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Abstract

Successful design of complex modern products is a grand challenge for design organizations.
The task is becoming increasingly important due to economic competition and concern
over safety, reliability, and energy efficiency. Automotive and aerospace products, for
example, are composed of numerous interdependent subsystems with a level of complexity
that surpasses the capability of a single design group. A common approach is to partition
complex design problems into smaller, more manageable design tasks that can be solved
by individual design groups. Effective management of interdependency between these
subproblems is critical, and a successful design process ultimately must meet the needs
of the overall system. Decomposition-based design optimization techniques provide a
mathematical foundation and computational tools for developing such design processes.
Two tasks must be performed so that decomposition-based design optimization can be used
to solve a system design problem: partitioning the system into subproblems, and determining
a coordination method for guiding subproblem solutions toward the optimal system design.
System partition and coordination strategy have a profound impact on the design process.
The effect of partitioning and coordination decisions have been studied independently, while
interaction between these decisions has been largely ignored. It is shown here that these two
sets of decisions do interact: how a system is partitioned influences appropriate coordination
decisions, and vice versa. Consequently, addressing partitioning and coordination decisions
simultaneously leads to improved system design processes. The combined partitioning
and coordination decision problem is a difficult combinatorial problem. An evolutionary
algorithm that solves this decision problem effectively is presented. The set of all partitioning
and coordination options for a specific formulation framework, augmented Lagrangian
coordination (ALC), is derived, and a method for choosing Pareto-optimal solutions from
amongst these options is described. Concepts and techniques are demonstrated using several
engineering example problems. A detailed model for an electric vehicle design problem
is presented that considers three vehicle systems: powertrain, chassis, and structure, and
partitioning and coordination decisions for this problem are analyzed.
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Chapter 1

Decomposition-based Design Optimization

Many products designed by engineers are too complex to be addressed by a single designer or
even a single design group. Examples of products that are complex systems include aircraft,
automobiles, and electronics. A common approach for addressing challenges associated
with complex system design is to divide the product design task into smaller and more
manageable design problems. For example, separate groups involved in automotive design
may each be working on different vehicle systems, such as powertrain, frame, or chassis
design. A primary challenge in this approach arises from interactions between the smaller
design problems. These subproblems cannot be solved in complete isolation from each other.
Decisions in one subproblem affect what decisions should be made in other subproblems. It
is essential to coordinate subproblem solution such that the resulting subsystem designs are
consistent with each other, and so that the subsystem designs together comprise an overall
design that is optimal for the entire system, not just optimal for individual parts.

A decomposition-based approach to engineering system design requires considerable
forethought before design activities can commence. Not all ways of dividing, or partitioning,
a system are equal. Some partitions will enhance the effectiveness of the design process. In
addition, the strategy for coordinating subproblems has significant influence over design
process success. An appropriate system partition and an effective coordination strategy must
be developed before the design process is launched. Choice of partition and coordination
strategy should be considered together. The form of a system partition will influence how
the subproblems are most effectively coordinated, and the intended coordination strategy
will affect partitioning decisions. This dissertation addresses how to make partitioning and
coordination decisions that lead to less complex and more effective decomposed design
processes.

Computer-aided engineering (CAE) tools have reached the level of sophistication re-
quired for widespread use in engineering design. Engineering products can be designed
and prototyped in a virtual environment, and then tested using computer simulations. Math-
ematical optimization techniques can be used to vary product design variables and test
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virtual prototypes in search of designs that are optimal with respect to some criteria; opti-
mization algorithms can reduce the number of virtual tests required to identify an optimal
design. Application of CAE and optimization algorithms reduces the need for costly physical
prototypes and expedites product development.

Complicated products can also be simulated successfully using CAE and designed using
optimization algorithms. Often this involves the use of several separate, but interacting, CAE
tools. The complexity of the simulations and the difficulty of the associated optimization
problem can present a significant challenge. Many times a single optimization algorithm
cannot manage the design of the system because of the large number of design variables
or constraints, or because of the complex nature of the system. As with the human-based
design process, a simulation-based design process can also be partitioned into smaller and
easier to solve subproblems. Interactions exist between subproblems, requiring some type
of coordination strategy to guide repeated subproblem solutions toward a consistent state
and a design that is optimal for the entire system. Numerous methods have been developed
to solve simulation-based design problems in this manner. We refer to this approach as
decomposition-based design optimization.

Application of decomposition-based design optimization to a simulation-based system
design problem also requires the a priori definition of a system partition and coordination
strategy. The relationships between partitioning and coordination decisions are studied here.
The results provide a deeper understanding into effective application of decomposition-based
design optimization, aiding system designers in refining simulation-based design processes.
Techniques for making optimal partitioning and coordination decisions, specifically for
simulation-based design, are introduced here. Application of these techniques can further
reduce product development time and cost when simulation-based design is a significant
component of a product development process.

This chapter provides an overview of engineering system design and the use of mathe-
matical optimization for engineering design. An overview of decomposition-based design
optimization is then provided, followed by an example design problem that illustrates the
impact of partitioning and coordination decisions on system design.

1.1 Engineering System Design

Complex systems are composed of several interacting members. Overall system behavior
is not the simple sum or collection of constituent member behavior, but is something
distinct that emerges from intricate member interrelationships. Analysis and design of
complex systems requires something more than a dissociated approach; interactions must be
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acknowledged, studied, and exploited to extract superior results.
Many modern engineered products are congruent with the above description of complex

systems. They are composed of numerous subsystems and components interrelated through
complex interactions. If each subsystem is designed independently, the resulting system
will not reach its potential; it may not even work. Effects of system interactions can be
discovered empirically, but this is an expensive and slow process. Formal techniques that
explicitly manage interactions can enhance the system design process.

A typical system design approach used in industry involves designing subsystems in
sequence. For example, consider an illustrative automotive design process where the struc-
tural, powertrain, chassis, and interior subsystems are designed in sequence. This approach
does not account explicitly for all design interactions. A simplified schematic of this process
is shown in Fig. 1.1. In this example the structural design is performed first, and is based
on top-level vehicle requirements. Structural design also depends on the needs of the other
subsystems, but since these have not been designed yet assumptions are made based on
previous experience. The structural design is then fixed, and the powertrain is designed next
based on top-level vehicle requirements. The process continues in sequence until the entire
vehicle is designed.

Structural 
Design

Powertrain 
Design

Chassis 
Design

Interior 
Design

Figure 1.1 Sample sequential design process: automotive example

At later stages of the sequential process much of the system design is fixed and very
little design freedom is allowed. For example, a designer in the last stage may discover that
a small change in wheelbase would allow for a dramatically improved interior design, but
since previous design tasks are fixed this adjustment cannot be made. Tradeoffs like this
cannot be explored effectively in a sequential approach. Any interaction that is a feedback
relationship is difficult to understand and manage since it is not handled explicitly. In this
example feedbacks are addressed using past experience.

When a design process relies heavily on previous experience to handle interactions, new
designs are limited to small perturbations from past designs [145]. Design organizations
that use such processes face a significant challenge when attempting to design a product
with a new topology and unfamiliar interactions. The automotive industry is currently being
stretched in its ability to design vehicles with unconventional architectures, such as battery
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electric (BEV) and hybrid electric (HEV) vehicles. Vehicle subsystems behave and interact
in sometimes unexpected ways. Engineers can no longer rely on experience and intuition
to resolve all difficulties that arise due to system interactions. Market pressure demands
solutions before resolution can be obtained through experience. More sophisticated system
design processes can help tackle this evolving problem.

The sequential process described above can be regarded as a single iteration of the block
coordinate descent (BCD) algorithm [20]. The process could be iterated in an effort to
address feedback interactions and generate an optimal system design, but the number of
iterations required may exceed available time or resources. A more effective technique that
addresses the needs of system design specifically is required. BCD does not retain enough
design freedom in later stages, and design decisions do not account explicitly for effects on
the complete system. Design freedom should be extended further into the process, and more
complete system knowledge needs to be available and used earlier in the process [55].

1.2 Design Optimization

Mathematical optimization techniques are useful when quantitative decisions are to be made
based on criteria that can be expressed using a mathematical model. These techniques have
been applied for decades to operations research problems such as supply chain, scheduling,
or network problems [22]. More recently, optimization has been established as a tool for
engineering design [110]. This section reviews briefly fundamentals of optimization, and
then discusses how to apply optimization to engineering design.

Mathematical optimization techniques seek to find the minimum of a function of n

variables without evaluating all possible variable values. The function to be minimized is
the objective function f (x), and the variables it depends on are represented by the vector x.
All vectors in this dissertation are assumed to be row vectors unless otherwise noted. The
variables can be real-valued (x ∈ Rn) or discrete; discrete variables may be integer (x ∈ Zn),
binary (x ∈ {0,1}n), or categorical (e.g., x ∈ {steel,aluminum,carbon fiber composite}).
Constrained optimization problems have limits on the values design variables may assume.
Equality constraints require that design variables satisfy a relation exactly, while inequal-
ity constraints place bounds on values that design variables can assume. A constrained
optimization problem in negative null form is stated as:
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min
x

f (x)

subject to g(x)≤ 0 (1.1)
h(x) = 0,

The objective function is scalar valued, while the inequality (g(x) ≤ 0) and equality
(h(x) = 0) constraints may be either scalar or vector valued. An optimization problem
may have just equality constraints, just inequality constraints, or both. If the variables are
continuous and the objective and all constraint functions are linear, then the optimization
problem is known as a linear program (LP); the class of methods used to solve problems
of this form is linear programming [38]. A more general class of optimization problems
allows for nonlinear objective and constraint functions, but still requires that x ∈ Rn. These
optimization problems are known as nonlinear programs (NLP), and nonlinear programming
refers to techniques for solving NLPs [20]. Figure 1.2 illustrates an example NLP.

x1

x2

infeasible

feasible

direction of decreasing f(x)

global optimum

local optimum

g(x) = 0

Figure 1.2 Illustration of global and local optima in a nonlinear programming example

The objective function in this example decreases in the direction of decreasing x1 and
x2. Level sets indicate the shape of f (x). The line g(x) = 0 is plotted. In this example g(x)
increases with decreasing x1 and x2, so the region where the inequality constraint g(x)≤ 0
is satisfied is the region above and to the right of the line g(x) = 0. This problem has no
equality constraints. The region in the variable space where all constraints are satisfied is
know as the feasible region, and is indicated in the figure.

A point x is optimal if moving in any feasible direction from the point causes an increase
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in the objective function value. The symbol x∗ denotes an optimal variable vector. If X is
the set of all feasible points, a direction s ∈Rn is feasible if there exists a scalar αu > 0 such
that x+αs ∈X for all 0≤ α ≤ αu. The example in Fig. 1.2 has two constrained optima.
In each case the inequality constraint is active. A constraint is active if its removal changes
the location of x∗. Active inequality constraints are satisfied with equality. If a problem has
multiple optima, the optimum with the lowest value is the global optimum. All others are
local optima. A constrained NLP may have an unconstrained optimum if there exists a point
in the interior of X where all possible directions s lead to increased f (x).

The preceding paragraph informally describes optimality conditions for NLPs. In some
cases optimality conditions can be used to derive a system of equations that can be used
to solve for x∗ directly. Monotonicity analysis (MA) is another solution approach that
exploits knowledge of monotonicity in objective and constraint functions to identify active
constraints [110]. If MA cannot be used to completely solve a problem, it can possibly help
reduce its complexity and provide helpful insights. If direct solution or solution through
MA is not possible, an iterative algorithm for NLPs may be employed. Most are based
on objective and constraint function gradients. Gradient-based algorithms can be applied
only when functions are continuous and smooth. If a problem is also convex1 a gradient-
based algorithm will identify the global optimum, but without convexity these algorithms
will find only local optima. Examples of successful gradient-based algorithms for NLPs
include the generalized reduced gradient (GRG) method [91] and sequential quadratic
programming (SQP) [69, 111]. Much of the development in subsequent chapters assumes
that the optimization problems under consideration can be solved using a gradient-based
algorithm.

Gradient-based algorithms are normally computationally efficient, i.e., they converge
quickly and require relatively few function evaluations when compared to gradient-free meth-
ods. Unfortunately, gradient-based methods can fail when functions are non-differentiable
or numerically noisy. They typically do not handle problems with discrete variables, and
can perform inconsistently when applied to ill-conditioned problems. Several gradient free
methods have been developed as alternatives. Evolutionary algorithms (EAs) use principles
of natural selection to gradually improve the quality of a population of candidate solutions
over several generations [49, 73]. Simulated annealing (SA) is another heuristic algorithm;
it considers single design points (rather than a population) and uses a stochastic search
technique with a positive probability of selecting worse points to aid escaping local optima
[81]. This algorithm’s name comes from the ‘cooling schedule’ that guides the probability
of selecting an inferior point during the search. Another class of stochastic search algo-

1A problem is convex if f (x) is a convex function and if X is a convex set.
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rithms selects random points around a candidate solution to evaluate and determine a new
candidate solution point [130]. As with SAs, these algorithms are not population-based. The
distribution of search points is influenced by information obtained during the optimization
process.

Heuristic methods such as EAs and SAs are not based on optimality conditions, so cannot
guarantee that the solution obtained is an optimum. They can offer good approximations
to the optimum for problems that cannot be solved with gradient-based methods. Another
disadvantage of these methods is the large number of function evaluations that typically are
required. An alternative exists that is based on optimality conditions involving subgradients,
which are in essence a type of gradient for non-smooth functions defined in Clarke’s calculus
[32]. This alternative method is mesh adaptive direct search (MADS), and is positioned
in the spectrum of optimization methods between gradient-based methods and heuristic
methods [14]. MADS can handle non-smooth problems, but normally does not require as
many function evaluations as EAs or SAs.

Engineering design problems can be posed naturally as constrained optimization prob-
lems. Normally at least one metric is readily identified as an objective function, such as
some key performance metric. Engineering design problems are full of design requirements
that can be expressed as constraints (e.g., stress, deflection, packaging, temperature, or
vibration requirements). Constraints based on design requirements are termed design con-
straints. Objective and constraint functions can be calculated using analytical expressions
or computer simulations. The inputs to these expressions or simulations are quantities that
parametrically characterize the design of a product, such as physical geometry. A subset of
these quantities is chosen as the set of design variables, x. Design variables are allowed to
vary in the design problem, while the remaining function inputs, termed design parameters,
are held fixed when solving a design optimization problem. In summary, in engineering
design optimization we seek to optimize the performance of a product subject to design
constraints, with respect to design variables.

In some system optimization formulations the optimization algorithm selects values
for quantities that are not design variables. To avoid confusion in terminology, we define
decision variables to be any quantity that are variables in the design optimization problem.
The set of decisions variables includes design variables and possibly other quantities.

Design optimization is a logical extension to CAE software. Tremendous effort has been
devoted to development of accurate and efficient software for engineering analysis. These
software can be used to analyze existing prototypes or products, or used as tools to test
design alternatives proposed by engineers before fabrication. Engineers can also use CAE
software to test manually adjusted design variables. This process can help build intuition
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for a product, and can be a good approach when only a few design variables are used, but
becomes unwieldy as the number of design variables increases. While manual search may
be impractical in many cases, optimization algorithms can trace an efficient path toward the
optimal design. A design optimization approach requires fewer function evaluations and
leads to a superior design.

The effectiveness of design optimization depends on our ability to model accurately
actual product behavior. The solution to a design optimization problem does not generate
the optimal design for the real product, but the optimal design for a virtual product as
represented by a mathematical model. CAE tools are becoming more mature and offer
increasing levels of modeling accuracy, and have been a factor in the success of design
optimization as a practical engineering tool.

1.3 Decomposition-based Design Optimization

Applying design optimization techniques to engineering system design presents additional
challenges. As with general engineering system design, approaching the design of a system
as a single entity may be impractical. A single optimization algorithm may not be capable of
handling the demands of designing an entire system. The system optimization problem can
be partitioned into smaller subproblems, each solved separately. The subproblems are linked
through common design variables and analysis interactions. Subproblems must be solved in
a way that leads to a system design that accounts for these links, and is optimal for the entire
system. The task of guiding subproblem solutions toward an optimal system design is called
coordination. This approach to engineering system design is known as decomposition-based
design optimization.

A broad class of methods for decomposition-based design optimization, known as
multidisciplinary design optimization (MDO), has been developed to address industry needs
for engineering system design. Most have been developed for situations where several
engineering analyses must be integrated for designing a single component or product, where
each analysis pertains to a different aspect of the same component. Aeroelastic design is a
standard example of an MDO application. Suppose an airplane wing is to be designed, giving
heed to both structural and aerodynamic considerations. If the wing is sufficiently stiff, we
can assume that the wing does not deform much when subject to aerodynamic pressure. This
allows us to use the undeformed wing shape when conducting the aerodynamic analysis,
making the aerodynamic analysis independent of the structural analysis. If the wing is not
sufficiently stiff for this assumption to hold, the aerodynamic analysis should be based on
the deformed wing shape as computed by the structural analysis. The structural analysis in
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turn requires the aerodynamic pressure distribution over the wing surface to compute the
deformed shape. The two analyses are coupled, as depicted in Fig. 1.3.

Aerodynamic 
Analysis

Structural 
Analysis

deformed
shape

pressure 
distribution

Figure 1.3 Aeroelastic analysis

Iterative techniques are required to find a state of pressure and deformation such that the
analyses are consistent with each other. The task of solving coupled analyses simultaneously
is known as multidisciplinary analysis (MDA). Multiphysics software has been developed to
address specific types of MDA.

The presence of analysis coupling complicates system design. Many MDO methods
are designed to manage this type of coupling. Cramer et al. identified several important
MDO formulations [35], and Sobieski and Haftka provided an extensive review of early
MDO methods [128]. Industry needs motivating MDO development are summarized in [55]
and [61]. Common points include the need to compress design cycle time, improve product
quality, increase design flexibility, and more competently characterize, manage, and exploit
system interactions. Chapter 4 introduces and demonstrates several important methods for
decomposition-based design optimization. These methods are more broadly applicable than
to just systems partitioned by discipline; partitions may be along disciplinary, physical,
process boundaries, or some combination thereof.

Implementation of decomposition-based design optimization requires the completion
of two important preliminary steps. First, a system partition must be defined, and then a
strategy for coordinating the solution of the resulting subproblems must be constructed.
Making partitioning and coordination decisions can be viewed as a preprocessing step
for optimal system design. Figure 1.4 illustrates these preliminary steps. The original,
unpartitioned system is depicted in Fig. 1.4(a), where the vertices represent components
of a system or analyses pertinent to system design, and the edges connecting the vertices
represent interactions between the components or analyses. The first step is to decide which
subproblem each component should belong to. The outcome of this step is a system partition,
shown in Fig. 1.4(b). Once the partition is defined, a coordination strategy can be devised.
An important aspect of many coordination strategies is the subproblem solution sequence,
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illustrated in Fig. 1.4(c).

(a) Unpartitioned system (b) System partitioned into sub-
problems

(c) Subproblem coordination
strategy

Figure 1.4 Process for implementing decomposition-based design optimization

While the focus here is on simulation-based design, an organizational analogy is in-
structive. Suppose the vertices in Fig. 1.4(a) represent positions or tasks within a design
organization. Before a large organization can embark on product design, it needs struc-
ture [36]. First it is partitioned into groups. These groups can be formed according to
discipline, project, or hybrid divisions. Interaction must occur both within and between
groups. Patterns of interaction along with an organizational partition define organizational
structure. Interaction patterns, analogous to coordination, can take several different forms.
Bureaucratic organizations are structured into a hierarchy, which can be orderly and efficient
in certain cases. Horizontal organizations are non-hierarchic; these can be more adaptable
to changes than hierarchic organizations.

The way an organization is partitioned will influence what interaction patterns are most
effective. In addition, the type of interaction patterns desired (e.g., hierarchic vs. non-
hierarchic) will influence partitioning decisions. These two sets of decisions are in essence
coupled. Moving back to the context of decomposition-based design optimization, system
partitioning and coordination decisions are also coupled. How a system is partitioned will
influence coordination decisions, and vice versa. This relationship is pictured in Fig. 1.5.
Proving and investigating the relationship between partitioning and coordination decisions
is the primary theme of this dissertation. Partitioning and coordination decisions have
been studied independently, but the relationship between them has not been systematically
analyzed. Subsequent chapters show that partitioning and coordination decisions are in
fact coupled. Techniques are introduced for analyzing these decisions, studying intrinsic
tradeoffs, and making optimal partitioning and coordination decisions for important classes
of decomposition-based design optimization methods.
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Figure 1.5 Dissertation hypothesis: Existence of coupling between partitioning and coordination
decisions

1.4 Introductory Example

A simple design problem is used here to demonstrate the influence of partitioning and coordi-
nation decisions on computational expense. We assume that all system design optimization
methods considered here are capable of finding the optimal system design, so improving
computational efficiency is the objective of interest. This example design problem is based
on four analytical functions; it is abstract and does not correspond to a physical system. It
was chosen because it possesses an interesting analysis structure that will be useful for this
demonstration, but is still simple enough to present concisely. The principles discussed here
apply also to more sophisticated systems that involve CAE simulations. The functions in
this problem are interdependent, forming a system of coupled equations:

a1(x1,y12,y13) = 0.1x1y12 +0.8x1y13 +b1

a2(x2,y23) = x2y23 +b2

a3(x3,y31,y32) = 0.1x3y31 +0.8x3y32 +b3

a4(x,y41) = (y41− ŷ41)2 +‖w◦x‖2
2

where b = [2.0,2.5,3.0], w = [1.3,1.5,1.2], and the symbol ◦ denotes the Hadamard prod-
uct2.

Each of the analysis functions in this system depends on at least one design variable
and one coupling variable. The vector of all design variables is x = [x1,x2,x3]. Previous
sections described how some analyses in a system can depend on the output of other analyses.
Coupling variables are the quantities that are communicated between coupled analyses. For
example, the analysis function a1 depends on the outputs of a2 and a3, indicated by the
dependence of a1 on the coupling variables y12 and y13. The quantity passed from a2 to a1

is y12, and the quantity passed from a3 to a1 is y13. The vector of all coupling variables for

2The Hadamard product is element-by-element vector multiplication. For example, [w1,w2,w3] ◦
[x1,x2,x3] = [w1x1,w2x2,w3x3]
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the example system is y = [y12,y13,y23,y31,y32,y41]. In general, the coupling variable yi j is
the quantity passed from analysis function j to analysis function i. Although some coupling
variables in this system represent the same quantity, many decomposition-based design
optimization methods utilize multiple coupling variable copies. This requires an explicit
distinction between all coupling variables. Coupling variable and other system optimization
notation will be defined more precisely in the following chapter.

The design problem based on the four analysis functions described above is an uncon-
strained minimization problem in three variables:

min
x=[x1,x2,x3]

a4(x,y41) (1.2)

The optimization algorithm will choose iteratively new values for x as it seeks a minimum
value for a4. Since a4 directly or indirectly depends on all design and coupling variables, all
four analysis functions must be evaluated for the value of x provided by the optimization
algorithm at each iteration. Observe that this system possesses circular dependence between
functions, also called feedback coupling. For example, a1 depends on the output of a2,
which depends on the output of a3, which depends on the output of a1. Therefore, a1 cannot
be computed using a sequential evaluation technique; an iterative scheme is required. A
common approach, known as fixed point iteration (FPI), starts with a guess for unknown
coupling variable values, evaluates the analysis functions in sequence, updates the initial
guesses, and repeats until coupling variable values converge to a ‘fixed point’ [28]. At
convergence the system is said to have coupling variable consistency. FPI does not always
converge, and should be used with caution [6]. Coupling variable consistency is discussed
in Section 2.1, and FPI convergence is addressed in Section 4.1.

Solution to Problem 1.2 implicitly requires a nested approach where an analysis al-
gorithm, such as FPI, must be used to find a consistent set of coupling variables at every
optimization iteration because of feedback coupling. In other words, the optimization prob-
lem is an outer loop process that seeks to find an optimal design vector, while the analysis
algorithm is an inner loop process that seeks to find a consistent coupling variable vector
for every design vector considered along the way. The computational expense added by the
inner loop process can be considerable, and steps should be taken to minimize it. Analysis
feedback coupling can be difficult to handle, but is present in many important engineering
design problems. This dissertation discusses several techniques for understanding and
managing analysis feedback coupling in system design optimization.
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1.4.1 Coordination Decisions

Analysis function evaluation sequence can have a significant effect on inner loop expense
[134]. Several evaluation sequences for the inner loop in Problem 1.2 were tested, and the
number of function evaluations (NE) for each approach was recorded. The results using
FPI as the inner loop algorithm are recorded in Table 1.1. The diagrams illustrate analysis
function evaluation sequence and coupling variable communication patterns. When using
FPI, it was observed that the sequences with fewer feedback coupling relationships had
reduced computational expense. While this frequently is the case, it is possible for sequences
with fewer feedbacks to require more NE due to relationships between functions.

Table 1.1 Experimental results for evaluation sequence variation
Evaluation Sequence # Feedbacks NE (FPI) NE (EC)

a1 a3 a2 3 1476 392

a1a3 a2 2 1162 504

a1 a3a2 2 1138 208

a1 a3a2 — — 364

An important aspect of many coordination strategies is solution sequence; the foregoing
results illustrate the importance of selecting a good sequence. Another essential component
of coordination is the technique for satisfying consistency requirements. One option for
satisfying these requirements is an iterative algorithm, such as FPI, that enforces consistency
at every design step. An alternative approach uses the optimization algorithm to solve
directly for a consistent coupling variable vector. This is done by adding y to the set of
decision variables for the optimization problem, and by adding auxiliary equality constraints
to the optimization problem that ensure coupling variable consistency at optimization
algorithm convergence. The coupling variable consistency problem is in effect a system
of equations defined by the auxiliary equality constraints. The nested approach described
above uses FPI to solve the coupling variable consistency problem at each optimization
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iteration. The auxiliary equality constraint approach uses the optimization algorithm to solve
the coupling variable consistency problem in tandem with the optimization problem, which
can provide a computational advantage in some cases. The formulation for the example
problem using this equality constraint approach is:

min
x,y

a4(x,y41)

subject to y12−a2(x2,y23) = 0
y13−a3(x3,y31,y32) = 0
y23−a3(x3,y31,y32) = 0 (1.3)
y31−a1(x1,y12,y13) = 0
y32−a2(x2,y23) = 0
y41−a1(x1,y12,y13) = 0

The fourth row of Table 1.1 corresponds to the solution approach defined in Problem
1.3. In this example a substantial computational benefit is realized. A hybrid coordination
strategy exists that incorporates aspects of the nested approach and the equality constraint
approach. Balling and Sobieski suggested another alternative approach where the analysis
functions are solved once in sequence, and auxiliary equality constraints are used to handle
feedback coupling relationships only, rather than all coupling relationships [15]. This
technique was used to solve the example problem using the three sequences listed in Table
1.1, and the results are given in the last column. Using the first sequence, we have three
feedback relationships to satisfy using equality constraints. The design formulation is:

min
x,y12,y13,y32

a4(x,y41)

subject to y12−a2(x2,y23) = 0 (1.4)
y13−a3(x3,y31,y32) = 0
y32−a2(x2,y23) = 0

Consistency for the feedback coupling variables y12, y13, and y32 is satisfied via op-
timization equality constraints, and consistency for y23, y31, and y41 is satisfied through
analysis function sequencing. The second sequence option has two feedback relationships
to satisfy:
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min
x,y31,y32

a4(x,y41)

subject to y31−a1(x1,y12,y13) = 0 (1.5)
y32−a2(x2,y23) = 0

The third sequence has two feedback couplings, and the corresponding formulation is:

min
x,y13,y23

a4(x,y41)

subject to y13−a3(x3,y31,y32) = 0 (1.6)
y23−a3(x3,y31,y32) = 0

This last approach proved to be most efficient out of all seven coordination options
presented, requiring only 208 function evaluations. This is an 86% reduction from the first
option, showing the importance of making proper coordination decisions. The effect of
partitioning decisions on this example problem will now be explored.

1.4.2 Partitioning Decisions

Analysis functions may be grouped together to form blocks of a system partition. In
distributed optimization an optimization problem is defined for each of these blocks. When
a single optimization problem is employed, these blocks can be used to divide up system
analysis. Two approaches are considered here. In both approaches FPI is employed within
each block to achieve coupling variable consistency between functions inside a block. In
the first approach FPI is also used to satisfy coupling variable consistency for relationships
between blocks. In the second approach auxiliary equality constraints enforce consistency
between blocks. The results are summarized in Table 1.2.

The first approach exhibited a dramatic increase in function evaluations for every par-
tition. The number of evaluations is multiplied because there exist three levels of nesting
in the solution approach. No significant difference exists between partitions for the first
approach in this example problem. The second and third partitions required the exact same
number of function evaluations; in this case swapping the order of analysis blocks has no
impact on solution expense. The second approach applied to the second partition required
only 366 function evaluations. While this is not the lowest number observed, the result
is significant because the same a1→ a3→ a2 sequence required 392 evaluations with the
unpartitioned auxiliary equality constraint approach. This shows that synergy exists between
partitioning and coordination decisions for this example. Subsequent chapters develop a
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more rigorous approach to exploring the interaction between partitioning and coordination
decisions, and illustrate the tradeoffs that exist in making these decisions.

1.5 Dissertation Overview

Chapter 1 introduced the concepts of engineering system design, design optimization,
and decomposition-based design optimization. An introductory example was presented
that illustrated the influence that partitioning and coordination decisions can have on the
computational expense of solving a system design optimization problem. This example also
demonstrated synergy between partitioning and coordination decisions, indicating that some
type of interaction exists between these decisions. Subsequent chapters build on this result:
a formal approach to making partitioning and coordination decisions is presented, and the
relationship between them is studied.

Chapter 2 sets forth the terminology and notation used in decomposition-based design
optimization. Formal techniques for compactly representing relationships within a system
are reviewed, and previous techniques for making partitioning and coordination decisions
are discussed.

Several engineering system design examples are used throughout this dissertation. The
majority of these examples are described in Chapter 3. Enough detail is provided for each
of the problems (with the exception of the aircraft family design problem) to facilitate
replication. These examples may be reused to verify results or as test problems in other
work.

Several important formulations for decomposition-based design optimization are pro-

Table 1.2 Experimental results for evaluation sequence and partition variation
Evaluation Sequence NE (FPI) NE (EC)

a1 a3 a2 3618 714

a1 a3 a2 3592 366

a1a3 a2 3592 752
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vided in Chapter 4. Examples are used to elucidate application of these formulations and to
reveal properties relevant to partitioning and coordination decisions. Particular attention is
paid to a class of formulations that is used in later chapters as the basis for partitioning and
coordination decisions. Algorithms in this class have proven convergence properties and
have the flexibility required to adapt to a wide range of problem structures.

Partitioning and coordination decisions for decomposition-based design optimization
are formalized in Chapter 5. These decisions are shown to be coupled for three example
systems. A technique is introduced for analyzing the tradeoff between coordination and
subproblem solution expense. This analysis aids system designers in determining whether a
decomposition-based approach should be used, and if so, what partitioning and coordination
decisions may lead to reduced solution complexity. The techniques in Chapter 5 utilize
exhaustive enumeration of partitioning and coordination options. While effective for small
systems, exhaustive enumeration is impractical for use in analyzing larger systems. An
evolutionary algorithm is presented in Chapter 6 that solves the optimal partitioning and
coordination decision problem for larger systems. The evolutionary algorithm is applied to
the three small example systems from Chapter 5, and its results are compared to the exact
solutions obtained with exhaustive enumeration. The evolutionary algorithm is then applied
to a structural design problem that is too large for exhaustive enumeration.

Coordination decisions addressed through Chapter 6 are limited to subproblem sequence.
Another aspect of coordination decisions is how to structure the links between subproblems.
This is addressed in Chapter 7 for a specific formulation called augmented Lagrangian coor-
dination (ALC). A new class of parallel ALC implementations is introduced. ALC provides
tremendous flexibility in linking structure, but manually determining an appropriate linking
structure can be overwhelming due to the large number of possibilities. The techniques
introduced in Chapter 7 provide a way to create systematically a linking structure tailored to
the needs of a particular system, along with choosing a system partition and coordination
strategy.

The examples used through Chapter 7 are of low to moderate complexity. A more
involved design example is presented in Chapter 8. The design of a battery electric vehicle is
addressed using decomposition-based design optimization. Several different vehicle systems
are considered, including powertrain, structure, and chassis design. The model accounts
for many important interactions, such as the influence of component sizing and location on
vehicle dynamics. The optimal partitioning and coordination decision method presented in
Chapter 7 is applied to the electric vehicle design problem. The concepts and results are
summarized in Chapter 9. A systematic procedure is outlined for approaching partitioning
and coordination decisions in system optimization and in other applications.
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Chapter 2

Partitioning and Coordination Decisions

The preceding chapter introduced the concept of decomposition-based design optimization
for engineering systems, and demonstrated that partitioning and coordination (P/C) decisions
can have great impact on solution difficulty. This chapter constructs notation and terminology
needed for more precise and detailed treatment of system design optimization and P/C
decisions, reviews existing techniques for making P/C decisions, and establishes that no
studies have addressed interaction between partitioning and coordination decisions or the
potential impact of this interaction.

2.1 Decomposition-based System Design

The system design problems considered here involve multidisciplinary, coupled analyses
where input/output properties are assumed to be known precisely. For example, in simulation-
based design, each quantity of interest in the design problem is computed using a computer
simulation, such as finite element analysis or multi-body dynamics simulation software.
Each simulation must be provided a specific set of inputs to compute its corresponding
outputs; this prescribes a definite information flow direction. Output quantities cannot be
recast as inputs, and vice versa. This is contrast to equation-based design, where frequently
one of several variables that appear in design equations can be selected as an output variable.
Flexibility in the set of output quantities causes ambiguity in information flow. Exact
knowledge of information flow in simulation-based design allows us to construct system
design approaches that exploit directionality to reduce solution complexity.

Each simulation in a system design problem can be viewed as a vector-valued analysis
function; it computes one output vector for every unique set of inputs. Simulations (i.e.,
analysis functions) frequently depend on outputs of other simulations in addition to design
variables. When circular dependence exists among analysis functions the system is said
to possess feedback coupling. Analysis function outputs can be design objectives, design
constraints, or intermediate quantities. Figure 2.1 illustrates the possible relationships

18



between a system of m analysis functions.
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Figure 2.1 Input and output relationships for a system of analysis functions

The vector of quantities computed by the j-th analysis function and required as input
to the i-th analysis function is termed analysis coupling variable yi j. The vector of all
coupling variables input to analysis i from any other analysis in the system is yi, and all
design variables required as input to analysis i form the vector xi. In this manner, we define
the i-th analysis function as ai(xi,yi). Design variables that are inputs to ai(xi,yi) only are
local design variables x`i; design variables that are inputs to ai(xi,yi) and at least one other
function are shared variables xsi. Shared and local variables together form xi = [x`i,xsi]
(vectors are assumed to be row vectors). The collections of all design variables, coupling
variables, and analysis functions are x, y, and a(x,y), respectively. Shared and coupling
variables for ai(xi,yi) comprise its set of linking variables zi. Instantiations of the same
quantities, e.g., variable, at different parts of the system will be referred to as copies of the
quantity.

A system consists of several subsystems or components that frequently have competing
needs. If each subsystem is optimized independently, the resulting system design may
perform poorly. Effective system design addresses relationships between components, and
seeks to improve overall system performance. Relationships within a system can take the
form of analysis interactions (i.e., coupling variables), or shared design variables. A system
design method must ensure that subsystems are compatible with each other by agreeing on
coupling variable values and on shared design variables. A design method must also ensure
that the system as a whole is optimized, rather than just the individual subsystems. The
concepts of system consistency and optimality are discussed below, followed by a definition
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of distributed optimization.

2.1.1 System Consistency

A system is consistent if the values of all copies of a shared variable agree for all shared
variables, and if the value of every coupling variable is equal to its corresponding analysis
output. In other words, system consistency is achieved if shared variable and coupling
variable consistency requirements are met. It is essential that shared variable and coupling
variable consistency are managed separately to achieve the most efficient solution processes
for system design. System consistency is a necessary condition for system optimality.

Shared variable consistency is achieved if

x(k)
q = x(l)

q ∀ k 6= l, k, l ∈ Ds(xq) (2.1)

is satisfied for all shared variables, where xq is a component of x that is shared among the
analysis functions ai(xi,yi) ∀i ∈ Ds(xq), with Ds(xq) being the set of indices of analysis
functions that depend on the shared variable xq; superscripts indicate the analysis function
where the shared variable copy is input. A shared variable xq is consistent if the value for xq

input to every analysis function that depends on xq is identical.
Coupling variable consistency is achieved, if for every coupling variable,

yi j−a j(x j,y j)Si j = 0 (2.2)

is satisfied, where the boolean matrix Si j selects the components of a j that correspond
to yi j. The set of all such equality constraints is y− a(x,y)S = 0, where S is a selection
matrix that extracts the components of a(x,y) that correspond to y. These coupling variable
consistency constraints are referred to as the system analysis equations. Equations (2.1) and
(2.2) together form the system consistency constraints.

2.1.2 System Optimality

A system design optimization approach should ensure the resulting design is optimal
with respect to the system’s primary purpose. A single objective function that effectively
represents this purpose should be selected. Section 1.1 described how design approaches
that do not consider all aspects of a system together may not identify designs that are system
optimal. An effective design approach accounts for all system interactions, optimizes the
system objective function, and ensures system consistency. The following formulation meets

20



these requirements:

min
x

f (x,yp(x)) (2.3)

subject to g(x,yp(x))≤ 0

h(x,yp(x)) = 0,

where yp(x) is a solution to the system analysis equations for a given design, and the
objective and constraint function values are outputs of a subset of analysis functions. This
formulation is known as multidisciplinary feasible (MDF) [35] or All-in-One (AiO), and
implicitly achieves shared variable consistency. For every optimization iterate x the system
analysis equations must be solved for yp(x) to satisfy Eq. (2.2) for every coupling variable.
This nested approach ensures both coupling variable and shared variable consistency, as
well as minimizes the system objective function f (x,yp(x)).

If no feedback loops exist among analysis functions, the system analysis equations can be
satisfied simply by executing the analysis functions in the proper sequence; analysis function
outputs provide the coupling variable values directly. An iterative algorithm is required
for system analysis if feedback loops exist. Alternatively, the optimization algorithm can
solve for yp(x) using equality constraints to enforce coupling variable consistency. This
enables coarse-grained parallel processing and can ease numerical difficulties associated
with strongly coupled analysis functions [6]. The Individual Disciplinary Feasible (IDF)
formulation is the simplest way to use this approach [35]. Balling and Sobieski suggested a
hybrid approach that uses function sequencing to satisfy feedforward coupling relationships,
and equality constraints to satisfy feedback coupling relationships [15]. This hybrid approach
was demonstrated in Section 1.4.

2.1.3 Distributed Optimization

The two formulations for system optimization discussed above, MDF and IDF, are known as
single-level formulations because a single optimization algorithm is involved. Single-level
approaches become unwieldy when the number of design variables or constraints is large
enough to approach optimization algorithm reliability or cost limits. Large systems can
be divided into several smaller optimization problems, called subproblems. Interactions
between subproblems must be managed such that the final result is consistent and optimal
for the entire system. This is accomplished through a coordination strategy that works with
the individual subproblems. This type of approach is known as multi-level or distributed
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optimization, because optimization tasks are distributed throughout the system. Chapter 4
details several single and multi-level formulations, and discusses their appropriate applica-
tion. The emphasis in subsequent chapters will be on partitioning and coordination decisions
for problems solved using distributed optimization formulations.

Distributed optimization can employ equality constraints or penalty functions within
subproblem optimization formulations to help satisfy system analysis equations. The set
of design variables that are inputs for the functions in subproblem i and at least one other
subproblem are the external shared variables x̄si. Coupling variables passed from functions
in subproblem j to subproblem i are the external coupling variables ȳi j. External shared
and coupling variables for subproblem i comprise its set of external linking variables
z̄i. Independent subproblem solution requires local copies of both external coupling and
shared variables. The coordination algorithm must ensure all copies match at convergence,
satisfying the system consistency constraints. Some examples of coordination algorithms
include optimization algorithms (e.g., Collaborative Optimization (CO) [25]), fixed point
iteration (e.g., Analytical Target Cascading (ATC) [80]), Newton’s method (e.g., ATC [139]),
and penalty methods (e.g., ATC and Augmented Lagrangian Coordination (ALC) [141]).
Distributed methods are most beneficial when systems are large and sparsely connected
[128], when the design environment is distributed [29], or when specialized optimization
algorithms can be exploited for solving particular subproblems [88, 105].

