation due to 

competition for nutrient resources, preventing bacterial numbers from growing to this 

density. 

 

4.5.1.2 Environment 
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 The 2-dimensional grid representation of lung tissue is a major simplification that 

makes spatial considerations computationally tractable. However, the representation 

requires some considerations to permit a realistic model of cellular crowding. Due to the 

size difference between macrophages and T cells, we allow up to two T cells to enter the 

same micro-compartment (with probability 4moveT× ), but only if no macrophage is 

present. A T cell may also move into the same micro-compartment as a macrophage 

(with probability Tmove). This model of cell spacing is a compromise between a realistic 

spatial representation and computational tractability since we capture crowding effects 

while saving the computational cost of a continuous spatial representation. A three-

dimensional approach has been developed (49) that confirmed results obtained with our 

previous two-dimensional model (41), suggesting that a two-dimensional approach is 

sufficient to capture first order effects. 

 In addition to movement and placement of cells on the grid, each micro-

compartment also contains environmental variables that are affected by local conditions. 

These include the number of extracellular bacteria, the number of activated or infected 

macrophage deaths that occur in a micro-compartment, whether or not the micro-

compartment has become caseous, and if that space is designated a vascular source. 

We assume that a set number (Ncaseum = 6) of deaths of activated or infected 

macrophages occurring in a micro-compartment causes the onset of caseation (this 

number can be varied in the analysis). When the last macrophage death leading to 

caseation is reached (i.e. Ncaseum deaths have occurred), any T cell present in the micro-

compartment is killed and no further cells are permitted entry to the micro-compartment. 
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If TNF and/or chemokine concentrations exceed a set threshold, then micro-

compartments defined to be vascular sources have a chance of recruiting a macrophage or 

T cell at each timestep. The thresholds are set by parameters labeled r in Tables 4.1-4.2 

(rMTNF, rTTNF, etc.). 

 

4.5.1.3 Rules for immune cells 

 Cells respond to local conditions according to rules that represent known 

activities in vivo. During simulations, each agent responds depending on its state. Several 

internal macrophage variables are set or altered by surrounding conditions: 

chemokine/TNF secretion (on/off), IFN-γ signal received (on/off), TNF or bacterial 

signal received (on/off), cell age, activation time, cell state (resting, activated, infected or 

chronically infected), and number of intracellular bacteria. Resting (Mr) and activated 

(Ma) macrophages can take up bacteria that are in the same micro-compartment. Resting 

macrophages may kill a small number of Mtb or become infected if the number of 

internalized bacteria exceeds 2. Production of chemokines and TNF by macrophages 

depends on activation by bacterial antigens and TNF; we therefore include a switch for 

chemokine secretion that is independent of the macrophage state (resting, infected, etc). 

If the macrophage detects sufficient TNF (above the threshold τTNF), it becomes capable 

of secreting TNF and chemokines, with a small probability of undergoing TNF-induced 

apoptosis (papopt). TNF and chemokine secretion is also induced by sufficient 

extracellular bacterial numbers in the same microcompartment (BactM = 100). Infected 

macrophages secrete chemokines and TNF at half the rate in the absence of activation 

signals. 
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 During each update interval, infected macrophages may be activated by pro-

inflammatory T cells (Tγ) in their Moore neighborhood, the 9-micro-compartment area 

around the cell location. Each pro-inflammatory T cell in the Moore neighborhood has a 

chance (Tactm) of activating an infected macrophage. For macrophages to reach 

bactericidal levels of macrophage activation, IFN-γ must work in concert with one other 

activation signal (either TNF or bacterial products) (9). Mtb-derived products only 

effectively complement IFN-γ in the model if extracellular bacterial levels at that location 

exceed a threshold (BactM = 100). The contribution of T cell-derived IFN-γ to macrophage 

activation is represented with cell-cell interactions. This is an acceptable model since 

IFN-γ signaling requires close proximity of macrophage to T cell, as it is known to be 

secreted from T cells in a directed manner to the immunological synapse (16). Activated 

macrophages (Ma) effectively kill all their intracellular bacteria. A pro-inflammatory T 

cell (Tγ) that has successfully activated a macrophage then secretes TNF in a non-directed 

fashion (16) and becomes an IFN-γ secretor, so that the cell is able to activate the IFN-γ 

pathway in macrophages encountered thereafter. 

If a macrophage is infected (Mi), intracellular Mtb divide at a rate set by 

parameter αBi. In the absence of activation, the intracellular number of Mtb may exceed a 

threshold (Nc, set to 10, half the carrying capacity of a macrophage, given below) where 

the cell becomes chronically infected (Mci) after which it is incapable of being activated. 

Beyond a further threshold for intracellular bacterial numbers per macrophage (Kbi, set to 

20 based on (33, 53)) the chronically infected macrophage bursts, releasing bacteria 

uniformly into the Moore neighborhood. This bursting, along with death of activated 

macrophages (Ma), contributes to caseation. 



 

 166 

 Cytotoxic T cells (Tc) randomly check one space in their Moore neighborhood 

each 10-minute time interval for the presence of infected macrophages. If an infected 

macrophage is present, the cytotoxic T cell has a low probability of killing that 

macrophage, along with all its intracellular bacteria if it was not chronically infected 

(reviewed in (10)). When chronically infected macrophages are killed, there is a 75% 

chance of all intracellular Mtb being killed, a 20% chance of dispersal to the Moore 

neighborhood, and a 5% chance of nothing occurring. T cell interactions with infected 

macrophages can also result in TNF-independent Fas/FasL-induced apoptosis (reviewed 

in (10)), resulting in 50% killing of intracellular Mtb and dispersal of the rest to the 

Moore neighborhood. 

 The mechanism of regulatory T cell (Treg) function in Mtb infection is not well 

established, but may involve cell-contact mediated or immunosuppressive cytokine 

mechanisms (3). We adopt a cell-contact-mediated model of Treg cell activity. Treg cells 

check one space in the Moore neighborhood for the presence of a pro-inflammatory T 

(Tγ) cell. If it is present, cell-cell interaction occurs and the Tγ cell becomes incapable of 

activating infected macrophages for a set time afterwards (tregTγ, 110 minutes by default). 

Since this time frame is not well established, we estimate it based on an approximate time 

to change the genetic program of the regulated cell while regaining activity. 
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4.5.2 Outline of Rules 

I. Initialization: conditions at the start of a simulation 

a. 100 x 100 2-dimensional grid (representing 2 square mm) 

i. Cellular boundary conditions:    

 periodic (toroidal) 

ii.  Molecular (chemokine and TNF) boundary conditions:  

 zero outside grid perimeter 

b. 50 vascular source locations randomly distributed in 7 partitions of grid 

space 

c. Microcompartment caseation counters set to 0 

d. Distribute 105 resting macrophages randomly on grid 

e. No chemokine or TNF present 

f. 1 infected macrophage with 15 intracellular Mtb at the center of the grid 

II.  Overview: Timing and Order of Events 

a. Diffusion/degradation of chemokine and TNF (if present) according to 

2[ ]tu u uλ δ= ∇ −  for molecule u in ∆t = 6 second increments (smallest 

timestep in model)2 

b. Move macrophages based on CCL2/CCL5 (c.f. III.a.) 