2.2 Decision Framework

A method for decomposition-based design optimization (i.e., a decomposition method) is
defined here to include both a system partition and a coordination strategy [145]. Before we
can use a decomposition method for solving a system design problem, a system partition
and a coordination strategy must be defined. The partitioning problem (P) is to decide
which of m analysis functions should be clustered into each of the N subproblems. The
coordination decision problem (C) is to specify a method for satisfying system consistency
and system optimality requirements; this typically involves both an approach to consistency
constraint management (i.e., linking structure) and an algorithm for guiding repeated sub-
problem solutions toward system optimality and consistency. Linking structure is reflected
in problem formulation. Different types of problem formulations allow for different types of
partitions, linking structure, and coordination algorithms. Problem formulation is therefore
an elemental aspect of problem coordination. Figure 2.2 illustrates key aspects of the
partitioning and coordination decision problems. Decision techniques presented through
Chapter 6 consider the subproblem sequence aspect of coordination decisions only. Chapter
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7 develops the theory required to understand the linking structure aspect of the coordination
decision problem and demonstrates how to incorporate linking structure into partitioning
and coordination decisions.

Partitioning Coordination

Subproblem
Assignment

Solution
Sequence

Linking
Structure

Figure 2.2 Aspects of partitioning and coordination decisions

A central result of this work is a method for automated solution of the combined
partitioning and coordination decision problem. An ideal decision approach would start
with a description of analysis functions and the system design problem, and determine a
system partition, subproblem formulations, and a coordination algorithm that minimize the
complexity and cost of the system design optimization process. Formulation decisions are
difficult to encode and automate without any assumptions on the type of system design
formulations to be used. This issue is addressed by assuming that a specific class of
distributed optimization methods are used. This class includes penalty relaxation methods
where consistency constraints are only satisfied at convergence and design constraints are
satisfied at every subproblem solution, such as the ATC and ALC formulations. The system
design problems are assumed to be quasiseparable, i.e., subproblems may share design
variables, but not design constraints [67]. Most simulation-based design problems have a
quasiseparable structure. Proofs exist for ATC [106] and ALC [141, 142] that demonstrate
convergence under standard assumptions such as convexity, and show that the solution to the
decomposed problem is identical to that of the original design problem. The coordination
algorithm is assumed to be fixed point iteration (FPI), and therefore decomposition method
convergence is subject to FPI convergence conditions [6]. Subproblem solution sequence can
influence convergence rate significantly [134], and is a defining property of the coordination
algorithm. The relationship between partitioning and subproblem sequence is studied first,
and then a more sophisticated coordination decision model that incorporates linking structure
decisions is introduced in Chapter 7.
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2.3 System Representation

Analysis function interactions and dependence on design variables are important factors in
partitioning and coordination decisions. Coupling variable and shared variable relationships
influence both convergence of subproblems and the coordination algorithm. A technique
for representing directional dependence on coupling variables and dependence on design
variables compactly is required. Existence of these relationships can be illustrated using a
graph, which can then be represented using an incidence or adjacency matrix. This section
reviews matrix representations used in engineering design, and proposes a reduced adjacency
matrix for use in making partitioning and coordination decisions.

2.3.1 Structural Matrix

Steward proposed the structural matrix (SM) for illustrating relationships in systems of
equations [132]. SM rows correspond to equations, and columns to variables that appear in
the equations. The system analysis constraints for the example in Section 1.4 can be used to
illustrate the SM. Coupling variables and design variables are both treated as variables when
constructing the SM. The system of equations to be represented is:

y31 = y41 = a1(x1,y12,y13) = 0.1x1y12 +0.8x1y13 +b1 (2.4a)

y12 = y32 = a2(x2,y23) = x2y23 +b2 (2.4b)

y13 = y23 = a3(x3,y31,y32) = 0.1x3y31 +0.8x3y32 +b3 (2.4c)

r4 = a4(x,y41) = (y41− ŷ41)2 +‖w◦x‖2
2 (2.4d)

The response of the analysis function a4 is not an input to any analysis function, so is
not a coupling variable. The symbol r4 is used to represent the quantity computed by a4.
Since several of the coupling variables correspond to the same analysis function outputs,
only three coupling variables are required to illustrate analysis structure in the SM:

SM =

y31 y12 y13 r4 x1 x2 x3
Eq. (2.4a) 1 1 1 0 1 0 0
Eq. (2.4b) 0 1 1 0 0 1 0
Eq. (2.4c) 1 1 1 0 0 0 1
Eq. (2.4d) 1 0 0 1 1 1 1

The SM is an incidence matrix for an undirected hypergraph1, where variables that
appear in equations are represented by hyperedges and equations by vertices. Figure 2.3

1A hypergraph allows edges (hyperedges) to be adjacent to any number of vertices, rather than just two as
in an undirected graph.

24



illustrates the hypergraph for the relationships in Eqs. (2.4).
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Figure 2.3 Hypergraph for relationships in Eqs. (2.4)

Suppose the four equations were partitioned into two blocks. The SM is clearly useful
for assessing the number of links between blocks, which is useful for making partitioning
decisions. The SM, however, provides no information about directionality, and cannot be
used for determining a solution sequence. This can be resolved by specifying one variable
in each equation to be an output variable, forming an output set. The SM and output set are
sufficient for making combined partitioning and coordination decisions, but two different
representation types must be used to provide complete information. The analysis functions in
our example implicitly define an output set: {y12,y13,y31,r4}. In other systems of equations
output variable choice may be arbitrary, particularly if every equation can be solved for any
variable that appears in it. In simulation-based analysis, the output set is prescribed by the
simulations.

2.3.2 Design Structure Matrix

Steward later introduced the design structure matrix (DSM) that describes the interrela-
tionship between design elements, rather than equations and variables [133]. These design
elements were originally described as either design tasks or parameters, although later DSM
approaches typically limit design elements to either design tasks or parameters, but not both.
The DSM is a square adjacency matrix where the elements represented by rows and columns
are identical. The DSM is well suited for describing information flow direction, and has
been used extensively in ordering design tasks to reduce feedback loops [27]. A DSM may
be used to make combined partitioning and sequence decisions if its design elements include
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both analysis functions and design variables. The DSM conveniently provides all necessary
information in a single representation type. A DSM for the example in Section 1.4 can be
constructed accordingly:

DSM =

a1 a2 a3 a4 x1 x2 x3 x4
a1 0 1 1 0 1 0 0 0
a2 0 0 1 0 0 1 0 0
a3 1 1 0 0 0 0 1 0
a4 1 0 0 0 1 1 1 1
x1 0 0 0 0 0 0 0 0
x2 0 0 0 0 0 0 0 0
x3 0 0 0 0 0 0 0 0
x4 0 0 0 0 0 0 0 0

The design elements in the above DSM have been grouped into analysis functions and
design variables, and then ordered by index. This ordering is not necessary; the design
elements may appear in an arbitrary order as long as the order of rows and columns are
identical. Strictly speaking, this DSM is the transpose of the adjacency matrix for a directed
graph (digraph) that shows the directional dependence of analysis functions on design
variables and other analysis functions. Existence of an arc between vertices indicates a
dependence relationship, and the arc direction depicts dependence direction. If a system’s
digraph contains a cycle, then feedback coupling exists. The digraph corresponding to this
DSM is illustrated in Fig. 2.4.

x1 x2

x3

a1 a2

a3 a4

Figure 2.4 Digraph of functional relationships expressed in the DSM

2.3.3 Other Design Matrices

Another related matrix representation is the functional dependence table (FDT), introduced
by Wagner [145]. The FDT is similar to the SM, but is intended specifically for partitioning
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large equation-based design optimization problems. Instead of mapping variables to equa-
tions, the FDT maps design and coupling variables to objective and constraint functions.
Each row represents a design function, and the columns correspond to design and coupling
variables. The FDT, like the SM, can be viewed as the adjacency matrix for an undirected
hypergraph [105]. It can be used to make partitioning decisions, but lacks directionality
information and cannot be used for sequencing decisions without output set specification.
The FDT and SM have significant similarities, but the FDT is intended specifically for aiding
partitioning decisions in equation-based engineering design, while the SM applies to general
systems of equations.

Other matrices associated with engineering design, but normally not used in P/C deci-
sions, include the relation matrix (RM) and correlation matrix (CM) from quality function
deployment [136], and the design matrix (DM) from axiomatic design [135]. The RM maps
product engineering characteristics to customer requirements, and the CM describes corre-
lations between engineering characteristics. The DM maps design variables to functional
requirements, and is intended for evaluating independence of functional requirements when
comparing design concepts.

2.3.4 Reduced Adjacency Matrix

A system of analysis functions in simulation-based design may be represented using an SM
and an output set, or with a DSM. The latter is convenient because only one representation
type is required. Modifying the DSM can improve its utility in computing metrics for
P/C decisions. Taking note that design variables are independent quantities and their
corresponding DSM rows therefore are zero, these rows can be omitted without loss of
information. Design elements in the DSM are not constrained to appear in any particular
order. Organizing the matrix such that analysis functions appear before design variables
aids visualization of system structure. In addition, ordering functions and variables by
index value is convenient for calculating metrics used in P/C decisions. This condensed and
reordered matrix is termed the reduced adjacency matrix A. The system adjacency matrix is
[AT,0]. The reduced adjacency matrix for the example system is:

A =

a1 a2 a3 a4 x1 x2 x3 x4
a1 0 1 1 0 1 0 0 0
a2 0 0 1 0 0 1 0 0
a3 1 1 0 0 0 0 1 0
a4 1 0 0 0 1 1 1 1

The reduced adjacency matrix is designed to be consistent with other established notation.
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In both the reduced adjacency matrix and the DSM, a true element in the i-th row and j-th
column indicates the presence of arc 〈 j, i〉. The index order for the elements of A is also
consistent with coupling variable index order; i.e., the existence of the coupling variable
yi j is signified by a true element in the i-th row and j-th column of the reduced adjacency
matrix. This is consistent with the coupling variable index order set forth by Cramer et al.
[35].

The difficulty of solving individual subproblems, as well as the complexity of the co-
ordination algorithm, contribute to the overall solution expense, and must be estimated
when making P/C decisions. An ideal estimate would account for the nature of analysis
functions, their interactions, as well as subproblem and coordination algorithms. Produc-
ing and analyzing this information in most cases is more computationally intensive than
actually solving the system design problem. More practical estimates are based on more
easily obtained information. The existence of dependence relationships, expressed in the
reduced adjacency matrix, are used to make such estimates. If assumptions are made about
subproblem formulations and coordination algorithm, A can be used to estimate the size of
each subproblem and the coordination problem for a given system partition and coordination
strategy. Subproblem solution difficulty typically increases with the number of analysis
functions, design variables, and linking variables, although analysis function properties also
influence difficulty. Similarly, coordination problem solution expense normally increases
with the number of external consistency constraints [142]. Fine partitions reduce subproblem
difficulty at the expense of more external consistency constraints, while coarse partitions
ease coordination difficulty at the cost of more difficult subproblems. Chapters 5 and 7
will demonstrated how A can be used to estimate relative contributions of subproblem and
coordination difficulties to overall computational expense.

2.4 Partitioning and Coordination Decision-Making

Partitioning and coordination decisions have been treated largely as two independent tasks.
Traditional decision techniques for each are based on guidelines or experience. Formal
partitioning techniques have been studied thoroughly, and draw from strategies in graph
partitioning. Formal coordination decision techniques have been limited to sequence de-
cisions. Optimal sequence problems are standard operations research problems. Linking
structure, the second primary component of coordination decisions, has not yet been studied
thoroughly in the context of decomposition-based design optimization. Analysis of several
formulations for decomposition-based design optimization has led to guidelines for selecting
between formulations. A few decision methods have linked some aspect of partitioning and

28



coordination interaction, but coupling and tradeoffs present in the combined P/C decision
problem have not been studied.

2.4.1 Traditional Decision Techniques

Subjective techniques for P/C decisions are in common use. Partitioning techniques will
be discussed first, followed by coordination decision techniques. System design problems
can conveniently be partitioned according to physical system divisions (object-based),
or disciplinary divisions within the design organization (aspect-based) [145]. Partitions
may also follow product, process, or organization divisions [29, 88]. These are typically
subjective partitioning approaches based on engineering insight.

Design organizations may be aligned by discipline or object, and in some cases by both
[36]. Organizational structure can have a profound impact on computational design, since
design and analysis tools are developed by parts of the organization, and the organization
requires tools that are congruent with its actual communication and decision structures.
The automotive and aerospace industries have contributed substantially to the development
of system design methods, and the organizational structure of each industry is reflected
in the methods developed by them. Aerospace design is normally performed by design
teams divided by discipline [16], and automotive design organizations usually possess a
hierarchical structure aligned by physical subsystems [7]. Discipline-based partitions tend
to have a non-hierarchical structure with feedback coupling. Object-based partitions tend to
be hierarchical with unidirectional information flow.

Several authors have cited the importance of choosing the proper formulation for a
system design problem, and some have proposed guidelines for selecting between them
[6, 7, 8, 15, 23, 35, 74, 128]. Some of these selection guidelines are based on problem
properties such as coupling strength and problem structure. For example, single-level
methods, such as IDF, can handle large numbers of shared variables without increasing
problem dimension. Multilevel methods, such as ATC, are a more natural fit for systems
with many local variables, but relatively few shared or coupling variables. Balling and
Sobieski have explained that single-level methods are best for analysis intensive problems
(difficult system or subsystem analysis), while multi-level methods are best for design
intensive problems (numerous local decisions to be made) [15]. Wagner identifies several
categories of problem structure according to FDT representations, and offers suggestions
for solution method according to which structure type a method matches best [145].
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2.4.2 Formal Decision Techniques

The traditional techniques outlined above have been useful tools for the sometimes very com-
plicated task of determining a system partition and coordination strategy. These techniques,
however, are subjective, and success depends on designer experience and insight. Certain
innovative (and possibly superior) solution approaches may be overlooked. The partitioning
and sequence decision problems can be solved as optimization problems themselves, and
may be viewed as preprocessing for system optimization. Formal optimization-based tech-
niques may reveal insights about the system. Formal partitioning and subproblem sequence
methods have been studied for use in decomposition-based optimization. This section
reviews important partitioning developments, optimal sequencing techniques, and a few
approaches that consider some aspect of both partitioning and sequencing.

When a system is represented using a graph, the system partitioning problem can be
solved using graph partitioning techniques. Michelena and Papalambros demonstrated
the use of spectral [105] and network reliability methods [103] to obtain partitions that
minimize external linking variables and exactly balance subproblem sizes. Krishnamachari
and Papalambros used linear integer programming to generate partitions that allow some
subproblem size imbalance [84]. Chen, Ding, and Li introduced an iterative two-phase
approach where the FDT is first ordered so that coupling relationships are banded along the
diagonal, and then independent variable blocks and a system-wide linking variable block
are formed [30]. Drăgan proposed a partitioning algorithm also based on the FDT, as well
as one possible coordination strategy for managing the links between subproblems [47].

Some of the above approaches are decidedly efficient, but require numerous approxima-
tions and assumptions. For example, spectral methods can produce a partition in fractions
of second, but require that the FDT hypergraph is approximated with a graph. A linear
integer programming approach is also computationally efficient, but requires significant
assumptions to achieve linearity. These methods also do not account for the dimension
of subproblems associated with partition blocks; only the number of analysis function in
each block. Another shortfall is that these methods do not account for directionality in
functional dependence. The consistency constraints for shared and coupling variables are
handled differently in many formulations, and coupling variable consistency constraints are
formulated according to functional dependence direction. Omitting directionality from a
decision model therefore reduces accuracy.

A large system design problem can take days or weeks to solve. More accurate assump-
tions in P/C decision optimization may increase the preprocessing cost to minutes or even a
few hours, but the improved P/C decisions stand to decrease system optimization time and
increase reliability of results by a much greater factor; the benefit of added accuracy in P/C

30



decisions may be well worth the cost for decomposition-based design optimization.
Sequencing and scheduling problems are standard topics in operations research [22].

Techniques developed for them have been applied to problems in decomposition-based
design. A common approach is to order subproblems or design tasks such that feedback
is minimized. Steward used the DSM with a ‘tearing’ algorithm to order design elements
so that blocks of closely coupled tasks can be identified, forming a type of partition. In
this approach partitions depend on sequence decisions; partitioning decisions cannot be
made independently, and superior P/C decisions may be overlooked. Rogers introduced
DeMAID, a heuristic DSM-based software tool for sequencing design tasks [115], and
later DeMAID/GA, which utilized a genetic algorithm [73] to perform sequencing tasks
[116]. Browning provided a review of methods based on the DSM [27]. Kroo suggested
that, after sequencing has been used to minimize feedback loops, consistency constraints
could be used to break any remaining feedback loops [85]. Meier, Yassine, and Browning
reviewed DSM-based sequencing approaches and compared their objective functions, which
primarily involved some combination of minimizing feedback, improving concurrency and
modularity, or reducing computational expense [99]. The above sequencing approaches are
primarily based on the DSM or a similar system representation which models the existence
of functional dependence but does not express the nature of the dependence. A weighted
DSM may be used, and Rogers and Bloebaum developed methods for sequencing design
tasks that depend on coupling strength metrics, which are based on sensitivities between
design tasks [114]. Alyaqout, Papalambros, and Ulsoy defined a new measure of coupling
strength that accounts for optimization algorithm considerations [10]. This metric could also
be used as a factor in P/C decisions. Most previous approaches for sequencing in design
are based only on interactions between analysis functions (i.e., coupling variables). If the
system representation does not include design variables, and if the decision approach does
not otherwise account for them, sequence decisions are based on incomplete information.

A few approaches have accounted for some aspect of P/C interaction. Kusiak and Wang
demonstrated a method that first partitions a system based on its FDT, and then identifies an
efficient subproblem sequence using a precedence matrix [89]. This is similar to Steward’s
SM approach, except that Steward first determined a sequence and then identified a partition.
Meier et al. also described how partitions can be identified after a sequence is defined
[99]. A sequential P/C decision process, however, cannot account for all P/C decision
interactions. It will be shown that sequential or independent approaches can fail to identify
Pareto-optimal P/C options, while a simultaneous approach does not. Altus, Kroo, and Gage
developed a genetic algorithm that simultaneously determined function sequence as well
as ‘breaks’ between functions that form a partition [9]. Only a single result was presented
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with a prescribed number of subproblems, P/C decision tradeoffs were not studied, and
subproblem order was not defined since parallel subproblem solution was assumed.

Table 2.1 summarizes the partitioning and coordination decision methods reviewed
above. Early formal techniques for partitioning and coordination decisions emphasized
precedence relationships between analysis functions or design tasks. These precedence
relationships dominated the partitioning problem, and were in effect constraints on partitions
that could be made. Many approaches based on the DSM, such as Steward’s tearing
algorithm, determine solution sequence first, and then apply heuristic rules or algorithms to
derive an associated partition. Most approaches using the DSM are applied to engineering
design process scheduling, rather than design optimization, and usually do not account
for design variables. Later work, including the methods by Michelena and Papalambros,
abandoned the use of precedence information in partitioning decisions and focused instead
on function dependence on design variables (represented using the FDT without an output
set). This adds degrees of freedom to the partitioning problem, but disregards information
that is important both to partitioning and coordination decisions. The work introduced here
brings precedence information back into the decision process. In addition to addressing
precedence relationships among analysis functions, the decision methods presented here
also deal with precedence among subproblems in a coordination strategy. The reduced
adjacency matrix was developed as a compact matrix representation that balances precedence
information used in early methods with dependence on design variables utilized by more
recent methods. This more complete set of information is used to evaluate the optimization
problem dimension for each subproblem, something that was only approximated by earlier
methods.

The following chapters will describe a technique for optimizing partitioning and coordi-
nation decisions based on information contained in the reduced adjacency matrix for the
problem at hand. This technique accounts for the coupling present between partitioning
and coordination decisions. Although decisions are based on more complete models than
have been used in the past, these models are still approximations for computational expense.
Therefore the results presented are optimal with respect to the P/C decision model, and are
approximately optimal with respect to computational expense.

Recall that coordination decisions involve both subproblem sequence and consistency
constraint management; the latter issue has not yet been thoroughly investigated. Different
distributed design optimization formulations provide varying levels of flexibility in how
consistency constraints may be allocated in a decomposition method (i.e., linking structure).
For example, CO completely prescribes allocation, while ATC allows consistency constraints
for linking variables between subproblems to be assigned to any subproblem that is a
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ră
ga

n
20

02
[4

7]
de

co
m

po
si

tio
n

FD
T

sy
s.

of
eq

ns
.

fo
rp

ar
al

le
lp

ro
c.

C
he

n
et

al
.2

00
5

tw
o-

ph
as

e
FD

T
de

si
gn

op
t

in
de

pe
nd

en
tb

lo
ck

s

33



common ancestor. ALC offers complete flexibility in consistency constraint allocation,
an attractive feature for studying the effect of consistency constraint allocation decisions.
Material presented through Chapter 6 only addresses the subproblem sequence aspect of
coordination decisions, while a more sophisticated approach that considers consistency
constraints only. Chapter 7 develops the theory required to understand the linking structure
aspect of the coordination decision problem and demonstrates how to incorporate linking
structure into partitioning and coordination decisions.

2.5 Summary

This chapter introduced important concepts from decomposition-based design optimization,
which involves partitioning a system design problem into smaller subproblems. System opti-
mization methods applied to a decomposed system must ensure that subproblem solutions
are consistent, and that the resulting design is optimal for the overall system. Coordination
strategies are used to guide repeated subproblem solutions toward a consistent and optimal
state. Subproblem solution sequence and linking structure are aspects of a coordination
strategy. A system partition and coordination strategy must be defined before solving
a system design optimization problem. Qualitative techniques have been used to guide
partitioning and coordination decisions; formal optimization methods offer an alternative
decision approach, and utilize system structure representations, such as the DSM or FDT.
The partitioning problem and the coordination decision problem have been formulated
and solved as independent optimization problems, but have not yet been solved together.
Some efforts have involved sequential approaches that account for some, but not all of the
coupling between partitioning and coordination decisions. This dissertation demonstrates
that partitioning and coordination decisions are coupled, and presents an automated decision
technique that accounts fully for this coupling. The reduced adjacency matrix introduced
in this chapter is a new system representation suitable for making both partitioning and
coordination decisions. The system design problems considered in this dissertation are
assumed to be simulation-based with quasiseparable structure. The next chapter introduces
several system design problems used to demonstrate concepts throughout this dissertation.
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Chapter 3

Demonstration Examples

Several engineering design optimization problems have been developed to demonstrate
concepts and techniques put forth in this dissertation. All examples are suitable for solving
with decomposition-based design optimization. Each example has specific properties that are
useful for investigating important aspects of system design, and in most cases partitioning
and coordination decisions. A detailed description of the analysis model and design problem
for each example is presented here. Enough detail is provided for most examples to enable
replication. The first example is an air flow sensor design problem with feedback coupling
between two simple disciplinary analyses. Next, a turbine blade design problem is presented
with somewhat more sophisticated disciplinary analyses. An approach to designing a product
family for a fleet of aircraft is then described, which is the only design problem included
here without sufficient information for problem replication due to reliance on commercial
software. The fourth example introduces a generalized approach to truss design which can
be applied to trusses of any size and a large variety of topologies. The last example presented
in this chapter involves the design of an automotive electric water pump. An electric vehicle
design case study is presented later in Chapter 8.

3.1 Air Flow Sensor Design

Vane airflow (VAF) sensors are used in automotive applications to monitor the rate at which
air enters the engine for use in fuel injection control. A VAF sensor design problem was
developed to investigate the effect of coupling between disciplinary analyses. It will be
used in Chapter 4 to illustrate two different formulations for decomposition-based design
optimization. The design problem incorporates structural and aerodynamic analyses, and
aims at specifying a sensor that produces a desired result to airflow. The operation of a VAF
sensor is described, followed by a simplified analysis model for the sensor.

A VAF sensor is illustrated in Fig. 3.1 [34]. Incoming air flows past the stator flap,
which deflects in proportion to air flow velocity. A bypass channel reduces the sensor’s
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impedance on airflow. A potentiometer measures this deflection angle and provides a signal
to the engine control unit.

Figure 3.1 Vane airflow sensor schematic (after [34])

A simplified model of a VAF sensor is used in this design example (Fig. 3.2). The stator
flap has length ` and width w, is attached to its base with a revolute joint, and is biased to
the vertical position with a torsional spring of stiffness k. The plate is subject to horizontal
air flow of speed v that results in a drag force F . The design objective is to choose ` and w

such that the plate deflects an amount θ (for a fixed air speed) that closely matches a target
deflection value θ̂ . The plate area A = `w is constrained to a fixed value, and the drag force
on the plate must not exceed Fmax. This task, summarized in Eq. (4.6), is in essence a sensor
calibration problem.

1

2
! cos θ

v

!F

θ

k

Figure 3.2 Simplified representation of a vane airflow sensor
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min
`,w

(θ − θ̂)2 (3.1)

subject to F−Fmax ≤ 0

`w−A = 0

The structural analysis computes the plate deflection θ for a given sensor design and
drag force. Note that the governing equation cannot be solved directly for θ , requiring
iterative solution.

kθ =
1
2

F`cosθ (3.2)

The aerodynamic analysis computes the drag force on the plate F for a given sensor
design and plate deflection; C is a constant that incorporates air density and the drag
coefficient, C = 1

2ρCD, and A f is the plate frontal area, A f = `wcosθ .

F = CA f v2 = C`wcosθv2 (3.3)

The analyses depend on each other—Fig. 3.3 illustrates this relationship. The coupling
variables are θ̃ and F̃ . This notation is used to distinguish coupling variables from the
corresponding analysis functions, θ(`, F̃) and F(`,w, θ̃). The shared variable is ` (xs1 =
xs2 = `), and w is a local variable (x`1 = w). Fixed point iteration can be used to find
consistent values of F̃ and θ̃ for a given design (x = [`,w]).

SS1: Structural Analysis SS2: Aerodynamic Analysisy21 = θ̃

y12 = F̃

x1 = ! x2 = [!, w]

θ(", F̃ ) F (!, w, θ̃)

Figure 3.3 Coupling relationship in airflow sensor analysis

The optimal solution to this problem may be found using monotonicity analysis (MA)
[110], and can be used to benchmark computational results. In MA active constraints can
be identified by analyzing functions that vary monotonically with variables. The problem
can then be reduced by making substitutions based on constraint activity. Sufficiently
large deflection targets θ̂ in the VAF sensor problem will require a drag force that violates
the maximum force constraint. There is a monotonic tradeoff between minimizing target
deviation and minimizing drag force, and we can see that the minimum feasible target
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deviation will correspond to the maximum drag force allowed by the inequality constraint.
Thus, the drag force constraint is active when the target deflection is large, and we can
substitute Fmax into Eq. (3.2) to solve for the optimal deflection θ ∗:

θ
∗ = cos−1

(
Fmax

CA f v2

)
(3.4)

The aerodynamics equation and the area constraint can then be used to solve for the
optimal length and width, respectively:

`∗ =
2k cos−1

(
Fmax
CAv2

)
CAv2

F2
max

, w∗ = A/`∗ (3.5)

For parameter values k = 0.050 N/rad, v = 40.0 m/s, C = 1.00 kg/m3, Fmax = 7.00
N, and θ̂ = 0.250 rad, the force constraint is active, and the optimal design is [`∗,w∗] =
[0.0365,0.274]. The drag coefficient of a finite flat plate is approximately 2.0, resulting in a
value of C = 1.00 if we assume air density to be 1.00 kg/m3.

The solution of the design problem in Eq. (4.6) requires a nested solution approach. For
every design proposed by the optimization algorithm, a fixed point iteration solution to Eqs.
(3.2) and (3.3) to obtain consistent values for θ̃ and F̃ is required. The solution was obtained
using a sequential quadratic programming algorithm [69, 111], and the result matches the
MA solution.

3.2 Turbine Blade Design

The analysis and design of a turbine blade for a gas turbine engine is presented here.
Emphasis is placed on the coupling between structural and thermal analysis, and this
design example will be used to study the effects of analysis coupling between disciplinary
analyses, as was the case with the air flow sensor design problem. This design example was
introduced in [5] and appeared in [6]. Turbine blade design has been the ongoing subject of
MDO studies [117]. The turbine blade model presented here is simplified enough to allow
straightforward replication, yet still captures important interactions and traddeoffs. The
model allows for easy adjustment of coupling strength, a feature required for a comparison
of single-level methods presented in Section 4.2.

A turbine blade in a gas turbine engine is exposed to high temperature combustion gasses
moving at high velocity, and is subject to high forces due to aerodynamic drag force and
centripetal acceleration. Figure 3.4 illustrates turbine blades from a GE J-79 turbojet engine
[57]. Each blade is attached to the rotor at the left of the figure, and combustion gasses
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moving from the left cause the turbine to rotate.

Figure 3.4 GE J-79 turbojet engine turbine blades [57]

Several phenomena were modeled in order to capture the design tradeoffs and coupling
behavior, specifically: thermal expansion of the turbine blade in the axial direction, stress
and elongation due to centripetal acceleration, aerodynamic drag force and the resulting
bending stresses, and the temperature dependence of thermal conductivity, elastic modulus,
and rupture stress.

The blade temperature profile depends upon its dilated length. Elongation due to thermal
expansion or centripetal forces exposes more surface area to hot combustion gasses, affecting
the heat transfer through the blade and the associated temperature profile. The model
also captures the dependence of elastic modulus and thermal conductivity on temperature.
Higher temperatures (caused by changes in length) result in lower stiffness, causing greater
elongation. In summary, temperature depends on length, and length depends on temperature.
Thus, turbine blade analysis consists of two coupled disciplinary analyses, similar to the
previous example. The design task is to minimize the blade mass m and the heat transfer
through the blade q. Both of these metrics influence turbine thermal efficiency.

3.2.1 Analysis Model

The turbine blade is modeled as a simple rectangular fin (Fig. 3.5). The design variables are
the blade width w and thickness t. The blade has an initial undeformed length of L0, and is
subjected to combustion gas at temperature Tg and velocity vg. The blade is affixed to a rotor
with angular velocity ω , resulting in an inertial force fac. The axial position x is measured
from the blade base. Four failure modes are considered: melting, interference between the
blade and the turbine housing due to elongation, and structural failure due to bending stress
σb or axial stress σa. Several simplifying assumptions were made: constant coefficient of
thermal expansion α , no internal blade cooling, constant inertial force fac over the blade,
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and no lateral contraction. The dependence of thermal conductivity (k), elastic modulus (E),
and rupture stress (σr) on temperature is modeled with curve fits based on empirical data.

w

t

L
0

x

v
g
, T

g

f
acfac

vg, Tg

ω

L0

w

x

t

Figure 3.5 Turbine blade model schematic

The turbine blade optimization problem is presented in Eq. (3.6), which has been
formulated as a single objective problem by creating a mass constraint. The coupling
variables, T̃ (x) and L̃, are required to be consistent with the corresponding analysis functions,
T (w, t, L̃,x) and L(T̃ (x)), at the solution.

min
w,t

q(w, t, L̃) (3.6)

subject to T (w, t, L̃,x)−Tmelt ≤ 0

δtotal(T̃ (x))−δallow ≤ 0

σa(L̃,x)−σr(T̃ (x),x)≤ 0

σb(t, L̃,x)−σr(T̃ (x),x)≤ 0

m(w, t)−mmax ≤ 0

and 0≤ x≤ L0 +δtotal(T̃ (x)).

Tmelt is the melting temperature, δtotal(T̃ (x)) is the blade elongation, δallow is the initial
clearance between the blade and housing, and σa(L̃,x), σb(t, L̃,x), and σr(T̃ (x),x) are the
axial, bending, and rupture stress distributions along the blade. The analysis for each
discipline (structural and thermal) follows.

Structural Analysis

The structural analysis calculates blade mass (m = wtL0ρ), where ρ is the blade density, the
total blade elongation (δtotal), which is the sum of the thermal expansion δth and elongation
due to axial acceleration δax, and bending and axial stress distibutions (σb(x), σa(x)). We
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begin with the elongation calculation. The first elongation term is calculated as follows:

dδth = α(T (x)−T0)dx (3.7)

δth =
∫ L0

0
T (x)dx−

∫ L0

0
αT0dx

δth =
∫ L0

0
T (x)dx−αT0L0

T0 is the initial blade temperature, and α , the coefficient of thermal expansion, is assumed
constant. The temperature profile, calculated by the thermal analysis, is required to evaluate
δth. To calculate δax, the axial load as a function of axial position is determined. The portion
of the blade outboard of a position x pulls with load Pa(x). The tangential velocity of the
blade v = ωr is assumed to be constant over the blade length, and is valid if L0� r.

Pa(x) =
∫ L0+δtotal

x

v2

r
ρAcdx (3.8)

=
v2

r
ρwt(L0 +δtotal− x)

= ω
2rρwt(L0 +δtotal− x)

δax =
∫ L0+δtotal

0

Pa(x)dx
AcE(T (x))

(3.9)

= ω
2rρ

∫ L0+δtotal

0

(L0 +δtotal− x)
E(T (x))

dx

δtotal =
∫ L0

0
T (x)dx−αT0L0 (3.10)

+ω
2rρ

∫ L0+δtotal

0

(L0 +δtotal− x)
E(T (x))

dx

Since Eq. (3.10) is transcendental, an iterative solution procedure is required to solve for
δtotal given T (x).

The axial stress is a function of axial position, and is calculated with the relation
σa = Pa/Ac, where P is the axial load, Ac = wt is the cross sectional area as before, and
L = L0 +δtotal is the elongated length.

σa(L,x) = ω
2rρ(L− x) (3.11)
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The aerodynamic load is calculated using Paero = 1
2AfCDρv2, where Af = wL is the frontal

area, CD is the drag coefficient, ρ is the combustion gas density, and v is the combustion gas
velocity (assumed perpendicular to the blade). For convenience the constant K = 1

2CDρv2 is
defined, giving Paero = KwL. The total drag force acting on the blade outboard of a position
x is Paero(x) = Kw(L−x), and the bending moment at point x is M(x) = Kw (L−x)2

2 , resulting
in a bending stress of:

σb(w,L,x) =
3K(L− x)2

4t2 (3.12)

Thermal Analysis

The thermal model, which calculates the temperature profile and heat transfer, was derived
from the steady-state heat equation using constant base temperature and an adiabatic tip
boundary condition [75]. The average convection coefficient h̄ was approximated using
empirical correlations involving the average Nusselt number N̄u and the Prandtl number Pr:
N̄u = h̄w

kg
= CRez

DPr1/3. The combustion gas conduction coefficient is kg, ReD = vw/ν is the
appropriate Reynold’s number, z is an empirical exponent of 0.731, and C is the heat capacity
of the combustion gas. Solving for h̄, and substituting values for the other parameters with
SI units (at T∞ = 900◦C), we find: h̄(v,w) = 9.196v0.731w−.269. The temperature profile and
the heat transfer through the blade into the rotor at the point of attachment are found through
solution of the heat equation with the appropriate boundary conditions:

T (w, t,L,x) =
cosh(s(L− x))

cosh(sL)
(Tb−T∞)+T∞ (3.13)

q(w, t,L) = wt(Tb−T∞) tanh(sL)
√

2h̄(w+ t)wtk (3.14)

where s =
√

2h̄(t +w)/ktw.

Surrogate Models

Surrogate models based on empirical data [97] were employed in order to capture tem-
perature dependence. The rupture stress σr for Inconel X-750 was approximated using a
modified sigmoid function.

σr(T ) =
1300

1+ e0.011(T−675) (3.15)

The conductivity of the blade k was modeled using a linear fit. The dependence on
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average temperature T̄ was captured from empirical data.

k (T̄ ) = 6.8024+0.0172T̄ (3.16)

A fourth-order polynomial was fit to the modulus of elasticity for the blade material.

E(T ) = 209.8−0.0487T −0.0002T 2 +6 ·10−7T 3−6 ·10−10T 4 (3.17)

3.2.2 System Analysis

Figure 3.6 illustrates the analysis problem structure. The system has two shared design
variables, and no local design variables.

SS1: Thermal Analysis SS2: Structural Analysis
m(w, t)

x1 = [w, t] x2 = [w, t]

y21 = T̃ (x)

y12 = L̃

q(w, t, L̃)

T (w, t, L̃, x)

L(T̃ (x))
δtotal(T̃ (x))

σb(t, L̃, x)
σa(L̃, x)

σr(T̃ (x), x)

Figure 3.6 Turbine blade coupling and functional relationships

The analysis functions evaluated by the thermal analysis are the heat loss q(w, t, L̃) and
the temperature distribution T (w, t, L̃,x). The structural analysis evaluates several analysis
functions, including the mass m(w, t), dilated length L(T̃ (x)), total deflection δtotal(T̃ (x)),
and the bending, axial, and rupture stress distributions σb(t, L̃,x), σa(L̃,x), and σr(T̃ (x),x).
Both design variables are shared, i.e., xs1 = xs2 = [w, t]. The function valued quantities
(temperature and stress distributions) are discretized along the length of the blade to facilitate
numerical calculations. Using the parameter values from Table 3.1 and a sample design of
[w, t] = [0.08,0.005] (meters), the analysis outputs (using FPI) are q = 0.2046 W, m = 0.1702
kg, and L = 0.057 m.

The design problem presented in Eq. (3.6) was solved using two different system
optimization approaches. The results of a parametric study on these solutions is presented in
Section 4.1. Note that the third and fourth constraints in Eq. (3.6) are function-valued; these
were discretized and implemented as vector-valued constraints. The mass was constrained
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Table 3.1 Turbine blade design parameters
ρ 8510 kg/m3 ρg 3.522 kg/m3

L0 0.05 m Cd 2.0
α 12.6 ·10−6 m/K v 100 m/s
rb 0.5 m Tb 300 ◦ C
ω 2100 rad/s Tg 900 ◦ C
δmax 0.05 m ε 1.0 ·10−8

not to exceed 0.04 kg. The parameter values from Table 3.1 were used, and the optimal
design was found to be [w∗, t∗] = [0.0131, 0.0075] (both in meters).

3.3 Aircraft Family Design

A product family design problem was developed that addresses how to design commercial
aircraft in an airline fleet that share some common components. This example will be used to
illustrate multi-level formulations for decomposition-based design optimization in Chapter
4, and will be the subject of a parametric study on coordination algorithm parameters.

A product family is a set of individual products that share common components or
subsystems and address a set of related market applications [101]. The motivation for
component sharing is cost reduction in both development and manufacturing. In an aerospace
context, a product family is usually comprised of a baseline aircraft and its derivatives or
variants, but can also involve two or more aircraft with dissimilar missions that share only
a few key parts or systems. The product family design problem presented here takes the
latter approach, and was originally presented in [8]. It will be used to illustrate formulations
for decomposition-based design optimization and for parametric studies on coordination
algorithms. This section reviews product family design, discusses the analysis tools used,
and presents the aircraft family design problem.

3.3.1 Product Families in Aircraft Design

As the aerospace industry has matured, emphasis has shifted from performance enhancement
to cost reduction, efficiency, and quality improvement. An avenue for cost savings is
improved manufacturing efficiency. Sharing major structural components can reduce tooling
and assembly costs. A product family approach can also reduce operational costs, such
as maintenance, or pilot cross-training programs if avionics systems are common across
part of a fleet. Cost reductions realized through commonality typically come at the expense
of a performance penalty [50, 51, 52, 53]. Common components cannot be optimized for
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individual aircraft.
The objective of this product family study is to quantify the benefits of a product family

and define the preliminary design of its members. It is critical that the optimization objective
function helps quantify the tradeoffs present in product family design problems. Life cycle
cost is an ideal objective function, but is unnecessarily complex since an accurate prediction
of total cost is not required. An approximate cost model that incorporates both acquisition
and costs was chosen as the objective function. The acquisition cost model, based on
[96], is split into manufacturing and development costs. A manufacturing learning curve is
applied such that cost decreases with the number of units produced. Development cost is
non-recurring and is averaged over the total number of aircraft produced. The non-recurring
cost for parts already developed for another aircraft in the family is significantly lower
than for a new part. Fuel cost is based on the Breguet range equation [112]. Each type of
aircraft in the product family is assumed to fly only one specific mission. The acquisition
and fuel cost models are used to estimate ticket prices for each aircraft in the context of fleet
operation. Important tradeoffs associated with commonality are effectively captured by the
ticket price estimates.