i. Move Mr on a 20-minute interval 

ii.  Move Ma on a ~13 hour interval 

iii.  Move Mi on a 24 hour interval 

                                                 
2Diffusion is solved in ∆t = 6 second timesteps based on finding diffusion coefficients λc 
and λTNF from 4 /t xλ δ= ∆ ∆ , where δ is the molecular diffusion rate in m2/s and ∆x = 
10-5 m2 is the grid size (41). 
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c. Events on 10-minute intervals 

i. Move Tγ based on CCL2, CCL5, and CXCL9/10/11 (c.f. III.b.) 

ii.  Move Tc based on CCL5, CXCL9/10/11 (c.f. III.b.) 

iii.  Move Treg based on CCL5 (c.f. III.b.) 

iv. Determine macrophage (Mr) recruitment from each source:3  

 if rMTNF*TNF(x,y) + rM2*CCL2(x,y) + rM5*CCL5(x,y) > rM, 

 there is a probability Mrecr of Mr recruitment 

v. Determine T cell (Tγ, Tc and Treg) recruitment: 

1. Proportions are ργ*T γrecr + ρc*T crecr + ρr*T rrecr 

2. Pro-inflammatory T cell (Tγ) recruitment: if 

rTγTNF*TNF(x,y) + rTγ2*CCL2(x,y) + rTγ5*CCL5(x,y) + 

rTγ9*CXCL9/10/11(x,y) > rTγ, ργ = 1, otherwise ργ = 0 

3. Cytotoxic T cell (Tc) recruitment: if rTcTNF*TNF(x,y) + 

rTc5*CCL5(x,y) + rTc9*CXCL9/10/11(x,y) > rTc, ρc = 1, 

otherwise ρc = 0 

4. Regulatory T cell (Treg) recruitment: if rTrTNF*TNF(x,y) + 

rTr5*CCL5(x,y) > rTr, ρr = 1, otherwise ρr = 0 

vi. Determine cell-cell interactions, activation, chemokine production 

1. Mr, Mi, Mci, Ma (c.f. IV below) 

2. Tγ, Tc, Treg (c.f. V below) 

                                                 
3 For the source at the microcompartment denoted by coordinates (x,y), TNF(x,y) 
represents the amount of TNF at that point; likewise for chemokines. 
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vii.  Compute contribution of Mtb to chemotactic effects (Met-Leu-Phe, 

lipid antigens, etc.): modeled as contribution to CCL5 level 

viii.  Remove dead cells from the grid 

ix. Calculate growth of extracellular Mtb according to 

( 1) ( ) ( )(1 ( ) /(1.1 ))e e be e e beB t B t B t B t Kα+ = + − ⋅  

d. Increment counter by 6 seconds, return to II.a. 

III.  Movement Rules 

a. Each cell type has threshold (τ) and saturation (s) parameters for each 

chemokine it responds to. 

b. Movement is random if all chemokines are below threshold or above 

saturation. 

c. Macrophage chemotaxis: 

i. Levels of CCL2 and CCL5 in surrounding microcompartments 

determine a probability distribution for movement 

1. CCL2 affects movement if τ2m < [CCL2] < s2m 

2. CCL5 affects movement if τ5m < [CCL5] < s5m 

ii.  Highest probability direction has further doubled probability 

iii.  Movement is blocked by 

1. Caseous microcompartment 

2. Macrophage presence 

d. T cell chemotaxis: 

i. Pro-inflammatory T cells (Tγ) depend on CCL2, CCL5 and 

CXCL9/10/11 (with saturation and detection thresholds as above) 
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ii.  Cytotoxic T cells (Tc) depend on CCL5 and CXCL9/10/11 (with 

saturation and detection thresholds as above) 

iii.  Regulatory T cells (Treg) depend on CCL5 (with saturation and 

detection thresholds as above) 

iv. Movement is blocked/reduced by 

1. Caseation (blocked) 

2. Macrophage presence (probability of movement TmoveM) 

3. T cell presence (probability of movement TmoveT) 

IV.  Rules for macrophages in each 10 minute interval 

a. Resting (Mr): 

i. Response to TNF: If local [TNF] exceeds a detection threshold 

(τTNF), 

1. the cell becomes capable of secreting TNF and chemokines 

(CCL2, CCL5 and CCL9).  

2. there is a chance (papopt) that TNF induces apoptosis of Mr 

cells.  

ii.  Phagocytosis of Mtb may result in infection:  

1. If extracellular Mtb (be) ≤ Nrk, the Mr kills them. 

2. If be > Nrk: 

a. the Mr kills them with probability pk 

b. the Mr becomes infected (Mi) otherwise 

iii.  Death due to age at a time uniformly distributed between 0 and 100 

days after arrival on the grid. 
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b. Infected (Mi): 

i. TNF and chemokine secretion. 

ii.  There is a chance (papopt) that TNF induces apoptosis. 

1. If this occurs, half of the intracellular bacteria survive and 

are distributed to the surrounding environment. 

2. Death contributes to the caseation counter at the location of 

the cell (microcompartment becomes caseous if the counter 

exceeds Ncaseum). 

iii.  Intracellular Mtb replicate according to 

( ) ( 1) ( 1)i i bi ib t b t b tα= − + − .  

iv. If intracellular Mtb number exceeds a threshold (Bi > Nc), the Mi 

becomes chronically infected (Mci). 

v. Chance of activation by IFN-γ from pro-inflammatory Tγ cells not 

currently regulated by Treg. 

1. With probability Tactm, any of the T cells may activate the 

macrophage; intracellular bacteria are killed and the cell 

becomes activated (Ma). 

2. The probability of activation saturates if the number of 

surrounding Tγ cells is above a certain number (Ntact). 

vi. If the Mi dies due to age, disperse intracellular Mtb into the Moore 

neighborhood surrounding the cell. 

vii.  If the Mi dies due to age, increment the local caseation counter (the 

compartment becomes caseous if the counter exceeds Ncaseum). 
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c. Chronically Infected (Mci): 

i. The cell undergoes the same secretion, apoptotic and bacterial 

growth events as infected macrophages (Mi), but is incapable of 

becoming activated. 

ii.  If the number of intracellular Mtb exceeds a threshold (Kbi), 

1. The macrophage bursts 

2. Intracellular bacteria are evenly distributed to the Moore 

neighborhood surrounding the Mci. 

3. Caseation counter is incremented 

iii.  The nominal lifespan is inherited from Mi predecessor 

d. Activated (Ma):  

i. Macrophages secrete chemokines and TNF 

ii.  Probability papopt of TNF-dependent apoptosis 

iii.  Actively take up and kill extracellular bacteria at a rate of Nphag 

bacteria per ten minute interval. 

iv. Ma have a shortened lifespan of Mals (= 10 days) after activation 

V. Rules for T cells in each 10 minute interval 

a. Check for death due to age (uniformly distributed between 0 and 3 days 

after emergence from vascular source) 

b. Pro-inflammatory Tγ:  

i. Chance of activating infected macrophages (Mi) via IFN-γ – 

detailed in section III.b.v. 

ii.  TNF secretion results from activation interaction 
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iii.  Probability of TNF-independent induction of apoptosis in infected 

or chronically infected macrophages in surrounding compartments 

a. Kill half of intracellular Mtb 

b. Remaining Mtb uniformly distributed in Moore 

neighborhood 

c. Increments local caseation counter 

c. Cytotoxic Tc: 

i. Chance of perforin/granulysin-mediated killing of Mi and Mci 

1. If M i is found, chance of Mi and Mtb death, CCL5 release 

2. If M ci is found,  

a. 75% chance of Mci and Mtb death, CCL5 release 

b. 20% chance of Mci death, Mtb dispersal, CCL5 

release 

c. 5% chance nothing happens 

3. Probability of TNF-independent apoptosis induction in Mi 

or Mci 

a. Kill half of intracellular Mtb 

b. Remaining Mtb uniformly distributed in Moore 

neighborhood 

c. Increment local caseation counter 

d. Regulatory Treg: 

i. Chance of inactivating pro-inflammatory T cells (Tγ) 

1. Inactive Tγ state lasts for tregTγ timesteps. 
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4.6 Appendix: Detailed methods 

 
4.6.1 Uncertainty and sensitivity analyses 

With the Latin hypercube method we determine relevant ranges for each 

parameter (Tables 4.1 and 4.2), partition this range into M (= 250) intervals, and sample 

each interval once. We sample parameters from uniform or log-uniform distributions, 

depending on the size of the sampled parameter range (Table 4.1). These samples for 

each parameter are combined to form M total parameter sets.  

Statistical sensitivity analysis allows the quantification of each uncertain 

parameter by correlating several outcome variables (c.f. Tables 4.A1-4.A4) with 

variations in each parameter, to compute a partial rank correlation (PRC). One PRC 

exists for each parameter-variable pair, varying between –1 and 1, and representing the 

strength of relationship between the parameter and variable. We use a T test to determine 

if the correlations are significantly greater than zero, and a Z test to determine if two 

correlations significantly differ from each other. Due to the number of comparisons 

made, we use a false-detection correction method (FDR) to prevent spurious indications 

of significance. For a review of uncertainty and sensitivity analysis methods in systems 

biology, see (26). 

 One requirement of statistical sensitivity analysis used here is monotonicity 

between each parameter-variable relationship. Aleatory uncertainty may cause the model 

to violate this requirement. Based on recent work in our group (26), we use a modified 

methodology where each sampled parameter set is run X times, with the average of the 

outcomes used for the sensitivity analysis. Here X is chosen to be 4, which is sufficient to 
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reduce the level of uncertainty for this analysis. Thus the total number of simulation runs 

for each sensitivity analysis is 4M = 1000. 

 

4.6.2 Measurement of granuloma size 

 One benefit of an ABM is that it has a spatial representation. To take advantage of 

this, we developed an algorithm to determine granuloma size for use as an outcome 

variable in sensitivity analysis. The process was made as simple as possible, with the goal 

being a quantitative measure of a spatial characteristic for sensitivity analysis. First, a 

graph of each granuloma at 200 days post-infection (c.f. Figure 4.A1) was manually 

scored for a granuloma-like structure. Cases lacking a distinct mass or ring of 

macrophages were assigned a size of 0. For the remaining, we determined the granuloma 

size based on the median distance from the grid center (coordinate (50, 50)) of all 

macrophage types defined to be a part of the granuloma. To define the edge of a 

granuloma, a macrophage was counted as being in the granuloma if more than 6 other 

macrophages were in its Moore neighborhood. 

 

4.6.3 Simulated deletion and depletion of TNF activities 

Five separate parameters were changed to test alterations in specific TNF 

activities. In a total TNF deletion/depletion, total TNF secretion (parameter sTNF) was set 

to 0. We removed the effect of TNF-induced trans-endothelial migration by setting TNF-

related recruitment parameters (rMTNF and rTTNF) to 0, and the effect of TNF-induced 

apoptosis activity was removed by setting the probability of TNF-induced apoptosis 

(papopt) to 0. We removed macrophage sensitivity to TNF by setting the sensitivity 
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threshold (τTNF) to an unattainable level (106). To remove specific TNF-induced effects 

on macrophages, we introduced auxiliary parameters τactTNF representing the threshold for 

TNF-induced activation, τsecrTNF, representing the threshold for TNF-induced 

cytokine/chemokine secretion, and τapoptTNF, representing the threshold for TNF-induced 

apoptosis. We then set each threshold to an unattainable level (106). 

 



 

 177 

4.7 Appendix: Granuloma Structures 

4.7.1 Granuloma structures in global uncertainty analysis 

 

Figure 4.A1. (This figure is 3 pages long.) Attainable granuloma structures 200 days 
post-infection from one run of global uncertainty analysis. Slides are sorted by number of 
extracellular bacteria from left to right and top to bottom. 120 total simulations that did 
not predict complete bacterial elimination are shown. Numbers indicate log10 
extracellular M. tuberculosis number. Cells are colored as in Figure 4.3. Cell types are 
colored as follows: green, orange, red and blue are resting, infected, chronically infected 
and activated macrophages, respectively; yellow, extracellular bacteria; brown, caseation; 
prink, purple and light blue, pro-inflammatory, cytotoxic, and regulatory T cells, 
respectively. 

A 
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Figure 4.A1B. (continued from previous page) 

B 
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Figure 4.A1C. (continued from previous page) 

C 
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4.7.2 Granuloma structures in targeted deletion and depletion of TNF activities 

 
 
 

Figure 4.A2. (This figure is 5 pages long.) Granuloma structures predicted for deletion 
and depletion of each specific TNF activity. Replicates of structures containing infection 
at day 200 are shown. A. Baseline case with all TNF activities present. B-I. Deletion and 
depletion, respectively, of: all TNF activity (B, C); TNF-induced recruitment activity (D, 
E); TNF effects on macrophage activation activity (F, G); and TNF-induced chemokine 
and TNF secretion from macrophages activities (H, I). In D and F, less than 15 are shown 
due to complete bacterial elimination occurring before day 200 in some instances. 

A 
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Figure 4.A2 B-C. Deletion (B) and depletion (C) of all TNF activity. 

 

B 

C 
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Figure 4.A2 D-E. Deletion (D) and depletion (E) of TNF-induced recruitment. 

 

D 

E 
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Figure 4.A2 F-G. Deletion (F) and depletion (G) of TNF effects on macrophage 
activation. 

 

F 

G 
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Figure 4.A2 H-I. Deletion (H) and depletion (I) of TNF-induced chemokine and TNF 
secretion from macrophages. 

H 

I 
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4.7.3 Granuloma structures in targeted deletion and depletion of TNF activities 

 
 

 
 
 
Figure 4.A3. (This figure is 9 pages long.) Granuloma structures predicted for ten 
replicates of deletion and depletion of specific TNF activity combinations. Replicates of 
structures containing infection at day 200 are shown. A-R. Deletion and depletion, 
respectively, of: apoptosis + activation (A, B); apoptosis + secretion activities (C, D); 
activation + recruitment activities (E, F); activation + secretion activities (G, H); 
recruitment + secretion activities (I, J); recruitment + activation + apoptosis activities (K, 
L), recruitment + activation + secretion activities (M, N); recruitment + apoptosis + 
secretion activities (O, P); activation + apoptosis + secretion activities (Q, R). Each 
activity refers to specific TNF-induced activities illustrated in Figure 4.1A. In some, less 
than 10 are shown due to complete bacterial elimination occurring before day 200 in 
those instances. The combination of apoptosis + recruitment deletion and depletion is 
omitted due to complete bacterial elimination predicted for all simulations. 

A 

B 
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Figure 4.A3 C-D. Deletion (C) and depletion (D) of TNF-induced apoptosis and 
chemokine/TNF secretion from macrophages.