3.3.2 Aircraft Performance Analysis

Aircraft performance is evaluated using the Program for Aircraft Synthesis Studies (PASS),
an aircraft conceptual design tool [87]. A detailed description of this analysis is beyond the
scope of this dissertation, and is presented in [86]. In addition to quantities computed by
PASS, the aircraft family problem requires calculation of wing stresses. The wing model
uses wing geometry design variables, such as wing sweep (Λ) and main wing aspect ratio
(ARmw), as well as aircraft takeoff weight WTO, as inputs to a simple wing-box model where
wing skin carried the bending load. If wing skin thickness along the wing span is designed
such that the wing is fully stressed, the skin thickness is approximately quadratic along the
span. This observation allows us to parameterize skin thickness along the entire main wing
span using only three thickness values: T1 (thickness at wing root), T2 (thickness at 33%
span), and T3 (thickness at 67% span). The main wing is the only common component in
this product family study: wing tip extensions can be unique for each aircraft. Wing weight
is also influenced by the minimum gauge of available material and control surfaces and
high-lift systems. Equation (3.18) accounts for these factors as well as minimum bending
thickness was fit to data from existing aircraft.

Wwing = 1.35(Wstr−Wmin)+4.9Swing. (3.18)
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where Wstr is the weight of material needed to resist bending, Wmin is the weight of minimum
gauge material, and Swing is the wing area.

3.3.3 Aircraft Family Problem Formulation

The product family considered here is limited to two aircraft types, A and B, designed to
fulfill missions 1 and 2, respectively. Mission 1 requires a range of 3400 nautical miles (nmi)
and an aircraft capacity of 296 passengers. Mission 2 requires a range of 8200 nmi and an
aircraft capacity of 259 passengers. Forecasts suggest a market need for 800 type A aircraft,
and a need for 400 type B aircraft. In addition to mission requirements, constraints on other
performance metrics, such as balanced field length and second segment climb, are included.

The aircraft family design problem is to minimize a composite cost measure for the fleet,
subject to mission and performance constraints, as well as compatibility of common parts.
Each aircraft type has 16 design variables (x1i . . .x16i, i ∈ {A,B}), which are described in
Table 3.2.

Main wing commonality requires that the variables x10i . . .x16i are equal for each aircraft.
This requirement can be met by treating them as shared variables:

xs = [x10A, . . . ,x16A] = [x10B, . . . ,x16B]. (3.19)

The local variables for aircraft A and B are

x`A = [x1A, . . . ,x9A] and x`B = [x1B, . . . ,x9B].

The complete set of design variables for the product family design problem is

x = [x`A, x`B, xs].

Each aircraft must comply with a set of five performance constraints, whose numeric
values are specific to the mission each aircraft is designed to fly (see Table 3.3).

The fleet composite cost metric is given in Eq. (3.20), and is the aircraft family design
objective function. It is based on estimated ticket prices and the proportion of aircraft types
in the fleet. The estimated ticket prices for aircrafts A and B are pA and pB, respectively, and
the number of aircraft A and B in the fleet are nA and nB, respectively.

f (x) =
nA

nA +nB
pA(x`A,xs)+

nB

nA +nB
pB(x`B,xs). (3.20)

The elements of the aircraft family design problem have all been defined now. The
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Table 3.3 Design constraints for the aircraft family design problem
Constraint Name Description Aircraft A Aircraft B

g1 Range min range 3,400 nmi 8,200 nmi
g2 TOFL max takeoff field length 7,000 ft 10,000 ft
g3 LFL max landing field length 5,200 ft 6,000 ft
g4 γ2 min 2nd seg. climb gradient 0.024 0.024
g5 ST stability requirement ≥ 0 ≥ 0
g6 σ̂1 normalized stress at wing root ≤ 0 ≤ 0
g7 σ̂2 normalized stress at 33% span ≤ 0 ≤ 0
g8 σ̂3 normalized stress at 67% span ≤ 0 ≤ 0

objective is to minimize a weighted average of ticket price for the aircraft fleet, with respect
to aircraft geometry design variables defined in Table 3.2, subject to performance constraints
given in Table 3.3, and subject to the main wing commonality requirement of Eq. 3.19. The
commonality requirement may be handled implicitly by using the same value for the shared
design variables; this eliminates the need for any equality design constraints. The design
problem formulation is:

min
x

f (x) (3.21)

subject to g(x)≤ 0

3.4 Generalized Truss Design

A generalized analysis and design formulation for structural trusses was developed for the
purpose of testing methods for decomposition-based design optimization. The formulation
enables definition of structural design problems of any size and with a wide variety of
system topologies. The design problem is easily partitioned. These factors make this truss
formulation ideal for empirical studies, as well as testing the effects of partitioning and
coordination decision techniques on problems with a wide range of problem structures. The
analysis of truss structures is reviewed in this section, followed by a definition of the design
problem and generalized formulation.

3.4.1 Truss Analysis

Trusses are structural systems comprised of bars connected together at their ends via pin
joints, and support one or more loads concentrated at pin joints [19]. Each bar is a structural
member that bears an axial load, either in tension or compression. Bending moments are
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not developed within truss members because pin joints cannot resist torque. Truss members
must be configured such each member is constrained against rotation by adjacent members;
i.e., the number of mechanical degrees of freedom in the system must be zero. Otherwise,
the system would allow motion and it would be a mechanism rather than a structure. In a
two-dimensional truss each member has three degrees of freedom before it is attached to
any joints: vertical translation, horizontal translation, and rotation. Attaching the end of a
member to a fixed joint removes two degrees of freedom, and connecting an end to a joint
with one degree of freedom removes one degree of freedom. If we remove exactly enough
degrees of freedom for the system to be a structure, the internal force of each member can
be solved for using the equations of static equilibrium:

∑
k∈Ai

fik +Fi +Ri = 0, ∀i ∈J (3.22)

where Ai is the set of all indices of joints connected to joint i, J is the set of all joint
indices, Fi is the vector load applied to joint i, and Ri are the reaction forces on joint i. Not
all joints have applied loads, and only joints at a fixed ground location have reaction forces.
We describe a truss in terms of its joints. A member is designated by the numbered joints
it connects, e.g., member {2,6} is connected to joint 2 at one end and joint 6 at the other.
The vector force fik is the axial force in member {i,k}, which can be interpreted as the force
exerted on joint i by member {i,k}. An example truss is illustrated in Fig. 3.7. Each joint is
labeled. Joints 1 and 4 are ground joints. External loads F2 and F3 are applied to joints 2
and 3, respectively. Loads can be applied only at joints in truss systems without inducing
any bending moments. A free-body diagram for member {2,4} is shown to the right of the
truss.

1 2 3

4 5

F3F2

4

2

F2

f23

f25

f45

f21

R4

Figure 3.7 Truss geometry and free-body diagram

A truss can fail due to axial stress or compressive buckling. We assume here that failure
does not occur at the joints. The internal forces can be used to evaluate axial stress and
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failure conditions. The truss members are assumed to have a circular cross sections, and
to be made of an isotropic material with stiffness modulus E. The axial stress of member
{i, j} is

σi j =
‖fi j‖2

πr2
i j

(3.23)

where ri j is the section radius of member {i, j}. The axial stress must not exceed the material
failure stress σallow. Axial stress is normally the failure mode only when the member is in
tension. Long, slender truss members tend to exhibit buckling failure before the axial stress
reaches σallow. High axial compression can cause an unstable condition where perturbing a
member in the lateral direction will cause a lateral deflections to increase without bound
[59]. The equation governing the lateral deflection v of member {i, j} with pin joints at each
end under a compressive axial load P is

EIv′′+Pv = 0 (3.24)

where I is the area moment of inertia for the member section. For a circular section,
I = πr2

i j/4. According to Euler buckling theory, buckling can occur when the solution to
Eq. (3.24) v is non-zero. This requires that sin(nπL) = 0, where L is the member length and
n = {1,2,3, . . .}. The first mode of the solution to Eq. (3.24) occurs when n = 1, and the
corresponding axial load is:

Pcr =
π2EI

L2 (3.25)

Pcr is the smallest compressive axial load under which buckling will occur according
to Euler buckling theory. The largest compressive axial load that member {i, j} can bear
before the possibility of buckling in our model is:

bi j =
π3r4

i jE

4L2 (3.26)

Some truss structures are over-constrained; they have more kinematic constraints than
necessary to ensure zero degrees of freedom. The number of unknown forces exceeds the
number of equilibrium equations. The internal forces cannot be solved from static equilib-
rium conditions alone, and therefore these structures are termed statically indeterminate.
This problem can be resolved by including additional compatibility equations that relate
internal forces to deformed joint positions. The larger system of equations that results can
be solved for the internal forces and deformed joint positions. The undeformed (original)
location of joint i is the vector ui = [uxi,uyi], and the deformed location of joint i after
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load application is di = [dxi,dyi]. It is helpful to relate the vector form of the axial force in
member {i, j} to the magnitude of this force fi j = ‖fi j‖2 and the deformed location of its
joints, as shown in Eq. (3.27).

fi j = fi j
d j−di

‖d j−di‖2
(3.27)

Note that the force exerted by member {i, j} on joint j is f ji =−fi j. The compatibility
equations ensure that the member ends connected to the same joint are collocated after
deformation:

‖di−d j‖2−‖ui−u j‖2−
fi j‖ui−u j‖2

πr2
i jE

= 0, ∀{i, j} ∈M (3.28)

where M is the set of all unordered member index pairs. Note that the ordered pair {J ,M }
comprises an undirected graph that describes truss topology.

3.4.2 Truss Design Formulation

The class of trusses considered in this generalized formulation include those with members
secured via joints at each end, with two or more fixed ground joints, and at least one load is
applied to a non-ground joint. Topologies that exhibit static indeterminacy are allowed in this
formulation. In the design problem, not only can member radii be varied, but the position of
certain joints can be specified. Thus, the design problem is a sizing and shape optimization
problem. Joints whose undeformed locations are design variables, i.e., movable joints, are
those that are not ground joints and have no applied loads. For convenience, the indices of
all fixed ground joints is defined as the set G , and the set of all joint indices with an applied
external load force is L . The vector of all movable joint locations is m = [ui1,ui1, . . . ,uik ],
where {i1, i2, . . . , ik}= J \(G ∪L ), and k = |J \(G ∪L )|.

The truss design problem is to select the radii of all members r and positions of all
movable joints m such that the system mass is minimized without violating axial stress
or buckling constraints. Ground and load joints have prescribed locations in the design
problem, but the other joints are considered moveable. Since statically indeterminate systems
are allowed, both structural compatibility and joint equilibrium equations are included
in the analysis. State variables include internal member forces (f = [ fi1 j1, fi2 j2, . . . , fik jk ],
{{i1, j1},{i2, j2}, . . . ,{ik, jk}}= M , and k is the number of truss members), the deformed
positions of non-ground joints (d̃ = [di1,di2 , . . . ,dik ] where {i1, i2, . . . , ik} = J \G and
k = |J \G |), and the reaction forces (R = [Ri1,Ri2, . . . ,Ri|G |], {i1, i2, . . . , i|G |} = G ). The
all-at-once (AAO) optimization formulation [35] for the general truss design problem
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includes both design (m,r) and state (f, d̃,R) variables as decision variables, and treats state
equations as equality constraints:

min
m,r,f,d̃,R

∑
{i, j}∈M

Ωi j (3.29)

subject to: |σi j|−σallow ≤ 0, ∀{i, j} ∈M

− fi j−bi j ≤ 0, ∀{i, j} ∈M

‖di−d j‖2−‖ui−u j‖2−
fi j‖ui−u j‖2

πr2
i jE

= 0, ∀{i, j} ∈M

∑
k∈Ai

fik +Fi +Ri = 0, ∀i ∈J

where: σi j =
fi j

πr2
i j

, bi j =
π3r4

i jE

4‖ui−u j‖2
2
, Ωi j = ρπr2

i j‖ui−u j‖2

Design parameters include material density ρ , elastic modulus E, allowable stress σallow,
fixed ground and load joint positions (di,∀i ∈ G ∪L ), and applied loads (Fi,∀i ∈L ). The
mass of member {i, j} is Ωi j. A specific truss design example with eight members and two
loads is presented in Section 6.3, and is used to demonstrate an evolutionary algorithm [49]
for making partitioning and coordination decisions.

3.5 Electric Water Pump Design

This section describes a design optimization model for an automotive water (coolant) pump
driven by a DC electric motor. It involves several strongly interacting analysis functions,
and is suitable for use as a test problem for decomposition-based design optimization. It
is used in Chapter 5 to demonstrate a deterministic approach to optimal partitioning and
coordination decision-making, and is again used in Chapter 6 to compare the results of an
evolutionary algorithm against deterministic results.

The analysis functions in the model for the electric water pump design problem are
based on sets of explicit algebraic equations. A similar model was presented in [7] that
involved the design of a belt-driven electric sump pump. The model presented here is more
sophisticated, and uses an alternative approach to solve for the steady state operating speed.
In [7] the analysis functions generated torque-speed curves for the pump and motor, and
then solved for the intersection of those curves to find the operating point. Generating
these curves was costly, but eliminated some of the feedback coupling between analysis
functions. In this model the operating speed is treated as a coupling variable, and instead
of determining the operating speed via torque-speed curves, it is solved for as an unknown
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state variable. This results in strong coupling between analysis functions, but makes for a
more interesting analysis structure that can be used for the analysis of decomposition-based
design optimization methods as well as in the study of partitioning and coordination decision
approaches.

3.5.1 Water Pump Design

Traditional automotive water pumps are belt driven by the vehicle engine, constraining
pump shaft speed to engine speed multiplied by the belt speed ratio. In some cases, such
as when a vehicle is idling after a period of high load, the water pump must provide flow
and pressure sufficient to cool a hot engine at low shaft speeds. Pumps can be designed to
operate efficiently at a specific operating point, but cannot be simultaneously efficient at
high and low shaft speeds. An engine-driven pump operates at off-design flow conditions
during much of its duty cycle due to large speed fluctuations. This characteristic of belt-
driven pumps results in higher power consumption than pumps driven by a constant-speed
source. A motor-driven pump can provide constant input speed, and further reduces energy
consumption by only pumping when needed. Traditional water pumps are run continuously
and utilize a thermostat-controlled bypass when engine cooling is not required.

Electrification of belt-driven automotive components is a promising means for improving
fuel economy. Electrification of some components, such as cooling fans, has been incorpo-
rated for some time into production vehicles. Electrification of additional components is a
more recent endeavor [77, 82, 98]. Surampudi et al. tested a speed-controlled electric water
pump on a class-8 tractor and measured an 80% reduction in energy consumption [137].

The analysis model used in this design problem involves five interdependent analysis
functions that compute performance metrics based on ten design variable values. These
quantities are defined in Table 3.4. Design variables x1–x5 define motor geometry, and
x6–x10 define pump geometry. The motor is a permanent magnet brushed DC electric motor
with four pole pairs, and the pump is single-stage centrifugal with six impeller blades and a
single diffuser vane (Fig. 3.8). The motor directly drives the pump, so their shaft speeds are
identical: ωmotor = ωpump = ω .

Several analysis interactions are modeled. For example, the temperature is computed
based on the motor current and speed, but the temperature affects the electrical resistance
and current, and the current influences the motor speed. The interdependence between
analysis functions is illustrated in Fig. 3.9. Since pump pressure P and input shaft torque τ

depend on identical sets of design variables and analysis outputs, only τ is included in the
graph for simplicity and represents both P and τ calculations.
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Figure 3.8 Electrically driven centrifugal water pump [39]

The design problem, formally stated in Problem (3.30) is to minimize the electric power
Pe consumed by the water pump, while ensuring sufficient pressure differential, safe motor

Table 3.4 Analysis functions and design variables for the electric water pump design problem

Analysis Functions
T = a1(I,ω,d,d2,d3,L, `c) motor winding temp. (K)
I = a2(τ,T,d,d2,d3,L) motor current (amps)
ω = a3(I,T,d,d2,d3,L, `c) motor speed (rad/sec)
τ = a4(ω,D2,b,β1,β2,β3) pump drive torque (Nm)
P = a5(ω,D2,b,β1,β2,β3) pressure differential (kPa)

Design Variables
x1 = d motor wire diameter (m)
x2 = d2 inner motor armature diameter (m)
x3 = d3 outer motor armature diameter (m)
x4 = L motor armature length (m)
x5 = `c motor commutator length (m)
x6 = D2 pump impeller diameter (m)
x7 = b pump impeller blade width (m)
x8 = β1 pump blade angle at inlet (rad)
x9 = β2 pump blade angle at outlet (rad)
x10 = β3 pump diffuser inlet angle (rad)
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T ω

I τ

Figure 3.9 Analysis interactions in electric water pump model

temperature, compatible axial motor length, and a desired flow rate.

min
x

Pe = V I

subject to P≥ Pmin = 100 kPa

T ≤ Tmax = 428 K (3.30)

L+ `c ≤ 0.2 m

Q = 1.55 ·10−3 m3/sec

The source voltage V is 14.4 volts. The pressure differential and flow constraints ensure
the engine is adequately cooled. The flow constraint is implicitly satisfied during the torque
and pressure analysis. The temperature constraint ensures the motor wire insulation is not
damaged, and the constraint on axial motor length (L+ `c) is required for packaging.

The analysis functions are very strongly coupled; first and second-order algorithms
failed in most cases to find a solution to the system of equations in Table 3.4. The design
problem was successfully solved using mesh adaptive direct search [2] and the individual
disciplinary feasible (IDF) formulation, which is described in Section 4.1. The minimal
power consumption is 140 W, a substantial improvement over traditional water pumps of
similar capacity, which consume nearly 300 W continuously [77]. The following sections
describe in detail the calculation of each of the five analysis functions.

3.5.2 Analysis Overview

The functions in Table 3.4 are evaluated by solving systems of nonlinear algebraic equations
that approximate motor and pump behavior under steady state operating conditions. Several
equations are coupled and require iterative solution techniques. The motor winding tempera-
ture T is computed using a thermal resistance model similar to that found in [100], adapted
for permanent magnet DC motors. Additional heat transfer correlations were obtained from
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[75]. The motor current I and shaft speed ω are computed based on fundamental DC motor
equations [78, 60] adapted to the specific geometry of this motor. The pump drive torque
and pressure differential are computed for a prescribed flow rate Q using fluid mechanics
equations for centrifugal pumps [144]. Model parameters used in this analysis are listed
in Table 3.5. Motor and pump geometry will be described, followed by description of the
analysis equations. Full description of the physics underlying the equations presented can
be found in the references.

Table 3.5 Electric water pump model parameters

δa 0.002 motor air gap (m)
δh 0.010 motor housing thickness (m)
d1 0.008 motor shaft diameter (m)
g 9.81 gravitational constant (m/s2)
T∞ 350 engine compartment temp. (K)
na 1.50 slot/tooth ratio
p 4 one-half number of poles
np 0.55133 wire packing ratio
µ0 18.27e-6 viscosity constant (Pa·s)
T0 291.15 base temperature (K)
C 120 viscosity parameter (K)
Cp 1.009 air heat capacity (kJ/kg·K)
Br 0.10 remanent magnetic flux density (T)
V 14.4 source voltage (V)
Ds 0 pump shaft diameter (m)
D1 0.020 impeller inlet diameter (m)
D3 0.150 volute throat mean inlet diameter (m)
D4 0.032 exit flange inner diameter (m)
nB 6 no. impeller blades
nV 1 no. diffuser vanes
b3 0.032 diffuser inlet width (m)
ρc 970 coolant density (kg/m3)
Q 0.00155 flow rate (m3/s)
CDF 1 ·10−7 disk friction coefficient (m2s2/kg)
CSF 5 ·10−3 skin friction coefficient (m−1)
CVD 0.5 diffuser loss coefficient
Cin 0.8 diffuser approach coefficient

Motor Geometry

Figure 3.10 provides a side section view of the DC motor. The iron-cored armature, or rotor,
of the DC motor rotates within cylindrical permanent magnets with remanent magnetic flux
density Br. The outer armature diameter is d3, the armature axial length is L, and the gap
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between the armature and magnets is δa. The thickness of the magnets is δh. A shaft of
diameter d1 runs through the armature and is supported by bearings at each end of the motor
housing. The commutator is a mechanical switch that routes electrical current through the
correct armature windings at the appropriate time as the motor rotates. Stationary brushes
sliding on the commutator provide the means for electrical conduction (brushes not shown).
The commutator is mounted on the motor shaft and has outer diameter dc and axial length
`c.

Armature geometry is approximated as shown in Fig. 3.11. Insulated copper windings
with diameter d run through each of the 2p = 8 armature slots, where p is the number of
magnetic pole pairs. Each slot has a depth of (d3−d2)/2 and subtends the angle θs. The
armature teeth separate the windings and each tooth subtends an angle of θt .

d1 δa δh

!c

dc d3

L

Lh

armature
field magnet

commutator

Figure 3.10 Schematic of permanent magnet DC motor

Pump Geometry

Figure 3.12 illustrates the geometry of the centrifugal water pump. The drive shaft of
diameter Ds rotates the impeller, which has nB = 6 blades. Coolant flows in through the inlet
of diameter D1 and is expelled radially outwards due to impeller rotation. As the coolant
flows through the diffuser its velocity is reduced, but it experiences an increase in pressure
according to Bernoulli’s principle. The outer impeller diameter is D2, and the volute inlet
diameter is D3. The inlet impeller blade angle is β1, and the outlet impeller blade angle is
β2. The diffuser inlet blade angle (not shown) is β3. The exit flange diameter is D4. The
impeller blade width is b and the diffuser inlet width is b3.
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Figure 3.11 Section view of DC motor armature
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Figure 3.12 Schematic of centrifugal water pump

3.5.3 Thermal Analysis

The objective of the thermal analysis is to compute the armature winding temperature T

given motor geometry and operating conditions. Motor geometry is simplified to enable
analysis using a thermal resistance model. All heat generation is assumed to originate from
armature windings, evenly distributed throughout the annular cylinder containing armature
windings with outer diameter d3, inner diamater d2, and length L. First it will be shown how
to compute heat generation due to I2R losses. The thermal circuit and equations will then be
presented, followed by a description of the solution process for the thermal analysis.
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Wire Length and Heat Generation

Calculation of heat generation requires knowledge of armature electrical resistance, which
depends on total wire length and wire temperature. The model for wire length assumes wind-
ings are made around each armature tooth, and accounts for wire curvature and extension
beyond armature ends. The slot to tooth volume ratio, na = θs/θt , is assumed to be fixed at
1.5. The total volume occupied by wire passing through the slots Vs can be calculated using
the following formulae:

θs = π/p(1+1/na), θt = θs/na, θp = θs +θt

As = θs(d2
3−d2

2)/8, Vs = npAsL

where θp is the angle between poles, As is the section area of each slot, and np = 0.55133 is
the packing ratio, i.e., the ratio of wire volume occupying slots to total slot volume. The
ratio np was calculated based on close packing geometry. Aw = πd2/4 is the sectional area
of a single wire, and the total length of wire passing through armature slots is `s = Vs/Aw.
The total number of winding turns for all poles is nt = `s/2L. In reality nt is integer valued,
but is assumed to be relaxed to a continuous number here. This provides a reasonable
approximation when nt is large. The average wire length between slots for each winding
turn is ¯̀e = θs(1/na +π/4)(d2+d3)/4, and the total length of wire is:

` = `s +2 ¯̀ent (3.31)

The resistivity of copper varies with temperature, and is approximated using a linear
model:

ρ(T ) = 1.72 ·10−8(1+0.00393(T −293)) (3.32)

The total heat generated by the armature windings due to I2R losses is:

S = 4ρ`I2/πd2 (3.33)

Thermal Resistance Model

The thermal resistance model used in this analysis to calculate wire temperature T is
illustrated in Fig. 3.13. The heat source is the annulus ring of the armature containing the
windings, and the thermal sink is the engine compartment at temperature T∞.

The first path in the circuit passes through R1, R2, and R3, and represents the thermal
path directly from the armature through the air gap, magnets, and housing to the engine
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Figure 3.13 DC motor thermal resistance model

compartment. All other thermal energy flows inward through the inner armature R4, and then
though the shaft to either side of the motor. The path through R5, R6, and R7 corresponds to
the side with the commutator, and the remaining path corresponds to the side without the
commutator.

Before the thermal resistance formulae are detailed, models for material property depen-
dence on temperature are presented. These are used in many of the resistance calculations.
The models for air viscosity, density, and conductivity are:

µair(T ) = µ0(T0 +C)(T/T0)3/2/(T +C) (3.34)

ρair(T ) = 1.01325/287.05T (3.35)

kair(T ) = 1.5207 ·10−11T 3−4.8574 ·10−8T 2 (3.36)

+1.0184 ·10−4T −3.9333 ·10−4

The model for iron conductivity is linear:

k f e(T ) = 110.4676−0.1002T (3.37)

R1: Convection between armature and field magnets
The Reynold’s and Nusselt numbers for the gap between the armature and field magnets

are Re1 = ωd2
3ρair(T )/2µair(T ) and Nu1 = 0.318Re0.571

1 , respectively. The convective
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thermal resistance between the the armature and field magnets is:

R1 = 2/Nu1kair(T ) (3.38)

R2: Conduction through field magnets and housing
The resistance due to the thin motor housing is considered negligible compared to that

of the field magnets, so only one material is considered in this resistance calculation. The
inner diameter of the field magnets is d4 = d3 +2δa, and the outer diameter of the housing
is d5 = d4 +2δh. The temperature of the inner magnet surface is Th1 and the temperature of
the outer housing surface is Th2. The thermal conductivity of the field magnets is calculated
using Eq. (3.37) and the average magnet temperature T̄h = (Th1 + Th2)/2. The thermal
resistance due to conduction through the field magnets and housing is:

R2 = ln(d5/d4)/(2πLk f e(T̄h)) (3.39)

R3: Convection from housing to engine compartment
The total length of the motor housing, accounting for space for bearings and clearance,

is approximated as Lh = L+1.5`c +2d1. The volumetric thermal expansion coefficient in
the calculation of R3 is approximated as βt3 = 1/Th2. The kinematic viscosity of air in this
region is νair3 = µair(Th2)/ρair(Th2). The air heat capacity is Cp = 1.009, and the thermal
diffusivity here is α3 = kair(Th2)/Cpρair(Th2). The Prandtl number here is Pr3 = νair3/α3,
and the Rayleigh and Nusselt numbers are:

Ra3 = gβt3(Th2−T∞)L3
h/α3νair3

Nu3 =

(
0.6+

0.387Ra1/6
3(

(1+(0.559/Pr3)9/16
)8/27

)2

The thermal resistance due to free convection from the motor housing to the engine
compartment is:

R3 = 2/(kair(Th2)Nu3Lh) (3.40)

R4: Conduction through armature core
The conductivity of the core is based on the average between the winding and shaft

temperatures: Tc = (T + Ts)/2. It is assumed that the shaft within the core is at a con-
stant temperature Ts throughout its volume and has no thermal resistance. The thermal
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conductivity resistance through the armature core is:

R4 = ln(d2/d1)/2πLk f e(Tc) (3.41)

R5: Conduction through motor shaft and bearings on commutator side
The section area of the shaft is As = πd2

1/4, and the length of the shaft extending beyond
the armature is Ls = 1.5`c + d1. The thermal resistance through the support bearing is
assumed to be a constant 1.5 K/W. The thermal resistance through this section of shaft is:

R5 = Ls/Ask f e(Ts)+1.5 (3.42)

R6 and R9: Conduction through motor end bells
The motor end bells are the disk-shaped portions of the housing at each end of the motor.

It is assumed that the conductive resistance though both end bells is negligible. Therefore,
R6 = R9 = 0.

R7: Convection between end bell and engine compartment on commutator side
The volumetric thermal expansion coefficient in the calculation of R7 is approximated

as βt7 = 1/Tb1, where Tb1 is the temperature of the commutator side end bell. The
kinematic viscosity is νair7 = µair(Tb1)/ρair(Tb1), and the thermal diffusivity is α7 =
kair(Tb1)/Cpρair(Tb1). The Prandtl number is Pr7 = νair7/α7, and the Rayleigh and Nusselt
numbers are:

Ra7 = gβt7(Tb1−T∞)d3
3/νair7α7

Nu7 =

(
0.825+

(0.387Ra1/6
7 )(

1+(0.492/Pr7)9/16
)8/27

)2

The thermal resistance due to free convection from the commutator side end bell to the
engine compartment is:

R7 = 8/πNu7d4kair(Tb1) (3.43)

R8: Conduction through motor shaft and bearings on non-commutator side
The thermal resistance through the section of motor shaft extending beyond the armature

on the non-commutator side is:

R8 = 4/πd1k f e(Ts)+1.5 (3.44)

R10: Convection between end bell and engine compartment on non-commutator side
The volumetric thermal expansion coefficient in the calculation of R10 is approximated
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as βt10 = 1/Tb2, where Tb2 is the temperature of the non-commutator side end bell. The
kinematic viscosity is νair10 = µair(Tb2)/ρair(Tb2), and the thermal diffusivity is α10 =
kair(Tb2)/Cpρair(Tb2). The Prandtl number is Pr10 = νair10/α10, and the Rayleigh and
Nusselt numbers are:

Ra10 = gβt10(Tb2−T∞)d3
3/νair10α10

Nu10 =

(
0.825+

0.387Ra1/6
10(

1+(0.492/Pr10)9/16
)8/27

)2

The thermal resistance due to free convection from the non-commutator side end bell to
the engine compartment is:

R10 = 8/πNu10d4kair(Tb2) (3.45)

Temperature equations
The total thermal resistance R and several intermediate resistance quantities are required

for solution of the system temperatures:

R1,2,3 = R1 +R2 +R3

R5,6,7 = R5 +R6 +R7

R8,9,10 = R8 +R9 +R10

R5−10 = 1/(1/R5,6,7 +1/R8,9,10)

R4−10 = R4 +R5−10

R = 1/(1/R1,2,3 +1/R4−10)

With these resistances defined we can now present the coupled system of equations
based on the circuit in Fig. 3.13 that model the steady state thermal behavior of the DC
motor:
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T = T∞ +RS (3.46a)

4T = T −T∞ (3.46b)

qp1 = 4T/R1,2,3 (3.46c)

qp2 = 4T/R4−10 (3.46d)

Th1 = T −qp1R1 (3.46e)

Th2 = Th1−qp1R2 (3.46f)

Ts = T −qp2R4 (3.46g)

qp3 = (Ts−T∞)/R5,6,7 (3.46h)

qp4 = (Ts−T∞)/R8,9,10 (3.46i)

Tb1 = Ts−qp3(R5 +R6) (3.46j)

Tb2 = Ts−qp4(R8 +R9) (3.46k)

where 4T is the temperature drop between the armature windings and the engine com-
partment, and qp1,qp2,qp3, and qp4 are heat flows through circuit paths formed by R1,2,3,
R4−10, R5,6,7, and R8,9,10, respectively. Since many thermal resistance values depend on
temperature values the system of equations is coupled, and must be solved using an iterative
technique. A least squares approach has been found to be more successful at solving this
system than nonlinear Gauss-Seidel or Newton’s method.

3.5.4 Motor Current Analysis

The motor current model predicts the current through the motor armature I given the
armature temperature T , required motor shaft torque τ , and motor geometry. The magnetic
field depends on temperature and is approximated using the formula:

B = Br (1−0.0017(T −293))

where Br is the remanent magnetic flux density (assumed constant). The magnetic flux is
φ = π(d2 +d3)LB/2, and the total number of conductors in the magnetic field is Z = 2nt .
The calculation for the number of winding turns nt was given in Section 3.5.3. The motor
current is:

I = τπ/φ pZ (3.47)
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3.5.5 Motor Speed Analysis

The objective of this analysis is to compute the motor speed ω given the motor current I and
armature temperature T . The model accounts for both the electrical resistance through the
armature windings and the voltage drop across the commutator. The resistance through the
windings is Ra = 4ρ`/πd2. Recall that Eq. (3.33) is used to model the dependence of copper
resistivity on temperature. The length ` is computed according to the formulae in Section
3.5.3. The back emf, i.e., voltage generated due to motor rotation that opposes source
voltage, is E = RaI. The voltage drop across the commutator consists of two compoents:

4Vc =4Vc1 +4Vc2

A model for each component was developed based on empirical data from [78]:

4Vc1 = 0.8692−0.6458 · e−0.8207ρI

4Vc2 = 1.0037−0.5912 · e−1.32ρI

where ρI = I/Ab is the current density at the commutator/brush interface, and Ab = πdc`c/2
is the brush contact area. It is assumed here that the commutator diameter is proportional to
armature diameter: dc = d3/2. The motor speed is:

ω = 2π(V −4Vc− IRa)/φZp (3.48)

3.5.6 Torque and Pressure Analysis

The analysis presented in this section computes the torque τ required to drive the pump at
the specified motor speed ω and pump flow rate Q. The analysis also computed the pressure
differential P across the pump inlet and outlet. The equations here are based on the model
presented in [144], and much of the notation has been retained. Some modifications have
been made to smooth analysis responses so that optimization can be performed more easily.
Note that many of the terms used in the following equations have been defined in Tables 3.4
and 3.5.

The impeller blade tip speed at the outlet is u2 = ωD2/2, and the radial fluid velocity
relative to the impeller is Wm2 = Q/πD2b. The fluid velocity leaving the impeller in the
direction of the blade is W2 = Wm2/cos(β2). The Wiesner slip coefficient is:

σ = 1−
√

sin(π/2−β2)
n0.7

B
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The tangential velocity of the fluid leaving the impeller relative to a fixed coordinate
system is Ct2 = u2σ −Wm2 tan(β2), and the pump theoretical head is:

Hth = u2Ct2/g

where g is the acceleration of gravity. The disk friction loss is

DFH =
CDFρcω3(D2/2)5

Q

The fluid velocity at the inlet in the radial direction with respect to a fixed coordinate
system is C1 = 4Q/(D2

1−D2
s )π . It is possible to configure a pump such that the drive

shaft does not impede flow at the inlet. This is assumed to be the case, and therefore
Ds = 0. The impeller blade tip speed at the inlet is u1 = ωD1/2, and the velocity of the fluid
entering the impeller in the direction of the blade is W1 =

√
C2

1 +u2
1. The inlet flow angle is

βF1 = tan−1(u1/C1). Several intermediate values must be determined to calculate the skin
friction head loss:

βs1 = 2βF1−β1

T1 =

√
cos2(βF1)− cos(β1)cos(βs1)

cos(βs1)

T2 =

{
T1 if Rt1 ≥ 0
−T1 if Rt1 < 0

Rt1 = cos(βF1)/cos(βs1)

xL1 = Rt1−T2

DQIN12 =
W 2

1
2gx2

L1

(
1− xL1 cos(βF1)

cos(β1)

)2

DH12 =
bD2π cos(β2)

nB(b+πD2 cos(β2)/nB)

The skin friction head loss is:

DQSF12 =
CSF(D2−D1)(W2 +W1)2

8gcos(β2)DH12

The impeller diffusion loss as presented in [144] is computed differently depending on
the ratio W1/W2. This introduces a discontinuity that can hinder optimization efforts. After
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adding an exponential transition function this loss term is:

DQdif =
W 2

1

8g(1+ e4(1.4−W1/W2))

The fluid velocity approaching the pump volute is:

C3 =

√(
Ct2d2

d3

)2

+
(

Q
πd3b3

)2

The curved diffuser leading to the pump outlet as shown in Fig. 3.12 is the pump volute.
The volute throat velocity is:

CQ3 =
Q

πd3b3 cos(β3)

The volute head loss is:

DQIN23 =

{
D23 if D23 ≥ 0
0 if D23 < 0

where D23 = Cin(C2
3−C2

Q3)/2g. The diffuser skin friction loss is:

DQSF34 = CSF
(d3−d1)(CQ3 +C1)2

8gcos(β3)
b3d3π cos(β3)

b3nV +d3π cos(β3)

The diffuser expansion loss term in [144] is calculated differently depending on the
value of CQ3/C1. Another transition curve is defined here to eliminate the discontinuity:

ϕQVD =
1

1+ e4(1.4−CQ3/C1)

The diffuser expansion loss is:

DQVD =

{
D24 if D24 ≥ 0
0 if D24 < 0

where:

D24 =
(CVD +ϕQVD/4)C2

Q3−C2
1φQVD/2

2g

The actual head developed by the pump is:
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Hac = Hth−DQIN12−DQSF12

−DQIN23−DQdif−DQSF34−DQVD

The pressure differential and the shaft torque can now be computed:

P = Hacρcg (3.49)

τ =
ρgQ

ω
(Hth +DFH) (3.50)

3.5.7 Optimization Results

The solution to Problem (3.30) obtained using the mesh adaptive direct search algorithm and
the IDF formulation is presented in Table 3.6. The minimal power consumption is 140 W, a
substantial improvement over traditional water pumps of similar capacity, which consume
nearly 300 W continuously [77]. Numerous starting points and algorithm parameters were
tested, and the solution presented is the best that has been obtained. It is unknown whether
this is the global solution. The stochastic nature of the optimization algorithm makes exact
replication difficult, but similar results have been obtained from multiple starting points.
Gradient-based algorithms have failed to find a feasible solution thus far.

Table 3.6 Optimization results for the electric water pump design problem

Optimal pump design
x1 = d 8.4 (mm)
x2 = d2 76.6 (mm)
x3 = d3 146 (mm)
x4 = L 145 (mm)
x5 = `c 55.4 (mm)
x6 = D2 58.8 (mm)
x7 = b 28.5 (mm)
x8 = β1 0.793 (rad)
x9 = β2 1.22 (rad)
x10 = β3 0.913 (rad)
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3.6 Concluding Comments

This chapter introduced several original system design examples, ranging from air flow
sensor design to the design of a commercial aircraft fleet. Each example, with the exception
of the aircraft family problem, was presented with enough detail for replication. Not only
does this enable verification of results, but provides a small library of system design examples
for use in other investigations. These examples are used throughout this dissertation to
illustrate important concepts and to demonstrate partitioning and coordination techniques.
The air flow sensor design problem and the turbine blade design problem are used in
Section 4.2.3 to illustrate the influence of coupling strength on solution difficulty for two
different single-level formulations. These two examples are useful for this for this study
since their coupling strength can be varied easily. The ATC formulation is demonstrated
using the aircraft family problem in Section 4.3.3, and a parametric study on ATC algorithm
parameters using this example is presented. The air flow sensor problem is also used to help
explain the ALC formulation in Section 4.3.5. The electric water pump design problem
is used for comparing partitioning and coordination decision techniques in Chapters 5
and 6. An evolutionary algorithm for making partitioning and coordination decisions for
larger systems is presented in Chapter 6, and illustrated using an eight-bar version of the
generalized truss design problem.

An electric vehicle design problem was developed to illustrate the applicability of
optimal partitioning and coordination decision techniques to a larger and more involved
system design problem. Detailed description of this example problem is reserved until
Chapter 8.

The following chapter introduces several important single and multi-level formulations
for system design optimization. This dissertation emphasizes a class of multi-level formula-
tions suitable for quasiseparable problems that have established convergence proofs, such
as ATC and ALC. The review of single-level formulations helps establish concepts that are
important to multi-level formulations.
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Chapter 4

System Design Optimization Formulations

Solution of a system design problem using decomposition-based design optimization re-
quires the formulation of one or more optimization problems. The numerous formulations
that have been proposed can be classified according to several different criteria. One im-
portant distinction is whether a formulation is single-level or multi-level. Single-level
formulations comprise a single optimization problem. Analysis functions may be distributed
and temporarily decoupled, but a single optimization algorithm guides the entire system
optimization process. Multi-level methods utilize distributed optimization—a separate
optimization problem is defined for each subproblem.

This chapter reviews several important single and multi-level formulations. The single-
level review provides important background for understanding multi-level formulations. The
partitioning and decision model employed in subsequent chapters assume that a particular
class of multi-level formulations is used. The formulation used in decomposition-based
design optimization is a defining feature of an implementation. The type of formulation
employed dictates what types of partitions, linking structures, and coordination algorithms
may be used. Some formulations are better suited for problems with certain structures.
Convergence proofs exist for a handful of formulations.

4.1 Single-Level Formulations

Cramer et al. presented three single level formulations and provided guidance and predictions
regarding application and performance of these formulations [35]. In these single-level
formulations, all decision making is centralized and performed by a single optimization
algorithm. This implicitly guarantees shared design variable consistency. Coupling variable
consistency can be enforced using either a system analysis algorithm, or auxiliary equality
constraints. Single-level formulations can be effective at dealing with systems possessing
strong interactions, but are not well suited for problems of large dimension, where multilevel
formulations may be preferred [5, 7]. Balling and Sobieski provided a review of single-
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level formulations [15], and Balling and Wilkinson implemented these formulations in
the solution of analytical test problems [16]. Hulme and Bloebaum [74] compared the
implementation of single-level formulations using many test problems of varying size and
coupling strength, with emphasis on solution differences that appear to be due to numerical
limitations relating to increased problem dimension. This section reviews the three primary
single-level formulations and presents some insights into their application.