C 

D 
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Figure 4.A3 E-F. Deletion (E) and depletion (F) of TNF-induced macrophage activation 
activity and recruitment of immune cells. 
 

E 

F 
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Figure 4.A3 G-H. Deletion (G) and depletion (H) of TNF-induced macrophage 
activation and chemokine/TNF secretion from macrophages. 
 
 

G 

H 
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Figure 4.A3 I-J. Deletion (I) and depletion (J) of TNF-induced immune cell recruitment 
and chemokine/TNF secretion from macrophages. 
 
 

J 

I 
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Figure 4.A3 K-L. Deletion (K) and depletion (L) of TNF-induced immune cell 
recruitment, apoptosis and chemokine/TNF secretion from macrophages. 

L 

K 
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Figure 4.A3 M-N. Deletion (M) and depletion (N) of TNF-induced immune cell 
recruitment, macrophage activation, and chemokine/TNF secretion from macrophages. 
 

M 

N 
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Figure 4.A3 O-P. Deletion (O) and depletion (P) of TNF-induced immune cell 
recruitment, apoptosis and chemokine/TNF secretion from macrophages. 
 
 

O 

P 



 

 193 

 
 

 
 
Figure 4.A3 Q-R. Deletion (Q) and depletion (R) of TNF-induced macrophage 
activation, apoptosis and chemokine/TNF secretion from macrophages.

R 

Q 
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4.8 Appendix: Global sensitivity analysis and multiple TNF deletions/depletions 

Table 4.A1. Significant partial rank correlations between parameters and granuloma 
variables 200 days post-infection.1 

 
 αBi αBe TactM Mrecr Tmove sTNF τTNFsec 
Be +++ +   -- ---  
Bi ++    --- ---  
Total T cells +    - ---  
Tγ +    - --- -- 
“Secretor” Tγ

2 ++  +++   ---  
Tc +    - --- -- 
Treg     - --- - 
Total Macrophages    + --- ---  
Mr    +++ -- ---  
M i ++    --- ---  
Mci ++    --- ---  
Ma     - ---  
TNF     -  - 
Chemokines     - --- - 
Caseation +++     ---  
Be growth rate ++    - ---  
Granuloma Size +   + --- --- + 

 

1Parameter definitions are given in Tables 4.1-4.3. Significant positive correlations: +++ 
(p < 0.0001); ++ (p < 0.001); + (p < 0.01). Significant negative correlations: --- (p < 
0.0001); -- (p < 0.001); - (p < 0.01). 
 
2Number of Tγ cells actively secreting IFN-γ. 
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Table 4.A2. Significant partial rank correlations between parameters and granuloma  
variables 20 days post-infection (immediately preceding adaptive 
immunity).1 

 
 αBi αBe Mrecr δTNF sc sTNF τTNFsec τTNFapopt papopt 

Be + +++    ---    
Bi +++     ---  ++ - 

Total 
Macrophages 

  ++   ---   --- 

Mr   +++ -  ---   -- 
M i +     ---  + - 
Mci +++     ---    
TNF    -    + --- 

Chemokines + +   + -- - + --- 
Be growth 

rate 
++ +    ---    

 

1Parameter definitions are given in Tables 4.1-4.3. Significant positive correlations: +++ 
(p < 0.0001); ++ (p < 0.001); + (p < 0.01). Significant negative correlations: --- (p < 
0.0001); -- (p < 0.001); - (p < 0.01). 



 

 

Table 4.A3. Significant changes in granuloma variables at 200 days post-infection for deletion and depletion of combinations of two 
individual TNF activities versus the baseline control scenario1. Sample granuloma structures for each deletion and 
depletion are shown in Figures 4.9 and 4.A2. Apo: TNF-induced apoptosis; Rec: TNF-mediated recruitment; Act: TNF-
mediated activation; Sec: TNF-induced chemokine/TNF secretion. 

 
 Apo + Rec Apo + Act Apo + Sec Act + Rec Act + Sec Rec + Sec 

 Del Depl Del Depl Del Depl Del Depl Del Depl Del Depl 
Be --- --- +++ +++   ++ +++ +++ +++   
Bi --- --- +++ +++ -    +++ +++ +++  
Total T cells + +++ +++ +++   - -- ++   - 
Tγ + +++ +++ +++   - -- ++   - 
“Secretor” Tγ

2 + - --  --   +  ++ ++  
Tc + ++ +++ +++   - - +   -- 
Treg + ++ +++ +++    -     
Total Macrophages  +++ +++ +++   --- ---    -- 
Mr  +++ +++ +++   ---    -  
M i --- --- +++ +++ --- --   +++ +++ ++  
Mci --- --- +++ +++     ++ +   
Ma ++ + ---    --- --- --- ---   
TNF + +++ +++ +++       ++  
Chemokines + +++ +++ +++       ++  
Caseation --- --- +++ +++  + ++ ++ +++ + +++ + 
Granuloma Size ND3 ND3 ND3 ND3 -    +++    

 
1+ denotes a higher variable value for the deletion or depletion than the control scenario; - denotes a lower value. 
+++ (p < 0.0001); ++ (p < 0.001); + (p < 0.01). Significant negative correlations: --- (p < 0.0001); -- (p < 0.001); - (p < 0.01).  

2Number of Tγ cells actively secreting IFN-γ. 
3Granuloma structures lack distinct bounds for quantification in these cases.
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Table 4.A4. Significant changes in granuloma variables at 200 days post-infection for deletion and depletion of combinations of  

three individual TNF activities versus the baseline control scenario1. Sample granuloma structures for each deletion and 
depletion are shown in Figures 4.9 and 4.A2. Apo: TNF-induced apoptosis; Rec: TNF-mediated recruitment; Act: TNF-
mediated activation; Sec: TNF-induced chemokine/TNF secretion. 

 
 Rec + Act + Apo Rec + Act + Sec Rec + Apo + Sec Act + Apo + Sec 

 Del Depl Del Depl Del Depl Del Depl 
Be +++ +++ +++ +++   +++ +++ 
Bi +++ +++ +++ +++   +++ +++ 
Total T cells +++ +++ -  - --- +++ + 
Tγ +++ +++ -  - --- +++  
“Secretor” Tγ

2 -- +   - - +++ + 
Tc +++ +++   - --- +++ + 
Treg +++ +++     +++ + 
Total Macrophages +++ +++ -- --   +++ + 
Mr +++ +++ --- ---   +++  
M i +++ +++ +++ +++ - - +++ +++ 
Mci +++ +++ ++ ++   +++ +++ 
Ma ---  -- ---   +  
TNF +++ +++ ++ +++   +++ +++ 
Chemokines +++ +++ ++ +++   +++ +++ 
Caseation +++ +++ +++ +++  + +++ +++ 
Granuloma Size ND3 ND3 ++    +++ +++ 

 
1+ denotes a higher variable value for the deletion or depletion than the control scenario; - denotes a lower value. 
+++ (p < 0.0001); ++ (p < 0.001); + (p < 0.01). Significant negative correlations: --- (p < 0.0001); -- (p < 0.001); - (p < 0.01).  

2Number of Tγ cells actively secreting IFN-γ. 
3Granuloma structures lack distinct bounds for quantification in these cases.

197 



 

 198 

4.9 References 
 
1. Algood, H. M., P. L. Lin, and J. L. Flynn. 2005. Tumor necrosis factor and 

chemokine interactions in the formation and maintenance of granulomas in 
tuberculosis. Clin Infect Dis 41 Suppl 3. 

 
2. Asano, M., M. Toda, N. Sakaguchi, and S. Sakaguchi. 1996. Autoimmune 

disease as a consequence of developmental abnormality of a T cell subpopulation. 
J Exp Med 184:387-396. 

 
3. Baatar, D., P. Olkhanud, K. Sumitomo, D. Taub, R. Gress, and A. Biragyn. 

2007. Human Peripheral Blood T Regulatory Cells (Tregs), Functionally Primed 
CCR4+ Tregs and Unprimed CCR4- Tregs, Regulate Effector T Cells Using 
FasL. J Immunol 178:4891-4900. 

 
4. Bean, A., D. Roach, H. Briscoe, M. France, H. Korner, J. Sedgwick, and W. 

Britton.  1999. Structural Deficiencies in Granuloma Formation in TNF Gene-
Targeted Mice Underlie the Heightened Susceptibility to Aerosol Mycobacterium 
tuberculosis Infection, Which Is Not Compensated for by Lymphotoxin. J 
Immunol 162:3504-3511. 

 
5. Bekker, L. G., S. Freeman, P. J. Murray, B. Ryffel, and G. Kaplan. 2001. 

TNF-alpha controls intracellular mycobacterial growth by both inducible nitric 
oxide synthase-dependent and inducible nitric oxide synthase-independent 
pathways. J Immunol 166:6728--6734. 

 
6. Emile, J. F., N. Patey, F. Altare, S. Lamhamedi, E. Jouanguy, F. Boman, J. 

Quillard, M. Lecomte-Houcke, O. Verola, J. F. Mousnier, F. Dijoud, S. 
Blanche, A. Fischer, N. Brousse, and J. L. Casanova. 1997. Correlation of 
granuloma structure with clinical outcome defines two types of idiopathic 
disseminated BCG infection. Journal of Pathology 181:25-30. 

 
7. Emile, J. F., N. Patey, F. Altare, S. Lamhamedi, E. Jouanguy, F. Boman, J. 

Quillard, M. Lecomte-Houcke, O. Verola, J. F. Mousnier, F. Dijoud, S. 
Blanche, A. Fischer, N. Brousse, and J. L. Casanova. 1997. Correlation of 
granuloma structure with clinical outcome defines two types of idiopathic 
disseminated BCG infection. Journal of Pathology 181: 25-30. 

 
8. Flesch, I., and S. Kaufmann. 1987. Mycobacterial growth inhibition by 

interferon-gamma-activated bone marrow macrophages and differential 
susceptibility among strains of Mycobacterium tuberculosis. J Immunol 
138:4408-4413. 

 
9. Flesch, I. E., and S. H. Kaufmann. 1990. Activation of tuberculostatic 

macrophage functions by gamma interferon, interleukin-4, and tumor necrosis 
factor. Infect Immun 58:2675-2677. 



 

 199 

10. Flynn, J. L., and J. Chan. 2001. Immunology of tuberculosis. Annu Rev 
Immunol 19:93--129. 

 
11. Flynn, J. L., M. M. Goldstein, J. Chan, K. J. Triebold, K. Pfeffer, C. J. 

Lowenstein, R. Schreiber, T. W. Mak, and B. R. Bloom. 1995. Tumor necrosis 
factor-alpha is required in the protective immune response against 
Mycobacterium tuberculosis in mice. Immunity 2:561-572. 

 
12. Fratazzi, C., R. D. Arbeit, C. Carini, M. K. Balcewicz-Sablinska, J. Keane, H. 

Kornfeld, and H. G. Remold. 1999. Macrophage apoptosis in mycobacterial 
infections. J Leukoc Biol 66:763-764. 

 
13. Grode, L., P. Seiler, S. Baumann, J. Hess, V. Brinkmann, A. Nasser Eddine, 

P. Mann, C. Goosmann, S. Bandermann, D. Smith, G. J. Bancroft, J. M. 
Reyrat, D. van Soolingen, B. Raupach, and S. H. Kaufmann. 2005. Increased 
vaccine efficacy against tuberculosis of recombinant Mycobacterium bovis bacille 
Calmette-Guerin mutants that secrete listeriolysin. J Clin Invest 115:2472-2479. 

 
14. Guyot-Revol, V., J. A. Innes, S. Hackforth, T. Hinks, and A. Lalvani. 2006. 

Regulatory T cells are expanded in blood and disease sites in patients with 
tuberculosis. Am J Respir Crit Care Med 173:803-810. 

 
15. Hinchey, J., S. Lee, B. Y. Jeon, R. J. Basaraba, M. M. Venkataswamy, B. 

Chen, J. Chan, M. Braunstein, I. M. Orme, S. C. Derrick, S. L. Morris, W. R. 
Jacobs, and S. A. Porcelli. 2007. Enhanced priming of adaptive immunity by a 
proapoptotic mutant of Mycobacterium tuberculosis. J Clin Invest 117:2279-
2288. 

 
16. Huse, M., B. F. Lillemeier, M. S. Kuhns, D. S. Chen, and M. M. Davis. 2006. 

T cells use two directionally distinct pathways for cytokine secretion. Nature 
Immunology 7:247-255. 

 
17. Ishii, N., K. Nakahigashi, T. Baba, M. Robert, T. Soga, A. Kanai, T. 

Hirasawa, M. Naba, K. Hirai, A. Hoque, P. Ho, Y. Kakazu, K. Sugawara, S. 
Igarashi, S. Harada, T. Masuda, N. Sugiyama, T. Togashi, M. Hasegawa, Y. 
Takai, K. Yugi, K. Arakawa, N. Iwata, Y. Toya, Y. Nakayama, T. Nishioka, 
K. Shimizu, H. Mori, and M. Tomita.  2007. Multiple High-Throughput 
Analyses Monitor the Response of E. coli to Perturbations. Science 316:593-597. 

 
18. Keane, J., M. K. Balcewicz-Sablinska, H. G. Remold, G. L. Chupp, B. B. 

Meek, M. J. Fenton, and H. Kornfeld. 1997. Infection by Mycobacterium 
tuberculosis promotes human alveolar macrophage apoptosis. Infect Immun 
65:298-304. 

 
19. Keane, J., S. Gershon, R. P. Wise, E. Mirabile-Levens, J. Kasznica, W. D. 

Schwieterman, J. N. Siegel, and M. M. Braun. 2001. Tuberculosis associated 



 

 200 

with infliximab, a tumor necrosis factor alpha-neutralizing agent. N Engl J Med 
345:1098-1104. 

 
20. Keane, J., H. G. Remold, and H. Kornfeld. 2000. Virulent Mycobacterium 

tuberculosis strains evade apoptosis of infected alveolar macrophages. J Immunol 
164:2016-2020. 

 
21. Kramnik, I., W. F. Dietrich, P. Demant, and B. R. Bloom. 2000. Genetic 

control of resistance to experimental infection with virulent Mycobacterium 
tuberculosis. Proc Natl Acad Sci U S A 97:8560-8565. 

 
22. Kristensen, N. N., M. Gad, A. R. Thomsen, B. Lu, C. Gerard, and M. H. 

Claesson. 2006. CXC chemokine receptor 3 expression increases the disease-
inducing potential of CD4+ CD25- T cells in adoptive transfer colitis. Inflamm 
Bowel Dis 12:374-381. 