4.1.1 Multidisciplinary Feasible Formulation

The most basic formulation is the MDF approach, also known as ‘Nested Analysis And
Design’ (NAND) or ‘All-in-One’ (AIO). A single system-level optimizer is used, and a
separate algorithm performs the system analysis task of finding consistent values for all
coupling variables. The optimizer supplies the system analyzer with a design x, and the
system analyzer returns the function values f , g, and h. The MDF problem formulation is
given in Eq. (2.3) and repeated here:

min
x

f (x,yp(x)) (4.1)

subject to g(x,yp(x))≤ 0

h(x,yp(x)) = 0,

The vector of consistent coupling variables yp(x) is computed at every step of the
optimization process using a system analysis algorithm. Figure 4.1 illustrates this process.

System Optimizer

System Analysis

x f,g,h

Figure 4.1 MDF architecture

The fixed point iteration (FPI) algorithm is a popular system analysis method for MDF.
Section 4.2 will elucidate some challenges in using FPI in conjunction with system opti-
mization. Other system analysis methods exist, but also exhibit their own difficulties, and
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will not be discussed in this chapter. A design optimization strategy is classified as MDF if
a complete system analysis is performed for every optimization iteration. The analysis is
“nested” within the design. The optimizer is responsible to find the optimal design x∗ (the
design solution), while the system analyzer is responsible to find yp(x) (the system analysis
solution).

This approach may be desirable if the subsystems are weakly coupled (fast system
analysis convergence), and if the subsystem analyses are not computationally expensive. In
addition, MDF eases the incorporation of legacy analysis tools. If a design organization
already performs a complete analysis before making a design decision, MDF is a natural fit.

Although the merits of MDF are notable, its shortcomings must be clearly understood.
MDF is dependent upon the effectiveness of the system analyzer. If the analyzer does
not converge at any point in the process, the optimizer may fail. The nested analysis and
optimization process required by MDF can be computationally inefficient, and this motivates
approaches that eliminate the need for repeated system analysis [128]. In addition, typical
MDF implementations cannot exploit the potential coarse-grained parallelism of distinct
subsystem analyses. MDF has been aptly termed a ‘brute force’ approach [25].

4.1.2 Individual Disciplinary Feasible Formulation

In the IDF formulation, an analyzer for each subsystem is employed and a single system-level
optimizer is used, but the optimizer, rather than a system analysis algorithm, coordinates
the interactions between the subsystem analyses. The IDF architecture is illustrated in Fig.
4.2 using a two-element example system. The first analysis function computes the design
constraints g1 and h1, as well as the coupling variable y21. The second analysis function
computes the objective function in addition to a coupling variable and a set of design
constraints. The optimizer chooses values for both design and coupling variables: system
analysis and design are performed simultaneously. Since the system optimizer provides all
inputs required for all subsystems concurrently, subsystem analyses may be executed in
parallel.

The IDF formulation is given in Eq. (4.2). It differs from the MDF formulation in that
the decision variable vector includes both design variables x and coupling variables y, while
auxiliary constraints haux are added to ensure system consistency. This approach eliminates
the need to solve for yp(x) at each optimization iteration. In cases where solving the system
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System Optimizer

x!1,xs1,y12 x!2,xs2,y21

a1 a2

g1,h1,y21 f,g2,h2,y12

Figure 4.2 IDF architecture

analysis equations is difficult, IDF can offer great benefit.

min
x=[x`,xs],y

f (x,y) (4.2)

subject to g(x,y)≤ 0

h(x,y) = 0

haux(x,y) = y−a(x,y)S = 0

IDF facilitates coarse-grained parallelism, improves convergence properties, and drives
the design toward better solutions if multiple analysis solutions exist. If the solution process
is interrupted, the intermediate design may not be consistent or feasible. In contrast, an
interrupted MDF solution will yield a consistent, but potentially infeasible, design. Since
IDF does not require the frequently expensive task of achieving system consistency when
far from the solution, the optimization algorithm can trace a more efficient path toward the
solution and computational expense is reduced through the elimination of repeated system
analysis steps [3].

IDF is more centralized than MDF, and the dimension of the optimization problem is
increased since coupling variables are made decision variables. This increase in dimension
can reduce numerical solution accuracy when the problem size is large, as evident in
the results presented by Hulme and Bloebaum [74]. MDF may be preferable when the
dimension of y is much larger than the dimension of x [3, 66]. Furthermore, auxiliary
equality constraints can introduce numerical solution difficulties [3, 138].

Balling and Sobieski proposed a hybrid approach to handling coupling variable consis-
tency [15]. In MDF the task of satisfying coupling variable consistency is nested within the
optimization problem. In IDF it is part of the optimization problem. A hybrid approach
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satisfies some consistency constraints using the optimization algorithm, and the rest using
an approach nested within the algorithm. If all feedback coupling relationships are handled
using auxiliary equality constraints, then the remaining feedforward relationships can be sat-
isfied by simply executing the analysis functions in sequence and utilizing the most recently
computed coupling variable values. An implementation of this idea was demonstrated in
Section 1.4.

Section 4.2.2 will show that using the IDF formulation can help to find superior solutions
that are hidden to MDF implementations, and Section 4.2.3 demonstrates that IDF results in
improved computational efficiency for strongly coupled problems (as predicted in [35]). If a
high level of centralization is acceptable, IDF may be an ideal design strategy.

4.1.3 All-at-Once Formulation

The All-at-Once (AAO) formulation confers additional tasks to the optimization algorithm
beyond those for the IDF formulation. In IDF the optimization algorithm solves the system
analysis equations, but relies on analysis algorithms within each analysis function to solve the
associated governing equations. For example, an analysis function that evaluates structural
integrity of a component may use the finite element method [93] to solve the governing
elasticity equations and compute the analysis function outputs. The AAO formulation
uses the optimization algorithm instead to solve these governing equations, eliminating
the need for the analysis algorithm within each analysis function. The vector of state
variables (s) is added to the decision variable set, and the governing equations are cast as an
additional set of auxiliary equality constraints. State variables quantify the state of a system;
examples include velocity fields in computational fluid dynamics, strain fields in structural
finite element analysis, and component velocities or accelerations in multibody dynamics.
Governing equations are satisfied when the associated residuals are zero. The AAO process
is illustrated in Fig. 4.3 using a simple example system.

The formulation of the AAO approach is given in Eq. (4.3). Auxiliary equality con-
straints ensure zero residuals at problem convergence, and the decision variables include x
and s. The evaluation function e(x,s) computes the residuals as well as design constraint
and objective values. The selection matrix Sw extracts the evaluation function outputs that
are the evaluation function residuals w.
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g1,h1,w1 f,g2,h2,w2

Figure 4.3 AAO architecture

min
x,y,s

f (x,s)

subject to g(x,s)≤ 0 (4.3)

h(x,s) = 0.

e(x,s)Sw = 0.

AAO centralizes both design and analysis, but still distributes evaluation of governing
equations. This can lead to significant efficiency gains in some cases, but also results in
high-dimension optimization problems. AAO can be difficult to implement, and tends
to be utilized for very specialized applications where a benefit can be realized. AAO
implementations do not fall under the rubric of simulation-based design exactly, which is
the emphasis here. Nevertheless, a discussion of AAO is included for completeness, and the
truss design example of Section 3.4 uses the AAO formulation.

4.2 System Analysis for Single-level Formulations

When MDF is employed, the system analysis equations of Eq. (2.2) may be solved with
iterative methods such as Newton-Raphson or FPI [28]. FPI is regularly employed as the
analysis tool for the MDF formulation. Due to its intuitive implementation, MDF is the
most frequently utilized MDO strategy [25]. However, it should not be applied without
recognition of its shortcomings. As an alternative to nesting FPI within an optimization
algorithm, solution of some or all system analysis equations may be performed by the
optimization algorithm, as is the case with IDF or AAO, which can alleviate difficulties
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encountered with MDF implementations. This section reviews the nature of FPI, explores
some issues with its use in MDF, and presents convergence conditions for FPI to aid intuition.
These convergence conditions are foundational to understanding coupling strength, and
important factor in P/C decisions. Haftka et al. [66] presented two definitions for coupling
strength—the first accounting for the magnitude of inter–analysis derivatives, and the second
for the relationship between these derivatives. This section, along with subsequent design
examples, strengthens the position of the second definition. The concepts presented in
this section help qualify assumptions used in later chapters concerning choice of problem
formulation.

4.2.1 Fixed Point Iteration

A two–element coupled system is depicted in Fig. 4.4, which possesses feedback coupling,
since a2 depends on the output of a1 and vice versa. Since x is fixed during system analysis,
it is omitted from the current discussion.

a1(y12) a2(y21)

y21

y12

Figure 4.4 Two element coupled system

To employ FPI for system analysis, an initial guess is made for the input to the subsystem
that is executed first, and the analyses are iteratively performed with updated coupling
variable values until consistency is acheived, i.e., coupling variables match analysis outputs,
satisfying Eq. (2.2). If the system meets certain criteria, this process will converge to a fixed
point. The FPI algorithm for the two-dimensional example problem is [28]:

(Step 0) choose initial guess y0
12, set k = 0

(Step 1) k = k +1

(Step 2) yk
21 = a1(yk−1

12 )

(Step 3) yk
12 = a2(yk

21)

(Step 4) if ‖yk−yk−1‖< ε , then stop, otherwise go to (Step 1).

When the stopping criterion in Step 4 is met, the system is epsilon-consistent, approxi-
mately satisfying Eq. (2.2). The norm in Step 4 is typically the Euclidian or infinity norm.
Figure 4.5 illustrates the analysis space of a sample two-element system, which possesses
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two fixed points at the intersections of the analysis functions. Following the algorithm above,
FPI will converge to the fixed point ypA if y0

12 is near this point, but never to ypB for any y0
12.

y12

y21

ypA

a12(y21)

a21(y12)

ypB

a1(y12)

a2(y21)

Figure 4.5 System with multiple fixed points

Studying this result, it can be seen graphically that if the line traced by a12 is steeper
than the line traced by a21 in the neighborhood of a fixed point, then FPI will converge
to that fixed point. This observation agrees with the well-known necessary and sufficient
conditions for FPI convergence [71]:(

∂a21(y12)
∂y12

)−1

<
∂a12(y21)

∂y21
(4.4)

The derivatives in Eq. (4.4), in normalized form, are used by Rogers and Bloebaum
[114] to quantify coupling strength between subsystems. Intuitively, higher sensitivity
between subsystems will require more iterations during analysis. When the specific solution
algorithm is FPI, however, computational effort depends instead on the relationship between
these sensitivities. For example, if the relation in Eq. (4.4) is satisfied but is near equality,
convergence will require numerous iterations, and will cycle without convergence if the
inequality becomes equality. If we define coupling strength as the effort required to bring
a coupled system into a consistent state, rather than just the influence that the subsystems
have on each other, then coupling strength is more aptly quantified through a comparison of
derivative values than through absolute derivative magnitudes.
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4.2.2 Example: Hidden Optima

Consider the IDF formulation of the two-element system optimization problem given in Eq.
(4.5).

min
x,y

f (x,y) = y2
12−100y21 +0.1xxT (4.5)

subject to haux(x,y) = y−a(x,y) = 0

where a21(y12,x1) = φ1(x1)(y12−α1)2

a12(y21,x2) = φ2(x2)y21 +α2

φ1(x1) =
0.25

1+ ex1
+0.5

φ2(x2) =−
(

1
1+ ex2

+0.5
)

α1 = 3, α2 = 3.5

For any x ∈ R2, two fixed points exist, similar to the system in Fig. 4.5. FPI is
capable of finding only a point with small y21 and large y12, which is a local optimum. The
second fixed point has the reverse properties, and leads to the global optimum. Even when
started at the global optimum, the MDF implementation moves toward the inferior local
optimum f (x∗MDF) =−0.244 at x∗MDF = [−1.902, 2.273]. The IDF implementation finds
the global optimum f (x∗IDF) =−975.692 at x∗IDF = [5.824, 7.754]. It can be shown using
Eq. (4.4) that MDF implemented using FPI is incapable of finding the global optimum.
Physically meaningful models can also exhibit such behavior. Note that the MDF and
IDF implementations solve identical design problems; the different solutions follow from
limitations of FPI. The MDF formulation is indirectly limited by its dependence on available
system analysis tools.

Although the optimization space for IDF is more complex, the problem design space can
be explored more effectively. When the f (x) response surface (as computed with FPI) is
visualized graphically, only a single optimum is seen at x∗MDF . Since the IDF optimization
space is in R4, the objective function cannot be visualized easily. One approach is to plot
the objective function along the line that connects the MDF and IDF solutions, i.e., plot
f (λ ) = f (λ [x∗IDF ,y∗IDF ]+ (1−λ )[x∗MDF ,yp(x∗MDF)]), where y∗IDF is the coupling variable
vector at the IDF solution, and yp(x∗MDF) is the coupling variable fixed point computed by
FPI at x∗MDF . The auxiliary constraints can be included in the visualization by adding a
penalty for constraint violation to the objective function: f ′(λ ) = f (λ )+500‖haux(λ )‖2

2,
where haux(λ ) = haux(λ [x∗IDF ,y∗IDF ]+(1−λ )[x∗MDF ,yp(x∗MDF)]). Figure 4.6 illustrates how
using IDF can reveal optima that are hidden to MDF. For the points represented in this
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plot, the auxiliary constraint violation is zero only at the MDF and IDF solutions. It is
hypothesized that other methods that employ simultaneous analysis and design, such as
analytical target cascading [79], share this desirable behavior with IDF.
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penalized objective
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Figure 4.6 IDF optimization space visualization

Thus, although FPI implementation is straightforward, it presents several difficulties: FPI
may not converge to an analysis solution; if multiple solutions exist, FPI may not find them
all; the sequential nature of FPI prevents the parallel execution of analyses. When FPI is used
as the system analysis tool for MDF, all of these same issues arise. The optimization problem
may not converge, and when it converges the globally optimal solution may not be found. In
addition, the resulting nested optimization and analysis process can be inefficient. These
algorithmic considerations are critical factors in making problem formulation decisions.

This section explored issues associated with FPI, established the ability of IDF to
find ‘hidden’ optima, and laid a foundation for the understanding of coupling strength. A
demonstration of how coupling strength influences the computational performance of MDF
and IDF implementations follows. These results combine to justify the use of IDF-type
formulations in later chapters.

4.2.3 Coupling Strength in Single-Level Formulations

Two examples were detailed in Chapter 3 that allow modification of coupling strength. With
these examples we can test how both the MDF and IDF formulations respond to changes in
coupling strength. MDF is shown to be sensitive to changes in coupling strength, while IDF
is not. This property makes IDF the preferred subproblem formulation type for P/C decision
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models presented in later chapters.

Air-flow Sensor Design Problem

The first variable coupling-strength example is the vane air-flow sensor design problem
from Section 3.1. It consists of coupled structural and aerodynamic analyses. The coupling
variables are the stator deflection (θ̃ ) and the drag force (F̃). The analysis structure is
illustrated in Fig. 4.7.

SS1: Structural Analysis SS2: Aerodynamic Analysisy21 = θ̃

y12 = F̃

x1 = ! x2 = [!, w]

θ(", F̃ ) F (!, w, θ̃)

Figure 4.7 Coupling relationship in airflow sensor analysis

The objective in this design problem is to adjust the stator geometry such that the stator
deflection is as close as possible to a target deflection (θ̂ ) for a given airspeed. MDF
formulation is:

min
`,w

(θ − θ̂)2

subject to F̃−Fmax ≤ 0 (4.6)
`w−A = 0

Consistent values for F and θ are obtained using FPI. The exact solution can be obtained
using monotonicity analysis (MA). The MDF solution matches the MA solution described
in Eq. (3.5). The IDF solution requires the addition of θ̃ and F̃ to the decision variable set,
as well as auxiliary constraints on these values, as shown in Eq. (4.7). The IDF solution
also matches the MA solution.

min
`,w,θ̃ ,F̃

(θ̃ − θ̂)2 (4.7)

subject to F̃−Fmax ≤ 0
`w−A = 0
θ̃ −θ(`, F̃) = 0
F̃−F(`,w, θ̃) = 0
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If the spring constant k in Eq. (3.2) is large, the plate deflection will be small, resulting
in only minor changes to the frontal area and drag force. Quantitatively, increasing k will
reduce ∂F(`,w, θ̃)/∂ θ̃ , but not affect ∂θ(`, F̃)/∂ F̃ , resulting in reduced coupling strength
between analyses. Conversely, small k results in high coupling strength; as verified experi-
mentally, the number of iterations required for FPI convergence increases with decreasing
k. Consequently, the computational expense of the MDF implementation is expected to
increase with decreasing k. IDF eliminates the need to converge to consistent analysis results
at points far from the optimal solution, but incurs its own computational overhead due to
increased problem dimension. The value of k was varied from 0.01 to 0.20 N/rad, and the
MDF and IDF computation times (on a 3.4 GHz Pentium 4 PC) were recorded. The result,
displayed in Fig. 4.8, reveals that MDF does incur more computational expense with small
values of k, as expected, while IDF is only slightly sensitive to changes in coupling strength.
The MDF and IDF solutions agreed within 0.01% over the specified stiffness range.
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Figure 4.8 Comparison of MDF and IDF solution time as a function of coupling strength

Figure 4.9 compares the number of function evaluations required for the MDF and IDF
implementations. A function evaluation is defined as the calculation of both structural
and aerodynamic outputs, including calculations required for finite differencing. Since the
analysis expense for this example is low, the additional computational overhead required
for the IDF implementation is a significant factor in solution time. With respect to function
evaluations, IDF solution expense truly is insensitive to coupling strength. It is also clear
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from this plot that the noise displayed in Fig. 4.8 is purely computational. The next design
example requires more analysis time, which is large compared to computational noise,
resulting in a smoother plot of solution time.
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Figure 4.9 Comparison of MDF and IDF function evaluations as a function of coupling strength

At stiffness values much larger than the range displayed in Fig. 4.9, the design problem
becomes infeasible since the equilibrium plate deflection is low enough that the resulting
large frontal area incurs drag force values that exceed Fmax. It is interesting to note that
in this infeasible domain MDF satisfies the drag force constraint and violates the area
constraint, while IDF exhibits the converse. This phenomenon comes about because MDF
finds consistent values for θ̃ and F̃ at each optimization iteration, while IDF does not. IDF is
free to choose an infeasible F̃ in order to satisfy the area constraint, but MDF does not have
this flexibility. As stiffness is increased and the design problem approaches infeasibility,
the MDF computation time increases as observed in the plot. At stiffness values below
the displayed range MDF fails due to excessive coupling strength. In this design example
MDF time increases with coupling strength due to excessive analysis effort, and increases
with decreasing coupling strength due to excessive optimization effort for narrowly feasible
design problems.

Turbine Blade Design Problem

The second example used to demonstrate the influence of coupling strength on MDF and
IDF is the turbine blade design problem from Section 3.2. The objective is to find blade
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geometry that minimizes heat lost through the blade into the turbine rotor (q), subject to
temperature, geometric compatibility, stress, and mass constraints. The MDF formulation is:

min
w,t

q(w, t, L̃)

subject to T (w, t, L̃,x)−Tmelt ≤ 0
δtotal(T̃ (x))−δallow ≤ 0
σa(L̃,x)−σr(T̃ (x),x)≤ 0 (4.8)
σb(t, L̃,x)−σr(T̃ (x),x)≤ 0
m(w, t)−mmax ≤ 0
and 0≤ x≤ L0 +δtotal(T̃ (x)).

The objective and constraint functions are computed by two coupled analysis: thermal
and structural. The coupling variables are the blade temperature profile (T̃ (x)) and the
elongated blade length (L̃). Figure 4.10 illustrates the analysis structure for the turbine blade
design problem.

SS1: Thermal Analysis SS2: Structural Analysis
m(w, t)

x1 = [w, t] x2 = [w, t]

y21 = T̃ (x)

y12 = L̃

q(w, t, L̃)

T (w, t, L̃, x)

L(T̃ (x))
δtotal(T̃ (x))

σb(t, L̃, x)
σa(L̃, x)

σr(T̃ (x), x)

Figure 4.10 Turbine blade coupling and functional relationships

The IDF formulation is constructed by adding the coupling variables to the set of decision
variables, and including auxiliary equality constraints on the coupling variables to ensure
consistency:
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min
w,t,T̃ (x),L̃

q(w, t, L̃)

subject to T (w, t, L̃,x)−Tmelt ≤ 0
δtotal(T̃ (x))−δallow ≤ 0
σa(L̃,x)−σr(T̃ (x),x)≤ 0
σb(t, L̃,x)−σr(T̃ (x),x)≤ 0 (4.9)
m(w, t)−mmax ≤ 0
T̃ (x)−T (w, t, L̃,x) = 0
L̃−L(T̃ (x)) = 0
and 0≤ x≤ L0 +δtotal(T̃ (x)).

The function-valued coupling variable T̃ (x) was discretized and implemented as a vector-
valued coupling variable, substantially increasing the optimization problem dimension.

The computation time required for both MDF and IDF solutions was recorded over a
range of coupling strength levels, varied by adjusting the modulus of elasticity E(T ). A more
compliant blade results in increased blade elongation and exposed surface area, increasing
the impact that the structural analysis results have on the thermal analysis. The E(T ) curve
from Eq. (3.17) was multiplied by a scaling factor to produce changes in coupling strength.
Figure 4.11 illustrates the dependence of MDF and IDF computation time on this modulus
multiplier, and hence the dependence on coupling strength.

As with the previous example, IDF computation time is insensitive to coupling strength,
while MDF computation time increases with coupling strength. At modulus multiplier
values larger than the range illustrated, very little change in computation time was observed.
In contrast to the previous example, increased stiffness does not induce infeasibility, but does
result in very weak coupling as expected. Since design infeasibility is not a confounding
factor as in the VAF example, MDF time monotonically increases with coupling strength. A
very stiff blade results in effectively independent analyses—only one or two FPI iterations
are required for system analysis. At modulus multiplier values smaller than the range
presented, MDF failed due to strong coupling.

In summary, weakly coupled systems with relatively few design variables can be solved
efficiently with MDF, while strongly coupled systems require excessive iterations for the
inner analysis loops of MDF. The computation time required for the IDF approach is virtually
constant for all levels of coupling strength investigated here. In addition to verifying the
predictions of IDF efficiency [35] for the case of a strongly coupled system, Figs. 4.8
and 4.11 show a very clear relationship between coupling strength and computational
performance.

84



4 5 6 7 8 9 10 11 12 13 14
x 10-3

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8
Computation Time Comparison

E multiplier  

 
 

IDF
MDF

C
om

pu
ta

tio
n 

Ti
m

e 
(s

ec
)

Figure 4.11 Comparison of MDF and IDF solution time as a function of coupling strength

An ideal P/C decision method would account for the strength, or nature, of coupling
relationships. Unfortunately, such a method requires computing derivatives like those given
in Eq. (4.4) over the entire system design and analysis space. Approximations must be made
for a P/C decision method to be practical. The methods described in following chapters are
based on the existence of coupling relationships, rather than nature. Existence is represented
using the reduced adjacency matrix.

4.3 Multi-Level Formulations

The formulations for decomposition-based design optimization presented thus far utilize
a single optimization problem, and are referred to as single-level methods. This section
presents another class of methods that employ multiple optimization problems, termed
multi-level methods. After a system is partitioned, an optimization problem is formulated
for each partition block, forming a set of subproblems. The burden of optimization is
distributed across the system. Another implication of distributed optimization in multi-level
formulations is that shared variable consistency is not automatically satisfied; as with single-
level formulations the coupling variable consistency constraints of Eq. (2.2) must be satisfied,
but so must the shared variable consistency constraints of Eq. (2.1). As described in Chapter

85



1, solving each of these subproblems independently will not produce a design optimal for the
entire system. Interactions between subproblems must be accounted for. These interactions
are quantified using linking variables. A coordination algorithm guides the repeated solution
of subproblems toward a consistent and optimal system design. This section provides
an overview of multilevel methods, and presents two multilevel formulations in detail:
analytical target cascading (ATC) and augmented Lagrangian coordination (ALC).

4.3.1 Classes of Multi-Level Formulations

Important distinctions between multi-level methods relate to how subproblem solutions
are coordinated and how subproblem interactions are managed. A classical approach to
coordinating a partitioned optimization problem is to use a master optimization problem
to provide information to the subproblems in a nested manner. Each subproblem is linked
directly to the master problem, but not directly to other subproblems. Subproblems are all
at the ‘lower level’, and the master problem is at the top. This coordination approach is
sometimes called bi-level nested.

The first formulations for bi-level nested coordination involved linear optimization
problems. For example, the Dantzig-Wolfe decomposition method uses a dual problem
for the master problem and a primal for each subproblem [38]. It is designed to work
with the simplex method for linear programming [37], and accommodates shared design
constraints. Wagner provided an extensive review of bi-level nested formulations [145].
Several other formulations in this category have been developed, including several for
general nonlinear problems. Sobieski and Haftka reviewed several important multi-level
formulations, including collaborative optimization (CO) [25] and concurrent subspace
optimization (CSSO) [126]. In CO the master problem seeks to minimize the system
objective function by varying targets for linking variables, and requires that the subproblem
values match corresponding targets using equality constraints. Theoretical problems with
the original CO formulation have been identified [4], and several modifications have been
proposed [41, 42, 92, 125]. CSSO takes a different approach to managing subproblem
interactions; each subproblem is solved using an approximation for other subproblems that
is constructed using global sensitivity equations (GSEs). CSSO also allows design constraint
violations at intermediate steps. In constrast, CO allows consistency constraint violation at
intermediate steps, but enforce feasibility of design constraints. Bi-level system synthesis
(BLISS) is another bi-level nested formulation that uses sensitivity-based subproblem
approximations when solving subproblems, and allows consistency constraint violation
until system convergence [127]. Haftka and Watson introduced a bi-level formulation that
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allows temporary design constraint violation, and seeks to minimize the maximum design
constraint violation until it reaches zero at convergence [67].

Bi-level formulations have proven useful, and some even have convergence proofs [67],
but do have limitations. The dimension of the master problem may become unmanageable
as the number of subproblems and interactions increases. Bi-level formulations force a
two-level hierarchical problem structure, which may not be ideal for certain problem types.

Another class of formulations addresses these problems by allowing more than two
levels in a problem structure, or even non-hierarchic problem structures. Penalty relaxation
methods are used to allow violation of consistency constraints until system convergence. Two
formulations belong to this class. Kim et al. introduced analytical target cascading (ATC)
as a product development tool for determining consistent subsystem target values [79, 80].
ATC has since been applied as a formulation for decomposition-based design optimization in
simulation based design. ATC requires that subproblems are linked in a purely hierarchical
structure. It has been shown that this structure requirement can be relaxed to accommodate
non-hierarchical links. Tosserams et al. developed a non-hierarchical generalization, called
Augmented Lagrangian Coordination (ALC) [141, 142]. Both ATC and ALC have been
proven to converge under standard nonlinear programming assumptions, such as local
convexity [106, 141]. The ATC and ALC formulations will be presented in detail below.
The partitioning and coordinations decision methods presented in later chapters assume that
the problem formulation belongs to this class.

4.3.2 Analytical Target Cascading

Analytical target cascading was developed based on needs in the automotive industry to
translate top-level product targets into detailed design specifications. It is applicable to
systems that possess hierarchical relationships. An example of the analysis relationships
in a hierarchical system is shown in Fig. 4.12. Each element in the hierarchy computes
its own local analysis responses, and may require as inputs analysis responses (coupling
variables) from lower level elements, in addition to local and shared variables. ATC can
handle systems with any number of levels.

The analysis structure displayed in Fig. 4.12 depicts unidirectional information flow.
Original ATC applications possessed this structure, and initial ATC formulations did not
account for the possibility of feedback coupling. Design variables shared between subprob-
lems with a common parent element are allowed. More recent ATC formulations [7, 140]
allow multidirectional coupling, and coupling between same-level elements.

The objective of the ATC process is to determine design specifications for each element
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ȳ12 ȳ13
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Figure 4.12 Hierarchical system analysis structure

in the hierarchy that account for interaction so that design teams can proceed with detail
design independently. An optimization problem is formulated for each element. The
formulation allows for a local objective and observes local design constraints. ATC allows
the optimization algorithm to choose coupling variable values, and uses penalty functions to
ensure system consistency. The ATC formulation for subproblem Pi is

min
x̄i,ȳi,x̄sCi ,ȳCi

fi(x̄i, ȳi)+φ(ci(x̄i, ȳi, x̄sCi, ȳCi))

subject to gi(x̄i, ȳi)≤ 0 (4.10)

hi(x̄i, ȳi) = 0

If Pi has child elements with shared design variables x̄sCi or coupling variables between
them ȳCi , the optimization problem for Pi sets target values for these quantities to be met by
the child elements. The vector of consistency constraints is ci, which ensures that shared
and coupling variables between child elements are consistent at ATC convergence, and that
values for shared and coupling variables for Pi are consistent with targets set by its parent
at ATC convergence. Calculation of fi, ci, and the design constraints local to Pi (gi and
hi), normally requires execution of the analysis functions belonging to Pi. ATC allows for
the possibility that more than one subproblem has an objective function. If fi is the local
objective function for subproblem Pi, then the equivalent objective function for the entire
system is f (x̄, ȳ) = ∑

N
i=1 fi(x̄i, ȳi).

The consistency constraints in the ATC subproblem formulation are relaxed using an
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inexact penalty function φ(ci). Feasibility problems would occur during the ATC process
if ci = 0 was instead cast as an equality constraint in the subproblem formulation. Several
different penalty relaxation methods have been used in ATC implementations. The first was
a simple quadratic penalty function where each component of the consistency constraint is
multiplied by an importance weight, and then the squared Euclidean norm is taken of the
resulting vector:

φ(ci) = ‖wi ◦ ci‖2
2 (4.11)

Penalty weights were typically chosen subjectively based on experience. Large weights
place high emphasis on consistency, but struggle to achieve system optimality. In addition,
large weights lead to ill conditioning of subproblems and slow convergence. If weights are
set too low the system may never achieve an acceptable level of consistency. Michalek and
Papalambros developed a formal method for selecting quadratic penalty function weights
that is based on derivatives obtained during the ATC solution process [102]. This approach
is particularly useful when top-level product targets are unattainable ‘stretch’ targets.

Michalek’s penalty update method consists of an inner loop and an outer loop. The inner
loop uses the ATC coordination process to minimize both the system objective function
and system inconsistency. The balance between these two objectives is dictated by the
penalty weights, which are fixed during an inner loop solution. An iteration of the outer
loop involves an inner loop execution followed by a weight update calculation. The new
weights are then used in the next inner loop execution. The outer loop process repeats until
an acceptable level of consistency is achieved.

The inner loop process will now be described in more detail. It is helpful to view
subproblems as optimal value functions. Figure 4.13 illustrates ATC subproblem Pi and
its inputs and outputs. The quantities passed from the parent subproblem Pj to Pi are the
targets ti j. These may be targets for shared or coupling variables between Pi and sibling
subproblems, or quantities relating to a coupling relationship directly between Pi and Pj.
The quantities passed from the Pi to Pj are the responses r ji to the targets ti j. Subproblem
Pi can function as a parent as well, sending targets tki to its subproblem Pk, and receiving
the corresponding responses rik. Pi may also have targets-response pairs with other child
subproblems.

The inputs to Pi in the ATC process are ti j and rik. The outputs tki and r ji are functions
of these inputs. Each subproblem thus can be considered an optimal value function. The
collection of all ATC subproblems in a system comprises a set of coupled equations. A
solution to the ATC process satisfies this system of equations, and can be obtained using an
appropriate algorithm. This algorithm is the ATC coordination algorithm. Some form of
fixed point iteration has been the nearly ubiquitous choice for ATC coordination algorithm.
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Figure 4.13 ATC subproblem as an optimal value function

The exception is a second order coordination algorithm proposed by Tosserams [139].
Improvements in the ATC penalty relaxation method have led to a dramatic boost to

convergence rate. Tosserams et al. incorporated the augmented Lagrangian penalty function
into the ATC formulation, along with the method of multipliers weight update strategy [140].
The penalty function includes both a linear and quadratic term:

φ(ci) = vicT
i +‖wi ◦ ci‖2

2 (4.12)

The penalty weights for the linear and quadratic terms are vi and wi, respectively. At
every outer loop iteration the following formulae are used to update the penalty weights:

vk+1 = vk +2wk ◦wk ◦ c̄k (4.13)

wk+1
i =

{
wk

i if |c̄k
i | ≤ γ|c̄k−1

i |
βwk

i if |c̄k
i |> γ|c̄k−1

i |
i = 1,2, . . . ,nc (4.14)

where c is the vector of all nc consistency constraints in the ATC problem formulation, v and
w are the corresponding vectors of linear and quadratic penalty weights, respectively, and
superscripts indicate outer loop iteration number. The constant β controls how quickly the
quadratic weights increase, and typically 1 < β < 3 depending on coordination algorithm
details and problem nature. The threshold γ specifies how much c̄ must improve before each
wi is updated. This approach is known as the method of multipliers [20].

Consistency is achieved if either the quadratic weights approach infinity, or if the
linear weights converge to the consistency constraint Lagrange multipliers. The method of
multipliers ensures the linear weights converge to the Lagrange multipliers, and if β is not set
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too high ill conditioning is avoided. Convergence using a quadratic penalty alone frequently
requires hundreds or thousands of outer loop iterations. The augmented Lagrangian penalty
relaxation method along with the method of multipliers converges much more quickly in
practice, sometimes in ten or fewer outer loop iterations [8]. In addition, the data required
for Eqs. 4.13 and 4.14 are more easily obtained than the derivatives required for Michalek’s
update method.

Several coordination algorithm variants are possible. Rather than solving the inner loop
exactly at every outer loop iteration, we can terminate the inner loop fixed point iteration
solution when the system is consistent within a loose tolerance[140]. This approach is
known as the inexact method of multipliers (INMOM), whereas solving the inner loop to
within a very tight tolerance is called the exact method of multipliers (ENMOM). In another
coordination alternative only a single pass of subproblem solutions is completed for every
outer loop iteration. This option is known as the alternating directions method of multipliers
(ADMOM). A smaller value for β must be employed with ADMOM; otherwise quadratic
weights will increase too quickly. ADMOM has exhibited the greatest efficiency of any
approach, but does not fit within the assumptions required for the ATC convergence proof.
In practice ADMOM works well for most problems.

A modification of the ADMOM approach exploits the hierarchical structure of ATC.
Subproblems in each level are linked only to subproblems in adjacent levels. Subproblems in
odd levels do not depend directly on outputs from other subproblems in odd levels. Therefore,
all odd-level subproblems may be solved in parallel without having to use subproblem
responses from a previous iteration. The subproblems in even levels may then be executed
simultaneously. We alternate between solving all odd level subproblems in parallel and
all even level subproblems in parallel. This odd-even coordination approach facilitates an
easily implemented parallel ATC solution process. Another possibility for a coordinating
subproblems solved in parallel is Jacobi iteration [28]. Jacobi iteration is similar to fixed-
point iteration, but when evaluating each subproblem we only use subproblem responses
from the previous iteration. This way all subproblems may be solved in parallel. The
advantage of parallelism must be weighed against the slower convergence of Jacobi iteration
[21].

4.3.3 Example: Aircraft Family Design

The aircraft family design problem, introduced in Section 3.3, is used here to illustrate
implementation of ATC. The objective of the aircraft family problem is to determine the
design of two distinct aircraft used in a commercial airline fleet. Aircraft A is intended for
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moderate range missions with up to 296 passengers. Aircraft B is intended for long range
missions with up to 259 passengers. The main wing design is common between the aircraft,
but all other components can be designed uniquely. The objective is to minimize a weighted
average of pA and pB, the ticket prices for each aircraft, subject to performance constraints.

The problem is formulated as a bi-level ATC formulation with three subproblems. The
top level problem P1 seeks to attain agreement between the lower-level subproblems with
respect to shared variables, while minimizing the system objective function f . The two
lower-level problems, P2 and P3, seek to match targets set by P1, while meeting local design
performance constraints. P2 corresponds to the design of aircraft A, and P3 corresponds to
the design of aircraft B. This system has no feedback, simplifying the ATC formulation.
Many other options for partitioning and formulation this problem exist, but are not addressed
here. In this partition each subproblem contains only one analysis function, so the sets of
external linking variables are equivalent to linking variables, and this is reflected in the
notation. For clarity in the ATC formulations, a superscript in parentheses indicates the
subproblem in which a value is computed. Problem P1 is formulated as:

min
x(1)

s , p(1)
A , p(1)

B

f
(

p(1)
A , p(1)

B

)
+φ(c1) (4.15)

where: c1 =
[
x(1)

s x(1)
s p(1)

A p(1)
B

]
−
[
x(2)

s x(3)
s p(2)

A p(3)
B

]
The deviation vector c1 quantifies the difference between the targets set by P1 and the

achievable responses of P2 and P3. The responses are fixed parameters with respect to P1.
Note that f is a function only of target cost metrics, since these are independent decision
variables in P1. The penalty function φ(c1) helps guide the ATC process toward consistency.
The linear and quadratic penalty weights, v1 and w1, are updated using the method of
multipliers.

In this case the only analysis associated with P1 is the simple weighted average system
objective function. When combined with the penalty function the P1 objective is a quadratic
function, enabling direct solution without the use of an optimization algorithm. In addition,
P1 has no design constraints, and therefore can be solved by finding x̄1 such that ∇x̄1 f1 = 0,
where f1 = f +φ(c1). Problem P2 is formulated as:
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min
x(2)

s , x(2)
`A

φ(c2)

subject to gA

(
x(2)

s , x(2)
`A

)
≤ 0 (4.16)

where: c2 =
[
x(2)

s p(2)
A

]
−
[
x(1)

s p(1)
A

]
The formulation of Problem P3 is similar (one has simply to replace subscript or super-

script 2 with 3 and subscript A with B). The ADMOM approach was used to solve the ATC
problem.

The ATC subproblems P2 and P3 were solved using NOMADm [1], an implementation
of mesh adaptive direct search [2, 14]. This algorithm effectively handled the non-smooth re-
sponses of the PASS analysis software. The mesh tolerance used in determining NOMADm
convergence was 0.001, and subproblem optimizations typically required between 400 and
600 function evaluations. ATC required between 8 and 18 NOMADm optimizations to
obtain a solution, depending on the value chosen for β in the penalty updates.

The P1 subproblem objective function is quadratic, and required very little computational
effort to solve. Two approaches were used to solve P1: solving for ∇x̄1 f1 = 0 (where
f1 = f + π(c)), and using a gradient-based algorithm to minimize f1. The former was
extremely efficient, but the latter proved more robust.

System consistency was quantified using the root mean square of the combined deviation
vector

RMS(c) =

√
1
|c|

ccT ,

where
c = [c1, c2, c3] , |c|= cardinality of c.

The convergence of ATC was influenced strongly by the choice of β . Larger β values
help force the system into tighter consistency, but can result in a stiff system that requires
more iterations to converge. The problem was solved using a range of different β values to
illustrate this influence. Figure 4.14 illustrates how larger values of β require more outer
loop iterations. It was also observed that larger β values led to slightly larger objective
function values, even when system consistency was approximately equal. This indicates
that a stiff solution process can impede the identification of better designs.
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Figure 4.14 Influence of β on RMS(c) (system consistency)

4.3.4 Augmented Lagrangian Coordination

The Augmented Lagrangian Coordination (ALC) formulation, also known as Augmented
Lagrangian Decomposition, utilizes principles from ATC for the solution of a more general
class of system design problems. The problem structure in ALC is not limited to hierarchical;
any type of links between subproblems can be managed. Convergence properties are drawn
from established nonlinear programming theory. ALC provides tremendous flexibility in
problem linking structure, making it an ideal platform for studying the linking structure
aspect of coordination decisions. ALC can handle linking functions in addition to linking
variables. Linking functions depend on most or all design variables. This situation is
uncommon in simulation-based design optimization, so accommodation of linking functions
will not be included in the formulations here. ALC uses a double-loop coordination algorithm
with augmented Lagrangian penalty relaxation, similar to ATC. The coordination algorithm
variants described above, such as INMOM, ADMOM, and Jacobi iteration, all apply to
ALC.