 
23. Krombach, F., S. Münzing, A. M. Allmeling, J. T. Gerlach, J. Behr, and M. 

Dörger. 1997. Cell size of alveolar macrophages: an interspecies comparison. 
Environ Health Perspect 105 Suppl 5:1261-1263. 

 
24. Laster, S. M., J. G. Wood, and L. R. Gooding. 1988. Tumor necrosis factor can 

induce both apoptic and necrotic forms of cell lysis. J Immunol 141:2629-2634. 
 
25. Lin, P. L., S. Pawar, A. Myers, A. Pegu, C. Fuhrman, T. A. Reinhart, S. V. 

Capuano, E. Klein, and J. L. Flynn. 2006. Early events in Mycobacterium 
tuberculosis infection in cynomolgus macaques. Infect Immun 74:3790-3803. 

 
26. Marino, S., I. Hogue, C. Ray, and D. Kirschner. 2008. A methodology for 

performing global uncertainty and sensitivity analysis in systems biology. J Theor 
Biol (in press). 

 
27. Marino, S., D. Sud, H. Plessner, P. L. Lin, J. Chan, J. L. Flynn, and D. E. 

Kirschner. 2007. Differences in reactivation of tuberculosis induced from anti-
TNF treatments are based on bioavailability in granulomatous tissue. PLoS 
Comput Biol 3:1909-1924. 

 
28. Mason, C. M., E. Porretta, P. Zhang, and S. Nelson. 2007. 

CD4+CD25+transforming growth factor--producing T cells are present in the 
lung in murine tuberculosis and may regulate the host inflammatory response. 
Clinical & Experimental Immunology 148:537-545. 

 
29. Mohan, K., Z. Ding, J. Hanly, and T. B. Issekutz. 2002. IFN-gamma-inducible 

T cell alpha chemoattractant is a potent stimulator of normal human blood T 
lymphocyte transendothelial migration: differential regulation by IFN-gamma and 
TNF-alpha. J Immunol 168:6420-6428. 



 

 201 

30. Mohan, V. P., C. A. Scanga, K. Yu, H. M. Scott, K. E. Tanaka, E. Tsang, M. 
M. Tsai, J. L. Flynn, and J. Chan. 2001. Effects of tumor necrosis factor alpha 
on host immune response in chronic persistent tuberculosis: possible role for 
limiting pathology. Infect Immun 69:1847-1855. 

 
31. Ordway, D., M. Henao-Tamayo, M. Harton, G. Palanisamy, J. Troudt, C. 

Shanley, R. Basaraba, and I. Orme. 2007. The Hypervirulent Mycobacterium 
tuberculosis Strain HN878 Induces a Potent TH1 Response followed by Rapid 
Down-Regulation. J Immunol 179:522-531. 

 
32. Pan, H., B.-S. Yan, M. Rojas, Y. Shebzukhov, H. Zhou, L. Kobzik, D. 

Higgins, M. Daly, B. Bloom, and I. Kramnik. 2005. Ipr1 gene mediates innate 
immunity to tuberculosis. Nature 434:767-772. 

 
33. Paul, S., P. Laochumroonvorapong, and G. Kaplan. 1996. Comparable growth 

of virulent and avirulent Mycobacterium tuberculosis in human macrophages in 
vitro. J Infect Dis 174:105-112. 

 
34. Peters, W., J. G. Cyster, M. Mack, D. Schlöndorff, A. J. Wolf, J. D. Ernst, 

and I. F. Charo. 2004. CCR2-dependent trafficking of F4/80dim macrophages 
and CD11cdim/intermediate dendritic cells is crucial for T cell recruitment to 
lungs infected with Mycobacterium tuberculosis. J Immunol 172:7647-7653. 

 
35. Ridley, M., C. Heather, I. Brown, and D. Willoughby. 1983. Experimental 

epithelioid cell granulomas tubercle formation and immunological competence: 
An ultrastructural analysis. The Journal of Pathology 141:97-112. 

 
36. Riggs, T., A. Walts, N. Perry, L. Bickle, J. N. Lynch, A. Myers, J. Flynn, J. J. 

Linderman, M. J. Miller, and D. E. Kirschner.  2008. A comparison of random 
vs. chemotaxis-driven contacts of T cells with dendritic cells during repertoire 
scanning. J Theor Biol 250:732-751. 

 
37. Roach, D., A. Bean, C. Demangel, M. France, H. Briscoe, and W. Britton. 

2002. TNF Regulates Chemokine Induction Essential for Cell Recruitment, 
Granuloma Formation, and Clearance of Mycobacterial Infection. J Immunol 
168:4620-4627. 

 
38. Roberts, T., N. Beyers, A. Aguirre, and G. Walzl. 2007. Immunosuppression 

during active tuberculosis is characterized by decreased interferon- gamma 
production and CD25 expression with elevated forkhead box P3, transforming 
growth factor- beta , and interleukin-4 mRNA levels. J Infect Dis 195:870-878. 

 
39. Rook, G. A., J. Steele, M. Ainsworth, and B. R. Champion. 1986. Activation 

of macrophages to inhibit proliferation of Mycobacterium tuberculosis: 
comparison of the effects of recombinant gamma-interferon on human monocytes 
and murine peritoneal macrophages. Immunology 59:333-338. 



 

 202 

40. Sakaguchi, S., N. Sakaguchi, M. Asano, M. Itoh, and M. Toda. 1995. 
Immunologic self-tolerance maintained by activated T cells expressing IL-2 
receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance 
causes various autoimmune diseases. J Immunol 155:1151-1164. 

 
41. Segovia-Juarez, J. L., S. Ganguli, and D. Kirschner. 2004. Identifying control 

mechanisms of granuloma formation during M. tuberculosis infection using an 
agent-based model. J Theor Biol 231:357-376. 

 
42. Stein, J., and C. Nombela-Arrieta. 2005. Chemokine control of lymphocyte 

trafficking: a general overview. Immunology 116:1-12. 
 
43. Styblo, K. 1980. Recent advances in epidemiological research in tuberculosis. . 

Adv Tuberc Res 20:1-63. 
 
44. Theus, S., K. Eisenach, N. Fomukong, R. F. Silver, and M. D. Cave. 2007. 

Beijing family Mycobacterium tuberculosis strains differ in their intracellular 
growth in THP-1 macrophages. Int J Tuberc Lung Dis 11:1087-1093. 

 
45. Thornton, A. M., and E. M. Shevach. 1998. CD4+CD25+ immunoregulatory T 

cells suppress polyclonal T cell activation in vitro by inhibiting interleukin 2 
production. J Exp Med 188:287-296. 

 
46. Valente, A. J., D. T. Graves, C. E. Vialle-Valentin, R. Delgado, and C. J. 

Schwartz. 1988. Purification of a monocyte chemotactic factor secreted by 
nonhuman primate vascular cells in culture. Biochemistry 27:4162-4168. 

 
47. van Buul, J., and P. Hordijk. 2004. Signaling in Leukocyte Transendothelial 

Migration. Arterioscler Thromb Vasc Biol 24:824-833. 
 
48. Velmurugan, K., B. Chen, J. L. Miller, S. Azogue, S. Gurses, T. Hsu, M. 

Glickman, W. R. Jacobs, S. A. Porcelli, and V. Briken. 2007. Mycobacterium 
tuberculosis nuoG Is a Virulence Gene That Inhibits Apoptosis of Infected Host 
Cells. PLoS Pathog 3. 