As with other distributed optimization formulations, local copies of linking variables
must be used in ALC subproblems. These copies are allowed to vary independently,
enabling independent subproblem solution, but are guided toward consistency using penalty
functions. Internal shared design variables for subproblem i (x̂si) do not require multiple
copies since they are determined by the same optimization algorithm, and therefore require
no consistency constraints. The internal coupling variables for subproblem i are ŷi, and the
corresponding set of analysis functions is âi(x̄i, ŷi, ȳi), where ȳi are the external coupling
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variables input to subproblem i and x̄i are the design variables for subproblem i. These
values must be consistent. An MDF-type approach could be used here to satisfy internal
consistency requirements with an analysis algorithm such as fixed point iteration. An
alternative approach is to enforce internal consistency using auxiliary equality constraints:

ci(x̄i, ŷi, ȳi) = ŷi− âi(x̄i, ŷi, ȳi) = 0 (4.17)

This auxiliary equality constraint approach draws from the principles underlying the
IDF formulation. Section 4.2 discussed how computational performance and robustness can
be enhanced through using equality constraints instead of FPI to satisfy consistency require-
ments. The auxiliary constraints in Eq. 4.17 will be used in subsequent ALC formulations.

Definition of external linking variable consistency constraints is somewhat more involved.
The copies of design variables shared between subproblems i and j, local to subproblem i,
are x̄i j

s . The coupling variables passed from subproblem j to i are ȳi j, and the corresponding
analysis functions are āi j(x̄ j, ŷ j, ȳ j). The external linking variables between subproblems i

and j are z̄i j = [x̄i j
s , ȳi j]. The external consistency constraints between subproblems i and j

are:

c̄i j(x̄i, x̄ j, ŷi, ŷ j, ȳi, ȳ j) =
[
ȳi j− āi j(x̄ j, ŷ j, ȳ j), ȳ ji− ā ji(x̄i, ŷi, ȳi), x̄i j

s − x̄ ji
s
]

(4.18)

Note that the components of x̄i j
s are part of the vector x̄i, and ȳi j is part of the vector

ȳi. Certain variables that are input to the constraint function c̄i j are held fixed during
subproblem solution, as indicated by the input arguments of the consistency constraint in
the ALC subproblem formulation presented shortly.

The definitions above specify a very large number of consistency constraints for external
shared variables. Only a subset of these constraints is required to ensure consistency. The
number of possible ways to allocate consistency constraints is tremendous, and is a task
beyond intuition for all but the smallest system design problems. Guidelines have been
proposed for constructing bi-level or hierarchical ALC implementations [141, 142]. These
recommendations are helpful, but do not capitalize on the potential benefit that could
be realized through tailoring problem structure to meet the needs of a system. Chapter
7 develops the theory towards a rigorous, automated method for allocating consistency
constraints.

After a set of consistency constraints is selected and allocated amongst the subproblems,
an augmented Lagrangian penalty function is defined for the selected constraints on external
linking variables:

φi j(c̄i j) = vi jc̄T
i j +‖wi j ◦ c̄i j‖2

2 (4.19)
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where vi j and wi j are vectors of penalty weights on the linear and quadratic terms, respec-
tively, and ◦ indicates the Hadamard product. Penalty weights are fixed for one or more
inner loop executions, and are updated using the method of multipliers.

The set of indices for subproblems with external linking variables common to subproblem
i is Ni. The design inequality and equality constraints computed by analysis functions in
subproblem i are gi and hi, respectively. The set of decision variables for subproblem i

includes x̄i, ŷi, and ȳi. The formulation of the optimization problem for subproblem i is:

min
x̄i,ŷi,ȳi

fi(x̄i, ŷi, ȳi)+ ∑
j∈Ni| j>i

φi j(c̄i j(x̄i, ȳi j, ŷi))

+ ∑
j∈Ni| j<i

φ ji(c̄ ji(x̄i, ȳi j, ŷi)) (4.20)

subject to gi(x̄i, ŷi, ȳi)≤ 0

hi(x̄i, ŷi, ȳi) = 0,

ci(x̄i, ŷi, ȳi) = ŷi− â(x̄i, ŷi, ȳi) = 0

This formulation makes a distinction between shared and coupling variables, in con-
trast to the original ALC formulations [141, 142]. Neglecting this distinction requires an
additional equality constraint for each analysis function that computes a coupling variable.
Accounting for the distinction requires only one quantity to be passed for every coupling
variable between subproblems, instead of two, and permits exploitation of coupling variable
directionality when structuring an ALC implementation.

4.3.5 Example: Air Flow Sensor Design

The air flow sensor design from Section 3.1 is used here to illustrate ALC formulation and
implementation. An ALC subproblem is formulated for the aerodynamic and structural
aspects of the design problem. The structural subproblem is P1 and the aerodynamic
subproblem is P2. The formulation for the structural subproblem is:

min
`(1),F(1)

(θ (1)− θ̂)2 +v12c12 +‖w12 ◦ c12‖2
2

subject to F(1)−Fmax ≤ 0 (4.21)

where c12(`(1),F(1)) = [θ (1)−θ
(2),F(1)−F(2), `(1)− `(2)]

Superscripts indicate the subproblem quantities are computed in. The constraint c12
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was chosen arbitrarily for this implementation rather than c21. The stator deflection θ (1) is
computed using Eq. 3.2. The value of θ (2) is a fixed parameter in the subproblem 1, and
is determined by subproblem 2. θ and F are coupling variables, and ` is a shared design
variable. Although the drag force analysis is part of subproblem 2, problem convergence
was improved by locating it in subproblem 1. The formulation for subproblem 2 is:

min
`(2),w(2),θ (2)

v12c12 +‖w12 ◦ c12‖2
2

subject to `(2)w(2)−A = 0 (4.22)

where c12(`(2),w(2),θ (2)) = [θ (1)−θ
(2),F(1)−F(2), `(1)− `(2)]

The aerodynamic subproblem has no local design objective function, so the optimization
objective is the penalty function on c21 only. Note that the constraint c21 is defined identically
in subproblem 2 except for the input arguments. Here θ (2) and `(2) are independent variables,
while θ (1), F(1), and `(1) are fixed parameters determined by subproblem 1. The drag force
F(2) is computed using Eq. 3.3.

The ALC solution was implemented using the ENMOM approach and the result matched
the optimal design determined by monotonicity analysis. The outer loop parameters used
were β = 2.2 and γ = 0.40. Ten outer loop iterations were required to satisfy the convergence
criterion of ‖c‖ ≤ 1.0 ·10−4. Inner loop convergence required that the normalized sum of
subproblem objective functions was less than 1.0 ·10−4. Table 4.1 summarizes the ALC
solution process for this problem, where i is the outer loop iteration number, j is the inner
loop iteration number, and n f is the number of function evaluations required for each outer
loop iteration. The number of inner loop iterations is larger at the beginning of the process,
but decreases as the solution is approached. The number of function evaluations indicates
that the difficulty of the subproblems gradually increased during most of the process, but
then dropped off near the end.

Karsemakers studied the air flow sensor design problem at length and showed that
modifying problem structure or the coordination algorithm had significant influence over
computational expense [76]. In some cases the computational benefit exceeded one order
of magnitude. Chapters 5 through 7 will develop a formal approach for choosing system
partitions and coordination algorithms for ALC and related formulations.
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4.4 Concluding Comments

This chapter reviewed several important formulations for decomposition-based design
optimization, which fall under two categories: single-level and multi-level. Single-level
formulations may employ a distributed analysis approach, but use a single optimization
algorithm for the entire system. Single-level formulations meet the requirements of system
consistency and optimality, and can help ease system analysis difficulties, but may be
inappropriate for problems with a very large number of design variables. Multi-level
formulations address this problem by using a distributed optimization approach; a separate
optimization problem is defined for each subproblem, reducing the total number of design
variables that must be managed by any single optimization algorithm. Several examples
were used to explain the formulations covered in this chapter. Parametric studies on coupling
strength and algorithm parameters were performed, providing important insights into the
formulations reviewed. The understanding of system optimization formulations developed
in this chapter is a foundation for the quantitative approach to partitioning and coordination
decisions presented in the following chapter.

Table 4.1 ALC solution progress for the air-flow sensor problem
i j n f
1 3 174
2 6 191
3 3 129
4 5 658
5 4 442
6 3 354
7 3 297
8 2 168
9 2 90
10 2 88
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Chapter 5

Optimal Partitioning and Coordination: Theoretical
Framework

Solving a system design optimization problem using decomposition-based design optimiza-
tion requires that a system partition and coordination strategy be defined a priori. Partitioning
and coordination (P/C) decisions can have a profound effect on computational expense of the
solution process. P/C decisions should minimize the complexity of the resulting distributed
optimization problem. The solution difficulty for a system design problem given a particular
set of P/C decisions is difficult to estimate without actually solving the problem, but is
required for P/C decision optimization to be beneficial. Complexity is approximated here
by the coordination problem size (CS) and the maximum subproblem size (SSmax). These
metrics can be estimated using the reduced adjacency matrix for a system and the proposed
system partition and coordination strategy.

The primary objective in this chapter is to demonstrate that P/C decisions are coupled;
i.e., a system partition will influence what coordination strategy should be chosen, and vice
versa. Section 1.1 described how an independent or sequential approach to design can lead to
suboptimal solutions if coupling is present. This applies to the P/C optimal decision problem
as well. Independent, sequential, and simultaneous approaches are formulated for solving the
P/C problem, and it is shown that for three example systems only the simultaneous approach
is successful. This is evidence of coupling between partitioning and coordination decisions.
Coordination strategy decisions are limited to subproblem sequence in this chapter. This
simplifies the analysis here, but provides sufficient modeling fidelity to identify coupling
and study tradeoffs. Tradeoff information may be used to assess the appropriateness of
decomposition-based design optimization for a particular system.

5.1 P/C Problem Formulation

The objective in the optimal P/C decision problem is to find a system partition and subprob-
lem sequence that minimizes overall computational expense of the system design solution
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process. Both subproblem solution and coordination problem solution difficulty contribute
to this expense. If a general model for overall expense is unavailable, metrics for subproblem
and coordination problem difficulty may be investigated instead. Problem size is used here
to approximate relative computational difficulty1. Each metric is to be minimized, but
these can be conflicting objectives. For example, fine partitions reduce subproblem size
but increase coordination problem size. When multiple objectives conflict, a single optimal
solution cannot be found. The solution to a multiobjective optimization problem is instead a
set of non-dominated solutions [110]. A point in the objective space is dominated if at least
one objective function value can be improved without degrading the other objective function
values. The set of non-dominated points is also called the Pareto set; a point in the Pareto set
is Pareto-optimal. The Pareto set illustrates the tradeoff between conflicting objectives by
showing how much one is degraded by improving the other. A multiobjective optimization
study will be performed on the coordination problem and subproblem size metrics.

The coordination problem and subproblem size metrics were derived based on a dis-
tributed optimization formulation, such as ATC or ALC, where consistency is managed
using a penalty relaxation method and the subproblems are coordinated using fixed-point
iteration. The coordination problem size CS is defined as the total number of consistency
constraints for external shared variables and feedback coupling variables, to be solved by
the coordination algorithm:

CS = nx̄sm +nȳ f (5.1)

The number of external shared variable consistency constraints is approximately nx̄sm, a
metric based on the number of external shared variables. The number of feedback coupling
variable consistency constraints in the coordination problem is equal to the number of
feedback external coupling variables nȳ f . It can be shown that the minimum number of
consistency constraints required for the i-th external shared variable is nPi−1, where nPi is
the number of subproblems that share the i-th external shared variable. Therefore, the sum
of nPi−1 over all nx̄s external shared variables is a reasonable approximation for the number
of external shared variable consistency constraints: nx̄sm = ∑

nx̄s
i=1 (nPi−1). The reason nȳ f is

used instead of the total number of external coupling variables nȳ is to penalize feedback,
which slows coordination convergence [21]. CS does not model how coordination problem
size depends on consistency constraints allocation, and is therefore an approximation.

The size of subproblem i, SSi, is defined as the number of associated decision variables,
consistency constraints, and analysis functions. Since IDF-type subproblem formulations

1Use of size metrics based on the existence of dependence relationships, rather than more sophisticated
estimates, was discussed in Section 2.3
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are assumed, no constraints are needed for internal shared variables, and one constraint is
required for each internal coupling variable.

SSi =
(
nx̄si +nx`i +nyi +nȳ f i

)
+
(
nx̄si +nyi +nȳ f i

)
(5.2)

+(nai)

The number of external shared variables associated with subproblem i is nx̄si, the number
of local variables is nx`i, the number of internal coupling variables is nyi, the number of
coupling variables input from subproblems executed after subproblem i is nȳ f i, and the
number of analysis functions is nai. SSmax is the maximum of all SSi values. Previous
approaches described in Section 2.4 used only the number of variables or analysis functions
in the subproblem size metric, so the above formula is an improvement.

5.2 P/C Problem Solution

Four strategies can be used to solve the P/C decision problem. In the first strategy, labeled
(P,C), the P and C problems are solved independently. In the second strategy, labeled
(P→ C), the partitioning problem is solved first, and the resulting partition is used in
solving the coordination decision problem. The third strategy, labeled (C→ P), solves
the partitioning problem using a coordination method definition obtained by first solving
the coordination decision problem. The fourth strategy, labeled (P‖C), minimizes CS

and SSmax simultaneously, solving the actual Pareto-optimization problem. If partitioning
and coordination decisions are coupled, only the simultaneous approach will successfully
identify the Pareto set for the P/C decision problem. The examples will show that the first
three strategies cannot capture CS–SSmax tradeoff information or always identify Pareto-
optimal solutions, providing evidence that interactions between partitioning and coordination
decisions indeed exist and are important.

In the optimal P/C model a restricted growth string (RGS) [131], p of length m, is used to
specify the partition by prescribing which analysis functions belong to each subproblem. The
value of pi is the subproblem that analysis function i belongs to. Redundant representations
of partitions are avoided since as an RGS, p must satisfy:

p1 = 1 ∧ pi ≤max{p1, p2, . . . , pi−1}+1 (5.3)
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Coordination decisions here are restricted to subproblem sequencing, defined by the
vector os, where the value of osi is the evaluation position of subproblem i, and osi 6=
os j ∀ i, j ∈ {1,2, . . . ,N}. In the (P,C) and (C→ P) strategies coordination decisions are
made without partitioning information, so it is impossible to specify a subproblem sequence
and the analysis function sequence o is used instead.

Two independent problems are solved in the (P,C) strategy, and the corresponding
formulations are shown in Fig. 5.1. The independent partitioning problem seeks to find p
that minimizes a surrogate for CS, subject to a maximum imbalance constraint (Ballow) and
a specified number of subproblems (Nallow). B is the maximum subproblem size difference
incurred by p, where SSi− 2nȳ f i is used instead of SSi for subproblem size since nȳ f i

depends on os, which is unavailable. The value used here for Ballow is proportional to
system size: Ballow = b0.2(m+n)c. The surrogate used for CS that does not depend on os

is nx̄sm +nȳ. Forms of the independent partitioning problem have been solved previously
[9, 30, 31, 84, 89, 103, 104, 105]. The independent coordination decision problem seeks to
find o that minimizes the number of feedback coupling variables ny f . Since p is unavailable,
CS and SSmax again cannot be used. Versions of the independent coordination problem have
also been solved previously [99, 115, 116, 133].

min
p

nx̄sm +nȳ

subject to B≤ Ballow

N = Nallow

min
o

ny f

Figure 5.1 Independent (P,C) optimization approach

The (P→C) strategy [89] first solves the independent partitioning problem and then
passes the result p∗ as a fixed parameter to the coordination decision problem (Fig. 5.2).
Since a partition is defined the subproblem sequence can be used as the decision vector, and
both CS and SSmax can be used in the formulation.

min
p

nx̄sm +nȳ

subject to B≤ Ballow

N = Nallow

-p
∗

min
os

CS

subject to SSmax ≤ SSallow

Figure 5.2 P→C sequential optimization

The (C→ P) strategy begins with solving the independent coordination decision problem
for the analysis function sequence o (Fig. 5.3). Calculation of CS and SSmax in the second
stage requires definition of a subproblem sequence. A heuristic is used here to map o to
os: subproblems are ranked in ascending order according to the lowest value of oi in each
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subproblem to define the subproblem sequence.

min
o

ny f -o
∗

min
p

CS

subject to SSmax ≤ SSallow

Figure 5.3 C→ P sequential optimization

The (P‖C) strategy seeks optimal values for p and os simultaneously. The multiobjective
problem to be solved is:

min
p,os

{CS,SSmax} (5.4)

The set of Pareto-optimal solutions can be obtained by solving the single-objective
optimization problem shown in Fig. 5.4 and varying SSmax as a parameter.

min
p,os

CS

subject to SSmax ≤ SSallow

Figure 5.4 Simultaneous (P‖C) optimization

5.3 Examples

The four strategies were applied to two randomly generated reduced adjacency matrices to
demonstrate the tradeoff between CS and SSmax and the interaction between partitioning and
coordination decisions. The optimal P/C decision problems were all solved using exhaustive
enumeration, and the appropriate constraints were varied in an effort to generate Pareto sets.

The first example has five analysis functions and seven design variables; its reduced
adjacency matrix is:

A1 =


0 1 1 1 0 1 0 1 1 1 0 1
0 0 1 1 1 0 1 1 0 1 1 1
1 0 0 1 1 1 1 1 1 1 1 1
1 1 1 0 0 1 1 1 1 1 1 1
1 1 0 1 0 0 1 1 1 0 0 1


Figure 5.5 depicts the histogram of all possible CS and SSmax values for an exhaustive

enumeration of all possible p and os combinations. The CS distribution is biased toward
larger values, while the SSmax is biased toward smaller values. This is expected since the
number of possible sequences and partitions increase with N, and CS decreases with N while
SSmax increases with N. Figure 5.6 plots all P/C instances for A1 in the CS/SSmax space. In
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other words, every point represents a different system partition and coordination strategy
option. In many cases several p and os combinations result in the same CS/SSmax values.
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Figure 5.5 CS and SSmax histograms for A1
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Figure 5.6 Optimization results for A1

The minimum CS value of zero occurs when N = 1, which corresponds to a pure
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IDF formulation for the system design problem (with a problem size of 42). In general,
distributed optimization makes sense if subproblem size can be reduced from the IDF size
through partitioning without requiring a large coordination problem. This is most likely to
occur when A is sparse. Complex products tend to have sparse adjacency matrices [88]. A
minimum SSmax value normally occurs when each analysis function is assigned to its own
subproblem but is associated with a large coordination problem.

Figure 5.6 also shows solutions obtained by the four different strategies. As expected,
(P‖C) finds all 12 Pareto points; (P,C), (P→C), and (C→ P) identify 2, 4 and 7 Pareto
points, respectively. These latter strategies performed well for this small example in that
they identified several Pareto-optimal points. A parametric study on Ballow values revealed
that increasing allowed imbalance for the (P,C) and (P→C) approaches initially improves
the number of Pareto points identified, but increasing Ballow much beyond b0.2(m+n)c does
not continue to improve results. In all cases non-simultaneous approaches identified only a
fraction of the Pareto set. In the next slightly larger example the performance discrepancy
between simultaneous and non-simultaneous approaches is more significant. The second
example has six analysis functions and ten design variables:

A2 =


0 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1
1 0 1 1 1 0 0 1 1 1 0 1 0 1 1 0
1 1 0 1 0 1 0 1 0 1 1 1 1 0 1 0
1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 0
1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 0
1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1


The biases in the CS and SSmax distributions are now clearer in the histogram of P/C

instances for A2 (Fig. 5.7). These distributions can influence the performance of algorithms
other than exhaustive enumeration (such as genetic algorithms) for solving the optimal P/C
problem [99].

Figure 5.8 shows CS and SSmax values for all P/C instances for A2. P‖C located all 9
Pareto points. No solutions to the non-simultaneous approaches are Pareto-optimal except for
the trivial case of N = 1. This result is significant because if any non-simultaneous approach
is used to make P/C decisions for this system, both subproblem and coordination problem
size could be reduced further. This sub-optimality is expected to be more pronounced as
system size and complexity increases.

CS–SSmax tradeoff information can be used to assess system suitability for solution
via distributed optimization since it illustrates the sensitivity of best-case solution expense
to increases in partition refinement. If increasing N causes CS to rise sharply without
appreciable SSmax reduction, AiO or IDF may be preferable to distributed optimization.
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Figure 5.7 CS and SSmax histograms for A2

25 30 35 40 45 50 55 60 65
0

5

10

15

20

25

30

35

40

45

SSmax

C
S

 

 
All Instances
P||C
P,C
P−>C
C−>P

Figure 5.8 Optimization results for A2

Thus, the second example is a good candidate for distributed optimization.
An interesting phenomenon is evident in Figure 5.8: there exists an instance where

SSmax = 64, which is greater than 62, the size of a single large subproblem. The corre-
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sponding partition cuts across a very large number of linking variables, and the subproblem
order maximizes feedback. It is conceivable that some systems could exhibit this behavior
for most or all P/C options, making them exceptionally poor candidates for distributed
optimization.

5.4 Water Pump Electrification Example

The previous two examples involved abstract systems defined only by their reduced adja-
cency matrices. This section applies the P/C methods outlined above to a system design
problem that corresponds to a physical system. Section 3.5 detailed the analysis and design
of a centrifugal water pump driven by a DC electric motor for automotive applications.
Switching from mechanical belt drive to electric drive allows for substantially more efficient
operation. The model involves five analysis functions that compute performance metrics
based on ten design variable values. Design variables and analysis functions are summarized
in Table 3.4. Several analysis interactions were modeled. Dependence relationships can be
extracted from the analysis model, and are presented in the reduced adjacency matrix for
this system:

A3 =

T I ω τ d d2 d3 L `c D2 b β1 β2 β3
T 0 1 1 0 1 1 1 1 1 0 0 0 0 0
I 1 0 0 1 1 1 1 1 0 0 0 0 0 0
ω 1 1 0 0 1 1 1 1 1 0 0 0 0 0
τ 0 0 1 0 0 0 0 0 0 1 1 1 1 1

The optimal P/C problem for the electric water pump system was solved using all four
strategies. As can be seen in Fig. 5.9, (P‖C) and (P→C) identified all four Pareto points,
while (P,C) and (C→ P) were only able to identify one Pareto point (the trivial solution
with N = 1).

Of particular interest is the initial low sensitivity of CS to increased N. SSmax can
be reduced from 28 to 19 with a CS of 1, making this system an excellent candidate
for distributed optimization. Only the (P‖C) and (P→ C) strategies can reveal this low
sensitivity.

The matrix A3 represents a physical system, so P/C decisions made based on engineering
intuition can be compared to optimal P/C modeling results. Dividing the system into
motor and pump-related functions corresponds to the partition p = [1,1,1,2]. If the motor
subproblem is solved first, then CS = 1 and SSmax = 20, a good but suboptimal solution.
Using a model-derived partition p = [1,2,3,4] as a starting point to solve coordination
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Figure 5.9 Optimal P/C results for pump problem

problem defined in Fig. 5.2 for the optimal sequence, the solution o∗s = [4,3,2,1] yields
CS = 12 and SSmax = 13, which is a Pareto point. In this simple example, intuitive and
semi-intuitive approaches are rather effective, but cannot quantify the tradeoff between
CS and SSmax. Much larger systems are likely to realize greater benefits from the (P‖C)
strategy, but algorithms more sophisticated than exhaustive enumeration are required in such
implementations. One approach to solve the P/C problem for larger systems is presented in
the following chapter.

5.5 Concluding Comments

A formal approach for simultaneous partitioning and coordination decision-making was
presented in this chapter. The approach quantifies P–C tradeoffs by computing Pareto
optima for minimum subproblem size and coordination problem size. Studying these
tradeoffs helps determine whether a system design problem is an appropriate candidate
for decomposition-based design optimization. The problem-size metrics proposed here
captured P/C interactions in the examples successfully. Other metrics that approximate
the tradeoff between coordination and subproblem expense can be used instead if desired.
Simultaneous P/C optimization can lead to superior decomposition solutions. Comparison to
non-simultaneous strategies confirmed the existence of P/C decision interaction, and demon-
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strated the value of a simultaneous approach. Exhaustive enumeration was used to generate
results for small examples, and a simplified coordination decision model incorporated only
subproblem sequencing. Following chapters demonstrate how to solve the P/C problem for
larger systems, and how to incorporate linking structure into coordination decisions.
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Chapter 6

Extension to Larger Systems

The previous chapter demonstrated that partitioning and coordination decisions are coupled
for several example systems, and illustrated tradeoffs present in these decisions. A multiob-
jective optimization problem was defined, and exact solutions were obtained in each case
using exhaustive enumeration. The discrete decision space of Eq. (5.4) is vast; the number
of possible partitioning and coordination instances increases exponentially with the number
of analysis functions. The P‖C problem for systems with more than seven analysis functions
cannot be solved in a practical amount of time using exhaustive enumeration. The parti-
tioning and sequencing problems are themselves NP-complete [129] and NP-hard [124],
respectively, making the combined partitioning and coordination problem an especially
difficult problem.

Evolutionary algorithms (EAs) have proven to be an effective tool for approximately
solving difficult combinatorial optimization problems. This chapter reviews the concepts
of EAs and presents the results of applying an EA to a system too large for exhaustive
enumeration. An EA developed for solving the P‖C problem is applied to the example
systems of Chapter 5. Comparison of EA results to exact solutions provides validation of
the algorithm. The truss design formulation from Section 3.4 is used to generate a system
with eight analysis functions. The EA is then used to obtain an approximate Pareto set for
this system. The results indicate that the EA is an effective solution technique for systems
of practical size.

6.1 Evolutionary Algorithms

Evolutionary algorithms are a class of algorithms for solving a variety of difficult problems
using a process patterned after natural evolution. In biological populations, individuals most
well-suited for their environment tend to survive to reproduce and generate offspring. This
natural selection process moves to increase the overall ‘fitness’ of a population over time.
Two primary operations are exercised: variation and selection. Variation takes place when
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parents reproduce to produce offspring with similar, but not identical, traits to their own.
Occasionally random mutations occur, another form of variation. Selection mechanisms
dictate which individuals reproduce or remain in the population: this applies evolutionary
pressure toward increased population fitness. EAs use variation and selection on a population
of candidate problem solutions to improve solution quality over successive generations [49].
The process typically used in EAs is outlined in Fig. 6.1.

Parent Selection

RecombinationMutation

Survivor 
Selection

Population

ParentsOffspring

Figure 6.1 Typical evolutionary algorithm process

An EA is initialized with a randomized initial population. Each individual is defined
by its chromosome, or genotype. The fitness of each individual is then evaluated based
on its genotype. A selection process then chooses which individuals will be parents that
produce offspring for the next generation. In recombination, portions of genotypes from
two or more parents are assembled to create one or more offspring. Some of the offspring
are then selected at random to undergo mutation, which is a small stochastic change in an
individual’s genotype. The fitness of the offspring is evaluated, and the population for the
succeeding generation is selected from the set of parents and offspring (and in some cases
just offspring). This process is repeated until some termination criterion is met.

Evolutionary algorithms must balance the needs for global exploration and local search.
Good exploration behavior aids identification of globally superior solutions, while local
search proficiency enables the algorithm to rapidly converge on a precise solution. Population
diversity enhances exploration performance and reduces the probability of converging to a
local solution prematurely. Good global exploration also requires that the genotype encoding
is capable of representing all possible candidates in the problem solution space, and that
these candidates are reachable through some combination of variation operations. Increased
mutation rates improve diversity, but may impede local search performance. Selection
applies evolutionary pressure for higher fitness values, but too much pressure also may cause
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premature convergence.
Genotype representation is an important aspect of implementing an EA for a specific

problem. Examples of established genotype representation types include binary or real-
valued strings. In EAs variation operators are applied to genotype representations of
individuals. The representation of an individual in the original problem formulation is
called its phenotype. Sometimes the phenotype representation is congruent with a standard
genotype representation and can be used directly with modification to the EA. When this
is not the case one of two approaches may be taken. First, the phenotype representation
may be used directly if variation operators compatible with the representation are developed.
A large body of work exists regarding specialized variation operators for solving specific
types of problems [49]. Second, an appropriate genotype space must be defined along with
a surjective mapping onto the phenotype space. Rothlauf developed a theory-based method-
ology for defining effective genotype representations [118]. An ideal representation should
not increase problem difficulty, should enable variation operators to work properly, and
should result in a process that is robust to solution location. To meet these requirements it is
important that a representation have good locality and little bias toward particular genotypes.
Good locality ensures that small changes in the genotype space result in small changes
in the phenotype space. Poor locality impacts both global exploration and local search
performance. A representation biased toward solution candidates with certain properties
may result in failure to identify globally superior solutions.

An important feature of EAs is effectiveness for multiobjective problems (MOPs). The
solution to an MOP is a set of non-dominated points (i.e., the Pareto set), rather than a
single point solution. EAs are population-based, and are naturally equipped to seek after
a set solution. Goldberg proposed a fitness function based on the dominance of candidate
solutions, rather than the multiple objective values [65]. This approach enables an EA to
identify an approximate Pareto set with a single execution of the algorithm. Traditional
MOP solution approaches require that the optimization algorithm be solved multiple times
with different objective function or constraint parameters.

Several variants of EAs have been developed to address specific problem types [49].
Each variant has a unique approach for implementing the EA process illustrated in Fig. 6.1.
Genetic algorithms (GAs) were introduced by Holland [73], and are typically used for
combinatorial optimization problems. Recombination is the primary variation operator,
while mutation plays a lesser role. Genotypes are typically represented using binary or
integer strings. Fogel, Owens, and Walsh developed evolutionary programming (EP) [54],
commonly used for continuous optimization. Real-valued strings are normally used as the
genotype representation, and mutation is the sole variation operator. Evolutionary strategies
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(ES) were proposed by Rechenberg [113], and are also used for continuous optimization
with real-valued genotype representations. Mutation is the primary variation operator, while
recombination is secondary. A distinguishing feature of ES is self-adaptation. Most EAs
have numerous algorithm parameters that must be tuned for efficient performance, and has
been touted as a significant weakness concerning EA practicality. Self-adaptation includes
algorithm parameters in the genotype so that as the algorithm progresses, it determines
the ideal parameters required to solve the problem at hand effectively. Later on Koza
introduced genetic programming (GP) as a technique specifically for automated computer
code generation [83]. Some programming languages, such as Lisp [122], are naturally
expressed in a tree1 structure; GP utilizes a tree genotype representation, and specialized
recombination and mutation techniques that operate directly on trees.

Eiben explained that EAs are effective at solving difficult problems with acceptable
results in a reasonable amount of time [49]. While EAs are frequently applied to optimization
problems, they are not strictly optimization algorithms [40]. EAs are not based on any
type of optimality conditions, and therefore cannot guarantee optimality of results. Many
optimization problems cannot be solved exactly in a practical amount of time, but EAs offer
a way to obtain approximately optimal results in a satisfactory period of time.

While EAs have proven to be effective at solving difficult problems [48], no single
algorithm within this class is ideal for solving all problems. Wolpert and Macready set
forth the ‘no free lunch’ theorem, which asserts that if we average the performance of
nonrevisiting2 black box algorithms over all possible problems, all algorithms perform
equally well [146]. In other words, if a particular algorithm is well-suited for one type of
problem, then it will not be effective at solving a distinctively different type of problem. EAs
should not be applied indiscriminately for solving problems, but the principles of EAs, along
with problem-specific knowledge, should be brought to bear in constructing algorithms
tailored to solve the problem at hand.

6.2 Evolutionary Algorithm for Partitioning and Coordi-
nation

The combined partitioning and coordination problem is a multiobjective combinatorial
optimization problem. The system partition and the subproblem sequence are not represented
easily using standard techniques or processed using standard variation operators. The

1Trees are graphs without a cycle.
2A nonrevisiting algorithm does not evaluate the same candidate solution more than once. Under certain

assumptions EAs fall under this category of black box algorithms.
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phenotype representation for this problem is p and os. Rather than constructing new
variation operators that work on both a restricted growth string and integer sequence, a
separate genotype representation was defined with a mapping to the phenotype space. This
enabled the use of standard variation operators. The EA used here closely resembles a
standard GA for multiobjective problems. The primary differences include a customized
genotype representation as well as the use of two different recombination operators and
increased emphasis on mutation to improve global search properties. The first crossover type
is arithmetic, where a random point along the line connecting two parents in the solution
candidate space is selected as the offspring. The second crossover type is a simple single
point crossover where a random point in the parent genotype strings dives them in two, and
the substrings are swapped to form offspring. The remainder of this section details the new
genotype representation and compares EA results to exact results for the example systems
from Chapter 5.

6.2.1 Partition Genotype Representation

The system partition is represented in the genotype space using p̂, where p̂i ∈ {1,2, . . . ,m}
and i = 1,2, . . . ,m. The subproblem that the i-th analysis function belongs to is p̂i, but
the vector p̂ is no longer constrained by restricted growth string requirements described
in Eq. 5.3. Standard variation operators can be used with p̂. Note that the number of
analysis functions m is the maximum possible number of subproblems N. The vector p̂
defines a partition, although not uniquely. There exist mm possible ways to assign values to
p̂, while the number of unique partitions is the m-th Bell number Bm [131]. Redundancy
exists in a representation is more than one genotypes map to the same phenotype. The ratio
µ = mm/Bm quantifies redundancy incurred by using p̂, and increases quickly with m. For a
system of size m = 6, µ = 229.83. Table 6.1 illustrates how redundancy in the p̂ partition
representation increases with system size.

Table 6.1 Redundancy in p̂ partition representation
m mm Bm µ

1 1 1 1.00
2 4 2 2.00
3 27 5 5.40
4 256 15 17.07
5 3,125 52 60.10
6 46,656 203 229.83

Redundant representation can enhance EA performance as long as they do not introduce
significant bias toward particular solution types [118]. Strong bias can be a problem if
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redundancy is not present in the solution space region that contains the global solution; this
reduces the probability that the global solution will be identified.

An algorithm was developed that maps p̂ values in the genotype space to p values in the
phenotype space. Figure 6.2 illustrates (for m = 6) the normalized frequency of partition
sizes using the phenotype and genotype representations, where N is the partition size. This
illustrates that both distributions are biased toward intermediate partition sizes. While
genotype bias impedes EA effectiveness, this representation was selected for its favorable
properties under crossover and mutation. Development of a representation with less bias
that works well with variation operators may lead to improved EA performance.
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Figure 6.2 Genotype and phenotype representation partition size distributions

6.2.2 Sequence Genotype Representation

The subproblem sequence representation poses a challenge because the length of os depends
on p. An extension of the random key (RK) representation [17] addresses this problem.
A random key is a real-valued vector that can be used to encode an integer sequence. For
example, suppose ôs is a real valued vector of length N where 0≤ ôsi ≤ 1, i = 1,2, . . . ,N.
The components of ôs are then sorted in ascending order, and the order of the original
component indices after sorting defines the sequence. RK representations have proven to
be more effective than using variation operators designed for sequence permutations. RKs
exhibit high locality, and standard variation operators for real values are effective [119].
Relative order is preserved in RKs when crossover recombination operations are performed.
Introduction of the RK representation rendered EAs an effective technique for operations
research problems [124].

RK representation works well when the number of elements to be sequenced is fixed.
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Since this is not the case here, an extension was made. The vector ô contains an element
for each analysis function: 0 ≤ ôi ≤ 1, i = 1,2, . . . ,m. The meaning of ô depends on
p. If P j is the set of analysis function indices that belong to the j-th subproblem, then
ôs j = ∑i∈P j ôi/|P j|. The sequence os is then obtained through sorting ôs.

The number of possible subproblem sequences increases with partition size, biasing
distribution of candidate subproblem sequences toward finer partitions (Fig. 6.3). All
possible pairs of p and os for a given system comprise its phenotype space. The distribution
of all these instances for a system of size m = 6 is shown in Figure 6.4. The bias present
here means that an EA will likely increase effort spent exploring candidate solutions with 4,
5, or 6 subproblems when m = 6.
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The genotype to phenotype map outlined above is summarized in Fig. 6.5.

problem size (CS) and subproblem sizes (SSi, i ∈ {1, 2, . . . , N}) can be computed using A. These
size metrics are proxies for the computational expense associated with solving the coordination problem
and subproblems, respectively. CS is the number of consistency constraints that must be solved in the
coordination problem and SSi is the size of the i-th subproblem.

A restricted growth string (RGS) [13] p of length m is used to specify a system partition. Analysis
function i belongs to the subproblem identified by the value of pi. Redundant representations of partitions
are avoided since, as an RGS, p must satisfy [13]:

p1 = 1 ∧ pi ≤ max{p1, p2, . . . , pi−1} + 1 (1)

The coordination decision model used here is restricted to subproblem sequence choice. A more so-
phisticated model that also includes consistency constraint allocation is under development. Subproblem
sequence is represented by os, a vector of length N where the value of osi is the evaluation position of
subproblem i, and osi $= osj , ∀ i, j ∈ {1, 2, . . . , N}.

A simultaneous approach to partitioning and coordination decision-making considers p and os to-
gether, rather than independently or in sequence, and can be formulated as a multiobjective optimization
problem:

min
p,os

{CS, SSmax}, (2)

where SSmax is the maximum subproblem size. Since specification of p and os are coupled tasks, a
simultaneous approach is required to obtain Pareto-optimal solutions to Eq. (2).

4. Evolutionary Algorithm
Evolutionary algorithms (EAs) seek to improve the ‘fitness’ of a population composed of candidate
problem solutions through two primary means: selection and variation [14]. A subset of the population
is chosen to produce the population for the next generation using variation operators. This process is
repeated until some termination criterion is met. EAs are particularly effective at searching very large
decision spaces and arriving at good, even if not optimal, solutions in a reasonable amount of time. EAs
handle multiobjective problems with little additional expense. The discrete decision space of Eq. (2)
is vast; the number of possible partitioning and coordination instances increases exponentially with m.
The partitioning and sequencing problems are themselves NP -complete and NP -hard, respectively. An
exact solution for the combined problem is possible only for very small systems. It is proposed here
that an EA tailored to the properties of the simultaneous partitioning and coordination problem is an
effective solution technique for systems of practical size.

In an EA each individual is abstractly represented by its chromosome, or genotype. The genotype
representation must be compatible with the variation operators used in the EA. Frequently the repre-
sentation of a candidate solution in the original problem statement, also called the phenotype, is not
suitable for use as a genotype representation. In this case an appropriate genotype space must be de-
fined along with a surjective mapping onto the phenotype space. Rather than devise variation operators
that apply directly to p and os, a genotype compatible with standard crossover and mutation variation
operators was developed.

Choice of genotype representation can strongly influence EA success. An ideal representation should
not increase problem difficulty, should enable variation operators to work properly, and should result
in a process that is robust to solution location [15]. To meet these requirements it is important that a
representation have good locality (i.e., small changes in the genotype space result in small changes in
the phenotype space) and little bias toward particular genotypes.

4.1. Partition Genotype Representation
Rather than attempt to define an effective variation operator to operate directly on restricted growth
strings, the system partition is represented in the genotype space using p̂, where p̂i ∈ {1, 2, . . . ,m}, i =
1, 2, . . . ,m. Note that the number of analysis functions m is the maximum possible number of subprob-
lems N . The vector p̂ defines a partition, although not uniquely. There exist mm possible ways to
assign values to p̂, while the number of unique partitions is the m-th Bell number Bm [13]. The ratio
µ = mm/Bm quantifies redundancy incurred by using p̂, and increases quickly with m. For a system of
size m = 6, µ = 229.83.
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function i belongs to the subproblem identified by the value of pi. Redundant representations of partitions
are avoided since, as an RGS, p must satisfy [13]:
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The coordination decision model used here is restricted to subproblem sequence choice. A more so-
phisticated model that also includes consistency constraint allocation is under development. Subproblem
sequence is represented by os, a vector of length N where the value of osi is the evaluation position of
subproblem i, and osi $= osj , ∀ i, j ∈ {1, 2, . . . , N}.

A simultaneous approach to partitioning and coordination decision-making considers p and os to-
gether, rather than independently or in sequence, and can be formulated as a multiobjective optimization
problem:

min
p,os

{CS, SSmax}, (2)

where SSmax is the maximum subproblem size. Since specification of p and os are coupled tasks, a
simultaneous approach is required to obtain Pareto-optimal solutions to Eq. (2).

4. Evolutionary Algorithm
Evolutionary algorithms (EAs) seek to improve the ‘fitness’ of a population composed of candidate
problem solutions through two primary means: selection and variation [14]. A subset of the population
is chosen to produce the population for the next generation using variation operators. This process is
repeated until some termination criterion is met. EAs are particularly effective at searching very large
decision spaces and arriving at good, even if not optimal, solutions in a reasonable amount of time. EAs
handle multiobjective problems with little additional expense. The discrete decision space of Eq. (2)
is vast; the number of possible partitioning and coordination instances increases exponentially with m.
The partitioning and sequencing problems are themselves NP -complete and NP -hard, respectively. An
exact solution for the combined problem is possible only for very small systems. It is proposed here
that an EA tailored to the properties of the simultaneous partitioning and coordination problem is an
effective solution technique for systems of practical size.

In an EA each individual is abstractly represented by its chromosome, or genotype. The genotype
representation must be compatible with the variation operators used in the EA. Frequently the repre-
sentation of a candidate solution in the original problem statement, also called the phenotype, is not
suitable for use as a genotype representation. In this case an appropriate genotype space must be de-
fined along with a surjective mapping onto the phenotype space. Rather than devise variation operators
that apply directly to p and os, a genotype compatible with standard crossover and mutation variation
operators was developed.

Choice of genotype representation can strongly influence EA success. An ideal representation should
not increase problem difficulty, should enable variation operators to work properly, and should result
in a process that is robust to solution location [15]. To meet these requirements it is important that a
representation have good locality (i.e., small changes in the genotype space result in small changes in
the phenotype space) and little bias toward particular genotypes.

4.1. Partition Genotype Representation
Rather than attempt to define an effective variation operator to operate directly on restricted growth
strings, the system partition is represented in the genotype space using p̂, where p̂i ∈ {1, 2, . . . ,m}, i =
1, 2, . . . ,m. Note that the number of analysis functions m is the maximum possible number of subprob-
lems N . The vector p̂ defines a partition, although not uniquely. There exist mm possible ways to
assign values to p̂, while the number of unique partitions is the m-th Bell number Bm [13]. The ratio
µ = mm/Bm quantifies redundancy incurred by using p̂, and increases quickly with m. For a system of
size m = 6, µ = 229.83.
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An algorithm was developed that maps p̂ values in the genotype space to p values in the phenotype
space. Figure 3 illustrates (for m = 6) the normalized frequency of partition sizes using the phenotype
and genotype representations, where N is the partition size. Both distributions are biased toward
intermediate values. While genotype bias impedes EA effectiveness, this representation was selected for
its favorable properties under crossover and mutation.
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4.2. Sequence Genotype Representation
The subproblem sequence representation poses a challenge because the length of os depends on p. An
extension of the Random Key (RK) representation can be utilized to address this problem [16]. A random
key is a real-valued vector that can be used to encode an integer sequence. For example, suppose ôs

is a real valued vector of length N where 0 ≤ ôsi ≤ 1, i = 1, 2, . . . , N . The components of ôs are
then sorted in ascending order, and the order of the original component indices after sorting defines the
sequence. RK representations have proven to be more effective than using variation operators designed
for permutations. RKs exhibit high locality, and standard variation operators for real values are effective
[15].

RK representation works well when the number of elements to be sequenced is fixed. Since this is
not the case here, an extension was made. The vector ô contains an element for each analysis function:
0 ≤ ôi ≤ 1, i = 1, 2, . . . ,m. The meaning of ô depends on p. If Pj is the set of analysis function
indices that belong to the j-th subproblem, then ôsj =

∑
i∈Pj

ôi/|Pj |. The sequence os is then obtained
through sorting ôs.

The number of possible subproblem sequences increases with partition size, biasing distribution of
candidate subproblem sequences toward finer partitions (Fig. 4). All possible pairs of p and os for a
given system comprise its phenotype space. The distribution of all these instances for a system of size
m = 6 is shown in Figure 5. The bias present here means that an EA will likely expend most of its effort
exploring candidate solutions with 4, 5, or 6 subproblems.

5. Comparative Examples
The exact Pareto-optimal solutions for three small example systems were presented in [11] and are
compared here against results using the EA described above. The first two example systems are defined
by the adjacency matrices A1 and A2:

A1 =





0 1 1 1 0 1 0 1 1 1 0 1
0 0 1 1 1 0 1 1 0 1 1 1
1 0 0 1 1 1 1 1 1 1 1 1
1 1 1 0 0 1 1 1 1 1 1 1
1 1 0 1 0 0 1 1 1 0 0 1




, A2 =





0 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1
1 0 1 1 1 0 0 1 1 1 0 1 0 1 1 0
1 1 0 1 0 1 0 1 0 1 1 1 1 0 1 0
1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 0
1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 0
1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1




.
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An algorithm was developed that maps p̂ values in the genotype space to p values in the phenotype
space. Figure 3 illustrates (for m = 6) the normalized frequency of partition sizes using the phenotype
and genotype representations, where N is the partition size. Both distributions are biased toward
intermediate values. While genotype bias impedes EA effectiveness, this representation was selected for
its favorable properties under crossover and mutation.

1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Partition Size

n
o
rm

al
iz

ed
 f

re
q
u
en

cy

 

 

Phenotype distribution

Genotype distribution

Figure 3: Genotype and Phenotype representation partition size distributions

4.2. Sequence Genotype Representation
The subproblem sequence representation poses a challenge because the length of os depends on p. An
extension of the Random Key (RK) representation can be utilized to address this problem [16]. A random
key is a real-valued vector that can be used to encode an integer sequence. For example, suppose ôs

is a real valued vector of length N where 0 ≤ ôsi ≤ 1, i = 1, 2, . . . , N . The components of ôs are
then sorted in ascending order, and the order of the original component indices after sorting defines the
sequence. RK representations have proven to be more effective than using variation operators designed
for permutations. RKs exhibit high locality, and standard variation operators for real values are effective
[15].

RK representation works well when the number of elements to be sequenced is fixed. Since this is
not the case here, an extension was made. The vector ô contains an element for each analysis function:
0 ≤ ôi ≤ 1, i = 1, 2, . . . ,m. The meaning of ô depends on p. If Pj is the set of analysis function
indices that belong to the j-th subproblem, then ôsj =

∑
i∈Pj

ôi/|Pj |. The sequence os is then obtained
through sorting ôs.

The number of possible subproblem sequences increases with partition size, biasing distribution of
candidate subproblem sequences toward finer partitions (Fig. 4). All possible pairs of p and os for a
given system comprise its phenotype space. The distribution of all these instances for a system of size
m = 6 is shown in Figure 5. The bias present here means that an EA will likely expend most of its effort
exploring candidate solutions with 4, 5, or 6 subproblems.

5. Comparative Examples
The exact Pareto-optimal solutions for three small example systems were presented in [11] and are
compared here against results using the EA described above. The first two example systems are defined
by the adjacency matrices A1 and A2:

A1 =





0 1 1 1 0 1 0 1 1 1 0 1
0 0 1 1 1 0 1 1 0 1 1 1
1 0 0 1 1 1 1 1 1 1 1 1
1 1 1 0 0 1 1 1 1 1 1 1
1 1 0 1 0 0 1 1 1 0 0 1




, A2 =





0 1 1 1 0 0 1 1 1 1 1 1 1 1 0 1
1 0 1 1 1 0 0 1 1 1 0 1 0 1 1 0
1 1 0 1 0 1 0 1 0 1 1 1 1 0 1 0
1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 0
1 1 1 1 0 0 1 1 1 1 1 1 1 0 1 0
1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 1




.
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problem size (CS) and subproblem sizes (SSi, i ∈ {1, 2, . . . , N}) can be computed using A. These
size metrics are proxies for the computational expense associated with solving the coordination problem
and subproblems, respectively. CS is the number of consistency constraints that must be solved in the
coordination problem and SSi is the size of the i-th subproblem.

A restricted growth string (RGS) [13] p of length m is used to specify a system partition. Analysis
function i belongs to the subproblem identified by the value of pi. Redundant representations of partitions
are avoided since, as an RGS, p must satisfy [13]:

p1 = 1 ∧ pi ≤ max{p1, p2, . . . , pi−1} + 1 (1)

The coordination decision model used here is restricted to subproblem sequence choice. A more so-
phisticated model that also includes consistency constraint allocation is under development. Subproblem
sequence is represented by os, a vector of length N where the value of osi is the evaluation position of
subproblem i, and osi $= osj , ∀ i, j ∈ {1, 2, . . . , N}.

A simultaneous approach to partitioning and coordination decision-making considers p and os to-
gether, rather than independently or in sequence, and can be formulated as a multiobjective optimization
problem:

min
p,os

{CS, SSmax}, (2)

where SSmax is the maximum subproblem size. Since specification of p and os are coupled tasks, a
simultaneous approach is required to obtain Pareto-optimal solutions to Eq. (2).

4. Evolutionary Algorithm
Evolutionary algorithms (EAs) seek to improve the ‘fitness’ of a population composed of candidate
problem solutions through two primary means: selection and variation [14]. A subset of the population
is chosen to produce the population for the next generation using variation operators. This process is
repeated until some termination criterion is met. EAs are particularly effective at searching very large
decision spaces and arriving at good, even if not optimal, solutions in a reasonable amount of time. EAs
handle multiobjective problems with little additional expense. The discrete decision space of Eq. (2)
is vast; the number of possible partitioning and coordination instances increases exponentially with m.
The partitioning and sequencing problems are themselves NP -complete and NP -hard, respectively. An
exact solution for the combined problem is possible only for very small systems. It is proposed here
that an EA tailored to the properties of the simultaneous partitioning and coordination problem is an
effective solution technique for systems of practical size.

In an EA each individual is abstractly represented by its chromosome, or genotype. The genotype
representation must be compatible with the variation operators used in the EA. Frequently the repre-
sentation of a candidate solution in the original problem statement, also called the phenotype, is not
suitable for use as a genotype representation. In this case an appropriate genotype space must be de-
fined along with a surjective mapping onto the phenotype space. Rather than devise variation operators
that apply directly to p and os, a genotype compatible with standard crossover and mutation variation
operators was developed.

Choice of genotype representation can strongly influence EA success. An ideal representation should
not increase problem difficulty, should enable variation operators to work properly, and should result
in a process that is robust to solution location [15]. To meet these requirements it is important that a
representation have good locality (i.e., small changes in the genotype space result in small changes in
the phenotype space) and little bias toward particular genotypes.

4.1. Partition Genotype Representation
Rather than attempt to define an effective variation operator to operate directly on restricted growth
strings, the system partition is represented in the genotype space using p̂, where p̂i ∈ {1, 2, . . . ,m}, i =
1, 2, . . . ,m. Note that the number of analysis functions m is the maximum possible number of subprob-
lems N . The vector p̂ defines a partition, although not uniquely. There exist mm possible ways to
assign values to p̂, while the number of unique partitions is the m-th Bell number Bm [13]. The ratio
µ = mm/Bm quantifies redundancy incurred by using p̂, and increases quickly with m. For a system of
size m = 6, µ = 229.83.

3

PhenotypeGenotype

Figure 6.5 Surjective mapping from genotype space to phenotype space
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6.2.3 Comparative Examples

The exact Pareto-optimal solutions for the three small example systems from Chapter 5
are compared here against results obtained using the EA described above. The first two
example systems are defined by the adjacency matrices A1 and A2 from Section 5.3. The
set of non-dominated points in the objective space identified by the EA was recorded for
each system. Figures 6.6 and 6.7 compare these points against the known Pareto points. In
System 1 the EA failed to identify two Pareto points, and two of non-dominated points were
not Pareto points. In System 2 three Pareto points were not identified. It appears that the
EA has difficulty identifying Pareto-optimal solutions with small SSmax (i.e., fine partitions).
This is unexpected given the representation bias toward fine partitions, and warrants deeper
study.
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Figure 6.6 EA results for first example system
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Figure 6.7 EA results for second example sys-
tem

The third example system corresponds to the electric water pump design problem
presented in Section 3.5; its analysis structure is defined by A3 from Section 5.4. Figure
6.8 illustrates that for this smaller system (m = 4), the EA successfully identified all four
Pareto-optimal solutions.

6.3 Generalized Truss Design Problem

A generalized formulation for a class of truss design optimization problems was presented in
Section 3.4. This section describes how it may be partitioned into subproblems, and presents
a specific truss design example. The P/C problem for this system is then solved using the
EA described above.
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Figure 6.8 EA results for third example system

6.3.1 System Partitioning

Partitioning analysis function associated with the truss design problem into subproblems
requires that we first define the meaning of an analysis function. Analysis functions can
either be based on truss joints or members. Choosing the latter, the responses of interest
for each member include its internal force, mass, stress, buckling criteria and state equation
residuals. The analysis function for member {i, j} computes these responses as functions
of radius, undeformed and deformed joint locations, reaction forces, and internal forces of
adjacent members:

[ fi j,Ωi j,σi j,bi j,∆i j] = aq(i, j)(ri j,ui,u j,di,d j,Ri,R j, f
i j
i , f i j

j ) (6.1)

The vector ∆i j contains the three residual values for the structural compatibility and joint
equilibrium state equations, which are constrained to be zero in Eq. (3.29). The function
q(i, j) maps the joint indices for member {i, j} to the index of the analysis function that
computes responses for that member. The two-dimensional vector f i j

i is the cumulative
force from adjacent members acting on member {i, j}:

f i j
i = ∑

{i,k}∈Ai\{i, j}
fik (6.2)

The truss member analysis functions follow the form ak(xk,yk) introduced earlier, where
k = q(i, j), xk = [ri j,ui,u j,di,d j,Ri,R j], and yk = [f i j

i , f i j
j ]. The coupling variables are

calculated using member force values and geometry information (Eqs. (3.27) and (6.2)).
Since fi j is the only analysis output required by other analysis functions, it is the only
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coupling variable, and is of prime interest when making partitioning and coordination
decisions for the partitioned truss design problem. All other analysis outputs are local
quantities.

These analysis functions can be clustered to form subproblems. If we use IDF-type
subproblem formulations, when members in different subproblems are connected at common
joints, the corresponding internal member forces are coupling variables between the sub-
problems. In addition, undeformed positions of common joints are shared decision variables.
Deformed locations and reaction forces for common joints are also shared variables since the
state variables di and Ri are treated as design variables. The objective function is additively
separable, enabling the formation of local subproblem objective functions that consist of the
mass of all members in a subproblem.

A wide variety of analysis structures and system sizes are available using this formulation
depending on truss size and topology, making Eq. (3.29) a suitable platform for testing the
performance of decomposition-based design optimization methods, as well as methods for
combined partition and coordination decision-making.

6.3.2 Example: Eight-bar Truss

An eight-bar truss problem with topology adopted from [62] was formulated, partitioned,
and solved for use in demonstrating the evolutionary algorithm on a system too large for an
exhaustive enumeration approach to making P/C decisions. This truss is illustrated in Fig.
6.9.
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Figure 6.9 Geometry and applied loads for the 8-bar truss problem

The member radii values are r = [r14,r24,r23,r34,r45,r35,r36,r56], the movable joint po-
sitions are m = [u4,u5], the deformed positions of non-ground joints are d̃ = [d3,d4,d5,d6],
and the reaction forces are R = [R1,R2]. The reduced adjacency matrix for this system
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design problem is:

A4 =

a r m d̃ R︷ ︸︸ ︷ ︷ ︸︸ ︷ ︷︸︸︷ ︷ ︸︸ ︷ ︷︸︸︷
aq(1,4) 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 1 0 0 1 0

aq(2,4) 1 0 1 1 1 0 0 0 0 1 0 0 0 0 0 0 1 0 0 1 0 0 0 1

aq(2,3) 0 1 0 1 0 1 1 0 0 0 1 0 0 0 0 0 0 0 1 0 0 0 0 1

aq(3,4) 1 1 1 0 1 1 1 0 0 0 0 1 0 0 0 0 1 0 1 1 0 0 0 0

aq(4,5) 1 1 0 1 0 1 0 1 0 0 0 0 1 0 0 0 1 1 0 1 1 0 0 0

aq(3,5) 0 0 1 1 1 0 1 1 0 0 0 0 0 1 0 0 0 1 1 0 1 0 0 0

aq(3,6) 0 0 1 1 0 1 0 1 0 0 0 0 0 0 1 0 0 0 1 0 0 1 0 0

aq(5,6) 0 0 0 0 1 1 1 0 0 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0

Observe that the submatrix formed by the first m = 8 rows and columns of A4 is
symmetric. This is true for any system defined using Eqs. (3.29) and (6.1) since internal
member forces are the only coupling variables. Even with this limitation a wide variety of
interesting system interaction patterns can be studied.

The design parameters used in this problem and the optimal geometry are given in
Table 6.2. The optimal mass is 1.80 kg; as expected, the stress constraints for the members
in tension ({2,3},{2,4},{3,5}, {3,6}) are active, and the buckling constraints for the
members in compression ({1,4},{3,4},{4,5}, {5,6}) are active.

Table 6.2 Design parameters and optimal geometry for the 8-bar truss problem
Design Parameters: Optimal Geometry:

ρ 7.80 ·103 kg/m3 d3 [300,300] mm r14 3.44 mm r36 1.33 mm
E 200 GPa d6 [600,300] mm r23 1.70 mm r45 2.74 mm
σallow 250 MPa F3 [0,−1000] N r24 1.10 mm r56 2.61 mm
d1 [0,0] mm F6 [0,−1000] N r34 2.50 mm u4 [232,108] mm
d2 [0,300] mm r35 0.83 mm u5 [434,180] mm

6.3.3 EA Results

The EA was used to solve Eq. (5.4) with the analysis structure defined by A4, and the
resulting non-dominated solutions are displayed in Fig. 6.10. The exact solution is un-
available due to system size, so the number of actual Pareto-optimal solutions identified
is unknown. The EA parameters were adjusted until the same best set of non-dominated
solutions was generated consistently over several runs. The approximate Pareto set illustrates
the CS–SSmax tradeoff for this system and indicates that this problem is a good candidate for
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partitioning since SSmax can be reduced by almost half before incurring much coordination
expense.
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Figure 6.10 Non-dominated solutions for 8-bar truss problem

Point 16 corresponds to a partition with only one subproblem (p = [1,1,1,1,1,1,1,1],
os = [1]) and has a large subproblem size (SS = 92) but no coordination expense. The
solution approach represented by point 16 is equivalent to solving Eq. (3.29) directly without
decomposition. Moving from point 16 to point 11 (p = [1,1,2,1,1,2,2,2], os = [2,1])
requires dividing the analysis functions into two subproblems and increases the coordination
problem size to 10, but reduces SSmax from 92 to 49. Moving from point 11 to point 6
(p = [1,2,2,1,3,4,4,4], os = [3,4,1,2]) also increases CS by 10, but only reduces SSmax by
20. Point 11 appears to be an appropriate choice since moving away from it leads to a sharp
increase in either CS or SSmax.

Point 1 (p = [1,2,3,4,5,6,7,7], os = [3,5,4,2,6,1,7]) has a partition size of N = 7 and
is the finest partition selected by the EA. Either reducing SSmax below 20 is unachievable by
choosing p = [1,2,3,4,5,6,7,8], or the EA failed to identify a Pareto-optimal solution with
a partition size of N = 8. The latter possibility is tenable given that the EA had difficulty
identifying low SSmax solutions in the comparative examples.

Although the EA cannot generate exact solutions, it provides valuable information for
assessing the suitability of a system for decomposition-based design optimization and for
making partitioning and coordination decisions. The sensitivity of a system design problem
to increased partition size can be visualized using CS–SSmax tradeoff data, and the EA
efficiently identifies (approximate) Pareto-optimal solutions.
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6.4 Concluding Comments

The optimal partitioning and coordination decision method of the previous chapter relied
on an exhaustive enumeration approach, which is limited to systems with no more than six
analysis functions. An evolutionary algorithm was developed for the solving the combined
partitioning and coordination decision problem. The results from this algorithm were com-
pared against exact solutions for small systems, demonstrating that a good approximation to
Pareto-optimal solutions can be obtained using the EA. A formulation for a truss structure
design with arbitrary size and topology was introduced as a test example. The EA success-
fully generated a set of approximate Pareto-optimal solutions for a truss design problem
with eight analysis functions. Experience indicates that problems with up to a few dozen
analysis functions may be solvable using this algorithm. Opportunity exists to analyze and
refine the algorithm so that it can manage even larger design problems, and possibly include
more sophisticated coordination decisions, such as the consistency constraint allocation
decisions discussed in the following chapter.
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Chapter 7

Consistency Constraint Allocation for Augmented
Lagrangian Coordination

The Augmented Lagrangian Coordination (ALC) formulation, presented in Section 4.3.4,
provides significant flexibility in problem linking structure. The way consistency constraints
are allocated among subproblems defines ALC linking structure. While the ability to tailor
linking structure to a particular problem can be a profound benefit, manually sifting through
the numerous options for linking structure is an overwhelming task. This chapter develops
the theory necessary to understand linking structure options for ALC, and shows how to
include linking structure decisions along with subproblem sequence decisions in an optimal
P/C decision approach for ALC. This is illustrated using a parallel version of ALC.

Techniques from constraint satisfaction programming are used to analyze linking struc-
ture for ALC. Graph theory is used to represent the structure of consistency constraints
in an ALC formulation. An undirected graph, called the consistency constraint graph, is
defined for every linking variable. It is shown that a set of consistency constraints for a
linking variable in ALC is valid if and only if the corresponding consistency constraint
graph is a spanning tree1. This important result means that set of all possible ALC linking
structure options for a system design problem can be defined, allowing the inclusion of
linking structure decisions in the optimal partitioning and coordination decision problem for
ALC. A method for solving this problem is described in detail, and demonstrated using the
electric water pump design problem from Section 3.5.1.

7.1 Parallel ALC

This section introduces a new approach to formulating ALC problems for parallel compu-
tations where the number of subproblems exceeds the number of processors. An example
system with six analysis functions is used to illustrate concepts:

1A graph is a spanning tree if it is connected and contains no cycles.
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a1(x1,y15), a2(x1), a3(x6,y32),
a4(x1,x2), a5(x2,x3,y52,y54), a6(x4,x5,y65)

The structure of this system can be visualized using a directed graph representation (Fig.
7.1), and compactly represented with its reduced adjacency matrix.

a1 a2 a3

a4

x1

x2 x3 x4

a5 a6

y15

y54

y52

y65

y32

x5

x6

Figure 7.1 Analysis function digraph for example system

The m× (n+m) reduced adjacency matrix for the above example is:

A =

a1 a2 a3 a4 a5 a6 x1 x2 x3 x4 x5 x6

a1 0 0 0 0 1 0 1 0 0 0 0 0
a2 0 0 0 0 0 0 1 0 0 0 0 0
a3 0 1 0 0 0 0 0 0 0 0 0 1
a4 0 0 0 0 0 0 1 1 0 0 0 0
a5 0 1 0 1 0 0 0 1 1 0 0 0
a6 0 0 0 0 1 0 0 0 0 1 1 0

The ALC coordination algorithm specifies when each subproblem is to be solved,
communicates values between subproblems, and updates penalty weights as needed. Coordi-
nation difficulty typically increases with the number of external linking variables [142]. The
coordination of ALC subproblems can be viewed as the solution to a system of nonlinear
equations where subproblems are optimal value functions and external linking variable
copies are the unknown quantities. The subproblem i input arguments are z̄i = [x̄si, ȳi],
and the outputs include updated values for x̄si and external coupling variables passed from
subproblem i to other subproblems (ȳ•i). The optimal value function for subproblem i is:

z̄•i = [x̄si, ȳ•i] = πi(z̄i) (7.1)

The structure of the coordination problem can be analyzed using a directed graph
where subproblems are represented by vertices, and the linking variables passed between
subproblems correspond to arcs. Partitioning the example system from Fig. 7.1 using
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p = [1,2,2,3,3,4] results in the subproblem graph depicted in Fig. 7.2.
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Figure 7.2 Subproblem graph

The shared variable superscripts indicate subproblem of origin. Figure 7.2 illustrates that
only one quantity must be passed for each coupling variable, while shared variables require
two. Original ALC formulations [141, 142] treat coupling variables as shared variables,
increasing both subproblem and coordination burden. Note that while subproblems 2 and 3
share x1, copies of x1 are not communicated between them. The reason for this arrangement
will be discussed at length in the next section. Figure 7.3 illustrates the subproblem graph
for this example in more compact form.
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π3 π4

z̄21

z̄12

z̄13 z̄31

z̄32

z̄43

Figure 7.3 Condensed subproblem graph

The ALC coordination algorithm requires an inner and outer loop. The inner loop solves
the system of equations formed by subproblem optimal value functions for the external
linking variable values. The system of equations to be solved is z̄ = π(z̄)S, where z̄ is the set
of all external linking variable copies, π = [π1,π2, . . . ,πN ] is the optimal value function for
all subproblems, and S is a selction matrix that matches the outputs of π to the components
of z̄. The outer loop computes new penalty weight values using inner loop results and the
method of multipliers.

An algorithm for solving systems of nonlinear equations is used for the inner loop
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problem. A typical approach is to apply fixed point iteration (i.e., nonlinear Gauss-Seidel) by
solving each subproblem in sequence, providing the most recent linking variable information
for each subproblem solution. Jacobi iteration may also be used to enable parallel solution
of all subproblems. If the number of processors available is insufficient for complete parallel
execution, block parallel Gauss-Seidel may be applied to blocks of subproblems sequenced
into stages. The assignment of subproblems into stages is specified by s, where the value of
si is the stage that subproblem i belongs to. The inner loop stages for the running example
system correspond to Fig. 7.4 if s = [1,1,2,2]. At each inner loop iteration subproblems 1
and 2 are solved in parallel using values for z̄12, z̄21, and z̄13 from the previous inner loop
iteration. The subproblems 3 and 4 are solved in parallel using z̄31 and z̄32 computed during
stage 1, and z̄43 from the previous inner loop iteration. Reducing the number of values
obtained from the previous iteration through clever stage assignments can help speed inner
loop convergence.

π1 π2

π3 π4

z̄21

z̄12

z̄13

z̄31

z̄32

z̄43

Stage 1

Stage 2

Figure 7.4 Stage graph

7.2 Linking Structure Analysis

One characteristic of formulations for decomposition-based design optimization that can be
used to make distinctions between types of formulations is linking structure, i.e., different
formulations allow specific approaches to structuring consistency constraints. Most methods
require a bi-level or multi-level hierarchical constraint structure. ALC is unique in the
flexibility it provides for consistency constraint structure, which enables potentially more
efficient implementations where linking structure is tailored to the problem at hand. While
flexibility is a beneficial feature, it may be difficult to manage. Early ALC approaches
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rely on bi-level or multi-level hierarchical structures to guide linking structure decisions.
Deciding between the numerous non-hierachical possibilities is a task beyond intuition for
all but the most simple systems. Optimization techniques can be effectively applied to this
task, resulting in superior ALC implementations. A deeper understanding of consistency
constraint structure is developed in this section using techniques from constraint satisfaction
programming. This section develops the theory required to provably identify the set of valid
consistency constraint allocation options for ALC, and the following section uses these
results to define a optimal partitioning and coordination decision problem for ALC with
linking structure considerations.

We will focus on consistency with respect to a single shared variable, z, that in general
could be external or internal. The language below is appropriate for the external case. A
system is consistent with respect to a linking variable when all pairs of linking variable
copies are consistent:

z(i) = z( j) ∀ i 6= j, i, j ∈ {1,2, . . . ,nz} (7.2)

where z(i) is the copy of z associated with subproblem i, and nz is the number of subproblems
that share z. The above statement implies nz(nz− 1) constraints are required to assure
consistency with respect to z. Since z(i) = z( j) is equivalent to z( j) = z(i), the number of
constraints can be reduced to nz(nz− 1)/2 by adopting the convention that the terms in
the constraint z(i) = z( j) are ordered such that i < j. It will be shown that certain subsets
of consistency constraints can ensure consistency of a linking variable, and that nz− 1
constraints is the minimum number required to ensure consistency. It will be demonstrated
that these minimal constraint sets are linearly independent, which is a requirement of the
augmented Lagrangian penalty method used in ALC.

7.2.1 Consistency Constraint Graphs

Montanari introduced the concept of using graphs to represent constraints sets, where
vertices correspond to variables and edges correspond to constraints on variables whose
vertices they connect [107]. These constraint graphs are helpful in analyzing constraint set
structure and developing solutions for constraint satisfaction problems [143], and along with
results from constraint programming provide a framework for understanding consistency
constraints in system optimization.

A binary constraint is a constraint on at most two variables, and a binary constraint graph
corresponds to a set of binary constraints [94]. The set of nz(nz−1)/2 binary consistency
constraints on a linking variable can be represented by the complete undirected graph Knz .
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An edge {i, j} represents the constraint z(i) = z( j), which can be expressed in negative null
form as z(i)− z( j) = 0. A convenient representation of this constraint is:

θi jz̃T = 0 (7.3)

where θi j is the constraint vector that corresponds to edge {i, j}, and z̃ is the vector of all nz

copies of the linking variable z. More precisely:

θi j = ei− e j (7.4)

z̃ =
[
z(1),z(2), . . . ,z(nz)

]
(7.5)

where ei is the ith unit vector of length nz. Two constraints are adjacent if their corresponding
constraint graph edges are adjacent (i.e., they share a common variable). A consistency
constraint graph Gc is defined as a subgraph of Knz that corresponds to a subset of the nz(nz−
1)/2 consistency constraints. The consistency constraint matrix Θ for Gc is composed of
all constraint vectors θi j that correspond to edges in Gc. The edges in Gc specify which
consistency constraints are to be used in an ALC solution process.

7.2.2 Valid Consistency Constraint Graphs

Not every possible consistency constraint graph is valid for use with ALC. A consistency
constraint graph is valid if its associated constraints are equivalent to the constraints specified
by Knz , and if the rows of the corresponding Θ are linearly independent. The first requirement
ensures complete consistency of the associated linking variable and the second is necessary
for the success of the augmented Lagrangian penalty method used in ALC. After the
development of preliminary concepts, necessary and sufficient conditions for the validity of
constraint graphs will be given.

Two sets of constraints are equivalent if their feasible domains are equal. The task of
finding reduced sets of constraints equivalent to some original set is known as problem
reduction. A constraint is redundant if its removal does not change the feasible domain of
a constraint set. The composition of adjacent constraints can induce implicit constraints.
A constraint is said to be explicit if its corresponding edge exists in Gc, and implicit if
it does not. Gc contains redundant constraints if any implicit constraints are identical to
either explicit constraints or other implicit constraints [143]. The properties of consistency
constraint graphs enable easy identification of implicit and redundant constraints for the
purpose of problem reduction. A consistency constraint graph is minimal if it specifies the
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fewest number of constraints required to ensure consistency.
Identification of implicit constraints requires application of a binary operator called

constraint composition that generates a new constraint from two adjacent constraints [94].

Definition Let γ1(i, j) and γ2( j,k) be two binary constraints with a common variable(
z( j)
)

corresponding to vertex j, and let their composition be γc(i,k). A binary constraint

composition is valid if values for z(i) and z(k) satisfy γc(i,k) if and only if there exists a value
of z( j) such that γ1(i, j) and γ2( j,k) are satisfied.

In a consistency constraint graph two constraints with a common variable can be com-
posed to form an implicit constraint by taking the vector sum of the corresponding constraint
vectors.

Proposition 7.2.1 The composition of the consistency constraints defined by θi j and θ jk

with the common variable z( j) is θik = θi j +θ jk = ei− e j + e j− ek = ei− ek.

Proof Let ai and ak be values for z(i) and z(k), respectively, such that θikz̃T = 0 is satisfied.
By definition of θik, ai = ak. By selecting a value a j for z( j) such that ai = a j = ak, the
constraints θi jz̃T = 0 and θ jkz̃T = 0 consequently are satisfied. Let bi, b j, and bk be values
for z(i), z( j), and z(k), respectively, that satisfy θi jz̃T = 0 and θ jkz̃T = 0. Since this satisfaction
implies bi = b j and b j = bk, bi = bk and the composed constraint θikz̃T = 0 is satisfied.
Therefore, θik = θi j +θ jk is a valid constraint composition.

A higher than binary constraint composition is defined by the recursive application of a
binary constraint composition. Binary consistency constraints that share a common variable
have corresponding edges that are incident to the common variable vertex. At each stage of
recursive composition a new edge can be included in the composition if it has a common
vertex with the implicit edge generated by the intermediate composition. This occurs when
all edges in a set to be composed lie in a connected path on Gc. Suppose pi j is a connected
path of length m between the vertices i and j defined by the sequence of unique vertices
〈v1,v2, . . . ,vm,vm+1〉 where v1 = i and vm+1 = j. The constraint vector resulting from the
extended composition of edges in pi j is θi j = ∑{k,l}∈pi j θkl = ei− e j.

Proposition 7.2.2 A constraint defined by θi j, whether implicit or explicit, can be obtained

through composition if and only if a path pi j exists in Gc.
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Proof If a path pi j exists in Gc, extended constraint composition can be applied to obtain
θi j:

θi j = ∑
{k,l}∈pi j

θkl

= ev1− ev2 + ev2− ev3 + . . .+ evm− evm+1

=
m

∑
k=1

evk−
m+1

∑
k=2

evk (7.6)

= ev1 +
m

∑
k=2

evk−
m

∑
k=2

evk− evm+1

= ev1− evm+1 = ei− e j

If a path pi j does not exist in Gc, then at least one edge {k, l} in every possible set of
constraint edges will be pendant2. If k is the pendant vertex, θkl will contribute ek to the
constraint composition. Since only edge {k, l} is adjacent to k, no constraint vector in the
composition can annihilate ek. The case for l pendant is similar. Therefore, θi j = ei− e j

cannot be obtained if pi j does not exist in Gc.

Extended constraint composition leads to a necessary condition for the equivalence
of Knz and Gc. If a consistency constraint graph can be shown to be equivalent to Knz its
set of associated constraints will ensure complete consistency for the linking variable in
consideration.

Proposition 7.2.3 A consistency constraint graph Gc is equivalent to Knz if and only if Gc

is connected.

Proof If Gc is equivalent to Knz , Gc specifies either an explicit or an implicit edge for every
constraint associated with Knz . Therefore, a path must exist between every pair of vertices,
and Gc is connected. If Gc is connected, a path exists between every pair of vertices and a
constraint exists between every pair of vertices in Gc, and the effective constraint sets and
feasible domains of Gc and Knz are identical.

A consistency constraint graph is therefore minimal if it is connecting the required
vertices using the fewest possible number of edges. By definition, a spanning tree uses the
minimum number of edges (nz−1) to ensure a graph is connected.

Corollary 7.2.4 A consistency constraint graph is minimal if and only if it is a spanning

tree of Knz .
2A vertex is pendant if its degree is one, i.e., it is adjacent to exactly one other vertex. An edge is pendant

if it is incident to a pendent vertex.
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If Gc is connected and uses more than nz−1 edges, then a cycle exists, and more than
one path connects at least one pair of vertices. Such a graph is not minimal since at least
one redundant constraint exists that could be removed. Since any consistency constraint
can be composed through a composition of explicit constraints if Gc is connected, the set of
explicit constraints corresponding to a minimally connected Gc can be viewed as a basis for
the constraints in Knz . The constraint vectors in this set are in fact linearly independent, so
indeed form a basis.

Proposition 7.2.5 The constraint vectors corresponding to explicit edges in Gc are linearly

independent if and only if Gc is acyclic.

Proof If Gc is acyclic, at most one path exists between any pair of vertices. Therefore, if a
constraint vector θi j can be obtained, either θi j is a column of Θ and edge {i, j} exists in
Gc, or a unique path pi j with length greater than 1 exists such that θi j can be induced. If θi j

is a column of Θ, edge {i, j} is the only path pi j, and no composition of other constraints
will yield θi j. Since this is true for all explicit constraints, the columns of Θ are linearly
independent. If Gc contains a cycle C, then two adjacent vertices on C (i and j) have at least
two paths between them: the edge {i, j} and C\{i, j}. Therefore θi j is an explicit constraint
that can be obtained through composition of other explicit constraints, and the columns of
Θ are not linearly independent.

Corollary 7.2.6 If Gc is minimal it is an acyclic spanning tree, and therefore has a linearly

independent set of explicit consistency constraints.

The independence properties of spanning trees are generalizable. If I is the set of all
spanning trees of a graph G and their power sets, and E is the set of all edges of G, (E,I )
is the cycle matroid of G. The maximal sets in I are bases, and I coincides with the
sets of linearly independent columns of the incidence matrix of G [109]. Another result
of Proposition 7.2.5 is that the set of all constraint vectors on a linking variable and all
linearly independent sets of these vectors form a vector matroid that corresponds to the
cycle matroid of Knz . The favorable properties of binary consistency constraints enable not
only the straightforward identification of valid constraint sets, but also open the door to
increased understanding of consistency constraints due to their link to spanning trees and
cycle matroids.

The foregoing propositions lead to the main result of this section:

Proposition 7.2.7 Gc is a valid consistency constraint graph if and only if Gc is a spanning

tree of Kn.
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Proof If Gc is valid, the columns of Θ are linearly independent, and by Proposition 7.2.5
Gc is acyclic. It also follows from the the validity of Gc that consistency is assured, i.e., Gc is
equivalent to Kn. By Proposition 7.2.3 Gc is connected, and it follows that Gc is a spanning
tree of Kn. Conversely, if Gc is a spanning tree of Kn, Gc is connected and acyclic. It follows
from Propositions 7.2.3 and 7.2.5 that Gc ensures consistency and linear independence of
constraints. Therefore, Gc is valid.

This result means that the set of consistency constraint allocation options for a linking
variable z associated with nz subproblems is defined by the set of all possible spanning trees
for the complete graph Knz . These trees may be represented easily and algorithms exist for
their enumerations. This makes inclusion of linking structure options in the optimal P/C
decision problem for ALC practical.

7.2.3 Example Consistency Constraint Graph

The consistency constraint graph for x1 from the example system in Fig. 7.1 is used here
to demonstrate valid consistency constraint options and their graph representations. When
the partition p = [1,2,2,3,3,4] is used, x1 is shared between subproblems 1, 2, and 3. The
three available consistency constraints are displayed in Fig. 7.5(a) alongside graph edges
that represent these constraints. One possible valid consistency constraint graph is shown in
Fig. 7.5(b). The vector of x1 copies is:

z̃ =
[
x(1)

1 ,x(2)
1 ,x(3)

1

]
(7.7)

and the linearly independent consistency constraint matrix for x1 that corresponds to the
edge set {〈1,2〉,〈1,3〉} shown in Fig. 7.5(b) is:

Θ =

[
θ12

θ13

]
=

[
1 −1 0
1 0 −1

]
(7.8)

7.3 Optimal Partitioning and Coordination Decisions for
Parallel ALC

The previous section demonstrated that the set of consistency constraints used for a linking
variable must connect associated subproblems using a tree structure to meet ALC require-
ments for convergence and system consistency, namely, that consistency constraints are
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Figure 7.5 Graph represtenation of consistency constraint options for x1

linearly independent and ensure all linking variable copies are consistent. Determining con-
sistency constraint structure for every linking variable is an important coordination decision,
and influences the computational expense and reliability of an ALC implementation. If υi is
the number of subproblems linked by the i-th external linking variable, then the number of
valid options for allocating consistency constraints for this variable is the number of unique
spanning trees for a graph with υi vertices, or υ

υi−2
i . If nz is the number of external linking

variables in a problem, then υ
υ1−2
1 ·υυ1−2

1 · . . . ·υυnz−1−2
nz−1 ·υυnz−2

nz is the number of alternative
linking structure options for a problem with a given system partition. Including linking
structure in a coordination decision model dramatically increases the decision space.

The number of linking structure alternatives in a problem can be reduced by exploiting
the natural structure present in coupling variable relationships. An analysis function output
that is a coupling variable may be communicated to one or more analysis functions. All
analysis functions receiving this coupling variable as input link directly to the analysis
function that computes the coupling variable; this structure forms a star graph, which is
a spanning tree. While it is possible to use other trees for coupling variable consistency
constraints, we assume here that the naturally occurring star graph is the consistency
constraint graph used for each coupling variable. This reduces the number of trees that must
be determined to the number of shared design variables.

The metrics used in the optimal P/C problem of Eq. (5.4) will not work for solving the
optimal P/C problem for ALC with linking structure decisions. New metrics must be defined
that can account for the parallel nature of the problem implementations, as well as allowing
for linking structure decisions. The new approximation for relative coordination problem
expense is based on the assumption that the block parallel Gauss-Seidel algorithm converges
faster when linking variables input to subproblems are recently computed. In other words, if
inputs to an optimal value functions were computed long before the function is evaluated,
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convergence is slowed. Jacobi iteration is one extreme where all input data is from the
previous iteration. Sequential Gauss-Seidel (FPI) uses the most recently available data. FPI
is known to converge faster than Jacobi iteration for linear systems [21]. These arguments do
not always extend to nonlinear systems, but are assumed to be a reasonable approximation
to enable a priori P/C decisions based on a system’s reduced adjacency matrix.