 
49. Warrender, C., S. Forrest, and F. Koster. 2006. Modeling intercellular 

interactions in early Mycobacterium infection. Bull Math Biol 68:2233-2261. 
 
50. Winthrop, K. L.  2006. Risk and prevention of tuberculosis and other serious 

opportunistic infections associated with the inhibition of tumor necrosis factor. 
Nat Clin Pract Rheumatol 2:602-610. 

 
51. Yan, B. S., A. V. Pichugin, O. Jobe, L. Helming, E. B. Eruslanov, J. A. 

Gutierrez-Pabello, M. Rojas, Y. V. Shebzukhov, L. Kobzik, and I. Kramnik.  
2007. Progression of pulmonary tuberculosis and efficiency of bacillus Calmette-



 

 203 

Guerin vaccination are genetically controlled via a common sst1-mediated 
mechanism of innate immunity. J Immunol 179:6919-6932. 

 
52. Yurchenko, E., M. Tritt, V. Hay, E. Shevach, Y. Belkaid, and C. Piccirillo. 

2006. CCR5-dependent homing of naturally occurring CD4+ regulatory T cells to 
sites of Leishmania major infection favors pathogen persistence. J. Exp. Med. 
203:2451-2460. 

 
53. Zhang, M., J. Gong, Y. Lin, and P. Barnes. 1998. Growth of Virulent and 

Avirulent Mycobacterium tuberculosis Strains in Human Macrophages. Infect 
Immun 66:794-799. 

 
54. Zhou, Z., M. C. Connell, and D. J. Macewan. 2007. TNFR1-induced NF-

kappaB, but not ERK, p38MAPK or JNK activation, mediates TNF-induced 
ICAM-1 and VCAM-1 expression on endothelial cells. Cell Signal 19:1238-1248. 

 
 



 204 

Chapter 5 

Conclusions and Future Directions

 
5.1 Summary of Results 

 The work presented here uses a series of mathematical and computational models 

to analyze the roles of signaling in macrophage activation and infection with 

Mycobacterium tuberculosis. We explore two major levels of signaling: intracellular 

signaling pathways and spatial intercellular communication. 

 

5.1.1 Activation of Killing Effectors in Macrophages 

The network of components involved in upregulating nitric oxide production in 

mouse macrophage models appears to have three distinct functional modules, with 

several components feeding into NO production that results in feedback by NO. To 

understand the function of this system, we used a mathematical model to predict 

characteristics of macrophage responses for different possible designs selected for by 

evolution. This elucidated design principles that explain how macrophages are capable of 

balancing a usual quiescent state with the need for production of high levels of NO 

required to kill some pathogens, including M. tuberculosis. The results predict that 

feedback regulation of NF-κB and Stat1 pathways has an important role for NO activity 

in the system. This network design allows macrophages to reach very high levels of NO 

production due to synergistic activation of iNOS transcription, but is antagonistic to NO 
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production if only one of the complementary pathways (NF-κB or Stat1) is activated. 

Therefore, this design represents a type of logical AND gate with a continuous 

component that allows intermediate states. 

 

5.1.2 Kinetics of Activation and Macrophage-M. tuberculosis Interactions 

We next examined implications of macrophage functional design in M. 

tuberculosis infection. The model, analogous to a cell culture experiment, predicts that 

negative feedback by NO reduces the efficacy of killing intracellular bacteria by 

macrophages compared to a positive feedback design. However, the model also predicts 

that negative feedback speeds NO induction, which may be advantageous in some 

activation scenarios. Simulations of several scenarios for possible timing of TNF- and 

IFN-γ-induced activation indicate a kinetic advantage for systems with negative feedback 

if the activation signals are received at the time of M. tuberculosis infection, and not 

before. Negative feedback may also induce an overshoot of NO production beyond the 

activated steady state that contributes to the kinetic advantage of initial macrophage 

activation occurring only after infection. 

 

5.1.3 Roles of Intercellular Signaling in Granuloma Formation 

An agent-based model of granuloma formation allowed us to determine the role of 

signaling networks in immune responses to M. tuberculosis that extend beyond the 

intracellular level to the cellular level. Sensitivity analysis of model parameters indicates 

a changing role over time for TNF- and T cell-related parameters in the first 50 days post-

infection. With parameters varied in uncertainty analysis, the model predicts that changes 



 206 

in the timing of T cell recruitment alter the kinetics of bacterial elimination: a first wave 

of elimination occurs with innate immunity, and a second follows soon after initial T cell 

arrival. This suggests that if T cells were properly primed by a vaccine, the infection may 

be more quickly and effectively cleared. 

TNF-focused sensitivity analysis combined with perturbation of individual TNF 

activities or combinations of them gave predictions for the effects of the four primary 

TNF roles in granuloma dynamics (Figure 4.1). The results suggest that pleiotropy is an 

essential feature of TNF function: loss of single TNF activities did not result in predicted 

granuloma structures comparable to TNF deletions or depletions. Granuloma structures 

and cell kinetics in simulations with deleted TNF-mediated apoptosis activity predict a 

hyper-inflammatory state caused by an effective positive feedback loop, suggesting an 

important role for anti-inflammatory cytokines in ensuring robustness of the system. 

 

5.2 Future Directions: Macrophage Activation Models 

 The analyses in this work were performed using two types of computational 

models operating at different space and time scales. The difference between these 

approaches allowed the study of complementary types of signaling roles in macrophage 

activation and M. tuberculosis infection. We now present a plan for integrating the two 

approaches for a detailed model of macrophage activation that will permit directly 

addressing questions that each of the approaches can not answer independently-i.e. 

building a detailed multi-scale model of the role of macrophages in granuloma formation 

(Figure 5.1). This type of model would capture cellular-scale interactions and 
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intercellular signals, with a detailed representation of their effects on intracellular 

signaling. 

 

5.2.1 Integrating a biochemical network into individual macrophage agents 

 The ordinary differential equation model used in Chapters 2 and 3 allowed an 

accurate representation of biochemical events averaged over a population of 

macrophages, much like a cell culture experiment. In this type of model, activating 

cytokines and bacterial products directly turn on the production of anti-microbial 

effectors as a deterministic function of the amount of cytokine or bacterial products. 

However, this type of model may not be accurate for representing this mechanism 

in individual agents of an ABM: gene regulation in individual eukaryotic cells, including 

macrophages, is not deterministic (10). Recent work suggests a “transcriptional burst” 

model, where transcription randomly transitions between “on” and “off” states (9). 

Transcriptional stochasticity has distinct implications in the role of intracellular feedback 

mechanisms (reviewed in 3). For instance, redundancy in signaling pathways may reduce 

variability in single cells (6). Addressing the role of intracellular macrophage signaling 

implemented in an agent-based model approach calls for an appropriate single-cell 

representation intracellular events. This approach would allow more accurate prediction 

of the interactions between individual macrophages and intracellular mycobacteria. 

 To do this, we first need to represent levels of individual molecular components in 

a single macrophage, and distinguish between deterministic and random variables as 

appropriate. Second messengers NF-κB and Stat1 and levels of nitric oxide may be 

represented deterministically with differential equations linked to each activated 



 208 

macrophage. Levels of regulated mRNAs of interest, including those for the iNOS and 

TNF genes, are best represented with the transcriptional burst model. The appropriate 

method to solve this component of macrophage activation is the Gillespie algorithm, 

which simulates kinetics of random chemical processes using a Monte Carlo approach 

(1). 