Once a system partition is defined, the subproblem graph can be constructed that
describes external linking variable relationships. along with its associated adjacency matrix.
Ā is defined to be the N×N valued adjacency matrix for the subproblem graph in Fig.
7.3, where each entry indicates the dimension of the corresponding linking variable. The
estimate for coordination expense here is:

CS =
N

∑
i=1

N

∑
j=1

ζi jĀi j

The value of ζi j quantifies how many stages previous to the evaluation of Pi the linking
variables z̄i j were computed. CS not only quantifies the number of linking variables in
the coordination problem, but accounts for the length of time between linking variable
calculation and use as an input. The metric ζi j is defined as follows:

ζi j =

{
si− s j if si > s j

ns + si− s j if si ≤ s j

where ns = max(s) is the stage depth (i.e., the number of stages in the implementation). The
metric used here for quantifying subproblem sizes is more precise than the metric presented
in Eq. (5.2) because the exact number of consistency constraints and decision variables in an
ALC subproblem formulation are used. The previous metric made an approximation since
linking structure information was not available. The size of the optimization problem for
subproblem i used here is:

SSi = (nx̄si +nx`i +nyi +nȳIi)
+(nx̄sci +nyi +nȳi)
+(nai)

The first four terms comprise the number of decision variables in subproblem i. The
number of external shared variables associated with subproblem i is nx̄si, the number of local
variables is nx`i, the number of internal coupling variables is nyi, and the number of external
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input coupling variables is nȳIi. The next three terms express the number of consistency
constraints in subproblem i. The number of consistency constraints for external shared
variables is nx̄sci, the number of internal coupling variable consistency constraints is equal to
nyi, and the number of consistency constraints for external coupling variables is equal to nȳi.
The last term is the number of analysis functions (nai). The maximum subproblem size for
each stage is computed, and S̄Smax is the average of the maximum subproblem sizes.

The optimal P/C decision problem for parallel ALC with linking structure considerations
is to simultaneously minimize CS and S̄Smax by selecting a system partition p, subproblem
stage assignment s, and a valid consistency constraint graph for each external shared design
variable. The partition vector is defined as before. The i-th component of (s) is the stage
that subproblem i is assigned to. External coupling variable consistency constraints are
allocated according to the natural structure of each coupling variable. The length of the
vector s is N, which depends on p. This complication is easily handled when the optimal
P/C decision problem is solved with exhaustive enumeration. Section 6.2 illustrated how to
manage this type of dependence when using an evolutionary algorithm. The linking structure
decisions also depend on p. System partition changes the set of external shared design
variables, and the subproblems associated with each external shared design variable. As
with stage assignment, linking structure can be handled with either exhaustive enumeration
or an evolutionary algorithm. A set-valued decision variable C is defined to represent
problem linking structure. The cardinality of C is equal to the number of external shared
design variables in a problem with a given partition. Each member of this set defines the
consistency constraint graph for one of the shared variables. One approach to representing
a consistency constraint graph, which must be a spanning tree, is with an edge set. For
example, the variable x1 in Fig. 7.2 is shared between P1, P2, and P3, but the constraints
on x1 appear only in c̄12 and c̄13, which are the consistency constraints connecting P1 with
P2 and P1 with P3, respectively. The edge set corresponding to these constraints for x1 is
{〈1,2〉,〈1,3〉}. The optimal P/C problem is:

min
p,s,C

{CS, S̄Smax} (7.9)

Specifying p, s, and C defines completely a parallel ALC partition, coordination al-
gorithm, and set of subproblem formulations. The number of P/C alternatives increases
more quickly with problem size for this approach than without linking structure decisions.
Exhaustive enumeration is only practical for systems with up to four analysis functions.
Alternative solution techniques, such as evolutionary algorithms, must be employed for
larger systems.
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7.4 Example: Electric Water Pump Design Problem

The P/C decision method for ALC described above, which includes both stage assignment
and linking structure decisions in the coordination decision problem, was applied to the
electric water pump design problem from Section 3.5.1. This design problem has 9295
unique P/C alternatives, and two Pareto-optimal points were identified. All instances are
displayed in the CS–S̄Smax space in Fig. 7.6, and all partitioning and stage assignment
options that correspond to these points are shown.
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Figure 7.6 ALC P/C results for electric water pump problem

Point 1:
Two P/C decision instances correspond to point 1 in Fig. 7.6, and all share the same

partition and problem size metrics:

CS = 2
S̄Smax = 11

p = [1,1,1,2]

Neither instance has any shared design variables, but can be distinguished by subproblem
stage assignment:

Instance 1: s = [1,2]

Instance 2: s = [2,1]
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Point 2:
Point 2 represents the IDF formulation for the electric water pump problem, where

CS = 0 and S̄Smax = 20. Note that numerous P/C instances exist with larger subproblem
sizes and nonzero coordination problem sizes. These points represent especially poor options
for constructing an ALC formulation of the electric water pump problem. Note that moving
from point 2 to point 1 reduces S̄Smax from 20 to 11, and requires a coordination problem
size of just 2. This result is congruent with the analysis from Chapter 5 that indicates this
design problem is a good candidate for decomposition-based design optimization.

Point 3:
A third point, not in the Pareto set, is examined for illustrative purposes. Point 3

corresponds to twelve unique P/C instances, all with the same partition and problem size
metrics:

CS = 30
S̄Smax = 18

p = [1,2,3,2]

All twelve instances have the same set of external shared design variables:

{x1,x2,x3,x4,x5}

The first four are shared between three subproblems, so several options exist for allocating
the consistency constraints for these five variables. One possible set of valid consistency
constraint graphs is shown in Fig. 7.7.

The twelve instances that correspond to point 3 are distinguished by consistency con-
straint allocation and stage assignment. The two stage assignments that appear here are:

Instances 1–6: s = [1,1,2]

Instances 7–12: s = [2,2,1]

These stage assignments are illustrated in Fig. 7.6, and both specify parallel solution
of subproblems 1 and 2. No Pareto-optimal P/C instances specify parallel subproblem
solution. This is due to both problem structure and the problem size metrics selected. Only
CS penalizes stage depth (i.e., the number of stages in a parallel implementation). Other
size metrics have been explored, such as the sum of all maximum subproblem sizes for
each stage (∑SSmax). This metric penalizes stage depth, and when employed along with CS,
the resulting Pareto set contains only single-stage P/C alternatives. An ideal metric would
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Figure 7.7 Consistency constraint allocation option for point 3

be an accurate estimate of computational expense. Since this is impractical to compute a
priori for most problems, approximate metrics must be used. This work has established an
approach for constructing implementations of decomposition-based design optimization,
and one possible set of metrics has been proposed (i.e., CS and S̄Smax). These approximate
two competing sources of computational expense: coordination problem and subproblem
expense. Further work should be performed to analyze these and other objective function
options.

7.5 Concluding Comments

This chapter introduced a new formulation technique for parallel ALC implementations,
which was then used as a platform to study linking structure decisions. ALC linking structure
is defined by the way consistency constraints on linking variables are allocated throughout
a system design problem. Graph theory and techniques from constraint satisfaction pro-
gramming were used to identify valid consistency constraint allocation options for ALC.
This development enabled inclusion of linking structure decisions with the optimal P/C
decision problem for ALC. The decision problem, defined in Eq. (7.9), was solved for the
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electric water pump design problem. Opportunities for future work include an investigation
of alternative problem size metrics. In the following chapter a detailed electric vehicle
design problem is developed, and the solution to the optimal P/C decision problem for the
electric vehicle problem is presented.
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Chapter 8

Electric Vehicle Design

In this chapter a design problem and corresponding analysis model are developed for a small
battery electric vehicle (EV) to demonstrate optimal partitioning and coordination decisions
for an engineering system design problem that is more involved than examples presented
previously.

The vehicle of interest is a small two-passenger EV intended primarily for urban travel,
but capable of highway speeds. The problem objective is to specify the design of powertrain,
suspension, and structural systems such that the energy consumed during urban travel is
minimized, subject to vehicle performance constraints, including acceleration and range
requirements. Figure 8.1 illustrates the vehicle subsystems considered here. Several analysis
interactions are included in the vehicle model, such as the influence of component mass and
location on vehicle dynamics, and the coupling between powertrain and vehicle dynamics.

This chapter describes in detail the vehicle analysis functions and AiO and ALC design
formulations. Optimal partitioning and coordination decisions for parallel ALC solution of
the EV problem are then presented.

ChassisPowertrain

Structure

Figure 8.1 Vehicle systems and interactions in the EV design problem
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8.1 Vehicle Description

Battery electric vehicles use chemical energy stored in rechargeable batteries as the sole
power source to provide locomotion via one or more electric motors, whereas conventional
automobiles utilize internal combustion (IC) engines directly coupled to the vehicle drive
train, and hybrid electric vehicles (HEVs) employ both electric motors and internal combus-
tion engines. As with HEVs, EVs can recover energy during braking by using drive motor(s)
as generators. This energy is lost as waste heat in conventional vehicles, but can be stored
for future use in EVs and HEVs. HEVs offer improved fuel economy over conventional
vehicles, but at increased complexity and cost. EVs are mechanically more simple than
HEVs or conventional vehicles, with very few moving parts, and provide very high levels of
energy efficiency [33]. The primary challenge in EV design is the energy storage system;
current battery technology does not enable EV range comparable to HEVs or conventional
vehicles. While EVs without some type of range extender (such as a genset trailer [58]) are
impractical for long-distance travel, they have great utility for short to medium distance
excursions. The EV discussed in this chapter has a range of at least 100 miles (161 km),
which is long enough to satisfy the needs of more than 95% of light-duty vehicle trips taken
in 2001 [44]. This chapter introduces an integrated approach to EV design; simultaneous
consideration of major vehicle systems enables analysis of subsystem interactions and
tradeoffs, and can aid efforts in enhancing EV performance to improve energy efficiency
and competitiveness with HEVs and conventional vehicles.

The EV under consideration here is a two-seat vehicle intended primarily for urban
travel, but capable of highway operation. Figure 8.2 shows a top view of major vehicle
components and dimensions. Each rear wheel is driven by an electric traction motor; a
synchronous belt provides speed reduction between each motor and rear wheel. The motors
are mounted on the rear suspension trailing arms, but are located near the trailing arm
pivots to help minimize unsprung vehicle mass. The front suspension is a Macpherson strut
configuration. The low rolling resistance P145/70R12 tires help reduce energy consumption.
The vehicle belongs to the minicompact vehicle class, and has a track width of W = 1.27
m and a wheelbase of L = 1.80 m. The lithium ion battery width (bw), length (b`), and
longitudinal position (xb) all vary in this design problem, but the battery must fit in the space
indicated by the dashed box of width bwmax = 1.20 m and length b`max = 1.05 m. The size
and location of the battery has profound influence over vehicle dynamics performance. The
coordinate system used in this model is illustrated in the figure.

In recent years great emphasis has been placed on the development of HEVs, and
increasingly, EVs. These new vehicle configurations present substantial design challenges.
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Figure 8.2 Top view of EV component layout

All vehicles are complex systems with numerous interactions. A large experience base
and associated design rules are available to aid the development of conventional vehicles.
HEVs and EVs lack this advantage, but more sophisticated design techniques to analyze and
explicitly account for interactions can help compensate and support successful design of
these new vehicles. An integrated vehicle design approach is required that simultaneously
considers multiple vehicle subsystems and models the influence each subsystem has on the
others.

An EV design model is presented in this chapter that demonstrates one approach to
integrated vehicle design. Several important interactions are included in the model; they are
illustrated in Fig. 8.3. The model consists of four analysis functions: powertrain analysis
(a1), vehicle dynamics (a2), structural analysis (a3), and packaging and mass distribution
analysis (a4). The powertrain analysis predicts energy consumption, range, and acceleration,
and requires vehicle mass and inertia properties as input. The vehicle dynamics analysis
calculates metrics for passenger comfort, handling, and suspension working space, and
also uses vehicle mass and inertia properties. The dashed line between powertrain and
vehicle dynamics functions indicates the presence of shared design variables between these
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functions. The powertrain analysis includes dynamic coupling between the powertrain
and vehicle suspension, and requires suspension design variables as input. The structural
analysis computes frame stress and deflection under bending and torsion loads, and requires
suspension forces and battery properties as input. The packaging and mass distribution
function takes in physical properties of the other vehicle systems, computes overall vehicle
mass and inertia properties, and evaluates packaging criteria. Many other interactions and
subsystems could be considered; this design model is a foundational effort for integrated
vehicle design, and serves as a starting point for more sophisticated future efforts.
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Figure 8.3 Relationships between analysis functions in the EV design problem

With the exception of the finite element model used for the structural analysis, the models
for each of the analysis functions were independently developed. Current commercial CAE
software do not support vehicle design efforts with the level of vehicle system integration
required for this case study. Full control over models enabled the development of a design
problem that allowed for management of the desired shared and coupling variables.

The powertrain, vehicle dynamics, structural, and packaging and mass distribution
analysis functions are:

[bm,bw,b`,mpge,τV ,ωV ,PV , t60,R,Cb] =

a1 (ms,h, `1, Iy,ks,cs, pr, `s,rm,nc,Rr,bI,bW ,bL) (8.1a)

[Fs,Ds, tr,δW ,Ft ,az] = a2 (ms, `1, Iz,ks,cs) (8.1b)[
l f ,h f ,m f , Iy f , Iz f ,σ f b,σ f t ,Kb,Kt

]
= a3

(
Fs,bm,bw,b`,d f , t f

)
(8.1c)[

ms, `1,h, Iy, Iz,gp1,gp2
]
= a4

(
l f r,h f ,m f , Iy f , Iz f ,bm,bw,b`,xb

)
(8.1d)

The design variables that appear in Eqs. (8.1) are described in Table 8.1 along with their
lower and upper bounds, and the coupling variables are listed in Table 8.2. These quantities
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are described in more detail in subsequent sections. The remaining quantities that appear
in Eqs. (8.1), but not in Tables 8.1 or 8.2, are design objectives or constraints, and will be
described with the design problem formulation.

Table 8.1 EV design variables
variable lower bnd. upper bnd. description
x1 = ks 5000 27,000 suspension stiffness per wheel (N/m)
x2 = cs 1500 4000 suspension damping rate per wheel (Ns/m)
x3 = pr 0.60 4.50 powertrain speed reduction ratio
x4 = `s 0.050 0.20 electric motor rotor axial length (m)
x5 = rm 0.09 0.13 electric motor rotor radius (m)
x6 = nc 8 22 electric motor winding turns per coil
x7 = Rr 0.05 0.20 electric motor rotor resistance (Ω)
x8 = bI 0.70 2.0 battery electrode thickness scale
x9 = bW 0.50 2.75 battery electrode width scale
x10 = bL 15 30 number of battery cell windings
x11 = d f 0.010 0.060 frame member diameter (m)
x12 = t f 0.00075 0.002 frame member wall thickness (m)
x13 = xb 0.0 0.50 longitudinal battery location (m)

Table 8.2 EV coupling variables
ms sprung vehicle mass (kg)
h height of sprung mass center above ground (m)
`1 distance between front axle and sprung mass center (m)
Iy sprung mass pitch moment of inertia (kg-m2)
Iz sprung mass yaw moment of inertia (kg-m2)
bm battery mass (kg)
bw battery width (m)
b` battery length (m)
Fs maximum suspension force (N)
m f frame mass (kg)
h f height of frame mass center above ground (m)
` f distance between front axle and frame mass center (m)
Iy f frame mass pitch moment of inertia (kg-m2)
Iz f frame mass yaw moment of inertia (kg-m2)

The relationships between the analysis functions for the EV problem are summarized in
its reduced adjacency matrix:

A5 =

 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1


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The EV design problem is to determine motor, battery, and frame geometry, as well
as suspension parameters such that average energy consumption during urban travel is
minimized, subject to constraints on acceleration performance, battery and motor feasibil-
ity, vehicle range, passenger comfort, handling, frame rigidity and stress, and packaging
requirements. The MDF formulation is:

min
x

1/mpge

subject to g1 = τV ≤ 0

g2 = ωV ≤ 0

g3 = t60− t60max ≤ 0

g4 = Rmin−R≤ 0

g5 = PV ≤ 0

g6 = Cb−Cbmax ≤ 0

g7 =−Ds ≤ 0

g8 = tr− trmax ≤ 0

g9 = δW −δWmax ≤ 0 (8.2)

g10 = Ftmin−Ft ≤ 0

g11 = az−azmax ≤ 0

g12 = d f − t f /2≤ 0

g13 = σ f b−σY ≤ 0

g14 = σ f t−σY ≤ 0

g15 = Kbmin−Kb ≤ 0

g16 = Ktmin−Kt ≤ 0

g17 = gp1 = bw−bwmax ≤ 0

g18 = gp2 = xb +b`−b`max ≤ 0

The objective function and the first six design constraints are computed by the powertrain
analysis function. The objective is to minimize the average electrical energy consumed per
mile, expressed as 1/mpge, where mpge is the average number of miles the EV can travel on
the electrical energy equivalent of one gallon of gasoline under urban driving conditions. A
grid-to-wheels measure of electrical energy is used so that it can be compared to the familiar
tank-to-wheels fuel economy metric of miles per gallon for conventional vehicles. The first
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two constraints, motor torque and speed violation metrics, ensure that the electric motor is
capable of powering the EV through the desired drive cycle without exceeding torque or
speed limitations. The third constraint ensures adequate acceleration performance from 0
to 60 miles per hour (26.8 m/s). The fourth constraint requires the vehicle urban driving
range R to achieve a minimum value without risking battery damage, and the fifth constraint
requires that the battery power capacity is adequate to supply power needs throughout the
driving and acceleration simulations. The sixth constraint is an upper bound on battery
capacity Cb, set as an indirect cost constraint. It was found that EV geometry and dynamics
allowed for a large enough battery to provide a range of several hundred miles, but the cost
of such a large battery was prohibitive. Limiting battery capacity curbs battery expense.

The constraints g7 – g11 are computed by the vehicle dynamics analysis function. Ds is
a measure of directional stability, and must be greater than zero. The rise time for a step
steering maneuver is tr, and it should be kept below trmax to ensure a responsive steering
system. The working space, or rattle space, of the suspension is δW , and must be less than
δWmax due to kinematic suspension limitations. The minimum tire contact force is Ft ; it
must be positive for model validity, and Ftmin may be set to a positive force value as a
roadholding requirement. The root mean square power spectral density of the sprung mass
vertical acceleration while traveling over a moderately rough road is az, and limiting this
value helps improve passenger comfort.

The constraints g12 – g16 are evaluated by the structural analysis function. The first
constraint ensures geometric compatibility of the frame members, and the next two ensure
structural integrity of the frame during bending and torsion tests. Constraints g15 and g16

require that the frame achieves a certain level of bending and torsional stiffness.
The final two constraints are calculated by the packaging and mass distribution function,

and relate to battery packaging. It is assumed that the battery is centered laterally on the
vehicle, and that there is no room for vertical battery location adjustment. The ‘battery box’
is the volume within the vehicle, shown by the dashed lines in Fig. 8.2, that the battery must
be contained in. Constraint g17 requires that the battery does not exceed the lateral bounds
of the battery box, and g18 requires that the battery stays within the longitudinal bounds.

The constraints in the MDF formulation use several parameters; the values for these
quantities are listed in Table 8.3. Initial optimization studies have identified feasible vehicle
designs with urban equivalent fuel economy values of up to 190 mpge, including air condi-
tioning and other accessory power loads. Solution of the AiO and partitioned EV design
problems is part of ongoing work.
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8.2 Powertrain Model

The powertrain model predicts vehicle range, acceleration, and energy efficiency over a
given drive cycle. A detailed electric motor model is used that characterizes a motor based
on geometric design variables. A backward-looking SimulinkTMmodel was developed to
simulate powertrain performance. This model incorporates the motor model, an empirical
tire model, a detailed lithium-ion battery model, and a pitch-plane vehicle dynamics model
that captures dynamic interactions between powertrain and chassis. Figure 8.4 provides a
simplified overview of the powertrain model.
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Figure 8.4 Simplified overview of EV powertrain model

At each time step of the powertrain simulation the longitudinal vehicle velocity v(t)
is obtained from a specified drive cycle. The simplified urban drive schedule (SFUDS) is
the drive cycle used here [90]. The vehicle model then computes the electric motor torque
τ(t) and speed ω(t) required to achieve the prescribed vehicle velocity, accounting for
aerodynamic drag, tire slip and rolling resistance, and dynamic interaction between the
powertrain and vehicle pitch motion. These motor torque and speed values are then used
with a static power loss map to determine the electric power P(t) that must be supplied to

Table 8.3 EV design constraint parameters
t60max 10.0 sec maximum 0-60 acceleration time
Rmin 100 miles (161 km) minimum urban range
Cbmax 250 Ah maximum battery capacity
trmax 1.25 sec maximum step steer rise time
δWmax 0.16 m maximum working space
Ftmin 0.0 N minimum tire contact force
azmax 0.80 g maximum discomfort metric
σY 350 MPa frame yield stress
Kbmin 6,000 kN/m minimum frame bending stiffness
Ktmin 12,000 Nm/deg maximum frame torsional stiffness
bwmax 1.20 m maximum battery width
b`max 1.05 m maximum battery length

147



the motor power inverter by the battery. The motor power loss map is constructed by an
induction motor model that depends on geometric motor design variables. The battery model
accounts for the dynamic effects of the power demand P(t), and computes the state of charge
and the maximum charge and discharge power levels at each time point. The battery state at
the end of the driving simulation is then used as a starting point for the charging simulation,
which predicts the total energy required to recharge the battery back to its original state. This
grid-to-wheels energy consumption is used to calculate fuel economy, which is the objective
function for the EV design problem. Since there is no feedback between the battery and
vehicle simulations, the battery simulation can be executed after the vehicle simulation is
complete. This decoupled approach reduces simulation time significantly.

8.2.1 Vehicle Model

Figure 8.5 illustrates the components of the vehicle portion of the powertrain model. This
model computes the motor torque and speed required to achieve the desired vehicle velocity
and acceleration at each time step. Each component of this model is detailed below.

v(t) Frx(t)

Net Longitudinal
Force

Aero Drag Force

Fa(t)

Vehicle Pitch Model

Ffz(t)

Frz(t)

Tire Drag Model

+ Frt(t)

Fft(t)

Rear Tire Slip Model

ωr(t)

Net Drive Torque

τr(t)

Belt Model

1/2

Single Wheel Torque

τm(t)

Motor Inertia Model

τb(t)

ωm(t)

Belt Model

Motor Power Loss 
Map

P (t)

Figure 8.5 Block diagram of dynamic vehicle model

The SFUDS velocity profile used here is similar to the federal urban drive schedule
(FUDS) used in U.S. urban fuel economy estimates, but lasts for only 360 seconds, whereas
FUDS lasts for 1500 seconds. These two cycles have the same average speed and maximum
acceleration and braking values [90]. The SFUDS profile, illustrated in Fig. 8.6, is used to
assess EV range and vehicle energy consumption over that range.
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Figure 8.6 Simplified federal urban drive schedule

The powertrain model also evaluates the time required for the vehicle to accelerate from
zero mph to sixty mph (t60). A forward-looking version of the vehicle model is used to
compute the acceleration time. As this simulation progresses the motor provides maximum
available torque (which depends on motor speed), starting at zero velocity until the vehicle
reaches sixty mph (26.8 m/sec). The simulation time is recorded, as well as the power
consumption to determine if the battery can meet power needs for this acceleration test.

Aerodynamic Drag Model
The aerodynamic drag force Fa is computed as a function of longitudinal velocity, given

by Eq. (8.3). The frontal area A f and drag coefficient Cd are fixed parameters since the
exterior vehicle dimensions do not change in this design problem. The density of air is ρa.

Fa =
1
2

CdρaA f v2 (8.3)

Net Longitudinal Force
The net longitudinal force Frx required to move the vehicle at the desired velocity is

computed using a simple point-mass model, shown in Eq. (8.4).

Frx = mv̇+Ft +Fa (8.4)
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The total mass of the vehicle (m) is the sum of the sprung mass (ms) and unsprung mass
(mus). Sprung mass includes all vehicle components completely supported by the suspension;
unsprung mass includes components that move with the suspension. The force required
to move the tires at the desired velocity profile is Ft , which includes rolling resistance and
rotational inertia effects. Ft is composed of front and rear resistance terms:

Ft = Ff t +Frt

Net Drive Torque
The net drive torque model calculates the torque that must be supplied by the electric

motors to the rear wheels to match the desired velocity profile.

τr = rt(v)Frx (8.5)

The dynamic loaded radius of the tires rt(v) depends on the vehicle longitudinal velocity,
and is estimated using a quadratic model based on empirical data. Tire properties were
obtained for a fictitious low rolling resistance tire appropriate for this vehicle [72]:

rt(v) = Ct1 +Ct2v+Ct3v2 (8.6)

Vehicle Pitch Model
The vehicle model accounts for the dynamic coupling between the powertrain and the

pitch motions of the electric vehicle, i.e., rotations about the y axis. This is accomplished
using a two degree of freedom (DOF) state space model of the vehicle in the pitch plane,
illustrated in Fig. 8.7. The pitch angle is θp, and the vehicle vertical position z is the vertical
displacement of the center of mass from its equilibrium position. The distance between the
center of mass and the front and rear axles is `1 and `2, respectively. The mass of the vehicle
supported by the suspension, i.e., the sprung mass, is ms, and the pitch moment of inertia is
Iy. The front and rear suspension forces on the sprung mass are Ff z and Frz, respectively.
Each of these forces is the sum of spring and damping forces for its respective axle. Spring
forces are proportional to displacement, and damping forces are proportional to velocity.

The suspension stiffness and damping rates at each wheel are ks and cs, respectively.
The equivalent stiffness and damping rates at the front axle are k f = 2ks and c f = 2cs, and
the rates at the rear axle are kr = 2ks and cr = 2cs. The equations of motion for this system
were linearized, and a state space model was derived. The four states required for this two
DOF, second order system are z and θp, and their time derivatives ż and θ̇p.

150



Frz

Ffz

θp

z

!1

!2

static height of 
mass center

Figure 8.7 2 DOF vehicle pitch model


ż

θ̇p
z̈

θ̈p

=


0 0 1 0
0 0 0 1

−k f +kr
ms

`2kr−`1k f
ms

−c f +cr
ms

`2cr−`1c f
ms

`2kr−`1k f
Iy

− `2
2kr+`2

1k f
Iy

`2cr−`1c f
Iy

− `2
2cr−`2

1c f
Iy




z
θp
ż
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The input to the state space model is the pitch moment Mp = Frx(h + z) normalized
with the pitch moment of inertia Iy, where h is the static height of the vehicle mass center
above the ground. Since z is computed by the state space model, this relationship forms an
algebraic loop. The suspension normal forces Ff z and Frz are the desired outputs of the pitch
model, and can be computed using state variable values.

Ff z =−2
(
k f (z+θp`1)+ c f (ż+ θ̇`1)

)
(8.8)

Frz =−2
(
kr(z−θp`2)+ cr(ż− θ̇`2)

)
(8.9)

Tire Drag Model
The tire drag model calculates the force required to move the vehicle tires at the pre-

scribed velocity and acceleration. This resistance is due to tire rolling resistance and spin
inertia. The angular velocity and acceleration of front and rear tires are assumed equal here
to avoid an additional algebraic loop in the simulation, i.e., ω̇ f = ω̇r = v̇rt(v). The tire drag
forces are calculated using the following equations:

Ff t = Ff zCr + v̇Iyt (8.10)
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Ff r = FrzCr + v̇Iyt (8.11)

where Cr is the tire rolling resistance (assumed constant) [72], and Iyt is the rotational inertia
of two wheel and tire assemblies. Note that the tire radius cancels from the equations.

Tire Slip Model
Any vehicle tire with a net torque will incur some amount of slip i, which means that the

tire rotational velocity will differ from r(v)/v. Tire slip, as defined by Wong [147], varies
from 0 when the tire angular velocity is equal to r(v)/v, to 1, when v = 0 and the tire angular
velocity is positive:

i = 1− v
ωrr(v)

(8.12)

where ωr is the angular velocity of the driven wheel, which is the rear wheel for the EV.
An alternative model is used here that is a linearization of Eq. (8.12), and simplifies wheel
speed calculations under braking:

ωr =
v(i+1)

r(v)
(8.13)

When the wheels are locked under braking, this model gives a slip value of i =−1. Tire
slip depends on several factors, including tire normal and longitudinal forces. A lookup table
based on empirical data for the same fictitious tire described above was used to estimate tire
slip as a function of tire forces, enabling wheel speed calculation using Eq. (8.13). The data
from this lookup table is plotted in Fig. 8.8

Belt Drive Model
Each rear wheel is driven by a separate electric motor via a synchronous drive belt. A

speed reduction between the motor and wheel enables the use of smaller motors. The largest
pulley that is geometrically compatible with the rear suspension is a 72 groove H pulley,
with a radius of rw = 0.1455 m. The smallest drive pulley that still maintains at least six
teeth in contact with the belt is a 16 groove H pulley with a radius of rw = 0.0323 m [108].
This limits the maximum speed reduction ratio to 4.5. The speed reduction ratio of the
pulley is a design variable, and is given by:

pr =
ωm

ωw
=

rw

rm
(8.14)

where the motor and wheels speeds are ωm and ωw, respectively, and rm is the drive pulley

152



−0.4

−0.3

−0.2

−0.2

−0.1

−0.1

−0.1

0
0

0

0.
1

0.
1

0.1

0.
2

0.2
0.3

0.4

Fx

F z

−1500 −1000 −500 0 500 1000 1500
0

500

1000

1500

Figure 8.8 Slip data for electric vehicle tire

radius. This equation is applied appropriately in the vehicle model to calculate required
motor torque and speed. The belt model is simplified by assuming no power transmission
loss and zero belt compliance. A compliant belt model was considered, but the difference in
results was found to be negligible.

The model parameters used in the vehicle model described above are summarized in
Table 8.4. Note that some model values are neither design variables nor parameters, and
have not been defined yet (e.g., h). These quantities are coupling variables, and will be
defined shortly.

Table 8.4 Vehicle model parameters
Cd 0.30 drag coeff. Ct1 0.240 constant rt parameter
A f 1.70 m frontal area Ct2 2.57 ·10−7 linear rt parameter
ρa 1.20 kg/m3 air density Ct3 2.55 ·10−6 quadratic rt parameter
Iyt 0.72 kg-m2 tire inertia Cr 0.0069 tire rolling resistance
mus 154 kg unsprung mass

8.2.2 Induction Motor Model

The electric vehicle is propelled by two electric motors, or electric drive units, that consist of
both an electric machine and a power inverter and controller. The electric machine converts
electrical power into rotational mechanical power. The power inverter converts direct current
(DC) electrical power to alternating current (AC) electrical power as required by the electric
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machine. The rotor of an electric machine is connected to the output shaft, and is encased
by a cylindrical stator.

Two types of motors are in popular use for electric and hybrid electric vehicles: perma-
nent magnet brushless direct current (BLDC) motors, and AC induction motors (IMs). Each
type employs a stator that produces a rotating magnetic field that interacts with the rotor’s
magnetic field, causing the rotor to spin. The stator typically is wound with three phases,
and is supplied with three-phase AC power. The rotor in a BLDC machine is constructed
of permanent magnet material, providing a continuous magnetic field. In contrast, an IM
rotor is constructed with a stack of iron sheets, with conducting bars running through the
rotor parallel to the output shaft. Conductive end rings electrically short these conducting
bars. When the rotor is subjected to the stator’s rotating magnetic field, electric currents are
induced in the conducting bars, creating a rotating magnetic field of their own. A simplified
diagram of an IM is shown in Fig. 8.9. BLDC motors are characteristically more efficient
than IMs, but are more expensive due to permanent magnet material. A three-phase IM was
chosen as the electric drive unit for the EV. A detailed model was developed that constructs
the motor power loss map based on geometric motor design variables.

rotor

stator

output shaft

Figure 8.9 Diagram of an induction motor

Equivalent Circuit
The dynamic electrical behavior of an IM can be modeled using a equivalent circuit [24].

After several simplifications, the resulting equivalent circuit for a single phase of the IM
consists of three inductance elements and two resistance elements, one of which is variable
(Fig. 8.10). The mutual inductance between the rotor and stator is Lm; the stator winding
resistance is Rs; the stator and rotor leakage inductances are Lls and Llr, respectively, and
the electrical resistance through the rotor conductors is Rr. The AC power source has a root
mean square voltage (RMS) of Vs.

The rotor conductors do not have a direct electrical connection to the stator, but rather

154



Vs Lm

Rs Lls Llr

Rr/s

Figure 8.10 Equivalent circuit of an induction motor

have an indirect influence through electromagnetic interaction. The stator and rotor are
coupled in a manner similar to the primary and secondary windings of a transformer. As
with transformers, we can include the secondary windings in a single equivalent circuit if
their properties are viewed in the reference frame of the primary circuit. In the IM equivalent
circuit we do this by dividing the rotor resistance by the slip between the stator and rotor
magnetic fields. The stator power supply frequency ωe determines the speed at which the
stator magnetic field rotates, and the rotor magnetic field rotation lags the stator field if there
is any load on the motor. This lag is quantified by slip s, defined as:

s =
ωe−ωr

ωe
(8.15)

where ωr is the rotor electrical speed. The slip depends on supply voltage and frequency,
motor construction, and load. Slip, or misalignment between the magnetic fields, gives rise
to torque. If slip is zero, the magnetic fields are aligned, and no torque can be produced.
At zero slip the motor is at synchronous speed, and as torque is applied slip increases
monotonically until the breakdown torque Tem is reached. When s = 1 the motor is stalled,
i.e., the rotor is stationary with the stator magnetic field rotating.

Motor Property Calculation
The dynamic motor model requires knowledge of several values that characterize an

induction motor, such as the rotor inertia, frictional losses, inductance, electrical resistance
of stator windings, and the maximum stator current. These values may be approximated
using simple formulae. The estimated rotor mass is:

mr = πr2
m`sρ f e (8.16)

where rm is the rotor radius, `s is the rotor stack length, and ρ f e is the density of iron. These
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and other parameter values used in the induction motor model are summarized in Table 8.5.
The rotational inertia of the rotor is approximately:

Jr =
mrr2

m
2

(8.17)

A viscous friction model is used to approximate the parasitic torque on the motor from
resistance in the bearings:

τloss(Jr) = ωmcm (8.18)

where ωm is the rotational speed of the motor output shaft in radians per second, and cm is
the viscous friction coefficient. A strong correlation was observed between Jr and cm, and
an exponential model was fit to empirical motor data:

cm = Cm1

(
1− Cm2

eCm3Jr

)
+Cm4Jr (8.19)

The model parameters for this and other equations in this section are defined in Table 8.5.
The mutual inductance is calculated from motor geometry using a model due to Amin [11].
The number of stator slots (Ns) and stator windings per phase (W1) must first be calculated:

Ns = 2p1qm1 (8.20)

W1 = 2p1qnc (8.21)

where p1 is the number of pole pairs in the stator (i.e., the number of poles p divided by 2),
q is the number of stator slots per phase per pole, m1 is the number of phases, and nc is the
number of turns per coil. The mutual inductance is:

Lm =
6µ0W 2

1 rm`s

π p2
1δg

(8.22)

where the effective air gap δg, adjusting for geometry and slot effects, is given by:

δg = 0.06rm− .0025 (8.23)

The stator leakage inductance (Lls) was observed to have a correlation with motor
aspect ratio (`s/rm) and mutual inductance in empirical data for several IMs. The following

156



relationship was derived for the stator leakage:

Lls = Lm

(
0.07− 0.05

1+ e(5.0−`s/rm)/2

)
(8.24)

In many IMs the rotor leakage inductance Llr is close in value to the stator leakage
inductance. This model is simplified by assuming these quantities are equal, and that the
total leakage inductance is:

Ll = Lls +Llr = 2Lls (8.25)

The electrical resistance of the stator windings (Rs) is based on estimates for the winding
radius (rw) and total winding length (`w). Rather than specifying the outer stator radius as an
independent design variable, it is assumed proportional to the rotor radius: rs = rm(ts +1),
where ts is the stator radius proportionality factor. The winding radius and length are:

rw = rm

√
nanp ((ts +1)2−1)

W1m1
(8.26)

`w = 2`sW1 (8.27)

and the stator winding resistance is:

Rs =
keρcu`w

πr2
w

(8.28)

where ke is an end effects coefficient that accounts for additional winding length and
resistance at the rotor stack ends, and ρcu is the resistivity of copper.

An important property of a motor is the maximum current (Ism) the stator can tolerate
before risk of failure. A quadratic model was fit to the maximum operating current of
standard wire gauges:

Ism = CI1 +CI2dw +CI3d2
w (8.29)

where dw = 2000rw is the winding diameter in millimeters.

Power Loss Map Calculation
The power loss map is generated by stepping though numerous motor operating points

and recording the steady state power consumption at those points. These raw data points
are dispersed non-uniformly over the motor torque-speed space; interpolation is used to
obtain power loss points over an evenly-spaced mesh. A few important aspects of the power
loss map must be determined before computing power loss points. Figure 8.11 illustrates
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a typical maximum torque curve for an IM. Note that the abscissa is ωe, rather than the
angular velocity of the output shaft ωm. The ordinate is the developed torque τe, which
does not account for any mechanical losses. The two regions of the maximum torque curve
considered here are the constant flux region and the flux weakening region.

increasing s
constant Vs/ωe

ωe

ωb

constant flux region flux weakening region

τem

τe

Figure 8.11 Typical IM maximum torque curve

The ratio Vs/ωe is proportional to stator magnetic flux, and is held to a constant value of
C1 in the first region. The breakdown torque is given by:

τem =
3p
4ωe
· V 2

s√
R2

s +ω2
e L2

l +Rs

(8.30)

The maximum torque is approximately constant in the constant flux region. The break-
down torque τem is limited by the maximum allowable stator current Ism. If stator current
were unlimited, C1 could be increased to achieve arbitrarily high maximum torque values.
This is not the case, so C1 is set such that the stator current Is is equal to Ism when τe = τem

and ωe is equal to the base speed ωb. The base speed is the frequency at which the motor
transitions from constant flux to constant power operation, which occurs when maintaining
the ratio Vs/ωe = C1 would require increasing Vs beyond the maximum power inverter
voltage Vsm. Since Vs cannot be increased, the only way to increase speed beyond ωb is to
increase ωe while holding Vs fixed at Vsm, reducing the ratio Vs/ωe and stator magnetic flux.
In the flux weakening region, under certain assumptions, the maximum torque curve follows
an constant power isocurve.