 

5.2.2 Locations of macrophage recruitment and bacterial killing 

 With a more accurate model of macrophage activation kinetics, we can directly 

predict the effects of different levels of activation attained on the spectrum of M. 

tuberculosis loads in single cells. 

 This immediately suggests an approach to more directly examine a model for 

macrophage recruitment strategies proposed in Chapter 3. Based on the timing of 

activation signals, we hypothesized that recruitment of macrophages directly to the site of 

a mycobacterial granuloma would give a kinetic advantage over recruitment more 

distally, with subsequent migration across the lung parenchyma that may expose 

migrating cells to activating stimuli before they become infected. 

 If we added this mechanistic model of single-cell macrophage activation to the 

ABM here, this hypothesis could be directly tested. Simulations allow tracking and 

sorting of macrophage agents according to their location of entry into the modeled lung 

space. This location can be converted into a distance from the site of infection by a 

number of different methods, such as averaging the coordinate locations of extracellular 

bacteria or infected macrophages. The computed distance can be plotted versus NO 

levels, intracellular bacterial numbers, number of bacteria killed by a macrophage, or any 
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other relevant measured output. A result consistent with the activation timing hypothesis 

in Chapter 3 would be a positive correlation between the number of intracellular bacteria 

in each macrophage and recruitment distance of each macrophage. Repeated analysis for 

different times would reveal if there is a changing role for this effect between 

establishment phase of infection (with initial T cell infiltration) and later points after 

infection. 

 A possible consequence of recruitment strategies affecting macrophage activation 

levels in M. tuberculosis infection is a potential role for bacterial mechanisms that affect 

host cell recruitment mechanisms to improve intracellular survival. While macrophages 

are the preferred environment for bacterial growth in M. tuberculosis infections, 

sufficiently activated macrophages are capable of attaining bactericidal levels of 

activation. This suggests a selective advantage for Mtb infections promoting mechanisms 

of recruitment that minimize activation levels at the time of infection. One mechanism we 

propose testing for this effect is the level of chemokines induced by bacteria. 

 

5.2.3 Feedforward and redundancy of feedback in macrophage activation 

 The biochemical model of macrophage activation presented in previous chapters 

is a simplification that subsumed levels of feedforward and feedback into a simple 

activation/response/feedback model. However, the JAK/STAT signaling pathway has 

several other characteristics that raise interest for their possible role in individual 

macrophages. Two genes induced by the activated Stat1-α homodimer with probable 

functional consequences for iNOS induction are interferon regulatory factor (IRF)-1 and 

suppressor of cytokine signaling 1 (SOCS1). 
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IRF-1 positively regulates iNOS transcription in mouse macrophage models (5), 

making it reminiscent of a coherent feed-forward loop with Stat1 (11; Figure 5.2). That 

is, Stat1 induces both iNOS and IRF-1 while IRF-1 in turn contributes to iNOS induction. 

This type of regulatory motif has been shown to cause a sign-sensitive delay in 

production of the co-regulated gene (4) (here, iNOS), such that increases in the rate of 

transcription are delayed but decreases are not. 

On the other hand, SOCS1 is an anti-inflammatory feedback regulator that 

negatively regulates Stat1 (12) and NF-κB (2, 7). Combined with the apparent NO-

induced negative feedback of these regulators, these macrophage activation pathways 

appear to have redundant mechanisms for negative feedback regulation (Figure 5.2). 

 By including these mechanisms in a biochemical model that is integrated into the 

agent-based model, we could test hypotheses about design principles that have evolved to 

respond to, or minimize, uncertainty involved with gene regulation. The role of these 

mechanisms in the level, stability or predictability of macrophage responses may also 

have implications in the host-pathogen interaction with M. tuberculosis. 

 One hypothesis for the role of multiplicity and redundancy in activation signaling 

pathways is that co-regulation of IRF-1, SOCS1 and iNOS by Stat1 reduces variability in 

gene expression levels, making activation in a single macrophage more predictable or 

switch-like. 

 Chromosomal linkage between multiple genes also affects co-regulation in the 

transcriptional burst model of gene regulation: genes at the same locus have periods of 

activity at identical times while those at separate loci undergo uncorrelated bursts (9). 

This adds another dimension to how these mechanisms may function. In humans, IRF-1, 
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SOCS1 and iNOS are located on chromosomes 5, 16 and 17, respectively (8). This 

suggests that the three genes undergo uncorrelated transcriptional activity periods. 

 We propose simulations comparing scenarios where one or more of the regulated 

genes undergo coupled or uncoupled transcriptional bursts. This approach may then be 

carried out with each feedback interaction altered or removed from the system. 

 

5.2.4 Shortcomings and alternative approaches 

 The proposed model integrates detailed biochemical kinetics using the Gillespie 

algorithm with intercellular interactions in cells representing an entire mycobacterial 

granuloma. While this approach is flexible and potentially useful, it has the possible 

shortcoming of high computational cost arising from the need to compute intracellular 

states of macrophage cells in a near-continuous manner. 

 One possible alternative approach to prevent this shortcoming is to lose some of 

the proposed mechanistic detail. For example, nitric oxide kinetics could be prescribed 

with rules that reflect different hypotheses without directly computing the kinetics of 

each individual macrophage cell. This approach would represent an intermediate step 

between the simple rule-based model used in Chapter 4 and the Gillespie algorithm 

approach proposed above, trading off some flexibility for computational tractability. 

 

5.2.5 Effects of biochemical network design on mycobacterial granuloma formation 

Spatio-temporal aspects of signaling captured by the granuloma model allow 

predictions for how variability in cytokine signals (extrinsic uncertainty) interacts with 

randomness in gene regulation (intrinsic uncertainty) to give variable levels of nitric 
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oxide expression. One interesting aspect of the regulatory pathways co-induced by 

JAK/STAT signaling is that their role appears to be primarily to gain control over pro-

inflammatory signaling. That is, their relevant effects here may be primarily to modulate 

iNOS. (We note that other genes induced by the Stat1 pathway, such as CIITA, may have 

pro-inflammatory effects; the hypothesis presented here primarily concerns co-regulated 

genes feeding into iNOS expression.) An overarching theme of these regulatory pathways 

is a trade off between high levels of activation and the ability of macrophages to 

effectively kill M. tuberculosis. 

We therefore propose studies to determine how changes in these regulatory 

pathways affect mycobacterial granuloma structure and bacterial levels. We can define 

performance criteria based on bacterial killing and levels of cytokine produced to 

determine how the trade-off between activation and modulation of activation affects 

bacterial survival. This would link the effects of intracellular signaling to granuloma 

structure, providing an integrated, multi-scale model of intracellular signaling in M. 

tuberculosis infection. 
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Figures 

 

Figure 5.1. Conceptualization of a multi-scale model of intra- and inter-cellular signaling 
in M. tuberculosis infection. 
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Figure 5.2. Macrophage activation pathways involved with iNOS induction have layers 
of regulation from other genes regulated by Stat1. IRF-1 forms a coherent feed-forward 
loop regulating iNOS induction. SOCS1 provides negative feedback to Stat1 and NF-κB. 
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