The value of C1 for a motor is obtained numerically by finding the value of ωe that
results in Is = Ism when Vs = Vsm. This value of ωe is the base speed ωb. The stator current
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for a given ωe at Vsm can be found through analysis of the equivalent circuit in Fig. 8.10.
The impedance of Lm is:

Z1 = jLmωe (8.31)

where j is the imaginary number
√
−1. The impedance of Rs, Lls, Llr, and Rr/s in series is:

Z2 = (Rs +Rr/sm)+ jωe(Lls +Llr) (8.32)

The slip at torque breakdown sm is used in evaluating Z2 when computing the maximum
stator current:

sm =
Rr√

R2
s +ω2

e L2
l

(8.33)

Other values of slip may be used in Eq. (8.32) when calculating stator current for
operating points below maximum torque. The total circuit impedance is:

ZT =
Z1Z2

Z1 +Z2
(8.34)

and at maximum power inverter voltage the stator current is:

Ism =
Vsm

|ZT |
(8.35)

Now that ωb is known, the base speed can be calculated in terms of rotor electrical
frequency and output shaft rotational speed. First, Eq. (8.33) is used to calculate motor slip
at ωb and max torque (smb). The base rotor electrical frequency is:

ωrb = ωb(1− smb) (8.36)

and the base output shaft speed is:

ωmb = 2ωrb/p (8.37)

The maximum torque in the constant flux region is almost constant torque, but not
exactly due to stator effects. A small voltage adjustment is used to compensate for this:

Vs =
ωe(Vsm−V0)

ωb
+V0 (8.38)

where V0 is a voltage compensation parameter chosen such that the maximum torque in the
constant flux region is as close to constant as possible. Four different operating regimes are
considered in the power loss map calculation:
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1. Forward motoring, constant flux: ωm > 0, s > 0, and Vs/ωe constant
2. Forward motoring, flux weakening: ωm > 0, s > 0, Vs constant, and ωe > ωb
3. Forward regeneration, constant flux: ωm > 0, s < 0, and Vs/ωe constant
4. Forward regeneration, flux weakening: ωm > 0, s < 0, Vs constant, and ωe > ωb

In the regenerative regimes the stator electrical frequency lags the rotor electrical fre-
quency, resulting in negative slip, causing the motor to perform as a generator. During
regeneration the vehicle is slowed and the motor converts mechanical kinetic energy into
electrical energy, which may be stored for later use. The power loss map is different in
the forward motoring and regeneration regimes for two primary reasons: frictional losses
and stator resistance. Power loss values for the forward motoring, constant flux regime are
obtained by stepping through ωe values from just above zero through ωb. At each value for
ωe the value of Vs is found using Eq. (8.38), and breakdown torque and output shaft speed is
recorded. At each speed point we step through slip values from just above zero to sm, which
is found using Eq. (8.33). At each ωe and s point, we evaluate the developed torque:

τe =
3pRr

2sωe
· V 2

s

(Rs +Rr/s)2 +ω2
e L2

l
(8.39)

The output shaft speed is recorded for each of these points, and the net output torque is
found:

τnet = τe−ωmcm (8.40)

where cm is evaluated using Eq. (8.19). The net mechanical output power is Pout = τnetωm,
and can be used to evaluate motor efficiency at that operating point. The stator current
is evaluated using Eqs. (8.31) – (8.35), where Vsm and sm are replaced with Vs and s,
respectively. The electrical input power to the motor is:

Pin = m1IsVs cos(∠ZT ) (8.41)

where ∠ZT is the angle between the imaginary and real parts of ZT . The power factor is
cos(∠ZT ), and accounts for the influence of inductive elements on power consumption. In
the forward regeneration, constant flux regime, the same values of ωe are used, but slip
is varied from just below zero to slip at breakdown speed (which is negative). Equation
(8.39) is used again to evaluate developed torque at each point. Frictional losses increase the
magnitude of net torque in this case since τe < 0. Electrical output power calculations are
performed using the same equations as for forward motoring, but Pin < 0, indicating power
output. The breakdown torque during regeneration is slightly different than for the forward
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motoring case:

τemR =
3p
4ωe
· V 2

s√
R2

s +ω2
e L2

l −Rs

(8.42)

In both flux weakening regimes the stator voltage is fixed at Vsm, and the supply fre-
quency is increased from ωb to a sufficiently large value. The same relations are used
to determine power consumption during forward motoring and power production during
forward regeneration. Reverse motoring and reverse regeneration are not considered here
since the velocity profiles of interest never specify reverse vehicle motion. The efficiency
map for a sample motor design is shown in Fig. 8.12. Both the maximum and minimum
torque curves are displayed, adjusted for frictional losses.
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)

Figure 8.12 Example IM efficiency map

The power loss map for the same sample motor design is illustrated in Fig. 8.13. Power
loss information outside the maximum and minimum torque curve envelope is not physically
meaningful since the motor cannot operate at those torque and speed points. It is assumed
here that the power inverter has perfect efficiency, so the power loss map does not account
for power inverter losses. The sample motor was used in a powertrain simulation, and the
points visited while following the SFUDS velocity profile are displayed on the map.

The maximum motor speed is limited by three considerations: viscous drag, structural
integrity, and maximum inverter frequency. The maximum speed due to viscous drag (ωmax1)

161



ωm (rad/sec)

τ
n
e
t

(N
)

!60000

!60000!
40

00
0

!40000 !40000

!
20

00
0

!20000
!20000

0
0

0
0

0
0

20000

20000
20000

40000

40000

40000

60000 60000

Torque/Speed Points Visited

0 100 200 300 400 500 600 700

!250

!200

!150

!100

!50

0

50

100

150

200

Figure 8.13 Example IM power loss map with points visited during SFUDS

is the point at which the maximum net torque curve intersects the motor speed axis, which
is approximately 780 rad/sec in Fig. 8.13. The maximum speed that the motor can operate
at safely without risking structural failure is estimated to be:

ωmax2 =

√
8σY r

SFr2
mρ f e(3+ν)

(8.43)

where σY r is the yield stress for the rotor material, SF is a safety factor, and ν is Poisson’s
ratio for the rotor material. The maximum rotor speed that can be acheived before the power
inverter exceeds its maximum frequency (ωinv) is:

ωmax3 =
2ωinv

p
(8.44)

The maximum rotor speed for a given motor is ωmax = min{ωmax1,ωmax2,ωmax3}, and a
vehicle should be designed such that this value is never exceeded during anticipated vehicle
usage. The speed violation constraint ωV is ωmax subtracted from the highest motor speed
encountered during the powertrain simulations. Similarly, the torque violation constraint τV

is a single value that expresses whether the required torque has exceeded the torque envelope
defined by the maximum and minimum net torque curves. If τV ≤ 0, the motor is capable of
supplying the necessary torque.
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8.2.3 Lithium Ion Battery Model

The Lithium ion (Li-ion) battery provides all power for vehicle motion and accessory
loads, including power steering and air conditioning. Battery design is the most important
factor in EV performance [63], and important tradeoffs between power and energy density,
durability, and safety must be addressed. A dynamic Li-ion battery model developed by Han
[68], based on work by Doyle, Fuller, and Newman [46, 56], was used in the powertrain
analysis function to assess the battery state of charge, and charge and discharge power limits,
throughout the simulations.

The battery is composed of two pairs of battery packs; each pair is connected in series,
and the two pairs are connected in parallel. Each pack is composed of four battery modules
connected in series, and each module has twelve battery cells connected in series. Figure
8.14 illustrates the construction of each cell. An electrochemical reaction occurs in the
separator between the negative and positive electrodes [121]. The rate of this reaction
depends on both materials and cell geometry. Each electrode is backed by a current collector,
and the electrodes are folded into a flat-wound cell arrangement. The battery design variables
include the electrode thickness scale (bI), which controls the thickness of the electrodes and
separator, the battery width scale (bW ), which controls the electrode and cell width, and

Table 8.5 Motor model parameters
Vsm 460 V max stator voltage
p 4 no. of stator poles
q 3 no. of slots per phase per pole
m1 3 no. of motor phases
σY r 300 MPa rotor yield stress
ν 0.30 Pa rotor Poisson’s ratio
SF 4 rotor safety factor
ωinv 1500 rad/sec maximum inverter frequency
ρ f e 7870 kg/m3 iron density
Cm1 0.062 1st cm parameter
Cm2 0.998 2nd cm parameter
Cm3 0.940 3rd cm parameter
Cm4 0.0513 4th cm parameter
na 0.80 slot volume ratio
np 0.50 wire packing ratio
ke 1.50 end effect coefficient
ρcu 1.72 ·10−8 Ω-m copper resistivity
CI1 0.0564 constant Ism parameter
CI2 −0.0237 linear Ism parameter
CI3 2.21 quadratic Ism parameter
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the number of cell windings or folds (bL), which controls the thickness of each cell. The
model includes allowance for packaging when estimating overall battery geometry and mass.
The height of each cell is fixed such that the height of the battery is 11 cm, the maximum
allowed by EV geometry.
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Figure 8.14 Flat-wound lithium-ion battery cell (after [68])

The dynamic battery model is a lumped-paramter model where the battery voltage is
estimated by the equation:

vbt
net = Ebt−R0Ibt

l −RpIbt
p (8.45)

where Ebt is the battery open circuit voltage and R0 and Rp are the cell internal ohmic and
polarization resistances, respectively. The cell load and polarization currents are Ibt

l and Ibt
p ,

respectively, which can be determined using the differential equation:

dIbt
p

dt
=

(Ibt
l − Ibt

p )
τp

(8.46)

where τp is the polarization time constant. The open-circuit voltage depends on material
composition only, and its dependence on battery state of charge (SOC) can be approximated
using the following polynomial:

Ebt = 4.03 ·SOC4−11.96 ·SOC3 +11.99 ·SOC2−3.53 ·SOC +4.02 (8.47)
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The dependence of the remaining terms in Eq. (8.45) on SOC, and the polarization time
constant, can be assessed using a hybrid pulse power characterization (HPPC) test [45].
The polarization resistance curve and time constant are nearly invariant apropos to SOC, so
scalar values are used to represent these quantities. The ohmic resistance curve is discretized
in this model, and is obtained for both charging and discharging conditions. The results of
the HPPC test was modeled using an artificial neural network [70] to reduce simulation time
for use in optimization.

No feedback exists from the battery model to the vehicle or motor model, so the dynamic
battery model can be run independently of the vehicle model with the motor power demand
curve P(t) as input. Figure 8.16 shows an example battery output power curve. The gap
between this curve and the mechanical motor output power curve illustrates power loss
through the motor.
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Figure 8.15 Battery and motor power output during SFUDS cycle

The vehicle range is determined by repeating the battery simulation with the SFUDS
power curve as input until either the battery can no longer supply the required power
to drive the SFUDS cycle, or the battery reaches its minimum allowed state of charge
(SOCmin = 0.30). The latter requirement typically dominates the first. A constant accessory
power demand of Pacc = 750 W is added to the motor power demand to account for additional
electrical loads, such as power steering and air conditioning use. Figure 8.16 shows the
battery output during a complete range test, and indicates the battery discharge (Pu(t)) and
charge (P̀ (t)) limits. The discharge power limit is never exceeded in this case, and the
charge limit is only exceeded early on when the battery has a high state of charge and cannot
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accept much power. It is assumed here that, if regenerative power input exceeds the charge
limit, the excess energy is dissipated as waste heat through a resistor. The power demand,
and charge and discharge limits, are also evaluated for the acceleration test, and used in
calculating the power violation constraint g5. The power violation PV is the maximum
amount either Pu(t) or P̀ (t) is violated by during range and acceleration tests.
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Figure 8.16 Battery power output and charge and discharge limits during range test

After the range test is complete, the resulting SOC is used as a starting point for a slow
charging test to determine how much energy is required from the electrical grid to bring
the battery back up to its original state of charge. The vehicle range (in miles) is then
divided by the energy consumed in units of gallons of gasoline to obtain the grid-to-wheels
fuel economy mpge, which is comparable to the familiar tank-to-wheels measure of fuel
economy miles per gallon. The EV equivalent fuel economy is:

mpge =
R
Ec
·1.317 ·108 (8.48)

where Ec is the energy required to recharge the battery measured in Joules, and R is the EV
urban range measured in miles.

8.3 Vehicle Dynamics Model

The vehicle dynamics analysis function uses three different models for the dynamic per-
formance of the vehicle, including stability, steering responsiveness, driver comfort, and
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roadholding metrics. A steady-state bicycle model is used to predict directional stability at a
constant speed, and a dynamic bicycle model is used to evaluate steering responsiveness. A
quarter-car model is used to compute metrics for driver comfort, suspension working space,
and tire and suspension forces.

8.3.1 Directional Stability

The steering angle of the front tires required to guide a vehicle around a curve of radius Rc

is:

δ f =
L
Rc

+
(

Wf

Cα f
− Wr

Cαr

)
v2

gRc
(8.49)

where g is the acceleration of gravity, Wf and Wr are the static forces on the front and rear
tires, respectively, and Cα f and Cαr are the cornering stiffnesses for the front and rear tires
[147]. If the second term of Eq. 8.49 is positive, the steering angle is required to follow
a curve of radius Rc increases with longitudinal velocity. This is a condition known as
understeer. If the second term of Eq. 8.49 is positive, δ f decreases with velocity. This
oversteer condition can be unstable if v exceeds the critical velocity:

vcrit =
√

gL
−Kus

(8.50)

where Kus is the understeer coefficient:

Kus =
(

Wf

Cα f
− Wr

Cαr

)
(8.51)

Since v2/gRc is always positive, Kus ≥ 0 indicates an understeer vehicle. The cornering
stiffness values can vary with a number of factors. Here the dependence of cornering
stiffness on tire normal force is modeled using a quadratic polynomial fit to empirical data
for the EV fictitious tire [72]:

Cα f = Cα1 +Cα2Wf +Cα3W 2
f (8.52)

The parameter values for Eq. (8.52) are given in Table 8.6. The formula for the rear
cornering stiffness is similar, but depends on Wr instead. According to this steady-state
stability model, directional stability is assured below a maximum intended speed vmax if:

Ds = L+
v2

max
gKus

≥ 0 (8.53)
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8.3.2 Steering Responsiveness

A two DOF second-order model was used to simulate dynamic vehicle motion in the yaw
plane under steering input at a constant longitudinal velocity. The equations of motion are:

a1v̇y +a2Ωz +a3vy = a4δ f (t) (8.54a)

b1Ω̇z +b2Ωz +b3vy = b4δ f (t) (8.54b)

where:

a1 = m

a2 = m+
2(`1Cα f − `2Cαr)

v

a3 =
2(Cα f +Cαr)

v
a4 = 2Cα f

b1 = Iz

b2 =
2(`2

1Cα f + `2
2Cαr)

v

b3 =
2(`2

1Cα f − `2
2Cαr)

v
b4 = 2`1Cα f

and vy is the lateral vehicle velocity, Ωz is the yaw rate, Iz is the yaw inertia, and δ f (t) is
a time-varying steering input. The corresponding state space model is:

[
v̇y
Ω̇z

]
=

[
−a3

a1
−a2

a1

−b3
b1
−b2

b1

][
vy
Ωz

]
+

[
a4
a1
b4
a1

]
δ f (8.55)

The state variable of interest here is the yaw rate. When a vehicle is driving straight
ahead after a step steering input δ f 0 is applied, the lateral velocity and and yaw rate increase
from zero and then settle on steady-state nonzero values. A vehicle that approaches its
steady-state yaw rate quickly is considered to be responsive. The yaw rate rise time (tr), i.e.,
the time required for the yaw rate to increase from 10% to 90% of its steady state value, is
the metric used to evaluate steering responsiveness. Constraint g8 requires the yaw rate rise
time to be less than trmax.
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8.3.3 Quarter-Car Model

A quarter car model is used to simulate required suspension working space, tire and sus-
pension forces, and vertical acceleration of the sprung mass [147]. The input is a road
profile z0(x), which can be expressed as z0(t) if v(t) is known, that excites motions in the
sprung and unsprung masses. The quarter-car model is diagrammed in Fig. 8.17, and a
corresponding state space model is given in Eq. (8.56).

v
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Figure 8.17 Quarter-car vehicle suspension model
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żs

+


−1
4ct
mus
0
0
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The first state variable is the tire deflection; the second is the unsprung mass velocity;
the third is the suspension stroke, and the fourth is the sprung mass velocity. The tire force,
including static vehicle weight, is:

Fz0 = kt(zus− z0)+ ct
d
dt

(zus− z0)+
mg
4

(8.57)

The minimum tire force during a simulation (Ft) is used in the constraint g10 to ensure
positive force is maintained between the tire and road to ensure adequate roadholding on
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rough terrain and to verify that the tire never loses contact with the road under normal driving
conditions, a requirement for quarter-car model validity. The force that the suspension exerts
on the sprung mass is:

Fzs =−msz̈s

4
(8.58)

Three different tests are performed using the quarter-car model: a ramp input test, a
moderately rough road simulation, and a very rough road simulation. In all tests the tire
damping rate (ct) is assumed to be zero. In the ramp input test the vehicle approaches a
ramp input at a grade of γ at a velocity of vr0, and the maximum force on the sprung mass
(Fs = max(Fzs(t))) is recorded for use in the structural analysis function. The suspension
working space (δW ) is the largest value of the third state variable during the ramp test, and
is used in the constraint g9. The other two tests use stochastic inputs: z0a(x) is the spatial
profile of a moderately rough road, and z0b(x) is the spatial profile of a very rough road.
A constant velocity was used with each of these inputs: va0 and vb0. These profiles were
generated using a gaussian random number generator and a series of filtering steps, and then
analyzed using standard techniques for the international roughness index (IRI) [120]. The
first step is to generate Np = dLp/δpe random data points with a variance of σp, and then
apply a digital filter to remove high-frequency data beyond a spatial cutoff frequency of f0

[12]. The spatial length of the profile is Lp, and the step size in the profile data is δp. The
filter implemented is:

yn = bxn +ayn−1 (8.59)

where xn and yn are the n-th unfiltered and filtered data points, respectively, and the filter
coefficients are defined as:

a = e−2π f0δp

b = 1− e−2π f0δp

A second type of digital filter is then applied to the data as specified by IRI requirements.
This moving average filter is defined by the formula:

yn =
1

Nw

n

∑
i=n−Nw+1

xi (8.60)

where Nw = dL0/δpe is the number of data points in the filter baselength L0. The profile is
then refined using a finer step size and smoothed using spline interpolation so that input
is more suitable for simulation purposes. A portion of one road profile is illustrated in
Fig. 8.18, where unfiltered data is displayed alongside profiles generated after the first and
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second filtering steps. The profile after the interpolation step is visually indiscernible from
the fully filtered profile.
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Figure 8.18 Sample road profile created using gaussian random number generator and digital filters

The roughness of a road profile may be quantified using the IRI, which is a measure
of how much a vehicle suspension moves while traveling over a road surface. A standard
quarter-car model is used to calculate the IRI for a road profile, where the vehicle parameters
must satisfy:

ks

ms
= 63.3,

kt

ms
= 653,

cs

ms
= 6,

mus

ms
= 0.15

The IRI is the amount of suspension travel for the quarter-car model per distance travelled,
and is usually measured in meters of suspension travel per kilometer of longitudinal distance.
The suspension travel may be expressed as:

δS =
∫ t f

0
|zs− zus|dt (8.61)

The profile z0a(x) has an IRI of 4.20, and corresponds to the roughness of an older, but
undamaged, paved road. This profile was used in calculating the driver discomfort metric.
The second profile, z0b(x), has an IRI of 7.37, corresponding to a maintained unpaved road
or a damaged paved road. This profile was used to compute Ft .

Many criteria have been proposed for quantifying driver comfort. Smith, McGehee, and
Healey reviewed many of these techniques, and concluded that a simple root mean square
acceleration measurement is especially effective [123]. Gobbi and Mastinu described how
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to use such a metric in ground vehicle optimization [64]. The metric used here is root mean
square of the power spectral density of the sprung mass acceleration (z̈s), denoted by az. BS
6841 suggests that an az value of up to 0.642 g’s (1g =9.81 m/s2) results in a ride quality
that is only ‘a little uncomfortable’ [26]. Constraint g11 limits az to 0.80 g while traveling
over the profile z0a(x).

Table 8.6 Vehicle dynamics model parameters
Cα1 -3.68·103 constant cornering stiffness parameter
Cα2 21.4 linear cornering stiffness parameter
Cα3 2.70·10−3 quadratic cornering stiffness parameter
δ f 0 0.02 rad steering step input
vr0 15.0 m/s ramp test velocity
va0 15.0 m/s velocity for stochastic profile a
vb0 22.2 m/s velocity for stochastic profile b
γ 13% ramp test grade
f0 0.15 cycle/m filter cutoff frequency
L0 0.25 m filter baselength

8.4 Structural Model

The vehicle structure was modeled as a space frame and analyzed using finite element
analysis (FEA) [93] to determine the stiffness and stress values for constraints g13–g16. The
FEA model was created using ANSYSTM, and also was used to calculate mass and inertia
properties of the vehicle frame required as input to the mass distribution and packaging
function. The vehicle frame model is shown in Fig. 8.19 with the beam element divisions
visible (911 beam elements in total). The size of frame elements is exaggerated in the figure,
and frame members have circular cross sections. The frame material is AISI 4130 steel with
a modulus of 205 GPa, Poisson’s ratio of 0.30, and mass density of 7500 kg/m3.

The structural design was simplified by using only two design variables: t f , the wall
thickness of all frame members, and d f , the outer diameter of all frame members. This
design variable set requires a compatibility constraint (g12 in Problem (8.2)). The influence
of the battery mass and stiffness is included in this model. Four structural tests are performed
to evaluate constraints g13–g16:

1. Torsional stiffness (Ktmin): A moment about the x axis is applied via the rear suspen-
sion hardpoints while the front hardpoints are held fixed. The deflection is measured,
and then the rotational angle and torsional stiffness is calculated. This stiffness should
be at least 12,000 Nm/deg [95].

2. Bending stiffness (Kbmin): the front and rear axles are fixed while a vertical load is
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Figure 8.19 FEA model of the EV frame

applied at the center of the vehicle. The deflection is measured and used along with
the load value to determine the vehicle bending stiffness, which should be at least 6
MN/m [95].

3. Torsional stress (σ f t): The maximum suspension load Fs is applied in opposite
vertical directions at the rear suspension hardpoints while holding the front suspension
hardpoints fixed. The maximum Von Mises stress is recorded and must not exceed the
maximum allowable stress of σY = 350 MPa.

4. Bending stress (σbt): The maximum suspension load Fs is applied in the same vertical
direction at the rear suspension hardpoints while holding the front suspension hard-
points fixed. The maximum Von Mises stress is recorded and must not exceed the
maximum allowable stress of σY = 350 MPa.

The structural model computational expense is higher than for the other models, so an
artificial neural network [70] was constructed and used as a surrogate model.

8.5 Mass Distribution and Packaging

The mass distribution and packaging function computes vehicle mass and inertia properties
and packaging criteria using geometry, mass, and inertia data from the three vehicle systems.
Estimated mass and inertia properties for the vehicle without the frame or battery, known as
the baseline vehicle properties, are combined with mass and inertia properties for the frame
and battery to arrive at estimates for overall vehicle properties. This allows the model to
account for the influence of frame and battery design changes on vehicle dynamics. The
parameters used in this model are listed in Table 8.7. The first step is to determine the sprung
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mass and its center of mass location:

ms = m0 +mb +m f (8.62a)

h =
1

ms

(
m0h0 +mbhb +m f h f

)
(8.62b)

`1 =
1

ms

(
m0`10 +mb`b +m f ` f

)
(8.62c)

where m0, mb, and m f are the baseline vehicle mass, battery mass, and frame mass, respec-
tively; h0, hb, and h f are the center of mass heights for the baseline vehicle, battery, and
frame, respectively; `10 , `b, and ` f are the longitudinal center of mass locations for the
baseline vehicle, battery, and frame, respectively, measured from the front axle location.
The longitudinal position of the battery mass center, measured as the distance between the
front axle and the battery mass center, is given by:

`b = `e + xb +b`/2 (8.63)

where `e is the distance between the front axle and the front edge of the available battery
space, and xb is the distance between this front edge and the front of the battery. The quantity
xb is a design variable that defines the longitudinal position of the battery. The battery inertia
values about its own center of mass are:

I′yb =
1
12

mb
(
b2

h +b2
`

)
(8.64a)

I′zb =
1
12

mb
(
b2

w +b2
`

)
(8.64b)

where bh, bw, and b` are the battery height, width, and length, respectively. The battery
inertia values about the vehicle center of mass are computed using the parallel axis theorem
[18]:

Iyb = I′yb +mb ‖[`b,hb]− [`1,h]‖2
2 (8.65a)

Izb = I′zb +mb (`b− `1)
2 (8.65b)

The frame inertia values about the vehicle center of mass are:

Iy f = I′y f +m f
∥∥[` f ,h f ]− [`1,h]

∥∥2
2 (8.66a)

Iz f = I′z f +m f
(
` f − `1

)2 (8.66b)

where I′y f and I′z f are the frame pitch and yaw inertia values about the frame’s mass center,

174



provided by the structural analysis function. The baseline sprung mass inertia values about
the vehicle mass center are:

Iy0 = I′y0
+m f ‖[`10,h0]− [`1,h]‖2

2 (8.67a)

Iz0 = I′z0
+m f (`10− `1)

2 (8.67b)

where I′y0
and I′y0

are the baseline vehicle inertia values for the sprung mass about its own
center of mass. The sprung mass inertia values, including frame and battery, about its own
mass center are:

Iy = Iyb + Iy f + Iy0 (8.68a)

Iz = Izb + Iz f + Iz0 (8.68b)

The packaging constraints are computed as defined by g17 and g18 in Problem (8.2).

Table 8.7 Mass distribution and packaging model parameters
m0 423 kg baseline vehicle mass
h0 0.610 m baseline mass center height
hb 0.355 m battery mass center height
bh 0.110 m battery height
`10 0.935 m baseline mass center longitudinal position
`e 0.490 battery box position
I′y0

299 kg-m2 baseline vehicle pitch inertia
I′z0

872 kg-m2 baseline vehicle yaw inertia

8.6 Optimal P/C Decision Results

The optimal partitioning and coordination decision method for ALC from Chapter 7 was
applied to the reduced adjacency matrix for the EV design problem. The reduced adjacency
matrix is:

A5 =

 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 0
0 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1


The results are illustrated in Fig. 8.20. Only 175 unique P/C instances exist for this

problem, owing to the sparsity of A5. Four Pareto-optimal points were identified, all of
which corresponded to more than one ALC implementation instance except for point 4.
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Figure 8.20 Optimal partitioning and coordination decision results for the EV problem

Point 1:
Four P/C decision instances correspond to point 1 in Fig. 8.20, and all share the same

partition and problem size metrics:

CS = 21
S̄Smax = 9

p = [1,2,3,4]

All four instances have the same set of shared variables ({x1,x2,x13}), and the same
shared variable consistency constraint allocation (Gc for x1: {〈1,2〉}, x2: {〈1,2〉}, x13:
{〈3,4〉}). This consistency constraint assignment is the sole feasible option since each
shared variable is shared only between two subproblems. The four separate instances are
distinguished by subproblem stage assignment:

Instance 1: s = [1,4,2,3]

Instance 2: s = [2,1,3,4]

Instance 3: s = [3,2,4,1]

Instance 4: s = [4,3,1,2]
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The ALC implementation for the first instance is illustrated in Fig. 8.20.

Point 2:
Three P/C decision instances correspond to point 2, and all share the same partition and

problem size metrics:

CS = 10
S̄Smax = 10

p = [1,1,2,3]

Grouping the powertrain and vehicle dynamics analysis functions together reduces the
number of external shared variables. All three instances have one shared variable only
(x13}), and the only possible consistency constraint assignment is {〈2,3〉} for x13. The
subproblem stage assignment for each instance is as follows:

Instance 1: s = [1,2,3]

Instance 2: s = [2,3,1]

Instance 3: s = [3,1,2]

The ALC implementation for the first instance is illustrated in Fig. 8.20.

Point 3:
Two P/C decision instances correspond to point 2, and all share the same partition and

problem size metrics:

CS = 5
S̄Smax = 13

p = [1,1,2,2]

Again, the powertrain and vehicle dynamics analysis functions are placed in the same
subproblem. The third and fourth analysis functions share one design variable, which can
be eliminated from the set of external shared design variables by grouping these analysis
functions into the same subproblem. Point 3 has no external shared design variables, and
therefore no shared variable consistency constraint assignments. The subproblem stage
assignment for each instance is as follows:

Instance 1: s = [1,2]

Instance 2: s = [2,1]

177



The ALC implementation for the first instance is illustrated in Fig. 8.20.

Point 4:
The fourth Pareto-optimal point corresponds to the IDF formulation with a single

subproblem. IDF formulations do not have external shared design variables. The problem
size metrics are:

CS = 0
S̄Smax = 21

Point 5:
The last point discussed here is not Pareto-optimal, but is included for comparison with

the other points. Point 5 in Fig. 8.20 corresponds to two instances that share the same
partition and problem size metrics:

CS = 15
S̄Smax = 14

p = [1,2,3,2]

Analysis functions two and four are grouped together, but share no design variables, and
have only one coupling variable relationship. This partition does not help reduce CS, and
results in the maximal set of external shared variables: {x1,x2,x13}. Since these variables
link only two subproblems each, the only consistency constraint allocation option exists
(Gc for x1: {〈1,2〉}, x2: {〈1,2〉}, x13: {〈3,4〉}). Point 5 differs from the others in that each
instance specifies parallel subproblem solution:

Instance 1: s = [1,2,2]

Instance 2: s = [2,1,1]

The second instance is illustrated in Fig. 8.20. The EV problem structure is such
that parallel subproblem solution does not offer an advantage when CS and S̄Smax are the
metrics used in solving the optimal P/C decision problem. All four Pareto-optimal points
involve serial subproblem solution. Different problem structure, or an alternative CS metric
that penalizes increased stage depth, may change this outcome. The work presented here
establishes a new approach to constructing distributed optimization problems; further work
is required to study metrics used to approximate solution difficulty.

In each Pareto-optimal partition with less than four subproblems, the powertrain and
vehicle dynamics analysis functions are grouped together. These functions also share the
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largest number of design variables between them. Placing a1 and a2 in the same subproblem
has a large impact on reducing the number of external shared design variables. Recall from
Chapter 7 that a variable shared between two subproblems requires two separate variable
copies, while coupling variables require only one. These copies increase both coordination
and subproblem size. Therefore, the grouping of a1 and a2 is expected; choosing partitions
that lead to fewer external shared design variables is a good approach for reducing both
coordination and subproblem size. This highlights the importance of distinguishing between
shared and coupling variables, rather than treating all linking variables as shared variables.

Moving from point 4 to point 3 reduces S̄Smax from 21 to 13, and only requires a
coordination problem size of 5. This indicates that the EV problem is a good candidate for
decomposition-based design optimization. Also note that several points exist in Fig. 8.20
with S̄Smax > 21 and CS > 0; these points correspond to exceptionally poor partitions that
increase both coordination and subproblem size. As we move along the Pareto set starting
with point 1, the number of subproblems increases, which is expected as more emphasis is
placed on reducing CS. Note that the number of instances corresponding to each point also
increases as we move toward finer partitions; this is also expected since stage assignment
options increase with the number of subproblems.

Each of the 175 P/C instances for the EV problem specifies uniquely an ALC formulation.
The formulation for the first instance of point 3 is presented here as an illustration. The
external coupling variables in this case are:

ȳ12 = [y14,y24]
ȳ21 = [y31,y32,y41]

where:

y14 = [ms,h, `1, Iy]
y24 = [ms, `1, Iz]
y31 = [bm,bw,b`]
y32 = Fs

y41 = [bm,bw,b`]

The coupling variables between analysis functions three and four are internal coupling
variables for subproblem 2:

y43 = [m f ,h f , ` f , Iy f , Iz f ]

The ALC formulation for subproblems 1 and 2 are given in Eqs. (8.69) and (8.69),
respectively. S̄12 and S̄21 are selection matrices that choose analysis function components
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that correspond to coupling variables in consistency constraints. As discussed previously,
this instance has no external shared design variables, so only coupling variables appear in
consistency constraints. Subproblem 2 has internal coupling variables, which appear as
decision variables and are assured to be consistent by the auxiliary equality constraint haux.

min
x̄1,ȳ12

1/mpge +φ
(
ȳ12− [a3,a4]S̄12

)
(8.69)

subject to [g1,g2, . . . ,g11]≤ 0

min
x̄2,ȳ21,y43

φ
(
ȳ21− [a1,a2]S̄21

)
subject to [g12,g13, . . . ,g18]≤ 0 (8.70)

haux = y43−a3S43 = 0

8.7 Concluding Comments

The chapter introduced an electric vehicle design problem that included interactions between
several important vehicle systems, including powertrain, chassis, and structure. The vehicle
model was presented in detail, and the design problem was formulated to minimize energy
consumption while meeting performance constraints. The techniques introduced in Chapter
7 were used to solve the optimal P/C decision problem, defined in Eq. (7.9), for the
electric vehicle design problem. Four Pareto-optimal solutions were identified, and the ALC
formulation for one of these solutions was presented. Design optimization results for the
AiO and ALC solutions are being addressed in ongoing work.
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Chapter 9

Conclusion

9.1 Summary

Many engineering systems are too complex to approach as single large design problems.
A usual approach is to partition the system design problem into smaller subproblems that
are more easily solved. These subproblems are coupled through analysis interactions and
shared design variables. A coordination strategy is required to account for these interactions,
and to help guide iterative solution of subproblems toward a state of consistency, and toward
a design that is optimal for the overall system, not just for the individual components.
Decomposition-based design optimization techniques utilize optimization algorithms to
solve system subproblems, and coordination algorithms to guide the solution process. These
techniques are especially useful when mathematical models exist that can predict system
behavior. This dissertation focused on the case where computer simulations are used as the
analysis functions in the system model.

The difficulty of solving the subproblems and the difficulty of the coordination problem
both contribute to overall solution expense. Both of these factors are influenced by the
system partition and coordination strategy. Partitioning and coordination decisions must
be made before a system design problem can be solved using decomposition-based design
optimization. This dissertation was centered on techniques for making partitioning and
coordination decisions using information about problem structure, such as dependence
relationships between analysis functions and on design variables. Previous techniques
had addressed either the partitioning problem or some form of the coordination decision
problem, but few had studied partitioning and coordination decisions together. It was shown
here that partitioning and coordination decisions are coupled; this was accomplished by
demonstrating that making partitioning and coordination decisions independently or in
sequence leads to suboptimal results, while a simultaneous decision approach consistently
identified better decisions.

A simultaneous decision approach requires precedence information as well as knowledge
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of analysis function dependence on design variables. Early methods relied solely on
precedence information to make partitioning decisions; later partitioning methods did not
use directionality in making decisions. The simultaneous partitioning and coordination
decision methods introduced here use both types of information. The reduced adjacency
matrix was developed specifically to represent this information compactly, and is in a
form convenient for computational purposes. The reduced adjacency matrix enables also
calculation of subproblem optimization dimension; previous methods approximate this
quantity using just the number of analysis functions or variables.

The optimal P/C methods of Chapters 5–7 involved the solution of nonlinear combinato-
rial optimization problems, which are NP-complete. Exhaustive enumeration may be used
to solve these problems for small systems, and an evolutionary algorithm was developed for
larger systems. While an efficient algorithm does not yet exist for solving these problems,
in practice they can be solved fast enough to be of benefit. Some alternate methods, such
as Michelena’s spectral partitioning method [105], make several simplifying assumptions
that allow application of very fast solution algorithms. The optimal P/C methods presented
here are more difficult to solve, but provide a more complete decision model with fewer
approximations. In many cases the design problem solution time vastly exceeds P/C solution
time, so the more accurate P/C decision methods may be preferable.

Two optimal P/C methods were presented. The first, given in Chapter 5, applies to
distributed optimization methods with properties similar to ATC or ALC. The second method,
presented in Chapter 7, was developed for a specific class of parallel ALC implementations.
This allowed the use of very detailed problem size metrics. More importantly, limiting the
P/C decision method to parallel ALC for quasi-separable problems enabled the addition
of consistency constraint allocation to the P/C decision method. An automated method for
allocating consistency constraints is especially useful for ALC due to its linking structure
flexibility. ALC consistency constraints can be adapted to fit the structure of arbitrary
non-hierarchical problems, but the immense number of linking structure options makes
manual decision making impractical. The developed automated technique was required to
take advantage of ALC’s flexibility in practice.

Several original engineering design problems were developed to demonstrate concepts
throughout this dissertation. The majority are described in sufficient detail for replication.
An electric water pump design problem and a structural design problem were used in
demonstrating P/C decision making without consistency constraint allocation, and an electric
vehicle (EV) design problem was developed to demonstrate P/C decision making with
consistency constraint allocation. The EV problem emphasized analysis interactions and
shared design variables between vehicle systems.
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9.2 Extension of Simultaneous P/C Decision Making

The P/C decision methods presented here were developed with an eye toward system design
problems that use simulation-based analysis functions. These problems have known input-
output relationships, and normally have quasi-separable problem structures. While the
specific techniques presented here apply to problems that meet these assumptions, the more
general principle of simultaneous P/C decision making can be extended to other applications.
For example, new decision models can be derived for distributed optimization formulations
other than ATC or ALC, or for problems that are not quasi-separable. The steps for creating
a new decision model are as follows:

1. Identify primary sources of computational expense
2. Isolate partitioning and coordination decisions that impact these sources
3. Define a set of decision variables for the P/C problem
4. Define P/C problem objective function(s)
5. Develop a mapping between decision variables and objective functions

Many system optimization methods employ some type of nested approach. ATC and
ALC have subproblems nested within a fixed point iteration algorithm. Collaborative op-
timization and Dantzig-Wolfe decomposition have subproblems nested within a master
optimization problem. Nested processes generally have two primary sources of computa-
tional expense: the inner loop and the outer loop. The methods presented here use CS to
estimate outer loop expense, and SSmax or S̄Smax to model inner loop expense. In a nested
process there is a natural tradeoff between these two sources of expense, and it is important
in an optimal P/C method to address this tradeoff. A multi-objective optimization approach
is a helpful approach for analyzing such tradeoffs.

This methodology is not limited to decomposition-based design optimization, but can
apply to other processes with a nested structure or some type of coordination algorithm.
For example, more general parallel computing could benefit from such an approach. A
computing job must be partitioned into individual computing tasks, and then a schedule for
these tasks must be defined that pays heed to precedence relationships and computational
time. The details may be very different from decomposition-based design optimization, but
as long as the steps above can be followed, a simultaneous partitioning and coordination
decision method may be constructed for parallel computing applications.
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9.3 Contributions

1. Partitioning and coordination decisions in decomposition-based design optimization
were shown to be coupled, and that treating them independently leads to sub-optimal
solution approaches.

2. A method for making optimal partitioning and coordination decisions was developed,
and it was shown how this method can also be used to analyze the suitability of a
decomposition-based approach for solving a particular system design optimization
problem. The method employs the reduced adjacency matrix, a new system structure
representation that combines functional dependence and precedence information
required for making simultaneous P/C decisions.

3. A new evolutionary algorithm was developed that solves the optimal P/C problem
for larger systems. The results of this algorithm compared well against exact results
obtained using exhaustive enumeration.

4. The Augmented Lagrangian Coordination (ALC) formulation provides tremendous
flexibility in problem linking structure. This allows a solution process to be tailored to
the needs of a specific problem. Linking structure theory for ALC was developed, and
it was shown that the number of linking structure options is very large. Manual linking
structure decisions are manageable when based on bi-level or hierarchical structures,
but this approach fails to exploit the full benefit of linking structure flexibility in
ALC. This dissertation put forth a method for automating linking structure decisions
for ALC in an optimal P/C decision method, enabling system designers to take full
advantage of ALC.

5. Several original engineering design examples were presented. Sufficient detail was
provided such that most examples can be replicated. These examples therefore
may be used as a basis for future investigations in decomposition-based design
optimization. These examples are an important contribution because suitable system
design examples are notably lacking in the literature.

9.4 Future Work

Evolutionary Algorithm
An evolutionary algorithm was developed for the general partitioning and coordination

decision method introduced in Chapter 5. This entailed a custom genotype representation
for system partition and subproblem sequence. The more detailed method introduced in
Chapter 7 for the parallel ALC P/C decision problem involved exhaustive enumeration,
and was limited to systems with a maximum of four analysis functions; an evolutionary
algorithm would increase this upper bound and improve the applicability of this method. A
new genotype representation for stage assignment and consistency constraint allocation is
required.
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Adaptive P/C Decision Method
A key assumption throughout this dissertation has been that partitioning and coordination

decisions must be made before solution of the system design problem commences; decisions
must be made with incomplete or approximate information under this assumption. Tech-
niques have been developed for updating parallel processing implementations dynamically,
i.e., as more information about the system is gathered, or as solution requirements evolve,
the parallel processing approach can be updated accordingly without restarting the solution
process. It is proposed that this principle can be applied to partitioning and coordination
decisions for decomposition-based design optimization. Early on in the solution process
relatively little is known about a system. As the solution process progresses, information can
be gathered and analyzed. These data may be used to determine whether dynamic changes
in system partition or coordination strategy would be beneficial.

Alternate Coordination Algorithms
Fixed point iteration, or nonlinear Gauss-Seidel, is a nearly ubiquitous choice for coordi-

nation algorithm for methods similar to ATC or ALC. It is a relatively stable, zeroth-order
algorithm for solving systems of nonlinear equations. Many other options exist for solving
the coordination problem, such as successive over-relaxation [71], Newton’s method [43],
or Aitken’s method [13]. The effect of these alternative algorithms on system optimization
convergence should be studied.

Integrated Vehicle Design
The EV design problem introduced in Chapter 8 is a first step toward a more integrated

approach to vehicle design. Several interactions were included in the design model, but
many more interactions important to vehicle performance could be included. For example,
the chassis subproblem could include more sophisticated simulations and vehicle maneuvers,
or consider detailed suspension geometry in the design. Commercial software for simulating
vehicle dynamics that is currently available is not amenable to the type of integration
demonstrated in Chapter 8. Substantial software development is required before an integrated
vehicle model is realizable. Another improvement includes a more sophisticated packaging
model would allow for changes in important vehicle dimensions, such as wheelbase and
track width, and propagate the effect of these changes throughout the vehicle.
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